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EFFECT OF GRADIENTS IN MULTI-AXIAL STRESS STATES ON

RESIDUAL STRESS MEASUREMENTS WITH X-RAYS

by

I. C. Noyan¥

ABSTRACT

The assumption, that stress components in the direction of the surface

normal are negligible in traditional residual stress determination methods
by x-rays, has been recently disproved. 1In this paper we investigate the

effect of normal stresses on the accuracy of these traditional methods,

It is shown that appreciable error can exist in surface stresses determined

by such methods, if normal stresses are present. New procedures are proposed

to minimize these errors.
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INTRODUCTION

The determination of surface residual stresses in poly-crystalline
materials by X-ray methods is well established.(l’z) Traditional methods
assume a bi~axial stress state that is uniform in the surface layers
penetrated by the x-ray beam. This assumption is based on the conception
that this penetration depth is too low to be affected by the stresses in
the third dimension. These methods predict a linear variation of inter-
planar spacing "d" with "sin®§", with a slope that is proportional to the
stress in the measurement direction (§§); here § is the angle between the
normal to the diffracting planes (L3) and the surface normal of the speci-
men (§3), as shown in figure 1. If the components of the (assumed) bi-axial
stress tensor exhibit steep gradients in the volume sampled by the x-ray
beam, curvature occurs in the "d" vs sinzv plot, The slope of a least=~square
fit to such data yields the stress in the (§§) direction, averaged over the
depth of penetration.(3)

The assumption in these traditional methods, that stress components
in the direction of the surface normal (§3) are negligible in the volume
sampled by the x-ray beam has been disproved in several recent studies.(4’5)
Stress components of appreciable magnitude in this direction have been
detected in the surface layers of materials, created in various ways.
Recent theory, as well as experiments, show that if stresses (313,523) in
the direction of the surface normal (§3) are present, '"splitting'" of the
"d" vs sin®y data results; that is "d" vs sin®y plots have opposite curvature
for negative and positive y. Analysis of such data is described in detail
by D611e56) (see also reference 4 for an example of the use of this analysis).
If, however, only normal stress 0533) is present in the direction of the
surface normal and shear components are negligible, curvature occurs in the
"d" vs sin®y data and there is no "y-splitting". The degree of such curvature
depends on the steepness of the gradient in T33° (Since ¢33 is a stress
normal to the surface, it is zero, by definition at the surface. Thus it
has to exhibit a gradient in the surface layers.) DJlle, James and Cohen(s)
have shown how to estimate the gradient using this curvature. It will be
shown in this paper that, even for very small curvature in the "d" vs sin®y
data, analysis with the bi-axial assumption causes an appreciable error in
the calculated surface stress, Methods are proposed that provide for the

determination of the complete stress tensor in the surface layers in the
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absence of y-splitting, i.e., when 0132 9,4 aTe negligible. These methods
are tested here by computer simulation,

THEORY

The orthogonal coordinate systems used in the following discussion
are shown in figure 1. The specimen axes are defined such that §, and s,
are in the surface of the sample. The laboratory system, in which diffrac-
tion is sampled, is defined such that 53 is in the direction of the normal
to the family of planes (hkl) whose ""d" spacings are being measured by
x-rays. L, is in the plane defined by §1and §2, and makes an angle ¢ with
§2. In what follows, primed tensor quantities refer to the laboratory
system Li and unprimed quantities to the sample system 51, following the

convention established by D611e.(6)

If the unstressed lattice spacing "d'is known, strains in the L,

direction may be obtained from:

€. . = dgs7ds . D)
337%,¢ d
o
This strain may be written in terms of strains in the S, system of
(6) '
axes:

(353)§,ﬁ = ellcosz§sin3¢ + e1281n2§sin3¢ + s22s1n3§sina¢ +

3
€ 1,€08 v+ ¢13cos§sin2¢ + e23sin§sin2¢ . (2)

Expressing the strains on the right side of equation (2) in terms

of stresses we obtain:
' - v i 2 3 - 5} 2
(e33)§’* E {qllcos ¢+ clzsinZQ + azzsin ] o, sin®y +

vy, _ ¥ 3:2.{ }
(: B.) 933 EQ’11+ 322+ 333) + 3 cl3cos§ + cz3sin§ sin2y. (3)

Here E 1is Youngs modulus and v is Poisson's ration. If a stress tensor of

the form: %11 o o
993 °( ° %922°
o o0 o (4)




exists in the volume sampled by the x-ray beam, equation (3) will yield the
classical residual stress equation:

L+v
€334, " & “:"11““2"i + °22““a§}““2" - 30 Yoy S

Since qllcos°§ + ezzsin?i = a’(the stress in the direction §§), equation (5)
becomes :

1
(@3304,y =& log) stey - § Gy + 0y ®

It is seen from equations (6) and (1) that, the slope of "d" vs sin®y

is proportional only to ¢, when a bi-axial stress state is assumed. If a

$
tri-axial stress tensor of the form:

922 )]

is present in the coordinate system §i’ equation (3) becomes:

(€3304,4 " B logyc0ss + o) 010%8 - (0339 Joiny + () (o33,
L Ceipy R oy - Cogp,) stety (1))
3373,y E § = 933 E 33y
=2 {gy, +o0,, + (g0} (8b)
E 911 Yot O3t

where carats "( )" imply averages over the depth of penetration of the
X-ray beam.

From equations (8b) and (1) it can be seen that, when a stress tensor
such as equation (7) exists in the surface layers, the slope og\a linear
le,{st-squares fit to "d" vs sin’* will be proportional to[cg-(o”)], where
) is :hs\normal stress averaged over the penetration depth (eqn. 26).

(e
33
Thus when (533) is present in the penetrated volume, there will be an error
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in the stress ogs determined fromAr.he slope by the conventional (bi-axial)
analysis, equal in magnitude to (033)-

It is possible to obtain both (033) and g, using equations @b and (1).

$
There are a total of three unknowns: Stresses O (033) and the angle 3,

which is the angle between the principal axis §1 and the measurement direction

_s_.. A simple method of determining the stresses (033) and O is presented

below,

1f data for "d vs sin’t is obtained at two § angles; QA and QA+ 90°,
90° will be:

where §,6 1is arbitrary, the slopes of "d" vs sin’t, M, , M
A QA §A+
- (1) ¢ 3 ag (o }
MQA ( E ) {cucos QA + czzsin QA (333) (9a)
1+v A~
- '( E ) {%A' (e39) - S

14+v\ [ -
MQA"' 900 = (TW> tc:ucos2 (§A+ 90°) + g»zzsi.n2 (8,+ 90°) - (033)} (9¢)

) B 1 -

Summing Eqns. (9a) and @c) we obtain:

A\
- (1t . 9!
N My +90° ( E ) {’11*' ¢,y - oy} (10a)
: - L A

The intercept I of (e53) in Eqn. 8a vs sin®y at y=0° does not depend on §,
vy, v , v
I -( T ) (939 - Floyp = F @1, +09,) - (1)

The constants C'TW) and - }’E are "X-ray elastic constants" and may be

obtained from the literature for a given reflection, hkl, and material, or
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measured following the procedures outlined in reference 7. (Since only
slopes of loud vs "d" are used in these procedures, effect of gradients
are e;&ninated.) Equations (l1) §?d (10b) are then solved simultaneously
for (633) and (9,,+¢d,,). With <a33), the stresses in S, and S5 o
directions, s and s +go°,are obtained from equations (9b) and Q9d)
respectively. A

The analysis described here yields the stress normal to the surface;
(c33), and two stresses in the surface plane; °§A agd o
5% - If the principal

stresses in the surface o11° 522 and the angle ¢ these form with the measure-

§A+9OP‘ It is also
possible to obtain the first stress invariant 11-12 ¢

ment direction §Q are required, "d" vs sin2¢ values must be obtained for a
third § angle, §A+ o, where o is arbitrary (o # 90°) The slope of the "d"

vs sin®y line, MQAmwill be:

-lﬂ 23 -] -
HQAf“ E tallcos (§A+ a) + azzsin (§A+ ) <°33>J . (12)

A
Since (3335 is known, %11’ CPY and § may be obtained by simultaneously

solving equations (9a), (9¢) and (12).

Special case

Some important surface treatments such as shot peening produce residual
stresses which are isotropic in the surface. The stress tensor is then of
the form:

311 8
%44 = °11 (13), where §(( o5y
6 933

For such cases, the analysis is simplified and the time of measurement

is reduced. Substituting equation (13) into equation (3):
1y efit . 2y iy
(€33) (15 ){"11 (o590} #1a"s *( £ /{937

- %{“33)1, + 2"11} as




Since the slope and intercept of "(553)¥ vs sin‘y may be solved for
%11 and (333), one arbitrary ¢ tilt is sufficient to obtain the complete
stress tensor in the surface layers sampled by the x-ray beam. 1n other
words, the usual measurement of "d" vs sin’y suffices, but the slope and

the intercept at § = (° must be employed.

Effect of Curvature

The term "033", used in the previous equations, is a stress normal
to the surface. It is, of course, exactly zero at the surface. Therefore

can exist only as a gradient in the near surface layers. It is well

-}
33
known that, when such stress gradients are present, curvature occurs in
the "d" vs sinaw plots(3’5’6), and, as mentioned above, a method has been
)

proposed to use this curvature to obtain the gradient. It has also

been suggested that the slope of a linear least-squares fit will yield an

)

vaverage" value of the stress state over the depth of penetration. Since
the x-ray beam penetrates to different depths at each y-tilt, a different
portion of the existing gradient is sampled with each §-tilt, causing the
curvature in "d" vs sin®y. Analysis of such data by linear least-squares
may cause appreciable error in the slope and intercept of the line fitted

to the data. This error is now examined.

We assume that the behavior of stress, °ij’ with depth follows a power
law*:
n.
= = 1
oij(z) oij(z 0) +aijz i, (15)
Where aij(z = 0) is the stress value at the surface, aij’ nij are constants
(over the depth of penetration) and z is the distance coordinate along the

normal to the surface (measured into the material).

The average stress obtained by x-rays penetrating to a depth "z" is:(6)

Io Ez/sz
ij
(0397, = (16)

Ez/sz

*For example, in case of autofrettage, (shrink-fitting of cylinders

®

on solid shafts), nij- 2 for tangential and radial stresses.
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where -~ is given by:

. sin"9 - sin®y
"6 2 sinBcosy ’ (17a)
for ¥y tilts around the @ axis and
v sin;:osw , (17b) T

for tilts around an axis parallel to the diffractometer plane, Here p is
the linear absorbtion coefficient, © the Bragg angle of diffraction and ¥
is defined in figure 1. Variation of T and 7* with § are shown in figure 2.

Substituting equation (15) into equation (16) and integrating:
n
[« = =
( ij)v cij(z 0) + xij¢ ij (18)

Where Ki is a constant, nij is the exponent of the stress variation (Eqm. 15)

3

and T is given by equations 17.

Assume, for simplicity, that a stress tensor of the form given in
equation (13) exists in the near surface layers and that the stress in the

surface plane °1n1 is not dependent on depth. For C33» equation (18) becomes:
n
(c33)¢ = Ky,7 33 (19), vhere n, 20 .

Substituting equation (19) into equation (14) and re-arranging:

45,4% 1+v 2, 2v l(33"'n33 s
pun & B S ' =] —— 1 - — — e g . -
i (e33)* (E)cusm - ot {(1+v) (1-sin®y) -v} (20)
R ¢-) 3
The equation of a least-squares line is: -
Y= Eo + Elx + e, (21)

where Y: the dependent variable
X: the independent variable
e: error

Byr 5y¢ regression parameters.

Comparing equations (6), (20) and (21), we observe that, if a least-
squares line is assumed, (i.e. assuming only a bi-axial stress state), the
error term will be:

K47 33
e¢ = -——E——{ (1+V)(1'Sin2¢') - V} B (22)
It is seen from equation (l2) that:

i) ey is a biased error. (It is systematic.)
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ii) For a fixed depth (fixed {), the error "ev" in (¢' )¢ increczses with
33

increasing exponent of the stress (n
iii) For a fixed Day s
low § (high t) tiles than for (e

330

there will be greater bias in (e measured at

33y
33)* measured at high y (low ) angles.

Analysis of data corresponding to equation (20) by conventional methods
ignores the error components, ev, associated with each point and forces a
linear least-squares solution to the data. Since the error is not random,
but highly biased, such a procedure may yield large errors in the stress

calculated from the slope, which depend on aqqs n in equation (15).

33

When a tri-axial stress state, (Eqn. 14), is employed, there will

still be some error due to this curvature; expanding equation (20):

1+v n '} 2 1+\j n q n l} 3
] — - —— -
(¢33)"< 5)6’11 KyqT 33tsin®y +( £/ K337 33- K337 3+ 2, (23)
A least-squares fit to the data (with equation 14) yields the equation:
14y A (}+v N v A
] B | — - 2 —_— - —
<e33>v ( E.){°11 <o33)Tsin v+ (033) E {(033)+2011] R (24)

Thus, the deviation of each point <e53>¢ from linearity is:

n PaS
(Ryq7 33-(333))

,; - = {(1+v) (1-sin?y) + v} | (25)

Pal
where (033) is the least-squares average of (333) values*

¥

A
*The equation for (333) is: ~ E X ;i)(yi- )
(5..)= g, L1 . (26)
33 11 N S (1+v)
1 5% 7%

where X = sin®y N
- ' = ly - X =
Y (c33>*, N = Number of y-tilts and{ X (:§1X%>/k

' N
\ Y=y
Y=y )/N
el

We see that the normal stress obtained from the slope, (:33), is a double
average; first averages are taken by x-rays over different regions of the

stress gradient, than these are averaged again by the least-squares fitting.

-8 -
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Comparing equations (25) and (22) we observe that, while the absolute
magnitude of bias associated with a given (e53)w is less when the tri-axial
analysis is used, some error will remain, causing an error in stresses cal-
culated from the slope and intercept of the "d" vs sin®y data, These errors
will be termed "curvature errors" here. 1t is seen from equation (25) that,
for high y angles (low penetration depths), the bias associated with-(e!.)

337
will be smaller than for low §y points, Thus a least-squares analysis of
the high y range will produce a more meaningful fit of the linear model to i

the data, in the presence of such curvature,

General Case

Up to this point it has been assumed that, no shear stresses in the
direction of the surface normal exist. This assumption is not necessary
as far as the curvature error is concerned. When a general'stress state

is present in the near-surface layers, the strains in the (_I_.3)§ V direction
- 1

are given by equation 3. The analysis in this case has been described by

D511e56) The quantities a,, ap are formed:

= ' v - I+ 2 s 2z
a; %(e§¢+-+c§*_) (.E ) {ollcos ¢+ €12 sin2d + ¢ ,,8in ) <c33>¢} R

sin®y + (%)(033% - % (01 *+ €9y <c33)*), (27a)
3 = Bleg 4 - ege) ™ (HT\)>{<°13>¢°°S° + (opy) stnd) sin|2e], (27

1
Where ;;*+ is the gés measured at § = +¢ and §, and eéw- is the €5, measured

at ¢ = -\*) and $§.

It is seen that, a, and ap; will have curvature when plotted against
sinzt and sin|2v| respectively, since both contain components that are a
function of depth (°3J,j-1,3)’ In fact a, (Eqn. 27a) is a general form of
Eqn. (24). Using high ¢-points to form the arrays a; vs sin?;and ap vs

sinlzw] will minimize the curvature error associated with this analysis,
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If gradients are present in all components of a general stress tensor,
equations (20) - (25) will have additional terms.. However the general ideas

discussed above will still be valid for most cases.

DATA SIMULATION AND ANALYSIS

Computer simulation of "d” vs sinzt was used to obtain info:zftion
about the magnitudes of errors, resulting from the presence of (533) and
the curvature error. A computer program was written which calculated the
strains in the §i coordinate system for a given stress tensor, converted
these strains into strains in the (53)§'* direction and formed the "“d" vs
sin®y array for a given §. The generated, €350 VS sin®y were then analyzed

by the methods described above.

Three different stress-tensor groups were investigated. The assumptions

common to all three groups are: -

1) The hypothetical sample is steel,

2) Cr radiation is used in the analysis. The y-goniometer geometry
is assumed.

3) Elastic constants do not change with depth.

4) The constants a nij’ defined by equation (15) are constant

ij’
over the maximum depth of penetration (5.4.).

5) For simplicity, it was assumed that the stress state in the plane
of the surface is isotropic (c11 = °22’ and the variation of %1 and €59
with depth are identical:

Bon- 3021
¥4 3z

Here, (c11)2=0 was chosen arbitrarily as -400 MPa.

6) Different exponents (n33) were used to form the (c33)w profiles

with depth. However, in all cases K33 values were selected such that

A\
(633) (Eqns. 24,26) was approximately 100 Mpa. This value was chosen

- 10 -
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since experimental values reported in literature on steels are generally
between 80 - 140 MPa.(a’s)

7) For a given stress tensor, the 353 vs sin®y array was examined
as follows:

a. Bi-axial analysis (Eqn. 6) over the entire y-range,
¥ (0°, 6(P), and, only over the high y-range, Ve (45,60).

b. Two tilt* analysis using y = 0 and 45, and 0 and 60°, aad

45° and 60° respectively.

c. Tri-axial analysis (Egn. 24) over the entire y-range.

d. Tri-axial analysis over y = (0, 33.21°%); first four
points,

e. Tri-axial analysis over y = (39.23 - 6(0°); last four
points,

8) The results are shown in tables (1-3) which show the y-range

employed, the stress exponents (n,,) assumed to exist in the penetra-

1]

tion volume, type of analysis used to obtain the stresses CIYY the error

3

resulting from the analysis, the type of error and the correlation coeffi-

cient of the regression line fitted to the "d" vs sin®y data.

Group I
For this group, Gy U,y Were assumed to be constant over the depth
of penetration, Three types of gradients were assumed for o332 with the

stress exponent n,, = 1,2,3 respectively. The (333)* profiles with depth

3

(Eqn. 19) for each case are shown in figure 3a. For all three cases the
A

average value (533) (Eqns. 24,26) is approximately 100 MPa, although the

gradient is much steeper for n. .= 3 compared to the gradient for n,, = 1.

33 33

The stress tensor sampled by the x-ray beam at any ¢-tilt will be :

~400 0
<°1> = =400 . (28)
¥y
0 (333)*

*In "two-tilt" analysis, it is assumed that all "d" vs sin®y values fall
on a straight li.ne(1 Thus only the first and last data points are used to
obtain the stress. )




The "d" vs sin®y plots corresponding to stress tensor (28) for different

By values are shown in figure 3b., It is seen that:

i) Curvature in '"d" vs sinzt increases with increasing exponent n33.
i1) All three curves converge as sin®y increases, (penetration depth

decreases) as the gradients in stress also converge.

Analysis for all three cases (n33 = 1,2,3) are summarized in table I.
Examination of this table reveals that:

1) 1f a bi-axial assumption’is used in analyzing "d" vs sin®y data
obtained from surface layers, when a tri-axial stress tensor is present,
appreciable error will occur in the stress value calculated from the slope.
The error will be the sum of two components:

A
i) The (g33) value that will contribute directly to the slope (Eqn. 24), ]

ii) The curvature error which arises from fitting a least-squares line 1

to curved data,

2) If a tri-axial solution ﬁi used (Eqn. 24), the calculated from

¢
11
the slope will be corrected for <c33>, but the curvature error remains.

3) Curvature error increases with increasing n 3 as predicted by eqn. 25 and

3
may be quite high if a low y range is used.

4) The curvature error is minimized if a least-squares line is fitted
to high ¥ points only. This effect is due to decreasing absolute error,

associated with high y points, as predicted by equation (25).

It can be seen from equation(25) that, when no gradients are present
in %11 and 322, curvature error is only a function of the 935 gradient.
It is not dependent on the magnitude of °11° In figure 4, the variation
33 " 1,2,3 re-
spectively, when a high ¢ range (y€39.23-60°) is used. Also included, as

of curvature error with magnitude of (é;;) is plotted for n

a basis for comparison, is the total error in the stress obtained from a
bi-axial analysis using the total y-range (0, 60°) for the same (033)

values (n,., = 1 for this case). It is seen that, using tri-axial analysis

33
over the high y-range will result in a maximum curvature error of 25 MPa
Ve

(for (c33) < 170 MPa) which is generally within the total experimental error.

- 12 -




Groups II and III
To check the generality of the conclusions arrived at in group I, the
effects of stress gradients in other terms of the stress temsor were inves-

tigated:
In group II, a stress tensor of the form,

<au)v 0

(011)¢

was assumed, where (g..) = <400 + z2 Mpa.
11 o

The calculated stress profile with depth for this case is shown in
figure 5a, with the resulting "d" vs sin3¢ in figure 5b. The curvature
agrees with that calculated by Dolle et al. However high y values are
needed to see the effect, since the gradient is not very steep compared
to those in figure 3a.

A
Results of analysis are shown in table II. The (333) values obtained

in this case are residuals due to misfit of the linear regression equation.
When a high ¢y-range is used, the residual is well within experimental error.
It is seen that, whereas analysis of tri-axial data by bi-axial methods
yields very high error, analysis of bi-axial data by tri-axial methods is
more accurate, especially if the high y-range is employed.

In group I1I the effect of combined gradients were examined. Gradients
were assumed in all components of the stress tensor (13). Two cases were

examined:

a) (cll)t = =400 + K,,z, where K;; = 5 MPa/y
- 2
{0337y = K332
b) {oyy)y = -400 + Ky, 2°
- 2
- 13 -




The calculated stress profiles for both cases are shown in figures (6a)
and (6b) respectively. The resultant "d" vs sin®y graphs are shown in figure
(6c). Again both lines converge for high y angles. The results of analysis
are summarized in table III.

Examination of tables II and III show that the conclusions from group
I are indeed general., It can also be seen that a high correlation coeffi-
cient in "d" vs sin®y is not a good measure of the dimensionality of the

stress tensor.

Summary

1) Deviations of interplanar spacing "d" vs sin®y from linearity,
arising from stress gradients are generally small, confirming previous

)

comments on this matter.

2) Analysis of even slightly curved "d" vs sin®y plots assuming a
bi~axial surface stress state may cause high error in the stress value

determined from the slope,

3) Employing the methods for tri-axial stress temnsors described here
will minimize errors due to the average value of the stress normal to the
surface, There will, however, still be some residual error associated with

curvature of the data.

4) This curvature error may be minimized by using high y points in
the linear least-squares fit, (sin®y >.4).

S) when two radiatdons are available for a measurement, the one having
a high absorbtion coefficient (low penetration depth) should be used if stress
gradients with depth are present. This will also minimize errors due to

curvature,

6) Unless it is absolutely clear that stresses normal to the surface
are absent, or quite small, the current x-ray method of stress analysis

should be replaced by the methods described here.

- 14 -
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TABLE TITLES

Table I: Analysis of "d" vs sinzt plots 1-1, I-2, I-3, in figure 3b.*
Table II: Analysis of "d" vs sin®y shown in figure 5b.%*

Table IIl: Analysis of "“d" vs sinat plots IIl-1, II1I-2, shown in figure 6b, %%

* For all cases g..° is -400 MPa (g..) values shown are average values;
c.,, i3 zero at %ﬁe surface z=0, iﬂe gradient in (033)* is shown in
f;éute 3a for all three cases, n33-1,2,3.

kg 1° = g,,(220) is -400 MPa and 0,,(z)=0. The {(s.,) values obtained
from the analysis are residual ertdrs due to the gisfit of the linear
model used in analysis,

*%*In this case there are gradients in both €11 and T332 (figure 6a), q11°
- gll(z-O) = =400 MPa and 533(2-0) = 0,

iiitiitaiion,
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TABLE I
A AN A
¥~Range Type of (cn) <c33) Error in (035 Type of Correlation
(Degrees) Analysis A of |error in Coefficient of
33 (MPa) t@s) [ {ay,)-0,°] %11 ndvvs sin?y glotl
) Bi-axial _ @5,) +
0-45 1 Mewo=tileh 553._6 0 153.6 Cug3
0-60 1 " -535.8 0 135.8 "
45-60 1 " -499.4 0 99.4 "
l-axial
0-60 1 o, m;‘ o ~537.14 0 137.14 " -.9995
45-60 1 " ~500.5 4] 100.5 " -.9999
0-60 1 }Triaxial ~428.19 108,96 28.19 Curvature -.9995
0-33,21 1 " -500.14 68.17 100,14 " -.9998
3, 23-60 1 " 404,72 99,30 4,72 " -.9997
P Bi-axial {e3) T
|- 0-45 2 loreorilen | -618.8 0 218.8 cudvature
0-60 2 " -579.0 (4] 179.0 "
45,60 2 " -499.4 0 99.4 "
i
| 0-60 2 |Bi-axial 0 177.81 " -.9977
nsigu" -577,81
45-60 2 " -500.5 0 100.5 " -.9999
0-60 2 |Tri-axial -461.96 115.85 61.96 Curvature -.9977
0-33.21 2 " -639.72 14.66 239.72 " -.9993
,39,23-60, 2 " -408,69 95.08 8.69 " -.9997
i Bi-axial i (ead T
0-45 3 fpwoorilen 705.60 0 305.60 o3 ure
0-60 3 " -6136,90 0 236.90 .
45-60 3 " =493.4 0 93.4 "
0-60 3 |[Bi-axial -637.89 0 237.89 " -.9938
Ngindytt
45-60 3 " «496.6 0 96.6 " ~.9993
0-60 3 |Tri-axial -507.59 130.31 107.59 Curvature ~.9938
0-33.21 3 " -849.15 ~64.89 449,15 " -.9988
39.23-60 3 ' -412.55 95,22 12,55 " ~.9993

- 18 -




TABLE II
~ ~ CError in [Type of Correlation
¥-Range Type of <<’11> (333) (5\ ) JErron in g,,]|Coefficient of
(Degrees) "1 Analysis (MPa) (MPa) A i1 1 "d" vs sin’y
1(c,,) - a1, plot,
0-45 1 i;:f;ilt -336.4 0 63.6 Curvature
0-60 1 " -354.5 0 45.5 "
45.60 1 " -361.8 0 38.2 "
0-60 1 .‘E;ﬁ%:.l, -355.66 0 44,3 " -.9993
45-60 1 " -415.8 0 15.8 " -.9987 1
0-60 1 frri-axial -364.86 -9.20 35.14 " -.9993
0-33.21 1 "  -305.60 24,53 94.40 " -.9999
39.23-60 1 " -382.61 -2,272 17.39 " -.9986
- 19 -




TABLE IIl
y o y
y-range a a Type of (au) <c33) Ergor in |Type of | Correlation
(Degrees) { 11 33 {Analysis (MPa) ora)  |i( 1 o||error in | Coefficient of
h 91111 o1 'd" vs sin®yplot.
TBI-axial T +
0-45 1 2 " wo-Tile" «575.5 0 175.5 Cur%ature
0-60 1 2 " -535.7 0 135.7 "
45-60 1 2 " -456.0 0 56.0 "
0-60 L2 ﬁ;;:;‘;ﬁl -540.08 0 140.08 " -.9982
45-60 1 2 " =458.4 0 58.4 " -.9996
0-60 1 2 Tri-axial -436.90 103.20 36.90 Curvature -.9902
§
0-33,21 1 2 " -583,70 19.57 183.70 " -.9999
39.23-60 1 2 " -393.39 86,36 6.61 " -.9992
Bi-axial | IR
0-45 2 | 2 [apaafl] -sse.l 0 16,1 [833)
0-60 2 2 " =550.0 0 150.0 n
45-60 2 2 " =477.6 0 77.6 "
0-60 2 2 Bi-axial =548,29 0 148.29 " -.9985
"sin®y"
45-60 2 2 " =477.3 0 77.3 " -.9999
0-60 2 | 2 [riraxial |39 98 | 116.31 31.98 | cCurvature | -.9985
0-33,21 2 2 " -565.30 40.42 165.30 " -.9997
b9.23-60 2 2 " =392.02 100.73 7.98 " -,9995
- 20 -
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CAPTIONS

1.

3a:

3b:

Sb:

6a:

6b:

Definition of the angles § and §y and orientation of the labora-

tory system Li with respect to the sample system S, and the

‘
measurement direction §,. ;
Penetration depth "T" vs sin®y for Cr-radiation on steel at

20 = 156°

Calculated (033>* profiles vs depth for group I. In all three

cases ¢,y " ¢0,, " =400 MPa throughout the depth of penetration.

22
The "d" vs sin®y corresponding to the stress profiles shown in figure
3a, (The results of analysis for these curves are shown in Table

I, groups I-1, I-2, I-3 respectively,)

Variation of the magnitude of error in the surface stress %1
with the magnitude of the average stress in the direction of
the surface normal. The steepest curve shows the error in sur-
face stress determined by bi-axial analysis for y = 0-60°. The
other three.curves show errors resulting from triaxial analysis
for y = 39.23 - 60°,

Residual-stress profile vs depth for group II. In this case

there is no stress gradient in the direction of the surface

normal.

The "d" vs sinat plot corresponding to the stress profile with
depth shown in figure 5a., Results of analysis of this curve are
summarized in Table II.

Residual stress profiles with depth for group IIl-l.
Residual stress profiles with depth for group III-2,

The "d" vs sin®y corresponding to residual stress profiles shown
in figures 6a and 6b., The results of analysis for both curves
are summarized in Table III, groups III-1, III-2 respectively.
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