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EFFECT OF GRADIENTS IN MULTI-AXIAL STRESS STATES ON

RESIDUAL STRESS MEASUREMENTS WITH X-RAYS

by

I. C. Noyan*

ABSTRACT

The assumption, that stress components in the direction of the surface

normal are negligible in traditional residual stress determination methods

by x-rays, has been recently disproved. In this paper we investigate the

effect of normal stresses on the accuracy of these traditional methods.

It is shown that appreciable error can exist in surface stresses determined

by such methods, if normal stresses are present. New procedures are proposed

to minimize these errors.
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INTRODUCTION

The determination of surface residual stresses in poly-crystalline

materials by X-ray methods is well established. (1 ,2) Traditional methods

assume a bi-axial stress state that is uniform in the surface layers

penetrated by the x-ray beam. This assumption is based on the conception

that this penetration depth is too low to be affected by the stresses in

the third dimension. These methods predict a linear variation of inter-

planar spacing "d" with "sin2*", with a slope that is proportional to the

stress in the measurement direction (S); here * is the angle between the
normal to the diffracting planes (13) and the surface normal of the speci-

men 23) , as shown in figure 1. If the components of the (assumed) bi-axial

stress tensor exhibit steep gradients in the volume sampled by the x-ray

beam, curvature occurs in the "d" vs sin24 plot. The slope of a least-square

fit to such data yields the stress in the (S) direction, averaged over the

depth of penetration. (3)

The assumption in these traditional methods, that stress components

in the direction of the surface normal (13) are negligible in the volume

sampled by the x-ray beam has been disproved in several recent studies. (4,5)

Stress components of appreciable magnitude in this direction have been

detected in the surface layers of materials, created in various ways.

Recent theory, as well as experiments, show that if stresses (713,"23) in

the direction of the surface normal (-3) are present, "splitting" of the

"d" vs sin2* data results; that is "d" vs sin2* plots have opposite curvature

for negative and positive #. Analysis of such data is described in detail

by D8lle,6 ) (see also reference 4 for an example of the use of this analysis).

If, however, only normal stress (a33) is present in the direction of the

surface normal and shear components are negligible, curvature occurs in the

"d" vs sin2* data and there is no "i-splitting". The degree of such curvature

depends on the steepness of the gradient in C33" (Since a33 is a stress
normal to the surface, it is zero, by definition at the surface. Thus it

has to exhibit a gradient in the surface layers.) Ddlle, James and Cohen (5 )

have shown how to estimate the gradient using this curvature. It will be

shown in this paper that, even for very small curvature in the "d" vs sin2t

data, analysis with the bi-axial assumption causes an appreciable error in

the calculated surface stress. Methods are proposed that provide for the

determination of the complete stress tensor in the surface layers in the
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absence of *-splitting, i.e. when a1 3, a2 3 are negligible. These methods

are tested here by computer simulation.

THEORY

The orthogonal coordinate systems used in the following discussion

are shown in figure 1. The specimen axes are defined such that S1 and S2

are in the surface of the sample. The laboratory system, in which diffrac-

tion is sampled, is defined such that L3 is in the direction of the normal

to the family of planes (hkl) whose "d" spacings are being measured by

x-rays. L2 is in the plane defined by S and S and makes an angle f with

In what follows, primed tensor quantities refer to the laboratory

system L and unprimed quantities to the sample system S, following the
-i

convention established by Dlle. (6)

If the unstressed lattice spacing "do"is known, strains in the L

direction may be obtained from:

d ft-do

d0

This strain may be written in terms of strains in the Si system of

axes: (6)

( ), = co sin + e12sin2sin
2  + ¢22 sin

2 sin2 s +

C33cos2* + e13costsin2* + e i23sinsin2* . (2)

Expressing the strains on the right side of equation (2) in terms

of stresses we obtain:

(C I - @ 11 cOs2 + q 1 2 sin2f + a2 2 sin - a3  sin* +

(K) ~3 a 1  2 +a 3  1 cost + Cr sin }sin24. (3)

Here E is Youngs modulus and v is Poisson's ration. If a stress tensor of I1

the form: ( 1

0 a 0
ij 1 022

o (4)
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exists in the volume sampled by the x-ray beam, equation (3) will yield the

classical residual stress equation:

. 1.%) { Cos 2 + a 2 2 sin2a}sin,2* + 2 (5)(33)§,# E {"1 2 4 E(l 11 22)

Since a 1 cos 
2
@ + a 2 2 sin 2 f u af(the stress in the direction §), equation (5)

becomes:

33) 1=E 1, l n2 * - i (all + :22). (6)

It is seen from equations (6) and (1) that, the slope of "d" vs sin'4

is proportional only to ct when a bi-axial stress state is assumed. If a

tri-axial stress tensor of the form:

( 22 (7)

is present in the coordinate system Si, equation (3) becomes:

l33 44 E ¢11 OS + U22sint - (a3 35isin2* +(!- 33 ,

(@11 + 22+ ( 3 3 ), ]  (8a)

or I c3€ sin'  +V (a'33>or: (3, E

SE ll +022 + 33,] , (8b)

where carats "( )" imply averages over the depth of penetration of the

X-ray beam.

From equations (8b) and (1) it can be seen that, when a stress tensor

such as equation (7) exists in the surface layers, the slope of a linear

least-squares fit to "d" vs sin t will be proportional to -a€ 3 3 , where

(@33) is the normal stress averaged over the penetration depth (eqn. 26).

Thus when (@33) is present in the penetrated volume, there will be an error

-3-
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in the stress a, determined from the slope by the conventional (bi-axial)

analysis, equal in magnitude to (033).

It is possible to obtain both (a33) and q using equations (8b) and (1).

There are a total of three unknowns: Stresses a,, (a33) and the angle 0,

which is the angle between the principal axis S1 and the measurement direction

S . A simple method of determining the stresses (a33) and a is presented

below.

If data for "d vs sina* is obtained at two # angles; 0A and *A+ 900,

where 4A is arbitrary, the slopes of "d" vs sin"4, M 4 , A A+900 will be:

H4 A ' ) IAm 11 A + a 2 2 s n4.A - 033 (9a)

( 0A- (033)} " (9b)

r
v) t'71coS2 ('A+ 90)+ C22sin" (4A+ 900) - ((33> (9c)

4§+ 900" \E. l A(a2 A33J1

. I) L+ 9oO- (a3 (9d)

Suming Eqns. (9a) and()c) we obtain:

MA ,/ l+V'\ 2e3) (10a)

HM + 900 E) fll + 022 2(or 33

or; (011+ 0722) 9 o 2(33 (l0b)

The intercept I of (e'3) in Eqn. 8a vs sin2* at *-jP does not depend on 4,

1__. ( 33) - 1 (a3) - 1 (0l + 022) . (11)

The constants ( and - are "X-ray elastic constants" and may be

obtained from the literature for a given reflection, hkl, and material, or
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measured following the procedures outlined in reference 7. (Since only

slopes of load vs "d" are used in these procedures, effect of gradients

are eliminated.) Equations (11) and (lOb) are then solved simultaneously

for (a3 ) and (a1+ a2). With (a), the stresses in S and S33 11 22 +g33'' 4
directions, cA and a +90A are obtained from equations (9b) and '6d)

respectively.

The analysis described here yields the stress normal to the surface;

(033), and two stresses in the surface plane; aA and ajA+90o. It is also

possible to obtain the first stress invariant Ii-iylaii • If the principal

stresses in the surface a 11l, 22 and the angle 4 these form with the measure-

meat direction S are required, "d" vs sin values must be obtained for a

third 0 angle, A+ c, where a is arbitrary (a * 900) The slope of the "d"

vs sin2 * line, M A+will be:

M "' -+V l 1 Co s (§A+  ) + o 22 sin (tA+ a) " (033 )j . (12)

A
Since (a33 is known, 1 1 , a 2 2 and f may be obtained by simultaneously

solving equations (9a), (9c) and (12).

Special Case

Some important surface treatments such as shot peening produce residual

stresses which are isotropic in the surface. The stress tensor is then of

the form:

aJ " a11  (13), where 6(( uj

For such cases, the analysis is simplified and the time of measurement

is reduced. Substituting equation (13) into equation (3):

(€33) EL) " <33 *} sn*

V -

(( 3 +2a )' (14)
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Since the slope and intercept of "(Fi 3 )' v5 sin r may be solved for

11 and (a33), one arbitrary t tilt is sufficient to obtain the complete

stress tensor in the surface layers sampled by the x-ray beam. in other

words, the usual measurement of "d" vs sin
2 * suffices, but the slope and

the intercept at * - must be employed.

Effect of Curvature

The term "a33", used in the previous equations, is a stress normal

to the surface. It is, of course, exactly zero at the surface. Therefore

a33 can exist only as a gradient in the near surface layers. It is well

known that, when such stress gradients are present, curvature occurs in

(3.5,6)
the "d" vs sina* plots , and, as mentioned above, a method has been

proposed to use this curvature to obtain the gradient. (5) It has also

been suggested that the slope of a linear least-squares fit will yield an

"average" value of the stress state over the depth of penetration. (3) Since

the x-ray beam penetrates to different depths at each *-tilt, a different

portion of the existing gradient is sampled with each *-tilt, causing the

curvature in "d" vs sin2 *. Analysis of such data by linear least-squares

may cause appreciable error in the slope and intercept of the line fitted

to the data. This error is now examined.

We assume that the behavior of stress, oij, with depth follows a power

law*:

a ij(z) = (Z ( 0) + aijznij , (15)

Where aj(z - 0) is the stress value at the surface, aij, n.j are constants

(over the depth of penetration) and z is the distance coordinate along the

normal to the surface (measured into the material).

The average stress obtained by x-rays penetrating to a depth "z" is: (6)

<0j~ " ° (16)

/dz

*For example, in case of autofrettage, (shrink-fitting 
of cylinders

on solid shafts), ni0u 2 for tangential and radial 
stresses.(9)

iI
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where - is given by: (7)

sinQ - sin2,
" 2,=sinGcosV (17a)

for t tilts around the 9 axis and

s =  ingcost (17b)

for tilts around an axis parallel to the diffractometer plane. Here j. is

the linear absorbtion coefficient, 9 the Bragg angle of diffraction and *
is defined in figure 1. Variation of T and T with * are shown in figure 2.

Substituting equation (15) into equation (16) and integrating:
i oij(z-0 ) + K ij nij (18)

Where Kij is a constant, n.. is the exponent of the stress variation (Eqn. 15)

and T is given by equations 17.

Assume, for simplicity, that a stress tensor of the form given in

equation (13) exists in the near surface layers and that the stress in the

surface plane aii is not dependent on depth. For a33' equation (18) becomes:

(C 33> K3 3 n33  (19), where n33 *0

Substituting equation (19) into equation (14) and re-arranging:

C;do ) (+533 1  3n3 (+v) (-sin ) -vi (20)

The equation of a least-squares line 
is: (8)

Y o +  X +  (21)

where y: the dependent variable

X: the independent variable

e: error

00 51: regression parameters.

Comparing equations (6), (20) and (21), we observe that, if a least-

squares line is assumed, (i.e. assuming only a bi-axial stress state), the

error term will be:
K33" n33

e E ((1+v)(l-sin1) - v1 (22)

It is seen from equation (:2) that:

i) e* is a biased error. (It is systematic.)
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ii) For a fixed depth (fixed *), the error "e " in (e') increases with~33 "

increasing exponent of the stress (n3 3).

iii) For a fixed n3 3 , there will be greater bias in (e 3)* measured at

low * (high r) tilts than for (e'3)# measured at high * (low r) angles.

Analysis of data corresponding to equation (20) by conventional methods

ignores the error components, e,, associated with each point and forces a

linear least-squares solution to the data. Since the error is not random,

but highly biased, such a procedure may yield large errors in the stress

calculated from the slope, which depend on a33, n3 3 in equation (15).

When a tri-axial stress state, (Eqn. 14), is employed, there will

still be some error due to this curvature; expanding equation (20):

<t(l+v) 1(3 331}i2* +(1jv) K Tn 3 3 - V K T n33 + (23)

A least-squares fit to the data (with equation 14) yields the equation:

;533)= (LE_) -<a33lsin2* +(<a)(a33)- Y U( 3 3 >+2aii) (24)

Thus, the deviation of each point <533)* from linearity is:

ne' (K 3 3 Tn3" 3 3>)

e E 3(l+v)(l'sin24) + v] (25)

where (033) is the least-squares average of (a33)* values*

A N

*The equation for (033) is: E (Xi :,)(¥i" Z)
i-l E (26)

\033 - i1 N (l+v)

where X _ sin2 #

;3 No aNumber of *-tilts anjX xi iN

We see that the normal stress obtained from the slope, > , is a double

average; first averages are taken by x-rays over different regions of the

stress gradient, than these are averaged again by the least-squares fitting.

-8-



Comparing equations (25) and (22) we observe that, while the absolute

magnitude of bias associated with a given (e 3)* is less when the tri-axial

analysis is used, some error will remain, causing an error in stresses cal-

culated from the slope and intercept of the "d" vs sin 2 * data. These errors

will be termed "curvature errors" here. It is seen from equation (25) that,

for high * angles (low penetration depths), the bias associated with-(e

will be smaller than for low * points. Thus a least-squares analysis of

the high * range will produce a more meaningful fit of the linear model to

the data, in the presence of such curvature.

General Case

Up to this point it has been assumed that, no shear stresses in the

direction of the surface normal exist. This assumption is not necessary

as far as the curvature error is concerned. When a general stress state

is present in the near-surface layers, the strains in the GL3)%, direction

are given by equation 3. The analysis in this case has been described by

Dolle.$6) The quantities a,, a2 are formed:

a1 = %(C' + C;*) = E ( c
11 cOs

2 t + a12 sin2O + 2 2 sin2  - (a331

sin2* + (27a))( - + c (33>ati 33 E (711 + 22 + (3) 2a

a- -) - 1 -t1 3 >cos + o23)*sinit sinl2*1 , (27b)

Where c+ is the 33 measured at * * +$ and 0, and c;,- is the measured

at * - -*, and *.

It is seen that, a, and a2 will have curvature when plotted against

sin2* and sinj 2,1 respectively, since both contain components that are a

function of depth (c J,J-l,3). In fact a1 (Eqn. 27a) is a general form of

Eqn. (24). Using high ,-poiAts to form the arrays a, vs sin2,: and a2 vs

sinl2*1 will minimize the curvature error associated with this analysis.
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If gradients are present in all components of a general stress tensor,

equations (20) - (25) will have additional terms.. However the general ideas

discussed above will still be valid for most cases.

DATA SIMULATION AND ANALYSIS

Computer simulation of "d" vs sin2 * was used to obtain information

about the magnitudes of errors, resulting from the presence of (033) and

the curvature error. A computer program was written which calculated the

strains in the S. coordinate system for a given stress tensor, converted

these strains into strains in the (L3)0,$ direction and formed the "d" vs

sin2* array for a given 9. The generated, c33' vs sin2* were then analyzed

by the methods described above.

Three different stress-tensor groups were investigated. The assumptions

common to all three groups are:

1) The hypothetical sample is steel.

2) Cr radiation is used in the analysis. The *-goniometer geometry

is assumed.

3) Elastic constants do not change with depth.

4) The constants aij, ni., defined by equation (15) are constant

over the maximum depth of penetration (5.4,1,).

5) For simplicity, it was assumed that the stress state in the plane

of the surface is isotropic (011 a22) and the variation of a1 1 and a22

with depth are identical:

Bali.. ho 21"

Here, (Cll)zi0 was chosen arbitrarily as -400 MPa.

6) Different exponents (n33) were used to form the <c33) profiles

with depth. However, in all cases K values were selected such that
'N 33

(a33) (Eqns. 24,26) was approximately 100 MPa. This value was chosen
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since experimental values reported in literature on steels are generally

between 80 - 140 MPa. (4.5)

7) For a given stress tensor, the e33 vs sin2* array was examined

as follows:

a. Bi-axial analysis (Eqn. 6) over the entire *-range,

#g(0P, 600 ), and, only over the high *-range, Ie(45,60).

b. Two tilt* analysis using - Oand 4, and 0 and 600 , and
450 and b0 respectively.

c. Tri-axial analysis (Eqn. 24) over the entire *-range.

d. Tri-axial analysis over 4 = (0, 33.210); first four

points.

e. Tr-axial analysis over 4 = (39.23 - 600); last four

points.

8) The results are shown in tables (1-3) which show the *-range

employed, the stress exponents (noj) assumed to exist in the penetra-

tion volume, type of analysis used to obtain the stresses Oij' the error

resulting from the analysis, the type of error and the correlation coeffi-

cient of the regression line fited to the "d" vs sin2* data.

Group I

For this group, all' 022 were assumed to be constant over the depth

of penetration. Three types of gradients were assumed for a33 with the

stress exponent n33 - 1,2,3 respectively. The (a33)* profiles with depth

(Eqn. 19) for each case are shown in figure 3a. For all three cases the

average value (033> (Eqns. 24,26) is approximately 100 MPa, although the

gradient is much steeper for n33n 3 compared to the gradient for n3 3 w 1.

The stress tensor sampled by the x-ray beam at any *-tilt will be

-400
(C - -400 (28)

(033)>

*In "two-tilt" analysis, it is assumed that all "d" vs sin2 values fall
on a straight line U)Thus only the first and last data points are used to
obtain the stress.

- 11l-
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The "d" vs sin2* plots corresponding to stress tensor (28) for different

n33 values are shown in figure 3b. It is seen that:

i) Curvature in d" vs sin* increases with increasing exponent n33.

ii) All three curves converge as sin 2  increases,(penetration depth

decreases) as the gradients in stress also converge.

Analysis for all three cases (n33 - 1,2,3) are summarized in table I.

Examination of this table reveals that:

1) If a bi-axial assumption' is used in analyzing "d" vs sin 2 * data

obtained from surface layers, when a tri-axial stress tensor is present,

appreciable error will occur in the stress value calculated from the slope.

The error will be the sum of two components:

i) The (a33) value that will contribute directly to the slope (Eqn. 24).

ii) The curvature error which arises from fitting a least-squares line

to curved data.

2) If a tri-axial solution is used (Eqn. 24), the all calculated from

the slope will be corrected for (a33) , but the curvature error remains.

3) Curvature error increases with increasing n3 3, as predicted by eqn. 25 and

may be quite high if a low * range is used.

4) The curvature error is minimized if a least-squares line is fitted

to high * points only. This effect is due to decreasing absolute error,

associated with high * points, as predicted by equation (25).

It can be seen from equation(25) that, when no gradients are present

in a11 and C22' curvature error is only a function of the a gradient.

It is not dependent on the magnitude of Oll" In figure 4, the variation

of curvature error with magnitude of 033 > is plotted for n33 = 1,2,3 re-

spectively, when a high * range (*c39.23-6d') is used. Also included, as

a basis for comparison, is the total error in the stress obtained from a

bi-axial analysis using the total *-range (0, 60P) for the same (a33)

values (n33 - 1 for this case). It is seen that, using tri-axial analysis

over the high *-range will result in a maximum curvature error of 25 Mpa

(for ( 33) < 170 MPa) which is generally within the total experimental error.
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Groups II and III

To check the generality of the conclusions arrived at in group I, the

effects of stress gradients in other terms of the stress tensor were inves-

tigated:

In group II, a stress tensor of the form,

Oij4*( (9

was assumed, where (a = -400 + NiZ2 MPa.

The calculated stress profile with depth for this case is shown in

figure 5a, with the resulting "d" vs sin2* in figure 5b. The curvature

agrees with that calculated by Ddlle et al. However high * values are

needed to see the effect, since the gradient is not very steep compared

to those in figure 3a.

Results of analysis are shown in table II. The (133) values obtained

in this case are residuals due to misfit of the linear regression equation.

When a high *-range is used, the residual is well within experimental error.

It is seen that, whereas analysis of tri-axial data by bi-axial methods

yields very high error, analysis of bi-axial data by tri-axial methods is

more accurate, especially if the high *-range is employed.

In group III the effect of combined gradients were examined. Gradients

were assumed in all components of the stress tensor (13). Two cases were

examined:

a) (all>4 = -400 + K11z, where K11 - 5 NPa/P

(033 4  K 33 z 2

b) (aij) 4 - -400 + K Z2

(p33)4 - K3 3 z2

13 -



The calculated stress profiles for both cases are shown in figures (6a)

and (6b) respectively. The resultant "d" vs sin2* graphs are shown in figure

(6c). Again both lines converge for high * angles. The results of analysis

are summarized in table III.

Examination of tables II and III show that the conclusions from group

I are indeed general. It can also be seen that a high correlation coeffi-

cient in "d" vs sin 2* is not a good measure of the dimensionality of the

stress tensor.

Sumary

1) Deviations of interplanar spacing "d" vs sin2# from linearity,

arising from stress gradients are generally small, confirming previous

comments on this matter. (5)

2) Analysis of even slightly curved "d" vs sin2* plots assuming a

bi-axial surface stress state may cause high error in the stress value

determined from the slope.

3) Employing the methods for tr-axial stress tensors described here

will minimize errors due to the average value of the stress normal to the

surface. There will, however, still be some residual error associated with

curvature of the data.

4) This curvature error may be minimized by using high * points in

the linear least-squares fit, (sin2* >.4).

5) When two radiadons are available for a measurement, the one having

a high absorbtion coefficient (low penetration depth) should be used if strebs

gradients with depth are present. This will also minimize errors due to

curvature.

6) Unless it is absolutely clear that stresses normal to the surface

are absent, or quite small, the current x-ray method of stress analysis

should be replaced by the methods described here.
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TABLE TITLES

Table 1: Analysis of "d" vs sina plots I-I, 1-2, 1-3, in figure 3b.*

Table II: Analysis of "d" vs sin2* shown in figure 5b.**

Table III: Analysis of "d" vs sin2 plots 111-1, 111-2, shown in figure 6b.***

* For all cases l  is -400 MPa (a ) values shown are average values;

a is zero at .e surface z-0. Re gradient in (a33) is shown in
fliure 3a for all three cases, n33a1,2,3.

** t h e11 (z-0) is -400 MPa and a33 (z)=O. The "'N) values obtained

f om the analysis are residual errors due to the isfit of the linear
model used in analysis.

**In this case there are gradients in both q11 and C33' (figure 6a). al1l

Ol (z-0)) -400 MPa and 0 3 3 (z0) - 0.

-17-
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TABLE I

*-Range Type of >11)  ( 33 Error in (9 Type of Correlation

Analysis error in Coefficient of
-Degrees) n33 1 1 oa\ (11 "d"vs sin2*pio

0-45 1 Baxial -553.6 0 153.6 (3) +
___ "two-tilt" -553.6 0___3.__Curvature

0-60 1 " -535.8 0 135.8 "

45"60 1 "499.4 0 99.4 "

0-60 1 ,I.'C, ,  -537.14 0 137.14 " -9995
45-60 1 -500.5 0 100.5 " -.9999

0-60 1 Triaxial -428.19 108.96 28.19 Curvature -.9995

0-33.21 1 " -500.14 68.17 100.14 " -.9998

1A 23-60 1 i " -404.72 99.30 4.72 " -. 9997

0-45 2 Bi-axial -618.8 0 218.8 (&3> T
"Two-Til t" ..... Curvature

0-60 2 " -579.0 0 179.0
45.60 2 o -499.4 0 99.4

0-60 2 Bi-axial 0 177.81 " -.9977. "lstria ',4 . 7-577.81
45-60 2 " -500.5 0 100.5 " -.9999

0-60 2 Tr-axial -461.96 115.85 61.96 Curvature -.9977

0-33.21 2 " -639.72 14.66 239.72 " -.9993

.3923-60. 2 " -408.69 95.08 8.69 --.9997
0-5 E-axial" -("3

0-45 3 "Two-Tilt" -705.60 0 305.60 T
i oTlCurvature

0-60 3 " -636.90 0 236.90 "

45-60 3 rt -493.4 0 93.4

0-60 3 Bi-axial -637.89 0 237.89 " -.9938i" sin .t ' .t,

45-60 3 " -496.6 0 96.6 " -.9993

0-60 3 Tri-axial -507.59 130.31 107.59 Curvature -.9938

0-33.21 3 " -849.15 -64.89 449.15 " -.998S

39.23-60 3 -412.55 95.22 12.55 " -. 9993

- 18 -



TABLE II

Type of )- Error in Type of Correlagtion
4-Range Type of 33) (a Erron in Coefficient of
(Degrees) n 1 Analysis (MPa) (MPa) oI "d" vs sin 2i-axial plot.

0-45 1 "To-Tilt" -336.4 0 63.6 Curvature

0-60 1 -354.5 0 45.5

45.60 1 -361.8 0 38.2
0-60 1 Bi-axial

,6sinl -355.66 0 44.34 -.9993

45-60 1 " -415.8 0 15.8 " -.9987

0-60 1 Eri-axial -364.86 -9.20 35.14 " -.9993

0-33.21 1 " -305.60 24.53 94.40 " .9999

39.23-60 1 " -382.61 -2.272 17.39 -.9986

" 19 "



TABLE III

*-range n Type of (a (cp 33) Error in Type of Correlation
(Degrees) 11 33 Analysis kMPa) (Hpa) 1 i-oi.-- I  error in Coefficient ofN I 1/ Oil 'd" vs sin2 Plot.

0-45 1 2 ia -575.5 0 175.5 33+"Two-Tilt" Curvature

0-60 1 2 " -535.7 0 135.7

45-60 1 2 i -456.0 0 56.0

0-60 1 2 Bi-axial
,sina2,, -540.08 0 140.08 -.9982

45-60 1 2 " -458.4 0 58.4 " -.9996

0-60 1 2 Tri-axial -436.90 103.20 36.90 Curvature -.99o2

0-33.21 1 2 o -583.70 19.57 183.70 -.9999

39.23-60 1 2 " -393.39 86.36 6.61 " -.9992

0-45 2 2 Bi-axial -586.1 0 186.1 F33> T
"Two-Tilt" Curvature

0-60 2 2 " -550.0 0 150.0

45-60 2 2 " -477.6 0 77.6

0-60 2 2 Bi-axial -548.29 0 148.29 " -.9985,,toi V'

45-60 2 2 " -477.3 0 77.3 " -.9999

0-60 2 2 ri-axial -431.98 116.31 31.98 Curvature -.9985

0-33.21 2 2 -565.30 40.42 165.30 -.9997

P9.23-60 2 2 " -392.02 100.73 7.98 -.9995

- 20 -



FIGURE CAPTIONS

Figure 1 : Definition of the angles 4 and 4 and orientation of the labora-

tory system Li with respect to the sample system S! and the

measurement direction S

Figure 2 : Penetration depth '"T" vs sin34 for Cr-radiation on steel at

20 - 156.

Figure 3a: Calculated (a33)4 profiles vs depth for group I. In all three

cases a11 a a22 = -400 MPa throughout the depth of penetration.

Figure 3b: The "d" vs sin2 * corresponding to the stress profiles shown in figure

3a. (The results of analysis for these curves are shown in Table

I, groups I-1, 1-2, 1-3 respectively.)

Figure 4 Variation of the magnitude of error in the surface stress a11

with the magnitude of the average stress in the direction of

the surface normal. The steepest curve shows the error in sur-

face stress determined by bi-axial analysis for # - 0-60'. The

other three.curves show errors resulting from triaxial analysis

for # - 39.23 - 6WP.

Figure 5a: Residual-stress profile vs depth for group II. In this case

there is no stress gradient in the direction of the surface

normal.

Figure 5b: The "d" vs sin 4 plot corresponding to the stress profile with

depth shown in figure 5a. Results of analysis of this curve are

summarized in Table I1.

Figure 6a: Residual stress profiles with depth for group III-1.

Figure 6b: Residual stress profiles with depth for group 111-2.

Figure 6c: The "d" vs sin2 * corresponding to residual stress profiles shown

in figures 6a and 6b. The results of analysis for both curves

are summarized in Table III, groups i1-1, 111-2 respectively.
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