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ABSTRACT

Robust statistical methods have recently been shown to have

desirable properties when used for the identification of

similarities and differences in shape. We present a generalization
of the two-dimensional repeated median algorithm to three and higher
dimensions. The extension is achieved using a duality between

orthogonal and skev-syumetric matrioes, which permits the definition

of a median of a collection of orthogonal matrices. The methods are

illustrated by comparing the predicted three-dimensional
configuration of a protein molecule to a refined structure that had
been found using nuclear magnetic resonance techniques.

SOME KEY WORDS: Shape comparison,.Resistance. Pattern matching.
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Many quantitative methods for the comparison of shape and form

in two dimensions have been proposed since the fundamental

descriptive work of Thompson (1917). Sneath (1967) used least

squares as a basis for establishing a common frame of reference for

the comparison of two objects and for drawing inferences about their

*' similarities and differences. Robust estimation for this problem

using the technique of repeated medians was proposed by Siegel and

Benson (1982)o and some real advantages of robust methods over least

squares were demonstrated. Related theory and examples may be found

in Siegel (1982a and 1982b) and in Olshan, Siegel, and Swindler

(1982). Some additional contributions to the study of shape and

form include Gould (1966). Mosimann (1970). Goer (1975). and

Bookstein (1977).

Robust methods are often superior to least squares in the

comparison of shape because a localized difference in shape between

two objects can be thought of as an outlier in the fitting process.

Duo to its high sensitivity to outliers, a least squares fit will

tend to underplay the size of such a shape difference, and thereby

render it difficult to detect. At the same time. differences may

tend to be ;xaggerated at points that would otherwise have been

fitted close17.



-2-

For example. Figure 1.1 shows the comparison of two

hypothetical three-dimensional geometric shapes by rotation and

translation. The fitting process acts on the nine homologons pairs

of points, one point in each shape, and tries to bring point i of

shape 1 close to point i of shape 2. The shapes are identical

is 8 of their 9 points, which are placed at the vertices of a

cube, while the last point is different. As a cesult of trying to

bring the outlying points closer together, the least squares fit

suggests the existence of shape differences at all 9 points, while

the robust fit (computed using the methods to be developed here)

correctly indicates the closeness of the correspondence at the

vertices of the cube, and also indicates the full size of the

difference at the last point.

The main difficulty involved in extending the repeated median

technique for shape comparison from two to three dimensions is that

the couponeutwise median of a set of orthogonal matrices need not

itself be an orthogonal matrix. By working with angles instead of

matrices this problem can be avoided in two dimensions.. In Section

2 we show how the three-dimensional rotational component of the fit

can be obtained by medians using a duality between orthogonal and

skew symmetric matrices. These methods are illustrated in Section

3 using data from the three-dimensional configurations of related

protein molecules that have been studied by Dover (1979) using least

squares techniques.
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I To wili assume that our data set consists of n homologous

points in kdimensions. denoted Z 1 , .*.. X for shape 1 and
n

U2 , ... , VUa for shape 2. In order to transform the points of

shape 2 to a close fit with the corresponding points of shape lo

we will allow rotations and translations, estimating an orthogonal

rotation matrix 0 and a translation vector T so that the

residual vecitors

are small in magnitude. A magnification factor a can be included,

in which case we would make the residual vectors

(1.1 a ( T + 0X

small in magnitude by estimating 0, To and m.

The least square& solutions which minimizes the sum of the

squared lengths of the terms In (1.1), earn be computed using the

singular value decomposition (Haber, 1980).
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2. THE THREE-DIXENSIONAL REPEATED MEDIAN ALGORITHM

The repeated median algorithm, like a U-statistic (Hoeffding,

* 1948), proceeds one parameter at a time. We first present details

for estimation of the orthogonal matrix, then summarize the steps

for obtaining the translation and magnification. A preliminary

least squares fit is used as a point of departure.

A subset of two pairs of homologous points, say points with

indices i and J, from each of the two shapes (i.e. Xi and

X of shape 1 with points U and U of shape 2)

is not sufficient to uniquely determine a three-dimensional

rotation. Three pairs of homologous points, for example i, J. and

k. generally are sufficient to determine such a rotation, although

different methods will result in slightly different rotation

matrices. One method that generalizes easily to higher dimensions

is based on the least squares fit of the three points. However,

this will not usually match anything exactly. In order to match

some aspects of the data exactly, we will choose a three by three

________ _____ F..
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orthogonal matrix Oij k  (one matrix for each ordered triple i,

J. and k) so that

(2.1) the directions of ijk I - X i  and U V i are

ft the same

I

and

(2.2) the transformed point 0ij k 1 k  is in the same plane as

the points UL, Vi, and Uk. and is on the same side

of the line through U and U as is U
i kJ

To find 0 we will define veotors
ij k

(2.3) X iU g-
11 -X i IlU -U I

(1.4) 1 [

((.9 UV )-0 )(

xij k

1(1 k- V)-C(U k- . (UJ-Ui) U Uij I

LiIh
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It can be verified that the rotation matrix 0 satisfying

ijk

conditions (2.1) and (2.2) for points i, J. and k is

iIjj X ijk )

where "x" demotes the Gross product of two vectors.

The repeated median ,!oeess computes a single matrix from these

n(n-1)(n-2) orthogonal matrices using a duality between

orthogonal and skew symmetric matrices, details of which may be

found in Eves (1966). The skew symmetric matrix corresponding to

Oij k  is

(2.7) $ (0 io ')-1(0 I-)

where I denotes the identity matrix. Taking triply repeated

medians of each entry, we obtain the skew symmetric matrix S:

(2.8) 3 median median median 1(2.8 j 1, 1 ~ kA I, Sijk
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vhere the median of a set of matrices is defined as the matrix of

medians computed at each entry. The skew symmetric matrix S is

then transformed back to the orthogonal matrix 0 using the inverse

relation

(2.9) 0 - (I+S)(I-S)-
1

which completes the definition of the repeated median orthogonal

rotation matrix 0.

The translation vector. T. should be computed by finding a

robust estimate of the three dimensional location of the data

U- (i1l.....n). using the value for 0 from (2.9).

This location might be found using the mediancentre (Bedall and

Zimmermann, 1979), which is the point that minimizes the suS of the

Euclidean distances from it. A simpler method is to use the vector

of univariate mediant computed separately for each coordinate.

The magnification factor a. which Is needed in some

applications but omitted in others, can be found using the same

teohnique used by Siegel and Benson (1982). Because a can be

estimated as a U-statistic based on pairs of points regardless of

the dimeasionality of the data, this procedure is no nore



complicated in higher dimensions than it is in two dimensions. The

doubly repeated median of the ratios of the lengths of homologous

line segments is

(2.10) - median median IK

lx -x II 'I

The breakdown and resistance properties of repeated median

procedures as outlined in Siegel and Benson (1982) and in Siegel

(1982a) still hold with these procedures: the breakdown value is

approximately 50%. In particular, if more than (n+2)/2 of the

points can be fitted closely, then this repeated median procedure

will do so. If a single overall median is used instead, then the

breakdown value is approximately 21% (this is l-.113)

indicating that the overall median technique may not indicate

clearly a localized distortion involving more than one fifth of the

points.
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3. COMPARING PROTEIN MOLECULAR STRUCTURES

The determination and comparison of the three-dimensional

configuration of protein molecules provides a setting for

illustration of the repeated median fitting method and how it

relates to least squares. Dower (1979) studied the structure of

"the Fv fragment of protein 315. a Dup-binding BALB/c mouse

ISAO.) myeloms protein." Dower started with a predicted
2

structure based on previous studies of related proteins. This

initial configuration was modified and refined until nuclear

magnetic resonance properties computed for the modified structure

matched laboratory data from the protein fragment itself. The

comparison of the initial predicted configuration to the final

refined structure is of interest, and Dower used least squares

techniques as a basis for interpreting the differences.

To fitted all 50 points of the two homologous protein

molecules, each point being the center of the alpha carbon atom of

an amino said in the protein chain. Rotation and translation veto

allowed, but no magnification was fitted due to the nature of this

problem. After fitting, residual vectors were computed,

representing the direction and amount of shape change or distortion

which would be necessary at each point to deform one shape into the

other.
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Histograms of the lengths of these residuals are shown in

Figure 3.1, both for the least squares and for the robust fitting

methods. The expected relationship between least squares and robust

mothods is evident; the robust method can tolerate a few larger

residuals in order to achieve a closer fit elsewhere thereby

resulting in more small residuals than least squares could achieve.

Figure 3.2 shows a plot of the least squares residuals against

the repeated median residuals, allowing us to see how the residual

sizes have changed on an individual basis with the 45 degree line

indicated for reference. This overall picture shows that the

fitting methods agree on the identification of the largest two

residuals, although they do not identify the same point as the third

largest.

The 50 amino acids &re classified in Dower as belonging in six

distinct subgroups. Because the two largest residuals both belong

to the sixth group, this was examined separately. Table 3.1 lists

the coordinate and residual data for this group analyzed by itself.

Figure 3.3 displays the residual lengths for this subgroup under

the two fitting methods. By reference to the 45 degree line, we

*an see that all but one residual has been reduced by the robust fit

as coupared-to least squares.

L I . .... . ..
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FXGURE 3.1. wistograns of the relidsal distance& between
homologous alpha carbon atoms for all fifty amino acids, based on
the least squazes fit (top) and tie repeated median fit (bottom).
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FIGURE 3.2. Loast-squares residuals plotted ag•ant repeated
median residals for all fifty aino acids. Note that small
residuals &to prianrily above the 45 degree line, indicating that
repeated medians have achieved a closer fit in these areas.
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TABLE 3.1. Cartesisan coordinates of tie alpha carbon atoms

of the six amino acids of group 6.

and the orthogonal matrix 0 estimated by repeated medians.

Modified by Dover to satch

Initial configuration. nuclear magnetic resonanee

centered at the origin data, after least squares fit

- ( 297, -225. 364) 1 - 2 76. -122. 347)

220. -19s. -4) Xi - C 1s8. -221. -3)

Tj - C 224, 32, -309) Xi - 1 04. -10, -316)

V - (-14s. 107. -377) 14 - (-163. 92. -337)

Vj - (-294. 101. -23) 1j - (-149. 229, 17)

j- (-304. 180, SS) j- (-326. 32. 290)

.98 -.17 -.08

0 - .16 .98 -.13
.10 .12 .99

-7 . . ....
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The two fitting methods suggest different interpretations of the

relationships of the amino acids in group six, as indicated by the

histograms in Figure 3.4. Least.squares suggests a continuous but

skewed distribution of residuals with no clear outliers, whereas the

robust fit 3ight suggest the presence of at least one outlier.

Curiously, the amino acid corresponding to the largest robust

residual does not correspond to the largest least squares residual.

One interpretation of this configuration can be given if the two

4 shapes in group six differ primarily at one point. In this case the

robust fit will probably correctly identify this point by its large

residual. Because the sum of squares could not be minimized in the

presence of such a large residual, the least squares method would

probably select a rotation that distorts the relationship among the

other points while bringing the outlying points closer together.
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FIGURE 3.4. NistoSrams of the residual distances between
homologous alpha carbon stoms for subgroup six fitted by itself.
based on the least squares fit (top) and the repeated median fit
(bottom).
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