AFGL-TR-82-0057

ABSORPTION MEASUREMENTS OF CO₂ AND H₂O AT HIGH RESOLUTION AND ELEVATED TEMPLEATURES

Mark P. Esplin Ronald J. Huppi Hajime Sakai George A. Vanasse Laurence S. Rothman

Electro-Dynamics Laboratories (SRL) Utah State University 139 The Great Road Bedford, Massachusetts 01730

Scientific Report No. 1

February 1982

Approved for public release; distribution unlimited

FILE COPY 2

0

*

3

 \mathfrak{O}

3

AD

AIR FORCE GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

27

04

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

REPORT DOCUMEN	TATION PAGE	READ INSTRUCTIONS
REPORT NUMBER	2. GOVT ACCESSIC	N NO. 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR- 82-0057	AD-A11.3	8214 EDL-SRL-82-1
TITLE (and Subtitio)		S. TYPE OF REPORT & PERIOD COVERED
Absorption Measurements of	f CO ₂ and H ₂ O at Hig	h Scientific Depart No. 1
Resolution and Elevated Te	emperatures	Scientific Report No. 1
		6. PERFORMING ORG. REPORT NUMBER
AUTHOR(+)		8. CONTRACT OR GRANT NUMBER(e)
Mark P. Esplin, Ronald J.	Huppi, Hajime Sakai	*
George A. Vanasse and Laur	rence S. Rothman ^{**}	F19628-81-C-0113
Floctuo Dunamico Labouatou	DADDRESS	AREA & WORK UNIT NUMBERS
litah State University	ries (SKL)	61102F
139 The Great Road, Bedfor	rd. MA 01730	2310G1AR
CONTROLLING OFFICE NAME AND ADD	RESS	12. REPORT DATE
Air Force Geophysics Labor	ratory	February 1982
Hanscom AFB, Massachusetts	6 01731	13. NUMBER OF PAGES
MONITORING AGENCY NAME A ADDRES	PR S(II different from Controlling Off	(ce) 15. SECURITY CLASS (of this month)
	all and the concernant of	in allowing the class. (of this report)
		Unclassified
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
UISTRIBUTION STATEMENT (of this Repo		
Approved for public releas	e; Distribution unl	imited.
Approved for public releas	e; Distribution un act enfored in Black 20, 11 differe	imited. ELE THE APR 2 7 1982 APR 2 7 1982
Approved for public releas DISTRIBUTION STATEMENT (of the about	e; Distribution uni act enfored in Black 20, 11 differe	imited. ELE THE APR 2 7 1982 APR 2 7 1982
Approved for public releas	e; Distribution un act entered in Black 20, 11 dillera	imited.
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES	se; Distribution un act enfored in Black 20, 11 differe	imited.
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M	e; Distribution un act entered in Black 20, if differe ed by the Air Force (otherst, MA Massachusetts 01731	imited. TELE 7 1982 APR 2 7
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M	et entered in Block 20, if differe ed by the Air Force (nherst, MA Massachusetts 01731	imited. TELECTION APR 2 7 1982 APR 2 7 19
Approved for public releas DISTRIBUTION STATEMENT (of the ebetr SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am **AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse eide if no CO ₂ , H ₂ O, spectroscopic co temperature	et enfored in Block 20, if differe d by the Air Force (otherst, MA Massachusetts 01731 eccessory and identify by block nu unstants, interferome	imited. TELE 7 1982 APR 2 7
Approved for public releas DISTRIBUTION STATEMENT (of the abetr SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse elde if no CO ₂ , H ₂ O, spectroscopic co temperature	et entered in Block 20, if differe ed by the Air Force (nherst, MA Massachusetts 01731 eccesary and identify by block nu unstants, interferome	imited. FELE 7 1982 APR 2 7
Approved for public releas DISTRIBUTION STATEMENT (of the ebett SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am **AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature	e; Distribution un act entered in Block 20, if differe ed by the Air Force (nherst, MA Massachusetts 01731 eccessory and identify by block nu unstants, interferome	imited. FELE 7 1982 APR 2 7
Approved for public releas DISTRIBUTION STATEMENT (of the abelt SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am **AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature	et enfored in Block 20, if differe ed by the Air Force (otherst, MA Massachusetts 01731 eccessory and identify by block nu unstants, interferome	imited.
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am **AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature ABSTRICT (Continue on reverse side if no High resolution (0.00 of H ₂ O and several isotope interferometer are present	e; Distribution un act entered in Block 20, if differe ed by the Air Force (mherst, MA Massachusetts 01731 economy and identify by block nu unstants, interferome (convery and identify by block nu onstants, interferome	imited. File of Scientific Research. (mbor) ter, high resolution, high FGL high resolution cat's eye tion used is briefly described
Approved for public releas DISTRIBUTION STATEMENT (of the ebett SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature ABSTRUCT (Continue on reverse side if no High resolution (0.00 of H ₂ O and several isotope interferometer are present and resulting line positio tabulated. A general desc transition frequencies is H ₂ O and CO ₂ molecules. Con	ec; Distribution un act entered in Black 20, if differe ed by the Air Force (otherst, MA Massachusetts 01731 eccessory and identify by block nu instants, interferome (concery and identify by block nu onstants, interferome (concery and identify by block nu (concery and identify by block nu (concery) and id	imited. File of Scientific Research. More (to 800K) measurements FGL high resolution, high ture (to 800K) measurements FGL high resolution cat's eye tion used is briefly described ectroscopic constants are ique used for identifying specific application to the tions of line positions using
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature ABSTRICT (Continue on reverse side if no High resolution (0.00 of H ₂ O and several isotope interferometer are present and resulting line position tabulated. A general desc transition frequencies is H ₂ O and CO ₂ molecules. Co	economy and identify by block num convery and identify by block num converses and identi	imited. File of Scientific Research. More (to 800K) measurements FGL high resolution, high SFGL high resolution cat's eye tion used is briefly described ectroscopic constants are ique used for identifying specific application to the tions of line positions using
Approved for public releas DISTRIBUTION STATEMENT (of the about SUPPLEMENTARY NOTES This research was supporte *University of Mass., Am *AFGL, Hanscom AFB, M KEY WORDS (Continue on reverse side if no CO ₂ , H ₂ O, spectroscopic co temperature ABSTRUCT (Continue on reverse side if no High resolution (0.00 of H ₂ O and several isotope interferometer are present and resulting line position tabulated. A general desc transition frequencies is H ₂ O and CO ₂ molecules. Con	ec; Distribution un act entered in Block 20, if differe ed by the Air Force (aherst, MA Massachusetts 01731 accessory and identify by block nu instants, interferome (conserv and identify by block num instants, interferome (conserv and identify by block num instants, interferome (conserv and identify by block num instants, interferome (conserv and identify by block num (conserv and identify by block num (conserv) and	imited. File of Scientific Research. Moor) ture (to 800K) measurements FGL high resolution, high SFGL high resolution cat's eye tion used is briefly described ectroscopic constants are ique used for identifying specific application to the tions of line positions using Unclassified

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. Abstract (Continued)

spectroscopic constants obtained from high temperature data with those obtained at room temperature are presented. A global fit approach to the CO2 data is also discussed, incorporating high resolution measurements throughout the infrared to achieve a self-consistent set of spectroscopic constants.

1.1

Unclassified

SECURITY CLASSIFICATION OF THIS PASE Then Dete S

Accession For NTIS GRANI

Unansounced ustification

Distribution/

Availability Codes Avail and/or Special

TTIC TAB

P7-

list

12

Acknowledgement

The measurements and analysis presented in this report were supported by the Air Force Office of Scientific Research under Grant AFOSR 78-3702, Project 2301, the Atmospheric Sciences Project 2310 and performed as part of AFGL Task 2310G1, IHWUS 2310G101 and 2310G106 and also under AFGL Contract F19628-81-C-0113. We would like to acknowledge Mr. William Dalton and Mrs. Shui-Hua Li from the University of Massachusetts and Mr. Vaughn Griffiths of the Stewart Radiance Laboratory of Utah State University for their help in obtaining the data.

Table of Contents

		Page
	Acknowledgements	3
	List of Figures	5
	List of Tables	7
I.	Introduction	9
11.	General Considerations	14
III.	Instrumentation	19
IV.	CO ₂ Moleculé	20
	a) $\frac{12}{c^{16}o_2}$ (616); 2180 cm ⁻¹ to 2400 cm ⁻¹ , 800K	24
	b) $\frac{13}{2} \frac{16}{0} \frac{13}{2} \frac{13}{10} \frac{16}{0} \frac{18}{0}$; 2140 cm ⁻¹ to 2340 cm ⁻¹ , 600K	29
	e) $13c^{16}O_2$ and $13c^{16}O^{18}O_3$, 2140 cm ⁻¹ to 2340 cm ⁻¹ , 800K	38
V.	H_2O (161); 1600 cm ²¹ to 2001 cm ²¹ , 800K	49
VI.	Global Constants for Carbon Dioxide	52
	References	96

4

List of Figures

			Page
Figure	1.	Comparison of the line positions for the P branch of the (02211C-02201C) band between our values measured at 800K and those extrapolated from other room temperature data. Guelachvili's measurement at room temperature extends up to P46 lines, while the 1978 AFGL compilation is based on the old data.	28
Figure	2.	Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1980) constants for the 01101C to 01111C band of ${}^{13}C{}^{16}O_2$.	35
Figure	3.	Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1980) constants for the 01101D to 01111D band of $13C16O_2$.	36
Figure	4.	Comparison of measured line positions with those computed using the AFGL (1980) constants for the 00001 to 00011 band of $13C16O18O$.	37
Figure	5.	Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1980) constants for the 00001 to 00011 band of $13C16O_2$.	45
Figure	6.	Comparison for the 01101C to 01111C band of $13C16O_2$.	45
Figure	7.	Comparison for the 01101D to 01111D band of ${}^{13}C^{16}O_2$.	46
Figure	8.	Comparison for the 10002 to 10012 band of $13c160_2$.	46
Figure	9.	Comparison for the 02201C to 02211C band of $13C16O_2$.	47
Figure	10.	Comparison for the 02201D to 02211D band of $13C16O_2$.	47
Figure	11.	Comparison for the 10001 to 10011 band of $13C16O_2$.	48

5

List of Figures (Continued)

,			Page
Figure	12.	Comparison for the 00001 to 00011 band of $13c16c18c$.	48
Figure	13.	Designation of c= and d= levels for N-N transition for CO ₂ without center of symmetry.	57

List of Tables

			Page
Table	I.	The ${}^{12}C{}^{16}O_2$ (626) Bands Observed at 800K	25
Table	11.	Spectroscopic Constants for ${}^{12}c^{16}O_2$ (626) Observed at 800K (cm ⁻¹)	26
Table	III.	Isotopic CO ₂ Bands Observed at 600K	33
Table	IV.	Spectroscopic Constants for Isotopic CO_2 Observed at 600K (cm ⁻¹)	34
Table	v.	The P-Branch of the 00001 to 00011 Band of $13C_{160}^{160}$ (636)	41
Table	VI.	Isotopic CO ₂ Bands Observed at $800K$ (cm ⁻¹)	42
Table	VII.	Spectroscopic Constants for Isotopic CO ₂ Observed at 800K (cm ⁻¹)	43
Table	VIII.	Isotopic CO_2 Lines Observed Between 2140 cm ⁻¹ and 2340 cm ⁻¹ at 800K	61
Table	XI.	H_2O Line Data Between 1600 cm ⁻¹ and 2000 cm ⁻¹	81
Table	x.	Newly Identified Lines of the (010-000) and (020-010) Bands	94

7

، مار

71.

I. INTRODUCTION

The molecular species CO_2 and H_2O are major atmospheric constituents which critically control the infrared radiative transfer in the earth's atmosphere. Their absorption bands are distributed over a wide spectral range, extending from the near to the far infrared region of the electromagnetic spectrum. These species have been extensively studied since infrared spectroscopy technology came into existence; however, there are still gaps in our knowledge of the infrared absorption of these two molecules. In particular, our understanding of their absorption at high temperatures remains incomplete. The bands observable at room temperature are restricted to transitions which originate from a lower state of a relatively small excitation energy-typically from a vibrational-rotational energy below 2000 cm⁻¹. Transitions at room temperature are weak since these lower states are insufficiently populated. They cannot be studied well even with measurements through extremely long absorption paths. These are the transitions which originate from lower states of high vibrational-rotational energy and become observable when the gas temperature is raised to increase their population density. These transitions, generally referred to as the hot bands, are poorly known because of the paucity of measurements.

Various experimental difficulties are encountered in the spectroscopic measurement of gases at elevated temperatures. The original AFGL compilation of the atmospheric line parameters

was assembled primarily for application to room temperature calculations. The basic line parameters were derived from room temperature data. Consequently, the accuracy which the data provided was generally unsuitable for spectral synthesis calculation for high temperatures. The line parameters compiled for the hot bands of these molecules do not provide an accuracy sufficient for line position extrapolation to high temperature. The present experimental effort was begun with the intent to solve this difficulty by measuring the absorption of these molecules at elevated temperatures and obtaining improved line parameters which could yield more accurate results in spectral syntheses at high temperatures and high resolution.

The excitation which occurs in a heated gas maintains thermal equilibrium of the molecular system; the distribution, or population as a function of energy level, is controlled by the Boltzmann factor $e^{-E/kT}$, where E is the vibrationalrotational energy of the state in question. There would be no preferential excitations among various vibrational levels. If two states which belong to two different vibrational states have a similar energy, $E_1 = E_2$, both states are excited at an equal rate. A marked increase in the observable transitions consequently occurs along two directions as the temperature of the molecular system is increased; there is a marked increase in observable vibrational transitions as well as in rotational transitions within a vibrational transition.

The spectral structure consequently increases in complexity as the gas temperature is raised.

The increased complexity in the spectra poses two problems: one is a requirement for increased spectral resolution, and another is for the identification of the individual spectral transitions. The spectra must be observed with adequate spectral resolution for the isolation of most of the transitions of interest. The spectral coverage must be broadened since more rotational lines are excited within a vibrational band. The problem of spectrometry is, for our case, adequately solved by use of the technique of Fourier spectroscopy. The second problem concerning identification of the observed spectral transitions was found more difficult than expected. To overcome this difficulty the spectral data were taken at temperature steps of 200K, i.e., at 600K and at 800K. We hoped to follow the excitation of the hot bands in the data taken at these temperatures. For the H_2O data, the temperature step taken was adequate, while it was found inadequate for the CO₂ data. The increase in observable CO₂ lines from 600K to 800K was overwhelming; at 600K we were able to make the assignment of the observed CO₂ lines without encountering serious difficulty, while at 800K an automated Loomis-Wood diagram technique was developed for the purpose of simplifying the identification.

An absorption cell which could be operated at elevated temperatures was designed and constructed. The instrumentation

problem was mainly a question of stability in the optical path during high temperature operation. Prior experience indicated that the White cell configuration was totally inadequate for high temperature operation and that a Pfund cell configuration might work very well. Even so, the multipass optical system was found difficult to operate at high temperature - it worked within a limited temperature range. The mirror surface coated with a Rh film was adequate for the measurements at 600K and 800K. The cell transmission was found to deteriorate rapidly as the temperature was raised above 1000K. A single-pass optical configuration which required no mirror optics seemed the only arrangement with promise of successful operation at temperatures above 1000K.

The measurements consisted of obtaining absorption data of both gases at two temperatures, 600K and 800K in the spectral region between 1600 to 2500 cm⁻¹. Analysis of the CO_2 data clearly indicated that a high accuracy of the measurement of the line positions is inadequate for extrapolating to the highest rotational transitions. The vibrational-rotational transitions of a linear polyatomic molecule (for example the Q branch) can be given by the simple expression:

 $\sigma(J) = G^{*} + B^{*} J^{*}(J^{*}+1) - D^{*}[J^{*}(J^{*}+1)]^{2} + H^{*}[J^{*}(J^{*}+1)]^{3}$ - G^{*} - B^{*} J^{*}(J^{*}+1) + D^{*}[J^{*}(J^{*}+1)]^{2} - H^{*}[J^{*}(J^{*}+1)]^{3}.

It was found that the parameters, B, D, and H, determined from the measurement had a meaningful accuracy only within the

measured transition range. They were by no means effective in predicting the transitions outside the range. For example, we found that those parameters determined from the data between P(50) to R(50) with high accuracy could predict P(60) to R(60) lines to poor accuracy.

The intensities of the CO₂ lines observed in the data were not determined absolutely. In complex spectra such as those reported on here, very few observed spectral features are composed of single transitions. In dealing with the complex data we must determine the individual line intensities simultaneously for multiline components. The assignment of the exact positions for the component lines is of crucial importance to the effort. Because of this, the identification of all transitions observed in the data is of prime importance for the data analysis. An extended effort is required for the assignment of transitions.

The H_2O data contrasted in many ways with the CO_2 data. The H_2O molecule is an asymmetric top rotor; the rotational lines are distributed in a manner not so simple as a linear molecule and its vibrational frequencies are much larger than those of CO_2 . Even though the H_2O spectrum contains far less lines than the CO_2 spectrum, its structure is far more complex than the latter. Nevertheless the analysis went well. The identifications of the transitions for H_2O and CO_2 and the intensities for H_2O were made using the 600K and 800K data.

II. GENERAL CONSIDERATIONS

In all our observed spectra the 100% transmittance level was not constant but varied as a function of wavenumber. This variation was due to several factors such as, a variation in detector spectral sensitivity, the spectral transmission characteristics of the bandpass filter and probably of the interferometer as well. By far the most bothersome background level modulation was caused by the light interference between various optical surfaces which the infrared beam traversed. The molecular absorptance (for the case of H_2O) was determined with respect to the non-uniform 100% transmission level and, in spite of using various computation logics to reduce the effect of the background uncertainty, the uncertainty in the absorption was still greater than 5%.

The absorption spectra, determined as indicated above, were then analyzed to obtain transition frequencies. Since the computer output is a spectrum consisting of discrete values in wavenumber at an interval corresponding to the reciprocal of twice the maximum path difference in the interferogram, it is not smooth enough for analysis, i.e., connecting the spectral output points by straight lines results in a very jagged spectrum. It is necessary to determine extra spectral values between the original output points either by zero-extending the interferogram and Fourier transforming, or by convolving the original spectral output with a sinc function. Once this is accomplished it is easier to proceed

with the analysis.

The line centers were determined either by using the calculated first and second derivatives of the smooth spectrum or by a technique described in Sec. IV. The uncertainty in the spectral line center was affected by the noise in the data as well as by the blending of neighboring lines. This uncertainty is larger for the lines that are strongly saturated at the line centers, even for the case when these are well isolated from their neighbors. The overall uncertainty in the measured transition frequencies was close to the separation of the spectral points in the interpolated spectrum, i.e., about 0.0004 cm⁻¹.

The absorption contour of a molecular transition in a measured spectrum may be expressed, to a good approximation, by a convolution integral of the true absorption contour and the impulse response (commonly called the instrument function) of the instrument. For the spectrum obtained by using the technique of Fourier spectroscopy, it is more conveniently expressed in the interferogram domain (defined in the optical path difference scale x) rather than in the spectral domain (defined in the wavenumber scale σ). The observed contour A'(σ) and the true contour A(σ) are related by

 $i2\pi\sigma x$ $i2\pi\sigma x$ $\int A'(\sigma) e d\sigma = \{\int A(\sigma) e d\sigma\} T(x),$ (1) where T(x) is a multiplicative function of finite extent limited to the maximum optical path difference X in the

interferometer. The function T(x) has a shape which depends on the type of apodization applied to the spectral data. In our case, it is a triangular function tapering to zero at the maximum path difference X;

anð

The true absorptance contour of a well-isolated molecular transition line is expressed by

$$A(\sigma) = 1 - \exp[-k(\sigma)], \qquad (3)$$

where the function $k(\sigma)$ is the absorption coefficient defined by the transition strength S per single molecule in the form

$$\int k(\sigma) \, d\sigma = SN. \tag{4}$$

In this formulation we assume that the absorption is caused by a uniform column of N total molecules per unit cross-sectional area. If thermal equilibrium exists along the absorption path, the strength S is given by the well-known formula

$$S = \frac{8\pi v}{3hc} |R|^2 (1-e^{kT}) - e^{-E''/kT},$$

where v is the transition frequency in Hz, R is the transition moment, g is the statistical weight of the lower state, and E" is the lower state energy. The absorption coefficient $k(\sigma)$ takes on various shapes in accordance with the line

profile. If the assumption is valid that collisions from neighboring molecules dominate the spectral line shape, we may express the absorption coefficient by the Lorentzian profile:

$$k(\sigma) = \frac{S_{\alpha}}{\pi[(\sigma - \sigma_0)^2 + \alpha^2]}, \qquad (5)$$

where α is the width and σ_O is the center frequency of the line.

The observed spectrum for most cases contains lines which are to a varying degree overlapped with their neighbors. The absorptance contour for the overlapped lines is given by

$$A(\sigma) = 1 - \exp - \begin{bmatrix} x \\ z \\ n=1 \end{bmatrix}, \qquad (6)$$

where the absorption consists of N lines, and $k_n(\sigma)$ is the absorption coefficient for the n-th line. The data which we deal with in the analysis contain all possible situations, i.e., from the case of well isolated lines to that of many overlapping lines. The objective of the spectral analysis is to determine the line parameters of each transition, the transition frequency σ_0 , and for water the strength S and the width α . We describe below the technique used in extracting these parameters for overlapping lines.

First, we separated the data into groups of lines which were sufficiently isolated and then proceeded to apply a

curve fitting technique based on the least-squares method. The separation of the lines into groups was necessary because the data contained lines of varying degree of overlapping. A criterion was set which established when the absorptance on either side of a line was sufficiently close to zero; the line was then considered to be isolated. With the line center frequency determined as described above, the remaining two variables for each component line (for the case of water), the strength and the width, were determined under the assumption that the line profile was Lorentzian. A spectral pattern theoretically constructed using the Lorentzian profile with assumed parameters was compared with the observed data. The square error between them was calculated and then minimized by adjusting the two variables, the strength and the width, for each component line. The sequence, which was the nonlinear least-squares curve fitting process, was repeated to reduce the square error to an expected stationary value according to the noise level in the observed data. Once the error figure converged to a stationary value, the integrated absorptance W, given by

$$W = \int A(\sigma) d\sigma, \qquad (7)$$

was calculated for each line contained in the group using the strength and the width thus established. The standard method of obtaining the integrated absorption by numerically integrating the observed absorptance for each line was not

applicable to our data reduction because the data contained considerable overlapping of lines.

III. INSTRUMENTATION

All the measurements were made using the Air Force Geophysics Laboratory (AFGL) high resolution Fourier transform spectrometer with the associated Pfund configuration hot cell. The maximum path difference the interferometer was driven to was 75 cm, resulting in an unapodized resolution of approximately 0.007 cm^{-1} . The AFGL step and hold interferometer (built by Idealab) and hot cell system have been described in previous publications^{1,2,3}, so will not be desscribed here. However, we would like to indicate one modification in the operation of the system.

In the past, the stepping of the interferometer mirror was controlled with dedicated electronics. With stable external conditions and the gains properly tuned, this hardware stepping system was adequate to step and hold 10⁶ steps. However, in practice these conditions were found difficult to achieve and maintain. Consequently, a PDP-8E minicomputer has recently been used to increase the stepping reliability of the interferometer. This mini-computer, used previously only for handling data, is now used to monitor the laser reference signal and take corrective action for the most commonly occurring stepping errors. In addition to relaxing the conditions under which the interferometer can be successfully operated, this computerized stepping control system provides

very useful diagnostic information on the operation of the stepping system. Before the computerized control system was added it was almost impossible to determine anything about the nature of stepping errors that occurred infrequently.

For the actual measurements the high temperature absorption cell, inside the oven, was placed against the entrance window of the interferometer vacuum chamber. Since we were unable to properly couple the hot cell to the interferometer chamber there remained about a 0.25 cm optical path through ambient air. The remainder of the optical path from the source to the interferometer was maintained below 1 torr; except of course when the gases were introduced into the absorption cell when the pressure then was either 3 or 6 torr. The pressure in the absorption cell was measured by a Baratron pressure guage.

IV. CO₂ MOLECULE

The importance of CO₂ as an atmospheric molecule justifies measurements and calculation at high precision of band parameters for a great number of bands; it is indeed a significant contribution to both theoretical and experimental studies of our atmosphere. Very accurate parameters on the (00001-00011)* band of ${}^{12}C^{16}O_{2}$ have been obtained by Pine and Guelachvili⁴.

^{*}For CO₂ there are three fundamental modes of vibration, v_1 , v_2 , and v_3 . Associated with the bending mode, v_2 , is the angular momentum t. The notation used is $v_1v_2tv_3r$ where r is the ranking index for a Fermi resonating group.

Their measurement was accomplished by combining two spectra, a room temperature Fourier transform spectrum and a high temperature tunable laser spectrum. There have been numerous measurements of other bands of CO_2 , but they were made either with lower resolution spectrometers, near room temperature where fewer rotational lines were excited, resulting in a less accurate determination of band parameters, or electrical discharge spectra where high vibrational levels were obtained but with the normal distribution of rotational level J. In this section we present measurements of CO_2 made with the above described system.

The energy (in cm^{-1}) of a linear molecule, such as CO_2 , in a given vibration-rotation state can be represented by

 $E(v,J) = G_v + B_v[J(J+1)] - D_v[J(J+1)]^2 + H_v[J(J+1)]^3$ where v is the quantum number associated with the vibrational energy, J is the quantum number associated with the total angular momentum of the molecule, and G, B, D are the spectroscopic constants. The infrared spectrum corresponds to transitions between different vibration-rotation states.

The advantages of making the measurements at elevated temperatures are twofold. First, at higher temperatures more rotational lines are excited, making it possible to obtain higher precision in the determination of the spectroscopic constants G, B, D, and H. Secondly, the higher temperature results in higher vibrational energy levels being excited, making more of the so-called "hot bands" measurable.

We used a PDP-8e mini-computer to control the interferometer and to sample the interferogram. The data were taken via magnetic tape to be analyzed at AFGL and/or at the University of Massachusetts. The data were first Fourier transformed, the various lines identified, and finally a least-squares fit technique used to generate new values for the band parameters. Each band was fit independently of the other bands.

Spectra obtained using high resolution Fourier transform spectrometers have an excellent frequency stability over a wide spectral range. There is, however, a small systematic frequency shift introduced into the spectra due to finite detector size. In principle, this correction can be calculated from the geometry of the interferometer apertures and detectors, but in practice it is usually easier to use an internal frequency standard such as lines of CO which were present in our experimental spectra. Guelachvili⁵ has measured the positions of these CO lines with an accuracy of 0.00008 cm⁻¹. We used these line positions as an internal frequency standard. After this systematic error was removed from our spectra, the standard deviation of the fit between our data and Guelachvili's, for well isolated lines, was about 0.0004 cm⁻¹.

The identification of the transitions was made in one of three ways, depending on how well the band had previously been measured. For well-known bands the identification

procedure was readily automated. The position and strength of each line was calculated, and then used to locate the line in the experimental spectrum with approximately the right strength that was closest to the calculated position.

For other bands, the positions of lines for low J have been well measured, but not for high J. In this case, the line positions were again calculated and the experimental lines identified, starting at low J and moving up to higher J, until there were not any lines within about 0.02 cm^{-1} of the calculated line. The band was then refit and new constants obtained. The process was iterated until no further extension to higher J was possible.

In some cases the band was so poorly known even at low J that the identification could not be made by taking the experimental line closest to the calculated line position. Another problem arose when certain combinations of merged lines made the extension from low J to higher J impossible. In these two cases, a Loomis-Wood diagram⁶ approach has been extremely helpful in picking out the lines that belong to one band in the presence of lines belonging to other bands. When the differences between a calculated line and all observed lines that are nearby are displayed graphically, it is relatively easy to see the pattern created from a set of lines which have spectroscopic constants similar to those used to calculate the line positions.

IV.a. ${}^{12}C^{16}O_2$ (626)*, 2180 cm⁻¹ to 2400 cm⁻¹, 800K

The data presented in this section were obtained at 800K with a resolution of 0.007 cm^{-1} . Once the identification of these measured lines had been made each band was fit discarding only the most severely merged lines. Lines for which the difference between the observed and calculated position was less than about 0.005 cm^{-1} were kept in the fit. All lines used in the fit were weighted equally. The bands that were fit are listed in Table I, along with the standard deviation and the range of J values used. The resulting values obtained for G'-G", B', D', H', B", D" and H" are tabulated in Table II.

Several constraints were used on the fits. The spectroscopic constants H' and H" were constrained to zero for some bands. For bands where t is not equal to zero, t-type doubling results in two sets of energy levels denoted by c and d. The spectroscopic constants obtained for the c and the d levels were considered separately for bands where t=1 and t=2. For the bands where G" is less than 3000 cm⁻¹ restrictions were placed on the G's and B's. For t=1 the G's, and for t=2 both the G's and the B's of the c levels were constrained to be equal to those of the d levels.

The difference between the transitions calculated using the band parameters determined by Guelachvili and those in the 1978 AFGL line compilation⁸ for the P branch of the * Designation used on AFGL tapes⁷

Table	I.	The	¹² c ¹⁶ 0 ₂	(626)	Bands	Observed	at	800K
-------	----	-----	--	-------	-------	----------	----	------

Trans	ition	Band Origin (cm ⁻¹)	Range of Measurement	Standard Deviation (cm ⁻¹)
00011	00001	2349.143	P120-R118	0.0009
01111C	01101C	2336.633	P107-R109	0.0007
01111D	01101D	2336.633	P108-R104	0.0006
10012	10002	2327.433	P102-R102	0.0008
02211C	02201C	2324.141	P98-R104	0.0009
02211D	02201D	2324.141	P105-R107	0.0009
10011	10001	2326.598	P104-R104	0.0009
03311	03301	2311.668	P90-R92	0.0009
11111C	11101C	2313.772	P89-R87	0.0009
11111D	111 01 D	2313.772	P88-R88	0.0012
20013	20003	2305.257	P80-R76	0.0013
12212C	12202C	2302.958	P68-R62	0.0026
12212D	12202D	2302.958	P67-R67	0.0026
04411	04401	2299.214	P82-R83	0.0010
20012	20002	2306.690	P86-R56	0.0013
12211C	12201C	2301.053	P86-R88	0.0010
12211D	12201D	2301.053	P83-R83	0.0010
00021	00011	2324.183	P83-R87	0.0007
20011	20001	2302.523	P82-R78	0.0011
01121C	01111C	2311.703	P90-R80	0.0013
01121D	01111D	2311.700	P83-R79	0.0014
10022	10012	2302.369	P69-R65	0.0018
02221C	02211C	2299.240	P75-R93	0.0013
02221D	02211D	2299.238	P78-R80	0.0012
13311	13301	2288.390	P65-R63	0.0014
13312	13302	2290.680	P73-R66	0.0013

Table II. Spectroscopic Constants for $^{12}\text{C}^{16}\text{O}_2$ (626) Observed at 800K (cm⁻¹)

. •

Ba	P	5	"G" - G"	BI	D'(10-7)	H'(10-13)	B"	$D^{n}(10^{-7})$	H" (10-]
00011	0000	00000	2349.143	.38713745	1.32514		.39021480	1.32815	1
011110	01101C	667.379	2336.633	.38759128	1.34823	ŗ.	.39063793	1.35387	•2
011110	0110110	667.379	2336.633	.38818885	1.35624	.2	.39125338	1.35978	.2
10012	10002	1285.409	2327.433	.38750303	1.57182	1.9	.39048172	1.56621	1.8
02211C	02201C	1335.129	2324.141	.38863751	1.37657	- 2.2	.39166830	1.39112	- 2.4
02211D	02201D	1335.129	2324.141	.38863751	1.38347	89.	.39166830	1.38995	8.
10011	10001	1388.187	2326.598	.38706354	1.14847	2.3	.39018922	1.15526	2.3
03311	03301	2003.238	2311.668	.38937836	1.39742	- 4	.39238084	1.41110	۳. ۱
111110	11101C	2076.865	2313.772	.38735962	1.21874	- 1.2	.39040322	1.23269	- 1.5
111110	111011	2076.865	2313.772	.38822645	1.17343	- 2.4	.39132461	1.18134	- 2.4
00021	00011	2349.141	2324.183	.38406499	1.31129	- 2.3	.38714060	1.31706	- 1.9
20013	20003	2548.373	2305.257	.38818763	1.79054	3.8	.39110066	1.79227	9 • 8
12212C	12202C	2585.032	2302.958	.38894365	1.35669	0.0	.39193107	1.39145	0.0
12212D	12202D	2585.032	2302.958	.38894365	1.48755	0.0	.39193107	1.52141	0.0
20012	20002	2671.146	2306.690	.38652310	1.35362	10.6	.38954825	1.32130	4.6
04411	04401	2671.690	2299.214	.39010454	1.39091	- 1.6	.39307315	1.41071	- 1.7
12211C	12201C	2760.735	2301.053	.38853501	1.34651	-15.0	.39155785	1.39571	-15.0
12211D	12201D	2760.735	2301.053	.38853501	1.32085	6.6	.39155785	1.33752	6.2
20011	20001	2797.154	2302.523	.38747238	.87851	- 4.5	.39057680	.87891	- 4.7
01121C	01111C	3004.016	2311.703	.38456350	1.40044	6.6	.39761095	1.41327	7.3
01121D	011110	3004.016	2311.700	.38512829	1.34465	- 1.2	.38818842	1.34087	- 2.0
13312	13302	3240.564	2290.680	.38971034	1.47398	0.0	.39265318	1.48599	0.0
13311	13301	3442.256	2288.390	.38924068	1.31704	0.0	.39220963	1.36731	0.0
10022	10012	3612.840	2302.369	.38452333	1.66712	17.0	.38748663	1.58073	3.0
02221C	02211C	3659.277	2299.240	.38560401	1.32035	5.4	.38863983	1.36655	8.4
02221D	02211D	3659.277	2299.238	.38556943	1.28275	- 6.1	.38859689	1.28382	- 6.4

02201C - 02211C band of ${}^{12}C^{16}O_2$ is shown in Figure 1. Guelachvili made extremely accurate room temperature measurements (0.0001 cm⁻¹) of the positions of transitions up to about J = 46 of this band, from which he calculated spectroscopic constants⁹. For J < 50 the agreement with our data is excellent, but for high J the difference is large.

The large values of the standard deviations given in Table I, considerably greater than the 0.0004 cm^{-1} for well isolated lines mentioned earlier, are caused by merging from overlapping bands. Most observed lines are merged to some degree. If the overlapping lines belong to bands that are not correlated with the band being fit, the effect of the merged lines will be to produce an increase in the random scatter of the fit. It is very rare to have both the position and the spacing between the lines of the band being fit and the lines in a merging band close enough that significant correlation occurs. The strongest correlation between bands in the observed spectrum appears to be between c and d bands. For example, the OllOIC-OllIIC and the OllOID-OllIID bands have spectroscopic constants just different enough that even though they have the same band origin, R(105) of the c band is merged with R(106) of the d band. At this point in the bands, the difference between the line spacing is only 0.005 cm^{-1} , yet R(103) is not merged with R(104), nor is R(107) merged with R(108). The smallness of the correlation between

Comparison of the line positions for the P branch of the (02211C-02201C) band between our values measured at 800K and those extrapolated from other room temperature data. Guelachvili's measurement at room temperature extends up to P46 lines, while the 1978 AFGL compilation is based on the old data. Figure 1.

tands supports the assumption that fitting partly merged lines does not introduce systematic errors.

To further insure that the identification and fitting procedure was valid, a synthetic spectrum was calculated and compared to the observed spectrum. The spectroscopic constants listed in Table II and the band intensities given in reference 7 were used to create the synthetic spectrum. Bands that resulted in higher absorption in the synthetic than in the observed spectrum were either refit or thrown out entirely. IV.b. ${}^{13}c^{16}O_{2}$ and ${}^{13}c^{16}O^{18}O_{3}$ 2140 cm⁻¹ to 2340 cm⁻¹, 600K

Spectroscopic constants for ${}^{13}C^{16}O_2$ and ${}^{13}C^{16}O^{18}O$ that predict the position of spectral lines for J values greater than 100 were obtained from absorption data of an isotopically enriched sample of CO₂. The gas sample, consisting of 88% ${}^{13}C^{16}O_2$, 11% ${}^{13}C^{16}O^{18}O$ and 1% various other isotopes, was heated to a temperature of 600K. By making measurements on several isotopes a more accurate determination of the electric potential for the CO₂ molecule can be made since the electric potential function is identical for different isotopes of the same molecule.

Each spectrum was computed by averaging three transformed interferograms, each of which had a measurement time of fifteen hours. Spectra were taken at both 300K and 600K, but only results of analysis of the 600K spectrum containing high J lines are presented. The 300K spectrum was taken in order to assist in the identification of 13c16o180 bands in

the 600K spectrum.

To eliminate the effects of a sloping background, a spectrum was taken of the empty absorption cell and the desired spectrum was ratioed against this spectrum. To minimize the effects of noise in the empty-cell spectrum a 13 point running average was first used to smooth the spectrum before the ratioing was performed.

The spectrum was then analyzed to obtain the position, asymmetry, width, and strength of each line. The density of the spectral points was increased by a factor of sixteen through interpolation. The line positions were determined by taking the wave number position of the point closest to the local minimum as the line center location. A measure of line asymmetry was given by using an alternative method for finding the line positions and comparing the results of the two methods. This second method used the center of a chord drawn across the absorption line a small distance up from the minimum to determine the line center. For symmetric lines, the center of this chord coincides with the line position found from the local minimum method. The line width was determined as being proportional to the length of this chord. An estimate of line strength was calculated by integrating the area between the spectral line and the background. The asymmetry, width, and line strength were used to determine the amount of line merging present and hence the quality of each line.

As a check on the quality of the experimental data a comparison of the line positions of the 00001 to 00011 band of ${}^{12}C^{16}O_2$, observed from P(72) to R(78) was made with the line positions computed using the spectroscopic constants given by Pine and Guelachvili⁴. The results of this comparison showed a systematic difference of 0.0001 cm⁻¹ and an rms error of 0.0008 cm⁻¹.

For low J lines, identification was accomplished by assigning the line in the experimental spectrum whose position was closest to the position calculated using the AFGL (1980) spectroscopic constants¹¹. The lines were identified starting from low J and moving up to higher J until there weren't any lines close (within about 0.02 cm^{-1}) to the calculated values. The band was then refit, new constants obtained, and the process iterated until further extension to higher J was impossible. For the v_3 fundamental band of ${}^{13}\text{C}{}^{16}\text{O}{}^{18}\text{O}$ it was not possible to make conclusive identification of the lines in the 600K spectrum, without first using the AFGL (1980) constants to identify the lines in the 300K spectrum. The band was first fit using the 300K data. The resulting constants were then used to make the identification in the 600K spectrum.

After the lines were identified, a fit was then performed on each band. All lines within 0.0025 cm⁻¹ of the calculated positions were kept in the fit. In order to insure that the identification process was working properly, lines that were

not included in the fit were checked for asymmetry and abnormally large width or strength to verify that their exclusion from the fit was justified. All lines used in the fit were weighted equally. The bands that were fit are given in Table III along with the range of J values, the total number of lines, and the standard deviation of each fit. The resulting values obtained for G'-G", B', D', B", and D" are tabulated in Table IV. All spectroscopic constants were allowed to float freely in the fit. No attempt was made to combine these constants in such a manner as to yield a single consistent potential function for the CO_2 molecule.

For the 00001 to 00011 and the 01101 to 01111 bands of ${}^{13}C^{16}O_2$ the low J lines were badly saturated. Guelachvili had previously measured these lines to a high accuracy⁹, hence for low values of J the line positions of Guelachvili were used in the fit. Guelachvili's line positions were used for the P(52) to R(50) lines of the 00001 - 00011 band, from P(35) to R(25) for the 01101C - 01111C band, and from P(40) to R(40) for the 01101D-01111D band.

Comparisons of the line position measurements determined in this work to those predicted by the extrapolation using Guelachvili's constants⁹ and those used in the 1980 AFGL line compilation¹¹ are given in Figures 2 to 4.

Several interesting features are illustrated by these figures. Although Guelachvili's line positions were measured with considerably more accuracy than ours, extrapolation to

Table III. Isotopic CO_2 Bands Observed at 600K

ы

Transit	ion	Isotope	Band Origin cm ⁻¹	Range Measur	of ement	Number of Lines Used	Standard Deviation (cm ⁻¹
11000	00001	636	2283.4876	P(114) -	R(116)	101	0.0008
011110	01101C	636	2271.7604	P(109) -	R(107)	16	0.0009
011110	0110110	636	2271.7603	P(110) -	R(110)	101	0.0008
10012	10002	636	2261.9098	P(98) -	R(100)	87	0.0012
02211C	02201C	636	2260.0500	P(100) -	R(100)	67	0.0012
02211D	02201D	636	2260.0498	P(97) -	R(99)	66	0.0010
10011	10001	636	2262.8487	P(98) -	R(98)	69	0.0011
11000	00001	638	2265.9730	- (197) -	R(100)	144	0.0010

33

and the second se

Table IV. Spectroscopic Constants for Isotopic CO_2 Observed at 600K (cm⁻¹)

Transi	tion	Isotope	*99	B.	D'(10 ⁻⁷)	B	D"(10-7)
00011	00001	636	2283.4876	0.38727477	1.32699	0.39023879	1.33112
011110	01101C	636	2271.7604	0.38767386	1.33881	0.39060523	1.34555
011110	0110110	636	2271.7603	0.38829031	1.35288	0.39124131	1.35669
10012	10002	636	2261.9098	0.38802165	1.53779	0.39090059	1.54245
02211C	02201C	636	2260.0500	0.38871619	1.35576	0.39163183	1.36918
02211D	02201D	636	2260.0498	0.38868963	1.36587	0.39160487	1.37338
10011	10001	636	2262.8487	0.38670201	1.15853	0.38969557	1.16111
11000	10000	638	2265.9730	0.36538830	1.18047	0.36817867	1.18394

Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1980) constants for the 01101C to 01111C band of $1^{3}C^{16}o_{2}$. Figure 2.

...

7 · . .

Comparison of measured line positions with those computed using the AFGL (1980) constants for the 00001 to 00011 band of 13C160180. Figure 4.

higher J (higher temperature) is unsatisfactory. It appears to be a general principle that spectroscopic constants obtained using low J lines do not successfully predict the position of high J lines. By comparing the difference in the quality of the AFGL (1980) fit of the OllOIC-OllIIC band to the D band it can be seen that the AFGL (1980) line compilation is quite good for some of these very weak atmospheric bands while not for others. The spectroscopic constants for the eight bands reported in this section predict the position of spectral lines to an estimated absolute accuracy of 0.001 cm^{-1} for J values up to 100. This represents a significant improvement in the accuracy with which high J line positions of the isotopes ${}^{13}C^{16}O_2$ and ${}^{13}C^{16}O^{18}O$ can be computed. This improvement illustrates the advantage of heating the sample to determine spectroscopic constants that are valid for large J values. For several of these bands a positional accuracy improvement was realized for low J lines as well. IV.c. ${}^{13}c^{16}O_{2}$ and ${}^{13}c^{16}O^{18}O_{3}$; 2140 cm⁻¹ to 2340 cm⁻¹, 800K

In this section we present results of measurements of the same isotopic species as the previous section but at a temperature of 800K.

A total of four 800K spectra were taken, two with a CO₂ gas pressure of 3 torr and two with 6 torr. In addition to these four spectra, several empty hot cell spectra were also recorded to be used as a reference. The measurement time for each spectrum was approximately fifteen hours.

After the two 3 torr spectra and the two 6 torr spectra were each separately co-added they were ratioed by the empty cell reference spectrum to reduce background effects. To minimize noise in the empty cell spectrum a thirteen point running average was first used to smooth the spectrum before the ratioing was performed. The 3 torr and the 6 torr spectra were then analyzed as described in Sec. IV.b. to obtain the position, asymmetry, width, and strength of each line.

The asymmetry, width, and line strength were used to determine the amount of line merging present and hence the quality of each line. Only severely merged lines were excluded from the least squares procedure. Lines which were slightly merged were still used but with a reduced weighting. The weight associated with each line, the reciprocal of the expected uncertainty squared, was estimated from the line asymmetry, abnormal line width, and inconsistencies of line position as computed from other lines in the band. Before the final fit was realized the 3 torr and 6 torr data were combined to form a single set of data.

Since there was a small amount of ${}^{12}C^{16}O_2$ in the high temperature cell it was possible to make a check on the quality of the experimental data by comparing the line positions observed from P(66) to R(84) of the 00001 to 00011 band with the line positions computed using the spectroscopic constants given by Pine and Guelachvili⁴. The results of this comparison showed evidence for the existence of a systematic error,

particularly for the weak lines at the high end of the R branch where the systematic difference reached a maximum of 0.0006 cm^{-1} . This error probably resulted from incomplete phase correction. The average difference was less than 10^{-4} cm^{-1} with a rms difference of 0.0003 cm^{-1} .

A weighted least squares fit was then performed on each band. An example of the quality of the fit and the data used is given in Table V for the P branch of ${}^{13}C^{16}O_2$ for the 00001 to 00011 band. This table lists the observed line position, line identification, difference between observed and calculated position, and the expected uncertainty for each line.

Since the low J lines for the 00001 to 00011 band of ${}^{13}C^{16}O_2$ were badly saturated for both the 3 torr and 6 torr spectra, lines from P(40) to R(40) of this band were excluded from the fit.

The bands that were fit are given in Table VI, along with the range of J values, the total number of lines used, and the standard deviation of each fit. The resulting values obtained for G'-G", B', D', H', B", D", and H" are tabulated in Table VII. All spectroscopic constants were first allowed to float freely in the fit. The resulting values of H' and H" were smaller than the uncertainty in these parameters for some bands, therefore H' and H" were constrained to zero. These bands are designated in Table VII by letting H' = H" $\equiv 0$.

Table V.	The P-Branch of t	he 00001	to 00011	Band
	of 13C160 ₂ (636)			

...

		Ubserved	
		Minus	Expected
Assignment	Observed	Calculated	Uncertainty
P(42)	2245.6445	0.0001	0.0010
P(44)	2243.5859	0.0002	0.0008
P(46)	2241.5038	-0.0001	0.0008
P(48)	2239.4004	0.0013	0.0017
P(50)	2237.2715	0.0004	0.0005
P(52)	2235.1204	0.0002	0.0009
P(54)	2232.9463	0.0001	0.0005
P(56)	2230.7495	0.0002	0.0005
P(58)	2228.5298	0.0004	0.0005
P(60)	2226.2873	0.0006	0.0008
P(62)	2224.0212	0.0002	0.0004
P(64)	2221.7328	0.0003	0.0005
P(66)	2219.4215	0.0003	0.0004
P(68)	2217.0873	0.0001	0.0004
P(70)	2214.7288	-0.0015	0.0013
P(72)	2212.3504	-0.0004	0.0005
P(74)	2209.9480	-0.0005	0.0007
P(76)	2207.5236	-0.0000	0.0004
P(78)	2205.0754	-0.0007	0.0005
P(80)	2202.6041	-0.0018	0.0012
P(82)	2200.1125	-0.0007	0.0005
P(84)	2197.5983	0.0003	0.0007
P(86)	2195.0597	-0.0006	0.0005
P(88)	2192.5003	0.0002	0.0006
P(90)	2189.9165	-0.0009	0.0011
P(92)	2187.3105	-0.0019	0.0012
P(94)	2184.6860	0.0010	0.0010
P(96)	2182.0354	0.0002	0.0004
P(98)	2179.3648	0.0016	0.0013
P(100)	2176.6696	0.0007	0.0007
P(102)	2173.9520	-0.0003	0.0004
P(104)	2171.2127	-0.0008	0.0011
P(106)	2168.4526	0.0000	0.0003
P(102)	2165.6698	0.0003	0.0004
P(112)	2160.0387	0.0016	0.0013
P(114)	2157.1878	-0.0000	0.0006
P(116)	2154.3160	-0.0006	0.0011
P(118)	2151.4217	-0.0016	0.0023
P(120)	2148.5085	0.0003	0.0011
P(122)	2145.5735	0.0024	0.0024

Table VI. Isotopic CO_2 Bands Observed at 800K (cm⁻¹)

7.1

(10⁻⁴cm⁻¹) Deviation Standard Lines Used Number of 80 101 105 96 88 84 89 176 P(122)-R(122) P(113)-R(107) P(116)-R(112) P(104)-R(104) P(103)-R(103) P(102)-R(100) P(106)-R(104) Measurement P(104)-R(98) Range of Band Origin 2271.7605 2271.7602 2261.9102 2260.0500 2262.8486 2265.9719 (cm⁻¹) 2283.4877 2260.0501 Isotope 636 636 636 636 636 636 636 638 01111C 01101C 011110 011110 02211D 02201D 02211C 02201C 10012 10002 00001 00011 00001 10001 11001 Transition 11000

Table VII. Spectroscopic Constants for Isotopic CO_2 Observed at 800 K (cm⁻¹)

2

Trancition	Isntone	۰ <u>, ۱</u> .۵	B	D'(10 ⁻⁷)	н' (10 ⁻¹³)	B"	D''(10 ⁻⁷)	H"(10 ⁻¹³)
00011 00001	636	2283.4877	0.38727068	1.32514	0	0.39023480	1.32934	0
01111C 01101C	636	2271.7605	0.38767635	1.34213	0	0.39060780	1.34897	0.
011110 011010	636	2271.7602	0.38828848	1.35159	0	0.39123954	1.35550	0
10012 10002	636	2261.9102	0.38802951	1.55698	1.133	0.39090892	1.56254	1.175
02211C 02201C	636	2260.0500	0.38869109	1.29446	-3.856	0.39160593	1.30477	-4.129
02211D 02201D	636	2260.0501	0.38868939	1.36350	-0.300	0.39160473	1.37074	-0.336
10001 10001	636	2262.8486	0.38672090	1.19442	2.142	0.38971481	1.19792	2.190
00011 00001	638	2265.9719	0.36538985	1.18096	0	0.36817985	1.18410	0

Ľ

For the bands where i-type doubling is present the c and d levels were fit independently. Since the band origins resulting from fitting the c levels should be identical to the one resulting from the d levels, a check on the precision of the data can be obtained by comparing the difference between the two. The difference between the band origins for the 01101 to 01111 transitions was 0.0003 cm⁻¹, and for the 02201 to 02211 transitions was 0.0001 cm⁻¹.

Comparisons of the line position measurements determined in this work to those predicted by the constants used in the 1980 AFGL line compilation and Guelachvili's constants for those bands which he measured⁹ are given in Figs. 5 through 12. Several interesting features are illustrated by these figures. Although Guelachvili's line positions were measured with considerably more accuracy than ours, extrapolation to higher J (higher temperature) was unsatisfactory, as shown in Figs. 5 through 7. However, interpolating from high J to low J seems to work quite well as indicated by the comparison shown in Fig. 5 between the fit of the 00001 - 00011 band of ${}^{13}C^{16}O_2$, excluding lines from P(40) to R(40), and the measurements of Guelachvili. The difference in the band center as compared to Guelachvili's for this band was only 0.0002 cm⁻¹. Table VIII is a listing of the lines used in the fit.

By comparing the difference in the quality of the AFGL (1980) fit of the OllOIC-OllIIC band to the D band (Figs. 6

Figure 5. Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1980) constants for the 00001 to 00011 band of 13C1602.

2.4

a series of the second s

2 . . .

and 7) it can be seen that the constants used for the AFGL (1980) line compilation are quite good for some of these very weak atmospheric bands but not so good for others.

The improvement in the spectroscopic constants obtained at 800 K over those of the previous section for 600 K are not particularly significant except for the 02201C to 02211C band of ${}^{13}C^{16}O_2$ where the P branch shows a marked difference (Fig. 9). Using the expansion in powers of J(J+1) (Eq. 1) to extrapolate from a lower to a higher J is unsatisfactory, particularly for this band as indicated by the poor positional accuracy of high J lines predicted using both the AFGL (1980) constants and the 600 K constants. Also, there is a tendency for oscillations in the fit. The H values obtained for this band are unusually large and negative. Large negative H's were also reported¹² (table II of Sec. IV.a.) for these same two vibrational levels 02201C and 02211C for the main isotope ${}^{12}C^{16}O_2$.

The spectroscopic constants for the eight bands reported in this section predict the position of spectral lines to an estimated absolute accuracy of better than 0.001 cm⁻¹ including J values greater than 100. This represents a significant improvement in the accuracy with which high J line positions of the isotopes ${}^{13}C^{16}O_2$ and ${}^{13}C^{16}O^{18}O$ can be computed.

V. $H_{2}O(161)$; 1600 cm⁻¹ to 2001 cm⁻¹, 800K

In this section we present results of measurements of H_2O using the instrumentation and the analysis technique

described above.

A Lorentzian profile was assumed as the line shape in our analysis - which is probably improper in principle. However, the H₂O data were always taken at very low pressure in order to reduce to a minimum the line overlapping problem. The expected collision width was much smaller than the Doppler width under such a condition. The Lorentz line shape was adopted because of the following reasons. For weak lines the question of line width is irrelevant because the integrated absorptance W and the strength maintain a linear relationship independent of width. For strongly saturated lines, the observable absorptance contour corresponded to the wing region of the line which was Lorentzian. The central peak region of such lines was completely saturated. The integrated absorption W was controlled by the wing section and thus by the Lorentzian profile. The line profile in the center peak region produced only a small effect in the determination of the integrated absorptance. Thus the Lorentzian profile assumption was a proper practical choice for obtaining the integrated absorptance even though it was theoretically improper.

Once the integrated absorptance was determined, it was used to derive a value for the final strength. For the Lorentzian line which was strongly saturated at the center, the strong interdependence existing between the strength S and the width a made their separate determination very

impractical. With the integrated absorptance and the absorptance contour fixed, a quantity $/S_{\alpha}$ was the only meaningful parameter which could be determined for such a line, even when the noise level in the data was exceptionally small. We adopted the theoretically accepted value for α (Ref. 13) in deriving the strength from the integrated absorptance. The width was extrapolated at 800K from the values calculated for room temperature using a simple impact theory assumption;

$$\alpha$$
 (T) = α (T₀) ($\frac{T_0}{-}$).

The results obtained for water vapor are summarized in Table IX. The data listed in the table are the line frequency in cm^{-1} , the intensity S in $(cm^{-1}/molecule \ cm^{-2})$ at 800K, the observed integrated absorptance for an observation condition $P_{H_0O} = 6.0$ torr, T = 800K and $\ell = 350$ cm, the lower state energy in cm⁻¹, the transition identification (J', Ka', Kc'), (J", Ka", Kc"), (v'1, v'2, v'3) and (v"1, v"2, v"3), and the difference between the observed transition frequency and the value listed in the latest AFGL line listing¹¹. The data are arranged in ascending order of observed line position. The data listed in Table IX contain those lines newly identified in the present study, which are the high J lines of the (v_2-0) and the $(2v_2-v_2)$ transitions. We were able to follow the v_2 transitions up to the $(24_{1,24}-23_{0,23})$ - $(24_{0.24}-23_{1.23})$ doublet, and the $(2v_2-v_2)$ transition up to the (201,20-190,19)-(200,20-191,19) doublet. The highest

excitation energy observed at 800K in our data exceeded 5000 cm^{-1} . Table X summarizes those lines which were either newly assigned or quite different from the latest AFGL line listing.

VI. Global Constants for Carbon Dioxide.

One of the principal aims of the research described in this report has been to provide data from which reliable parameters, necessary for high resolution atmospheric transmission/emission calculations, could be obtained. In this section we describe the application of the AFGL FTS-hot cell measurements on CO₂ to the determination of "global constants". This approach is to be distinguished from the discussion in Sec. IV, where vibration-rotation bands were least-squares fit independently to obtain spectroscopic constants that would best reproduce that particular band with the minimum root-mean-square deviation, regardless of the fact that the vibrational levels involved in the transition are themselves part of an ensemble of many vibrational levels connected by allowable electric dipole transitions. In the approach for global constants, all connected vibrational states that have been observed at high resolution (in the laboratory) are taken in concert. The approach is analogous to forming a "tree" and bootstrapping to successive vibrational levels. For each isotopic species we thus require the constants to form a self-consistent set. In general the deviations between observed and calculated positions of transitions will now be

52

Ξ· .

slightly larger than the best fit of individual bands. depending on the weakest link in the path, either the accuracy of the measurement of a band, or more usually, the limit of the highest value of rotational quantum number observed. Nevertheless, a great consistency has been realized by this method for generating the line positions of the approximately 560 vibration-rotation bands of importance to atmospheric optics problems in the IR, covering a spectral range of 400 to 10,000 cm⁻¹. The method has been discussed somewhat in Ref. 10, but several points will be elaborated upon here. It should be remarked that this method does not go to the extent of combining the various isotopic measurements completely to form a true valence bond force potential, (see for example ref. 14) but treats them quasi-independently, only making extrapolations for the other isotopes where measurements have not been made. Common to both approaches, as has been discussed in Sec. IV, is the difficulty in making accurate predictions of rotational levels much beyond the highest measurements. It is indeed this aspect that has made the results of the measurements of the high temperature CO₂ at AFGL such a step forward in the determination of good parameters since the calculation of intermediate rotational levels is reliable and hence the extension of J-values that has been described here has greatly extended the reliability of line parameter compilations.

We first review some of the considerations involved in

a description of the energy level and rotational constants for CO₂. For a linear triatomic molecule like CO₂, the vibrational states are characterized by three quantum numbers, which are zero or positive integers, of pure vibration, v_1 , v_2 , and v_3 and a fourth number $\ell = v_2$, v_2-2 ,... $-v_2 + 2$, $-v_2$ which represents the contribution of the bending mode to angular rotation. In order to calculate the purely vibrational part of the energy, it is necessary first to compute an unperturbed energy,

$$G_{v}^{unp} = \sum_{i} \omega_{i} v_{i} + \sum_{ij} x_{ij} v_{i} v_{j} + g_{22} \ell^{2} + \sum_{ijk} y_{ijk} v_{i} v_{j} v_{k} + ijk$$

$$\sum_{i} y_{i\ell\ell} v_{i} \ell^{2} + \dots$$
(8)

and then to incorporate the effects of resonance perturbation by combining all close-lying levels with common ℓ and common symmetry in matrices whose diagonal elements are G_v^{unp} , whose off-diagonal elements are functions of additional molecular constants and the four quantum numbers, and whose eigenvalues are the vibrational energy G_v .

This perturbation calculation results in the "mixing" of states whose G_v^{unp} are particularly close, so that the final description of the level by the original four quantum numbers is a poor one. Accordingly, it is useful to add a fifth index, the rank symbol r to label all such mixed states in order of decreasing energy. We have adopted this procedure for CO₂, where the mixed states are (v₁ v₂ k_2 v₃), (v₁ + 1,

 $v_2 - 2$, t_2 , v_3), . . . etc. The highest value of v_1 and the lowest value of v_2 in each set are retained in the vibrational identification for all levels of the set.

There is an accidental (Fermi) resonance between the vibrational states v_1 and $v_2 = 2v_1$. The wave functions become a mixture of each of the two states contributing to each perturbed level.

We describe the energy levels by $v_1v_2\ell v_3r$, where the ranking index, r, is unity for the highest vibrational level of a Fermi resonating group. The ranking index can assume the values 1, 2, .. v_1 + 1. The quantum numbers v_2 and ℓ are always equal in the AFGL notation.

It will be noted in Eq. (8) that the vibrational energy depends on ℓ^2 . When $\ell \neq 0$ there are two levels for each $J \geq \ell$, and this degeneracy is removed by rotation. The splitting ("*i*-type doubling") results in two sets of levels, designated <u>c</u> and <u>d</u>, with different effective rotational constants. When $\ell = 1$ the splitting is most important, and $B_C \neq B_d$, $D_C \neq D_d$, etc.; when $\ell = 2$, $B_C = B_d$ but $D_C \neq D_d$, etc.; when $\ell = 3$, the constants other than H are the same. These results are rigorous and arise from the effect of removing the degeneracies. For the pi-states ($\ell = 1$) one performs a single contact transformation and the off-diagonal terms have the effect of a term in J(J+1), i.e., change the effective B-rotational constant. For delta-states ($\ell = 2$), the coupling between diagonal numbers is twice removed, necessitating a

double contact transformation which has the effect of $J^2(J+1)^2$. This first affects the fourth order or D-centrifugal stretching constant. Resonances occasionally cause larger deviations, such as might be seen in some of the H_v constants.

When the linear molecule has a center of symmetry, as in CO₂ with 16 O at both ends (but not when one oxygen is isotopically different), the paired atoms with zero nuclear spin cause zero statistical weight for rotational levels of a given parity. Thus, only even-J levels exist for the ground vibrational level and for all other levels with $\ell = 0$ and v_3 even (" Σ_{\pm}^{+} symmetry"); for levels with $\ell = 0$ and v_{3} odd (Σ_{\pm}^{-}), only J odd exists; when $\ell > 0$, the c- and d- sublevels have different symmetry, so that for $\ell = 1$, $v_3 = 0$ (Π_{11}) the J = odd levels are c and the J = even levels are d, etc. In the AFGL compilation, symbols c or d are appended to the rotational quantum number of the lower state only when required, that is for $\ell > 1$ in the molecules without the center of symmetry. For example, R27C means 28c + 27c; Q27C means 27d + 27c. Figure 13 illustrates this scheme for point group Cov for the first few lines of a I-I transition.*

The line frequencies are determined from the energy states by taking the differences corresponding to all allowed transitions. These depend on the familiar selection rules

*It should be noted that the c and d labels correspond respectively to the new standardized e and f labelling of parity doublet levels (see Ref. 15).

Figure 13. Designation of c- and d- levels for $\Pi-\Pi$ transition for CO_2 without center of symmetry.

Γ

....

for the linear molecule:

when $\Delta \ell = 0, \Delta J = \pm 1, c - c, d - d,$ when $\Delta \ell = 1, \Delta J = \pm 1, c - c, d - d,$ and also $\Delta J = 0, c - d.$

The line positions may thus be conveniently represented for computational purposes as a given series in \underline{m} , where $\underline{m} =$ $J^{m} + 1$ for the R-branch $(J^{m} + J^{m}+1)$, $\underline{m} = -J^{m}$ for the P-branch $(J^{m} + J^{m}-1)$, and $\underline{m} = J^{m}$ for the Q-branch $(J^{m} + J^{m})$. A different equation is needed for the Q-branch of a given transition than for the P and R branches, because of the differences in the <u>c</u> and <u>d</u> constants. The general equation is

 $\sigma = \sigma_0 + am + bm^2 + cm^3 + dm^4 + em^5 + fm^6,$ where σ_0 is the band origin, $a = B'_V + B''_V$, $b = B'_V - B''_V + D''_V - D'_V$, $c = -(2D'_V + 2D''_V - H'_V - H''_V)$, $d = D''_V - D'_V + 3H'_V - 3H''_V$, $e = 3H'_V + 3H''_V$, and $f = H'_V - H''_V$.

For the Q-branch, the line positions are given by $\sigma = \sigma_0 + J^{"}(J^{"} + 1)(B^{"}_{v} - B^{"}_{v}) + J^{"2}(J^{"} + 1)^2(D^{"}_{v} - D^{"}_{v}) + \dots$

When expressed in this form it becomes clear from comparisons between new observations and calculations which terms are contributing to the errors. From the figures presented of the new data on CO_2 , it can be seen that the even terms are most noticeably in error. This demonstrates the sensitivity of the experiment to the difference of constants such as the upper and lower B-values, or inverse moment of inertia, which are nearly the same for each state. The absolute values of the constants come more directly into

the odd terms in the running index m. For an adequate determination, it is thus necessary to use the global approach.

The method employed in obtaining global constants has utilized the observations made at AFGL at high temperature from 1600 to 2500 cm⁻¹ in conjunction with high resolution measurements in several other key regions for CO₂. In the bending mode fundamental region (around 15μ m) we have used the FTS measurements of Paso et al¹⁶. In the CO₂ laser region (* 10 µm) we have incorporated the results of Freed et al¹⁷, Dupre-Maquaire and Pinson¹⁸, and Siemsen et al¹⁹. At shorter wavelength (* 2µm) we have used the high resolution measurements of Maillard et al²⁰. In the same region that our interferometer has scanned, additional measurements at high vibration have been supplied to us from electric discharge measurements made by Bailly et al²¹. The band constants obtained from this effort will appear in a forthcoming publication.

59

- .

Table VIII. Isotopic CO₂ Lines Observed Between 2140 cm⁻¹ and 2340 cm⁻¹ at 800K

The listings are: the transition frequency (cm⁻¹) upper vibrational state lower vibrational state branch and lower rotational level isotope code molecule identification code observed minus calculated line positions (cm⁻¹) pressures and temperature of CO₂ samples in which line was observed

9149 6436	Ċ	÷	•	c		с -		01160	626	c	0001	ETROOK	
2145.4082	 	• •		0		, o	-	D1140	636	40	- 0020	6TB00K	
2145.4082	0	· 0		0		. ~	-	P106C	636	10	.0006	61800K	
2145.5735	0	0		0	0	0	-	P122	636	101	.0025	67800K	
2147.2726	0	-	1 1	0	-	-	-	P113C	636	3	.0017	61800K	
2148.1406	0 0	N	1 1	0	2	0 ~	-	P104C	636	9	0008	67800K	
2148.2574	- 0	-	+ +	0	-	o	-	P1120	636	2	E000.	61800K	
2148.5085	00	0 0		0 0	00	00		P120	636	n 0	.0004	61800K	
2149.4375	N -	N -		. .	N -			05014	959	N 6	5000. 9100	STOOOK	
2150.2712	- 0	- 0			- 0	- 0		P104	636	• •	0033	61800K	
2150.5099	• •	0	· •	•	0		3	P104	636	10	0001	67800K	37800
2150.8546	0	2		0	3	0	-	P102C	636	3	.0003	67800K	
2151.0818	0	-	1 1	0	-		-	P110D	636	2	0004	61800K	
2151.4217	0	0		٥	0	0	-	P118	636	3	0015	61800K	
2152.1478	0	3		0	2	0	-	P101D	636	2	.0021	61800K	
2152.8931	- 0	-		0	-	-	-	P109C	636	2	.0005	61800K	
2153.0275	0 -	0		-	0	0	-	P102	636	2	0020	67800K	
2153.2112	-	0	- 2	-	0	0	2	P102	636	2	.0003	61800K	
2153.5456	0	2		0	2	0	-	P100C	636	n	0006	61800K	37800
2153.8865	0	**	-	0	•	-	-	P108D	636	6	.0013	61800K	37800
2154.3160	0 0	0	-	0	õ	0	-	P116	636	2	0005	61800K	
2154.8337	0 0	2		0	2	0	-	066 d	636	3	.0005	6 T 800K	
2155.6693	- 0	-		0	-	-	-	P107C	636	2	0017	61800K	37800
2155.7603	-	0	 	-	õ	0	-	P100	636	2	0014	67800K	
2155.8904	-	0	1 2	-	õ	0	2	P100	636	2	0002	61800K	
2156.2173	0 0	â		0	2	~	-	P 98C	636	2	.0002	67800K	
2156.6661	-			0	-	o 	-	P106D	636	3	0002	61800K	37800
2157.1878	о 0	0	1.1	0	0	ŝ	-	P114	636	2	.0000	67800K	
2157.4975	2 0	2		0	сч сч	0	-	P 970	636	3	0015	37800K	
2158.4279	- 0	-		0	Ļ	0	-	P105C	636	2	.0002	61800K	37800
2158.4724	•	0		-	0	2	-	Р 98	636	3	.0013	37800K	61800
2158.5530	•	0	~ ~	*	0	0	2	р 98	636	ณ	.0011	61800K	31800
2158.8671	0 0	CI -	-	0	а.	~	-	P 96C	636	2	.0003	61800K	31800
2159.4253	-	••••	-	0			-	P104D	636	2	0001	61800K	37800
2160.0387	0	0		0	0	0	-	P112	636	2	.0017	37800K	
2160.1437	0 0	3		0	2		-	P 950	636	2	.0005	67800K	
2161.1597	-	0		 ·	0		(P 96	636	2	.0020	37800K	61800
2161.1858	•	0	2	-	0	0	2	ь <u>9</u> 6	636	2	.0001	61800K	
2161.4938	0 0	2	-	0	сц. С	~	. .	P 94C	636	3	0015	37800K	
2162.1621	-	-		0	-		-	P102D	636	2	E000	61800K	
2162.6582	0 0	0		0	0	0	-	P102	638	n	.0015	61800K	37800
2162.7640	0 0	N		0	а 1	0	-	P 930	636	2	0017	31800K	618001
2163.8014	0 -	0	2	-	0	0	2	P 94	636	3	.0003	37800K	
2163.8755	- 0	-		•	-	0	•	P101C	636	(1	0003	67800K	378001
2163.9395	0	0		0	0	0	-	P101	638	2	0012	37800K	67800I
2164.1002	0 0	2		0	2	0	-	P 92C	636	N	0023	3 780 0K	618001
2164.8787	0			0		0	-	P100D	636	2	.0014	37800K	618001
2165.3641	0	2		0	01 (, ,	P 910	636	~	0023	31800K	
2165.6698	0	0	-	C	כ כ	2	-	PIUB	020	N	.0004	31800M	ETBOUI

67800%	37800K	0003	19	636	87C	. @.	-	0	•	. –	• 0	• 🕶	• 🖛		• •	, O	550		0	1 (1
61800K	37800K	- 0009 - 0000	2 0	636 636	080	7 0		o c	0 0	0 0	- 0			0 0	0 0	÷ 0	1246	20	19 C	2 0
61800K	37800K	.0001	3	636	80	٩	R	0	0	0	-	2	-	0	0	-	058	<u> </u>	18	N
67800K	31800K	1.0002	2	638 638	120	. 0.		, 0	v٥	0 V	>0			0 1	N O	>0	1631	12	<u>í</u>	1 (1
57000V	31800K	9000	2 0	638 636	98	D. O		0 C	0 (0 0	00		.	0 (0 0	00	524	- "	ы В р	2 10
37800K	67800K	.0017	3	636	86	a.	-	0	0	0	0	-	-	0	0	0	648		179	. (1)
	31800K	0020	1 0	636	822	. 0.		0	0 1	• 0	>		• ••	• •	• 0	>	212		17.	1 (1)
61800K	37800K	1.0001	2 10	636 636	82	0.0	n -	0 0	0 0	0 0	c	м т		0 (0 0	- c	1413		175	2 10
61800K	37800K	.0004	2	638	68	•	•	0	0	ο	0	-	**	0	0	0	382	5.	176	3
67800K	37800K	0001	2	636	006	•		0	-	-	0	-	-	-	-	• •	193		178	3
61800K	37800K	0000	10	636	810	. a		0	- 0	• •	0		• -	- 0	- 0	0	422		17.	10
2 TRACK	31800K	- 0010	N 6	070 979		1 0) 0	- 10	N +	0 0			N -	N -	0 0	1261	~ ~	12	N C
	31800K	0005	2	636	84	Q (-	0	0	0	-	-	-	0	0		964	5	12	CI (
37800K	61800K	.0008	3	636	100	đ	-	0	0	0	0	←	-	0	0	0	9699	 θ	176	3
61800K	31800K	. 0000	10	636	. 84	. a.	· 0	0	0	0	• -	· 0		0	0	•	5553	· 47	17	1 (1)
	31800K	2000.	~ ~	636	830	a , a		0 0	~	N (00	- •		2 10	2 10	00	514	u) <	17	CN C
67800K	31800K	.0001	2	636	920	α.	-	0	•••	-	0	-	-	-	-	0	1156	ц. С.	17	3
31800K	61800K	.0004	• 0	638	65	. a.	• ••	0	- 0	- 0	0			- 0	• 0	0	602		5	10
	31600K	.0001	~ ~	636	86	a. c	- •	0 0	0 1	0 1	6			0.	ο.	- (477		ÈÌ	2
31800K	67800K	.0000	3	638	693	α.		0	0	0	0		-	0	0	0	1232	5.	17	3
37800K	61800K	0002	1 (1	636	102	. œ		0	• 0	0	• •	•	-	0	0	0	520		1	1 01
318008	61800K	8000	0 0	626 626		. a		Þ	- 6	- 6	0 0			- 6	- 0	0 0	9884			2 10
37800K	67800K	.0011	2	638	96	a . 1	-	0	0	0	0	-	•••	0	0	0	1825	2	17	0
	37800K	.0000	1 (1	636	950		-	0	- 1	-	0	-	-	-	I —	• •	3844		-	101
31800K	6TROOK	0004	0 0	070 636	880	1 0		0 0	0 0	0 0	- 0			0 0	0 0	- 0	747			2 10
67800K	37800K	.0001	2	636	88	a. (n ·	0	0	0	-	2	-	0	0	-	5185		5	2
	37800K	0008	2	636	104		-	0	0	0	0	-	-	0	0	0	2127		5	1 (1
	67800K	.0006	n n	638 638	000	. 0.		0 0	- 0	- 0	00			- 0	- 0	00	82401		12	N C
	37800K	.0017	3	636	088C			0	3	N	0	-	-	2	3	0	2545		16	3
37800K	67800K	.0005	2	636	97C	a	-	0	-	-	0	-	-	-		0	2372		16	3
31800K	61800K	E000 -	N N	636 636	6			o o	0 0	0 0				0	> 0	⊃	0080		Ő	A C
~~~~~	31800K	0026	~	636	8		2	0	0	0	- (	3	-	0	0	-	9649		10	<b>CV</b> (
61800K	37800K	.0001	2	636	106	. a.	-	0	0	0	0	-	-	0	0	0	1526		10	1 (1)
3TROOK	37800K	0015	<b>n</b> c	638 636	86			0 0	0 0	0 0	00			0 (	0 0	00	7596 3445	~ ~	9	<b>CI</b> C
37800K	67800K	.0008	3	636	980	œ	-	0	-	-	0	-	-	-	-	0	5707	1	9	2
	61800K	0005	1 9	636		. a.	-	0	- 0	• ര	• •			- 0	· 0	0	5879		ĕ	1 (1)
3TBOOK	STROOK	6000	N 0	020		7.0		<b>o</b> c	••	<b>o</b> -	- 0			0 -	0 -	- 6	1650	 		2 10
6TBOOK	37800K	0015	3	636	83		a	0	0	0	-	N	-	0	0	-	9566		9	3

----

71.

J.

6TBOOK	61800K	<b>61800K</b>			37800K	31800K		67800K	31800K	31800K	31800K	61800K		( 61800K	61800K			31800K	37800K		( 37800K					31800K	61800K		61800K	61800K	<pre>61800K</pre>			61800K	61800K	MODBIE	61800K	10000	310004		ATROOK		ADDBIE 1	010000		ETROOK	101010 V	67800K	
3TBOOK	37800K	31800K	31800K	37800K	61800K	67800K	61800K	318008	618004	61800K	61800M	318004	318004	318004	318004	318006	318008	61800K	67800K	61800K	67800K	37800K	6T800K	61800K	3 <b>T800K</b>	67800K	318004	318006	37800K	318004	318004	61800K	6T800M	318008	318008	100819	31800818		200819 200819		21800K	2000-0	100819	2000-7		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATROOM	37BOOK	
0000	0001	0003	.0002	0023	.0012	.0011	0027	0006	0001	.0015	0001	0005	.0001	.0003	0018	.0021	0000.	.0003	0003	.0010	0005	0024	0020	- 0000	.0005	0015	0003	0009	.0017	0005	0008	0015	E000.	.0000	.0018	.0014	.0001		F100 -		6000 · -	1222.	. 0006	5000 · ·		+000		. 0002	
0	1 (1	3	2	2	2	3	3	2	2	2	2	2	3	2	2	2	2	2	2	2	2	2	2	2	6	2	2	3	2	2	a	2	2	2	2	2	0	N (	2 10	N (	CN C		2	N	N (	N 0	чc	4 0	
638	636	636	636	636	636	636	636	638	636	636	638	636	636	636	636	636	638	636	636	636	636	638	636	636	636	636	638	636	636	636	638	636	636	636	638	636	636	0000	636	500	020	D 0 0	636	070	0000	636	020	255	
86	770	860	78	76C	78	94	850	84	750	840	83	76	74C	76	92	830	82	730	820	74	720	80	81C	6	710	800	79	72	700	72	78	79C	88	690	77	780	282	2	77C	ה ה ה	9 U 9 D	2	760	580	200	089 789	202	140	
۵	۰.	٥.	۵.	۵.	٩	٥.	۵.	۵.	٩	۵	۵	٩	٩	a	۵.	٩	٩	۵	<b>Q</b> .	٥.	۵.	Δ.	٩	a	a.	٩	۵	٩	٥.	٩	٩	٩	٩	٩	•	<b>a</b> . (	۰ ۵	7 (	<b>a</b> (	7 (	D. C	7 1	<b>a</b> . 1	2 6	7 1	<b>D</b> 0	r a	۲ ۵	•
-	• •	-	2	-	-	-	-	-	-		~	(1	-	-	•	-	-	-		3		-		-		-	••	a	-	-	-	-	-	-	-	-			- •	- 1		- 1	- (	N 7	- 1	- •	- •		•
Q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	2 (	0 0	<b>)</b> (	0	<b>c</b>	2 (	o c	<b>)</b> (	) a	)
c	2	-	0	2	0	0	-	0	2	-	0	0	3	0	0	-	0	2	-	0	2	0	-	0	3	-	0	0	3	0	0	-	0	2	0	-	-		- [	294 1 		э -	- 1		29 ( 	р, -	- <	2 -	•
Ċ	0	0	-	0	-	0 0	0	0	0	0	0	-	0	-	0	0	0	0	•	• •	0	0	0	0	0	•	0	-	0	-	0	0	0	0 0	0	0	0	-	- ( 0 (	л ( Э (		) ) )	0	- 4	2 · C	- 0	- c > c	) - ) 0	
-		*-	2	-	-	<del></del>	-	-	**	-	-	2	-	-	-	-	-	-	-	3	-	-	-		-	-	-	2	-	-	-	-	-		•	-	<b></b> -	-		,		<b>.</b>	- (	N 7	, -	<b>.</b>	- •		
-		-		-	-	**	**	-	-	-	**	-	-	-	-	+	-	-	***	-	-	-	-	-	-	•••	-	-	-	-	-	-	-	-	-	-	<b>•••</b> ,	-		- 1	<b>•</b> •	- 1		- 1	- 1			• •	•
c	2	-	0	2	0	0	•••	0	2	-	0	0	2	0	0	-	0	2	-	0	2	0	-	0	2	-	0	0	3	0	0	•	0	2	0	-	2	9	- (	N 6	э с -	<b>.</b>	- 1	20	N 4	<b>D</b> •	- (	> -	•
C	2 01	-	0	2	0	•	_	0	3	-	0	0	2	0	0	-	0	2	-	0	2	0	-	0	2	-	0	0	2	0	0	-	0	2	0	-	ດ ( _	Ò.	- (	N (		<b>)</b>	- (	5 (	.N 4		- <	<b>)</b>	•
C	. 0	0	-	0	-	0	0	0	0	0	0	-	0	-	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	-	0	0	0	0	0	0	0		0 (	21	50	3	0	- 6	3	- (	20	, ,	,
0107 EED	2182.9587	2183.2602	2183.9486	2184.1830	2184.3081	2184.5860	2184.7902	2184.9612	2185.3839	2185.7990	2186.1506	2186.3688	2186.5978	2186.7645	2187.3105	2187.3105	2187.3343	2187.7873	2188.3119	2188.7694	2188.9878	2189.6830	2189.7997	2189.9165	2190.1684	2190.8029	2190.8527	2191.1448	2191.3585	2191.6091	2192.0144	2192.2714	2192.5003	2192.5266	2193.1739	2193.2756	2193.7034	2193.9990	2194.7205	2400 4512	2195.0597	2185.4702	2195.7221	2195.8355	2196.0258	2196.3631	213/.1400	2108.1464	

	[>>>	1))).	e	))))	ンつつ	L	-		•	•	•	>	-	-	-	-	>	モカク		
310001	0-0001 C		N C	0 7 0 0 7 0 0 7 0		Σđ		~ ~	, C	- C	<b>.</b> .	20	- •		0.	<b>&gt;</b> •	2 0	100	л <b>с</b>	2215
61800K	37800K	.0001	2	636	530	ο. (	<u> </u>	_			CI (	0	-	-	a	3	0	927		2215
37800K	61800K	E000.	a	636	56	۵.	_	-	2	-	0	-	*-	-	0	0	-	662		2210
37800K	67800K	0005	2	636	74	æ	_	_	-	-0	0	0	**	-	0	0	0	480	5	2209
	61800K	.0001	10	636	64D	۰ م						• 0			> <	<b>&gt;</b> –	<b>,</b> a	910 1915	20	2205
31800%	61800K	8000.	6	635	540	<b>D.</b> 0		~ ~	~ ~			00	-		~	2 0	0 (	075	ທີ່ 	2205
	61800K	E000	2	636	56	Δ.	2	-	-	-	0	-	2	•••	0	0	-	740	Е.	2205
61800K	37800K	.0002	2	636	650	۵	_	~	_	-	-	0	**	-	-	-	0	469	5	2205
31800K	67800K	0012	2	638	63	٥.	_	_	2	0	0	0	-	***	0	0	0	055		2205
	37820K	.0007	1 (1	636	550	. a.						- 0	•		2	9 (1	- 0	361	. 4	2205
	6T800K	1000	• 0	636	r a	- 0					00	- <b>·</b>			0	o a	> -	202	ď	2000
STROOK	31800K	0100	0 0	020	000	<b>7</b> 0					- 0	00			- 0	- 0		207	5	220
37800K	61800K	0000.	2	636	76	<b>a</b> . (	-	~	_	-	0	0	-		0	0	0	236		220
	61800K	.0007	3	636	560	٩	_	<u> </u>	~		a	0	-	•••	Q	3	•	167		2207
	37800K	.0003	2	636	58	ď	a	~	č	2	0	-	3	-	0	0	-	731	Ξ	2207
61800K	37800K	0021	3	638	65	۵.	_	Å	2	-	0	0	**	-	0	0	0	355	9.0	2206
	61800K	0005	2	636	570	۵.	_	Ċ				. 0	-	-	0	2	• 0	10	2	2206
<b>ATROOK</b>	31800K	E000 -	0 0	636 636	999	<b>a</b> a					DC	••		** *	0 0	0 0	0 -	447	ມີເ	2205
37800K	61800K	0004	3	636	680	٩	-	ò	_	-	-	0	-	**	-	-	0	848	3	2205
6TB00K	37800K	0011	3	636	580	٥.	-	Å	2			0	-	-	N	CI	0	019	5	2205
37800K	67800K	0006	1 01	636	28	۹.						- 0	• ••		0	0	- 0	754	0	2205
61800K	31800K		2 10	036	19	<b>J</b> 0	- 6			-		0 1	- (		0 0	0 0	0 1	470	4 (	2204
37800K	61800K	0012	3	636	069	•	_	~	_	-	-	0	-	-	-	-	0	934	4	2204
31800K	61800K	.0005	3	636	590	۵	_	Å				0			) ମ ମ	2	0	863	50	2203
61800K	37800K	.0018	10	638	88 88	•					) C	- 0				$\circ$	- 0	455	9 C	200
37800K	61800K	.0001	<b>cı</b> c	636		0. 0				- :	- (	••			- (	- 9	0 1	282	ທ ( 	2201
61800K	37800K	0008	2	636	600	٩.	_	, n	~		a	0	-	-	2	2	0	199	8	2202
61800K	37800K	0001	10	636	62	Δ.					9	• ••	· 0		0	0	• •••	035		2203
31800K	6TB00K	0018	2	636	608 008	۲ ۵					50	5 0			> c		20	302		2202
61800K	37800K	.0015	<b>a</b> (	636	71C	<b>a</b> . c		 			- (	0			- (	- (	0	364	J (	2201
37800K	61800K	.0000	3	636	610	۵	-	ò	ŭ			0	-	-	2	2	0	387	٢.	2201
37800K	6T800K	E000.	1 0	638	20	. α		ò				- 0			o c	0	- C	] [		2201
61800K	31800K	- 0007	2	636 636	62C 640	σ. σ			~ ~		CI C	0+			N C	N C	0 -	110	ω c	220(
31800K	61800K	0007	2	636	720	٩	_	Å	_	-	-	0	-	-	-	-	0	478	5	2200
61800K	37800K	.0000	10	636	64	۵.					0	•	- ര	• •••	0	0	• -	359	4	2200
AUDATO	31800K	0007	0 0	636 636	73C	7 0			_ ~		- 9	0 0		- +	- 0	- 9	00	528 125		2195
37800K	61800K	0003	2	636	630	۵.	-	ò	~	~	a	0	-	-	2	3	•	689	4.	2195
61800K	37800K	.0016	1 01	638	22	•		ò			0	. 0		-	0	0	• •	191	8.0	2196
200815	61800K	1000	0 0	959	540	7 0			~ ~			0 *			NC	NC	<b>D</b> -	COE	19 F	2196
61800K	37800K	.0001	20	636	99 99	۵. ۵	a .		2	-	0	- (	2		01	0	- (	484		2196
	1																			

65

. ..

.

,h•

とうところのため、 のであるない とうている しまけ ひょうかんせい 

TBOOK	TBOOK	11800K	<b>TBOOK</b>			31800K	5 <b>7800K</b>		STBOOK	100010	YOOR I	TROOK		51800X			3 <b>7800K</b>		31800K			5 <b>1800K</b>	51800K		37800K	37800K	31800K	37800K		37800K	<b>31800K</b>	31800K		3 <b>TB00K</b>		ST800K	SI SUUN	57800K	STBOOK	31800K	57800K	37800K	31800K		17800K	37800K	57800K	
67800K 3	67800K	61800K	61800K	37800K	37800K	61800K	37800K	NOORIS	01800K		CTECCK	STROOK 6	6TBOOK	37800K	3 <b>780</b> 0K	3 <b>780</b> 0K	61800K	3 <b>T800K</b>	61800K	3 <b>180</b> 0K	3 <b>78</b> 00K	37800K 6	37800K 6	37800K	37800K 6	37800K	6T800K	67800K	37800K	6T800K	61800K	6TBOOK	31800K	61800K	31800K	61800K	AUUBIO	3TBOOK	61800K	67800K	37800K	37800K 6	37800K 6	37800K	67800K 3	37800K	31600K	
.0001	0011	0002	0001	0000.	0003	. 0000	.0001	- 0010	1000.	t - 00 - 1	5100.1		0015	0001	0001	.0004	.0006	0002	.0000	0003	.0010	.0001	.0002	.0004	.0002	.0003	.0001	.0000	0001	0004	.0002	.0002	.0003	.0002	000 -	0000.	0008	0018	.0010	6000.	.0003	0002	0006	.0006	0002	0003	0005.	
3	10	3	3	6	3	3	2		<b>N</b> (	N (	N C	4 6	• 0	2	2	3	3	n	3	2	2	2	3	3	2	n	2	2	3	2	3	2	2	2	2	2	2	2	2	2	2	2	2	2	3	2	<u>n</u> 0	•
636	636	638	636	636	636	636	638	000	636 626		0 7 0 0 7 0	626	636	636	638	636	636	636	638	636	636	636	636	638	636	636	636	638	636	636	636	638	636	636	929	636	220	636	636	638	636	636	636	636	636	636	636 638	
54	520	60	620	54	72	510	59		52	ر م د	מ מ		200	490	57	590	50	48C	56	50	580	470	68	55	48	57C	46C	54	48	560	45D	53	99	46	44C	550	2	46	540	51	64	44	42C	530	44	410	52D 49	•
۵	. 0	٩	٩	٩.	٩	۵.	۵.	<b>D</b> 1	<b>a</b> . c	1.6	7 0	La	م	<b>.</b>	٩	۵.	٩	٩	۵.	٩	۵.	٩	۵	٩	۵	Δ.	۵.	٩.	٩	٩	٩	۵.	۵.	<u>م</u>	<b>a</b> . i	ο. ι	<b>1</b>	۵.	۵.	۵.	۵.	¢.	٩	٥.	٩	<b>a</b> .	a. a.	
3	- 1	**	-	-	-			- 1	N +		- •	- •		-	-	•••	a	-	~	-	•		-	-	3	-	-	•••	-	-	-	-	-	3	<b>.</b> .			-	-	~		2		-	-	-		•
0	0	0	0	0	0	0	0	0	0 0	<b>&gt;</b> (	0 0	o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00	•
C	0	0		0	0	3	0	-	0 0		0 0	<b>&gt;</b> •	- C	2	0	-	0	2	0	0	**	R	0	0	0	-	2	0	0	-	3	0	0	0	2	- (	0	0	-	0	0	0	3	-	0	a	- 0	,
C	0	0	-	0	0	2	0	-	0 (	N I	0 0	<b>&gt;</b> •	- 0	2	0	-	0	2	0	0	-	2	0	0	0	-	Q	0	0	-	2	0	0	0	2	- (	0	0	-	0	0	0	a	-	0	3	- 0	,
-	• 0	0	0	•	0	0	0	0	- (	0	0	- (	<b>,</b> c	0	0	0	-	0	0	-	0	0	0	0	-	0	0	0	-	0	0	0	0	-	0	0	0	-	0	0	0	-	0	0	-	0	00	ł
0	•	-	-	-		-	<b>**</b> -	-	~			- •			-	-	2	-		-	-	-	-	-	2			-	-	-	-			3	-	<b>.</b>	-	-	•		-	2			-	-	<del>-</del>	
-	-	-	-	~	-		-	-	- 1	-	- 1	- •			-	-	-	-	-			-	-			~	•	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-			•
C	) (	0	-	0	0	0	0	-	0 0	N	0 0	<b>&gt;</b> •	- c	2	0	-	0	2	0	0	<b></b>	0	0	0	0	**	2	0	0	-	N	0	0	0	3	- (	0	0	-	0	0	0	a	-	0	3	- 0	,
C	2	0	-	0	0	2	0	-	0 0	N (	0 0	<b>,</b> ,	- C	9	0	-	0	2	0	0	-	2	0	0	0		R	0	0	-	2	0	0	0	<b>N</b> -		0	0	-	0	0	0	2		0	ы	~ 0	)
-	• •	a	0	-	0	0	0	0	- (	2	0	- <	<b>&gt;</b> <	0	0	0	-	0	0	-	0	0	0	0	-	0	0	0	-	0	0	0	0	-	0	0	0	-	0	0	0		0	0	-	0	00	)
1.5538	1.6738	2.0198	2.2203	2.2684	2.3504	2.7499	3.0804	3.5105	3.7110	2.6145	4.1339	4.4404	4.7288	4.8845	5.1845	5.7566	5.8465	5.9437	6.2287	6.6033	6.7313	6.9968	7.0873	7.2678	7.9589	7.9812	8.0446	8.3007	8.7360	8.9506	9.0864	9.3287	9.4215	0.0494	0.1220	0.1830	1046.0	0.8435	1.1500	1.3688	1.7328	2.1173	2.1773	2.3631	2.9308	3.1968	3.3236 3.3874	
100	:	221	221	221	221	221	221	22	221		223	100	100	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	221	222	222	222	222	222	222	222	222	222	222	222	222	222	222	

66

. ..

,

378000	67800K	0001	a	636	28C	٩	-	0	a	0	0		-	3	N	0	84	6	ຼົມ.	3
67800K	31800K	0001	1 01	636	40D	Δ.	_	0			0	• •••	• •	• •	• -	0	29	0	ຼ່າຍ	10
318008	01800K	1000.	чc	000	- c n u	L 0		) c	<b>,</b> ,	5 6	50	- •	- •	<b>&gt;</b> <	<b>&gt;</b> <	<b>&gt;</b> (		5.5	ຄູ່	N C
37800K	67800K	0003	2	636	290	α.	<del>,</del> ,	0 (	<b>a</b> (	0	0	- •	1	3	3	0	128	90	4	ä
61800K	3 <b>7800</b> K	.0001	3	638	38	٩	-	0	0	0	0	-	-	0	0	0	142	8	4	č
37800K	67800K	0006	10	636	32	. α.	2	0	0	• 0	>	• ര	• 🖛	0	10	•	191	0	<u> </u>	íä
51800K	31800K	- 0003	2	636 636	300	1 0			- 0	- 6	<b>&gt;</b> C	- +		- 0	- 0	<b>o</b> c	141	bc	2 4	ŃŚ
	61800K	.0001	2	638	39	۹. ۱	÷ ,	0 0	0.	0	0	-	÷ •	0	0	0	08	-	ğ	ä
67800K	37800K	.0001	3	636	310	٩		0	a	2	0	-	**	0	N	0	64	6	ΰ.	5
67800K	37800K	0016	3	636	34	٩	-	0	0	0	-	-	-	0	0	•	164	0	5	ä
	37800K	.0001	3	636	54	٩	<b>.</b>	0	0	0	0	-	-	0	0	0	163	9	2	3
	37800K	.0003	2	636	<b>43C</b>	۵	-	0	-	-	0	-	-		•	0	95	6	3	3
37800K	67800K	.0001	2	638	40	٩	-	0	0	0	0		-	0	0	• <b>o</b>	163		ğ	3
	37800K	.0001	2	636	440	٥.	-	0	-		0	-	-	-	•	0	54	5	=	ŝ
67800K	31800K	0002	10	638	416	a		0	. 0	• 0	00			10	10	<b>o</b> c	88	- 0		N C
	200010 2100010		N C	020		7 0		<b>,</b> ,	<b>.</b> .	5 0	- 0			0 0	0 0	- (	000	6	<u>.</u>	N
	37800K	0001	2	636	45C	۵. ۵	<b>-</b> .	0 0	- (	- (	0		- •	(	- •	0	33	8	<u>.</u>	ä
	3 <b>7800K</b>	.0002	3	636	56	۵	-	0	0	0	0	-	-	0	0	0	195	4	ģ	â
61800K	37800K	.0002	1 0	638	42	۵.		0	0	• a	• 0	• -	•	) O	) a	- 0	99.	- 6	ģ	10
3TROOK	31800K	.0006	0 0	030 636	460 28	0. 0	- 0	o c	- c	<del>-</del> c	0 -	- 0		- (	- 0	••	50	2	စ္က ေ	ñ c
31800K	67800K	0008	3	638	43	۵.	<b>.</b>	0	0	0	0	-		0	0	0	176	ы.	6	8
	67800K	.0004	3	636	350	٩	-	0	2		• 0		-	2	<b>0</b>	• 0	35	5	σ	3
	37800K	.0002	2	636 636	2 3 8 7 7 7	۲ ۵		0	- 0	- 0	- c			~ 0	- 0	<b>-</b> c	70	0	pσ	30
100010	31800K	.0004	2	636	58	۵. ۵	÷.	0 0	ο,	0	0		<del>.</del> .	0	0	0	86	10	<u>.</u>	2
37800K	61800K	.0004	6	638	44	٩.	-	0	0	0	0	-	**	0	0	0	53	B	Ø	3
67800K	31800K	0010	10	636	360	۵.	-	0	9 01	2	0	•	• •••	2	2	- 0	69	30	ģ	10
6T800K	37800K	0000	10	636	000	۵.	- ര	, o	- c	- 0		- 0	- +	- 0	- c	<b>-</b> -		0 <del>-</del>	ġ	A C
61800K	31800K	0000	2 10	959	45 480	<b>-</b> 0		<b>.</b> .	o -		0 0	<b>.</b>		0 -	• •	0 0	60	50	55	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
	31800K	.0002	2	636	370	α (	<b>.</b>	0	2	2	0	-	-	3	3	0	74	3	5	2
	37800K	0016	2	636	40	٩.	-	0	0	0	-	-	-	0	0	•	01	8	5	6
67800K	37800K	. 0001	2	636	49C	Δ.		0	,	• (	0	• 🕶		•	• (	0	35.	65	ģ	10
31800K	31800K	.0001	2 0	070 038	40 90	ıα		00	5 0	0 0	00			0 0	0 0	0 0	513	25	φġ	äç
61800K	31800K	.0000	3	636	380	٩.	-	0	a	2	0	•	-	3	2	0	90	2	ģ	8
	37800K	0003	2	636	40	٩.	2	0	0	• •	-	• <b>M</b>	-	• •	• 0	• -	56	8	ø	ià
	37800K	.0001	1 0	636	2005	. a.		0	> -		00			> ~	<b>-</b>	<b>&gt;</b>		5	ų k	NC
318008	5100K	5000 -	9 0	020	390	<b>a</b> c		0 0	<b>N</b> (	0	0 0			<b>(4</b> )	2	0	80	2	<u>10</u>	3
67800K	31800K	0000.	2	636	42	٥.	<b>.</b>	0	0	0	-	-	-	0	0	-	34	56	1	3
	37800K	.0004	3	636	510	۵	-	0	-	-	0	-	-	-	-	0	97	5	4	à
	67800K	. 0002	2	638	48	٩.	-	0	0	. 0	0	-	• •••	0	10	0	166	. 6		10
31800K	61800K	.0019	• 0	636	400	۵.		) o	<b>,</b> ,		- 0	N -		) C	<b>)</b> (	- <	100		ć s	N C
318006	STROOK	- 0000	0 10	959	2 C 9 Z	7 0	- 0	<b>.</b> .			0,	- 6	- •	0 0	0 0	0 1		0,4	z :	ä
	01000C	0000	¢	202	Cä	¢		<	<		•	•	•	•	•	•			9	-

	37800K		61800K		37800K	61800K		61800K	67800K	61800K		37800K	67800K	67800K			61800K				61800K	67800K		GTBOOK		37800K	61800K	37800K					67800K	6TB00K	318008			<b>3TROOK</b>	6TB00K	3TBOOK		61800K	31800K	37800K		\$7800K	
37800K	6TB00K	31800K	31800K	37800K	67800K	31800K	31800K	3 <b>T8</b> 00K	31800K	31800K	31800K	61800K	31800K	31800K	61800K	31800K	31800K	37800K	<b>3180</b> 0K	31800K	31800K	3 <b>7800K</b>	37800K	37800K	3 <b>7800K</b>	61800K	31800K	61800K	3 <b>T</b> 800K	37800K	3 <b>7800K</b>	37800K	37800K	37800K	61800X	210001¢	2 BOOK	6TROOK	3TRODK	6TB00K	31800K	37800K	61800K	61800K	31800K	37800K	31800K
.0004	0013	.0005	0003	.0004	.0004	- ,0001	.0001	0001	0001	0007	.0014	.0021	0008	0002	.0007	0020	.0004	0005	0001	0001	0001	.0006	.0000	0002	.0001	.0006	0002	0013	.0002	0001	0003	.0005	.0017	.0001	- 0001		- 0001	0003	CC00.	0004	.0008	0015	.0006	0003	.0010	0006	. 0023 0023
2	2	2	2	3	ิต	3	2	2	3	2	2	9	3	2	2	2	3	2	2	3	2	2	3	3	n	2	2	3	2	2	2	2	2	3	2	N (	4 C	• •	10	• •	10	2	2	2	ต	3	20
636	638	636	636	636	636	638	636	636	636	636	636	636	636	636	638	636	636	636	636	636	636	638	636	636	636	638	636	636	636	636	638	636	636	636	638		959	638	636	636	636	638	636	636	638	636	636 636
30	36	27D	39C	50	26C	34	28	<b>38D</b>	28	37C	48	24C	26	360	31	<b>2</b> 3D	26	35C	46	24	34D	29	210	24	<b>33C</b>	28	20C	22	44	32D	27	190	22	310	26	ر ۵ د	200	201	120	200	29C	24	16C	18	23	28D	40 150
٩	۵.	Δ	٥.	٩.	۵.	م	۵.	م	a.	٩	a.	۵.	٩	٩	۵	٥	٩	٩	٥.	۵	a	٩	٩	٩	٩	٩	۵.	٩	۵.	٩	٩	٩	٩	<b>a</b> . 1	0. c	LC	L 0	. a	. 🍳	. a	Δ.	٩	٩	٩.	٩	۵.	a a
<u>а</u>	-	_	_	-	-	_	2	-	_	Ξ	-	Ξ	2	-	_	Ξ	-	-	-	2	Ξ	-	Ξ	-	-	-	Ξ	2	-	-	-	-	-	- '	-						-		-	2	-	••••••	
2	2	~	_	0	~	2	~	_	٥ ~	2	0	0	0	0	0	<del>م</del>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o -	0			) C				0	0	0	0	0	0	30
õ	<u> </u>	~	_	2	~	Š	Š	_	ž	_	Š	~	č	_	š	~	č	-	2	ž	_	2	2	2	Ξ	č	~	ž	2	_	2	~	2									0		2	2	_ '	) (r )
-	0	0	0	0	0	0	-	ò	÷	ò	0	0	-	0	0	0	ž	0	õ	ž	0	õ	0	~	0	õ	0	÷	0	0	0	0	-	0		, . , .	, - , c		0		0	0	0	2	0	0	20
2	-	•	-	-	-	-	3	-	-	-	**	-	2	-	-	**	***	-	•-	2	•	-	*	-	~	**	-	2	-	-	-	-	-	-		• •		•	-	-	-	-	-	a	-	-	
-	-	-	-	-		_	-	-	-	-	-		-	-	-		-	-	-	Γ	-	Ξ	-	-	***	-	-	-	-	•	•	-	-	-							-	-	-	-	Τ	-	
0	0	9	-	0		0	0	-	0	-	0	2	0	-	0	2	0	-	-	0	-	0	2	0	-	0	a	0	0	-	0	2	0	-	0 0	* <	> ~	• •	0	10		0	N	0	0	- 1	2 0
0	0	3	_	0	2	0	0	-	0	Ξ	0	~	0	Ξ	0	3	0	-	0	0	Ξ	0	2	0	-	0	2	0	0	-	0	2	0	-	00	N C	> +	- C	5	10	• •••	0	3	0	0	-	0 0
-	Ŭ	0	U	U	U	U	-	U	•	Ŭ	U	U	-	U	J	U	-	U	0	-	0	0	0	-	0	0	0	-	0	0	0	0	<b>-</b>		00			, ,		•	G	0	0	-	0	0	50
683	688	1685	819	115	1019	242	566	072	718	1787	4001	536	217	686	651	660	463	531	850	658	665	643	835	962	050	558	823	854	859	115	408	764	248	333	214	200		140	475	266	393	643	218	598	307	313	603 893
0.0	5.0	α. α	5.0		7.8	8.7	8.	5.		6.6	4.4				5.0	5.0	.6	<u>в.</u>	ŝ	ŝ	eo.	9	3	4	6	2.2	2	 	<u>.</u> 5	8	-	Ξ	<u>е</u>	8	0	2 4		α	σ		-	-	8.	6.	9	9	9.0
2235	223	2236	2236	2231	223	2231	223)	2231	2236	2236	2239	2235	2235	2239	2240	2240	2240	2240	2241	2241	2241	2242	2242	2242	2242	2243	2243	2243	2243	2243	2244	2244	2244	2244	2245		2245	0045	2245	2246	2246	2246	2246	2246	2247	2247	2247

; • •

----

	31800K	.0001	2	636	170	٥.	-	0	-		0		•	-	-	0	6853	5	225
61800K	3 <b>180</b> 0K	.0021	2	636	80	۵.	<del>.</del>	0	3	3	0	-	-	2	2	0	6851		225
	37800K	0001	10	638	;=	. <b>a</b> .	· <del>-</del>	• 0	0	0 (	0		•	0	0	0	5656		221
37800K	61800K	E000.	20	636	9 c	<b>a</b> a	N -	0 0	0 (	0 9	- (	<b>N</b> 1		0 (	0 0	~ (	1333		0 0 0 0 0 0 0
31800K	67800K	0011	3	636	4 1	٩	-	0	Q	3	0	-	-	N	N	0	8811	ώ.	225
	61800K	0012	3	636	180	Q.	-	0	-	-	0	•	-	-	-	0	7746	ė.	225
	67800K	0001	2	636	00	٩	-	0	0	0	-			0	0	-	4457	ġ.	225
31800K	67800K	0007	2	636	50	٩	-	0	2	N	0	-	-	2	2	0	0751	6	225
37800K	61800K	0001	2	638	13	٩		0	0	0	0	-	-	0	0	0	9649	0	225
61800K	31800K	0003	3	636	190	٩	**	0	-	-	0	-	-	-	-	0	9178	5	225
	37800K	.0002	3	636	32	٩	~	0	0	0	0	-	*-	0	0	0	5903	ŝ	225
	37800K	.0001	3	636	80	٩	3	0	0	0	-	2	-	0	0	-	4948	5	225
61800K	37800K	.0013	2	636	0 9 0	Δ	-	0	3	2	0	-	-	3	N	0	2647	5	225
61800K	37800K	.0014	2	638	4	٩	-	0	0	0	0	-	-	0	0	0	1578	5	225
	31800K	0001	2	636	200	٩	-	0	-	**	0	-	-	-	-	0	36995	4	225
	31800K	0002	2	636	01	٥.	-	0	0	0	-	-	-	0	0	-	7851	4	225
37800K	67800K	0014	3	636	20	٩	-	0	3	3	0	-	-	3	2	0	4440	4	225
61800K	37800K	0006	3	638	15	o.	-	0	0	0	0	-	-	0	0	0	3416	4	225
	37800K	0005	3	636	210	٩	-	0	-	-	0	-	-	-	-	0	1284	4	225
31800K	67800K	0005	( ()	636	, o	. 0.	• 0	0	0	0	- ·	- 0	• ••	0	0	→ <del>-</del>	8330 8330		2 A C
100010	200010 200010		N C	900	2 0			<b>&gt;</b> c	<b>&gt;</b> <	<b>&gt;</b> (	20			5 0	2 0	5 (	00000		17 L N 0 N 0
	31800K	0001	~	636	220	ο. ι		0	- (	- (	0	-	- 1	- 1	1	0	1880	ė.	225
31800K	6T800K	.0007	2	636	5	o.	-	0	0	o	-	-	-	0	0	-	1018	ë.	225
67800K	37800K	0004	N	636	<b>0</b> 6	٩	-	0	N	2	0	-	-	2	N	0	7913	ä	225
	61800K	E000.	n	638	17	ď	-	0	0	0	0	-	-	0	0	0	6976	3	225
	31800K	0005	2	636	230	۵.	-	0	• ••		0	- 1	-	•	• •••	0	3155		225
	37800K	0001	2	636	2	٩	2	0	0	0	,	· 0		0	0	• •	1493	3	225
	37800K	- 0001	3	636	100	Δ.	-	0	0	0	0	• -		2	5	• 0	9560	-	225
	31800K	0001	1 (1	638	) <del>(</del>	<b>a</b>	•	0	0 0	$\circ \circ$	00		- +-	0	0		00100 8664		2 N O
100010	0100010		N (	2000	1 4	7 0	- •	> <	2 0	<b>&gt;</b> (	- (			<b>&gt;</b> <	<b>&gt;</b> (	- (	<b>6</b> 768	÷	
	37800K	E000.	2	636	24D	<b>D.</b> (		0	(	**	0	-	-	~		0	3596	<u></u>	225
	37800K	0000.	¢ ?	636	10	٩	***	0	3	3	0	-	-	N	3	0	1148	-	225
67800K	37800K	.0001	3	638	19	۵.	-	0	0	0	0	-	-	0	0	0	0303	-	225
	37800K	, 0000	R	636	25C	٩.	-	0	-	-	0	-	-	-	-	0	4799	0	225
37800K	61800K	.0005	3	636	14	٩	2	0	0	0	-	2	-	0	0	-	4429	0	225
67800K	37800K	.0000	3	636	120	۵.	-	0	2	2	• 0		-	2	9 01	0	2676	0	100
	37800K	0001	10	638	200	L Q		0	0	0	00			0	0		0000		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	31800K	5000	N C	020	00	<b>-</b> 0		<b>&gt;</b> <	0 0	0 0	~ (		•	0 0	0 0	- (	6617		224
	37800K	.0005	3	636	260	۵.	-	0	-	-	0	**		-	-	0	5077	6.	224
	37800K	.0000	2	636	130	٥.	••	0	3	3	0	-	-	0	2	0	4148	<u>б</u>	224
	37800K	0003	2	638	21	۵.	-	0	0	0	0		-	0	0	0	3407	5	224
37800K	67800K	0002	N	636	16	•	3	0	0	0	• •	2	-	0	0	•	7124	đ	224
	37800K	0003	2	636	270	<b>a</b>	-	0	- 1	- 1	0	-	• ••	-	-	0	6205		204
6TBOOK	37800K	. 0000	10	636	140	. a	• ••	0	0	<i>o</i>	00			2	0	• c	10422	οα	1 4 1 0 1 0
31800K	6T800K	5000 -	10	638	0.0	. 0		0			- c			o c	0	- c	9408 9408	-	7 7 7 7 7 7
<b>STROOK</b>	3TROOK	- 0007	ç	63G	a	٥	-	C	¢	¢	•	•		<	<	•	0000		000

69

	37800K			37800K			61800K	37800K		61800K	61800K							67800K	31800M			31800K				61800K	31800K	61800K		67800K		67800K	37800K	318004	<b>JTROOK</b>	61800K	37800K	61800K			61800K	67800K		31800K		61000K	
67800K	61800K	31800K	37800K	61800K	31800K	37800K	31800K	61800K	31800K	3 <b>7800K</b>	31800K	37800K	31800K	67800K	31800K	37800K	61800K	31800K	618006	31800K	31800K	67800K	61800K	31800K	61800K	37800K	61800K	31800K	31800K	37800K	37800K	37800K	67800K	61800K	31800K	3TBOOK	67800K	37800K	37800K	3 <b>78</b> 00K	37800K	31800K	31800K	ADUBI D	51800K	2100015	37800K
.0002	0006	.0004	0001	0002	.0010	0014	0000	.0015	0008	0002	.0001	0002	0010	.0019	0024	0002	.0005	0005	.0001	0012	0023	.0004	0023	0001	.0004	.0000	.0016	.0008	0007	0002	.0002	0002	0023	.0008	- 0005	- 0005	.0003	0010	.0005	0016	.0001	.0002	0002	9000.	8100.		0012
3	2	2	3	2	2	3	2	2	2	2	2	3	2	3	3	2	3	3	2	2	2	3	3	2	2	3	2	2	2	2	2	3	2	2	2 10	10	<b>.</b> N	2	2	2	3	2	2	2	~ ~	ч с	5
636	638	636	636	638	636	636	636	638	636	636	638	636	636	636	638	636	638	636	636	636	638	636	636	636	638	636	636	638	636	636	636	636	638	630	636 636	636	636	636	638	636	636	636	636	638	636		636
Q	5	160	4	0	28	15C	4	œ	140	ิณ	2	130	26	2	g	120	S	20	0	110	4	30	44	100	ო	4	2	2	ပ္စ	50	22	n	- 6	80	29	r 6	102	4	0	20	80	60	o ·	- 1	6		200
٩	٥.	٩	٩	a.	٥.	۵.	<b>a</b> . 1	Δ.	٩.	۵	٩	٩	۵	۵	٩	٩	۵.	œ	œ	σ.	۵	œ	•	۹.	٩.	œ	æ	۵.	۵.	œ	٩	æ	α (	<b>n</b> . 1	¢ 0	< <b>a</b>	. 0	æ	œ	۵	œ	٥.	<b>œ</b> 1	<b>a</b> (	αc	2 6	ζ <b>Ο</b>
		-	a	-	-			**	-	2		-	•	-	-	-	-	-	n	-	-	-	-	-	-	-	2	-	-	-	-	•••		-	- 0	• -	-		-	-	-	-	3	-		- •	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	o c	0	0	0	0	0	0	0	0	0 0	<b>&gt;</b> <	0 0
0	0	-	0	0	0	-	0	•	*	0	0	-	0	0	0	-	0	2	•	-	0	2	0	-	0	2	0	0	-	2	0	0	0	-	2 10	2 6	•	0	0	0	3	-	0	0	CI 4	- 9	10
-	0	0	-	0	0	¢	-	0	0	-	0	0	0	-	0	•	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0	0 -	- 0	0	-	0	0	0	0	-	0	0 0	50	20
-	-	-	2	***		*-	-	•	-	2	•		-	-	-		*	-	2	••	~	+	-	-	-	-	2	-			-	-	-		<del>~</del> (	4 +		-	-	-	-		2	-	- 1		
-	-	-	-	-	-	-		-	-	***	*-	-	-	-	-	-	-	-	-	<b>4-</b>	*	••••	-	-	-	•	-	-	-	-	-	-	-		** *			-	-	-	-	-	-		- 1	- 1	
0	0	-	0	0	0	-	0	0	-	0	0		0	0	0	-	0	2	0	-	0	2	0	-	0	2	0	0	-	2	0	0	0	-	0 C	20	-	0	0	0	2	-	0	0	<b>N</b> 1	- (	O N
0	0	-	0	0	0	-	0	ີ.	5	0	0		0	0	0	Ξ	2	2	0	-	0	2	0	Ξ	2	2	_	2	Ξ	2	0	0	0	-	ณ ( ()	יי כ ה					2	Ξ	_		ณ • อ.	- (	
-	Ų		,	J		0	-	Ŭ	Ŭ	-	Ű			•	U	U	U	Ŭ	-	U	U	Ŭ	Ŭ	Ŭ	Ŭ	U	•	U	U	Ŭ	Ŭ	•	U	U								U	-	U	0		
825	1571	349	483	439	1066	1271	<b>3950</b>	1265	691	1406	005	484	773	857	1677	1817	349	1641	864	1442	907	250	254	103	465	1785	227	1944	182	1266	539	507	332	1362	0690	5 T 1 U 1 U	694	549	032	547	1363	171	213	1285	628	909	342
9.0	6	ິ ຫ	6	6	4.	9.4	9.6	0.0	0.0	6.0	5.0			4	4	<u> </u>	2.2	с. З	8. 9	2.8	а. С	н. Т	3.1	ω. Θ.	3.7	3.8	4.4	ष च	ୟ କ	4.6	9.9	<u>م</u> .1	сч 10	ເຕ ເດ	10 1 17 1		5.0	. Ψ.	5.0	5	ω. Θ.	ۍ. ص	2	4.4	ທີ 1 ເ		, UL
2256	2256	2256	225(	2255	225	225	2255	225	226(	226(	226(	2261	226	226	2261	2261	226:	226	226	226;	226	226	226	226	226	226	2264	2264	2264	226	2264	2265	226	226	226	2260	2266	2266	2266	2266	2266	226	226	226	226	077	226

70

• • -

	100010	200010 21000K		61800K		61800K	3TB00K			61800K	37800K	67800K		67800K	61800K		10001C	2100010	51000K	6TROOK	6T800K		37800K					31800K	37800K	e tonnu	61800K		37800K	37800K		61800K	37800K	67800K			61800K	31800K		61800K
6TB00K	51800K	31000F	31800K	37800K	37800K	31800K	61800K	61800K	3 <b>7800</b> K	37800K	61800K	37800K	37800K	37800K	31800K	31800K	200010	200010	31000K	31800K	37800K	37800K	61800K	3 <b>780</b> 0K	3 <b>780</b> 0K	37800K	37800K	67800K	67800K	318008	3 TROOK	37800K	67800K	67800K	37800K	3 <b>T</b> 800K	67800K	37800K	37800K	31800K	37800K	61800K	3TBOOK	37800K
0013	10001		E000.	.0006	0003	- 0000	5000	.0007	.0017	.0016	0001	0022	.0002	0000.	E000 -	.0005	1000.			0005	0000	.0001	.0015	.0001	.0020	0001	0000.	.0006	0011	E000	- 0010	0002	E000	0001	0024	.0003	0005	.0001	0000.	0010	0001	8000.	. 1000	.0010
2	N (	ч c	• •	8	2	2 6	10	1 (1	3	2	2	3	2	2	2	2 10	N 0	N (	л с	10	10	10	2	3	3	2	3	2	2	(N (	40	10	3	3	n	2	2	2	2	3	0	N C	10	19
636	020	929	636 636	638	636	636	636	638	636	636	638	636	636	636	638	020			959	636	638	636	636	638	636	636	636	636	636	038 626	900	638	636	636	636	636	638	636	636	638	636	636 626	638	636
40	<b>7</b> (1	? •	2 C	4	8	120		ູ່ທ	16	130	9	5	140	<u>8</u> 1		120	t 0	0 ç	24	140	σ	170	<u>5</u>	10	12	180	4	50	16			54	200	16	2	18	13	210	ပ္ရွင္ရ	14	22C	8 000	2 LC 2 LC	00
۵.	<b>x</b> 0	× 0	2 0.	œ	œ	<b>a:</b> a	: 0	. œ	۵.	œ	œ	œ	œ		<b>e</b> 1	<b>x</b> (		2 0	r a	α α	: 😋	œ	œ	۲	o.	<b>2</b>	<b>œ</b> , 1	œ	<b>œ</b> (	<b>x</b> 0	ca	: œ	œ	œ	۵.	œ	œ	<b>a</b>	œ	oc (	œ (	xa	< <b>Q</b>	: <b>a</b>
- (	N 7			-	<b>.</b> ,	- 0			-		-	-	<b>-</b>	2						- ര	i <del>-</del>	-	-		-	<b>.</b> .	-	- (					-	-		2	<b></b> .	<b>.</b>	, <b>-</b>		, <b>-</b>	- 0		-
0	0 0	<b>&gt;</b> c	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0 0	> <	<b>,</b>	<b>&gt;</b> <	<b>,</b> 0	0	0	0	0	0	0	0	0	0 (	<b>o</b> c	) C	0	0	0	0	0	0	0	0	0	•	<b>,</b> ,	<b>,</b> a	••
-	0 0	0 0	×	0	0	2 10	» –	• 0	0	2	o	0	2	0	0	2	<b>&gt;</b> (	> <	<b>)</b> (	N C	• o	1	-	0	0	2	0	<del></del>	0	0 (	• •	۰o	3	0	0	0	0	N	-	0	2	0 0	<b>&gt;</b> 0	0
-	0 0	<b>ə</b> (	<b>v</b> +	0	0	2 10	<b>)</b>	• 0	0	3	0	0	a	0	0	2	<b>&gt;</b> (	<b>&gt;</b> (	<b>&gt;</b> (	N C	) C	9 0	-	0	0	R	0		0	0 0	4 -	• 0	N	0	0	0	0	R	•	0	2	0 0	<b>o</b> 0	0
0	- (	<b>&gt;</b> <	0 0	0	-	o -	• •	0	0	0	0		0	<b>*</b>	0	0 0	<b>&gt;</b> (	э,	- 0	> -	- c	0	0	0	0	0		0	<del>.</del>	0 0	> c	0	0	-	0		0	0	0	0	0		- c	0
					_					_										_																								
_				_	_				_	_	Ξ	Ξ	Ξ	-	_								_	_	Ξ	Ξ	Ξ	_					Ξ	Ξ	Ξ	-	Ξ	_	_	_				
_					_	~ ~				~	~	2	~	_				~ `						~	2	~	2	_	2	~ `			~	2	Ξ		2	~	_		~			5
_					~		·			~	Š	ž	~	2	2	~ ~	-	-	 				_	Š	Š	~	Š	_	<u> </u>		ч -		~	ž	Š		2	~	_	2	~			
0				Š	_	<u> </u>			0		0	_	~	_	<u> </u>	0			_ <					õ	õ	2	_	'n	_					ž	Š	2	Š	~	<u> </u>	2	~			
-								-	-	-	-		-		-	-	_	-		-	-	-	-	-	-	-		-					-		-		-	-	-	-	-		-	. •
5936	5869	2010	) 9668	5705	5934	7001	998	2735	2927	4029	9699	0243	1160	5484	5614	7868	1232	4 0 0 4 7 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	900 90 90	2014 2046	1281	1478	3068	7031	7337	3199	3199	0728	3159	3719		035 <b>6</b>	1459	1803	4144	5667	6665	0000	3246	3451	1487	1710	900C	0792
			0 0	6	0	o c	; c		0	ò	0	-	-	-	-	-	N 6			 N 0				5		 		4	4	ें । संद		i u	5	5	م	ັ. ທ	س	5	6	6		5		
226	226	226	226	226	226	226	200	227	227	227	227	227	227	227	227	227	177	122	202	10	100	227	227	227	227	227	227	227	227	227	200	227	227	227	227	227	227	227	227	227	227	227	100	227

يەسى يو سولى ،

			I						1	•	,			1	1																															
	31800K	0021	n u	979 636	360	K Q	~ -	0 0	<b>,</b> , ,	<b>&gt;</b> a	20			<b>n</b> c	2 0	5 a	9040	284																												
	37800K	.0005	2	636	170	<b>œ</b> (	<b></b> ,	0 1	- (	<b>.</b>	0	<b></b> .	<del>,</del> ,	- (	-	0	.8173	284																												
37800K	61800K	.0003	2	636	32	æ	a	0	0	0	-	2	-	0	0	-	.4581	284																												
	31800K	0000.	1 0	636	350	2		0	) (	2	0			2	2	<b>.</b> .	.3381	284																												
67800K	31000K	0000	N C	020	7 C	2 0		<b>,</b> c	<b>,</b>	<b>.</b> .	5 0			<b>,</b> ,	<b>.</b> .		2102	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																												
61800M	37800K	0004	2	636	160	œ (	<b></b> - ,	0	- 1	-	0	-	-		<b>.</b>	0	.1563	284																												
378004	61800K	.0005	3	636	30	æ	-	0	0	0	-	-	-	0	0	-	.0276	284																												
618004	37800K	.0001	2	636	34C	œ	-	0	~	3	0	-	-	2	N	0	. 7690	283																												
	31800K	E000.	2	638	26	œ		0	0	0	0	-	-	0	0	0	. 7355	283																												
	31800K	0007	1 0	636	150	2		0	,		• 0					. 0	.4597	283																												
6TBOOM	37800K	0001	10	636	306	α,	· a	0	10	10	• •	• •	• ••	0	0	• •	2722	283																												
ETROOM	31800K	4000	2 0	636		Ľα		<b>.</b> 0	<b>)</b> (	2 0	00			2 0	20	<b>.</b>	8001.	282																												
318000	67800K	.0016	2	636	28 28	œ (		0 0	0 0	0	- (	<b>-</b>		0 0	0		.8376	282																												
	31800K	0005	2	636	140	œ	-	0	-	-	•		-	<b>.</b>	-	0	.7868	282																												
61800M	37800K	.0001	2	636	32C	œ		0	3	3	0	-	-	2	2	0	.6081	282																												
318000	67800K	0004	2	638	24	œ	-	0	0	0	0	-	-	0	0	0	.5597	282																												
	31800K	0006	2	636	130	2	-	0	. –		0		-			. 0	0799	282																												
018001	31800K	C000.	9 0	929	390	χq	- 0	0 0	n c	NO	0 -	- 0		N C	NC	o •	.0175 0648	282																												
i	31800K	0001	2	638	23	æ	-	0	0	0	0	-	-	0	0	0	.9640	281																												
	37800K	0008	2	636	ิต	۵	•••	0	0	0	0		-	0	0	0	.9200	281																												
67800M	37800K	0015	10	636	260	: œ		0	10	. 0	• -			. 0	• 0	) <del>-</del>	.6191	281																												
100019	318008	2000.	N C		120	¥ (		<b>)</b> (	- (	- (	0 0		, -	- (	- (	•	. 3944	281																												
	37800K	0002	2	638	22	œ	<b></b> .	0	0	0	•	-	-	0	0	0	.3622	281																												
61800K	37800K	0002	2	638	21	œ	-	0	0	0	0	-	-	0	0	0	.7549	280																												
	37800K	.0002	2	636	110	œ	-	0	-	-	0	سي .		-	• •	. 0	.6771	280																												
100010	31800K	0002	2	636	202	×α	- +-	0 0	NO	NO	<b>-</b> - C			N O	NO	<b>-</b> -	.3808	280																												
618901	31800K	0012	2	638	20	œ	- 1	0 (	0	0	0	<b>.</b>	-	0	0	0	.1410	280																												
	3 <b>780</b> 0K	0003	6	636	100	œ	-	0	-	-	0	-	-	-	-	0	.9769	279																												
	37800K	0008	Q	636	270	œ	-	0	3	2	0	-	-	N	2	0	.6003	279																												
318004	67800K	.0010	1 01	636	24	a	a	0	0	0	•	· 01		0	0		.5755	279																												
318000	61800K	.0005	1 0	638	90	: œ	• -	0	- 0	- 0	<b>o</b> 0	~ -	- +-	- 0	~ 0	0	5241	279																												
318000	61800K	- 0008	() (	636	55 57	α a	<b>-</b> +-	0 0	ο,	۰ م	- 4			ο,	0,	- 0	.1163	279																												
378004	67800K	0001	3	636	26C	œ	-	o	a	N	•	***	-	R	3	o	.9833	278																												
618000	37800K	.0003	2	638	18	œ	-	0	0	0	0	-	-	0	0	0	8996	278																												
618000	31800K	- 0024	2	636	o o o	r o	- +-	<b>&gt; 0</b>	- a	- 0				- 0	- 0	<b>&gt; c</b>	.7137	1 / C																												
618004	37800K	0000.	2	636	250	<b>œ</b> 1		0	<b>a</b> 4	3	0	<b>.</b>	-	2	2	0	.3577	278																												
618004	3 <b>780</b> 0K	0007	2	636	22	œ	n	0	0	0	-	2	-	0	0	-	.2944	278																												
378004	67800K	.0005	0	638	17	œ	+	0	0	0	0	-	-	0	0	0	.2700	278																												
618000	37800K	6000 .	1 01	636	20.	: œ	-	0	• 0	. 0	• •		• •-	- 0	- 0	) –	.8300	27																												
	31800K	2000	10	636				) a	¥ -	× -	<b>.</b> .			N -	N -	<b>&gt; c</b>	2006	212																												
	67800K	1000.	<b>N</b> C	638	16	20		o c	0 0	0 0	0 0		- •	0 (	0 0	•	.6341	271																												
			•	000	•	"	•	•	•		•		,	,	4	,																														
BOOK		800K		800K	800K		BOOK					2002		NOOR		BOOK	800K		800X				BOOK	900K	800K			BOOK	BOOK				XUUR		300K	BOOK	300K	300K			300K			XOOR		XOOE
--------	--------	---------------	----------------	--------	----------	---------	-----------------	----------	--------	---------	----------	---------------	--------------	------------	--------	--------	----------	--------	----------------	-----------------	-------------	--------	-----------------	-------------	--------	--------	----------	--------	--------	----------	--------	-------------	---------------	----------------	--------	----------	--------	--------	--------	--------	-------	----------	-------	-------------	---------------	--------------------------------------------------------------------------------------------------
61		61		61	31			õ				-	2 4			61	31		<u>ē</u>				61	61	ЗI			61	611				311	5	611	61	31	31			61				5	616
37800K	37800K	<b>37800K</b>	3 <b>7800K</b>	37800K	57800K	ST BOOK	STBOOK	1 BOOK	37800K	ST BUOK	11800K			TBOOK	T BOOK	31800K	ST800K	37800K	3 <b>7800K</b>	1 <b>7800</b> K	31800K	37800K	8 <b>1800</b> K	87800K	31800K	17800K	11800K	11800K	17800K	17800K	11800K	1800K	10001	11800K	17800K	17800K	17800K	1800K	17800K	17800K	T800K	17800K	TBOOK	1800K	20081	T800K
-	~	 m	2	0		0			~			- 0	) () ) ()	) -		. ~	Ţ	-	0	0	-	~	-	е а	۳ ۵	-	<u>م</u>	-	0			0 c	, u	) (	0	ຕ ດ	Ψ α	۵ –	5	ლ —	ຕ ·					,
.000	000	0000-1	000.	.001	õõ. •	000.	00.	000		- 002	- 001				000	:000	.000	0000	000.	000.	000	001	000	000	:000	000	000.	000	000.	000.	000			000	.000	.000	000	000	000	002	000	000	000			
3	3	2	2	2	2	2	~			N (	N 6	4 (	4 C	1 (1	10	2	<b>N</b>	n	3	2	2	2	2	a	3	n	2	~		~	2	N 6	4 6	10	2	3	3	3	3	3	(1)	2	3	<b>ci</b> 0	N C	101
636	636	636	636	638	636	020	636		636		929	979		636	636	636	638	636	636	638	636	636	636	636	638	636	636	636	638	636	636	070	200	636	636	638	636	638	636	636	638	636	636	636	950	638
32	180	40	3	õ	380	190	<b>4</b> 0 M	0	200	2	4 .0			500	220	420	34	38	430	35	<b>2</b> 3C	ø	40	<b>4</b> 4C	36	240	40	450	37	25C	42	4 0 0	0 0	26D	470	90 90	44	40	44	490	41	280	46	202		) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
œ	œ	œ	æ	æ			<b>a</b> (	2 (	œ d	¥ I		E 0	r Q	< 02	α.	2	œ	œ	œ	œ	œ	œ	œ	œ	œ	œ	æ		CC I		œ (	x d	C 0	z az	œ	œ	æ	œ	œ	œ	2	or i		~ 0	2 0	د مد
-		~	-	-	-	-	- (	N 1	- •		- •		- +	- a	-	-	***	-	-	-	-	-	a	•••	-		-	- ,	-	- (			• •		-	-	a	-	-	-	-	- •	2			
0	0	0	0	0	0	0	0 0	<b>)</b>	0 0	5	0 0	<b>&gt;</b> <	<b>,</b>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (	<b>)</b> c	<b>,</b> c	0	0	0	0	0	0	0	0	0	0	0 0	<b>,</b>	0
0	-	0	0	0	3	-	0	0	- (	0	0	- 0	NC	<b>o</b> c	- (	3	0	0	a	0	-	0	0	3	0	-	0	2	0	- (	0	2 10	<b>&gt;</b> c	> <del>-</del>	3	0	0	0	0	2	0	- (	0	(1)	<b>-</b> -	- 0
0	-	0	0	0	2	-	0	0	- (	0	••	- (		0	) –	2	0	0	3	0	-	0	0	a	0	***	0	2	0	- 1	0	N C	$\sim$	<b>~</b>	2	0	0	0	0	2	0	-	0	2	<b>&gt;</b> •	- 0
-	0	-	0	•	0	Ø	•	- (	0 (	0	0 (	2		> ~	. 0	0	0	-	0	0	0	0	-	•	0	•	-	0	0	0	- (	00	00	00	0	0	-	0	-	•	0	0	-	0 0	<b>&gt;</b> <	>0
-	-	2	-	*	-	-	(		- 1	-			- •	- 0		-	-	-	-	-	-	-	2	**	***	-	-	-	-	- (	0		•••		-	-	a	-	•	-	-	-	a	- 1		
Ξ	Ţ	Ξ	Ξ	-	-								_			-	-	-	-	Ξ	-	Ξ	-	-	Ξ	***	-		- '						_	Ξ	Ξ	Ξ	-	-	-	<b>.</b>	-			
~	Ξ	ž	ž	2	~				_	_	<u>.</u>						~	2	~	2	Ξ	2	2	~	2	_	0		-							2	0	2	0	~	0	-	0			- 0
_	0	ĭ	ŏ	0	0	-	_				0.	- ` - `					õ	2	0	2	5	Š	Ľ	2	ž	~	2			<u> </u>	_			) - ) -	0	0	2	č	ž	~	č	_	_	0		
0	20	98	37	36	37	4	22	50		2		<u>ה</u>	n		4	4	46		51	37	37	31		73	۳ ۳	58	0	17	2			Ň	00	0.00	90	4	60	57 (	62	50	40	9	76	0		
9	ŝ	61	79.	5	5	4	ŝ	ñ	82		30		t ŭ D ŭ		5	17	200	548	<u> 6</u> 9	74	74	78	96	517	27	391	61	22	6	ö	50		r - v c	54°	730	82	076	32(	682	2	826	81	60	8		80.0
2285.	2285.	2285.	2285.	2286.	2286.	2286.	2286.	2286.	2286.	2287.	2287.			2287	2288.	2288.	2288.	2288.	2288.	2288.	2288.	2288.	2288.	2289.	2289.	2289.	2289.	2289.	2289.	2290.	2290.	2290.		2290.	2290.	2290.	2291.	2291.	2291.	2291.	2291.	2291.	2292.	2292.		2292.

-

à,

			I							,			,	,	,				
6TBOOK	at Book	0002	10	636	410	ά		0	• +	•	• 0		- +-	• -	•	• 0	96e		299
31800K	61800K	2000	N C	929 929	57	<b>x</b> 0		<b>&gt;</b> c	0 0	0 (	<b>&gt;</b> c			<b>o</b> (	0 (	DC	444		1000
37800K	67800K	.0014	<b>a</b> (	636	<u>60</u>	œ (	<b></b> .	0 (	0	0	- (	<b>-</b>	-	0	0	<b>-</b> 1	669	5.	1298
	3 <b>7800K</b>	0001	N	636	40D	œ	-	0	-	-	0	-	-	-	-	0	238	:	298
67800K	37800K	0002	3	638	56	œ		0	0	0	0	-	-	0	0	0	362	9.	298
67800K	37800K	0008	3	636	60	α	a	0	0	0	-	2	_	0	0	-	768	5	1296
31800K	37800K	.0003	2	636 636	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	r œ		0 0	N O	NO	00			N O	NO	0	000	יי איי	2398
67800K	37800K	0005	3	638	55		<b></b> .	0	0	0	0	<b>-</b>	<b>.</b>	0	0	0	219	-	2296
	31800K	.0000	2	636	390	œ	<b>.</b>	0	-	-	0	-	-	-	-	•	689	Ξ	2398
61800K	37800K	.0014	2	636	58	œ	-	0	0	0	-	-	-	0	0	-	446	Ξ	298
67800K	3 <b>780</b> 0K	.0000	2	636	630	œ	-	0	2	2	0	-	-	R	C	0	165	5	297
67800K	37800K	.0004	1 01	638	54	œ		0	0	0	• •	ı <del>-</del>	-	0	0	• •	031		297
31800K	61800K	0006	9	636	28	a	2	0	a	0	• •-	· a	-	0	• •		227	5	297
	37800K	.0004	10	636	380	2		0	• •	¥ +-	• •	• -		•		0	424	1.40	660
21000K	STROOK	5000	N C	626 626	200	2 0		<b>&gt;</b>	5 0	<b>)</b> c	<b>&gt;</b>			<b>&gt;</b> c	<b>&gt;</b> c	20			1000
67800K	31800K	0002	2	636	20	αı	-	0	0	0		<b>*</b> ** •	<b>-</b>	0	0	-	937		2293
	37800K	0013	N	636	18	œ	-	0	0	0	0	-		0	0	•	854	5	293
	37800K	0005	2	636	610	œ	-	ο	3	2	0	-	-	2	2	0	017	5	297
	37800K	.0003	3	636	37C	æ	-	0		-	0	-	-	سي ۽		0	745	0	297
37800K	6T800K	0005	2	638	25	Ľα	<b>ء</b>	0	<b>b</b> c	0 0	- 0	N +-		<b>&gt;</b> 0	<b>&gt;</b> 0	- 0	1965	0.0	296
61800K	318008	.0002	N (	500	202	<b>~</b> (	- (	0 0	2	2	0	- (	- •	2	2	0	616	) ت م	2296
67800K	37800K	.0000	2	636	360	æ		0	-	-	Ö	-	-	-	-	0	360	<u>ر</u> ،	296
37800K	67800K	6000.	0	638	51	œ		0	0	0	0	-	-	0	0	0	101	ູ ເມ	2296
31800K	67800K	0002	10	636	541	: α		0	• 0	10	• •			10	10	•	661		2296
	37800K	0000	10	636	2002	ĽΩ		<b>)</b> 0	) C	<b>)</b> (				) c	2 0			20	1000
PIRON	31800K	- 2000	N C		200	¥ (	<b>-</b> ,	0 0	- (	- (	0			- (	(	0	546		2295
61800K	37800K	.0017	3	636	580	<u>م</u> ۱		0	3	3	0	<b>-</b>	-	<b>N</b> -	2	0	478	5	2295
	61800K	.0017	3	636	16	œ	-	0	0	0	0	-	-	0	0	0	1478	Ξ.	2295
31800K	61800K	0001	3	638	49	œ	-	0	0	0	0	-	-	0	0	0	181	ι Ψ	2295
61800K	37800K		10	636	22	α.	• 🖛	0	- 0	- 0	- •			• 0	- 0	•	218	. VI	2295
318008	21800K	- 0005	0 K	979 979	84 9 0 0 0	¥ 0		<b>o</b> c	• •	0.	0 0			<b>o</b> .	0.	0 0	6 0 6 0 6 0		2295
61800K	37800K	0003	2	636	52	œ (	<u>с</u> и -	0	0	0	-	<b>N</b> .	-	0	0	-	111	5	2295
61800K	37800K	.0005	3	636	560	œ	-	0	N	2	0		-	R	N	0	712	0	2294
	37800K	0003	2	636	330	œ	-	0			0	-		-	. –	0	1129	9	2294
	37800K	0003	10	638	47	: 02	• ••	0	) c	) a	• 0		• •	) a	• 0	- 0	941		2294
<b>RADOK</b>	5 BOOK	- 0004	10	626 636	t C - 4	K O		<b>o</b> c	<b>&gt;</b> <	0 0	<b>-</b> c			<b>o</b> c	<b>&gt;</b> c	• •	2001	4 4 • •	
	31800K	0026	2	636	540	2	-	0	3	2	Ö	-	-	R	2	0	688	3	228
37800K	61800K	.0007	2	636	50	œ	a	0	0	0	-	2	-	0	0	-	686	2	2294
61800K	37800K	0001	3	638	45	œ	-	0	0	0	0	-	-	0	0	0	677		229
	37800K	. 0000	10	636	310	ac	-	0	•	•	0				• ••	0	2469 5469		229
21000K	61800K		10	929		2 0	• -	<b>)</b> (	<b>)</b> (	) C	<b>,</b>	- •	- •	<b>)</b> (	<b>&gt;</b> (	> <			N N N N
370004	1009-5	2000	N 0	020		xo		<b>o</b> (	N	-	0 0			N (	•	0 0	485		229.
		0000	¢	000		6	,	•	•	(	1	,	•		(	•		ļ	

4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Ф К К К К К К К К К К К К К К К К К К К		- 0 - 0 0 0 0 - 0 0 - 0 0 0 0 0 - + 0 0 0 0 0 - 4 0 0 - 4 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-----------------------------------------	-----------------------------------------	--	---------------------------------------------------------------------------------------------------------

2.1

	61800K	67800K	37800K			61800K	3 <b>1800K</b>	67800K	61800K	31600K	61800K			67800K	31800K			<b>ETROOK</b>	200010	6TROOK	3TB00K	37800K	67800K	61800K	61800K			61800K	31800K	31800K	<b>ETDOOK</b>	ACCE 10	31800K	67800K			67800K		31800K	3 <b>1800K</b>		e to AAK	
31800K 31800K	31800K	37800K	61800K	0100010	31800K	37800K	6 <b>780</b> 0K	3 <b>780</b> 0K	37800K	61800K	31800K	37800K	37800K	37800K	61800K	0100010	200919 200019	2100010	3TROOK	31800K	6T800K	6T800K	31800K	37800K	37800K	3 <b>780</b> 0K	31800K	37800K	61800K	61800K	51800K	318005	67800K	37800K	37800K	3 <b>7800</b> K	37800K	6 <b>T800K</b>	6 <b>T</b> 800K	61800K	61800K	31800K	61800K
.0002	0008	.0007	.0001	4000.	0025	.0008	.0001	.0015	.0000	0001	.0016	.0010	0019	.0005	. 0002		2000		6000	1000	0000	.0012	.0002	0011	0003	0027	0012	0006	.0008	0011	.0028	1000	.0003	.001	0005	0011	.0002	0002	0007	.0002	.0010		6000.
<b>n</b> n	2 1	3	~	N 0	4 0	<b>a</b>	(1	3	2	2	3	2	2	3	2 10	N (	N C	4 C	40	• •	<b>v</b> 0	10	10	n	R	3	n	2	2	2	<b>N</b> C	4 6	10	3	2	3	n	2	3	n	2	N C	N N
636 636	020 638	636	638	070 978	636 636	636	638	636	636	638	636	636	636	638	636		0.50 6.26	020	636	526	638	636	638	636	636	636	638	636	636	636	030	626	638	636	636	636	636	636	638	636	636	020	636 636
2 76 2 76	000	2 84C	24	200	850	8 78	2 7 5 2	298 x	24D	د 76	80	80	32	277	222C	ן ממ מ	800				70C 2	016	80	84	8 57C	8 34 8	81	630 8	280	9 8 0 9 9 0	~ 86		2 <b>1</b> 1	88	88	26 26	8 60D	28C	86 86	06 ~	066 1	06 2	2001
a		-	- ·	- (	N		u +	-	÷	-	2	ب جہ	-	æ.	- 1	- •		- 0	**	• •			. uz	*	-	-	-	-		-			•		2	<b>t</b>	<del>.</del>	-	-	£		2 0 N 7	
000	0 0	0	0 0	<b>&gt;</b> <	0	0	0	0	0	0	0	0	0	0	0 0	<b>&gt;</b> <	<b>&gt;</b> <	<b>&gt;</b> <	<b>,</b> c	<b>,</b>	0	0	0	0	0	0	0	0	0	0	0 0	<b>,</b> c	<b>o</b>	0	0	0	0	0	0	0	0	<b>o</b> c	>0
00	0 0	2	0	- (	n c	0	0	2		0	0	0	0	0	-	2	0 0	N C	<b>&gt;</b> <	> •	- 0	) (	0	0	-	0	0	2	-	0	0 0	N +	- 0	0	0	0	-	R	0	0	2	ο,	- ด
000	0 0	2	0	- (	2 0	0	0	2	-	0	0	0	0	0	- 1	91.6	0 0	N	<b>&gt; c</b>	<b>&gt;</b> •	- 0	) (	0	0	-	0	0	0	-	0	0 (	¥ •	- 0	0	0	0	+-	Q	0	0	2	• •	- 0
	• •	0	0	0 1	- 0	•	0	0	0	0	-	-	0	0	0	0	0 0			- 0	00		• •	**	0	0	0	0	0	-	C	0 0	00	• ••	-	0	0	0	0	-	0	~ (	>0
<b>n</b>		-		- (	N		-	-	-	-	a	-	-	-	÷- •		- 1	- (	N -	- •		• •	-	-	-	-	•	-	-	<b>4</b> -	<b>N</b> -			-	2	-	-	-	-		-	2	
		-	- 1			-	-		-	-		-	-	-	-		- 1	•						-	-	-	-	-	-	-	- 1			-	-	-	-	-	*	-	-		
000	00	2	0	- (	ה כ -	0	0	2	•••	0	•	•	•	•	- (	N 4		4 4		<b>&gt;</b> •	- 0	) (	0	0	*	•	0	2	-	0 ·	0 (	4 +	- 0	0	0	0	-	2	0	0	2	o •	- 9
	00		2		56	. 0		2	Ξ	0	-	-	0	0	- 1		0 ( n (	<b>1</b> (	) C		- 0			0	-	0	0		-						0	0	Ξ	2	0	0	<u>a</u>		- 9
			Ŭ				Ū	Ū	Ŭ	Ŭ	-	-		Ŭ					- •	- •		,.	/ 0		U		U	U	U	-						U	U	U	U	-	U	- (	
.5523 .6816	7256	.0505	1064	.1612	. 1916 2834	2834	4111	5916	6208	.7099	.8076	8618	8970	.0037	.0638	2001	2390 <b>8</b>	0 N C C C	~~~~~		5725	1899	8482	9420	9420	.0445	.1169	2407	3741	4459	5090	9000 8000	8598	9273	0242	1703	2132	3285	3808	3808	4544	5189	7022
2304	2304	2305.	2305.	2305	2305	2305.	2305.	2305.	2305	2305.	2305.	2305.	2305	2306.	2306.	0052	2306.		2206	0000	2306	2306	2306.	2306.	2306.	2307.	2307.	2307.	2307.	2307.	2307.		2307	2307.	2308.	2308.	2308.	2308.	2308.	2308.	2308.	2308.	2308.

	<b>NOOBLE</b>	C000.1	N	636	R 52	-	0	ō	~	0	-	-	0	0	0	2930	0	ŝ
67800K	31800K	.0005	2	636	R 83C		0	_	_	0	-	-	-	-	0	1676	ġ.	231
67800K	37800K	.0000	1	636	R 820	-	0			0	. 🚛	. 🖵			. a	8402	10	23
	61800K	0000.	2	636 636	R 81C					30			>-	<b>-</b> -	<b>.</b> a	6705 6705	ก พ	200
	31800K	E000 -	3	636	R 79C	<b>,</b> .	0	_ (		0	<b>.</b>		- (	(	0	0141	<u>به</u>	ŝ
37800K	67800K	.0000	n	636	R 780	-	0	_	_	0	-	-	-	-	0	6736	4	231
   	37800K	0005	1 01	636	R 48	_	0		Ā	0		-	. 0	. 0	. 0	4081	4	S
6TBDDK	37800K	- 0001	N 0	636	R 760		<b>.</b> .			00						2018 0525	2	2 0
940404	37800K	0000-	2	636	R 46		0 0	<u> </u>	Ā .	00	<b>.</b>		0.	•	0	4296	<u>m</u> i	ā
61800K	37800K	.0001	3	636	R 73C	-	0	_		0	-	<b>.</b>	÷,	÷	0	1034	щ.	53
31800K	67800K	0001	3	636	R 720	-	0	_	_	0	-	-	-	-	0	7399	<u>ल</u>	231
	37800K	0008	N	636	R 44	-	0	0	_	0	-	-	0	0	0	4256		a
37800K	61800K	0001	3	636	R 70D	-	0	_	_	0	-	-	-	-	0	0465	2	Sa
37800K	67800K	.0000	3	636	R 69C	-	0	Ē	_	0	-	-	-	-	0	7081	-	63
1000010	31800K	- 0004	<b>N</b> (1	636	R 42		0	- 0					- 0	- 0	<b>.</b> .	3986		200
	31800%	.0015	3	636	R104	<b>N</b> •	0 (	<u> </u>	Ä.	-	<b>0</b> -	<b>.</b>	0	0	<b>-</b>	3032	÷	ຄີ
	61800K	.0004	3	638	R100	-	0	0	2	0	-	-	0	0	0	1475	Ξ	231
	31800K	0023	10	636	R102	• 01	0				- 0		. 0	- 0	<b>.</b> –	9747	<u>.</u>	
310004	100810 20005		N C	070 676	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		<b>.</b>		- -	0 0				0,		8228	<u>.</u>	50
	61800K	0005	2	638	R 97	-	0	0	Ā	0	-	-	0	0	0	6499	<u>.</u>	23
	61800K	.0011	3	636	R100	a	0	ō		-	2	-	0	0		6290	0	53
67800K	37800K	. 0000	2	636	R 66D		0			00				• ••		5863	0	50
31800K	STBOOK	0008	0 1	020 638	7 Q					00			<b>.</b>	0 0	<b>.</b> .	3405 4743	<u>.</u>	20
61800K	37800K	0001	<b>a</b> (	638	R 95		0	0	2	0	<b>.</b>	-	0	0	0	2901	<u>.</u>	23
37800K	67800K	.0011	3	636	R 98	a	0	0	-	-	2	-	0	0	-	2557	0	23
67800K	31800K	0006	1 (1	636	R 650		0	. –		0			<b>.</b> (	-	- 0	2155	0	íð
<b>ETROOK</b>	21800K		N 0	526 826	77 0 77 0 77 0			 		0 7		- •	0 0	00	ο,	9067	9	s S S S S S S S S S S S S S S S S S S S
31800K	67800K	.0001	2	636	R 96	2	0	- 0	~	-	2	-	0	0	-	8572	ġ.	ž
37800K	61800K	0008	3	636	R 640	<b>.</b>	0	_	<u> </u>	0	-	-	-	-	o	8188	9.	23
31800K	61800K	0014	2	638	8 05 05	-	0			. 0			0	0	• •	7049	ģ	i Si
61800K	31800K	.0014	1 0	636	. 96 . 8		0			- C			) a	) a	) <del>-</del> -	5961	ġ	No.
61800K	31800K	- 0003	2	638 638	4 <b>6</b> 7 7	N	. a	00		- c	N -		0 0	o c	- 0	4339		N N N
61800K	37800%	.0000	2	636	R 63C	<b>.</b>	0	_	_	0	-	**	-	-	0	4339	<u>.</u>	ğ
31800K	67800K	0003	0	636	R104C	-	0	~	~	0	-	-	0	2	0	3744	9.	23
	37800K	0010	2	636	R 38	-	0	ō		0			0	0	. 0	2705	6	23,0
	37800K	1000	4 0	636	000 X		<b>.</b> .			- C		- +	NC	NO	<b>-</b>	1433	'nġ	ñ č
61800K	31800K	10001	2 10	638 636	R 89		0 0	00	~ ~	00		<b>.</b>	0 0	0 (	0	0701	ġ,	ñ
37800K	67800K	0001	n	636	R 62D	-	0	_	_	0	-		-	-	0	0284	90.	33
67800K	37800K	0002	10	636	R 92	2	0				• 0		0	0		9891	ģ	i č
	31800K	5000°	40	638 638				N 6				- +	NC		<b>.</b>	8087	<u>p</u>	
67800K	37800K	0020	20	636 e 2 e	R 92		00	0.	~	- 0			0 0	0 0	- (	8081	ġ	ĕĕ

• الر

37800K 37800K 37800K 37800K 57800K 37800K 37800K 37800K 37800K 37800K 67800K 37800K 37800K 67800K 67800K 67800K 67800K 67800K 67800K 37800K 37800K 37800K 67800K 61800K 31800K 31800K 67800K 37800K 67800K 37800% 37800% 67800% 67800% 37800% 37800% 37800% 67800% 67800% 67800% 67800% o 0 o ----3-------0000 0 0 0000 00 **2311.** 2376. 3664 **2317.** 1126 **2317.** 1968 **2317.** 1968 **2317.** 1968 **2317.** 1968 **2319.** 1969 **2319.** 1969 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2319.** 1483 **2321.** 2319. 1483 **2321.** 2319. 1483 **2321.** 2319. 1483 **2321.** 2319. 1483 **2321.** 2319. 1483 **2321.** 2321. 2467 **2322.** 1594 **2322.** 12427 **2322.** 12427 **2322.** 12427 **2322.** 12427 **2323.** 1591. 2327 **2323.** 1591. 2328 **2323.** 1592. 2328 **2323.** 1592. 2328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2323.** 1592. 22328 **2** 

78

•

37800K	37800K	31800K			
61800K	61800K	61800K 61800K	67800K	61800K	67800K
0001	0000.	0001	.0002	.0016	0013
2	2 0	<i>a</i> c	10	<b>a</b> a	2
636	636 636	636 636	636	636 636	636
R106	R108 R110	R112	R116	R118 R120	R122
-	÷- +-				. 🛶
0	00	00	0 0	00	0
0	00	0	00	00	00
0	00		00	00	0
-			* *	• ••• •	
-		. –			
0	00		00	00	50
a	00	0	0 0	00	00
1441	2.3904	2.60/5 2.7992	2.9661	3.2270	3.3186 3.3835
	233	233	233	230	233

.

Table IX.  $H_2O$  Line Data Between 1600 cm⁻¹ and 2000 cm⁻¹ The listings are:

the transition frequency in cm⁻¹
the absorption strength in cm⁻¹/molecule cm⁻² at 800K
the integrated absorptance in cm⁻¹ for the H₂O column
density 2.17 x 10²⁰ molecules/cm² at 800K
the lower state energy in cm⁻¹
the transition assignment in (J', K_a', K_c'),
 (J", K_a", K_c"), (v₁', v₂', v₃'), and (v₁", v₂", v₃")
an internal code
the isotope code
the molecule identification code

the integrated absorptance in  $cm^{-1}$  for the H₂O column density 2.17 x 10²⁰ molecules/cm² at 800K, and

the wavenumber difference between the measured and the one listed in the AFGL (1978) listing.

mait fully legible septoduction

21.1

.1

	स्तर्भण को	न न न मूल जन्म महल महला में भी लोग न न न न न न न न न न न न न न न न न न न	सन्तर्भ ल	नमनन	ल्य स्वर्थन्त्र स्वर्थन्त्र स्व	<i>स</i> स	****
180	0000 6000 111111	$\begin{array}{c} \mathbf{v}_{\mathbf{r}} = \mathbf{v}_{\mathbf{r}} + \mathbf{v}_{\mathbf{r}} = \mathbf{v}_{\mathbf{r}} + \mathbf{v}_{\mathbf{r}} = \mathbf{v}_{r$	41444 4 88888 8 80338 8	4144 8884 0009	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1111 8 8 8 9 0 0	130
ø	ບບອຸບ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000	0000	ດວວງບູດອອດ	000	90
0	HQH 0	4394000 +400044 4004 44040 000	04040	4000	***********	D44	00
a	<i>00</i> 00	යස්ථාවසුල පුවසින්තර පිසිටුව පිසිට පිසිට පිසිට පිසිට පිසි	00000	00.20	0000000000	000	99
S	0000		00000	0000	0000000000	000	00
	N-10-1	NHHNHHHNNHHNNNHHNNHHNHHNHHHH	4040 A	~~	ここまここれるます	<b>4</b> 00	*141
0	0040	99999999999999999999999999999999999999	00900	<b>000</b> 0	000000000	909	90
m	ດທາດ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	M.M.M.M	ann ann	N-1000800-1-1	0100	10
-	a ster in	๛฿๗๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛		-16) +1C3	- t OCOLO ANN	チュー	MCMO
~	3600 H	ちのこちのキュアショーのりつちょうようはられのアルルさんの ま	<b>MMAN 10</b>	ርሰው ቀተም	00000000000	ማው የ	<b>.†</b> «
ы С	HINK M.	๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	4MHC:0	mnnn	10 MHMM 012 MM	19-1-19	<b>36</b>
~		ールークライン・マン・シークション・シークション・シークション・シーク	N-100 - 3	200	Минн <b>а</b> нони	PT (1)(1)	<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>
•	HFFO	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	<u> የ</u> ማዲዮን	16 @ fv M	P P M M M M M M M M M M M M M M M M M M	<b>10-001</b> -1	no
đ	<b>ፍሮታ</b> ው	A DUNADULION THE FARDE TUNDER OF	നംബംപം≪	SH M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-ture	20
P-	100.4	OF BORN OF TRINK DO BOND HE HILL HOLD	OFF04	OC MM	COOPNORDH	MUCIO	310
Ň	T Post Po	20 44 M M M M M M M M M M M M M M M M M M	31		40.00.001.30.0	4100	0.004
Ň	3005	HE BUT IN DURINNE HOUR AND ON AN AN AN AN AN AN	MMANN	OJNO	000300030	OUCH	ma
4	0000	MANNOHOLOND CONDUCAN DURCH MONOLON CAN	CHINE C	WA MM	OM DUIMMME	163	<b>e</b> 10
-	40mm	E MULTON PRIDAL MULTON MEENING	សលាមាម	CU 1 11	NH KOLOHTHOU	3++1	<b>Mila</b>
			-1 N	2	NN HN H	<b>NIH</b>	<del>* 1</del>

а дама мамамамамамамамамамамамама, дама мам маменалам ми

82

المتحديق والمراجع		المراجع		_
	000000	©	0.0	ن ف
्यम् सम्प्रेस् लस्त्रस्य सम्प्रेस् लग्गनस्य जन्मस्य न्यान्यस्य न्यान्यस्य न्यान्यस्य न्यान्यस्य न्यान्यस्य न्य	नन न न न न न न	णनन नणनन जननन जनन जनन जनन		
· · · · · · · · · · · · · · · · · · ·				
40 00 00 00 00 00 00 00 00 00 00 00 00 0	000000	000000000000000000000000000000000000000	00	5
			•	•
	****		***	-
000000000000000000000000000000000000000	ບບບບບບບ	000000000000000000000000000000000000000	90	LU LU
00 4000 0 44 40 0 40 0 40 0 0 0 0 0 0 0	440404		60	o
	000000		00	~
			00	<u> </u>
<b>CD 6000 0000 000 0000 0000 0000 00000</b>	00000	000000000000000000000000000000000000000	00	0
	A-01-101-101			
	1010410410			-
00000000000000000000000000000000000000	000000	909000000000000000000000000000000000000	88	0
				_
			<b>_</b>	
	1	T RUN LORON DI LUN HUN HUN HUN DUN DUN UN HU	0.44	U.
Residence and the second and the sec	NHJNHN	04000337430040044004004	ഗഗ	e
	A			
	IC D DI DI DI DI	TA MORTH LOO AD TAMENY DIN DUN HIN TU M	66	- Un
PO3400 MOHNOOD 4 NOMPPOND 4 MM CONSTRUCT	1946 - 19 Miles		n N	2
ION HOLEN BUDGOLD HOLEN BOOK OF THE OF COMPANY	MOMMON		1010	
				• •
UN REALEMENT ARE	>>>000 th	NON THE KINDER TONNITET		- 4
*		Ŧ		
JE TIMAN JILLEN CINEN JANONN JANNA DOMO NG AN	40 HOLD		σe	æ
NU DONO DODEN NO DN DO HID INC IN THO HOMO	00400-	INCOUNTION AN AMENC JOMOMM	inin	
MAPMPANOOJANCHOMJOMPOMJONOMAJ		300 MOR MINNOMNIMMINODEM	00	Ē
				•
HE GWWENE WWW. OHE 3 OL WWW. O DUHU HO JOK	<b>NHOHUN</b>	POP 000 HONDO HORDONION	ທູທ	<b>ب</b>
		HINDROIS CIHMMINNSHNSNNNM	23	<ul> <li>N</li> </ul>
JJUA NMAAN NAUNON UK UMMAUNCONMA		CARDO DIENHOCODHEMODO DO H	an .	*
	10 <b>41</b> (1) (1)			

and and and and and and

.....

011001

----

فيعرابها فسيقت المرابعة

れろごらううくない、ないないない、いっていいい、いっていいい、いっていいい、ないない、いいでのない、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょう」、「しょ」、」、」、」、

 $\mathbf{w}_{1}$  and  $\mathbf{w}_{1}$  and  $\mathbf{w}_{2}$  and  $\mathbf{w}$ 

Copy available to DTIC does not Cormit fully legible reproduction

Copy available to DTIC does not permit fully legible reproduction

tertenniques de la construction de la construction

84

244-1 - Calar

 11101111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111
 111

eletet el el el

والمراجع وال

and developed and

and and and

÷ , •

1911 161 161	161 161 161		44444 66444 66444	<b>161</b> 161	444444 8000000 4444444	4444 4444 4444 4444 4444 444 8080 8080 6080 6080 6000 600 4444 4444 4444 4444 4444 444
000 3 33 1 1 1 1 1	444 366 300		44444 98888 999090	180 180	44444 4000000 000000	4444444444444444 \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$
COG		0130000000000000000	<b>0000</b> 0	00	400000	
	- 00			<del>~</del> 1~1	000 mmm	
000	<b>0</b> 00	000000000000000000000000000000000000000	00000	00	000000	0,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,0000
600	000		00000	00	990 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	099999999999999999999999999999999999999
~~~~	N	~~~~~	~~~	$\sim$	ままれのころ	~~~~~
0 00	999		99 9 99	90	000+00	909-900-900-900-900-909-909-909-909-909
eom O	10 M M	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	5 6 MP 80	t P	ณฑณ เวตน พ	๛๛๚๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
+80 M		###DN##MM##MM:3N#4NA/IM	-4M edra (V	63 6 0	+1000m+3	๗ <i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>
4	~~~	H 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4t H Q H H	er	ምንመር ቁና አ ባ ምን ቁጋ ቀባ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
***	രഗാഗ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	NIN JK N	► m	MACH - HO W	ወ <i>ጓሎም</i> ቤ ዓመው ውናውሥ ለሥሥ ውውድ እ ለሣሥ
トレク	maa	CNHFOS SNSUH HOMES	44048		いちょうちい	N.D3040P 04000304000 30 330.
∂∉∿ با	4000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N H N P O	۳ ۲	400 30 0	88799999999999999999999999999999999999
t 10	9 H N	NN JHENOMON & OCNE &	O'AFFO	ግድ	JMP JMC	«NF 30400,«00N40F 66664660
044	moro	ON 4 4NO LOHO 4CH HUN	DEANO	S.	2-12-0	NHUNDOJODKNNODOCOLDK-3 404
- CON	NCO	UNERD- HOUR WOHDE H	NNANO	3.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HOMONEOR 33 JUR ORMERCON 30
	CONT		ADVIN W	~~~	00-00	
CINP	000	OTOHNA MACANDOUHU	JHN.CM	MU	MA JUNO	OHIN HOW MON LONG LONG ON AND
4UN	MEH	HI HMMUNUNUMH I'MU	++0C 0 LO.1	M.1	ACLEDIN	JACH JUR MULTUNE TUN HINGHE CHO
NINT	N	N NN NHHHN N MH	NHH H	\sim	うちろする	NH PI H NIN N NN MNAIH AIH

Copy available to DTIC does not permit fully legible reproduction

न्द्र स्ते प्र्यं क्रांस्य स्त्राप्त्र स्त्राप्त स्त्राप्त 000007004444000404 90**990000000000000**00 NIDE TOD AT OD OF ON MON JON CHANNAHONANNA ON いち ききか えんはくかい ひんかん しょうく しょうく ひんし かんしん ひんのんのんしん しんちょう NP-10 40/03 M004 M013 3 01 44

.....

Copy available to DTIC does not permit fully legible reproduction

, ··

5 . .

a.

....

.....

Jine o Awwarke on a creater of the same sound Area and the sound of the same of yor of the yor of the same of yor of the same of yor of the same of yor of the yor o

. .

• 611111 •••• . 1010 •••

nte energia de la constante de 599 190 1111 3 939000 0 00000 000 ordet. 000 000 $\mathbf{u}_{\mathbf{n}}$ HAN AND MADE COMMINAND MADE MANDER MANDER AND ANNAL CONTRACTER TO AL ROA WRRRRRRRR MO HRRANG & MAN FRANCH PARAMEN DO HAN ROAD BAN BAN AND AND AND AND

0

 $\begin{array}{c} \label{eq:constraint} A = 0 \\ A$

Copy des and where does not permit fully legible reproduction

2.1

いです れくとのの ひらえて くれじ ちそう ちょうこう うっか うちょう ちょうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅうしょう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅう しゅ	
abadettotkingalederingserottten an ANA da Aldo abadetten Kildeoren gefenderinger ab on Aldo Boartoner Kildeoren gefendere ab on an Boarto abatetten abatetten an an Boartoner an	₩₩QF Q300000000000000000000000000000000000
मलन सन मन सन सन सन मन सन सन सन सन सन सन सन सन सम सम सम स	नर्णनेन जनस्य मनस्य व्यक्त व्यक्त जनस्य जनस्य
ילת היה את	אבועה שהשש משפט מעמע מערע מערע מערע מערע הההה ההפה הההה מערע מערע מערע מערע מערע מערע שב מערע מערע מערע מערע מערע מערע מערע מער
444 4444444444444444444444444444444444	19999999999999999999999999999999999999
676 10 20 10 00 00 00 00 00 00 00 00 00 00 00 00	99999999999999999999999999999999999999
000 440 00 00 40 40 00 00 000 440 40 00 0	040000000000000000044004400044
629 65 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69 69	000000000000000000000000000000000000000
	
๚๛๚๗๗๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
	
こう しょうしょう しょう しょう しょう しょう しょう しょう しょう しょう	unt 114 at de francieux algu trimunda. Fri fri
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	ຍາຍອອກ ເບຍາຍາຍ ເບລາ ສາຍຄາງ ລາຍ ແມ່ນອີ້ ສາຍຄ
	« ничер на
	くちしょうしゅう ちょう しょう しょう しょう しょう しょう しょう しょう しょう しょう し
48-40480.00040.0000400.000044000044400004444	ຎຎ๙๗ ๗๗๗๗ ๗๗๗๚ ഗы๗๘ ๚๚ы๗ 3ы๗৮ 3 Շ ๙
ਲ਼ਲ਼ਲ਼ਸ਼ਲ਼ਖ਼₽ਸ਼ਲ਼ਲ਼ਲ਼ਖ਼ਲ਼ਜ਼ਲ਼ਲ਼ਜ਼ਲ਼੶ਲ਼ੑੑੑੑੑਲ਼ਲ਼੶ਖ਼ਖ਼ੑਫ਼੶ਲ਼੶ਜ਼ਫ਼ਜ਼ਲ਼੶ਫ਼ ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ ਜ਼ ਜ਼ਜ਼ਜ਼ਜ਼ ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ ਜ਼ ਜ਼ ਜ਼ਜ਼ਜ਼ਜ਼੶ਜ਼ਜ਼ ਜ਼	
2010 34 34 60 4 2010 10 6 60 0 10 10 10 10 10 10 10 10 10 10 10 10	のっぽん ればの ナナ の ちち じんち ちちょう たっしろれ あ ゆうしょう ひう し ひ う じんちょう ひ う ひ う ひ う ひ う ひ う ひ う ひ う ひ う ひ う
600 00 00 00 00 00 00 00 00 00 00 00 00	R0,00000310 00 NO 001000030 HOWP 003
4000 100 100 100 100 100 100 100 100 100	HALL BUNN-R HURD GENG GENG JAMA DUN BUNDD BUN-R HURD GEN DE ENGL HER JA HER BUNDD BUN-R HURD GEN GEN GEN JA HER DUN BUNDD BUN-R HURD GEN GEN GEN GEN JAMA DUN BUNDD BUNA DUN HURD GEN GEN GEN GEN JAMA DUN BUNDD BUNA DUN HURD GEN GEN GEN GEN JAMA DUN DUN
ייים מינה מינה מינה מינה מינה מינה מינה מינה	, , , , , , , , , , , , , , , , , , ,
367 340667356636666666666666666666666666666666	$+ \bigcirc + \bigcirc \bigcirc$

 $\begin{array}{c} \mathbf{U}_{\mathbf{U}} = \mathbf{U}_{\mathbf{$

Copy available to DTIC does not permit fully legible reproduction 2

21.

, **k** ...

Copy available to DTIC does not permit fully legible reproduction

 $\begin{array}{c} \label{eq:constraint} & \mbox{there} & \mbo$

 $\begin{array}{c} t^{2} (A 40 A 0 t^{2} t^{2}$

AE 4 404 4 THOUAND E LUM UANE HUNDE DUIND EDUIND E BNUNE LENUN ELENHUL ELENHUL

 \mathbf{r} and the rest of the rest of the rest of the rest that the rest of the

-

ואמקקמרועטעקקקעומע מהועמק מקקעומע מקקקקקס אלימק עקלע מעמק אואמעריי מהסק מקס

 $\begin{array}{c} \mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}$

••• 61 ... 111 6

Ť

91

 $\begin{array}{c} \mathbf{A} = \mathbf$ $\label{eq:stability} \begin{array}{c} \mathbf{A} = \mathbf{$

 $\mathcal{A}_{\mathcal{A}}$ (Construction) (Cons

 σ_{1} ଐ୵୷ଌଌ୷ୢଌ୲୵ୢଽୄ୶୲୰ୄ୶୲ୡୄ୶୲ୠଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ୄ୷୶ୡଡ଼ୄ୲୳ୠ୶୲୵ୄ୶୲୵୷୶୷୷ଡ଼ଡ଼୲୷ଡ଼ଡ଼୶୷ଡ଼ଡ଼ଡ଼୶୷ୠଡ଼ୢ

HNN

GGG JGGG OHBONGONAMMAGONDONAMB JMAN AJ JA GMMM ANJAMMGOO AMAM AGMO UNAAA MAAAAAAA JAA JAA มากราชสายสายเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดกา สาย 100 การเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการเป็นสุดการ

ee ee

i de se se su de la contenta de la contenta da la contenta d

-*****

Copy available to DTIC does not permit fully legible reproduction

- •

 $\begin{array}{c} \mathbf{M} = \mathbf$

 ϕ MMA $\begin{array}{c} 0 & 0 \\$

ころうようこうちょうかんしゅうちょう ちょうちょう ちょうしょう しゅうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しゅう

KON NAN SALATAN DAMANANAN MANANANAN SALA

000000000000

MUNHOMMJOCUHEOJECHOMMJJHOMU

-----اجاجا جاجا جاجا جاجا جاجاجا جاجا جاجا

1117 888 000

.... 10 110 ... 109

1011500 0000000 000000

وأستانكم فماله الاعتادة بأقربان فستسابذ وتعادمت والاستان والمسمون والمشترك والمرابع والمري ومتلا والألفان فالمروح ومروح ومريا

41144444 9096600 41144444

30,0000 FFE. K E E HHHHHH

ເວລະບຸດຕາວ ----ب و ب ب ب ب

000000

.**.*****

PAGEMINTS

- C

Copy evaluable to DTIC does not permit fully legible reproduction

,

Table X.

Transition	Position
(010-000) band	
$21_{1,21} - 20_{0,20}$	1040 0147
$21_{0,21} - 20_{1,20}$	1949.9147 Cm
$22_{1,22} - 21_{0,21}$	1963.4065
$22_{0,22} - 21_{1,21}$	
$23_{1,23} - 22_{0,22}$	1976.7223
23 _{0,23} - 22 _{1,22}	197007223
$24_{1,24} - 23_{0,23}$	1969 9164
$24_{0,24} - 23_{1,23}$	1909 • 9104
(020-010) band	
$12_{1,12} - 11_{0,11}$	1780.9916
$12_{0,12} - 11_{1,11}$	1780.9407
$13_{1,1}^2 - 12_{2,1}$	1849.5795
$13_{1,13} - 12_{0,12}$	1797.0532
$13_{0,13} - 12_{1,12}$	1797.0276
$14_{1,13} - 13_{2112}$	1868.0298
$14_{1,14} - 13_{0,13}$	1812.8915
$14_{0,14} - 13_{1,13}$	blended 1812.8915
$15_{3,13} - 14_{2,12}$	1931.9649
$15_{2,13} - 14_{3,12}$	1928.6794
15 _{2,14} - 14 _{1,13}	1888.0332
151 14 - 142 12	1887.7405

Newly identified lines of the (010-000) and (020-010) bands.

94

Table X. (Continued)

Transition	Position
$15_{1,15} - 14_{0,14}$	1828.5181 cm ⁻¹
$15_{0,15} - 14_{1,14}$	1828.5127
$16_{3,14} - 15_{2,13}$	1951.2771
$16_{2,15} - 15_{1,14}$	1906.3849
$16_{1,15} - 15_{2,14}$	1906.2534
$16_{1,16} - 15_{0,15}$	1843.9477
16 _{0,16} - 15 _{1,15}	
$17_{1,17} - 16_{0,16}$	1859.2010
$17_{0,17} - 16_{1,16}$	
18 _{1,18} - 17 _{0,17}	18 4.3132
$18_{0,18} - 17_{1,17}$	
¹⁹ 1,19 - ¹⁸ 0,18	1889.3063
¹⁹ 0,19 - 18 _{1,1} 8	
²⁰ 1,20 - 19 _{0,19}	1904.2398
²⁰ 0,20 - 19 _{1,1} 9	

an it rai

References

1.	W.S. Dalton and H. Sakai, App. Opt. <u>19</u> , 2413 (1980).
2.	H. Sakai, AFCRL-TR-0571 (1974), Air Force Geophysics Laboratory, Hanscom Air Force Base, MA 01731.
3.	H. Sakai, "High-Resolving Power Fourier Spectroscopy," Spectrometric Techniques, Vol. I, G. Vanasse, Ed., Academic Press, New York (1977).
4.	A.S. Pine and G. Guelachvili, J. Mol. Spectrosc. <u>79</u> , 84 (1980).
5.	G. Guelachvili, J. Mol. Spectrosc. <u>75</u> , 251 (1979).
6.	G. Herzberg, <u>Spectra of Diatomic Molecules</u> , Second Ed., p. 191, Van Nostrand Reinhold, New York (1950).
7.	R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman and J.S. Garing, AFCRL Report No. 434, 73-0096, p. 26 (1973).
8.	L.S. Rothman, Appl. Opt. <u>17</u> , 3517 (1978).
9.	G. Guelachvili, J. Mol. Spectrosc. <u>79</u> , 72 (1980).
10.	L.S. Rothman and L.D. Young, JQSRT 25, 505 (1981).
11.	L.S. Rothman, Appl. Opt. <u>20</u> , 791 (1981).
12.	M.P. Esplin and H. Sakai, Paper WP11, Topical Meeting on Spectroscopy in Support of Atmospheric Measurements, Sarasota, FL (1980); H. Sakai, Final Report on Grant AFOSR- 78-3702 (1980), Astronomy Research Facility, University of Massachusetts, Amherst, MA 01003.
13.	W.S. Benedict and L. Kaplan, JQSRT <u>4</u> , 453 (1964); W.S. Benedict and L. Kaplan, J. Chem. Phys. <u>30</u> , 388 (1959); R.W. Davies and B.A. Oli, JQSRT <u>20</u> , 95 (1978).
14.	A. Chedin, J. Mol. Spectrosc. <u>76</u> , 430 (1979).
15.	J.M. Brown, J.T. Hougen, K.P. Huber, J.W.C. Johns, I. Kopp, H. Lefebvre-Brion, A.J. Merer, D.A. Ramsay, J. Rostas, and R.N. Zare, J. Mol. Spectrosc. <u>55</u> , 500 (1975).
16.	R. Paso, J. Kauppinen, and R. Anttila, J. Mol. Spectrosc. <u>79</u> , 236 (1980); R. Paso, U. Oulu, Finland, private communication.

Ç.1

and the second

A CONTRACTOR OF

References (cont)

- 17. C. Freed, L.C. Bradley, and R.G. O'Donnell, I.E.E.E. J.Q. Electronics <u>16</u>, 1195 (1980).
- 18. J. Dupre-Maquaire and P. Pinson, J. Mol. Spectrosc. <u>62</u>, 181 (1976).
- 19. K.J. Siemsen, Opt. Lett. 6, 114 (1981); K.J. Siemsen and B.G. Whitford, Opt. Comm. 22, 11 (1977); K.J. Siemsen, Opt. Comm. 34, 447 (1980); F.R. Petersen, J.S. Wells, A.G. Maki, and K.J. Siemsen, Appl. Opt. 20, 3635 (1981).
- 20. J.P. Maillard, J. Cuisenier, Ph. Arcas, E. Arie, and C. Amiot, Can. J. Phys. 58, 1560 (1980).
- 21. D. Bailly, R. Farrenq, G. Guelachvili, and C. Rosetti, J. Mol. Spectrosc. <u>90</u>, 74 (1981); D. Bailly, Orsay, France, private communication.

