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ANOTHER STRATEGY FOR FAST "POISSON"
SOLYING WITH NON-CONSTANT COEFFICIENTS

I. The Introduction

The key to fast Poisson solving in an exggnded domain is nonlocal
residual error dispersal. On a two-dimensional domain characterized by
N grid points in one direction (takem as x below) and M grid points in
another (taken as y ), the general finite difference equation could be
solved in ~ (NM)3 operations by matrix inversion. Because the matrix is
so sparse, however, faster.algorithms are soughﬁ. For a number of useful
cases, usually characterized by cyclic reduction, Fourier transforms, or
similar folding techniques, fast NM logZNM aléorithns exist and have been
in use for some time. These direct soluticn.mgﬁhods are non-iterative and
disperse the errors globally and correctly in one application because the
complete elliptic operator can be inverted.

When complex stretched grids are used or diffusion/dielectric coef-
ficients vary generally in space, the nature of the physical solutions does
not change but the variable nature of the finite-difference coefficients
in the resulting elliptic equations obviates the use of direct methods.
Although local inversion gpproaches such as ICCG, SOR, etc. are often useful,
there are still good reasons to seek computationally inexpensive nonlocal
techniques whose worst case convergence is expected to be far better than for
local inverse techniques.

A nonlocal technique spreads residual error at each point all over the

mesh in a single iteration cycle. The analytic formulation for this involves
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the manipulation of the Green's function. Numerically, the use of Green's

function in a general case can be prohibitively expensive, so cheaply manipu-

lated approximate Green's functions are sought. It is not necessary for an

algorithm to be local, to be fast.

II. The Idea

This shoxt note contains an idea for fast cheap “Poisson" solving on

a2 rectangular domain. Consider a finite-difference formulation of the
equation

I,y 3P (x,7) - o,y Bx,y) = 3(x,y) R 3
vhere T(x,y) > 0,-m(x,y) > Oand (x,y) in the domain(0 < x < xmax,o P 4 s ymax) .-

Heat transport, special treatments of fluid dynamics, and electromagnetic
propagation in varying media all satisfy similar equations. ¥For r.ixe scalar

£ield {Pij } (L<4{<N, 1< jx< M), the following finite difference equation
plus well 'pose_d boundary conditions approximates (1),
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Suppose ‘Pij} is unknown with t“’iji . *sij} s {"24-1/2:]!' » and {vijﬂlz} gi?ren.
A new ;ec of unknowns | ¢ :Lj* can be defined by the substitution in Eq. (2),
Pij"':[j”ij’(i’lf ey, N3 3 =1, ..., M). 3)

The pufpose of the transformation is to provide a set of adjustablé coefficients '

{-.'.-, j! which will be optimized with reference to the coefficients{v

X
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v 3
{ 1j+1/2} » ’"’13* but not with xespect to {su} vhich may change from one E
4
timestep to the next. |




By appropiate choice of {(r ij} . the coefficients in the derived Poisson~-
like elliptic equation for {P ij} can be made as nearly constant as possible.
Since constant coefficient problems can be solved using fast algorithms, ‘the
non-constant portion of the coefficients are minimized row by row and added

as a residual to the source term on the right hand side. The object equation

derived from (2) by substituting (3) is

x . X y . ;
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For each row j five constants (aj, bj’ cj’ dj’ ej) are to be chosen in

i3 °

conjunction with the as yet undetermined {y j} to minimize the following errox

measure:
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The undetermined row constants *aj .}, { cj },{dj }, and{ej} , along with the

undetermined potential multipliers {v N j‘ satisfy a set of equatioans derived

by setting the derivatives of E to zero in the east Squares manner. F
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one finds

T A R TV R

where the freedom to choose the multiplicative scale of vij in Eq. (3)
permits us to se:{ bj} = 1 without loss of generality. Here I have
defined

2 2

The row constants are also found by minimizing E . Setting

2E/3a, = 0, JRADB, = 0, etc. gives'the additional four equations

3 b
for { } { j} {d.l and {ej}
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These four linear inhomogeneous equations for aj, cj, dj and ej can be
solved without reference to the results derived from any other row. A
block tridiagonal system does not result.

Given these row coefficients, which can be seen not to depend on the

source term {Sij}’ Eq. (8)yields the multiplicative coefficients {wij} for

each of the unknown potential values {¢1j}' The finite-difference equation

vhich results to describe-{ gj} has nearly constant coefficients, row by row,
the complicating spatial variation being 1arg§1y.cance11ed out by the
derived variations of {#1j} .

III. The Implementation

This algorithm has not yet been implemented numerically. Using the row
constants derived from Eqs. (10) and the multiplication coefficients{¢ij}.
the left hand side of Eq. (1) can be expanded as follows:

LTy LE@y) - Ty By = 028 y) + 0T 0¥ 20y

-2V 8 (x,y) - D2 B (x,y) ). | 1)
The operator Dz, by construction, is Fourier-transformable in the x
direction and results in decoupled tridiagonal equations in the y direction.
The second term on the right in (11), which I shall call R;, has been
minimized in'a simple least squares sense. Rewriting Eq. (1) gives

0% (x,) ﬂ'é:fy) = ¥x,y) - Bi(x,y) #%(x,y) (2)
as an iterative form for solving (1) which should converge rapidly. The
superscript m indicates which levgl of iteration has been passed. The
right hand side of'(12) is initialized using ﬁo(x,y), a guess at the

expected potential.
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