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ANOTHER STRATEGY FOR FAST "POISSON"
SOLVING WITH NON-CONSTANT COEFFICIENTS

I. The Introduction

The key to fast Poisson solving .in an extended domain is nonlocal

residual error dispersal. On a two-dimensional domain characterized by

N grid points in one direction (taken as x below) and M grid points in

another (taken as y ), the general finite difference equation could be

solved in - (M) 3 operations by matrix inversion. Because the matrix is

so sparse, however, faster algorithms are sought. for a number of useful

cases, usually characterized by cyclic reduction, Fourier transforms, or

similar folding techniques, fast NH log2 24 algorithms exist and have been

in use for some time. These direct solution methods are non-iterative and

disperse the errors globally and correctly in one application because the

complete elliptic operator can be inverted.

When complex stretched grids are used or diffusion/dielectric coef-

ficients vary generally in space, the nature of the physical solutions does

not change but the variable nature of the finite-difference coefficients

in the resulting elliptic equations obviates the use of direct methods.

Although local inversion approaches such as ICCG, SOR, etc. are often useful,

there are still good reasons to seek computationally inexpensive nonlocal

techniques whose worst case convergence is expected to be far better than for

local inverse techniques.

A nonlocal technique spreads residual error at each point all over the

mesh in a single iteration cycle. The analytic formulation for this involves
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the manipulation of the Green's function. Numerically, the use of Green's

function in a general case can be prohibitively expensive, so cheaply manipu-

lated approximate Green's functions are sought. It is not necessary for an

algorithm to be local, to be fast.

I. The Idea

This short note contains an idea for fast cheap "Poisson" solving on

a rectanguLa domain. Consider a finite-difference formulation of the

equation

V- (xy) 1 (xy) - w(xy) 7 (xy) - "S(xy) ()

where 7(x,y) > 0, w(xy) k Oand (x,y) in the domain(O a x - xma O Y y Y

Heat transport, special treatments of fluid dynamics, and electromagnetic.

proplagation in varying media all satisfy similar equations. For the scalar

field Pij1 (1 : i s N, 1 : j - M), the following finite difference equation

plus well posed boundary conditions approximates (1),

V±+l/ 2 j (i+lj Pj) -Vi.l/2j ij - ii-lj- Wjj P
(2)

v +i/ 2 (P±j+I- P(P) - j-i2i(P ij - P -2 S

Suppose is uno wi2h a 1%1 ' +ii2 P and {vIV 2 given.

A new set of unknowns fjJ can be defined by the substitution in Eq. (2),
P': j ('j il i - l . , ; : , . . ) 3)

The purpose of the transformation is to provide a set of adjustable coefficients

which will be optimized with reference to the coefficieniLs1 4 +j_

IV ij+1/21 . Lj I but not with repect to IS ijI whichmay change from one
trestep to the next.to
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By appropiate choice of JljI , the coefficients in the derived Poisson-

like elliptic equation for ij can be made as nearly constant as possible.

Since constant coefficient problems can be solved using fast algorithms, the

non-constant portion of the coefficients are minimized row by row and added

as a residual to the source term on the right hand side. The object equation

derived from (2) by substituting (3) is

V y + y (

V1-l/2 IJ-1 ij-1 iij(v-l+/2j + %i-1/2j Vij+1/2 ij-1/ +

2ij) iii - s i-(

For each row J five constants (aj, b1 , ci, d1 , e1 ) are to be chosen in

conjunction with the as yet undetermined I *ij I to minimize the following error

measure:
M. U+ 2 M U 2

E -Z C Z; [aj x I ]+ Y DX I [ci Vi./2 ilj +
J i-J i i-1i-j i/i-i+

M N M N
- E[di -l 2 +EE [e. VI- l 2

Ji- j+l / + l- i/2 Vij-i ]2

where I have designated a (v +  -
J i+l/2j + "i-l/2j + ij+l/2 +(6)

VY + W).ij-l/2 ij

The undetermined row constants I aj 1 [ cj }~d , 1d . and fe 1 jJ , along with the

undetermined potential multipliers j % satisfy a set of equations derived

by setting the derivatives of E to zero in the aleast sxrsmner.

From L.rra '-0 "(7) ,
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one finds

"F [a VXj+ d +Ev

where the freedom to choose the multiplicative scale of in Eq. (3)

permits us to set 4 b~ i - 1 without loss of generality. Here I have

defined

F A ../2) 2yv )2 + 6 ey) 2 +EVv ) 2 +( )21 9

ii l/1(v-12 + i+,/12j 6 Lij-1/2 ijtl/2 ij

The row constants are also found by minimizing E . Setting

c)E/Baj - 0, aEi~bj 0, etc. gives the additional four equations

for ajcI. 4~l IdI andJal

"i+l/2 i+l +/ iil

Nc i -1/ ij1-/2j aj + y 1-/2 j +

6V y d + Evy 2a + ~ 1
i-lj-l/2 j i.:lj+/2 i-ij

y~ 1 2~ li tavi_1/ 2 J + Yxj+/2 cj

i-/ j+/

(l c

Nei~.l..ld E vi...ljvx /2 a,+ Yv i-l/j c'

Nd 1 Vj+.1 12 ij "i-/2aj+il/.

(100)

.ij-1/2 1 ij+l/2 j
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These four linear inhomogeneous equattons for a c dj ande can be
e1

solved without reference to the results derived from any other row. A

block tridiagonal system does not result.

Given these row coefficients, which can be seen not to depend on the

source term {SJi, Eq. (8)yields the multiplicative coefficients { for

each of the unknown potential values I0ij I. The finite-difference equation

which results to describe-0 i} has nearly constant coefficients, row by row,

the complicating spatial variation being largely cancelled out by the

derived variations of }

i1. The Implementation

This algorithm has not yet been implemented numerically. Using the row

constants derived from Eqs. (10) and the multiplication coefficients(41j},

the left hand side of Eq. (1) can be expanded as follows:

V- (xy) V (z,y) -(xy) (x,y) - D2  (x,y) + V-V 7 T A(x,y)

2
- (x~y) - D A (x.y). Ill

The operator D 2 , by construction, is Fourier-transformable in the x

direction and results in decoupled tridiagonal equations in the y direction.
The second term on the right in (11), which I shall call R2 , has been

minimized in a simple least squares sense. Rewriting Eq. (1) gives

D2 (x. xy) (x,y) - R(x,y) - K (xy) 2m())

as an iterative form for solving (1) which should converge rapidly. The

superscript a indicates which level of iteration has been passed. The

right hand side of (12) is initialized using 0°(x,y), a guess at the

expected potential.

5



IV. Acknowleditement

This work was supported by the Off ice of Naval Research arnd

Naval Research Laboratory.

6



.......... ..........


