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ABSTRACT

Robust statistical methods have recently been showa to have
desirable properties when used for the jidentification of
similarities and differences in shape. We present a gemeralization
of the two-~dimensional repeated median algorithm to three and higher
dimensions. The extension is schieved using a2 duality between
orthogonal and skew—symmetric matrices, which permits the definition
of a median of a collection of orthogomal matrices. The methods are
illustrated by comparing the predicted three~dimemsional
configuration of a protein molecule to a refined structure that had
been found using nuclear magnetic resonance techajiques.

SOME XEY WORDS: Shape comparison, Resistance, Pattern matching.
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1. INTRODUCTION

Many quantitative methods for the comparison of shape and form
in two dimensions have been proposed siace the fuandameantal
descriptive work of Thompson (1917). Saneath (1967) used least
squares as a basis for establishing s common frame of reference for
the comparison of tio objects and for drawing inferences about their
similarities and differences. Robust estimation for this problems
using the technique of repeated medians was proposed by Siegel and
Benson (1982), and some real advantages of robust methods over least
squares vére demonstrated. Related theory and ezamples may be fouad
in Siegel (1982a and 1982b) and in Olshan, Siegel, and Swindler
(1982). Some additional contridutions to the study of shape and
form include Gould (1966), Mosimann (1970), Gower (1975), and

Bookstein (1977).

Robust methods are often superior to least squares in the
comparison of shape because a localized difference in shape bot;ocn
two objects oan be thoumght of as an outlier in the fitting process.
Due to its high sensitivity to outliers, a least squares fit will
tend to underplay the size of such a skhape difference, and thersbhy
roender it difficult to detect. At the same time, differences may

tend to be ;xaggo:ntod at poiats that would otherwise have been

fitted closely.




For example, Figure 1.1 shows the comparison of two

hypothetical three~dimeansional geometric shapes by rotation aad
translation. The fitting process acts on the nine homologous pairs :
of points, ome point in each shape, and tries to brimg poimt i of
shape 1 close to poin% i of shape 2. The shapes are identical

in 8 of their 9 opoints, which sre placed at the vertices of s

§ e

cube, while the last point is differeat. As a gesult of tryimg to

bring the outlying points closer together, the least squares fit
suggests the existence of shape differemnces at all 9 points, while
the robust fit (computed using the methods to be developed here)
cozrectly indicates the closeness of the correspondeace at the
vertices of the cube, and also indicates the full size of the

difference at the last point,

The main difficulty iavolved in extending the repeated median

technique for shape comparison from two to three dimensions is that

lf the componentwise median of a set of orthogonsl matrices need not
itself be anm orthogonal matrix. By working with angles instead of

smatrices this problem can bde avoided in tvo dimensions. Ia Section

—_—

2 we show hovw the three~dimensional rotatiomal compoment of the fit

can be obtained by medisns using a duality between orthogonal and

skev symmetric matrices. These methods are illustrated in Section

3 usiag data from the three-dimensional coafigurations of related
protein molecules that have been studied dy Dower (1979) using least

squares techmiques.
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FIGURE 1.1, Two hypothetical three-dimensional geometric shapes,
superimposed by least squares fitting (top) sad by repeated median

fittiag (dottom).
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Ve will assume that our data set consists of = homologous

poiants in Lk dimensions, denoted xl. cees In for shape 1 and
UI’ ceas Un for shape 2. In order to traasform the points of

shape 2 to a close fit with the corresponding points of shape 1,
we will sllow rotations and traaslations, estimating sn orthogonmal
rotation matrix O and a translatiom vector T so that the

residual vectors

(1.1) U1 - (T+ 0 Xi)

are small in magnitude. A magnification factor m can be included,

in which case we wvounld make the residual vectors

(1.2) Ut - a(T+ 0 Ii)

small in magnitude by estimsting O, T, aad =m.
The least squares solution, which minimizes the sum of the

squared lengths of the terms ia (1.1), caa be computed using the

singular value decompositios (Huber, 1980).
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2. THE THREE-DIMENSIONAL REPEATED MEDIAN ALGORITHM

The repeated median algorithm, like a U-statistic (Hoeffding,
1948), proceeds one parameter at a time. Ve first preseant details
for estimation of the orthogonal matrix, then suommarize the steps
for obtaining the translation and magnification. A preliminary

least squares fit is used as a point of departure.

A subset of two pairs of homologous points, say points with

indices i and j, from each of the two shapes (i.e. Ii sad

xj of shape 1 with points Ui aad Uj of shape 2)

is not sufficieat to uniquely determine & three—dimensional
rotation. Three pairs of homologous points, for example i, j, and
k, generally are sufficient to determine such a rotation, although
differont methods will result in slightly different rotation
matrices. One method tiat generalizes easily to higher dimensions
is based on the least squares fit of the three points. However,
this will not usually match aaything exactly. Ian order to match

some aspects of the dats exactly, we will choose a three by thres

B
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orthogonal matrix oijk (one matrix for esch ordered triple i,
j, and k) so that
(2.1) the directions of oijk( Ij - X, ) amd Uj - U, are
the same
and
(2.2) the transformed point oijk Xk is in the same plane ss
the points Ui' Uj. snd Uk‘ and is on the same side
of the line through Ui and Uj as is Uk'
To find oijk we will define vectors
X.~-X U.~-T
(2.3) i N L —i
uxj-xin nnj-uiu
(xk-xi)-[(xt-xi)-(xj-xi)l xij
(2.4) xijk =
U(x,-X)=[(X,-X)(X,-X )] X, 0l
- - (U0.-0.)=-[(D_=-0,)(U.-0,)]1 VU
2.y v, .22 1 J L U

"“;‘“,"(‘"k‘ui’““j‘"g’l uijn

AT

e <. - @0+ e o R — =



It can be verified that the rxrotation matrix oijk satisfying

conditions (2.1) and (2.2) for points i, j, and k s

Xij
L(xij x xijk).

where "x"” demnotes the cross prodnct of two vectors.

The repeated median ;-<0cess computes & single matrix from these
n(a-1)(n=-2) orthogosal metrices using a duality botvoei
orthogonal sad skev symmetric matrices, details of which may be-

found in Eves (1966). The skew symmetric matrix correspomding to

oijk is

10, .-1)

(2.7) S“k = (oijk+1) 1jx

where I denotes the identity matrix. Takiang triply repeated

medians of each entry, we obtain the skew symmetric matrix S:

nedian nedian median

ol i o
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where the median of 2 set of matrices is defined as the matrizx of
medians computed at each entry. The skew symmetric matrix S is
then transformed back to the orthogonal matrix O wusing the inverse

relation

(2.9) 0 = (I+5)(1-8)7 1

which completes the definmitionm of the repeated median orthogonal

rotation matrix O.

The trasaslatiom vector, T, should be computed by finding a
robust estimate of the three dimensional location of the data

Ui -0 Xi (i=1,...,n), using the value for O from (2.9).

This locstion might bde found using the medisncentre (Bedall and
Zimmermsnn, 1979), which is the point that minimizes the sum of the
Euclidean distances from it. A si-pli: method is to use the vector

of univariate medians computed separately for each coordinate.

The magnification factor =, which is needed ia some
spplications dut omitted ia others, caa be found unsing the sanme
technique used dy Siegel snd Bensoa (1982). Because = can be
estimated as a U-statistic based on pairs of points regardless of

tie dimensionality of the data, this procedure is no more
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complicated in bhigher dimensions than it is in two dimensions. The
doubly repeated median of the ratios of the lengths of homologous

line segments is

flo,-o i
(2.10) a = ":1“ ( “:i“ j_ i
] Iz -x,1

The breakdown and resistance properties of repeated median
procedures as outlined in Siegel and Benson (1982) and in Siegel
(19824) still hold with these procedures: the breakdown valune is
spproximately 50%. In particular, if more tham (2+2)/2 of the
points can be fitted closely, then this repested median procedure
will do so. If a single ovefall median is used instead, then the

n51/3) ’

breakdown value is spproximately 21% (this is 1~
indicating that the overall medisn technique may not indicate

clearly a localized distortion involving more than one fifth of the

points,
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3. COMPARING PROTEIN MOLECULAR STRUCTURES

The determination and comparison of the three-dimensional
configuration of protein molecunles provides a setting for
illustration of the repeated median fitting method and how it
relates to lesst squares. Dower (1979) studied the structure of
“the Fv fragment of protein 315, 2 Dap-bindianag BALB/¢ mouse

I;A(lz) myeloma protein.” Dower started with a predicted

structure based on previous studies of related proteins. This
initial configuration was modified and refined until numclear
magaetic iesouance properties computed for the modified structare
matched laboratory data from the protein fragmeat itself. The
comparison of the initial predicted conmfiguratioan to the final
refined structure is of interest, and Dower unsoed least squares

techniques as a basis for interpreting the differences.

We fitted all 50 points of the two homologons protein
molecnoles, each point being the center of the alphs carboz atom of

an amino acid in the protein chain. Rotation aad translation were

sllowed, but 20 magnification was fitted due to the nmature of this

problem. After fitting, residual veoctors were computed,

representing the direction and amouat of shape change or distortion

which would be necessary at each poiat to deform one shape into the

other.

T
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Histograms of the lengths of these residuals are shown iz
Figuore 3.1, both for the least squares and for the robdbust fitting
methods, The expected relationship between least squares and robust
methods is evident; the robust method canm tolerate a few larger
residuals in order to schieve a closer fit elsewhere therebdy

resulting in more smsll residuals than least squares could achieve.

Figure 3.2 shows a plot pf the least squares residuals against
the repested median residuals, sllowing us to see how the residunal
sizes have changed on an individual basis with the 45 degree line
indicated for reference. This overall picture shows that the
fitting methods agree on the identification of the largest two

residuals, although they do not ideatify the same poiant as the third

largest.

The 50 amino acids are classified in Dower as belonging im six
distinct subgroups. Becasuse the two largest residumals both belong
to the sixth group, this was examined separately. Table 3.1 lists
the coordinate and residual data for this group analyzed by itself.
Figure 3.3 displays the residual leagths for this subgroump uader
the tvo fitting methods. By refereace to the 45 degree line, we

csa see that all dut one residuoal has been reduced by the robdust fit

as compared-to least squarses.
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- FIGURE 3.1. Histograms of the residual distances between
homologous alpha osrbom atoms for all fifty amino scids, based on
the lesst squares fit (top) aad the zepeated median fit (bottom).
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R TABLE 3.1. Caztesian coordinates of the alpha carbon atoms
3 : of the six amino acids of group 6,

and tlke orthogonal matrizx O estimated by repeated medisans.

Modified by Dower to match

&; Initial configuration, suclear magnetic resonaance
?'~ csatered at the origia data, aftsr least squares fit ]
:q
: U = ( 297, =225, 364) x] = ( 276, =122, 347) i
| “i = ( 220, =195, =-4) X3 = ( 1!3. -221, =3) 3
'“5 - ( 224, 32, -309) X3 = ( 204, -10, =316)
U, = (-145, 107, -377) X; = (163, 92, -337)
§ Ui = (-294, 101, -23) Xy = (-149, 229, 17) :
f U = (=304, 180, 351) 3 = (=326, 32, 290) |

o,' “01’ -00' '
0 - .1‘ l,‘ -01’ i
.10 .12 .99 ' :
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! FIGURE 3.3. Least-squares residusls plotted against repeated ;
} median residuals for subgroup six fitted by itself. '
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The two fitting methods suggest different interpretations of the
relationships of the amino scids in group six, as iadicated by the
histograms in Figure 3.4. Least squares suggests a contimumous but
skeved distribution of residuals with no clear ountliers, whereas the
robust fit might suggest the presence of at least one outlier.
Curiously, the smino acid corresponding to the largest robust

residual does not correspond to the largest least squares residual.

One interpretation of this coanfiguration can be given if the two
shapes ian group six differ primarily et ome poiat. In this case the
robust fit will probadbly correctly identify this point by its large
residual. Becsuse the sum of squares cﬁnld not be minimized in the
presence of such s large residual, the least squares method would
probably select a rotation that distorts the relationship amomg the

other points while bringing the outlying points closer together.
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FIGURE 3.4. BHBistograms of the residusl distances betveen

homologous alpha carbon atoms for subgroup six fitted by itself,
based on the least squnares fit (top) aand the repeated median fit
(bottom).
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