
FURTHER MODELING OF TURBULENT WALL PRESSURE ON A CYLINDER
0 AND ITS SCALING WITH DIAMETER

JO David M4. Chase

4 ~Tech Memo 21

~ Contract N00014-80-C-0730

C. I. Job 012

19 December 1981

Submitted to:

Dr. Peter H. Rogers
Code 421
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217

Submitted by: DTI[3
ftELECTE

Chase Inc.
C314 Pinckney Street ~>APR 2 61M8

LiLI Boston, 14A 02114

-FE

26 01



Errata for "Further modeling of turbulent vall-pressure on

a cylinder and its scaling with diameter" by D. M. Chase,

Chase Inc. TM 21, December 1981

p. 18, line (-3): For "Ref. 20" read "Ref. 3".

p. 19, Eq. 32a: Replace expression for C' by

C1 = n I(k 2-.w2/c2)kaj - O.116-iz.

This correction results from a corresponding correction

in Eq. 62 and certain earlier equations in Ref. 3.

Accession For

NTIS GRA&I

DTIC TAB
Unannounced

D~ic Justification'

a Distribut ion/

Availability Codes
Avail and/or

Dist Special



• II~

TM 21 Chase Inc.

/ AB STRACT

The possible scaling of the axisymmetric component of spectral
density of wall pressure in turbulent flow along a slender cylinder
is reexamined with use of a formal low-wavenumber expansion in
terms of fluctuating Reynolds stresses as sources. A rudimentary
model of the sources is formed that conforms to the principle
of local similarity near the wall and to probable implications of
fluctuating and mean velocity profiles measured in cylindrical
boundary layers. To the extent that wall pressure is exclusively
due to such a turbulence field, to zero order in wavenumber, at

least, it is indicated to scale with cylinder radius (a) and to
agree in functional dependence with the current model for this

low-wavenumber component. If the turbulence field (despite lack
of experimental evidence) involves in addition a weak component
that scales with boundary-layer thickness, then at sufficiently
low frequencies and wavenumbers the corresponding contribution
to wall pressure (when a>>l) may become dominant, and the ex-

trapolation of the current odel to very small(- /U-a the
associated prediction of diameter dependence mayithen fail.
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1. INTRODUCT ION

The question of accurate and validated modeling of the axisym-
metric component of turbulent wall pressure on a towed flexible

cylinder remains one of intense interest. Apart from elements of
uncertainty in the parameter domain of conon concern, it is
becoming important to extrapolate into diameter/speed/frequency
domains where the experimental basis for modeling is more indirect
and less secure. Such modeling is needed to predict prospective
performance in future innovative as well as more conventional
improved systems and thus to guide development.

In this regard the question particularly arises as to whether

a current tentative model for the wavenumber-frequency spectral
density of the subject axisymmetric harmonic of wall pressure,
P (k,w), incorporating as the sole pertinent length scale theo

cylinder radius, a, is likely to provide a correctly indicative

result when extrapolated to very small values of wa/U,. This
memo attempts further discussion of this topic by reference

etpecially to available measurements and further plausible model-
ing of turbulent flow at large values of 6/a, the ratio of
boundary-layer thickness to cylinder radius. This represents
a line of development based in part also on previous formal
and semiempirical modeling pursued in the ONR program (see

especially Refs. 1-3).

A more complete application of current modeling to measured
noise in high-speed towing tests of quiet modules than that under-
taken in Ref. 2 is also needed. In particular, the preliminary
analysis of data from the LSM used a simplified and somewhat in-
adequate representation of the wavenumber filtering action of the
specially mounted hydrophone employed. Such further application of
modeling may be undertaken in towed-array exploratory development
outside the scope of the more basic ONR program and would be com-
plementary to the present work. An updated appraisal of the residual

noise level attainable by towed arrays could then also be performed."
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A related question not addressed further here is whether,

for given speed and streamwise position along a cylinder, there
is a diameter below which the flow is no longer fully turbulent.

Suggested criteria for such a diameter (or related Reynolds

number) have been reviewed in Ref. 30 (p. 124), but later mea-

surements discussed in Ref. 19 (pp. 22-23) indicate that a

transition diameter, if it exists at all, may be exceedingly

small.* Below such a transition threshold, the present semi-

empirical modeling and resulting scaling of wall pressure for

turbulent flow would not apply.

2. ELEMENTS OF PREVIOUS MODELING AND THE POSSIBLE ROLE OF

DISTINCT LENGTH SCALES

Initially, attention is restricted to the form of P (k,w)0
at negligible wavenumber, i.e. P (0,w). According to the current

0
model

P (0,W) - Cp2va-'(w/v,+h/ba)-5 , (1)
0

where C and h/b are numerical constants and v* is identified as

the wall friction velocity and taken proportional to U,, say

*For a cylinder in water at a flow speed of 15 kt, for example,
it is indicated that the transition diameter is < 0.01 cm.

2
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v, = 0.04U,. Though this form was suggested by rudimentary

modeling considerations, it is supported mainly by inference

from certain noise measurements within liquid-filled towed-array

modules. Indications have been adduced that the appropriate

length scale in P (k,w) is cylinder radius, as implied by Eq. 1,0

and the preliminary analysis of measurements in the LSM, 2 3 a
module of larger radius, indicated rough consistency with the

notion of a as the length scale and with the model form of
P (k,w) that underlies Eq. 1 (see Sec. 3). Nevertheless,0

these indications are not yet uniquely compelling, and the form

(1) presently rests mainly on a single module, XN-55.
24

Model (1) or any model of P (O,w) based on a single length0

(and velocity) scale has the form.

P (0,W) = p 2v.a 2F(wa/v*) . (2)
0

From an uninformed point of view, it may naturally be asked

whether in a more exact model there may not be included additively

in P (O,w) a similar second term, p2v36 2G(w6/v,), say, that scales

rather on boundary-layer thickness. Suppose, as a conjectural example,

that these two functions F and G each had the dependence implied
in Eq. 1, so that one might write

P (OM) - p~v3[C a - (w/v , +h /b a)-s+C 6- (w/v , +h /b 6)- ]. (3)
0 1 1 2 2 2

If the respective intensity and scale coefficients satisfy the con-

ditions

C >>(a/8)C but C (b /h )s < < (6/a) 2C (b 2/h )5
1 2 1 1 12 2 2

(as would be so if, for example, 6>>a and C C , b -b2 , h -h ), then

the 6-scaled contribution would become dominant at sufficiently

3
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small wa/v* even though the a-scaled contribution was dominant

at greater values, including even a plateau interval, as shown

in the sketch below. In such event, extrapolation to lower

I -bM - scaled canhibution

diameter-frequency products on the basis of a model fit to mea-
surements in the range of dominance by the a-scaled contribution

could grossly underestimate the noise below the steep rise due

to the 6-scaled contribution. In particular, the dependence of
P (0,w) on a as a 2 for b wa/hI vl predicted from the a-scaled0 1
contribution alone would be replaced by independence of a at

values of a small enough that the 6-scaled part became dominant.

The preceding hypothetical account, though illustrative,
is oversimplified and, if valid at all, requires modification.
In particular, even a contribution to axisymmetric wall pressure

associated with a fluctuating velocity that scales with 6 may

involve also cylinder radius, on account of its geometric role,

contrary to the form of the second term in (3). Hence, in

addition to delineating and modeling possible scaling properties
of the turbulent boundary layer in the light of present under-

standing of wall turbulence and measurements in cylindrical
geometry, it is required to invoke an explicit formal relation
of axisymmetric wall pressure to the turbulent velocity field.

This is pursued in Sec. 4.

4
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If a model spectrum with additive terms characterized
respectively by turbulence scales a and 6 (with additional
geometric dependence of both terms on a) is a viable possibility,
there is no suggestion of it, at least, in the profile of the
rms streamwise component u of fluctuating velocity in the
boundary layer on a thin cylinder measured by Leehey and
Stellinger.1 (See Fig. 1, repeating Ref. 6, Fig. 2.3-6, based
on Ref. 5, Fig. 8.) This profile, apart from the rise in the
viscous sublayer and a peak somewhat outside it, conforms well, as

6 ashown and analyzed by Kronauer, to dependence as r, i.e.
umv.(a/r) , all the way to r-26a, while in the subject case

the edge of the boundary layer falls at r=44a. Clearly (though

even prior to seeing the measured profile it would perhaps be
naive to imagine the turbulent dynamics to permit it) there is
not a contribution to the profile (ar - ) that extends only to
a distance that is a modest multiple of a and is associated with

turbulent motion with scale -a, followed at larger wall distances
by a distinct contribution that extends to r-6 and is associated
with a turbulent motion of scale -6.

On the other hand, despite the cited monolithic profile, a
contention might be made, along the lines of the discussion by

Bradshaw, following Townsend,e referring in their case
to planar turbulent boundary layers with or without mean pressure

gradient, that the turbulence is nevertheless composed of two such
components of disparate scales. The large-scale wake-like com-

ponent, described as "inactive," would be thought not to transfer
much momentum nor to interact appreciably with the "universal"
component, which would scale rather with distance y from the wall
when yta. Part of the modeling introduced below is intended to
reflect this possible contention.

5ii
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3. SELECTIVE REVIEW OF MODELING PRESSURE ON A CYLINDICAL WALL

Elements of previous modeling will now be further outlined.

In Ref. 9 (but based on the earlier Ref. 10) a type of model

was advanced for the azimuthal harmonic spectral densities Pm(kw)
(m integer) of turbulent wall pressure on a cylinder by writing

(m+h)/a
Pm(k,w) dk- 1 (k,k3,) (4)

(m-h)/a

and choosing a model spectral density P(k,k ,w), which depends on
a second wavenumber analogous to the transverse component in
the instance of a planar boundary. For the planar case a theoreti-
cally attractive model for the wavevector-frequency spectral

density of wall pressure in the low-wavenumber domain that con-
formed as well as any to the laboratory measurement of low-

wavenumber planar wall pressure by Jameson 2 was the scale-

independent, wavenumber-quadratic one of the form

P(k ,k ,) - C p 2 vSW- 3 (v.K/W) 2  K 2  k2 +k 2  (5)
1 3 2 1 3

(C2 constant). Eqs. 4 and 5 yielded for application in some

domain restricted at least by the condition kiw/U,

P (k,w) - C p2v.w-Sa-'(k2+ 1 a-2). (6)0 2 r

A trial model to encompass the full wavenumber/frequency

domain of interest, including the convective one, was constructed,

in effect, as follows. The spectral density of wall pressure for
a frame convecting downstream at some speed uc is obtained from
(6) by replacing w by w-uck. Suppose that in that frame, for
suitably chosen uc , the decorrelation of axisymmetric wall

6
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pressure due to streamwise separation r is comparable with that

due instead to time delay T if and T are related by a dis-

persion velocity scale -v,, i.e. if i~v.T, and suppose that, for

separation and time delay both nonvanishing, the decorrelating

effects add in quadrature (see also Refs. 11, 21). If the de-

correlation is also scale-independent, we have then to replace

w/v. in Eq. 6 by

k+ (W-uck) 2/(hv.) ,+k2h (7)

whereh is of the order of unity. For sufficiently low frequencies

1w-uckj and wavenumbers k, however, a cutoff of the rise in the

pressure spectrum must be effected by the finite scale, say A,

of the largest contributing turbulent motions. Originally, it

was assumed for convenience that this cutoff wavenumber, A-,

could be added in quadrature with the frequency-augmented wavenumber

(7), so that the generalized model based on Eq. 6 became

P (k,w) = C p2v.'a-1(k2 +1 a - 2)[(w - uck) 2/(hv*) 2+k 2+A- 2 ] - / 2

0 2

(8)

When this model was applied to infer turbulence-induced noise

within a liquid-filled hose and results compared to various test

measurements most suitable among those then available, the in-

dicated magnitude of the level coefficient C in (8) proved-2

possibly fortuitously but certainly encouragingly-to have approxi-

mately the value inferred for C in the underlying planar model (5)
2

on the basis of Jameson's measurements. When measurements became

available in quieter small-diameter liquid-filled modules, not-

ably XN-55, especially at higher speeds, however, it was found

that the inferred form of P (O,w) would be appreciably better
0

matched if the model (8) was altered simply by assuming the wave-

number scale 4- to enter the wavenumber denominator linearly

instead of in quadrature, yielding

I
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2V3 -1 2 1 a- 2  2-5

PO (k,w) = C2 Pv*a (k+ r ){[ (-u k)2/(hv.)2+k2 +6-1}

(9)

This form, though mathematically less convenient than (8), seems

more likely also on the basis of possible explicit source

modeling.

The relation (4), if P(k,k ,w) is identified with the true
3

spectral density P(k ,k ,w) for a planar boundary, clearly ensures1 3
consistency of the Pm(kw) with the result required in the

planar limit defined by 6/a-0, ka-, wa/v. , in which the

discrete circumferential wavenumber components m/a become

closely spaced compared with all pertinent wavenumbers. The

minimum necessary limiting condition of correspondence between

the Pm(kw) and P(kl,k ,w) does not seem obvious, however, and
m 3

may be much weaker than that implied by Eq. 4. For example, as

noted more explicitly in Ref. 2 (footnote, pp. 15-16) there may

be no unique correspondence'referring to a single, finite value

of m. The original postulated relation (4) thus may not be

valid even as a limiting approximation, at least when m = 0.

Correspondingly, the modeling analysis of Ref. 1 (even without the

specialized modeling assumptions therein) indicated no basis for

the specific form a-2 [1/12+(ka)2 ] of the parenthetical factor

that entered Eqs. 6, 8, and 9. It suggested that in trial modeling

the quantity 1/12+(ka) 2 be replaced by a somewhat more general

polynomial in ka.

For reference, the trial model form we presently employ

is given by

P0 (k,w) = C 2 va - (a 2 -s k2){ (-Uck) 2/(hv.)2+k21 +A-1 (9a)
2 2

with A = ba.*

*Apart from any more general modification that may prove necessary,
presence of a term linear in k in addition to a - 2 + s k2 is not
excluded.

._8
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Regarding the length scale A entering P (k,w), apart from0

the as yet imperfect analysis of the implications of parallel

comparisons with noise measured in modules of different diameters,

alluded to above, other indications and suggestions were drawn.

Measurements of frequency spectra of wall pressure by small (not

axisymmetric) flush hydrophones at various positions along a

towed cylinder were made by Markowitz. 1 4 As noted in Ref. 14 (see

also Ref. 9), these conformed more nearly to scaling with radius

a than with layer thickness 6,* and measurements by other workers

were consistent with such a result when 6/a>>l. It was proposed

in Ref. 16 (see also Ref. 9) that a model wall pressure with a

single scale A, e.g. as in Eq. 9, would suffice, but this scale

would depend on both a and 6, becoming -6 in the limit where

6/a-0 and increasing more strongly with a than with 6 where

6/a>>l.

4. FORMULATION OF MODEL SOURCE SPECTRA FOR APPLICATION TO

WALL PRESSURE

Recent work in the present program provides the formal relation

of the subject pressure spectrum P (k,w) to source spectra solelya
of fluctuating velocity products (Reynolds stresses).3 This seems

likely to be a safer approach (i.e., less likely to mislead) than

that based on the Poisson equation for pressure (in incompressible

flow). The latter involves also, apart from spectra of two-

component velocity products, in connection with a mean-flow interaction

term, a spectrum Qf (single-component) fluctuating velocity normal

*The measured frequency-spectral dependences were not closely con-
sistent, however, with the present model or with general theoretical
expectations for turbulent wall pressure.

9 1
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to the wall. This approach was formulated in cylindrical geometry
in Ref. 1 and pursued for a specific source model.

The present approach via pure velocity-product sources permits

straightforward approximation of the pertinent Green's function
required to exhibit wall pressure explicitly in terms of assumed
sources only in the nonconvective tail (U®JkIkw). An explicit
result has been given only where, in addition, bD<l. Resulting

modeling may guide expectations, however, also outside this
domain. At the present time, it should be mentioned, formal
results of the respective approaches in this domain exhibit apparent
differences that remain to be elucidated.

The relations from Ref. 3 to be used are available in a form
sufficiently general to include slightly compressible flow. This
generalization is worth having though beside the point of the

present considerations.

At k-0, i.e. to lowest order in k, axisymmetric wall-pressure

amplitude isirelated to amplitudes T r(r,k,w), T6 (r,k,w) (withrr 16
k-0) of the self products of radial and of azimuthal fluctuating

velocity at radius r (wall distance r-a), according to Ref. 3,
Eq. 62 (or Ref. 1), by

P (0,W) = pT drr)( 0-T o " (10)0 jf dr~ rr ee
a

If we imagine the higher-order terms in k also to be included, it
is sensible to retain the argument k of the Tii rather than setting
k=0. In fact, since we can only try to find support or motivate
modification of current model forms--not pursue rigorous expansions-
and we wish to do this with regard to their full domain of hypotheti-
cal applicability, we feel free to model the spectra of Tii as
though encompassing also the convective domain.

The spectral density at k = 0 is given by Eq. 10 as

P (0,W) - af drr- f drr'r'E (r,r' 0,w) (11)
a a

10
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where E0 (r,r',k,w) denotes the (cross) spectral density associated

with T -T (Index zero here refers to m.) In accord with the-r; ^60"
preceding discussion, wewishto consider the right member of (11)

also for general k and denote the result by

P ,w) = drr- (r,r',k,w). (12)
0 p 0a a

First, however, we consider the formation of a plausible
tyeof model for spectra e, (r,r',k,w) of the streamwise fluctuat-

ing velocity component. The corresponding profile of the single-
point rms value,

m s

(r) = E Em (r), where E (r) = dw dkE (r,r,k,w)11 ll11 m=-= (13)

has been measured, 5 as noted in Sec. 2. This is intended to

guide analogous modeling of velocity-product spectra, notably

E (r,r',k,w) that appears in Eq. 3.2. The model is required to0

claim validity even where r,r' > a when 6/a>>l.

We consider a model characterized by a single length scale,

A, but spectra may also be formed by "incoherent" addition of such

spectra having different scales (cf. Sec. 2). In the spirit of

our usual modeling assumptions we suppose that E0  (and likewise11

velocity-product spectra such as E ) depends on w and k only via k+,0
defined by Eq. 7. We may then write

E° (r,r',k,w) = v*A2(a/r) (a/r') FO (k+(rr') ,k+(rt-r),k A).

(14)

The profile factor (a2/rr') is required to conform to the measured

dependence of E (r) as a/r (for r<6 except near the wall, Fig. 1),

at least for the class of functions F °  (and their generalization,

F, to m$O) considered here.

.- wor
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A suggestive approach to a type of model for Fm (especially
when 6>>a) may be based on imagining first a region of more or

less homogeneous turbulence of fixed scale A without regard to
presence of a physical cylinder. The fluctuating velocity field
may then be imagined expanded in waves of definite k and W and
angular harmonics m defined for a cylindrical coordinate system.
If a model is assumed for wavevector-frequency spectra of fluctuat-

ing components appropriate to the hypothetical turbulent field, this
may thus be expressed by explicit transformation in terms of
spectral components characterized by m,k,,aw,r,r'.

To treat the actual case where a hard cylinder is present
and responsible for generating the turbulent field by its motion,
the essential step is to permit the scale A in the formally con-
structed model to depend on the distances y - r-a, y' - a'-a from
the wall. For y-y'<<a (but outside the sublayer), in particular,

7,17

the usual similarity principle for a planar wall implies

that Aay. (We look apart, for the moment, from any weak inactive
component scaling otherwise.)

Proceeding along these lines, as shown somewhat more explicitly
in Appendix 1, an indicative class of models may be characterized

(leaving aside the choice of A) by regarding the function FO in11

Eq. 14 as given roughly in opposite limiting domains by

1 , kA(rru)h <l

S (k Ar ) X (15)
D[kA(rr)h] l , kA(rrI) > l

where
(k2+bA2) A (rr) 2+b2] (15a)

+A .4 r , (ba

and b , b are constants.* The function SI (z) in (15) approaches0 1

a constant (of the order of unity) for arguments z<l and decreases

at some rapid rate for zzl.

*Either b a or b, could be absorbed in the definition of A, but it is
convenient for consideration of models where b0 0 or b-* 0 to preserve
their explicit appearance.

12
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On the basis of properties of a function found in Ref. 11 to
fit measurements by Bullock, Cooper, and Abernathy l e of cross-
spectra (y'-yjO) of streamwise turbulent velocity over an effec-
tively planar wall, we assume that b - 0 in (15a). (A certain

0
illustrative model with b #0 but b -0 is also considered to some

0
extent in Appendix 1.) The requisite estimates based on the

model are greatly facilitated thereby.

We turn to modeling of velocity-product spectra such as R0 in
Eq. 12. In view of the quadratic dependence of these products
on individual velocity components and the expectation that their

spectra resemble that of streamwise velocity in their dependence
in limiting domains of the arguments (e.g. for kAAr Sl or >I), we
assume that model equations exactly analogous to (14) and (15) for

E0 apply to E where the square of the previous profile factor1! 0

must be used:

E (r,r',k,w) = vA 2l(a/r)(a/r')F (k+ (rrl)h k+(r'-r), k+A) , (16)
0 0++

where F is characterized again as in (15) with S replaced by,0

say, S0

For present indicative estimation of limiting dependences

we interpolate in r,r' between opposite limiting domains of

k lrr') in (15) by assuming a convenient product form

F I (l+akAr)-h(l+akr,) VS (kAar) (17)

(c 2 IB-I).* More significantly, we wish to assume also a factorable
form for S 0 In this connection, we note, in S referring to the0 I

*Possible different presumptions include that F=[l+akA(rr') -o

13

ELM&&.



TH 21 Chase Inc.

spectrum of (linear) streamwise velocity, the earlier fit" to
the measurements of Ref. 18 corresponded to taking A = (yy)h,

b - (and kA k+) (in 15a), so that Ar-(y2+y'2)h . If the
same assumption is appropriate for S , referring to a spectrum0

of velocity products, and if one had S0 (k+Ar)a exp[-(Bk+ A r)2
(6-const.), for example, then S0c expf-(Ok+y)2 exp[-(Ok+y,)2], a
product form. Actually, the fitted S did not have such a

1
Gaussian form. Still, it is perhaps indicative of limiting
dependences to assume a product form:

S (k+Ar) - S(k+y)S(k+y') , (18)

where the function S(z) begins to decrease rapidly for z greater
than a value of the order of unity. It is tentatively assumed

also that, for all k and w, the source spectrum is negligible
outside the boundary-layer thickness, so that (notwithstanding
its single indicated argument) the function S(k+y) = 0 for y>6.
Finally, a factorable form is assumed also for A2 :

A2 = L(y)L(y') , (19)

where L has dimensions of length.

Eqs. 12, 16, 17, and 18 yield for the "generalized" zero-order
contribution P0 (k,w) to the wall-pressure spectrum

0

P 0 (k,w) - p2vsa 2 12 (k,w) , (20)
0 6 ]-- -h y"

I(k,w) -f dy[l+ak+(a+y) (a+y) L.(y) S(k+y) . (20a)

14
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5. SPECIFICATION OF SCALING OF SOURCE SPECTRA AND RESULTS

FOR MODEL WALL-PRESSURE SPECTRA

In the context of this memo a central question is how to

model the scale A (or, under assumption (19), L). Apart from

suggesting a favored rough dependence for A, we wish to explore
the consequences of alternative assumptions. If attention were
confined to y,y'<a, as noted above, for consistency with the
principle of local similarity we should take for A(y,y') a
homogeneous symmetric function of first degree in y,y', so
that A(y,y)my. In modeling for a planar wall in Ref. 11 it was
proposed that A-(yy')h. For y,y'>a, looking apart from any
possible "non-similar" component scaling on 6, the notion of a scale
-y (when y'ay) loses any claim to sensibility, 7 and the reduced
influence of the wall as its distance y becomes large compared with the
wall radius appears to imply that A should be taken a homogeneous
function of first degree in a,y,y' that increases with y (for
y'ccy) more slowly than y.

We pursue as a representative model along this line one where
L(y) is proportional to a "mixing length." This is conventionally
defined such that its product by the local shear velocity at y
yields the "eddy viscosity", c; this in turn is conventionally
defined such that its product by the local mean velocity derivative
U' (y) in the cylindrical flow (and by density) yields the local V
shear stress. I.e.,

e - L(,r/p) (21a)

T - pcU'. (21b)

In the approximation of circumferential integrated shear force

independent of wall distance, which, as discussed in Ref. 6, is
supported by the measured fluctuating velocity profile measured
in Ref. 5, one has

- pv'/(l+y/a). (22)

15
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Cabining Eqs. 17 and 18 yields

L - (l+y/a) 'v,/U' (y). (23)

The profile U(y) for cylindrical flow outside the near-wall

region (in the analog of the log region for planar wall) has been

measured extensively (in certain domains of Reynolds number) by

Willmarth et aZ 9 and Leehey and Stellinger. 5 An indicative approxi-

mation to the measured U(y) is provided by "Rao's hypothesis"
(see present Appendix 2); in the log layer this implies

Av. Av/a
U' (y) 2g r n ' (l+y/a)tn(l+y/a) (=.).(4

In this approximation Eq. 23 becomes

L - 0.4atn(l+y/a)(l+y/a)h (25)

or, in opposite limits,

0.4y, y/a<<1

L 0.4 (ay)J% n(l+y/a), y/a>>l.

The latter form indicates that, apart from the weakly varying log

factor, the local scale varies as the geometric mean of wall

distance and cylinder radius. An empirical correction factor
suggested for the Rao profile in Appendix 2 would introduce in

the scale (25) a factor varying slightly with 6/a but approximately
independent of y except near the wall. The square of this factor
would then be adjoined to Eqs. 27, 36, and 39 below.
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Insertion of the mixing length L of (25) into (20a) and use

of the properties of S(z) (see Eq. 18) yields in opposite
limiting domains, where for the case of interest it is assumed

also that a/6<<l:

f const. , k+a<<l
I - (26)

(k+a)- 5/2 , k+ a >>l

The result of (20) then accords with the limiting forms given by

the term corresponding to P0 (k,w) in the current a-scaled model
0

(9a) (i.e. term a 2 , only, in the factor a 2 +s k2). Otherwise2

stated, assumption of a particular interpolation form
I-(b-1 +k+a)-5/2 consistent with the limiting forms (26) yields

by (20)
-5

P°(k,w) = C p2vsa-3[k++(ba)-1] (27)0 2+

It is well to note results for P0 (k,w) under alternative
0

scaling assumptions. If in place of (25) L were taken to vary as y

for y~a but to become =a for yta, the limiting forms (26) and
hence a-scaling as in the current model would again apply. If

L were taken (quite unjustifiably) to vary as y for all y<6,

the constant I of (26) for k+ a<<l would become instead ~-n(l+6/a)

in the subrange k+6<<l and ~-n(l+l/k+a) for k+6>>l, with corre-

sponding modifications implied in (27).

Suppose, on the other hand, that there is an inactive con-

tribution to fluctuating velocity, as mentioned earlier, that
scales entirely with 6 and that no profile factor (a/r)(a/r')

applies to this component of E . Then Aa6 and, in place of (18),

S - S 0k+6). Then in place of (20) and (20a) we obtain

P0 (k,w) - p2v.l622 (k,w)S0(k+6) (28)

16(k,w) - 4dy[l+k+(a+y)]-h(a+y)-. (28a)

17
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In limiting domains

ln(l+6/a), k+a<<l, k+6<<l

1n6 tn(l+l/ak+a) , k+a<<l<<k+6 (29)

(k+a) , k+a>>l, k+6>>l

An example interpolation form then yields from (28)

Po(k,w) = P2v,62S (k+6){k++1/an 2 +(c+k++c 6 6-1) -]}.o 0
(30)

where c+ and c6 are constants. Setting k++w/hv* for k-0 yields

the corrected form, under present assumptions, of the hypothetical
second term in Eq. 3 for P (0,). In the extreme low-k, low-w0

limit where k+6<1, in particular, the resulting equation then
takes the form

P (0,W) - p2 v,[C;W2 + C'6 2Xn2 (1+/a)], (31)0 2

where C',C; are constants.1 2

Such a hypothetical 6-scaled component of the turbulence

might have somewhat the structure of the wake of an axisymnetric
body, as suggested in Ref. 16. A model for the corresponding

turbulent sources of pressure might be constructed somewhat as
though this turbulence were homogeneous (modifying the similar

course taken in Ref. 16 for wall pressure itself); this model
form would differ somewhat from that taken in Eq. 28. In the
absence of motivation by specific experimental results, detailed

development of this kind seems unrewarding.

Reverting to the generalized similarity model that led to

Eq. 27, we wish to consider also terms of higher order in k in
the low-k expansion of P (k,w). Eq. 62 of Ref. 20 for the two-0

term expansion of the amplitude P (k,w), from which the spectrum
P may be formed, may be written

0

18
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p (k,W)-*p(k,w) -2pkI dr{T ew-U'(r)t[n(r/a)+C' ]-iTr x} (32)

where

C' - Ln(wa/UI)+tnl/kU.I+Lnll-(w/ck) I-1+0.116+ia, (32a)

P0 (k ) - P drr-( TAr r - I^ ( * 0) , (32b)
0of rr ee-a

Om-W/2 or 0 for Jkl<w/c or >w/c, respectively, and it is understood
that T (r,k,) [cf. Eq. 10, in which Ti Ti?(r,,w)].

POM,), we recall, represents the spectral density formed from

(32b) (see Eq. 12).

The term in (32) containing in its integrand a factor Trx
has the same form as the term (32b) already considered except
that trr 8 is replaced by i2krTrx. The corresponding con-rree; r rx
tribution to P (k,w), say PrX(k,w) (excluding the cross-term
between the Tr* term and other terms in Eq. 32),under assumptions

similar to those leading to Eqs. 20, 20a, may similarly be written
in the form

Sarx MM = P2v3a 2  (k,w), (34)

Irx(kw) = kfjdy[l+ak+(a+y)] - (a+y) -L(y)Srx(k+y) , (34a)

where the dimensionless model source function Srx is related to i2Tr 0 as
rx rx

S(k+y) was to krr_Tee.

Assumption of the mixing length L of (25) as L(y) in (34a)

and of properties of Srx (Z) similar to those assumed above for

S(z) yields in opposite limiting domains, where also a/6<<l,

(6/a)" k+6<<1

Irx .ka x (k+a)- k+a<<l<<k+ 6 (35)

(k+a) -- k+a>>l
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The corresponding limiting forms for PrX given by (34) may be0

subsumed by an assumed interpolation to obtain

p r(kw)~Cp2vla-'(ka)2[k++(ba)-1 -"[k++b 66)-] - ', (36)

where b6 is a constant.

Finally, we consider the term in (32) explicitly proportional

to To. The corresponding contribution to P (k,w), gay p (k,w)
under the usual assumptions, with U'(y) approximated by (24) and

L again taken as in (25), may be written

P (k ) - 2 v.a 21(kw), (37)
0

6
10(kw) - (kv*/w)fdya-1[l+ak+ (a+y) - (ly/a)-3/2 [nl+y/a)#C ' ISe O~y)

(37a)

where S6 is related to -2T%; as S was to Tr0_TO0 In opposite
limiting domains, for a/6<<l,

j 1, k+a>>l

I0 - C'(kv,/w) x (38)
(k+a)-8/2 , , k+a>l.

(Cf Eq. 32a yields JC'J l, in the upper form here C' should be
replaced by a coefficient -1.) Recalling that we are dealing with

a formal expansion for b3/w<<l (and b8<<l), implying a domain

where wahv*k+, we replace w accordingly in (38), so that the
result conceivably has some applicability in a model encompassing also

higher (e.g. convective) values of k. The resulting limiting forms
given by (37) for P8 may be subsumed by an assumed interpolation

0
to yield

p0 (k,w) -c I,12p2 vas(ka) 2k;2[k++(ba)-] (39)
0

where C6 is a constant.
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6. FURTHER DISCUSSION AND CONCLUSIONS

To reiterate, a decrease in the spectral density of axi-

symmetric wall pressure with decreasing cylinder diameter-

ultimately as a-is predicted at low dimensionless frequencies

and wavenumbers if the pressure in that domain scales on diame-

ter alone (see Eq. 2). In the work here, the likely most

plausible scaling together with rough modeling have been intro-

duced to characterize the dominant component of the turbulent

field; at relatively small distances from the wall the model

spectra conform to the usual principle of local similarity and

are otherwise consistent with relevant measurements for cylin-

drical boundary layers. It is found that for this assumed

source scaling the corresponding wall pressure at negligible

wave number, at least, indeed scales with cylinder diameter

(see Eqs. 26, 27).

At the same time, the predicted rate of decrease with diameter

could substantially vanish in some domain of very low frequency

and wavenumber if there is even a weak distinct contribution to

wall pressure due to a component of the turbulence field that

scales rather on boundary-layer thickness [e.g., see the model

form (30) or its limit (31)]. There appears no specific present

experimental evidence for such a component, but an identifiable

field of this character may presumably be present, though weak.

The relative contribution of this component to wall pressure

in the low-frequency, low-wavenumber domain naturally depends on

its relative source intensity, but also on a factor somewhat

like (6/a) 2 (e.g., see Eq. 31). It may help fix expectations,

therefore, to estimate 6/a for given radius a and effective

distance x from the transition point upstream. With 6 as con-

ventionally defined and v,/U - 0.04 for the flow domain of interest,

Eq.A2-7of Appendix 2, referring to 6/a>>l, gives

6/a = y(x/a) 2/3
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where the value of y (which may depend weakly on Reynolds number)

indicated by the measurements of Ref. 19 is 0.09 or by those

of Ref. 5 0.13. For x/a = 4000, e.g. x = 50m and 2a = 2.5 cm,

assuming y = 0.12 yields 6/a = 30. Clearly, then, we will

typically be concerned with large values of 6/a such that

10log(6/a)2 may be -20.

With regard to the opposite domain of high frequencies but

low wavenumbers, the present plausible modeling of the dominant

turbulence component leads again to dependence as a-3v.r- 5 (e.g.

see Eq. 27). Though it would be extravagant to claim robustness

for primitive modeling that entails so many uncertain elements,

no definite possible reason for contrary behavior has been

uncovered.

Some suggestion of the dependence of wall pressure at non-

negligible wavenumbers has been attempted by use of the terms

of next order in the formal expansion in terms of boundary-layer

sources (see Eq. 32), assuming the same type of model for the

dominant turbulent source field. A term proportional to 6/a

is obtained but only at wavenumbers so low that the zero-wavenumber

part would predominate there (see Eq. 36 with k+<6-1 and compare

Eq. 27). A term is also obtained that differs from the correspond-

ing term -k2 in the current model (9a) by a factor - (k a) 2

(>>l) at small k+a (see Eqs. 39, 7).* The formal expansion used,

however, nominally requires that N6<<l as well as M1/w<<l, so

that this modeling of the term of next order in k may be invalid

where departure from the zero order is appreciable at all.

*The weakly frequency- and wavenumber-dependent factor ~IC'1 2 in
(39) (see Eq. 32a) is also a new feature that will persist in
the corresponding contribution more generally.
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In view of this latter limitation it seems useful for

further semiempirical modeling to seek the formal expansion to

the subject order where the condition d6<<l is relaxed (but
still W./w<<l). The corresponding generalization was carried

out in Ref. 3, Eq. 35, in the instance of planar, incompressible

flow. In further work the same may be attempted for the axi-

symmetric component in incompressible cylindrical flow.*

APPENDIX 1. INDICATIVE MODELING OF TURBULENCE SPECTRA IN

CYLINDRICAL COORDINATES

As suggested in Sec. 4,and underlying modeling pursued

there, model spectra are constructed here in cylindrical co-
ordinates without explicit reference to a cylindrical wall as

the physical generator of the turbulence. Consider first a cross-
spectrum E(r,r',0,k,w) between amplitudes of a quantity for

axial (x) wavenumber k and frequency w, evaluated at position

vectors r,r' in the plane normal to x with polar coordinates

(r,e), (r',e+O). The random process assumed is statistically

axisymmetric in the normal plane, so that E in fact depends on the

angular coordinates only via their difference (see sketch).
E may be decomposed into angular harmonics,

E(r,r', ,k,w) = : eimE (r,r',k,w), (Al-la)

Em (r,r',k,w) = (27r)- l  e- E(r,r',0,k,w). (Al-lb)

'Tr

*By analogy with the planar result, it is expected that the thus
generalized form of Eq. 32 will involve a factor in the integrand
that decreases with ky.
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Suppose initially that the process is homogeneous and isotropic in

the normal plane; then the dependence of E may also be expressed by

E(r,r',O,k,w) = E(R(O),k,w),

R(O) = Ir-ri = (r2+r'2-2rr'coso)h (Al-2)

For representative modeling, as discussed in the text, suppose

that E depends on k and w only via k+, defined in Eq. 7, and on

a single length scale A and velocity scale v*. For definiteness,

consider the cross-spectrum of the axial component of fluctuating

velocity: E E , say.* Then
11

E (r,r',O,k,w) = E (R(O),k,w) = vA2F (k+A,R(O)/A),II 11 1

(A1 -3)
where F is a dimensionless function of the given arguments.

By Fourier transformation of E also over the coordinates11

of separation in the normal plane, a four-dimensional spectral

density may be defined that depends on the three-dimensional

wavevector k only via its axial and normal components k and K, say.

This spectral density is then expressed inversely, using (Al-3), by
00

E (k,K, w) = (21r)-2(27)f dRRJ (KR)E (Rkw)
11o 11

= (A 4 = V (KA,k+)A)(,
o

G J(KA,k+A) = (2 o )-ldzzJ0(KAz)Fl (k+A,z) . (Al-4)

*It would be expected that the spectral density of one component or
function of velocity may be more nearly a function of k+ than another
and that the value of the velocity scale factor h in Eq. 7 for k
that renders this most nearly true will also depend on the identity
of the component or function (cf. Ref. 21, Sec. 2.3).
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F and G in Eqs. A1-3 and AI-4 may be related to the corre-

sponding space-time correlation, which under present assumptions

may be written, for axial separation x, normal separation R,

and time delay T,

W (x,R,T) = v.f+

X+ - E(x-ucT) 2+(hv*T)2]h ; (A-5)

explicitly,

F (k A, R/A) (27)-h - dzJ(kAz) f(z,R/), 
11 +0 0 .

Go Jo (Al-6)

G1 (KA,k+A) = (27-2h-1 dzzJ (k+Az) dcJo(KAl)f(z,Z).
1+ o 0 o0

Likewise, for representative modeling suppose that in the

spatial correlation function the axial and normal components of

separation add in quadrature; then (Al-5) assumes the still more

special form

W (x,R,T) _ v2f(r+/A), (Al-7)
11+

r+ = C(x-ucT) 2+ (R)a+(hv*T)2]h (0 = const.)

and the dimensionless four-spectrum G of (Al-4) assumes the dual
11

form

G (K+A) = (270-2(h$)-1a dss'(K + s)-'J (K+ As)f(s),
ll 0

K+ (k+-2K2)h = [(W-U k)2/(hv.)74k2+B - K2 ] (Al-B)

A convenient class of such correlations and spectra that, by

variation of its parameters (A ,b .b,V), encompasses a broad
o 0

range of plausible functional behavior is defined by assuming in

Ql-7) that
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f(p) " A (o2+b2)-v/ 2 K (b (p2+c2)) •(A-9)

Performing the required transforms by Ref. 22, p. 72, (35) yields

for corresponding spectra (see Eqs. Ai-3, Al-4)

F (k A,R/A) = (2T)-A h-lb-V(82R2/A
2+b 2 ) (1-v)/2 (k+2A2+b2 (v-l)/2

11 + 0 0 1 + 0

× K-((02R2/A2+b2)0(k2A2+b2) ) " (Al-10)
X v-i I + 0

G (K A) = (2w) 2A h-16-2bvb 2 - (K2A +b 2)-l+K/2 2(b (K2A2+b 2)).

11 + 1 + 0 v-2 I + 0
i * o o; - (AI-I1)

It is recalled that Ku (z) = K (z); thus the class of functions

(Al-li) for the four-spectrum is the same as the class (Al-9)

for the space-time correlation. This is the same class of func-
tions introduced in Ref. 11, Eq. 36.

For b -+0, the spectral dependence (Al-11) becomes power-law:

G (K2 A 2+b2)-(
2 -v)

11 + 0

If also v = 0, it is noted, the result (Al-4) for E,, when K+A>>b
becomes scale-independent, i.e. the dependence on A cancels.

To achieve the fit to the experimental results of Ref. 18

discussed in Ref. 11, p. 43, referring to a planar wall,* with

the present scale A taken proportional there to (yy'), by
inspection of Eqs. 40, 36, and the choice v - 1 there, the corre-

sponding assumption here is v 1 1. Other parameters of that fit

imply also that b0 - 0 and b A - (2yy')h (in the planar limit).

*The fit to this experiment, as noted in Ref. II, does not involve
the (weak) temporal dependence in the convected frame nor hence
validate the modeling assumption of space-time isotropy (within
a scale factor).
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The choice of a similar model for the cylindrical case was intro-

duced following Eq. 17 of the text. The present choice of
parameters will be referred to here as the "standard model."

The models considered in this appendix implicitly assume

the scale A to be independent of the spatial points involved

in the correlation referred to. In the actual instance of wall

turbulence, as discussed in the text, dependence of A on y,y'

is simply assumed afterward in the definition of the intended

model from the formally constructed one, as implied in the
preceding paragraph.

For the above standard model, the cross-spectrum (Al-3) has

the form

E (r,r',O,k,w) = A'vA 2K (k+ (2R2+b2A2)h). (Al-12)
11 1

We proceed by rough approximations to simplify the form of the

model as used in the text and to explore its characteristics.

By Eq. Al-lb the m-th harmonic cross-spectral component,

Em (r,r',kw), is given by
11 l

Em (r,r',k,w) - (2r)-'A'vA 2 doe-imoK (k+(02R 20)+b262))
11 0 1

(Al-13)

with R(O) as in (AI-2).

For r-r', one has R(O) = 2rjsin 1I. For r,r' not necessarily

equal but 0<1, one has roughly

R(O) - [(r'-r)2+rr,02]h ; (Al-14)

in the most contrary case where the two points are diametrically

opposed (0-0), this yields

R(O) ~ (r'+r)2+(f2 -4)rr'
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while the exact result is R(7rf) =(r'+r)
2. For indicative, order-

of-magnitude scaling estimates, as in the text, it appears that
approximation (Al-14) will suffice.

Eqs. Al-13 and Al-14 yield for the axisymmetric harmonic m-0
E 0(r,r',k,w) =w-'A V*A2 1

11 0

10 -f'dOK (k (&,+S2 rr #o2) )
00

A2  02 (rl-r)2+b 2A2.
r1

By use of limiting forms of K 0(z) for small and large arguments,
I can be estimated in pertinent distinct domains. In an
approximation where tn[k+B(rrl)h) is not distinguished from a

constant, the result may be written simply as

E0 (r,r',k,w) - v*A~ [k+(rr') 8 k+ar l1k+(rr') 7rB~1

[Ek (rrI)hB]'4exp(-k ark) >

(Al-15)

This estimate underlies and exemplifies form (15) in the text.

Referring for a moment to arbitrary harmonics m, it may be
expected from Eq. Al-lb or Al-13 that Em (r,r',k,w) will remain
substantial relative to the value for m-0 for ImIS1/60, where AO is

the halfwidth in 0 over which E 1 (r,r',O,k,w) remains relatively

appreciable. Hence the point spectrum (r'=r) is estimated by

E (r,k,w) -E Em (r,r,k,w) - ME 0 (r,r,k,w),

M

{2/60+1 AOS1

For the standard model WA-12), with r'-r, one has A$-b A/Or.
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We consider now briefly, in place of the standard model,

one where in (Al-9)-(Al-l1) b 10 and v - 1-v>O. By (Al-10)

E (r,r',0,k,w) + Bv*A2($R/A)P(k.2A2+b2) -p/ 2K ((k2 A 2+b2)08R/A).
+ 0 0

(Al-16)

In this case, in place of estimate (Al-15) one obtains

E o(r,r',k,w) ~v,2(k A) - X [kA(rr') I , kAr'-r8<l, k (rr') n8l~
rrEkk (rrj[ ')3- lkllrr3exp(_BkAr,_r ) '

kA I r'-r 8>l

(Al-17)
where kA = (k++bA-2) . The halfwidth, for r'=r, is given by
A0-/8kAr.

Estimates (Al-15) and (Al-17) can be subsumed in an expression

valid for the class of functions (Al-9)-(Al-11) more generally.

APPENDIX 2. MEAN VELOCITY PROFILE AND BOUNDARY-LAYER GROWTH IN

TURBULENT FLOW ALONG A CYLINDER: COMPARISONS

WITH RECENT MEASUREMENTS

A.2.1 Mean velocity profile

Reference was made in this memo to the dependence of a
mixing length derived for the "logarithmic range" of Rao's pre-
seciption20 for the mean velocity in flow along a cylinder. For
possible future reference as well, we therefore append a compari-
son of a result of this prescription with the mean profiles
measured by Willmarth et al.P on cylinders of various radii and

by Leehey and Stellinger5 on a (thin) cylinder at various stream-
wise positions. These measurements are much more extensive than
the earlier ones by Richmond25 compared in this way previously.26
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The Rao prescription is reviewed as follows. The mean

velocity profile U(x,y) in the turbulent flow (without pressure

gradient) may be written, over some inner range of wall dis-

tances y (limited at least by the condition y<6 ), in the

functional form

U/v. - F(v~y/v,y/a) (A2-1)

(where v. may depend on x). Rao's hypothesis prescribes the
function F for the cylinder in terms of its limiting form, F(v*y/v,0),

for a planar boundary:

F(v~y/v,y/a) = F((v~a/v)Zn(l+y/a),0). (A2-2)

Within the viscous sublayer where F(v~y/v,0) - v~y/v, this pre-
scription yields

U/v. = (v~a/v)tn(l+y/a),

which, apart from terms of the order of (y/a) , correctly repre-

sents the result for a laminar cylindrical boundary layer and

for the viscous sublayer of the subject turbulent one. Outside
this domain (i.e., for v~y/v>6 or y/a>l), prescription (A2-2)

apparently lacks any sustainable basis except as a plausible
semiempirical trial form. 2 7

As in Ref. 26, we apply (A2-2) numerically here on assumption
that the profile F(y+,0) for a planar boundary is adequately
approximated by use of Squire's transitional profile and without
regard to changing dependence in the outer wake-like region
where y-6:
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Sy+ O <y+<7.4

F (y+, 0) W A-3)
2.5Ln(y+-4.9)+5.l, y >7.4

Results of Eqs. A2-1 to A2-3 are compared in Fig. A2-1 with
representative velocity profiles measured by Willmarth Ot al.19
on cylinders of various radii 0.01 in. to 1 in., as given in
their Fig. 32. The assumed profile of Eq. A2-3 for planar

boundary is also shown along with that of Coles2" as given in
Ref. 19. The computed profiles are seen to provide a fair

representation of the data. More specifically, the fit is

excellent for all v~y/v (even such that y/a>>l) at 6/a = 16
(with v~a/v-200), apart from apparent inexactitude of the assumed
form (A2-3) in the transitional region. The measured dependence
on 6/a or on via/v at fixed v~y/v, however, where 5<6/a<27,
is greater than that computed.

Computed results are similarly compared with profiles mea-

sured by Leehey and Stellinger5 in Figs. 2 to 4, as given in their
identically numbered figures. The data in each figure refer to
a fixed free-stream speed and hence roughly equal values of via/v
but to a wide range of distances x along the cylinder and hence
also of 6/a. The computed curve shown in each figure corresponds to
choice of the smallest of the pertinent series of values of
v~a/v quoted by the authors, but for the spread of values of
vga/v in each instance the range of variation of U/v, at fixed
v~y/v is negligible--only about 0.2 at the greatest values of
v~y/v and less at smaller. The assumed profile (A2-3) for a planar
boundary is again shown in Fig. 2 and in Figs. 2 to 4 of the

Coles profile as given in Ref. 5.

The measured results display substantial dependence on 6/a,
especially at the largest via/v, extending in this case even into

the range where y/a<l. The calculated results in each figure agree
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very well with the measured profiles for 6/a-15 to 20.
For the assumed 6-independent planar profile (A2-3), however,
the computed profiles do not depend on 6 (at fixed v~a/v) and
do not capture the decrease with 6/a displayed (at fixed
v~y/v) by the measured profiles. This dependence on 6/a was
emphasized and discussed under a.different assumption by
Leehey and Stellinger . 5  The sense and magnitude of the dis-
crepancy at larger 6/a parallels that noted above in Fig. 1
in the instance of the measurements of Ref. 19. (See also Ref. 30.)

The Rao hypothesis, in summary, seems to provide a useful
rough description of the mean velocity profile on cylinders
but does not encompass the full dependence on the characterizing
variables 6/a and vga/v. This limitation, moreover, would not
be removed by including the dependence on the outer variable y/6
in Eq. A2-2 as it enters the profile for a planar boundary.

As a matter merely of curve-fitting, on the basis of
Figs. I to 4 a good approximation to mean profiles outside the
transition layer is obtainable by retaining Eq. A2-2 but adjoining
to F in Eq. A2-1 a factor M(6/a), say, where 1(0) - 1 and where
M(6/a) increases sharply to a broad maximum of about 1.1 for

6/a-5 to 9, returns through the value 1 again at about 6/a - 18,
and decreases to about 0.85 for 6/a-27 to 48. (Cf. Ref. 5, Eq. 9.)
To retain a good approximation in the transition and sublayers,
however, since the required correction tends to unity there, one
would need to let M(6/a) depend also on v~y/v for v~y/vIE25.

A factor M(6/a) independent of y outside the transition layer,
it is noted, would imply a corresponding correction factor
1/M(6/a) in the mixing length inferred from Rao'.s hypothesis (Eq. 25).

32

a -.



TM 21 Chase Inc.

A.2.2 Boundary-layer growth

A simple, rudimentary account of growth of the turbulent

boundary layer on a cylinder can be given in the approximation,

closely correct for the parameter domain of concern for towed arrays,
where the wall friction velocity v, is independent of distance x.

The resulting form may then be appraised by comparison with

measurements of 6 by Willmarth et aZ.19 and by Leehey and Stellinger,5

where 6 is defined by the condition U(x,6) = 0.99UW.

First, d6/dx is of the order of the ratio of the normal (y)

velocity to U. at the edge of the layer, i.e. the boundary of
the streamlines of rotational motion. By similarity considerations
(see R. E. Kronauer, Ref. 6), this normal component will be

nearly proportional to the rms fluctuating streamwise component.
By measurements of Leehey and Stellinger, discussed by Kronauer

6

and referred to in the above text, the latter component, for wall

distances outside the transition layer out nearly to y=6 varies

as v,(a/r) . Accordingly, we have

d6/dx = D(v*/U.))ah/(a+6)0 , (A2-5)

where D is a numerical constant. Integration of (A2-5) from a

virtual origin x=0 (defined by extrapolation to 6-0) yields

6/a - [l+(3/2)D(v./U.)x/a]2/3-l . (A2-6)

In opposite limits this becomes

S/a - [(3D/2)(v*/Uc)x/a32/3 6/a>>l
(A2-7)

6 Dv*/Uw 0 6/a<<l

(but, contrary to our assumption, v* is not so nearly constant in

the latter, planar limit).
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A second, perhaps less convincing approach to this result

is based on considering, as in the treatment of drag on wake-

generating bodies (e.g., see Ref. 29, Secs. 21, 36), the transport

of momentum through a closed surface surrounding the cylinder.

This surface may be conceived so that the only nonvanishing con-

tribution arises from flux through a circular area ir(a+6) 2 of a

normal plane drawn somewhat aft of the real or imagined aft
terminus of the cylinder. With friction velocity still app:oxi-

mated as constant over the length x of the cylinder upstream of

this plane, conservation of momentum implies an equation for drag:

a+6
2waxpv, = -pU. 27lr drruav(r) ,(A2-8)

0

where uav(r) denotes the mean downstream component of fluid

velocity relative to the free stream (thus uav<0). Suppose that

just downstream of the terminus this incremental velocity profile

due to the dragging of fluid by the wall of the cylinder upstream

is nearly proportional to that of the rms fluctuating velocity

components at the terminus, i.e. uav -Cv*(a/r) for a<r<a+6,

where C is a constant. Then Eq. (A2-8) becomes

a+ 6
2waxpv. - 2i rvUC drr(a/r)"

a

integration yields again just the result (A2-6) provided that

To check (A2-6) or (A2-7) against measured results and infer

a rough value for D, one may form (in the instance of Eq. (A2-7)

for 6/a>>l) the ratio (6/a)/[(v*/U,)(x/a)]2/ 3 for the various data

sets of Refrs. 5 and 19 and see if it is nearly constant (or at

least has no substantial systematic variation). For the 14 data

sets of Ref. 19, Table 1, excluding two (3 and 12) rejected as

out of line with the remaining ones, the inferred value of

the cited ratio varies by less than a factor two (not monotonically

with 6/a) while the range of hose diameters encompasses a factor

100. The mean value inferred for D is about 0.45. Similarly, for
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the 23 possible data sets of Ref. 5, Table 1, accepting the

value of v, therein obtained by fitting velocity profiles in

the buffer layer, the cited ratio varies by a factor of about

two while the range of positions x is 10.5. The mean value

inferred for D in this case is about 0.8. The corresponding

value C = 1.25 yields a result that uav = -u (at wall distances

where u-r - h), where u is the measured rms streamwise velocity

component, as seen in Fig. 2.3-6 of Ref. 6 (based on Fig. 3 of

Ref. 5).
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CAPTIONS FOR FIGURES

1. Root-mean-squared longitudinal component of turbulent

velocity vs wall distance for thick layer on cylinder

(from Ref. 6, Fig. 2.3-6, based on Ref. 5, Fig. 8).

A2-1. Measured and computed mean velocity profiles for cylinders

of different diameters. Measured: Fig. 32 of Ref. 19;

computed: Eqs. A2-1 to A2-3 with av,/v from Ref. 19,

Table 1, tabulated below (and planar limit av*/v-);

also, Coles' profile for planar flow from Ref. 19, Fig. 32.

Symbol 6/a av./v

* 1.8 2710
A 4.1 1360

A 4.7 751

* 9.4 389

o 16.0 198

* 27.0 83.3
O 37.5 46.1

A2-2. Measured and computed mean velocity profiles for a cylinder

at different longitudinal positions. Measured: Fig. 2 of

Ref. 5 (see table below); computed: Eqs. A2-1 to A2-3

for av./v - 57.9 (and for planar limit av*/v-.); also,

Cole's profile for planar flow from Ref. 5, Fig. 2).

Symbol 6/a av*/V

A 25.5 57.9

4 26.4 59.1

* 25.6 59.9

o 28.1 58.7
* 29.2 59.8

O 41.4 61.3
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CAPTIONS FOR FIGURES (Cont'd.)

A2-3. Profiles as in Fig. A2-2 but from Fig. 3 of Ref. 5 for

parameters tabulated below, and computed profile for

av,/v = 81.9

Symbol x A 0 0

6/a 15.3 20.0 17.3 24.5 26.8 29.0 31.4 44.1 38.4

av./v 83.3 81.9 83.4 83.4 84.1 85.7 86.9 88.1 90.6

A2-4 Profiles as in Fig. A2-2 but from Fig. 4 of Ref. 5 for
parameters tabulated below,and computed profile for av,/v = 102.8.

Symbol ( a e A a n 0

6/a 18.3 16.3 23.3 27.4 26.0 24.5 45.4 47.5

av,/v 103.2 102.8 105.3 108.1 116.2 117.3 115.0 115.0

i
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