
3 DI A2 MSAUETS NSOFTC CABIGREERHLBO ECFB /

CONVERSION OF ALGORITHMS TO CUSTOM INTEGRATED CIRCUIT DEVICES.(U)
MAR B2 J ALLEN F4962G RO-C-0073

UNCLASSIFIED AFOSR-TR-20309 NL

IWMoR- 82-0309

FINAL REPORT

aConversion of Algorithms to

Custom Integrated Circuit Devices

AFOSR Contract F49620-80-C-00 73

covering the period

15 April 1980 - 14 March 1981

submitted by

Jonathan Allen DTIC
SELECTED

March 8, 1982 APR 2 6 1982

~D

Massachusetts Institute of TechnologyResearch Laboratory of Electronics
C 3 Cambridge, MA 02139

Appoved for publc lerelease%;
8strbut ion unlimited.

82 04 26 045

SECURITY CLASSIFIC'1"ION O
" THIS PAGE When flntn . ,:rrd)_

REPORT DOCUME'ITATION PAGE READ INSTRUCTIONS
____ _ BEFORE COMIF.TINC. FORM

1. REPORT NUMBER " 2. GOVT ACCESSION tO. 3. RECIPIENT'S CATALOG NUMCR

'ItSR.T- 82-0309
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

CONVERSION OF ALGORITHMS TO CUSTOM INTEGRATED Final Report
CIRCUIT DEVICES 4/15/80-3/14/81

6. PERFORMING OG. REPORT NUMBER

V. AUTHOR() 8. CONTRACT OR GRANT NUMBER(s)

Jonathan Allen M 9620-80-C-0073

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Research Laboratory of Electronics
Massachusetts Institute of Technology 6 fo-a 1
Cambridge, Massachusetts 02139

II. CON TR OLJ-! 0,NG6 FICE NAME AND ADDRESS 12. REPO8JTPATE

Bol.g AFB, Washington, DC 20332 13. NUI PAGES

14. MONITORING AGENCY NAME & ADDRES(if different from Controlling Office) IS. S 'URITY CLASS. (of this report)

15a. OECLASSIFICATION/OOWNGRAOING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution limited.

17. DISTRIBUTION STATEMENT (of the aebtract entered in Block 20, ii dillerent fro" Report)

IS. SUPPLEMENTARY NOTES

I. KEY WORDS (Continue an reverse side it neceseary and identify by block number)

SABSTRACT (Continue on reveree side It necesear and Identify by block number)

This project studies the way in which high level functional descriptions can be
converted through a succession of representations by means of local
transformations to a final mask specification. A major focus of the work is the
determination of the form of these representations, as well as the nature of the

transformations between them. Major emphasis has been devoted to the
specification of high level algorithms, in a way such that performance
variations can be studied, either through the use of constraint representations,

FORM 1I.SOcantinuadDD i AN" 1473 'EDI TION or I Nov SGo is1SOLITSj...

SECU T SIFICATION 0 on Dole Entemd)

or by use of conflict avoidance schemes that permit the systematic exploration
of various degrees of parallelism inherent in an algorithm. Following
architectural determination through exploration of space/time tradeoffs, various
well-formedness tests are executed, including topology extraction, circuit
extraction, logic verification, design rule checking, timing analysis, and
circuit simulation. In addition, testability is characterized and test vectors
are generated. Following the well-formedness checks, modules can then be
juxtaposed by means of placement and routing algorithms, which are under
d nt..I Emphasis is also placed on techniques for generation of modules,
either through text layout languages, interactive graphics, or the construction
f programs as types which are able to generate parameterizable layout.

Using these techniques it is possible to generate modules, ascertain their
well-formedness, connect them into clusters at the next higher level of the
overall system hierarchy, and continue iteratively until the entire design is
complete.g-The various tasks in this contract are devoted to specifying the
nature of all the techniques in this process. Several large chips have been
designed using these techniques, so as to ascertain the correctness and
usefulness of the design techniques we have developed.

St

Accession For

NTIS GRA&
DTIC TAB[0
Umannounced 0
Justifioatio

BY
Distribution/

Availability Codes
Avail and/or

Dist Special
Icopi'
IN*cf

i.Sde

TABLE OF CONTENTS

I. Overview ..

II. Statement of Work ... 7

III. Status of Research 14

IV. Publications 24

V. Professional Personnel 25

Vi. Theses Awarded o 25

AIR FORE 01rFT CE O'c ce -
This t@

1t
h ni,

?" ' "

approved fcr 0' ' -

Distribution i:,

ATiM_ 3. KMIW~1.Toobnioal lofOargotLou Division

I. OVERVIEW

In order to place the research done under this contract in perspective,

it is useful to describe the view of integrated circuit design that motivates

this work. We see the design of custom integrated circuits as a set of

transformations between a corresponding interleaved set of representations,

starting at a high level functional description and passing through

architectural, logical, circuit, device and layout representations, so that the

final mask specification can be interpreted by the fabrication process (in our

case single-level metal silicon gate NTOS) to produce chips that will satisfy

the originally intended functionality. Important issues are the nature of the

computational representation for each of these levels and the algorithmic

transformations between levels that preserve the representation of functional

intent that is manifest at each level. For example, conversion of an

architectural (block diagram) representation to a more primitive set of logical

gates, together with their interconnection network, must preserve all of the

original architectural goals while implementing them in ways that are

C appropriate to gate level logic. We call the means to ascertain these

transformational constraints a set of well-formedness checks and a major thrust

of our effort is the design of programs to look for these correctness

constraints.

In addition to the transformational view between representations that

we have described above, however, we need to be able to deal with the size

complexity of a design through techniques of regularity, modularity and

hierarchy. Regularity is an important notion because it permits the use of

canonical design forms, such as PLAs and register arrays, that cut down the

..•

-2-

amount of unique cells that have to be designed by means of iterative

techniques. Modularity refers to the characteristic of an overall chip design,

whereby it can be regarded as a set of individually well-formed modules which

are then interconnected by means of the specified hierarchy in a way that

preserves this well-formedness, while possibly modifying the boundaries of the

modules in order to accept the constraints of the hierarchical interconnect.

It is the responsibility of the architectural specification to break down the

overall system specification into this set of hierarchically related modular

elements.

The view that emerges from this perspective is summarized in figure 1,

which we have found helpful as a framework to relate the various aspects of our

work. We conceive that the high level functional description of the system is

given in terms of some hardware design language, possibly augmented by a

microcode specification to establish the semantic use of the hardware

facilities. At this level, it is appropriate to examine space/time tradeoffs,

whereby greater speed can usually be attained at the expense of additional

hardware (and hence, parallelism). Once the architectural design is fixed, it

specifies a set of modules (memories, arithmetic logic units, register files,

program logic arrays, etc.) that have to be designed. It is important to

realize that the time at which these elements are designed can vary widely, as

suggested by the figure.

Of course, some cells may have been completely designed previously, as

is typical of the standard cell approach. In most design styles, there will

always be some cells, such as pads, that are given (i.e. previously designed

and checked for correctness). These elements can clearly be used directly, it

-a -- -

-3.-

being only necessary to retrieve the design specification from some appropriate

library. In other cases, the desired cell is of a type (e.g., program logic

array, shift register, memory), for which a program is available to generate

the design. We call such cells parameterized to indicate that they cannot be

retrieved directly from a library, but they can be produced by a program

*(previously constructed) that can generate the cell specification from a set of

parameters that are generally related to the functional specification (e.g.

logic) of the cell. PLA generator programs are examples of such very useful

techniques and they clearly provide for the fast and correct design of many

different cells, albeit of a restricted set of types. These types can

generally be regarded as canonical forms that make substantial use of repeated

scells, which are sometimes slightly modified as dictated by the parameters.
The design of cells by writing programs to design them is a powerful idea, and

one that we are increasingly exploiting. Finally, if we cannot find an

appropriate cell design in the library, or a program design to produce the

desired type of cell, then the cell must be laid out from scratch. For this

purpose, layout programs (either textually or graphically based) are required

and we have experimented with a number of these interactive programs, each

providing its own design style emphasis.

Given a set of cells designed by the techniques described above, they

must be checked for well-formedness, as indicated in the center of figure 1.

The checks are keyed to the various levels of representation that we have

described above. Thus, microcode simulation is used at the functional level,

and design rule checks are used at the artwork level. From the artwork, it is

possible to transformationally derive both a topological representation, useful

-4-

for both connectivity checks and switch-level logic simulation, and an

equivalent circuit model, useful for timing verification. The circuit model,

of course, requires accurate transistor device models as part of its

representation, but derives the characterization of the interconnect network

directly from the artwork specification. Given the circuit model, it is

possible to perform circuit simulation and different degrees of precision can

be provided by utilization of varying approximations for both the device models

and the circuit parameters. An important aspect of well-formedness is

suitability for testing. This is a very unsettled area at present, in part due

to poor understanding of MOS failure modes, in part due to reluctance to

provide on chip capability for testing, and in part due to the increasing

complexity of IC designs. So far, promising techniques have centered around

the ability to set and read the entire state of a chip, the use of modulo

arithmetic and signature analysis, and the ability to test a module from its

terminals without knowledge of its internal gate implementation, which, of

course, is not strictly implied by the functional constraints of the module.

Once we know that all the modules are well-formed, it remains to place

them with respect to each other and establish the requisite interconnection

paths. That is, we must orient a set of orthogonally related rectangles

(modular elements) and route their interconnect so as to occupy minimum area in

a given technology. We emphasize that this is a combinatoric problem of great

complexity, and heavily dependent on the technology employed. Some design

styles, such as the standard cell technique, are sufficiently constrained toC
permit complete routing algorithmically, but the general case of orthogonally

related rectangles of arbitrary size is exceedingly difficult and is still

under study by us and others.
C

MODULAR, HIERARCHICAL DESIGN

ARCHITECTURE

FIXED PARAMETERIZED NEW

CELLS CELLS CELLS

WELL-FORMEDNESS

A. FUNCTIONAL

B. ARTWORK: DRC

--------- >C. TOPOLOGY: NODETESTS, LOGIC

D. CIRCUIT SIMULATION

E. TEST GENERATION

CELLS YiE OK

* PLACEMENT, ROUTING and

I BOUNDARY MODIFICATION

---- ------------------------ <NEW LR) CELL

FIGURE 1

-6-

Interconnections will naturally be grouped in accordance with the

hierarchy of the architecture, so as the modules are clustered into larger

units, it is necessary to test the well-formedness of each such cluster.

Rather than repeat previous tests, it is usually sufficient to make these

checks only at the periphery of the constituent modules in a cluster. This

gives rise to the notion of hierarchical design rule checking, which we have

developed conceptually, and are implementing in both software and hardware.

Following figure 1, we can see that as the modules of a system are

grouped and connected, we can follow up the hierarchical organization of the

architecture until the entire design is assembled and tested for

well-formedness. At this point, the design is complete and we are done.

In the succeeding sections of this report, we state the projects

undertaken during this contract and report on our progress in the context of

this overview. In this way, we hope to clarify the intention of our various

activities, and show how they lead to a uniform design system methodology.

I.i

- |

-7-

II. STATEMENT OF WORK

Following the proposal for this contract, we describe here the projects

that comprise the work undertaken. First, a major effort has been continued to

develop the representation of constraints for two different purposes. One of

our fundamental aims is to separate an algorithm into its competence (which

specifies what the algorithm does) and its performance (which specifies how the

algorithm is computed). Unfortunately, the current literature confounds these

two attributes of an algorithm in such a way that it is difficult to manipulate

the performance, while keeping the competence invariant. VLSI presents the

custom circuit designer with many opportunities for exploring performance

variations, but this designer needs mechanisms to make sure that while the

performance options are explored, the competence of a design remains invariant.

We see the characterization of these two attributes of algorithms to be a

fundamental problem in computer science, as well as being of direct utility to

the design of custom integrated circuits. Our idea has been to attempt to

represent the competence of broad classes of systems by constraint networks,

which should capture the competence of these systems. Performance strategies

could then be erected on top of these constraint networks in various ways so

that while the competence is never perturbed, a variety of performances may be

obtained. We have been successful in representing electrical circuits by means

of constraint networks, and these networks can be generalized to any system

that can be characterized by a set of simultaneous linear algebraic equations.

Although it is by no means clear how such representational techniques can be

extended to other classes of systems we continue to look for this possibility,

realizing that this problem will not yield easily. Perhaps a more obvious use

-8-

of constraints is found in the maintenance of design rules over a layout, and

somewhat more abstractly in the maintenance of proper timing disciplines at the

0 system architecture level. One of our graphic editing systems for layout

provides built-in constraint maintenance so that design rule violations can be

interactively provided to the designer, as the layout is developed. Another

example of the use of constraints is in the specification of transistor sizes

where specified W/L ratios must be maintained. For example, if either W or L

is specified, then the other is constrained because of the specified ratio. It

is possible to maintain this constraint automatically in the layout system and

we have been exploring the use of constraints for this purpose. In order to

use constraints in a flexible way, it is important to be able to represent them

formally in such a way that they can naturally be cascaded to form broader

constraint systems. This is a major programming project and has occupied much

of our time during the contract period.

Instead of separating algorithms into the two attributes of competence

and performance, an alternative procedure is to start with a particular

specification of a design, as specified in a high level functional

representation, and then provide formal means for changing this specification

in a way that cannot disturb the underlying competence, even though this

competence is never identified explicitly. The key to this procedure is to

recognize within such formal specifications the presence of sequential conflict

which prohibits the use of parallelism. We have shown that it is formally

possible to scan the top level specification of a design and determine

precisely where parallelism can be employed without mutilating the underlying

semantics of the design. In this way, latent parallelism can be discovered and

l
-9-

utilized to increase architectural performance in any task. These techniques

are particularly useful for the optimization of high performance signal

processing tasks.

An important area of our work centers around the specification of

detailed artwork. For this purpose, we have devised a number of different

layout languages which have a variety of different features. In one approach,

the advantages of high level specification using APL has been exploited to

provide a concise and easy to use layout language. This language is also

useful for serving as the base upon which other programs can be built that

utilize the layout language for some specialized purpose, such as the

generation of program logic arrays. In another approach, we have chosen to

represent layout information in terms of a prototype specified by a procedure

written in the programming language LISP. In this way, a particular layout is

generated when the program is run, utilizing a particular set of parameters

which individualize the layout. The underlying data structure used for the

LISP based programming language has been designed in such a way that it can

serve as a common bridge between both text based layout and graphic based

layout. We feel strongly that it is important that any layout information

entered into a system graphically be obtainable in textual form, and

vice-versa. We are also investigating the use of interactive graphics for

small cell design based on a menu driven approach. Many of the problems in

this area pertain to human factors, and we are steadily modifying this system

to reflect our experience.

As indicated in the overview above, one of our goals is to provide a

broad variety of well-formedness tests so as to insure that the design supplied

-10-

to the mask maker is correct at all representational levels. One of the most

important checks is for design rule correctness, and we have explored three

different methods for implementing design rules. The most straightforward

technique is to utilize rectangle descriptions of the layout, and to base all

tests on this formulation. More recently, however, we have developed designS
rule checking tests based on a course grid layout, which has many advantages,

once the overall layout is rasterized. Both of these techniques, however, can

be very time consuming, and so a major part of our work has been the

investigation of means to speed up these algorithms. We have devised ways to

modularize the design rule checks, hence reducing computation time from a

squared to a linear dependence on the number of rectangles involved in the

design. Perhaps our most interesting project for reducing design rule checking

time is the design and construction of special purpose hardware for design rule

checking. This project is well underway and promises to reduce the time for

this activity by at least two orders of magnitude.

It is exceedingly important to verify that an integrated circuit

performs the desired logic given by the high level specification. For this

purpose, we have undertaken an extensive project for the construction of a

switch level simulator that is appropriate to the MOS technology. We have

shown that conventional logic simulators that were developed for TTL use are

very awkward, if not incorrect, when used for MOS circuits, and so we have

taken a basic approach to the design of NOS logic simulators. This work has

£ led to a highly useful simulator, but also to an entirely new theory of MOS

digital systems, which serves as the basis for this simulator. In this way, we

have contributed not only a practically useful simulator, but also the

L

-11-

conceptual underpinnings that are essential for a proper logical perspective on

MOS digital systems. The input to the logic simulator is a topological

representation of the circuit which can be easily extracted from the coarse

grid representation of the layout. We have found that this representation

itself can be used for many well-formedness checks, including connectivity

tests, power supply integrity, and the maintenance of appropriate dc levels.

Once each module of the overall integrated circuit has been checked for

well-formedness, it is necessary to both place and connect these modules
4-

according to the architectural hierarchy provided by the initial design. If we

assume that each module is bounded by a rectangular box, and that these boxes

are orthogonally related on the overall layout, then an important and difficult

problem is to place these rectangles and form the interconnect between them

within a minimal area. While this problem has been recognized by many

researchers for several years, it has not yet been solved, and a major part of

our effort is devoted towards the combinatorial techniques needed to achieve

both optimal placement and routing. An initial program designed to provide the

routing capability needed, once an appropriate layout of the rectangles is

given, was implemented during the summer of 1981, and experience from this

usage has provided the motivation for continuing improvements. We emphasize

that this is an exceedingly fundamental and difficult problem and that we are

approaching the overall goal by means of a sequence of programs of lesser

capability, thus expecting to gain from our experience on more restricted

problems in a way that will lead to the best design for the overall placement

and routing tasks.

C

.. --------

-12-

It is exceedingly useful to be able to generate basic canonical

structures, such as register files, program logic arrays, and arithmetic logic

units, by means of parameterizable procedures. We have developed a very

successful design program for program logic arrays which accepts the logic

specification as a sum of products as input, and produces a complete detailed

layout as output. An exceedingly useful feature of this program is its

capability to provide many useful answers to the designer prior to generating

the complete layout. For example, the size of the bounding box, the delay

through the PLA and its power consumption can all be provided by the program

very quickly without the necessity to generate the entire layout. This program

is used very heavily, and serves as a prototype for the design of other similar

procedures for other canonical forms.

The various research projects mentioned above within this section have

all led to implemented programs on one of two facilities which we are

constructing. The most general facility is based on a DEC system 20 with

Hewlett Packard graphic terminals and plotters provided for the designers.

This facility provides an excellent software base in as many as six different

languages for the various research projects, and we have written an overall

executive program that knits together all of the research programs within this

contract. A more specialized facility is the MIT Artificial Intelligence

Laboratory LISP machine which provides excellent interactive graphic capability

on a single user basis. The program Daedalus has been implemented on this

facility, as well as the placement and interconnect program.

Lastly, we should mention that we believe that work on custom

i.itegrated circuit design tools should not take place in a vacuum and that it

-13-

is important that the designers of these tools, also be designers of integrated

circuits. Accordingly, a substantial part of our research emphasis has been

the design of large chips. These have included a special purpose

microprocessor for executing a dialect of the programming language LISP, an

encription chip, and a signal processing chip which is intended for speech

processing. Many smaller designs have also been executed, but all of these

efforts have been important in determining the direction of our overall

research.

t From the summary above of the work undertaken for this contract, we .

hope it is clear that we have addressed much of the basic structure of our

conceptualized design process. The evolution of these tools is expected to

lead naturally, as a product of our research, to an integrated comprehensive

design system for the conversion of algorithms to layout specifications.

0

-14-

III. STATUS 0? RESEARCH

The point of view taken by our research under this contract is well

expressed in a review article, written by Profs. Allen and Penfield, titled

"VLSI Design Automation Activities at MIT." This article provides both a

presentation of the basic conceptual point of view underlying our research as

well as a description of the various research projects going on at MIT in the

design automation area, almost all of which are supported under this contract.

As described in the previous section, the formal representation of

constraints so as to enable their use in programming has been a major theme of

our work. Professor Sussman and his student Guy Steele, who is now on the

C faculty at Carnegie Mellon University, have led this effort, building upon use

of these techniques in the analysis of electric circuits. Their prior work has

shown that constraints can be used to propagate via causal rules results

through an electrical network, both maintaining the properties dictated by

these constraints and enabling the computation of system variables that depend,

however indirectly, on these constraints. Sussman and Steele have generalized

their techniques of constraint representation to the solution of simultaneous

linear equations. Each of these equations can be thought of as representing a

constraint (i.e. equality as expressed in the equation) and hence the system of

c. constraints expresses just what has to hold and no more in the system of

equations. They have shown that it is possible to apply to these constraints a

number of different strategies to solve the equations, including changing the

C set of unknown variables. We may think of this work as showing, for a limited

class of systems, a way to exhibit all possible solutions made possible by the

constraints. In this way the set of all control strategies for solving the

-15-

equations is obtainable from the underlying constraint network, which remains

invariant under all of these control strategies. Sussman and Steele have

*described these techniques in a fundamental article published in the AI

Journal, referenced below. It is important to emphasize that while the results

obtained up to this point are suggestive, it is not clear how general they may

be, and there is still a great deal of research to be done before an adequate

representation of algorithmic competence can be obtained in terms of

constraints. Nevertheless, we believe this work to be fundamental and

important, certainly to VLSI design and also to the theoretical basis of

computer science in general. Guy Steele's doctoral thesis is devoted entirely

to the formal means of constraint specification, together with many examples of

C constraint use. In this way, the programmatic basis for the representation of

constraints is firmly established in a major research document.

Building upon the electrical circuit analogy, it is clear that

Cconstraints can be used to provide "dependency directed backtracking" in

computer systems, so that it is possible in a computational system to examine I

the reason why any particular value or state was reached. A particular example

of this technique is the tracing of the causes for design rule errors. Such an

approach has been taken by Dr. Howard Shrobe in the system called Daedalus

which provides for an interactive graphic editor together with the basic

constraint propagation techniques developed earlier by Sussman and Steele.

Daedalus is implemented on an MIT Al Lab LISP machine, using both black and

white and color graphics, and provides a high quality personal VLSI design

station, using the programming language LISP. The Daedalus system also uses

the layout language DPL, which represents layout in terms of parameterized

-16-

procedures, that can then be run to instantiate the modular elements of a

design. Another important feature of the Daedalus system is that layout

C information can be entered, either textually (via DPL) or graphically, and

output is available in either of these two formats. Based on this experience,

we feel strongly that this duality of representation must be maintained in any

VLSI design system. The Daedalus system is being used to design a LISP based

microprocessor chip, called SCHEME. This is an aggressive effort to compile

from a high level specification a special purpose microprocessor which exploits

the many attractive features of the LISP programming language in an efficient

way.

We have mentioned before that while we do not yet have the means to

represent algorithmic competence for all systems in terms of constraints, we do

know how to manipulate a particular performance variant of an algorithm into

other versions that provide different performance, but the same competence, by

means of a formal analysis of conflict within a high level specification of the

desired system. These formal techniques were provided in a doctoral thesis by

Glen Miranker, and make it clear that given any initial architectural

specification of a design, it is always possible to manipulate that design to

reveal all possible performance variations, and hence all degrees of latent

parallelism that may be present in the initial specification. Thus, we have

the theoretical basis for architectural manipulation under the condition that

the semantics (i.e. results) of the computations provided by the system do not

change as a result of theme manipulations. Whil, we continue to be guided by

these observations in the design of several of our systems, and in the

specification of new VLSI design tools, this ability to explore architectural

-17-

variants of a design has not yet been incorporated into a custom VLSI design

system, although there has been much work on the plans for such a system.

We have mentioned that one of our main interests is in the improvement

of the efficiency in performing well-formednees checks at the artwork level.

Modern custom integrated circuit designs may involve as many as a million

transistors on one chip, and hence the number of rectangles needed to specify

this level of complexity may be of the order of 17or more rectangles. It is

not uncommon for many integrated circuit design centers to experience great

cost and delay in verifying designs at the artwork level due to this large

number of artifacts. While there have been several approaches to breaking up

designs, either in terms of the natural hierarchy or in terms of some forced

grid hierarchy, so as to reduce the complexity of design rule calculations, the

major focus of our effort has been on the design and construction of special

purpose hardware for design rule checking. The doctoral thesis work of Larry

Seiler has been directed towards this goal, and he has provided a complete

design for such a system, that would be provided as a modular unit to a basic

interactive design station. Three custom chips are needed for this design, and

are being produced as part of the work of this contract. Experience with this

design has shown that all artwork-based techniques can be sped up by at least

two orders of magnitude by use of special purpose hardware. We are very

encouraged by the status of this work and believe that it is progressing well.

A sajor contribution to VLSI design workers has been our work on

automatic generation of program logic arrays from a high level logical

specification. There are many interesting aspects to this work. Firstly, the

programi for generating PLA artwork is built on top of an existing layout

-18-

language, AIDS, which in turn is embedded in APL. This technique shows that it

is possible to build very sophisticated systems by layering one language on top

of another. Each language can make calls on the resources provided by the

language below it in the hierarchy, and in this way a great deal of programming

effort can be saved. Another advantage of the PLA generator is that the

designer is able to obtain a great deal of useful information from the program

without actually instantiating a layout. Thus, the size of the bounding box,

the number and placement of location points, the power dissipation, the delay

through the PLA, and several other useful parameters are quickly obtainable by

the designer once the input logic specification has been furnished. We are not

currently focused on problems of logic minimization, but a separate study

performed by Lorne Cooper has shown an improvement over the logic minimization

techniques generally described in the literature. As far as folding techniques

are concerned, while we recognize that the appropriate grouping of inputs and

outputs can often lead to space savings, we are not trying to mechanize these

changes in terms of a program, but instead rely on the designer to recognize

these opportunities. The PLA generator program, written by Professor Glasser,

based on the layout language of Professor Penfield, has been widely used and

described, and its features have been employed in several other designs using

different programming languages.

As the dimensions of VLSI circuits are scaled down, the properties of

the interconnect wires between active elements become more and more important

in terms of determining the overall speed of the system. Indeed, it is

sometimes remarked that the delay through interconnect may dominate the delay

through active devices, so that the characterization of interconnect delay in

i~~ ~ -o ,- -.... .

-19-

terms of the resistance and capacitance of these lines becomes exceedingly

important to the viability of large scale circuits. While it is possible to

obtain these values of resistance and capacitance by circuit extraction and

then to use these values to perform circuit simulation in order to estimate the

delay, we have also been focused on the less computationally taxing process of

providing bounds on such delay by theoretical means applied to the

characterization of the circuit interconnect itself. Professor Penfield has

provided very tight and accurate bounds on such delay through fan out trees of

interconnect from any given active point of the circuit. These bounds are

sufficiently tight, yet easily obtained computationally, that they can provide

the designer with very useful information for the overall timing structure of

his design.

Once the topology of an integrated circuit layout is extracted by means

of a simple algorithm, it is possible to perform an accurate switch level logic

simulation which is an essential part of the overall verification of a custom

design. The logic simulator which we have designed, called Y4OSSIM, is a

so-called unit delay simulator, in that it does not provide direct timing

information, but does accurately characterize the sequence of logical values at

all nodes of the simulated network. There have been substantial theoretical

difficulties having to do with the propagation of the unknown, or X state, but

these have been worked out satisfactorily in the version of the MOSSIN program

developed by Randall Bryant as part of his doctoral thesis. While this program

is very useful and has been used at many companies and universities in addition
C

to MIT, an additional fundamental contribution has been the development in

Bryant's thesis of a basic theory for MOS digital design. This theory has been

-20-

necessitated by the lack of correspondence between NOS digital systems and the

prevalent TTL systems, which had been simulated by many previous systems. For

* example, in TTL systems memory must be provided explicitly, vhereas in MOS

systems memory can be provided by charge stored at any node of the system, and

of course, this property is frequently exploited in practical NOS designs.

Another feature of NOS systems is the use of pass transistors (or transmission

gates), which provide current flow in both directions. Therefore, the usual

Boolean gate model used by TTL simulators is inappropriate to MOS circuits.

Building upon these and other observations, Bryant has achieved a systematic

characterization of MOS digital systems, and we believe that his thesis is a

fundamental and lasting contribution to the characterization of 140S digital

systems from both the design and simulation point of view.

Professor Rivest is leading a substantial group of students in the

development of routing techniques. The major emphasis has been on the

C provision of algorithms for the placement and routing of orthogonally related

rectangular shaped modules of arbitrary aspect ratio and size. This project is

a good example of the ability of those trained in theoretical computer science

to apply combinatoric techniques to the solution of these problems. At

present, a program called PI has been implemented for providing the

interconnect on an experimental basis, provided the layout has already been

specified. We expect within the next contract period to add algorithms for the

layout together with the interconnect so as to provide a unified program for

placement and routing. This is an exceedingly difficult problem, and we expect

to go through several iterations in the design of this program, but we are

encouraged by the initial results. Another approach to the routing problem is

-21-

to provide specialized routers, such as those needed for river routing of buses

between two modules. Although we have not yet developed these programs in

detail, we believe that it may be possible to simplify the design of routing

programs by providing a number of specialized routers, rather than trying to

bring together all kinds of routing capability in one program. In fact, it may

be possible to supply this routing capability in the form of an interactive

program which would serve the designer as a consultant and even provide the

designer with some characterization of the degree of difficulty of a requested

routing task. This work is very much in its infancy, but we regard it as an

interesting alternative to the more combinatorically based theoretical

approach.

The MIT AI Lab LISP machine system has been used so far as the base for

both the Daedalus program and the PI placement and routing program. These

programs are, of course, coded in the language LISP and take advantage of the

large degree of sophisticated system software that is available on this

machine, and they also exploit the large address space provided. Many of our

programs, however, are implemented in languages that run on our DEC System 20

computer, which is a large time-shared facility with a large throughput

capacity. We have provided this system with a number of Hewlett Packard 2647

interactive graphic terminals, which are used for both our research and

teaching in the integrated circuit design area. Four color graphic plotters

are also provided, as are graphic printers and a digitizer. Stipple plots of

layouts may also be generated on an electrostatic printer. Recently, Gary

Kopec has provided an overall coordination program, called LSIAA, which enables

the user to call on the resources of a wide variety of the different programs

as ili

-22-

that we have mentioned without needing to know all of the detailed interface

conventions for each of these programs individually. In this way, it is

possible for the designer to progress through layout to the use of the many

well-formedness checks without the need to move from the overall control of

this executive program. In this way, a large amount of the input/output

idiosyncrasies of programs has been hidden from the eyes of the user, and has

provided a comfortable interface for our design community.

Lastly, we mention that there is a large variety of custom integrated

circuits being designed at MIT in the context of this contract. All of the

design tools that we are developing are being actively used for the design of

these chips, and hence benefit from our direct experience. In one activity, a

large chip for the implementation of a dialect of LISP, called SCHEME, has been

generated. A first version of this chip provided a successful example of the

use of microcode compilation techniques to automatically generate a large part

of the data path and control structure needed. We are currently generating a

revised design of the SCHEME chip, which will provide for increased

architectural performance by means of parallelism in the data path unit. This

is a good example of the possibility of improving the performance of a system

considerably by means of special purpose techniques, deriving from knowledge of

the particular registers needed and how they are to be utilized in the LISP

based system. Another large chip has been the RSA encription chip which

features a very large arithmetic-logic unit, 512 bits long. This chip is a

good example of a case where a custom design is needed, since one is hardly

likely to find an arithmetic logic unit, 512 bits long, in any commercial chip.

We expect during the next contract period to get experience with the

c

-23-

performance of this chip, which will undoubtedly lead to revision of some

aspects of its design to iteratively gain further performance improvements.

While the two chips already mentioned provide substantial architectural

performance, in another effort we are attempting to provide substantial circuit

performance together with architectural performance due to the need to satisfy

real time requirements. This third chip is intended to perform speech

synthesis tasks, although it can also be used for a wider variety of signal

processing tasks. We feel very strongly that it is important to be able to

provide both architectural and circuit performance in designs, and an

increasing emphasis under this contract is to develop both the means for

characterizing circuit performance, as well as the capability to generate it in

the context of the overall design system. It is to be expected that an

increasing amount of effort under this contract, both in terms of design tools

and in terms of chips designed will be focused on high performance signal

processing tasks, as this provides both a good test bed for our design ideas as

well as a wide variety of very useful circuits for military applications.

C

-£ .,. _ - Z .,", , ..m r 'lb ' ' - - --. .

-24-

IV. PUBLICATIONS

In the list below, we cite several publications that describe work done

during the contract period. Readers wishing detail on any activities under

this contract should consult directly with Prof. Allen.

1. Allen, J. and Penfield, P., Jr., "VLSI Design Automation Activities at
M.I.T.," IEEE Transactions and Systems, Vol. CAS-28, no. 7,
July 1981, p. 645.

2. Allen, J., "Conversion of Algorithms to Custom Integrated Circuits: An
M.I.T. Perspective," Proceedings, IEEE 1980 International
Conference on Circuits and Computers, Port Chester, NY, October
1-3, 1980.

3. Glasser, L.A. and Penfield, P., Jr., "An Interactive PLA Generator as
an Archetype for a New VLSI Design Methodology," Proceedings,
IEEE 1980 International Conference on Circuits and

CComputers, Port Chester, NY, October 1-3, 1980.

4. Seiler, L., "Special Purpose Hardware for Design Rule Checking," also
Proceedings, Second Caltech Conference on Very Large Scale
Integration, California Institute of Technology, January
19-21, 1981.

5. Bryant, R.E., "MOSSIM: A Switch-Level Simulator for MOS LSI,"
Proceedings, 18th Design Automation Conference, Nashville, Tennessee,
June 29-July 1, 1981.

6. Bryant, R.E., "A Switch-Level Simulation Model for Integrated Logic
Circuits," Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, M.I.T., June 1981.

7. Sussman, G.J. and Steele, G., Jr., "Design of LISP-based Processors,"
Communications of the ACM, 23 (11), 628-45, November 1980.

8. Sussman, G.J. and Steele, G., Jr., "Constraints: A Language for
Expressing Almost-Hierarchical Descriptions," Artificial
Intelligence 14 (1), 1-39, August 1980.

5,

-25-

V. PROFESSIONAL PERSONNEL

Profs. J. Allen

L. Glasser

P. Penfield, Jr.

R. Rivest

G. Sussman

Dr. H. Shrobe

Mr. R. Greenblatt

VI. THESES AWARDED

Steele, G., "Definition and Implementation of a Computer Program Language
Based on Constraints," M.I.T. Ph.D., July 1980.

Bryant, R.E., "A Switch-Level Simulation Model for Integrated Circuits,"
M.I.T. Ph.D., June 1981.

Cooper, L.J., "Logical Optimization of Programmable Logic Arrays," M.I.T.
B.S., July 1981.

C

C

12

