
PAD-AI13 A" HARRIS CORP ULSLtMIE FL OVERNMENT ELECTRONIC SYSTE--ETC F/f 9/2

m9 St T 0 WORMINOTON. C E SIESLIER F30602-3O-C-0OU5

WiNCLASSIFIED RADC-TR-B1-39 M

rawCTR.S as494
PHaul T"2hI pi

SECURE DBMS

""RRI ORPORATION

T.D. Wwndaletn
CL Ghakr

[MUOVID POR PWUC RELEASE; STRIIUTION UNUMITID

aC.
C)I

L"ROME AIR DEVELOPMENT CENTER DTIC VT
a: Air force Systems Command APR 19 1982

Griffiss Air Force Base, New York 13441

82 04 19 001

-- -,,.- own,,

This report has been reviewed by the RADC Public Affairs Office (IPA)
is releasable.to the National Technical Informatiom Bevico (NTOS). At PM3
it will be releasable to the general public, including foreiSn sati s.

RADC-TR-81-394 has been reviewed and is approved for publication.

APPROVED: j*

SANDRA L. POSHA
Project Engineer

APPROVED: (;/; '/~
ALAN R. BARNUM, Ass't Chief
Command and Control Division

FOR THE COMMANDER:~

JOHN P. RUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be reumovea from the RADC
meling list, or if the addressee is no longer employed by your organization,
please notify RADC,. (COEA) riffiss API NY 1341. This will assist us in
maintaining a current smaling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

A"-, -

UNCLASSIFIED
S E C U R I T Y C L A S S IF I C A T IO N O F T H IS P A G E (W h e n D e ge. E n te re d) , R E ADI N S T R U C T I O N S

REPORT DOCUMENTATION PAGE NO.READ CNSTRUCsTIOR

I. REPORT NUMUIER I. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-81-394 K
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

SECURE DBMS Final Technical Report
July 1980 - July 1981
6. PERFORMING 010. REPORT NUMBER
N/A

7. AUTHOR(e) 6. CONTRACT OR GRANT NUMBER(s)

T.D. Wormington
C.E. Giesler F30602-80-C-0235

9. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PROGRAM ELEMENT. PROJECT. TASK

HARRIS CORPORATION AREA & WORK UNIT NUMBERS

Government Electronic Systems Division 62702F
Melbourne FL 32901 55812131
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATS

Rome Air Development Center (COEA) February 1981
Griffiss AFB NY 13441 IS. NUMBER OF PAGES

330
14. MONITORING AGENCY NAME & ADORESS(it different Irom Controllng Office) IS. SECURITY CLASS. (o thl report)

UNCLASSIFIED
Same Is.. DECLASSIFICATION, DOWNGRADING

N/ASCHEDULE
16. DISTRISUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. it diflerent from Report)

Same

1S. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas C. Darr, Maj, USAF

19. KEY WORDS (Continue on reverse side if necessary nd Identify by block number)

Multi-Level Security Security Filter
Distributed Computer Hardware DoD Security Model
Secure Data Bases

Computer Security
Static Encryption

20. AUOSTRACT (Continue on reoveree ode It neceesary end Identily by block number)

This study effort evaluates the feasibility of employing a distributed
computer system architecture to support the secure data base management
activities of the Air Force. Various distributed system architecture and
the means of implementing the required security enforcing mechanisms are
described. The basic approach places a security filter between a group of
independent single-level user data base management processors and a common
shared, multi-level data base. This security filter is capable of (over)

DOI JAN 73 1473 EDITION of I NOV S S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dat. Entered)

L

/ UNCLASSIFIED
cUMeT CLAWFICATiON OP TWIS PAGC(fIt1 Doa got~r

enforcing a different DoD non-discretionary security policy (consisting of
read and write access controls, security classification and compartment)
for each DBMS processor through provable hardware means. In addition,
the security filter can either provide or support enforcement of discre-
tionary security (need-to-know) and integrity protection (data Quality)
through software (or firmware) external to the DBMS processors. This
approach isolates such security related software from user control.
Consequently, there is less need for software certification; that is,
trusted software may be adequate for discretionary and integrity security.

The study concludes that the use of a distributed architecture does make

it feasible to provide provable multi-level security for data base opera-
tions. Such an approach offers many potential advantages. In particular,
the set~rity filter can be designed so as to appear transparent to the
DBMS processors, thus permitting the protection of a multi-level data base
while using commercial processors and non-certified DBMS operating systems
This transparency to the DBMS permits retrofit upgrades to existing data
base systems as well as development of future systems. Finally, the
relatively low development cost (compared to the development and certifi-
cation costs of secure operating systems), the great flexibility, and the
total provability of the security enforcement mechanisms provided by the

described architectures make this a desirable as well as feasible approach
to computer multi-level security.

Accession For

NTIS GPA&I
DTIC TA9
Unannounoed 0
Justification

By

Distribution/

Availability Codes
jAvail and/or

Dist Special

UNCLASSIFIED
SICURITY CLASSIFICATION OF V-1 PA09(lf e 001M Enterod)

TABLE OF CONTENTS

PARAGRAPH TITLE PAGE

1.0 INTRODUCTION 1-1

1.1 Approach 1-1
1.2 Conclusions 1-1

2.0 SYSTEM SECURITY REQUIREMENTS 2-1

2.1 Problem Description and General Approach 2-1
2.2 Formal Security Policy Description 2-9
2.2.1 Security Requirements 2-11
2.2.1.1 Subjects, Objects and Accesses 2-11
2.2.1.2 Security, Integrity and Discretionary Security 2-14
2.2.1.3 Discretionary Access 2-16
2.2.1.4 Tranquility Principle 2-16 I
2.2.1.5 Requirements for Read Access 2-17
2.2.1.6 Requirements for Append Access 2-18
2.2.1.7 Requirements for Write Access 2-19
2.2.1.8 Requirements for Execute Access 2-20
2.2.1.9 Requirements for Delete Access 2-20
2.3 General Threat Descriptions 2-21
2.4 Covert Channels 2-24
2.5 Trusted Entities 2-25
2.5.1 Trusted Personnel 2-25

*2.5.2 Trusted Processes 2-28
2.5.3 Trusted Equipment 2-28
2.6 Security Monitors and Audit Trails 2-29

*2.6.1 Security Monitors 2-29
2.6.2 Audit Trails 2-30
2.7 Multi-Level Security 2-31
2.8 Protection Granularity Discussions 2-34
2.9 Proof of Correctness Requirements 2-39

3.0 SYSTEM ARCHITECTURE ELEMENTS 3-1

3.1 Concept 3-1
3.2 lIplementation Architecture 3-3
3.3 Subsystem Descriptions 3-3
3.4 Relational DBMS Approach 3-5
3.5 Alternate Approach 3-9
3.5.1 Concept 3-9

43.5.2 Implementation Architecture 3-9

4.0 IMPLEMENTATION TECHNOLOGIES 4-1

4.1 Relational Approaches to Multi-Level DBMS With
Domain Level Protection 4-1

orT1

TABLE OF CONTENTS (CONT'D)

PARAGRAPH TITLE PAGE

4.1.1 Approaches 4-1
4.1.2 Functional Restrictions 4-8
4.1.3 Domain-Separation Approach 4-9
4.1.4 Black Bypass Approach 4-11
4.1.5 Internal Bypass Approach 4-14
4.1.6 Multi-Relation View Approach 4-17
4.1.7 Evaluation of Multi-Level Relational Approaches 4-18
4.2 Hardware Security Filter Subsystem 4-21
4.2.1 Overview 4-21
4.2.2 Hardware Security Filter With Single-Level File

Support Sizing 4-23
4.2.3 Hardware Security Filter With Multi-Level File

Support Sizing 4-32
4.3 Access Control Subsystem Implementation 4-37
4.3.1 Hardware and Software Sizing For The ACS 4-37
4.3.2 Alternate Access Control Subsystem Implementa-

tion: Distributed Architecture 4-41
4.4 Encryption 4-48
4.4.1 Static Encryption 4-48
4.4.1.1 Separation Through Encryption Key 4-48
4.4.1.2 Basic Candidate Architecture For Static Encryp-

ti on 4-49
4.4.1.3 Approach to Random Access Using Static Encryp-

tion With KG Latency Limited to the KG Transient
Period 4-51

4.4.1.4 Using Code Sequence Assignments to Achieve User
Separation 4-51

4.4.1.5 Requirements for Conversion From Pseudo Random
Sequence Index to PN State 4-56

4.4.1.6 Current Disk Technology Drives Static Encryp-
tion Requirements 4-57

4.4.1.7 Extension of Static Encryption to Multi-Level
Multi-Compartmented Files 4-58

4.4.1.8 Summnary/Base Line Design 3 4-61
4.4.2 End-to-End Encryption ?E) and Link Encryption

Applications 4-62

~15.0 FUNCTIONAL DESCRIPTIONS 5-1

5.1 Subsystem Specification 5-2
5.1.1 General System Specifications 5-3
5.1.2 Central Data Base Subsystem Specifications 5-8
5.1.3 Access Control Subsystem Specifications 5-12
5.1.4 Hardware Security Filter Subsystem Specifications 5-19
5.1.5 DBMS Processor Subsystem Specification 5-26

5.2 Functional System Descriptions 5-33

Li

TABLE OF CONTENTS (CONT'D)

PARAGRAPH TITLE PAGE

5.2.1 Front-End DBMS Architecture Without Encryption 5-35
5.2.2 Front-End DBMS Architecture With Static Encryp-

ti on 5-37
5.2.3 Back-End DBMS Architecture Without Encryption 5-40
5.2.4 Back-End DBMS Architecture With Static Encryp-

ti on 5-43
5.3 Alternate Approach Function Description 5-46
5.3.1 Secure Message Switch (Front-End 1/O Processor)

Subsystem Specification 5-53

6.0 BENEFITS AND TRADE-OFF ANALYSIS 6-1

6.1 Security Analysis 6-1
6.1.1 Overview 6-1
6.1.2 Non-Discretionary Security 6-3
6.1.3 Discretionary Security 6-4
6.1.4 Integrity Security 6-6
6.2 Performance Analysis 6-6
6.2.1 System Model 6-6
6.2.2 Detailed Traffic Model 6-8
6.2.3 M/M/m Queue Performance 6-11
6.2.4 System Performance Analysis Conclusions 6-11
6.2.5 Relational DBMS Performance Characteristics 6-19
6.2.6 Processor/Microprocessor Performance Character-

istics 6-19
6.3 Reliability and Maintenance Impact 6-21
6.3.1 Reliability Model 6-21
6.3.2 Maintenance 6-25
6.4 Cost Analysis 6-32
6.4.1 Development Costs 6-33
6.4.2 Recurring Cost Estimate 6-34

6.5 Flexibility and Operational Impact 6-38

7.0 TECHNOLOGY ASSESSMENT AND FORECAST 7-1

7.1 Processors/Microprocessors 7-1I7.2 Software 7-2
7.3 Computer Comm~unications 7-2
7.4 Mass Storage 7-3
7.5 Memory 7-3

8.0 CONCLUSIONS AND RECOMMENDATIONS 8-1

8.1 Conclusions 8-1
8.2 General Recommnendations 8-10

TABLE OF CONTENTS (CONT'D)

PARAGRAPH TITLE PAGE

8.3 Resulting Technical Recommendations 8-10

8.4 Development Recommendations 8-11

APPENDIX A

A.0 INTRODUCTION A-i

A.1 Data Security Mathematical Model A-2
A.2 Mathematical Concepts A-4
A.3 Model Description A-11
A.3.1 State Model Description A-11
A.3.2 Current Access Set:b A-12
A.3.3 Protection Levels: P-Non-Discretionary Control A-16
A.3.4 Access Permission Matrix: Mi-Discretionary

Access Control A-21
A.3.5 Data Base Structure A-23
A.3.6 Trusted Entities A-25
A.3.7 Rules in The Data Base Model A-28
A.4 Security Item Definitions A-31
A.5 Theorems A-33

APPENDIX B

8.0 INTRODUCTION B-I

B.1 Computer System Threats B-i
B.2 Physical Threats B-2
B.3 System Threats B-4
B.4 Data Threats B-6
B B.5 Security Threats B-10

APPENDIX C PROCESSING REQUIREMENTS FOR CONVERSION OF A PN
SEQUENCE INDEX TO A PN STATE C-1

APPENDIX D PERFORMANCE ANALYSIS DETAILS

D.1 Introduction D-i
D.2 System Model D-2
D.3 Detailed Traffic Model D-4
D.4 M/M/m Queue Performance D-6

APPENDIX E REFERENCES E-1

iv

LIST OF FIGURES

FIGURE TITLE PAGE

1.1-1 Distributed Architecture Concept Model of Secure DBMS 1-2
2.1-1 Problem Description 2-3
2.1-2 DoD Security Policy Definitions 2-4
2.1-3 Classical Data Processing Security Modes 2-7
2.1-4 System Concept Block Diagram 2-8
2.2-1 Security Model Descriptions 2-10
2.2-2 Selected Security Model Definitions 2-12
2.2-3 Summary of Security Policy Rules 2-15
2.3-1 Summary of Data Base System Threats 2-22
2.3-2 Secure DBMS Principle Threats 2-23
2.5-1 Summary of Responsibilities of the DBMS Security Officer 2-26
2.5-2 Summary of Responsibilities of the DBMS Data Base

Administrator 2-26
2.5-3 System Users and Their Roles as Trusted Subjects 2-27
2.6-1 An Embedded Security Monitor 2-31
2.6-2 An Isolated Security Monitor 2-31
2.6-3 System Access Log Description 2-32
2.6-4 Protected Object Log Description 2-32
2.6-5 DBMS Access Log Description 2-33
2 6-6 Suspected Violations Log Description 2-33
2.8-1 Relational Data Base Terminology 2-35
2.8-2 Example Multi-Level Relation 2-37
2.8-3 Illustration of a Covert Channel Through Data Tag

Modulation 2-38
2.8-4 Summary of Protection Granularity Techniques 2-40
2.9-1 Terminology For System Accreditation 2-41
3.1-1 Cross Bar Switch Concept 3-2
3.2-1 System Block Diagram 3-4
3.3-1 ACS Functional Partitioning 3-6

K3.4-1 Relational DBMS Features 3-7
3.5-1 Alternate Architecture Concept 3-10
3.5-2 Alternate Secure DBMS Architecture Block Diagram 3-12
4.1-1 Domain Separation for Multi-Level DBMS 4-2
4.1-2 Black Bypass Approach for Multi-Level DBMS 4-3
4.1-3 Internal Bypass Approach for Multi-Level DBMS 4-5

4.-4Multi-Relation View Approach for Multi-Level DBMS 4-6
4.1-5 Domain Separation Technique for Multi-Level Relations 4-10
4.1-6 Summary of Multi-Level Data Separation Techniques 4-20
4.2-1 Hardware Security Filter Data Separation Technique

Trade-Offs 4-22
4.2-2 Hardware Security Filter Subsystem Employing Encryption 4-24
4.2-3 Hardware Security Filter Subsystem Employing Physical

Data Tags 4-26
4.2-4 Hardware Security Filter Subsystem Employing Address Tags 4-27

V4.2-5 Hardware Security Filter Subsystem Employing Directory
Tags 4-28

4.2-6 Description of LRU Functions for Security Tag Approaches 4-29
4.2-7 Access Control Policy Boolean Logic LRU 4-30

v

1Ii-VN

LIST OF FIGURES (CONT'D)

FIGURE TITLE PAGE

4.2-8 Hardware Compartment Access Violation Detector Logic 4-31
4.2-9 Access Control Policy MMI 4-33
4.2-10 Hardware Security Filter Subsystem For Multi-Level File

Support (Maximum System) 4-35
4.2-11 Possible Write Format 4-36
4.3-1 Access Control Subsystem Process Descriptions 4-38
4.3-2 Conceptual Block Diagram of the Access Control Subsystem 4-40
4.3-3 Memory Allocation for the ACS 4-42
4.3-4 Application Task HOL Allocation for the ACS 4-43
4.3-5 Distributed Access Control Subsystem Architecture 4-44
4.3-6 Distributed Access Control Subsystem Architecture

Functions 4-46
4.4-1 Static Data Base Encryption to Enforce Data Separation

By Security Level 4-50
4.4-2 Degree of Data Separation vs Number of Crypto Keys 4-50
4.4-3 Required Static Encryption Architecture 4-52
4.4-4 Random Access Static Encryption Architecture 4-53

4.4-5 Static Encryption Architecture With User Separation 4-b4

4.4-6 LFSR Index to State Conversion Requirements 4-57

4.4-7 Data Storage and Processing Loads for LFSR Length 63
and 41 4-57

4.4-8 Typical Disk Characteristics 4-59

4.4-9 Crypto Requirements for Static Disk Data Base Encryption 4-59

4.4-10 Static Encryption Architecture for Multi-Level, Multi-
Compartment Files 4-60

4.4-11 ACS Translation of Data Separation by Classification and

Need-to-Know to Data Separation by User 4-

5.1.1-1 Common Secure DBt'S System Specifications 5-4

5.1.1-2 Additional SpeciFications For Secure DBMS Systems W/O Enc 5-5

5.1.1-3 Additional Specifications For DRMS Systems With Encryp-
tion 5-6

5.1.1-4 Design Goals for Secure DBMS Systems 5-7
5.1.2-1 Common Central Data Base Subsystem Specifications 5-9
5.1.2-2 Additional Specifications for the Central Data Base

Subsystems Employing Encryption 5-10
5.1.2-3 Design Goals for the Central Data Base Subsystem 5-11
5.1.3-1 Common Access Control Subsystem Specifications 5-13
5.1.3-2 Additional Specifications for the Access Control

Subsystems Employing Encryption 5-17
5.1.3-3 Design Goals For the Access Control Subsystem Speci-

fications 5-18
5.1.4-1 Common Hardware Security Filter Subsystem Specifications 5-20
5.1.4-2 Additional Specifications for Hardware Security Filter

Subsystems Not Employinq Encryption 5-23
5.1.4-3 Additional Specifications for Hardware Security Filter

Subsystem Employing Encryption
5.1.5-1 Common Data Base Processor Specifications 5-27
5.1.5-2 Additional Specifications for the Back-End DBMS Processor

Subsystem Employing Encryption 5-30
5.1.5-3 Design Goals for the Data Base Processor Subsystem 5-31
5.1.5-4 Operating System Requirements for the Data Base Processor

Subsystem 5-32

vi

LIST OF FIGURES (CONT'D)

FIGURE TITLE PAGE

5.2-1 Security Ring Structures of Distributed Multi-Level DBMS
Arch itectures 5-34

5.2-2 Distributed Secure Multi-Level DBMS Architecture 5-36
5.2-3 Distributed Secure Multi-Level DBMS With Static

Encryption Architecture 5-38
5.2-4 Distributed Secure Multi-Level Back-End DBMS Archi-

tecture 5-41
5.2-5 Distributed Secure Multi-Level Back-End DBMS With

Encryption Architecture 5-44
5.3-1 Security Ring Structure of the Alternate Back-End

With Encryption Architecture 5-47
5.3-2 Alternate Secure DBMS Architecture Block Diagram 5-49
5.3-3 Alternate Architecture Concept 5-50
6.2-1 System Queueing Model 6-7
6.2-2 Detailed Data Access Process Model 6-9
6.2-3 Summnary of Traffic Model Parameters 6-10
6.2-4 Average System Service Time 6-12
6.2-5 Sunmmary of System Utilization for 3dB and 6dB System

Response Degradation 6-13
6.2-6 Average VM System Response 6-15
6.2-7 Average Non-VM System Response (Single Channel) 6-16
6.2-8 Average Dual-Channel Non-VM System Performance 6-17
6.2-9 Whetstone Comparison of Processors 6-20
6.3-1 System Model 6-23
6.3-2 Reliability Model 6-23
6.3.3 Principal DBMS Reliability Model Components 6-24
6.3-4 Evaluation of Probability of Degraded Operation 6-26
6.3-5 Evaluation of Probability of System Availability

to ith Priority Class User 6-27
6.3-6 Parameters for Example System Availability Calculation 6-29
6.3-7 Component Availability 6-30
6.3-8 System Availability by Priority (Including Degraded

Modes) 6-30
6.3-9 Total System Availability (Non-Degraded Mode) By

Priority 6-30
6.4-1 Development Cost Ranking 6-34
6.4-2 Cost Estimates for a Multi-Level DBMS 6-35
6.4-3 Equipment Used to Estimate Subsystem Costs 6-36
8.1-1 Hardware Security Filter Data Separation Technique

Trade-Offs 8-6
8.1-2 Advantages of a Relational Data Base 8-9

*A-1 Math Model Symbol Definitions A-8
A-2 The Current Access Set b A-15
A-3 Example Access Control Matrix A- 22
A-4 Advantages of a Relational Data Base A-24

A-5 Responsibilities of the Data Base Administrator A-27

vii

LIST OF FIGURES (CONT'D)

FIGURE TITLE PAGE

A-6 An Example Set of User Data Base Access Rules A-30
B-1 Physical Threats B-3
B-2 System Threats B-3
B-3 Data Threats B-9
B-4 Direct Security Threats B-9
C-I LFSR Index to State Conversion Requirements C-3
D-1 2n+2 Node Queueing Network System Model D-3
D-2 System/Subsystem Metrics and Average System Response

Performance D-3
D-3 Detailed Data Access Process Model D-5
D-4 Summary of Traffic Model Parameters D-7
D-5 Average Normalized Response Time vs Utilization D-8
D-6 Normalized Average Response Time D-9
D-7 Average Response Time With Fixed Capacity D-9
D-8 Summary of System Utilization for 3dB and 6dB System

Response Degradation D-10
D-9 Normalized System Time For M/G/1 and M/D/1 Queues D-10
D-10 Average Normalized System Response Time D-11

viii

1.0 INTRODUCTION

This report presents the results of a study performed for the Rome

Air Development Center under Contract F30602-80-C-0235. The study was performed by
the staff of the Hprris Corporation Government Electronic Systems Division for one

year, terminating 16 July 1981. This report documents a feasibility study of the

use of a distributed architecture to meet multi-level security requirements for se-

cure data base management. The described architectures are capable of enforcing
DoD non-discretionary and discretionary security and an integrity (correctness) pol-
icy. (Figure 2.1-3 defines classical secure processing modes and terminology). In-

cluded in this effort were: a math model of a secure multi-level relational DBMS, a

locally distributed implementation study, functional descriptions and sizing of the
resulting systems, and a benefit trade-off analysis of the architectural approach.

1.1 Approach

Conceptually, the architectural approacn is to place a hardware
security filter (HSF) between numerous Data Base Management System (DBMS) proces-

sors and a central data base. This HSF is capable of enforcing a separate access

policy for each processor as shown in Figure 1.1-1. By dedicating each DBMS pro-
cessor to supporting a group of users at a common access category (eg. TS/CNWDI,
S/CRYPTO, etc) with appropriate nondiscretionary access control enforced external-

ly by the HSF, a multi-level mode of operation can be achieved without a secure

operating system (OS) or trusted software.

The HSr acts as a central data base entrance and exit guard, separ-

ating data by security category and controlling which categories may be stored
and/or retrieved by each DBMS processor. Four separation techniques were consid-
ered: multi-key static encryption, physical security tags, central data base file

separation (address tags), and directory tags. In addition, the following concepts
were studied: several multi-level relational DBMS approaches, discretionary secur-

ity control requirements, integrity control requirements, and audit and security

monitoring.

1.2 Conclusions

Many implementations of this architecture are possible using current

technology (see Section 5). The primary benefits are:

1-1

oI

CENTRAL COMMON MULTILEVEL,
MULTILEVEL MULTICOMPARTMENT STORAGE

DATA BASE

HARDWARE COMMON SYSTEM IIGH

SECURITY ACCESS CONTROL POLICY

FILTER ENFORCEMENT

DEIATDDED ICATED COMPARTMENTED
DBMSo o o DBMS PROCESSING

PROCSSORPROCESSOR

:1
SCATEGORY USERS CATEGORY N USERS

4

Figure 1.1-1 Secure DBMS Conceptual Architecture

1-2

! I

o Secure Multi-Level DBMS Operation

o Local Dedicated Processing Equipment

o Provable Hardware Enforcement of Non-Discretionary Security
Without Certified or Trusted Software

Several desirable features are also available from the architectures

described in this report. The architecture can be implemented so as to be compati-

ble with existing systems and be easily adaptable to different DBMS processors. The

use of existing commercial fiber optic links will allow the DBMS processors to be

located up to several hundred meters from the HSF. By replicating portions of the

HSF and using standard dual ported disk drives it is possible to nearly double cen-

tral data base throughput capacity and provide fault tolerance. This architecture

provides general multi-level security and is not restricted to support of a partic-

ular DBMS type. However, a relational DBMS may be preferable from a human factors

perspective and because of its inherent flexibility.

Based on preliminary sizing it is evident that the cost of the mul-

tiple dedicated DBMS processors required by this architecture presently dominates

system acquisition costs and is currently the primary limiting factor for very

large multi-compartment applications (eg. 16 or more categories of dedicated pro-

cessing). However, the cost of suitable processors has been decreasing steadily

and it is very likely that the cost of a suitable DBMS processor subsystem will

drop below $40K ($10K hardware) within 5 years, thus alleviating this factor. (See

Section 7.) The primary limiting technical factor is the sharing of a single

central data base, resulting in dilution of data base throughput per DBMS processor.

A' Analysis indicates that the use of DBMS processors with virtual memory and local

disk storage can largely compensate for this effect by drastically reducing central

data base loading. (See Section 6.)

Because of the need for downgrading information, at least one trusted

multi-level processor is required for this operation. The trusted software in this

processor and its trusted users are the primary non-discretionary security threat.

Secondary security advantages offered by this architerture for downgrading oper-

ations are:all downgrading occurs on an isolated multi-level processor with limited

access, and a central security monitor/audit trail to alert the security officer to

all downgrading activity can be placed in a separate processor isolated from users

and their code.

Discretionary and integrity protection (correctness) may

1-3

be entrusted to the DBMS operating system (either commercial or se-

cure) software. Alternately it may be externally enforced by

the use of end-to-end encryption E) in a back end DBMS machine architecture
with certified firmware in front end 1/0 (input and output) processors, and certi-

fied code in a central Access Control Subsystem (ACS). This second approach re-

quires development of a custom multi-level DBMS and security related software to

support E3and the architecture. It also requires that there be no user or appli-

cation code in the DBMS processor, i.e., the user interface is a query language.

Multi-level security requirements place some inherent limitations on multi-level

relational data structures. In particular, the primary key, schema, and related

access structures must be classified at the lowest level of the relation.

In conclusion, the HSF approach to adding multi-level security is far
superior to a secure OS approach for a large number of reasons. In particolar, the

b4SF approach

* facilitates system certification because validation relies
primarily on hardware flow control analysis

a results in a lower development cost, through the use of
hardware to eliminate custom software, thus exploiting
the decrease in hardware cost

e permits the use of standard commnercial software, including
standard operating systems.

a is adaptable to different DBMS processors in a transparent
fashion, thus permitting the upgrading of existing systems
and the development of future systems. This resolves the
dilemma of retaining an obsolete system or development of a
new secure 0 S system by permitting an evolutionary (staged)
modular design that supports planned upgrades and standard
options.

Such upgrades might be for planned fault tolerance modifications, standard ex-

pansion options etc. Section 8 describes the flexibility achievable by applying
the HSF to existing systems through a planned program of system upgrades.

1-4

2.0 SYSTEM SECURITY REQUIREMENTS

This section discusses the security requirements for a Secure DBMS

system. These requirements include discussions of the security policy to be en-

forced, threat identification, and data protection level. The security policy

describes the access rules for data read or modification in terms of a DoD security

policy of discretionary and non-discretionary security and a data quality (integ-

rity) policy. The threats discussed in this section are general in nature and are

used in the design of a system as guides. The actual security analyses of a sys-

tem are presented following the system descriptions. The access control policies

can be applied to data at several levels. The data protection level discusses

these levels in terms of DBMS impact.

The following nine security related sections are presented below:

2.1 Problem Description and General Approach

2.2 Formal Security Policy Description

2.3 General Threat Descriptions

2.4 Covert Channels

2.5 Trusted Entities

2.6 Security Monitors and Audit Trails

2.7 Multi-Level Security

2.8 Protection Granularity Discussions

2.9 Proof of Correctness Requirements

2.1 Problem Description and General Approach

The use of automated data processing equipment has become wide

spread throughout industry and the government because it permits the handling and

storage of vast amounts of information at affordable costs. The use of computers

has enabled countless opportunities for industrial growth, new applications, great

savings in labor and improvements in the quality of decisions. Together with all

of the advantages that computer technology has brought to man, the computer age

has also created a totally new and nearly unsolvable problem: information privacy.

In governmental and government -related applications, this problem often escalates

to that of SECURITY: Any computer system handling DoD classified information must

2-1

'Ma

be controlled and operated within strict guidelines set forth by the cognizant

agencies.

This study addresses the military secure data processing requirements
such as those encountered by the Air Force command, control, and intelligence

applications. However, the technologies discussed are equally applicable to any

data processing application requiring secure data access and user interaction con-

trol. The basic problem is illustrated in Figure 2.1-1. Here users and data, at

various security levels, desire simultaneous access to the machine resources.

Data of all security levels is to be present on the system. Users with the proper

security credentials are granted data accesses. DoD security policy (See Figure

2.1-2) requires that an individual possess the required non-discretionary and dis-
cretionary privileges before being granted access to the information. Non-discre-

tionary security requires that the individual have a security clearance of higher

or equal level than the level of the information requested. Discretionary security

requires that the individual possess a proper need-to-know for the requested in-

formation

There are several classical approaches to the handling of DoD

classified information in computer systems. Figure 2.1-3 describes four basic

techniques:

0 Dedicated Security Mode

o System High Security Mode

0 Multi-Level Security Mode

0 Controlled Security Mode.

An additional technique, period processing, is often used with applications employ-

ing the dedicated mode. Period processing is a technique wherein a specific security

mode is assigned to a system for a designated time.

The above security techniques have several shortcomings, the princi-

ple one being cost. These disadvantages are as follows:

- 0 obtaining the security clearance for all the users in a
system high processor is costly and can often require con-
siderable time.

0 The dedicated mode lacks flexibility and often fails to
efficiently utilize the available machine resources. Use
of periods processing increases the system utilization only

2-2

'I

o PROCESSOR
u,c,s~ts, etc.

r ~user 1 T/

'-I

DATA STORAGE

o STORAGE FACILITY: MULTI-LEVEL

0 USER PROCESSING: CONCURRENT MULTI-USER,MULTI-LEVEL

Figure 2.1-1 Problem Description

2-3

DoD Security Policy. The complete body of law, regulations and
policy concerning the safeguarding of Defense sensitive in-
formation. DoD security policy includes all the espionage
laws, the DoD regulations, and DoD authorized commercial
classification for handling and access to information con-
cerning national defense. The basic policy sets four
levels and several categories on non-discretionary infor-
mation control and requires that anyone accessing classified
information have a "need-to-know" for the particular infor-
mation in question.

Security Level. In the context of formal securit) modeling, the
fundamental security attribute of subjects and objects.
Security levels combine a level (e.g., Unclassified, Con-
fidential, Secret, Top Secret) and a set of need-to-know
categories. A derived partial ordering of security levels
is defined using a combination of the "less than" order on
levels and the "subset" relation on category set. Thus
(Secret, NATO) is less than both (Top Secret, NATO) and
(Secret, (NATO, CRYPTO)). The security levels (Confidential,
NATO) and (Top Secret, CRYPTO) are incomparable. This
derived partial ordering on security levels is the basis
on which all subject-to-object access is determined.

Classification. The level of protection that must be afforded
information. It is the information counterpart of clearance
in DoD security policy. It applies to such system objects
as buffers and files, as well as to "real-world" security-
related documents.

Clearance. An authorization allowing a person access to classified
information. This is a "real-world" term used in connection
with DoD policy, whose mathematical counterpart is security
level (q.v.). A clearance typically consists of a level
(unclassified through top secret) and a need-to-know category
or categories.

Non-discretionary Security. The aspect of DoD security policy
which restricts access on the basis of security levels. A
security level is composed of a level and a category set
restriction. To access an item of information, a user must
have a clearance level greater than or equal to the clas-
sification of the information, and also have a category
clearance which is a superset of the access categories
specified for the information. See discretionary access
controls, security level.

Discretionary Access Controls. Access controls to an object that
may be changed by the creator of the object. More generally,
mechanisms that allow each subject, at its own discretion,

Figure 2.1-2 DoD Security Policy Definitions

2-4

to decide which of its own access rights are to be given
to any other subject on a need-to-know basis.

Need-To-Know. A job-related requirement for access to specific
information. Need-to-know implies discretionary control of
information - even though potential accessors may have the
necessary clearance.

Integrity Control. In a formal security model, integrity is used
to provide protection against unauthorized modification or
destruction of information and is a dual of Non-discretionary
Access control. An integrity level is comprised of a level
and a category set. To modify an object a user must have
an assigned integrity level greater than or equal to that
of level assigned to the object, and also must have the
integrity category which is a superset of that of the object.

Integrity is used to prevent dilution of the quality of
information by creating a hierarchical partial ordering
in the modify accesses permitted for an object.

Compartment or Category. The unit into which security information
is partitioned, corresponding roughly to an interest group
or topic area, e.g., NATO, CRYPTO. Category information
can exist at many levels, unclassified through top secret.
A subject must be cleared to an adequate level and have
access to the proper category or set of categories before
access to classified data can be given.

Figure 2.1-2 (Cont'd) DoD Security Policy Definitions

2-5

Security Mode. A Department of Defense term for "Authorized
variations in the security environments and methods of
operating ADP systems that handle classified data." DoD

ADP security policy (DoD Directive 5200.28) defines four
modes: dedicated, system high, controlled and multilevel
securfty modes.

Dedicated Security Mode. In government installations, a mode of
operation in which the computer system, its connected peri-
pheral devices and remote terminals are exclusively used
and controlled by specific users or groups of users who
have a security clearance and need-to-know for all categories
and types of classified material contained in the computing
system.

System High Security Mode. The mode of operation in which the
computer system and all of its connected peripheral devices
and remote terminals are protected in accordance with the
requirements for the highest security level of material
contained in the system at the time. All personnel having
computer system access have the security clearance and need-
to-know for all material then contained in the system.

Multilevel Security Mode. A mode of system operation permitting
data at various security levels to be concurrently stored
and processed in a computer system where at least some users
have neither the clearance nor the need-to-know for all
classified material contained on the system. Separation of
personnel and ,,aterij~ opi the ibsis uf security level is accom-
plishedby the operating system and associated system software.

Controlled Security Mode. A mode of system operation in which
there are users who have legitimate access to the system
but have neither a security clearance nor a need-to-know
for all classified material contained in the system. In-
ternal hardware and software must be provided and approved
for maintaining separation of data and users with different
classifications and clearances. No more than three adjacent
security levels can be supported concurrently, and specific
approval by the designated approval authority is needed for
this mode.

Period Processing. In computer installations, a mode of proces-
sing in which a specific security mode is temporarily es-
tablished during a specific time interval for processing
sensitive information. For example, the computer system
could process secret information in the dedicated security
mode during one period, and unclassified material in a
second period. The computer system must be purged of all
information before transitioning from one period to the next
whenever there will be new users who do not have clearance
and need-to-know for information processed during the pre-
vious period.

Figure 2.1-3 Classical Data Processing Security Modes

2-6

,-,-~-

at the expense of performing inter-level "sanitizations" wherein
the system is cleared of all information of a previous higher
security level.

o secure operating systems such as those used in the multi-level
security mode, are extremely costly to develop and, at present,
not able to be validated except in very special applications and
then only with some risk.

o with the exception of the multi-level and controlled security
mode, none of the secure operating modes permits simultaneous hand-
ling of different levels and categories of classified information.

This report presents a feasibility study on the use of a distributed

architecture to support data base management and other processing requirements for

DoD classified information. The system created operates basically in a controlled

security mode whereby all information requests are passed through a security fil-

ter to determine if the requestor possesses the proper security credentials for

the request. Thus, users are separated from a multi-level central data base by

this security filter (Figure 2.1-4). In addition, users of various security levels

are separated from one another through the use of separate host DBMS processor

for each security level. It is therefore the task of the security filter to pass

only that information to a host DBMS processor for which the established security

policy is met. The mechanisms by which the security filter achieves this task are

described in Sections 3 through 7. The means of access control for these systems

is through a hardware security filter (HSF) (Section 4.2) whose access control can

be certified through flow control analyses.

These systems also provide discretionary access control, although

not at the hardware level. All data requests are screened by an Access Control

Subsystem processor (Section 4.3) which compares the user's identification to

those of the access control list for the requested object. If the discretionary

access is granted, the information is sent to the user at his DBMS processor. At

this point, only the protection mechanisms of the operating system of the DBMS

provides any isolation between the users. This is a much weaker security than that

provided for security level control by the HSF but is adequate for discretionary

protection at almost all applications and represents a compromise in the cost of

providing each user with a dedicated processor.

2-7

lop

b-4U
u2

uah. E

IC =

I I 5-.

0n

iz,,

-4J

A Eu

Uw

2-8

A third entity of the security policy is termed integrity. This is

not the "correctness" integrity provided by many data base systems but rather a

security related "integrity". This integrity is designed to preserve the "quality"

of existing data and prevent any reduction in the quality value through inclusion

or replacement of information by data from a lower integrity source.

The requirements of non-discretionary, discretionary, and integrity

access control for the enforcement of security are detailed in the discussion of

the Formal Security Policy Description of the following section.

2.2 Formal Security Policy Description

The security requirements for a secure system architecture are de-

fined through a formal security policy. This section describes the

security policy developed for use in this study and implemented in the hardware

dnd software protection mechanisms. The model is formally detailed in Appendix A

and therefore this section will only summarize the requirements resulting from the

formal proofs. The approach used in the formal security model definition and proof

follows that of Bell and LaPadula1 (Figure 2.2-1) with modifications and extensions

made to the model. One such extension, an integrity rule designed to preserve data

"quality" is an adaptation of an approach described by Grohn 2 . The security re-

quirements are proven to be correct through inductive proofs, using ielational

algebra and ordinary set theory. Appendix A painstakingly proceeds to describe

the requirements for a secure system by theorem and formal proof.

These proofs are presented in four major groupings:

I. Requirements of Actions for System Security Preservation

If. Properties of Secure State Preserving Rules

III. Requirements for Secure State Preservation During' Additions
to the Current Access Set.

IV. Security preservation during actions of rules which do not
add access, do not change protection or do not remove access
permissions.

fall references are presented at the end of this report.

2-9

Bell-LaPadula Security Mudel. An "access control" type of
security model based on state-machine concepts; sometimes
called the MITRE Model. In this model, the entities in a
computer system are abstractly divided into sets of subjects
(active entities such as processes) and objects (information
containers). The notion of a secure state is defined, and
an inductive proof of system security can be given: the
initial system state is shown to be secure, and every state
transition is shown to preserve this property.

A system state is defined to be "secure" if the only per-
mitted accesses of subjects to objects are in accordance
with specified security level restrictions. For example,
a subject is permitted to read data at its own level or at
a lower level (simple security condition), and to write
data at its own level or at a higher level (*-property).
State transitions perserve the "secure state" property in
accordance with tranquility, erasure and activity principles.

Grohn Security Model. An extension of the Bell-LaPadula model
results from the addition of an integrity model. This model
is also known as the I.P. Sharp Security Model. Integrity
is essentially the mathematical dual of the security model,
incorporating a "simple integrity priniiple" and integrity
*-property".

Figure 2.2-1 Security Model Descriptions

2-10

Group I Theorems (Theorems 1-3) present the conditions necessary to

restrict the set of actions to those actions which maintain a secure system.

Group II Theorems (Theorems 4-6) prove that an action set limited

by a set of secure state preserving rules forces the system to be a secure system.

As a result, these three theorems prove that security enforcement lies in the de-

sign and implementation of the rules themselves.

The Group III Theorems (Theorems 7-9) present the set of conditions

which must be met to maintain a secure state under additions of subject, object,

access tuples to the current access set.

The Group IV Theorems present the conditions for the actions of a

rule to be secure state preserving in the special cases where protection levels

do not change, accesses are not removed, and permissions are not added.

The Group I theorems result in a Corollary which describes the

necessary conditions for preservation of a secure system: the simple protection

property; the *-.protection property; and the discretionary protection property.

These properties will be discussed in terms of their constituents, security and

integrity in Section 2.2.1 in detail.

In addition to the formal math security model, security flow analy-

sis is used to verify the functional security of hardware subsystems. This too is

detailed in a following section (Section 2.9).

2.2.1 Security Requirements

The formal security math model details the requirements for a secure

system in terms of current access sets, system states, user privileges, etc. In

this section, a more simplified description of the basic security requirements

- will be given.

2.2.1.1 SUBJECTS, OBJECTS, and ACCESSES

The security model defines the security requirements for access of

objects by subjects in a computer system. (Figure 2.2-2 defines these and other

2-11

Access Control. A strategy for protecting objects from unauthorized
access.

Access. The ability and the means necessary to store or retrieve
data, to communicate with (i.e., provide input to or receive
output from), or otherwise make use of any resource in a
computer system.

Access Mode. A distinct operation recognized by the protection
mechanisms as a possible operation on an object. Read,
write and append are possible modes of access to a file,
while execute is an additional mode of access to a program.
See security mode in Figure 2.1-3.

Subject. An active user of a computer system together with any
other entity acting on behalf of a user or on behalf of the
system; for example, processes, jobs, and procedures may
all be considered subjects. Certain subjects may also be
considered to be objects of the system. See Bell-LaPadula
security model, Figure 2.2-1) and object (below).

Object. In a formal security model, an identifiable resource,
data container or related entity of the system; the counter-
part of subject. Software-created entities such as files,
programs and directories are objects, as well as hardware
resources such as memory blocks, disk tracks, terminals, and
tapes.

Simple Security Condition. A security model rule allowing a
subject read-access to an object only if the security level
of the object is the same or less than the security level of
the subject and the category set of the object is a subset
of the subject's current access category set.

Security *-Property. A security model rule allowing a subject
write-access to an object only if the security level of the
object is the same or higher than the security level. of the
subject and the category set of the object is a supersetof the
current category set of the subject.

Simple Integrity Condition. A security model rule allowing a sub-
ject write-access to an object only if the integrity level
of the object is the same or less than the integrity level of
the subject and the integrity category set of the object is
a superset Jf the current integrity category set of the subject.

Integrity *-Property. A security model rule allowing a subject
read-access to an object only if the integrity level of the
object is the same or higher than the integrity level of the

Figure 2.2-2 Selected Security Model Definitions

2-12

subject and the integrity category set of the object is a
subset of the current integrity category set of the subject.

Authentication. The act of identifying or verifying the eligibility
of a station, originator or individual to access specific
categories of information. The process by which the Govern-
ment determines concurrence with specifications.

Access Control List. A list of subjects which are authorized to
have access to some object. See subject, object.

Security Flow Analysis. A type of security analysis performed on
a non-procedural formal system specification which locates
potential flows of information between system variables.
By assigning security levels to system variables, many in-
direct information channels can be identified. Security
flow analysis defines a security model similar to the access
control model (Bell-LaPadula) but with a finer protection

- Igranularity.

Figure 2.2-2 (Cont'd)

2-13

security related concepts.) Basically, a subject is any active process in the

system,including users, user programs, and any other processes acting in the user's

behalf. An object is any inactive system entity and includes data f4les, inactive

programs (code, directories, etc). An access is the linkage between the subject

and ooject. Therefore, computer security can be defined in terms of providing an

access control mechanism capable of enforcing the desired security policy. A

DoD non-discretionary and a discretionary security policy, an integrity policy,

and a tranquility principle are enforced in this protection plan.

An access can be of several forms. The recognized accesses-in this

study are:

r read

w write

a append

d delete

An execute access is often used but is omitted from this model due to the fact that

execute access in the proposed protection architectures is processed identically

to a read access.

2.2.1.2 SECURITY, INTEGRITY, and DISCRETIONARY PROTECTION

Access control rules employed in the security policy specify exact

requirements for access in terms of classification and clearances (non-discretion-

ary access), need-to-know (discretionary access), and integrity levels. (These

concepts were defined in Figure 2.1-2).

Appendix A defines the security re irements for various access

modes in terms of protection requirements. Protection is defined in terms of

security and integrity as presented in Figure 2.2-3. This figure also presents

these requirements in terms of the simple security rule, *-security rule-,-'simple

integrity rule, and *-integrity rules. This dissected form of protection is pre-

sented because the proposed implementations provide protection in a distributed

form: the simple security and *-security rules are enforced in hardware; (in

the Hardware Security Filter - See Section 4.2) the simple integrity and *-integ-

rity rules are enforced in software (in the Access Control Processor see Section 4.3).

.2-14

READ ACCESS REQUIREMENTS: P c(S). P o(O)
T l Mij for Subject i .and Object jThis implies: 1

S(s) S(o) I(s) S I(o)
c(s),2 c(o) K(s)C- K(o)

(Simple Security Rule) (*-Integrity Rule)

APPEND ACCESS REQUIREMENTS: P (O)P C(S)

(write without read) w Mij for Subject i, and Object j

This implies:

s(s):5s(o) (Is)ZI(o)

C(s) C(o) K(s) 2 K(o)

(*-Security Rule) (Simple Integrity Rule)

MODIFY ACCESS REQUIREMENTS

(requires read before write) Pc(S) = P (0)

This implies

S(s) = S(o) I(s) = I(O)

C(s) = C(o) K(s) = K(O)

(Simple and *-Security rules) (Simple and *-Integrity rules)

NOTATION:
S *) Security Level Operator - returns security level of argument
C e) Security Category Operator-returns security categories of

argument
I () Integrity Level Operator-returns integrity level of argument
K () Integrity Category Operator-returns integrity categories

of argument.

Figure 2.2-3 Summary of Security Rule Requirements

2-15

2.2.1.3 Discretionary Access

Discretionary access refers to access permissions granted on an

individual basis to persons who exhibit a need to the information. It is granted

by the owner (or other responsible person, such as the security officer) to a

particular subject in a specific mode or set of modes. The decision to grant

such access is judgemental on the part of the owner and is normally made based

upon a "need-to-know". The access granted can be any subset of the set of valid

accesses.

Discretionary access is often described in terms of an access matrix

as described in Appendix A. Alternately, discretionary access permissions can be

described in terms of an access control list (ACL) formed from such a matrix by

separating the matrix into vectors from columns or rows of the matrix. Thus, such

an ACL can be keyed by subject or object identifiers. For example, an ACL keyed

by object name would have a list of subjects and their accesses for each named

object. For example:

OBJI: (SUB1={R,W}, SUB3={R}, SUB4={R,W,D})

OBJ2: (SUB1={R,A}, SUB2={R,W,A,D}, SUB3={R})

etc.

2.2.1.4 Tranquility Principle

The tranquility principle states that the current protection level

of a subject or object never changes.

This rule is enforced to prevent direct reassignment of objects to

new protection levels. Should it be possible for an object to be assigned a lower

protection level, a direct violation of the security policy would result. A re-

laxation of this rule could permit assignment of an object to a higher protection

(that is, a higher DoD classification or category or a lower integrity level or

£ category) without a security rule violation. Such a relaxation requires a policy

decision by the security administrator of the installation. Actually, the security

policy already permits this process indirectly through a "copy" procedure whereby

a low level object can be legally copied to a new object at a higher level.

It is absolutely necessary that subjects not be permitted to lower

2-16

their protection during a given session without release of all resources and ob-

jects. If this tranquility principle for subjects was not enforced, a subject

would be able to access a high level object, reduce his current protection level,

and store the object at the new, lower level - a direct violation of DoD security.

Similar to the tranquility principle for objects, the tranquility principle could

be relaxed for the subject and permit a subject to increase his current protection

level, up to his maximum level. In practice this will be difficult because the

envisioned security architecture will not recognize a user port to be but at a

single level as assigned by the security officer. This is due to the hardware

implementation of the security filter. However, the subject could reduce his

integrity level in this architecture, provided that a mechanism is available to

recognize this procedure.

One major relaxation of the tranquility principle is allowed for in

the secure DBMS design. Because of the need to permit lower level summaries of

highly sensitive information, the DBMS architectures permit violations of the

tranquility principle by trusted subjects operating on trusted DBMS processors

(See Section 2.6). Here subjects are totally outside the security restrictions of

the security policy. Consequently these subjects must be limited in number and

must be carefully screened. Such trusted operations are permitted only after the

security officer has properly established the DBMS processor as a special policy-

excluded machine. Extensive security monitoring and audit trail recording is used

by the security officer to scrutinize all operations performed on the trusted pro-

cessor and detect any abuses of the procedure.

2.2.1.5 Requirements for Read Access

Read access is defined as an access to an object permitting its

observation with no modification. The security model requirements for read access,

from Figure 2.2-3, states that the simple security rule, the *-integrity rules,

and discretionary access must be enforced. These rules are now defined verbally:

Simole Security Rule: The simple security rule requires that for

read access the subject must:

2-17

1) have a security clearance level higher than or equal to the

classification level of the object; and

2) possessa superset of thecategories assigned to the object.
*-Integrity Rule: The *-integrity rule requires that for read

access the subject must:

1) be at an integrity level which is lower than or equal to
that of the object; and

2) possess a subset of the integrity categories of the object.

The simple security rule merely states that the subject cannot

view an object at a higher level. The *-integrity rule might seem overly restric-

tive. Its intent is to prevent the integrity level of the subject from being re-

duced by giving him information which is at a lower integrity level than his level.

If the integrity level of the subject was permitted to be reduced by allowing read

accesses to low integrity level objects, any subsequent writes to the data base

by that subject would have to be conducted at the lower level. Thus, the *-

integrity rule prevents a lower integrity level object from reducing the integrity

level of the subject.

2.2.1.6 Requirements For Append Access

Append access is defined as a write operation which does not require

a prior read of the object (or portion of the object) being written. The security

model access requirements, from Figure 2.2-3, state that the *-security and the

simple integrity rules must be preserved and that the subject must have write

discretionary permission. These rules are now verbally defined;

*-Security Rule: The *-security rule states that for write access

the subject must :

1) be at a security level lower than or equal to that of the
object; and

2) possess a superset of the cateqories of the accessed object.

Simple Integrity Rule: The simple integrity rule requies that for

write access the subject must:

1) be at an integrity level greater than or equal to that of the
object; and

2-18

2) possess a subset of the integrity categories of the object.

The *-security rule thus states that the subject cannot write to

a security level lower than his own current level. The current level of a subject

is that level by which he is currently recognized. (A user may be cleared to a

specific maximum level. However, this does not require that he be recognized at

this maximum level. Instead he may choose a lower level as his current level for

processing purposes). The simple integrity rule states that the subject's integ-

rity must be at least as great as that of the objects being written so as to pre-

vent dilution of the integrity of the object.

2.2.1.7 Requirements for WRITE Access

When an object is modified, it must be read prior to being written.

Thus the subject's access requirements are the intersection of those described

above for read and append. Specifically, the subject and the object must be at

the same security and integrity levels and the subject must have been granted both

read and write discretionary permissions.

Write access for multi-level objects is somewhat more complex. A

multi-level object is one which contains identifiable parts which are at different

protection levels. For example, it is possible for an object to have some fields

at an unclassified level and other fields at the secret level. If it is desired,

a security policy can be devised (without violating any DoD security policy with

respect to the object)such that blind updates to an object can be performed.

lh this case, an unclassified user could blindly update the secret field. This

would be done by using (reading) the unclassified field as a "key" to locate the

* Idata base entry to be changed and subsequently writing to the secret area without
J first reading it. The only weakness of this approach is that potential secret

material is entered through an unclassified machine. However, this procedure

could be an asset in those instances wherein unclassified objects achieve a higher

classification when viewed in aggregate. Nonetheless, there is a more suitable

* technique of achieving the same result whereby the information is stored in the

data base at the lower level and "viewed" by personnel at a higher level. In

this instance, the higher level aggregate is formed only by the personnel cleared

2-19

- I

j

for that level. The lower level subjects merely collect and report low level in-

formation.

A weather collection node is an example of such an unclassified pro-

cess. When the weather data base is merged with the target base, the weather

entries thus merged become sensitive.

2.2.1.8 Requirements for Execute Access

Because of the manner in which the proposed architectures enforce

security, an execute access requires that the desired object be read by the sub-

ject's processing equipment. As the applications processor contains no validated

protection mechanisms, it is impossible to prevent the subject from viewing an

object accessed in such a manner with any certainty. Therefore, the requirements

for execute access are identically those for a read access.

2.2.1.9 Delete Access

A delete access is a destructive write process. Normally, an ob-

ject must be viewed (read) prior to deleting (writing). Thus, a delete access has

the same requirements as that of a write access.

2-20

2.3 General Threat Description

Threats to the operation are of several types. Appendix B discus-

ses many of these in detail. This section will briefly summarize the discussions

of Appendix B.

Threats can be categorized in several groupings. One such catalog

describes threats as one of the following types (See Figure 2.3-1):

o Physical Threats - physical attacks to the system hardware

and facilities; e.g., sabotage, system failure.

o System Threats - Attacks to the system operational integrity
e.g., software or hardware flow.

o Data Threats - attacks designed to require information through
invalid means; e.g., impersonation, browsing

o Direct Security Attacks - attack upon the system security
system; e.g., covert channels, illegal downgrades.

Many of these threats cannot be addressed by a secure DBMS develop-

ment, for example, development of a Secure DBMS is not intended to prevent physical

threats. Many of the system threats and data threats are countered through normal

good engineering practices.

Several of the data threats and direct security threats are addres-

sable by the secure DBMS design. Through the use of single level processors in a

multi-level system, the threats of a non-discretionary disclosure through browsing

and artifice are eradicated. The discretionary access control, (within the dedi-

cated user DBMS processors and in the Secure DBMS Access Control Subsystem)enhances

orotection aqainstillegal data access.

There are several threats which are most difficult to alleviate,

even within the Secure DBMS architecture presented here. These threats are de-

scribed in Figure 2.3-2. The trusted subject threat cannot be removed if down-

grade processing is to be provided (See Section 2.5). This threat is only reduced

through personnel screening, limiting this privileged mode to a minimum number of

personnel, and proper security auditing of the privilege processes.

Trap door software in trusted processes cannot be eliminated short

of validating the software - an extremely costly process in all but the smallest

2-21

0

-. U

CO 0
w

-0 CO

ow CL-

It z 0 0 x
(DO0 0 z

LJ w U) -

UL 0 LU CO CO L
z~I x I-)

0< icnDz z 1
Z -0 Wi L LL)

LUI " - I-0. 'C -.
~ c, I "C0~- oc "

0 Z 1 <. I 'C u.1

d0 LU I-
> LL U-c -
Z 0 Z "1....

LU C
wL o C C/)
L) z C

3: 0

0~ PII i I

LL 0

Ol:LL U. ~0Iz
ui U)0 LL n I-

w 0. W U I (Wcn > ZW"I-

x 0 Ucl 2:WU 0

0-S

cn - Q-0 W3

w ~~~ w z >XcuU
CD9 =C(<w ~ 0 > 0-w

0.CflW) c u - O J- l

a~~ wa wo 0Izw 0 - A<r
WWC cz U))

z i w wo < j > z
0 l a- .-.9-u 0F-9.~

~~W~0 0-tj : 0 z

0j-Z ww< w L~Of < < C ' WU <C OW-c w
Ix 0. 0I-

<c cn< .. o I - 0 waW zz-j Z (Dol o...j (

3: W -- w o
> 3:) (- -L WLa

-j- 0-0 o -W -

- C/ C/)0 w M p < Q W I
0: IX " C: = cr Ix 2-23O

process. Again, a good security monitoring process and regular system audits can

facilitate the detection of the use of such software. Section 2.6 discusses secur-

ity monitors and audit trails in detail.

Covert channels are a design issue and are addressed by the Secure

DBMS architecutre. Section 2.4 discusses Covert channels in greater detail.

2.4 Covert Channels

A covert channel is a serious threat to the secure DBMS. "Indirect"

or "covert" channels are communication Paths not explicitly intended for data trans-

fer, but which can pass information through the selective use of system resources -

that is, through "leakage" or "signaling". Indirect channels are generally cate-

gorized as "storage" and "timing" channels. Timing channels are those that exploit

the system clock or system performance characteristics to pass information and are

difficult to identify in a non-procedural system specification, while most storage

channels can be identified by flow analysis techniques. Both types of indirect

channels are exploitable only through interprocess cooperation.

It is necessary that all covert channels in the designed architec-

ture be eliminated or otherwise restricted to a sufficiently low bandwidth so as to

reduce their utility. Data flow analysis will be used to identify any potential

storage channel. Timing channels are somewhat more difficult to prevent. Methods

of reducing the predictability of system processes will tend to reduce the effec-

tiveness of a timing channel. For example:

1) Assign each DBMS process a specific time slice in which to use
a resource - a Time Division Multiplexing. In this manner,
the activities of a user cannot be used to modulate the re-
sponse time of the system

2) Periodically, randomly alter the request queue order. This
will 1cramble the response times and render them unpredictable

3) Add random delays to the channel response time - again removing
the predictability of the system response.

Both methods 1 and 3 decrease system throughput. Method 1 can waste much time

when there are channels with no pending requests. Method 3 wastes time through

the addition of delays. Method 2 may not directly wastetime, but itis only remotely

possible that a particular user could remain in the queue an inordinant amount of

2-24

time. This would occur only if his request was frequently selected to be swapped

to a lower queue position.

It is necessary to note that when a system has a number of users

in addition to the two cooperating in the covert channel, the predictability of re-

sponse time is greatly reduced because these other users will tend to randomize

the predictability of the response required by the cooperative covert channel

users. This basically forces the covert channel to a lower bandwidth, reducing

its usefulness. A single terminal simulator issuing DBMS requests at random can

act as an alternative to many users if desired.

Only the Time Division multiplexing technique (Method 1) is abso-

lute in its destruction of this timing channel. It may be easier and less costly

to permit the channel to exist and devise a technique for the security monitor

to detect its exploitation and alert security of the fact.

2.5 Trusted Entities

Trusted entities are'those items within a system upon which the

enforcement of security depends but which cannot be proven to be secure. In

addition, some processes are actually desired, such as a downgrade option. Trusted

entities can be of any three types:

personnel; processes; equipment

It is the goal of the secure DBMS design to minimize the quantity of these trusted

entities.

2.5.1 Trusted Personnel

Some personnel within the secure DBMS must be accepted as trusted.

There is nomethod to insure that an individual will not violate security. There

are 3 basic groups of trusted personnel identifiable:

1) The security administration and operational security officer
staff. Figure 2.3-1 describes the activities of the security
officer.

2) The Data Base Administrator (DBA). Figure 2.5-2 describes
the responsibilities of the DBA.

3) System users. System users are trusted at two levels as de-
scribed in Figure 2.5-3.

The trusted operations associated with the security downgrading process is probably

the greatest system security threat.

4 2-25

'1 -

o general security maintenance

o selection of the desired security access control policy
for a given DBMS channel

o validation of the selected access control policy

o ensuring that period processed equipment is sanitized
(cleared of all sensitive information) between level changes

o monitor the security audit trails to ensure that no system
failure has occurred and to screen all attempted assaults upon
the security system

o perform data back-ups of all data bases

o initiate the scheduled change of cryptographic keys for
systems employing data encryption.

Figure 2.5-1 Summary of Responsibilities of the DBMS Security Officer

o Specification of databases and their structures

o Coordination of all data base efforts to ensure consistency
in their procedures

o Coordinate data protection with security personnel.

Includes security levels, categories, integrity levels and

categories, and discretionary access requirements

o Review of the data base system performance and determination

of change required to optimize the data base performance.

o Specification of access paths between user data bases.

Figure 2.5-2 Summary of Responsibilities of the DBMS Data Base Administrator

2-26

'A I. '

u '1"

U~ ~ ~~ 4- ..- - 'U A
.90 ' 4- >, '

4- ' ~ 0 1~ . a,
0A U- 4-)41 .-- ' o - W ' 04-

E~~
0~~~ua4- U U M, 4J 4 a

.9.- '- ~ 'n ~ 0.-4-4'A~~ 4- .C 0'U u.

'A~~4- to A , v~1'U 4- - : 4-)C
(A 'A oU c) CCA 1- 4. , 00 u aIV 0~ r-.. * U '

'U a, (A. u to a,

4--0 . QC 0 az'U CL SA* - C A 0C -. 4- M MC0 -0 - L a,) 4 Ln3 a 4 a5-
-)

1-
0.Q a

- to, 0i (A 0 'AI 0 0 C0 >
+ 'AC 4-) 010 4. r L 0 0.0Q0 4) .- .- 'A U .- ('U .-) +) +-) 4j 0n w ~ u0) C. 4A a, M Clq U ') a

u r_ w 0.4 a, 4J. 1)3'a ci .- u CL + u S- a, a-l SA- C ID0 (n m2 0 .- =
'a, La, x -L. 0) s.-) 4 aa. w 0.-- ol- 0 w/ - - .0c u CL c 4- = ~) 0 Cto w 0 U c.. * - a, 0 00- a, to C - a,4ea 0(A to U o 4J 4U U 0Aaoj U,-.. aM.~ j a0(A- CM) W- 0 UA 'A =

4-) 0) 0 'U , W. C O .C cU X:(A UA CA m.. a, 0 a 4) a, 0 .(a, AA a,., O U 0., 4) U Q-,a

CU U . C -

L'UCL U 4 4.),'A2c. AL ~ U U 4

L C L 1. C ~ d 0) -~2-271

2.5.2 Trusted Processes

A trusted process is an application program or system process which

cannot be certified or one for which certification is either not desirable or per-

haps not required for security. In the architecture design for the secure DBMS,

some trusted software may be used. For example:

o the operating systems of the user host computers may be trusted
to provide user separation (a form of discretionary access)

o the processes used by the subject on a DBMS processor to reduce
the security level of an object will probably have to be
trusted (albeit closely monitored)

o many of the processes of the Access Control Subsystem (ACS),
(See Section 4.4, will be trusted. (These processes may be such
things as discretionary access control, integrity control, audit
trail maintenance. The threat in this processor is relatively
low because it is not accessable to the user for program storage
and processing. Should certain activities of the ACS be con-
sidered critical, validation of that activity can be conducted).

The trusted processes are minimized in the secure DBMS designs. There are trade-

offs possible between the cost of validation and the amount of trusted code

permitted. Some applications may incur only a marginal risk by trusting a process

while for other applications the risk might be intolerable. For example, trusting

user processing separation to a DBMS processor incurs a (perhaps) tolerable risk in

many applications, particularly if one of the improved, "secure"operating systems is

used. When the risk cannot be tolerated, users might be assigned to Personal DBMS

processors - at great expense due to the currently high cost of processor replica-

tion.

2.5.3 Trusted Equipment

Much of the equipment in a computer system must be trusted. In

those security applications where the hardware cannot be trusted, multiple redun-

dancy is used to reduce the risk.

An example of trusted hardware is a microprocessor. Such a system

has so many states that correctnessof the microprocessor annot be totally tested.

Therefore, only the most likely system states can be tested. Physical failure

of a microprocessor in a security critical path can be reduced by running redundant

2-28

processors as "reference monitors" and comparing the results of each processor for

agreement.

Many security paths are of such a critical nature that redundancy

is required to insure that no faults develop, despite the fact that the equipment

is known to be good. In the secure DBMS design, the hardware security filter

(Section 4.2) is such a device wherein a redundant system is employed.

2.6 Security Monitors and Audit Trails

Two essential security violation detection mechanisms in a cumputer

system handling classified information are the security monitor and the audit

trail.

2.6.1 Security Monitors

A security monitor is a process with the following tasks:

o logs all security sensitive system activities in the
audit trail

o presents security relative information to the security
officer, such as
- current users & their current protection levels

- protection privileges permitted for a given individual

- all current accessed objects and their modes
- protection level, and discretionary access levels of all

stored objects

- all modifications to protection levels or discretionary
access permissions

a o sounds an alarm whenever an attemped security violation is
detected.

* Many of these actions are available to the security officer in real time. Certainly

all of these actions should be included in the audit trail.

6, Security monitors can be of two basic types: embedded and isolated.

An embedded security monitor (Figure 2.6-1) is a part of opera-

ting system software and creates a trace of all commands processed. In a standard

system, an embedded security monitor is located in the same processor as are the

user application programs. Therefore, such a monitor is suspeptible to tampering

by a computer thief. In the secure DBMS architectures, an embedded monitor would

2-29

- . . " , . : IN

be placed in the access control subsystem, a relatively secure location because user
access to this processor is restricted to DBMS queries. In a sense, this location

of the monitor is not strictly embedded as it is isolated from the host (DBMS

processor) equipment and user programmnability.

The second type of monitor, the isolated monitor (Figure 2.6-2), re-

sides in a totally separate processor which serves as a "listener" of all data base

transactions. Because the logging operations are relatively simple, the software

can be kept relatively small, facilitating validation (if desired). In the secure

DBMS architecture, the security monitor would be attached to the access control

processor. Because so much of the information being logged is acquired from the

access control processor, many of the security advantages of the isolated monitor

over those of the embedded monitor at this site are lost due to relatively tight

system couplings. Therefore, an embedded monitor may adequately serve the secure

DBMS in all but the most critical cases.

2.6.2 Audit Trails

The security audit trail records all security sensitive actions

of the system. These activities can be described in terms of four system logs:

o System Access Log - describes all subject log-on and log-off
activities (Figure 2.6-3)

o Protected Object Log - describes all accesses, successful or not,
to protected objects (Figure 2.6-4)

o DBMS Log - describes all DBMS alteration attempts (creates, de-
letes, permits, etc), successful or not. (Figure 2.6-5)

o Suspected Violation Log - describes conditions surrounding a
suspected security violation attempt and complete system state
at time of attempt. (Figure 2.6-6)

The above logs should provide sufficient information for system analysis and for
system security audits.

2.7 Multi-Level Security

Multi-level security is separated into two areas: subject and

object.

The DBMS must support concurrent use by subjects of several levels.

2-30

LINK TO USERSCENTRAL
USERSLO

ICROP PROCESSING
UNIT

AND DATA

MONITOR BS

Figure 2.6-1 An Embedded Security Monitor

$

LINK TO

I CENTRALDT

PROCESSING BASE
• i IMI CROPROCESSOR MOIOIUNIT r LDISKJ

MONITOR

Figure 2.6-2 An Isolated Security Monitor

2-31

_ . .. , 2

o User identifier

o Date/Time of log-on

o Data/Time of log-off

o DBMS Processor used identifier

o Any resources used

Figure 2.6-3 System Access Log Description

o Record of file opens and closes

o User identification for all file accesses

o Object access node (read, write, modify, etc.)

o Identification of DBMS processor from which access was achieved

o Protection level of subject

o Protection level of object accessed
o Date/Time of access

Figure 2.6-14 Protected Object Log Description

o DBMS directory changes (CREATES, DELETES, PERMITS, RESCINDS, etc)
oSubject identification for DBMS directory alteration

oProtection level of subject at time of alteration

o Protection level of object affected by directory change

o Identification of DBMS processor from which change was initiated

o Protection level of object after change (if level was changed)

Figure 2.6-5 DBMS Access Log Description

2-32

o Date/Time of suspected violation

o Identifications of suspected DBMS processor and subject gener-
ating the suspected violation

o Type of suspected violation (illegal directory modification,
object reclassification, access beyond user permission level, etc)

o Complete system state dump (system operation is suspended upon
encountering suspected violation except in the case of a trusted
process downgrade operation)
- dump of all active DBMS processor identifiers
- dup of subjects currently active on each DBMS processor
- dump of current accesses possessed by each subejct
- dump of protection levels of each subject
- a DBMS protection system activity including current access

request in process and all pending system requests
- short DBMS directory dump describing all objects on system,

their protection levels, and their discretionary access per-
missions. If the DBMS system maintains last access data, such
as last user to access, time, date, mode, etc, this too would
be presented.

Figure 2.6-6 Suspected Violations Log Description

2-33

Or

Although it is desirable that the subject not be burdened by a "single security

level per session", multiple levels may not be practical: enforcement of the secur-

ity policy with user changes in level is difficult, if not impossible, due to the

requirement to sanitize the DBMS system prior to permitting a subject to go to

lower security levels. Any security enforcement device, such as a system "sani-

tizer", residing in the user work area, such as the DBMS front-end host processors

or terminals, cannot be ensured against user tampering and consequently cannot be

totally validated. Consequently a system can be designated to permit processing by

a number of users at different levels but only in a single level per session, sin-

gle level per processor environment.

The DBMS may store objects of many different security levels. A

subject must therefore, be able to read and write to objects at more than one level.

The formal security policy permits this action within certain constraints. Basic-

ally, no non-trusted user can be permitted to access an object at one level, and

subsequently write the accessed object at a lower level. Therefore the secure

DBMS permits multi-level views of information to be read in such a manner consis-

tent with the security policy and write only to those parts of the view consistent

with the security policy.

2.8 Protection Granularity Discussions

Data can be protected at several levels of granularity. This

section presents these levels of protection and some of the implications of their

use.

Data Base

The classification of the entire data base to a single level is not

a solution to the multi-level data base problem. The result of such a protection

policy would be to create a system high machine.

Record, Row, cr Tuple Protection

In a tabular representation of a data base, a record is a row of

data, (Figure 2.8-1). Typically, a record contains information of many types. It

is normally more profitable to assign like security levels to items of the same

type as opposed to the related items of a record. For example, a data base might

contain several unclassified entries, such as airfield name, number of personnel,

2-34

C5w

00

2-350

number of aircraft, and type of missiles deployed at that sight, as illustrated in

Figure 2.8-2. It might be desired that the missile types be Top Secret. If the

missile type is contained in each record, then all records must be protected at

this same level, resulting in a single level data base.

Domain or Column Protection

In a tabular representation of a data base, a domain is a column of

data (Figure 2.8-1). A column usually contains the same type of information and is

a good choice for a single level of protection. Protection can be provided through

a variety of mechanisms, including domain masks for a relation, item tags, or

directory tags. See Section 4.1 for details of multi-level data protection.

Item Protection

An item or attribute is the intersection of a domain and a record

in the tabular representation of a data base (Figure 2.8-1). The only practical

means of providing item protection is through the use of data tags - security tags

attached to every data base time. Care must be maintained in the method of main-

taining the data tags. If a security label, i.e., a security level, can be alter-

ed through an upgrade process by a high level subject, the resulting security tag

modulation can be observed from a low level, thus forming a covert channel. (An

upgrade is the act of raising the protection level of an object). Figure 2.8-3
illustrates this process. Thus, the security tags must conform to the tranquility

principle or must themselves be protected by a security rule. One such rule per-

mits security tags to be set only from the lowest level of the protection level of

the object, and once set, can, be altered only from the lowest protection level of

the object.

Other Granularities

While it is possible to protect data at a level lower than the item

level by tagging subfields within the item or even words within the item, it is not

practical. For example, if each word was protected and there were two bytes re-

quired to specify the protection level (security level and category; integrity level

and category), an overhead of two protection bytes per word would be incurred!

2-36

LI)
LL

LuI

-i Ii

LI) LIi

LI)

LULO

LLJ~ M

LI)

-j-

LLLL

LIC)

4: E
-4-J4

00

LLJ CD
0L 0 0 C'

~LI) > 0m4

F--

001

2-3

Ln 0

CAn

C) 4-)
fa

CCA

4-

0

V)-

4-)

0D 0

V)-

x
LAU

CA '4
>- >0
LLJ co

CA -. -

-i coLLJco
LLI = -c LA

-A I a L a)

LLI

>. >-

0j -j UJ u

LA- -j

2-38

Summary

Figure 2.8-4 summarizes some of the implications of the various

protection granularities.

For the purpose of the secure DBMS, the domain protection level was

chosen as a practical level for implementation: cost is reasonable protection gran-

ularity is moderate; implementation is feasible.

Details of methods of providing data separation in a multi-level

data base and implementation implications are detailed later in Section 4.

2.9 Proof of Correctness Requirements

In order to prove that the secure DBMS is capable of providing the

protection required by the formal security policy it must be validated through a

security analysis. For the secure DBMS, flow analysis will be utilized to prove

that sensitive information can pass only through the desired paths and that no

covert channels exist. To do this, all system and subsystem interfaoes must be

fully described.

In addition to the system validation, the security policy must be

shown to be sufficient and necessary for maintenance of system security. For this

purpose, the formal mathematical proof of the security policy is provided in

Appendix A and was summarized in Section 2.2.

In relation to system validation, Figure 2.9-1 defines terms used

in validation and verification of systems.

2-39

.1

LLJ

F-
L.) LJ.

M - LL.LALAJLL LAJO C
co~ LLE V

V)W C5) to C

ZEA =D X:CD V

~ ..~1 - I-

:3c C) Cl C) bd
S- c C9

I- - - -

-JIC C>
(n C CD C> cDW

- L C Co

0 CD 0CD
C)

LiJ 4L

-J ~~ CD DC
0 0

- 0 0

C c)

L)~ -j- L L

CD S..
0x m CD = -I. (D-

CCD CD
(j*) .- A

2-40J

AMA

Accreditation. The final acceptance of a system for operation in
a specific environment. This is an administrative activity.

Certification. The application of policy doctrine and technical
evidence to a system to determine the prudence of its use
in a particular secure application. This is a technical and
political activity.

Certification refers to the "user" agreement, at the con-
clusion of the OT&E (operational test and evaluation) phase
of a contract, that the acquired system satisfies its in-
tended operational requirements.

Correctness. Formally, the property of a system that is determined
through formal verification activities. Correctness is not
an absolute property of a system, rather it implies the
mutual consistency of a specification and its implementation.
See verification.

Correctness Proof. A mathematical proof of consistency between a
specification and its implementation. It may apply at the
security model-to-formal specification level, at the formal
specification-to-HOL code level, at the compiler level, or
at the hardware level. For example, if a system has a veri-
fied design and implementation, then its overall correctness
rests with the correctness of the compiler and hardware.

Once a system is proved correct, it can be expected to
perform as specified, but not necessarily as anticipated if
the specifications are incomplete or inappropriate.

Implementation Verification. The use of verification techniques,
usually computer-assisted, to demonstrate a mathematical
correspondence between a formal specification and its imple-
mentation in program code. See verification.

Validation. The collection of evaluation, integration and test
activities carried out at the system level to ensure that
the system being developed satisfies the requirements of the
system specification.

Verification. Informally, a clear and convincing demonstration
that software is correct with respect to well-defined cri-
teria, such as a security model. In a formal context, veri-
fication refers to the mathematical demonstration of con-
sistency between a formal specification and a security model
(design verification) or between the formal specification and
its program implementation (implementation verification).
The phrase "formally verified" is now beginning to imply that
computer-assisted techniques have been employed in the veri-
fication effort. See correctness.

In testing, verification refers to the iterative process
of determining whether the product of selected steps of the
CPCJ-development process meets the requirements levied by the
previous step.

Figure 2.9-1 Terminology for System Accreditation

2-41

3.0 SYSTEM ARCHITECTURE AND ELEMENTS

This section describes the general architecture and subsystems need-

ed to implement a distributed secure multi-level DBMS system: This DBMS system is

capable of supporting groups of users at a common access level on dedicated pro-

cessors sharing a common multi-level central data base. This section has the

following subsections:

3.1 Concept

3.2 Implementation Architecture

3.3 Subsystem Descriptions

3.4 Relational DBMS Approach

3.5 Alternate Approach

3.1 Concept

The enforcement of non-discretionary security between multiple dedi-

cated processors and a common multi-level data base can conceptually be thought of

as a crossbar switch (as shown in Figure 3.1-1) with the connectivity limited by

the simple and *-security rules. Note that data in this multi-level data base must

be logically separable by security classification to enforce non-discretionary se-
curity.

For some multi-level, multi-compartment applications the large num-

ber of dedicated processors required may economically limit the application of this

architectural approach. As this approach is compatible with period processing, the

number of processors attached to the central data base can be limited to the number

of concurrent access categories required with the potential connectivity appropri-

ately changed between periods.

Ideally, the enforcement of non-discretionary security would be

done by a certifiable hardware security filter (HSF). Such an HSF would greatly

aid system certification a non-discretionary security enforcement validation would

rely on hardware flow control analysis. That is, a multi-level mode of operation

could be achieved without requiring a secure operating system or certified/trusted

software.

3-1

lo

-c

T I~.

'-.'(0

LL3

4.,

.01

La

4.- cc 'i (D 4.. -C L,

-6

3-2

- .4.3

3.2 Implementation Architecture

The architectural implementation of this concept is shown in Figure

3.2-1. This block diagram shows multiple dedicated DBMS processors subsystems con-

nected to a central, multi-level data base subsystem. The DBMS processor and cen-

tral data base are separated by an intervening hardware security filter (HSF) sub-

system that is front-ended by an access control subsystem (ACS). The ACS handles

the contention among the DBMS subsystems for central data base accesses and other

central processing functions. Because the ACS control outputs are screened by the

HSF against processor access control policies (ACP) supplied by the security officer

and its other interfaces are receive-only request lines from the DBMS subsystem, it

acts as a system high observation node. Hence, no trusted or certified ACS software

is required.

3.3 Subsystem Descriptions

The central multi-level data base resides in mass storage. The data

stored within this central data base must be logically separable by classification

(security level and compartment). The central data base is connected to the HSF.

The HSF acts as a central data base entrance and exit guard. It
receives central data base access requests through the ACS. It receives an ACP for

each processor from the security officer. It enforces this ACP for each DBMS pro-

cessor by separating data by security category and by controlling which categories

may be stored and/or retrieved by each DBMS processor.

The ACS handles central data base access contention among the DBMS

subsystem, queuing those requests which cannot be immediately serviced. Because

it is the only central system high observation node it performs a large number of
central processing tasks. The ACS performs the central audit trail and security

monitor functions. The ACS also handles the central data base file management

(storage allocation), i.e., it implements directory commands. Because this alloca-

" tion must occur at a system high level that cannot be viewed by low level DBMS

processors, this subsystem must receive logical central data base access requests

from the DBMS subsystems and convert them to physical central data base requests

for the HSF.

3-3

_j

Li-J

V))

LL- uI-Ur
C) = L.) .

(~C) x
V)0:(>-IL) L L

V) -i F- x -- i
co V C l LJ >- LLJ L L
= I) cx >- = - c CK

V))

-

uJi

U,1

cc Un

LLLL

dii

LaJO-
L3A

00n

3-4

The ACS is also the preferred location for integrity and discretionary

access control software as it is a central location which cannot be bypassed and

it provides physical isolation from potentially hostile user code. It is also de-

sirable to locate some maintenance software in this subsystem to perform fault

detection/isolation and DBMS maintenance support. A more detaile4 functional par-

titioning diagram of this subsystem is shown in Figure 3.3-1.

The DBMS subsystems may either be comprised of general purpose

processing systems and/or back-end DBMS machines. The general purpose processing

systems will directly support user application programs. The back-end DBMS pro-

cessors provide an interactive query language user interface. In the back-end DBMS

configuration,another (host) processor is therefore required to run application

programs.

3.4 Relational DBMS Approach

For this study a relational DBMS approach was selected for detailed

study. While other DBMS approaches, e.g. Hierarchical or CODASYL, are not incom-

patible with this architecture, the relational approach has the advantage of re-

quiring relatively little direct data coupling. Because of this feature it is

easier to segment the data base by security classifications.

Figure 3.4-1 shows some of the features of a relational DBMS. In

this type of DBMS the data base is broken into units called relations which can be

visualized as tables with rows called records, columns called domains, and the

intersection of a row and column called a data item or attribute. In the example

shown there are two relations: an employee relation and a department relation. The

employee relation contains domains called: Name, Sex, Age, Salary, Job Title, and

Department Number. The employee's name is the key to this relation with the other

domains dependent upon that key domain. The department relation has multiple keys

with the department number as the primary key and department title as a secondary

key. Note that an employee's record contains his department number, a key to the

dependent relation. This foreign key allows the DBMS to construct a joint view of

multiple relations. For example, a list of employees and their directors can be

created as a user view.

3-5

I Ea

wI 41

1- W!4 La
L) a a0 "4

a La 4A.

z V)

9 U) cc

w a C UI1

CA La U
w CL*L~ QW t L V C

U9 a

m 3-6

LJ

C> (A

*

&J

LL CD

aa

I'I

A..LA.1

6 oi
Cl.J

k

X LaJ

u-6- LAJJ

V))

a- U-

3-7-

2:
-

To decrease access time, a hierarchical, partially inverted access

structure is typically used to allow indirect random access of records by key data

items. For example, when Smith is hired his employee record is added to the em-

ployee relation. At the same time, his name is hash coded to form an index and a

pointer to his record is stored at that indexed location in the employee name access

table. Thus "What is the name of Smith's department?" query could be processed by

the DBMS as follows: the name Smith is hash coded and used to index his record

pointer. His record is then retrieved and his department number removed. His

department number, 1403, is then hash coded to index the pointer to his department's

record. His department's record is subsequently retrieved and the name of his

department found.

In contrast, "List the name(s) of all directors under age 45" re-
quires a combination of sequential and indirect random access record retrievals.

In this case each department record is sequentially accessed, the director's name

is removed and used to index his employee record containing his age.

Actual processing would be somewhat more complicated. In the above

example, the director's date of birth would actually be stored, with age computed

using the current date. Another typical DBMS complication occurred when Smith

was hired by department 1403 thereby increasing the number of personnel in that de-

partment. Thus updates are required to the department data base as well as the

employee data base when employees are added, deleted or change departments. In

essence, an addition, deletion or change to the department domain in the employee

relation should trigger an associated update in the department relation. The

actual mechanics associated with relational DBMS access structures can be quite

involved and are beyond the scope of this discussion. The above relational data

base descriptions are presented only as an introduction to the data base process.
3, 4, 5

The subject is covered amply in the literature.

3-8

3.5 Alternate Approach

An alternate distributed architecture approach to multi-level secur-
ity is to place the security filter between user terminals and the central data
basp. This security filter then enforces security at the user (terminal) level
rdther than the processor level. The DBMS functions are handled by an isolated
back-end processor. This approach provides secure multi-level DBMS processing
for interactive query users. A host processor is required to support any applica-
tion programs. If such a host processor is shared concurrently by many users, then
the security provided by the distributed architecture reverts to the processor level.

3.5.1 Concept

The key to this alternate approach to a distributed secure multi-
level DBMS architecture is to isolate the DBMS functions from the users. This is
accomplished by forcing direct data transfers to be made between the user terminal
and data base through an intervening security filter. Figure 3.5-1 shows this
conceptual architecture. A back-end DBMS processor is used to process queries and
create access structures. However, this DBMS processor is isolated from the users
and may only make indirect responses to user's request. The DBMS acts as a trans-
later converting user queries into central data base requests which are processed In
turn by the security filter. Furthermore, all data generated by the DBMS processor
and stored in the central data base such,as access structures, is stored mna special
security compartment that is inaccessable to users. This isolates DBMS generated
data from the users and prevents use of the central data base as a covert channel

from the system high DBMS processor to the users. Thus, in essence, the back-end

DBMS processor is a system high observation node and therefore does not require cer-
tified or trusted software.

3.5.2 Implementation Architecture

ture.gAre 3.5-2 shows the implementation of this alternate architec-
ture A ardaresecurity filter subsystem is still used to enforce non-discretion-

ary security. However, it now connects a single system high back-end DBMS subsystem
and multiple sirngle-level front-end 1/0 processors to the central multi-level data

base. Another difference is the addition of a multi-key end-to-end encryption (E3
system between the classified front-end I/0 processors and the HSF. The user key
for the E 3 device is selected to enforce discretionary security. Similarly, single

3-9

-Vj

CO0

LwoU

>1

w
-J L /<

0 L0

a-)
Z Q: w

CL LLJ 4-
LLJ LL = 4

Z m a:: u-j - w C
C:) - - U) a

U C-- V) U U-

-I0

4)

w U)

u Z LjO

0 S

-10-.za

key E3 systems are located within users teminals, thus providing hard encryption

protection of all user data passed between the users and the HSF.

Clear text (unencrypted) queries are routed from a user's terminal,

bypassing the E3 system, through the front-end I/O processor to the system high

back-end DBMS subsystem. The DBMS subsystem finds the central data base

location associated with the request which it passes to the front-end I/O processor.

This specified location may contain an unclassified canned message, e.g., "item

not found". This processor then relays the access requests to the access control

subsystem where discretionary security is enforced by encrypting the query response

in the user's key.

A similar approach is used for updates, except that the data gener-

ated by the DBMS is placed bythe HSFinto a separate security compartment. This spe-

cial compartment is made inaccessible to the front-end I/O processor by the HSF

access control policy, thereby denying direct user access to the result of the modi-

fication. To prevent a covert channel between the DBMS to the end user, certified

or trusted code is required in the front-end I/0 processor. However, note that

these processors cannot compromise discretionary or non-discretionary security by

themselves even with trap door software.

3-11

I.-

L''U

C13
LUL

II

C-)

ui "0) C

3-12

4.0 IMPLEMENTATION TECHNOLOGIES

This section describes the technologies capable of implementinga multi-user,

multi-level secure DBMS. In particular, the following major areas are discussed:

Section 4.1 Relational Approaches to Multi-Level DBMS

with Domain Level Protection

Section 4.2 Hardware Security Subsystem

Section 4.3 Access Control Subsystem

Section 4.4 Encryption

Many of these implementation technologies are integrated in the

architecture designs of the following section, Section 5, Architectural Approaches.

4.1 Relational Approaches to Multi-Level DBMS with Domain-Level

Protection

In section 2.8 the granularity level of protection was discussed

and the use of domain level granularity was shown to be a good choice. This section

details the methods of providing multi-level security in a relational DBMS.

4.1.1 Approaches

There are at least four ways of handling multi-level relations

within a distributed secure DBMS architecture of single level DBMS machines:

o Domain Separation

o Black Bypass

o Internal Bypass

o Multi-Relation View

The Domain Separation technique is a software only approach. It

places domains with different protection levels in different files, main-

taining access control at the file level (see Figure 4.1-1) This approach

requires custom DBMS software as a relation's domains must now potentially reside

on multiple files, some of which may be unaccessable at some security levels.

A second approach is the Black Bypass technique (Figure 4.1-2) This

approach requires physically tagging data with its security classification. The

Hardwdre Security Filter Subsystem screens these tags on the fly against the access

control policy. A black bypass to the Hardware Security Filter is used to allow

access to any level of classified data in an encrypted form. This capability

4-1

U-FILE C-FILE S-FILEI

MULTI-
LEVEL
RECOR~ U KEY_ UA c DATA S IT

Figure 4.1-1 Domain Separation for Multi-Level DBMS

4-2

I ___moor_

.0 7

PRECEDING LOGICAL REMAINING
DATA RECORD DISK

L SE CTOR

LEVEL 0 OLD O R EWSECTOR

RE CORD 0

REDF

-CMEBGE

OPERTIO
4

E IO

F i g u r e ~ ~ ~ ~ ~ D C R P T O 4 . -Tl c y a s p r h f R A MN t -L veCDE

[ENCYPT 4- TO

permits the Hardware Security Filter to take mixed red (unencrypted) and black

(encrypted) data from a DBMS processor with only the red data security classifica-

tion screened against access control policy on the fly. This approach allows a

DBMS processor to make changes at its security level to a multi-level physical re-

cord without compromise to lower or higher level data in this physical record.

This technique requires an extensive increase in Hardware Security Filter Subsystem

requirements and extensive modification to the DBMS software to handle security

tags, reading red or black physical records, and merging red changes into black

physical records.

The Internal Bypass technique is the third approach (Figure 4.1.3).

This is a variation on the Bypass approach technique that does not require routing

black records througha DBMS. Instead, a physical bypass is placed in the Hardware

Security Filter Subsystem that allows a record to be read and stored within

the Hardware Security Filter Subsystem. That portion of the record permitted

to be accessed is subsequently read by the DBMS processor which can then

mark changes to be merged with the old record temporarily stored in the Hardware

Security Filter Subsystem. Only these changes are then screened against access

control policy. The advantage of the internal bypass is the removal of tne complex

encryptor/decryptor bypass mechanism in the Hardware Security Filter Subsystem.

This technique does require changes to the Hardware Security Filter Subsystem to

manage the bypass buffer and to the DBMS software and OS to handle security tags

and to mark changes.

The fourth separation technique is that of the Multi-Relation View

approach (Figure 4.1-4). This approach divides multi-level relations into

multiple, single-level, single compartment relations with the key(s) replicated in

each relation. A view is then used to manipulate the total super-relation. This

approach requires no system operation modification. However, it does have applica-

tion impacts on the DBMS scheme and on the addition or deletion of records. The

largest disadvantage is the potential loss of data correctness i.e, the potential

of having a partial record due to not deleting or adding a subrecord (identified

by a key) in all subrelations of the super-relation.

Besides the additional complexity required by most of these

approaches, there are also DBMS performance penalties associated with them. In

particular:

o The Domain Separation and Multi-Relation View approaches

require reading multiple files for retrieval of a single

multi-level record.

4-4

PRECEDING LOGICAL REMAINING
DATA RECORD DATA

MULTI-LEVEI I.-OLD SECTOR

REYSCORD D U C OLD S NEW SECTOR

+ODIFTIONS

j ___________INTERNAL_

BY4S
Figure .1-3 Inernal Bpass Aproach NFRAMutiEv DM

EXIT GU-R

U-RELATION C-RELATION S-RELATION

MULTI -

4VIEWS KiLFYi ____ uF cKF u s Aj

.1 Figure 4.1-4 Multi-Relation View Approach For Multi-Level DBMS

4-6

o The Black Bypass approach requires reading each multi-level

record twice (once for the black data transmitted and

once for the transmitted red data) prior to an update.

o The Black Bypass and Internal Bypass approaches both require

adding physical security tags thus reducing effective central

data base throughput and packing density.

o The Black Bypass approach can create a high speed covert channel

between DBMS processors. In particular, an unclassified DBMS

processor can create an unclassified file which a higher level

processor can subsequently modify the data items, upgrading

selected items in a pattern determined from the bit patterns of

a high level object. For example, an upgraded field can

represent a "one" bit, a non-upgraded field can represent a
"zero" bit. The lower level processor can then read the

modulated security flags. (See Discussion in Section 2.4)

In addition to these DBMS performance penalties to effective central data base

access times and capacity, there are large DBMS processor penalties in terms of

the additional time to handle each request.

4-7

4.1.2 Functional Restrictions

The requirement for handling multi-level relations results in some

functional restrictions on the record access structure of the DBMS.

The primary concern is, "What is the level of computer generated

structures that go along with the user generated structures (e.g., schema and

records)?" In particular, relational DBMS typically uses a hash code table to

index records by key witn records stored in a linked list format. This approach

allows fast random access by key through a hierarchical partially inverted structure,

sequential access through a linked list,and the capability of relatively fast record

addition or deletion without expanding or contracting the other records tnrougn use

of an empty record queue (linked list).

From a practical standpoint, these computer generated structures

(e.g., hash code tables, free queue pointers, link list pointers, etc.) must be at

the lowest level of the relation. If not, the DBMS will be unable to locate

logical records from that security level, effectively denying access. For this

same reason, the schema (logical record structure) must also be at the lowest

level of a relation. Finally, the DBMS key(s) must also be at the lowest level of

a multi-level relation. This is because the key(s) are the effective index used

for record deletion and addition. In particular, for additions,a computer hash

code table entry that contains information about the key(s',must be generated at

the lowest level of the relation.

Because the keys are maintained at the lowest level, some additional

restrictions on DBMS processing result. Those operations which must create or

delete keys and pointer structures must be performed at the same level as the DBMS

structure, i.e., the lowest level of the DBMS. Therefore, additions and deletions

must be made from the lowest level of the relation. This process requires the

ability of the subject to write information to higher protection levels if multi-

level relations are to be used. or use blind writes (updates).

j. There is an exception to the above requirement in the case of the

multi-relation view approach of multi-level record handling. In this case, the

same key as used in the lowest level sub-relation is replicated in the higher

level sub-relations, thereby creating the necessary access paths for additions

or deletions.

4-

4-8

One final restriction exists if higher level additions and dele-

tions are to be permitted by a lower level user to higher level objects. In order

for the low level pointer structures to permit proper location of the item to be

processed, the higher level items must h'ave a fixed field size.

4.1.3 Domain Separation Approach Description

One approach to handling secure multi-level domain relations is to

develop a specialized DBMS that segments data by the protection level of its

domain and stores each segment in a separate file. (Figure 4.1 -5). This technique

has a minimal impact on any of the distributed architectures and provides good'se-

curity. However, this approach requires development of a DBMS customized to handle

multi-level security and has an adverse performance impact due to requiring multi-

pl e f iles to be read for mul ti -level record access.

DBMS Impact

Basically, the Domain Separation method requires that the schema be

nodified to permit a security clearance to be established for each data domain.

Files at the lowest level and compartment formed from the intersection of all of

the compartments (hence referred to as the Commion Comnartment of the relation) of

the domains must contain the keys and associated computer access structures, the

relation's parameters (e.g., hash code table lengths, free queue pointer, etc.),

and the schema. There must be a separate file for partial record storage of each

set of domains with a different clearance. These "higher level" partial records

must be directly or indirectly accessed through the computer access structures at

the "lowest level". If they are to be directly accessable to lower level subjects

for appends or deletes, these higher level partial records must be stored in a flat

fixed-length manner. If "higher level" variable length fields are desired, these

partial records must be indirectly accessed through a flat pointer table and an

empty partial record queue maintained at that higher clearance level.
4 There are three methods of handling relation initialization (creation)

and record additions and deletions for Domain Separated multi-level relations. The

* first technique requires thdt these operations be done at the lowest level and at

* the commnon compartment of the domains of the relation. This is to permit access

to write (add or delete) to the key structure of the relation. Initialization and

deletion should blank (destroy) previous record data at all levels. This can be

done from the lowest level if a physical record (disk sector) can only contain

(all or part of) one partial logical record and "higher-level" partial records are

.4-9

C) U- C

IrIx
I.L.

2=~U 0'-ccLui C) 0.0

F- 0i

M. LIJ

F- CV) 4 C

-LLJ LL w

.. i u C. LAJ LLJ
o L&J F- I-..-i Cu

LC) ILL. V/) Cl I>

-J

oC =
-C-C

CD/ LA.

C) CA3L

-JJ "C

F- LfLJ LJ
C\ =1 -,_

;mLLJ 0D s-4~

M. LL. F- (1

Li. 0 -CDZ 0

__ _ _ __ _ _ _ __ _ _ _ C. - -1

Lnn

IC u

LtLi

4-10

p-4I

are stored in a flat fashion, thus permitting blind updates. However, the use of

flat records does not allow records to be packed ondisk and therefore degrades disk

packing density and throughput.

A second approach for initialization and deletion is to relay the

commnand to a higher level machine which performs the higher level portion of the

activity. This approach requires upward commnunication among the DBMS processors.

However, if this communication path is provided, it would be more desirable to

modify an existing DBMS system and split these multi-level relations into multiple

single clearance relations with the key(s) replicated. (See Multi-relation View

Approach.)
A third approach is to ignore the "higher level" partial record

data. The drawback to this approach is that when a record is created at the

"lowest level," the "higher level" partial record will contain old data and is thus

an undesirable approach.

Hardware Impact

Hardware impact is minimal for this technique.

Software Impact

A custom DBMS must be created to provide this type of multi-level

data separation.

Security

This technique provides good security without any covert channels.

In addition, because a custom DBMS must be written, integrity control can be

developed as part of the DBMS software.

Cost

Costs will be high for this approach due to the development of a

custom DBMS system. System maintenance and systems personnel training for thts

non-standard system will add to the cost.

4.1.4 Black Bypass Approach Description

Another approach to handling secure multi-level domain relations

is to provide a black key generator (KG) bypass of the Hardware Security Filter
Subsystem with each data item physically tagged with its security clearance. This

4-11

approach requires an extensive upgrading of the Hardware Security Filter Subsystem

and the development of a specialized DBMS that supports the KG bypass and physical

security tags.

The Black Bypass approach allows a single level DBMS to modify a

portion of a physical disk record containing multi-level data. The DBMS must first

read a red (decrypted) version of a physical record with the hardware security

filter blanking higher level data as determined from the data security tags. The

DBMS then reads a black (encrypted) version of the physical record, overlays

portions of this black version with red modifications, and writes the resulting

mixed (red and black) version back to disk through the Hardware Security Filter

Subsystem. The Hardware Security Filter checks the data tags of the red modified

portion 3f the record against access control policy and merges these with the

remainder of the record obtained by decrypting the black data.

DBMS Impact

The specialized secure DBMS requirements are similar to that

for domain separation. The schema must be modified to require a security clearance

for each data domain. The keys, associated computer access structures, parameters,

and schema must be stored at the lowest level and common compartment of the

domains. If variable length higher-level files are used, these partial records

must be indirectly accessed through a flat pointer table, a separate file used to

contain these variable length fields at each separate clearance, and an empty

partial record queue maintained at these clearance levels. In addition, the DBMS

must handle physical security tags, potentially on a fixed format basis. Also

the DBMS must be capable of reading both red and black records and overlaying red

changes on the black record in order to perform updates.

One advantage of this approach is that all levels of a multi-level

relation can be read with a single disk access thus supporting relatively efficient

queries of multi-level relations. However, there is an overhead associated with the

physical data tags which impacts the system throughput and disk packing density.

Software Impact

The Black Bypass technique requires modifications to the DBMS to

handle red/black data and the data tags.

4-12

Hardware Impact

The hardware impact is significant for this technique, particularly

in the Hardware Security Filter (HSF).

One immediate impact upon the HSF results from the requirement of

individual physical security tags. These security tags require a fixed storage

format for data and clearance tag. When a physical record (disk sector) is

subsequently read, the security tag data must be stripped out (deformatted),

compared to access control policy, and higher level data is blanked.

The interface between the Hardware Security Filter Subsystem and the

DBMS Processor Subsystem must also be redefined for this approach. Various options

are available. The simplest option is to use the same fixed format used to store

data and clearance tags on disk, thereby keeping transfer rates at both interfaces

the same and allowing use of synchronous links.

Sending the data in both the encrypted (black) and decrypted (red)

data to the DBMS processor impacts the HSF data handling requirements. Basically,

there are three ways to handle black reads: re-read the physical record; double

the link rate providing the filtered red version on one channel and the unfiltered

black version simultaneously on a second channel ; or provide a buffer in the

Hardware Security, sending the filtered red version first and the black version

later. The last two approaches are preferable as they require only one central

data base read access whereas the first approach requires two central data base

read accesses for an update.

The write channel in the Hardware Security System is the most complex

of all. Additional formatting will be required to differentiate red and black

fields in the mixed records. The black fields will have to be decrypted while

the red fields have the security tags stripped out and checked against write

access control. After processing, these fields must be re-merged into a red physical

record in the central data base.

l Another hardware impact is the requirement for a high speed KG and

, * bypass mechanism. The KG should be dynamic rather than static; otherwise, changes

to higher level data will be evident to lower level DBMS processors. Dynamic

encryption synchronization will require either adding crypto sync data to the front

of each black record or maintaining the same sequence for write operations as used

for read operations.

4-13

Security

This approach has many secuvlty problems. The two worst are that it

provides a hiqh speed covert channel between DBMS processors and that it permits a
successful clear text attack of the crypto system in a low level DBMS processor,

thus compromisinq higher level data. The high speed covert channel requires the
lower level DBMS machine to write a file of low level data, the high level DBMS
machine then modifies the file using security clearance tags to encode high level
data. The lower level machine can then read these modulated tags by determining

which fields remain viewable. The other security risk is in giving a low level

machine encrypted high level data and simultaneously providing clear text and

encrypted versions of low level data. This processor gives a subject the means

to totally break the cryptographic system. Because of these security impacts,

this technique cannot be recommnended.

Cost

This is an extremely costly system. Major factors are:

o High speed KG equipment

o HSF enhancements to handle read and black data read/write/merge

operations

o Modification required to the DBMS to permit red/black data and

tag handling
o Associated costs of non-standard DBMS in maintenance and training

o An increase in storage costs due to the data tag requirement.
However, tnis cost is partially offset Dy the reauction in

access time through a reduction in the number of physical aisk

read operations.

This is, therefore, not only a non-secure system, but is also quite costly.

4.1.5 Internal Bypass Approach Description

The third multi-level domain separation technique is the internal

bypass technique. This is a data tag technique whereby an exit guard filters all

data sent to a subject and merges the altered fields with an internal copy of the

record. This approach allows a single level DBMS to modify permitted portions of

a multi-level physical disk record by merging allowed changes with the previous

version of the physical record. The primary advantage of this approach is that

4-14

all levels permitted by access control policy can be read with a single disk access

thus supporting relatively efficient queries of multi-level relations.

When a DBMS reads a filtered record, an unfiltered copy is stored

in a buffer internal to the Hardware Security Filter Subsystem. If the DBMS

performs an update, it marks the fields to be changed and sends the update to

Hardware Security Filter Subsystem which merges the change with the stored version

of the record. The Hardware Security Filter screens the tags of the update against

access control policy. If the clearance of the DBMS is not the same as the lowest

level and common compartment of the relation, then the HSF also screens the tags

of the update against the previous tags. This tag screening insures that security

tags can only be changed from the lowest level to prevent the use of the tag level

as a covert channel from a higher level DBMS machine to a lower level DBMS machine.

If a tag or access violation is not present, the HSF then merges the changeo fields

with the version of the record previously stored within the HSF.

DBMS Impact

The Internal Bypass technique requires special modifications to the
DBMS software very similar to that of the Black Bypass technique of Section 4.1.4.

The schema must be modified to require a security clearance for each data domain.

The keys, associated computer access structures, parameters, and schema must be

stored at the lowest level and common compartment of the domains. If variable

length higher-level files are used, these partial records must be indirectly

accessed through a flat pointer table,(a separate file used to contain these variable

length fields at each separate clearance) and an empty partial record queue main-

tained at these clearance levels. In addition, the DBMS must handle physical

security tags, potentially on a fixed format basis.. Additionally, the DBMS must be

caDable of reading both red and black records and overlaying red changes on the black

record.
One advantage of this approach is that all levels of a multi-level

relation can be read with a single disk access thus supporting relatively efficient

queries of multi-level relations. However, there is an overhead associated with the

physical data tags which impacts the system throughput and disk packing density.

Software Impact

Like the Black Bypass technique, this approach requires modification

to the DBMS to handle the physical data tags.

4-15

Hardware Impacts

The primary hardware impact of this approach is in the Hardware

Security Filter Subsystem. One immediate impact of individual physical security

tags is the requirement of a fixed format for data and clearance tag storage in

the central data base. When a physical record (disk sector) is subsequently read,

the record is stored in a buffer internal to the Hardware Security Filter Subsystem.

Simultaneously, the security tag data must be stripped out (deformatted)and com-

pared to access control policy. Then the accessible (filtered) data is sent to

the DBMS processor. If the access is for a query, the internal buffer is sub-

sequently overwritten by a later read access. If an update is made, the changes

are sent back from the DBMS processor and merged with the stored record.

Security tags may only be changed from the lowest level of the

relations, i.e., the Hardware Security Filter Subsystem must enforce two levels of

access control, one at the file level (e.g., using address security tags) and one

at the data item level using physical tags. The Hardware Security Filter/DBMS

Processor Subsystems interface must also be redefined for this approach to

support physical security tags, and changed fields.

Security

This approach provides good multi-level security and performance.

No direct covert channels are known to exist in this architecture.

Cost

This is a moderately costly multi-level relation separation technique.

The major cost factors are:

o DBMS Software modifications to support physical data tag
generation and handling.

o HSF must be capable of processing the data tags as an exit
guard, must be able to use the data tags to control merges
of modified data, and must provide the internal bypass buffer
and control logic.

o There is an additional overhead in storage due to the presence
of the physical data tags which must be stored with each item.
However, this cost is somewhat offset by the reduction in the
access time resulting from the fewer disk accesses required
per query as compared to other techniques.

o There are increased costs of software maintenance and staff
training associated with the DBMS software modifications.

4-16

4.1.6 Multi-Relation View Approach Description

This last approach to handling secure multi-level domain relations
is to segment the multi-level relations into several single-level relations, one

relation being created for each protection level present. Access keys must be
replicated in every level relation. The use of views (logical joining of multiple

relations) effectively allows end users to manipulate these multi-level "super"

relations as they would a normal relation with similar multi-level security

restrictions.

DBMS Impact

The primary operational impact is that instead of laying out a single

schema, a schema must be layed out for each clearance level and for overall (multi-
level) views. Since the layout of a data base structure is done relatively
infrequently, usually by a skilled data base administrator, this is a minor impact.

A second DBMS impact is the requirement for the multiple accesses necessary to
retrieve each single-level subrelation to be built into the super-relations view.

However, if multi-level views are a minority in the data base, this impact will
be minor. In any case, the cost of multiple disk accesses per view are easily
outweighed by the other cost savings.

A second operational impact is a record must be added and deleted at
all clearance levels. When this does not happen, the multi-level view will show

a partial record. The problem of multi-level view additions and deletions could be
handled in part by passing the view addition and deletion requests from the lowest

level to higher level machines at the cost of a modified DBMS and upward (blind)

communication links or by trusted subjects on a multi-level machine. Another
method for elimination of the partial records resulting from incomplete additions

or deletions is the development of a process to aid in the detection of such records
so that the condition can be corrected.

Software Impact

The software impact for this technique is minimal as a standard

commnercial relational DBMS can be used.

Hardware Impact

The Hardware Impact for this technique is minimal. A standard

Hardware Security Filter provides the required access control.

4-17

Security

This approach provides good security with no obvious covert

channels.

Cost

Because of the minimal software and hardware impacts, this

architecture has a minimal cost inpact.

4.1.7 Evaluation of Multi-Level Relational Approaches

This section summarizes the merits of the four multi-level relation

separation approaches.

Domain-Separation

The domain-file separation approach suffers from the same performance

problems as the multi-relation view technique and has the same type of multi-level

addition and deletion problem. In addition, it cannot use a standard DBMS, i.e.,

it requires the development of a specialized DBMS, with its associated higher cost.

However, this approach will have some minor multi-level enhancements relative to

the multi-relation view approach as a result of the requirement for a specialized

DBMS. In particular, multi-level security will be directly incorporated in the

schema and file level integrity security can be built in. These two features

are also easily implementable for the internal bypass approach. This approach

offers little improvement over the multi-relational view approach at the cost of a

standard DBMS and is thus a poor compromise choice.

Black Bypass

The black bypass is unacceptable from a security viewpoint due to

the existence of a covert channel and the clear text attack threat. In addition,

the Internal Bypass approach is functionally equivalent with better performance,

security and cost. Finally,the cost of thd black bypass approach greatly outdistances

all of the other techniques.

Internal Bypass

The internal bypass approach is functionary equivalent to the KG

bypass approach, is less costly, and does not have the covert channel and clear text

crypto compromise security threats inherent with th KG bypass. The internal by-

pass approach has superior performance and functionality potential. It is also

costly as it requires an extensive upgrade of the Hardware Security Filter Subsystem

and the development of a specialized DBMS.

4-18

-V.

Multi-Relation View

The view of multiple single clearance relations has no development

costs and allows the use of a standard DBMS. It has the poorest multi-level

performance potential but better single level performance, thus, if multi-level

views are a small portion of the DBMS load and these views typically are restricted

to a few clearances, the performance differential will not be significant. The

largest drawback to this approach is the awkwardness of multi-level view additions

and deletion which is not found in the internal bypass mode.

Conclusions

Figure 4.1-6 summarizes the characteristics of these multi-level

data separation approaches. The indications are that the internal bypass is the

technically superior technique but has a very high development cost. As a

compromise, the best choice is the multi-level view approach which meets the

requirements using commercial software and thus has the minimal cost.

4-19

Ln Uq C5

40~

WL LAJ

00

- - -n -) C 0
4.

CD C3

W CD

4-i
0~0

-

LAJiC

ilCCD 3 '4

I.-

0. LL0

-A - -j__ ___ _ _ _ _ I

In

C..) LL

I-J 2=> =L

4-20

:ai

4.2 Hardware Security Filter Subsystem

The Hardware Security Filter (HSF) is responsible for enforcing a

non-discretionary security access control policy provided by the security officer

for each attached processor. Many implementations of an HSF are possible using

existing technology. The primary differences among such implementations are the

capability to support multi-level files and choice of data separation technique(s'.

4.2.1 Overview *
The primary HSF requirements driver is the choice of the type file

to be protected: single-level or multi-level. The impact of this decision is dis-

cussed in detail in Sections 4.2.2 and 4.2.3 respectively. Security Failure Analy-

ses (SFA) and Tempest are other primary HSF requirements drivers. Ideally, the

HSF design will provide provable non-discretionary security enforcement independent

of other subsystems for single level processors. Another impl ementati on cons iderati on
is its adaptability to various central data base and DBMS processor subsystems.

One aspect of this adaptability is the degree of transparency of the HSF to the

central data base and the DBMS processor. For the DBMS subsystem, measures of the

degree of transparency are the modifications required to interface to an OS the

amount of support software required, and the HSF impacts to application programs.

Ideally, the OS interface would appear as a standard disk driver with no support

software required and no application program impact.

There are four primary, non-exclusive, separation techniques that

can be utilized to implement an HSF: multi-key static encryption; physical security

tags; address security tags; and directory tags. These techniques offer a large

range of capability and features that are summnarized in Figure 4.2-1. The static

encryption approach uses a different key for each security classification to main-

tain data separation. The encryption and decryption keys available to a given

processor are controlled by an access control policy (ACP) supplied by the security

N officer. The physical tag approach requires physical security tags to be attached
to data and physically screens these security tags against ACP. The address tag

approach segments disk storage into single level compartments. The disk address

of each access request is converted into an associated security classification and

is screened against the access control policy. The directory approach uses certified

4-21

(A
_j 4-

-4-
41 0LL >

-0 IA

4to 4-

41
0 0u

L- o 03 i L
l~%,*~4-' >) 4-)

06

0)4- ccLA

S- C4J 4-)

Zfla Q 4-)t

1/4w~4 -n - 0S. ,0

434. V)41

LL .). (

-- -r -4-a

(A4 WA0 (A> 0 W ~ 4-
41 Lii wi C) UD0Jl

>- >- 'o Z

- - S-- 40

C0' 4- 0 cm

LO) Li 0)
4 4J Li0 0J 0

-) -- to- fA
S- a, co a

- 7 0 - M-.

LA LA 0 A C~

m* to. win
C.D o - > 0CL

ix.0 o 0 0
-~L -% C * ~ J

4-22n

.100

or trusted software to maintain the security level of each file in the directory and

to control which accesses are permitted by the current ACP.

4.2.2 Hardware Security Filter With Single-Level File Support Sizing

Hardware Security Filters with single-level file support can easily

be built. All four data separation techniques can be used individually or in com-

binations. The multi-key encryption data separation approach is the most secure

but the most costly due to the need for KG equipment. The other security tag

approaches offer a range of security and size.

Multi-Key Encryption Approach

The multi-key encryption approach shown in Figure 4.2,-2 is the
most secure HSF approach but requires more hardware than a security tag approach.

The design shown here requires 6 line replaceable unit types (LRU), 9 to 15 cards,

plus an additional KG sync processor and a single multi-key KG unit (see Section

4.4 for sizing of a potential KG system). This approach has no direct throughput

or packing density overhead, but will increase central base latency to some de-
gree due to the need for random access static crypto synchronization. This ap-

proach also requires utility software to support re-keying and will also require

the ACS to keep track of old key/new key directory data if re-keying is to be per-

formed on-line. The principal advantage of this approach is that central data base

failures will not compromise security, i.e., if the wrong data is read it will not
be delivered to a user in a decrypted form. The storage of statically encrypted

rather than clear text (red) data is an additional security advantage.

The HSF subsystem has four interfaces: a standard disk interface to
the central data base; a high speed serial interface to the DBMS subsystem; a

man-machine interface (MMI) to the security officer; and a central data base re-

quest interface with the Access Control Subsystem (ACS). The encryption approach
has the most complex MMI and ACS interfaces. In addition to access control policy

entry, the security officer must also enter KG keys and potentially user code off-

* sets. The HSF suoplies a busy/idle status to the ACS. The HSF receives disk

commiands and the following access request data: read/write mode, security level

and compartments, and the channel (DBMS) number, and possibly user ID and old/new

key selection data.

4-23

LW

I-. I-

0

CL

CL

L5.

ML6)

4.)

.4-

4-24

Data Tag Approaches

The following HSF subsystem designs rely on data having security

tags to perform its security filtering function. The actual implementation can use

any of three tag types% a physical tag, the central data base address of the data,

or a directory entry. Depending on the tagging method used, various designs re-

sult requiring approximately 2 to 6 LRU types and 5 to 15 cards.

The physical tag approach shown in Figure 4.2-3 is the most secure

tagging approach. It actually provides security classification granularity at the

data item level. It also requires the most hardware of any tagging approaches

and requires that the DBMS classify (physically tag) each data time or the HSF to

internally add and remove security tags . Besides the possibly high DBMS subsystem

overhead this approach also degrades effective disk packing density and throughput.

The central data base address tagging approach (Figure 4.2-4) es-

sentially partitions the central data base storage by security classification.

Security granularity is at the file level for this approach and screening consists

of mapping the disk address to a security classifcation and verifying that the

access control policy allows the requested read or write for that security classi-

fication. This approach has no direct throughput or packing density overhead,

but the fixed disk partitioning results in a need for additional spare capacity

due to the fixed vs dynamic allocation. This approach requires a moderate amount

of hardware.

The directory entry approach (Figure 4.2-5) requires the least

hardware but it is also the least secure. In this case, this subsystem is merely

a secure switching network and the access control subsystem and its software must

be totally entrusted with enforcement of access control policy. For all the tag-

ging/non-discretionary approaches SFA concern extends to the central data base

design and for this approach to the access control subsystem design as well.

Figure 4.2--6 summarizes the LRU's for the security tag approach.

The ACP Boolean Logic LRU is of particular interest (Figures 4.2-7

and 4.2 -8). This LRU contains the logic which maps the access control policy

and the data request parameters into a logical enable/violation signal. The

design calls for a pair of these LRU's to be operated in a self-checking mode.

4-25

SECURITY OFFICER
CENTRAL DATA BASE SUBSYSTEM

DATA FODATA

LOOC GPLIC

DBMS SUBYSTEM IDBS SUBAYSEML

& DEF Data Tags

CL4-26

SECURITY
OFFICER

CENTRAL DATA BASE SUBSYSTEM

A W41
DATA

-DBMS 2EYSTM DBMS SUBSYSEML

Figure 4.2-4 HardwHCAELScrt itrSbytmZpo gAdesTg

Rj 4-27

DAT FRAAT

D-AS3 6 MARISCORP MELWANRE FL OVERNMENT ELECTRONIC SYSTE-CYTC F/s 9/a

.MLSSIFIED ftADC-TR-81-394 IN.

CENTRAL DATA BASE SUBSYSTEM

DATA

ACCESS ONRJ I

CONTROL STATUS J P
SP P/S

SUBSYSTEM

____________ DBMS CHANNEL

R _ _ 1T_

DAT FORMAT
DEFORMo

LC&SYNC

DBMS SUBSYSTEM 1 DBMS SUBSYSTEM N

Figure 4.2-5 Hardware Security Filter Subsystem Employing Directory Tags

4-28

DBMS Interface

o 10 Mbd receiver/transmitter

o sync

o timing

o formatting logic

Fault Tolerant Switching Network

o switches DBMS transmitter and receiver data and clock

o for physical tag approach, provides entrance and exit guard

o parallel data interface with the Central Data Base Subsystem

Control Logic Synchronizer

o provides the ACS interface

o controls interfaces with the other LRU's

Access Control Policy Boolean Logic

o operates in dual-mode self-checking mode for fail safe

o for address tag protection approach contains the address to
security tag translation ROM

o provides Hardware validation of requested access privileges by
comparison to security policy established by security officer.

Disk Controller LRU

o Serial-to-parallel and parallel-to-serial conversion

o for encryption protection approach, inhibits read and write
operations until crypto graphic sync is achieved (can perform
seek function during inhibit)

Man-Machine Interface

o permits selection of ACP by security officer

o permits security officer to display access control data for
any desired DBMS channel

o permits validation of the selected policy

Figure 4.2-6 Description of LRU Functions for Security Tag
HSF Approaches

4-29

* i,

c~cr-

I:3
itA

*t

0

C-c,

4-30

zi LJI.

LAJJ U 4

4U,4)

4-)

LLI)

00

Ii LU 4

I Eu
0

z4

LLi

V ju _ go - - - -- 4,

cn -C u W -C

Uz= E
CD*I o a -0

CU' U I Lo LU t

-44 00z C LU

LU J) Z

C0 4n 01 . -

UAU

- e'j

zLJ U).~I ~ 'Ccc

4-3

u LU .. or

The special access (compartments) ROM's are the primary contributers to size, as

there are N times M 16K by 1 ROM used - where N is the number of DBMS channels

and M is the number of possible access control policies available. This LRU is

not required if the directory approach is used, but may still be desirable.

The man-machine interface LRU is also worthy of comment. The con-

trol panel shown in Figure 4.2.9 is used to select the ACP for each DBMS proces-

sor. For the selected channel, access control data is displayed. Additional con-

trols allow the security officer to modify the access control policy. This de-

sign allows the security officer to select hardwired enforcement of a single level

security access policy (a simple security rule and *-security rule), its level,

whether any compartment accesses will be allowed, and an optional special access

control policy contained in ROM. In addition, this design allows validation of

access control policy: In an off-line mode all possible access requests are made

and the output sampled. At the end of this test, a display ind4cates which

security levels may be read, which security levels may be written, which compart-

ment(s) may be accessed, and a CRC for the sampled output sequence. Tempest and

SFA requirements will impact this subsystem design and size. Further, the small

number of LRU types will help reduce sparing cost.

4.2.3 Hardware Security Filter With Multi-level File Support Sizing

Providing a Hardware Security Filter with multi-level file support

is much more complex than providing single-level file support. Either multi-key

static encryption, physical security tags, or both are required for primary data

separation. Data classifications must be checked against accesscontrol policy on

the fly with higher level data blanked during reads. In addition, a secondary

file level data separation technique is required to insure that the internal file

security structure can only be created from the lowest level of the file (see

Section 4.1). In addition, the HSF must provide a read-modify-write capability.

(see Internal Bypass in Section 4.1). Besides the additional hardware needed to

upgrade an HSF for this multi-level file support, the complexity of control logic

also increases enormously thus making certification much more difficult. At a

minimum the control logic required is a rather large, complex state machine and

could easily result in the requirement for some certified low level firmware.

4-32

4-L

U,

01'

wl

EI-w

CD 0

U-,U

0
U, -

C-'00

00 CU
______n 0 , S-

C-) ___oo
E l U)

il~. 0___

4-33

A maximum HSF system design (Figure 4.2-10) uses physical address/

tags for internal multi-level file security structure, address tags for secondary

minimum file security level protection, and static encryption for SFA purposes, and

is fault tolerant (dual channel). With the partitioning shown, about 8 LRU's and

18 to 32 cards are required excluding the KG systems. A single MMI, a triple mode

redundant majority ACP, and the DBMS receiver/transmitters (R/Ts) are shared by

the two central data base channels. The rest of the LRU's for these two channels

are independent. The Internal Bypass Buffer (IBB) and Multi-level Security Tag

Screener (MSTS) are new LRU types, not found in the single-level file HSF pre-

viously described in Section 4.2.2 . The control logic LRU is considerably more

complex and the switch network and R/T LRUs have more connectivity and routing

functions.

The Multi-level Security Tag Screener performs many security related

functions. For reads,it deformats the disk output into security tags and data,

checks the security tag against access control policy and blanks any data not per-

mitted by ACP. Writes are more complex and require screening of user data prior

to the merging of the old data previously stored in the internal bypass buffers

with the desired changes. A possible format for the user data is shown in Figure

4.2-11. Note that two extra bits that are not stored are required to indicate

whether to use the old security tag and data, merge the old security tag with user
supplied data, or replace the old security level of the tag and data with user

supplied items. In the event that the security tag is to be altered, the HSF

must verify that the request is coming from a DBMS processor at the lowest level

of the relation. This is to prevent a covert channel through data tag modulation,

similar to the case discussed in Sections 2.4 and 4.1.1.

The Internal Buffer Bypass should hold at least a track of data

from disk, typically 17K bytes, for relatively high efficiency. This would allow

a read-modify-write operation to be performed on a per track basis and require

multi-track operations to be decomposed into multiple single track operations.

This technique obviously reduces disk throughput by requiring a read operation be-

fore write In addition to any required DBMS read accesses.

4-34

LJIU

o i-

LncA>- -

- ~ ~ > F-~f -U __ _ __ _

~~s 0 I U

I.-.

0~~ ~ fXn 43

IL 4L

iiW
LL

0L .

I-A
00

-Jj

C)1 1U=C
V) Ln

I-m

-L

4-3

4.3 Access Control Subsystem Implementation

The access control subsystem (ACS) processes the user queries and

initiatesthe required activities to fill the user's request. The ACS performs

actions in four major areas:

o Directory Request Processing

o Disk Access Requests

o Security Monitoring

o Audit Trail Generation

These were functionally described in Section 3.3. This section will describe

the implementations of the ACS and their requirements.

4.3.1 Hardware and Software Sizing for the ACS

The software of the Access Control Subsystem (ACS) represents the

majority of the trusted and certified software of the Secure DBMS. At least

eight interrupt handlers, two real time foreground tasks, one background task, and

a multiprocessing executive are required. In addition, boot and diagnostic soft--

ware is also required for off-line modes. Figure 4.3-1 describes these handlers

and a summiary of their processing activities.

The DBMS message interrupt handler is tasked with queueing the re-

quest for the proper foreground handler and entering the request on the audit

trail. The Disk Access Foreground Task processes data base access requests,

verifying the credentials of the requesting subject and placing successful requests

on the Central Data Base Controller queue. This Central Data Base Controller is

responsible for transmitting the requested information to the correct subject.

A Directory Request Foreground Task accepts messages requesting access to the

DBMS Directory and verifies the requesting subjects privileges
before processing the request. The Man Machine Interface (MMI) permits the secur-

ity officer to commiunicate with the DBMS and establish access control policies for

each processor channel. Finally, the Multi-processing Executive supplies the

system handlers for such activities as disk control, real-time clock, etc.

Figure 4.3-2 presents a conceptual block diagram of the Access

Control Subsystem.

4-37

DBMS Message Interrupt Handler

o Receipt of DBMS Request by interrupt handler

o Send message to Audit Trail Buffer

o Dump audit trail buffer if full

o Determine request type: central data base access or directory
request

o Place message task into queue for proper process

Disk Access Foreground Task

o Accepts messages from the DBMS Message Interrupt handler

o Verifies request against current access policy

o Verifies request against user's access privileges

o Verifies the discretionary access requirementU

o Places any detected violations in the audit trail

o Alerts security officer of any detected violations through
the man-machine interface task

o Converts Valid requests into physical Central Data Base requests

o Places physical disk access request into disk access queue

Directory Request Foreground Task
o Accepts messages from DBMS Message Interrupt handler through

the Directory Access Queue

o Verifies request against current access policy

o Verifies request against user's access privileges

o Verifies the discretionary access requirements

o Places any detected violations in the audit trail

o Alerts security officer of any detected violations

o Valid requests are processed by modifying the directory

o Valid requests are placed on the audit trail

Figure 4.3-1 Access Control Subsystem Process Descriptions

4-38

Man-Machine Interface (MMI) Background Task

o Permits security officer to modify the security data base

o Permits security officer to make queries

o Permits security officer to request reprots

o Generates reports of attempted security violations and
anomalies in near real-time

Central Data Base Controller

o Accepts disk access requests from the Disk Access Foreground
Task through the disk access queue

o Processes such requests by retrieving the requested data and
sending it to the proper user channel

o Responsible for requesting the proper I/O channel (user) via
MUX controls

o For systems with static encryption, ensures that a channel with
the proper key is available during rekey periods

Multi-Processing Executive

o Real time multi-tasking disk base executive

o Disk handler

o Real-time clock handler

o System boot firmware

o High order language support library

o Diagnostic software

Figure 4.3-1 (cont'd) Access Control Subsystem Process Descriptions

4-39

_44,

SUBS YSTEMS

DBMS 1 DBMSN

S;TATUS DIK4 + 'WDISK
LOCAL CM I HANDLER FRONT END I/0 PROCESSOR

IDM

DISK SECURITY v

DIREC I BMS MSG
TORIES DBMS REQUEST BUFFER INTERRUP

El [ANDLER

SECURITYt
DATA
BASE T DATA

-> [BFFERMAG
TAPE

SXECTAPE STATUS

HANDLE TRAIL)
, INTERRUPT

DISK ACCESS DIRECTORY REQUEST
QUEUE QUEUE

TIME
MARK DISK ACCESS DIRLCTORY REQUEST

FOREGROUND FOREGROUND TASK INPUT INT.

TASK __________HANDLER

REAL TIME
CLOCK INT. ,
HANDLER, INPUT BUFFER

CENTRAL DATA BASE MMI
ACCESS QUEUE BACKGROUNDSECURITY

TASK
DUAL CHANNEL OFFICER

HARDWARE SECURITY SECURITY
FILTER HANDLER OFFICER

OUTPUT BUFFER
STATUS & STATUS & .
ITERUP & INTERRUPT
INTERRUP T OUTPUT INT. !CONTRO CONTROL HARDWARE SECURITY HANDLERDATA 'DATA

FILTER SUBSYSTEM

Figure 4.3-2 Conceptual Block Diagram of the Access Control Subsystem

4-40

Figure 4.3-3 lists the various buffer and data bases with size

estimates. It should be noted that directory data bases will not fit in memory

and hence will need to be accessed in parts from disk. This results in more com-

plicated application and system software to perform this task and makesperformance

very sensitive to its structure,buffer size and accessing strategy. To achieve high

performance,a hierarchical structure and/or a least recently used buffer strategy

may be required.

It appears that a small minicomputer, approximately 128 Kbyte/250

Kips (thousands of instructions per second) system, is best suited to this appli-

cation. Based on the 15ms access request latency requirement, about 4,000 machine

instruction or 750 HOL instructions are thus available to implement a single re-

quest. Allocating 2ms to the message interrupt handler, 2ms to the central data

base controller handler, and Ims to the mag tape handler, a 1ms or 500 executed

HOL instruction allocation for the Disk Access Foreground Task results.

In all, it is estimated that this subsystem will contain approxi-

mately 10K lines of certified code with a 50% assembly/50% HOL mix. Initial

Application Task HOL applications are given in Figure 4.3-4.

4.3.2 Alternate Access Control Subsystem: Distributed Architecture

Validation of the Access Control Subsystem (ACS) as described in

the previous section is virtually impossible due to the quantity of code required.

One approach for those installations requiring certification is to construct the

ACS in a dedicated architecture wherein the modules are restricted to a size which

can be validated. Only those portions of the ACS deemed critical (i.e.those related

to security) must actually be processed through a validation rrogran.

By using a distributed network of dedicated microprocessors rather

than a single concurrent multitasking minicomputer, it is possible to design a

system where each processor runs a single task. Figure 4.3-5 shows such a distribu-

ted architecture. This particular design uses 6 microprocessors which interconnect

through various data and status interfaces, dual ported disks, and shared memory.

Despite this heavy hardware coupling, the software/firmware is only loosely coupled.

The "real time" portion of this architecture uses only data and status interfaces

to pass single messages (DBMS requests) with subsequent messages held externally

4-41

Security Data Base

256 users x 16 bytes/user 4K bytes

8 processors x 2 (1+2+1)bits/access policy map 16K bytes

Director Data Base
20K bytes

Security (level, compartments, access control
list)

16,384 files x 128 bytes/file 20 Mbytes

Physical (size, disk address, map)

16,384 files x 256 bytes/file 40 Mbytes

60 Mbytes

Buffers

Msg buffer - 8 processor x lmsg/processor x 64 bytes/msg 512 bytes

Disk Access Queue - 32 x 32 bytes each 1024 bytes

Directory Request Queue - 32 x 64 bytes each 2048 bytes

Central Data Base Request - 32 x 8 bytes each 256 bytes

MMI buffers - 4 lines x 80 bytes each 320 bytes

4160 bytes

Software

5K lines of assembly @ 2 bytes each 10K bytes

5K lines of HOL @ 12 bytes each 60K bytes

70 K bytes

Total Memory Required

20K bytes + 32K bytes + 4K bytes + 70K bytes = 126K bytes

. JTotal Disk Required

60 Mbytes x 1.33 80 Mbytes

Figure 4.3-3 Memory Allocation For the ACS

4-42

Disk Access Foreground Task 300 lines of HOL

Directory Request Foreground Task 1000 lines of HOL

MMI Background Task 3000 lines of HOL

Figure 4.3-4 Application Task HOL Allocation
For the ACS

I

4-43

t 'b

DBMS SUBSYSTE14S

FRONT END I/O AUDITA TIMET

PROCESSOR ADTe MMGEI
ROM program; multi- TRAIL *U TAPE
link FEC front-end PROCESSOR
with message
buffering

SEUIYACCESS I CIRCULAR
USRACESCONTROL rw 4 W BUFFER

INTERFACE SECURITY dates user priv- JHA -

DIKADES DRCOYACCESSCONTROL PSH R C ESORI

DISKADDRSS DRECTRY/ACESSROM - NON REAL TINE

VIOLATION ~ ~

AUDITTRAI

Figre4.-5DAsTAuue CeS ot SUsYe ArhITecur

BAE EA OLY PRCE4-44SEVE

$4-4

I Ia

until the processor has finished processing the previous message. Idle/busy

processor status is used for flow control, so as to preclude any concurrent proces-

sing requirement.

There are four real-time processors and two non-real time processors

in this architecture. The Front-End I/O Processor accepts request messages from

the DBMS processors on receive only links and queues the requests for the audit

trail and User Access Request Screener processors. It sends the same message to

both processors. The Audit Trail processor accepts messages from any of the ACS

processors and places the messages on the audit trail along with a time tag. The

User Access Request Screener processor accepts messages from the Front-End I/O

processor and verifies the non-discretionary access requirements for the request

against the User Security Data Base. The Directory/Access Processor maintains

discretionary and integrity protection and converts valid requests to physical

addresses. In addition, it generates the transfer signal enabling the HSF FIFO

Buffer to be loaded from the ACS. The User Security Data Base shown is stored in

EEROM. This subsystem contains the user access privileges of non-discretionary

and integrity access privileges for ACS screenings. The user privileges are

entered into this data base through the background User Access Control Processor.

The Front-End I/O Processor, the User Access Request Screener Pro-

cessor, the User Access Control Processor, and the Audit Trail Processor all re-

quire certified code and require relatively small amounts of code which will be

placed in ROM, i.e., these tasks will be performed with firmware. In conjunction

with the Hardware Security Filter System which will enforce the security access

selection, these secure tasks enforce user non-discretionary security access con-

trol and provide a secure audit trail.

* The Directory/Access Request Processor contains the majority cf 'he

.4 code and is only trusted to enforce discretionary security. Any trap door soft-

ware in this task could only compromise discretionary security or deny system op-

eration. It cannot compromise compartment or level access controls unless

other trusted hardware or software is simultaneously compromised. Thus, it is

*desirable but not necessary to certify this trusted software. It is expected

that this software will reside on disk.

Figure 4.3-6 summarizes the tasks of the individual elements of

of the distributed ACS architecture.'

4-45

Front End I/O Processor (real time)

o Queues all user requests from the DBMS subsystems

o When Audit Trail Processor is idle, sends message to its
Audit Trail Processor

o When User Access Request Screener is idle, sends message to
it for processing

o Waits for idle signals from both the Audit Processor and User
Access Request Screener

Audit Trail Processor (real time)

o Accepts all messages from other ACS processors and sets
busy flag

o Tags all reports with time

o When Buffer is full, initiates Writes to Audit Trail

o Logs message on circular disk buffer

o Resets idle state upon completion of tasks

User Access Request Screener (real time)

o Accepts messages from Front-end I/O processor and sets busy flag

o Identifies requesting user

o Screens request against the non-discretionary user access
privileges obtained from the user security data base

o Violations are passed to both the security monitor processor
and the Audit Trail processor

o Valid directory requests are sent to the Directory/Access
Request processor

o Valid Data base requests are processed by sending control
data to the security filter subsystem FIFO interface

o Sends message to Director/Access processor to obtain physical
addresses

o System must wait for completion of task from either the
Directory/Access Request or Security Filter to complete pro-
cessing. Upon completion, the User Access Request Screener
resets the flag to idle.

Figure 4.3 -6 Distributed Access Contrul Subsystem Architecture Functions

4-46

IoI

Directory/Access Processor

o Accepts messages from User Access Screener and sets flag to busy

o Validates the request for discretionary security and integrity
protection as read from the user security data base

o Valid directory requests are processed

o Provides physical data base addresses for Valid Access requests

a Outputs addresses and word counts to the hardware security
filter system and strobes User Access Request Screener data
into hardware security filter FIFO interface

Security Monitor Subsystem (MMtI) (Background)

o Permits security officer to make queries

o Permits security officer to request reports

o Generates reports of attempted security violations and
anomalies in near real-time

User Access Control Processor (Background)

o Provides the means for the security officer to establish
the user privileges for non-discretionary and integrity protec-
tion.

Figure 4.3-6(Cont'd) Distributed Access Control Subsystem Architecture Functions

4-47

The Security Monitor Processor also involves a great deal of trusted

software. Since it can only observe the rest of the system, the largest security

threat is altering data presented to the security officer, e.g.,ignoring violation

reports.

4.4 Encryption

Multi-key encryption is a primary technique for enforcing data sep-

aration both within the central data base by security classification and at the

terminal level by user. Static encryption is required for crypto separation of

data within the central data base due to the random access requests. Dynamic end-

to-end (E3) link encryption can be used to provide data separation by user at the

terminal level.

4.4.1 Static Encryption

Static data base encryption is a method of enforcing the data sep-

aration by security level, security compartment, and user need-to-know that is

required in a secure multi-level DBMS. The feasibility of such a system depends

in part on the degree of this data separation which determines the number of en-

cryption keys required. Analysis shows that from 20 to 8000 keys may be required

depending upon the degree of user, security level, and compartment separation re-

quired. The following sections investigate various means of providing the de-

sired degree of separation and other requirements for static encryption use.

4.4.1.1 Separation Through Encryption Key

This section discusses the key requirements of a statically encryp-

ted data base where the only means of separation is through the selection of the

key generator (KG) key. Conceptually, such a system appears in Figure 4.4-1

wherein a separate KG is used for each security level to be isolated. Such a

system requires only four keys.

The KG key can be used to separate more than just security level.

To enforce DoD non-discretionary security, compartment separation is also required.

There are many security compartments, e.g., NATO, Crypto, CNWDI, NFN, various SI

compartments, etc., not all of which are mutually exclusive for data base objects.

4-48

i 0

If there are from 5 to 20 combinations of these compartments, non-discretionary

secu, ity requires from 20 to 80 KG keys.

In addition to the non-discretionary security requirement, security

requires a need-to-know before granting access of objects to subjects. This con-

cept is the basis of discretionary security. For a system supporting a moderate

number of subjects, 10 to 100 users for example, the total key requirements now

range from 200 to 8000 keys.

An alternate approach is to provide data separation solely by user

however, this approach conflicts with the concept of shared data which is the

major justification for secure multi-level DBMS.

Figure 4.4-2 shows the number of encryption keys required for

various degrees of data separation.

4.4.1.2 Basic Candidate Architectures for Static Encryption

To support random access of encrypted data, some means is required

to establish the phase, or sync, of the encryption code sequence to be used. One

approach to static encryption is to use a repeatable pseudo noise (PN) source as

input to a non-linear network (i.e., National Security Agency (NSA), Key Generator

(KG) with the output mixed with data). Figure 4.4-3 shows a block diagram of

this approach capable of providing both encryption and decryption. The PN source

shown is derived from a linear feedback shift register (LFSR) with the resulting

code sequence displaced by a linear programmable adder (LPA). With every random

access this linear PN source is loaded with a known repeatable code state. The

LPA and non-linear network (NLN) both contain shift registers which must be loaded

with the new PN sequence prior to KG output code synchrQnization. This is done

by clocking n + m bits through the system prior to the disk transfer, where n and

m are the lengths of the respective shift registers for the LPA and the NLN. This

period constitutes a crypto transient during which the KG is not synchronized and

hence not available.

This architecture allows direct control of three parameters:

initial LFSR code state, LPA code offset, and choice of KG key. These three

4-4

BLACK
DATA BASE
(STATICALLY
ENCRYPTION)

MUX/DEMUX

DECRYPT

U C S T

Figure 4.4-1 Static Data Base Encryption To Enforce Data Separation
By Security Level

Degree of Data Separation # of Crypto Keys Required

(U,C,S,T) 4

(UC,S,T) x (compartments) 20 - 80

(user) 10 - 100

(U,C,S,T,)x(users) 40 - 400

(U,CS,T) x (compartments) x (users) 200 - 8,000
*

These numbers ignore potential independence of some security compartments and
the lack of compartment relevance at the Unclassified level.

Figure 4.4-2 Degree of Data Separation vs. Number of
Crypto Keys Required

4-50

degrees of freedom are exploited in subsequent sections to reduce the KG key re-

quirements, thus increasing the feasibility of using static encryption.

4.4.1.3 Approach to Random Access Using Static Encryption with KG Latency

Limited by the KG Transient Period

The previous section described the latency time required to synch-

ronize the KG by initializing the PN code source with a known repeatable initial

fill. For random access static encryption, it is possible to limit this latency

time by directly mapping the disk address sector (sector or track) into a crypto

state by "instantly" loading the LSFR. This latter approach would require a 78

entry table of sector codes for a 300 Mbyte drive and is easily implementable as

a ROM translation table. (Figure 4.4-4).

An additional feature of this design is the capability of using

the track address to provide a code phase offset for each track via selection of

LPA taps. Without this feature the LFSR would provide the same PN sequence for

each track with corresponding weakening of crypto protection. In particular, if

a hardware fault results in improper track selection, the data would be correct-

ly decrypted without the use of track encoding. Hence, while the LFSR only

repeatedly produces a short portion of the PN code sequence, the addition of the

LPA induced PN code phase offsets allows the KG input (and hence output) to be

unique for each data location. If multiple disk drives were used, disk addressing

can be used as an extension of the track addressing to insure unique encryption

sequences for each drive.

4.4.1.4 Using Code Sequence Assignments to Achieve User Separation

The previously described approaches to random access static encryp-

tion have discussed means of separating users and security levels by crypto key

and the methodology of establishing crypto sync. However, all the previous ap-

proaches still require an unacceptably high number of keys, from 20 to 8000. One

approach is to move the user separation from the key and provide user separation

through code phase offsets using the LPA's. This procedure provides very strong

KG key separation of data by (U,C,S,T) security levels and various security com-

partments with weaker separation by users within the same security level and

4-51

ft

LLii

Laii

-JA

zL Lii

I-

I-J Li-

LLJI~ -j

LLJO(
M LJ - LL.
.LL = J

-J U- (n -

4-52

LUU

4-
-c

4-)

CL

4=)

S.-
u

.4-)

4-J

CC/

E-
0

-

V) 2:

LLi.

I4-5

IRI

compartment. The primary advantage gdined is that the worst case KG key requirement

is reduced from 8,000 keys to 80 keys and hence is more feasible to implement.

Furthermore, failure of the weaker user separation within a security level and

compartment could only violate the need-to-know principle, i.e., it would not

violate clearance access level. As such, the user "number" is a secondary key.

In detail, this concept requires a unique key (and hence unique

code sequence) for each security level and compartment. This code sequence is

then divided among the users, i.e., each user is restricted to an assiqned por-

tion of the total code sequence. If 100 users are separated this way over a

statically encrypted 300 Mbyte disk the basic code sequence length required would

be greater than 2.4 x 1011 bits:

100 users x 300 Mbytes x 8 bits/byte = 2.4 x 1011 bits (Eq. 4-1)

If this is implemented by a max length LFSR in the previously proposed architecture

it's length would need to be greater than 37 bits (log2 2.4x10
11), a requirement

which is easily met.

Figure 4.4-5 shows an implementation of this concept. The length

63 maximum length LFSR would easily support separation of thousands of users over

hundreds of 300 Mbyte disks usinq less than .01% of the code sequence, as

1000 users x 100 disk drives x 300 Mbytes/drive x 8 bits/byte

263 bits per code sequence (Eq 4-2)

= .000026 users/code sequence

This user separation is achieved by using the secondary key (user

number) to load a stored set of LPA taps that provide a user code phase offset.

These LPA values would be chosen to insure code subsequence separation of all users,

I-i over the range of physical data locations. To provide separation for 2,000 users,

eight 16K bit ROM's (2K by 8 bits each) can be used to provide one LPA value for

each user. Only some 2K subsets of these LPA values will provide real code

separation.

In this approach, the LFSR initial fill is created by the total

physical disk address: drive, track and sector. However, a ROM look up table can

4-54

4-+

S.-

cc I.- -

LAJ -i < V

coc

le..

C-)

vi~

Q.
S-

c.

LI)

fnn

0--

0J-

V-5

no longer be used to map the physical address to a PN state. The following section

details the requirements necessary to achieve crypto sync for the above static

encryption architecture.

4.4.1.5 Requirements for Conversion from Pseudo Random Sequence Index to
PN State

This section describes the requirements for conversion of the phys-

ical disk address to a PN code state in the LFSR. The basic procedure is detailed

in Appendix C. This section then summarizes the requirements for processing and

discusses available technology to support these requirements.

High speed, random access, statically encrypted, disk I/O requires

rapid conversion of random access disk location (i.e., disk number, track number,

sector number) (the PN sequence index) into the associated LFSR PN state. The

procedure for this involves first converting the disk drive number, track number,

and sector into a logical data-storage bit address which is used as the PN sequence

index. This PN sequence index is subsequently converted to the associated PN

state for the LFSR. The first operation is very simple, requiring only three

integer multiplies and two integer additions. The second process is quite com-

plicated and is based upon the representation of a length n shift register as a

primitive polynominal in a Galois Field. The mathematics are described in Appendix

C. Fiqure 4.4 - 6 summarizes these requirements in terms of the number of bits in

the LFSR, n.

While algorithmically simple, the n/2 n by n bit integer multiplies

and the n2/4 n-bit exclusive-or's required for this conversion generates a large

processing load for even moderate length LFSR's, 37< n< 63. The data storage and

processinq load for keys of length 41 and 63 are shown in Fiqure 4.4-7. These

requirements are just barely in reach of top-of-the-line microcomputers such as

the 8086 with a high speed math chip such as the 8087. Because the amount of code

required is very small (approximately one hundred lines of assembly language code),

the software can be certified if required.

An alternate to the high-end microprocessor approach is buildinq a

special processor for this purpose. Current bit-slice technology can easily meet

the speed required for this range of key. This approach trades an increase in

4-56

cost (hardware and software development), physical size and power requirements for

a reduced synchronization latency and longer feasible LFSR code.

It should be noted that the requirements in Figure 4.4-7 re-

flect a 20% utilization allocation at 20 accesses/second. If the system design

supported pre-fetching several future disk accesses, a trivial pipelininq (buffer-

ing) implementation would cut these requirements by a factor of 5 at 20 accesses/

second i.e.. 200 to 500 KIPS (thousands of instructions per second). However,

this approach would only solve the throughput problem: the additional latency de-

gradation would still remain.

Category Worst Case Average

Memory 4n by n bits 4n by n bits
Integer Multiplies n(n bit by n bit) n/2 (n bit by n bit)
Integer Divides 1 n bit by n) 1 n bit ny n)
Exclusive Ors n (n bit XORs) n /4(n bit XORs)
Table look-ups n2 + n

Figure 4.4-6
LFSR Index to State Conversion Requirements

Processor Requirements* n= 63 bits 41 bits

Bytes of ROM 2,048 1,024
n x n Integer Multiples/sec 3K 2K
n x m Integer Divisions/sec 20 20
n bit Exclusive ORs/sec OOK 42K
Approximate MIPS (16 bit words) 2+ 1-

(3:1 ratio) I _II

*assume 20% utilization at 20 accesses per second

Figure 4.4 -7
Data Storage and Processing Loads for LFSR Length 63 and 41

4.4.1.6 Current Disk Technology Drives Static Encryption Requirements

High speed random access disk technology will determine the crypto

requirements necessary to provide static data base encryption with little DBMS

performance degradation. The primary characteristic-z of interest are transfer

4-57

rate and access latency. Figure 4.4 -8 lists characteristics of a common 300

Mbyte CDC moving head disk that is typical of current disk technology. Actually

performance is generally well below the maximum performance specified and is

highly dependent upon actual data structure and accessing strategy. This is es-

pecially true of multi-user DBMSs where performance is typically limited to an av-

erage of 20 accesses/second. Some of the newer disk technology supports peak

throughput rates as high as 10 Mbytes/sec.

Thus, it is reasonable to require an encryption system to support

random access disk I/O at a 1.2 Mbyte/sec transfer rate with 20 accesses/second.

This implies that a crypto throughput rate of at least 10 Mbd is required. It

must also support 20 crypto syncs per second to accommodate the 20 random accesses

per second. If a 20% utilization is allocated to this task, then there is a re-

quirement to meet a time line of 10 ms from track/sector selection to crypto sync.

At 10 Mbd this also requires the crypto sync/transient period to be less than 10

Kbits. These crypto requirements are summarized in Figure 4.4-9.

4.4.1.7 Extension of Static Encryption to Multi-Level,Multi-Compartmented
Files

This section describes an application of static encryption to the
multi-level files, as an additional technique to those described in Section 4.1.

At the lowest level of security granularity, each data attribute would have a

separate security classification. This requires an expansion of the static en-

cryptor architecture to support demuxing and muxing of data based on a security

tag and multiple KG's.

Figure 4.4 -10 is an example of this type of architecture. This

architecture is built on the previous static encryption architecture with random

access data location handled by the initial load of the LFSR and user separation

provided by an LFSR code phase offset implemented via an LPA assignment per user.

This linear PN sequence now feeds a number of non-linear networks (KG's) with each

KG output sequence gated by the current security tag for the data being encrypted

or decrypted. The data flowing through is then encrypted/decrypted with one of

four security level KG's andzero to n security compartment KGs,where n is the max

nunber of overlapping security compartment classifications allowed. Demuxing and

remuxing of security classification tags and data is also required at the two data

interfaces.

4-58

Capacity 300 Mbytes
(2.4 Gbits)

Peak Xfer Rate 1.2 Mbytes/sec
(10 Mbd)

Data Organization 19 cylinders
14,880 tracks
78 sectors/track
256 bytes/sector
1.1M sectors

Access Times 55 ms wc seek
16.7 ms wc latency
(3600 RPM Synchronous Motor)

Access Performance 30 access/sec max
(track read/random access assumptions)

Figure 4.4-8 Typical Disk Characteristics

Throughput >10 Mbd

Mode Asynchronous

Crypto Sync/Transient (.10 ms

Crypto Sync Period 4100 Kbits

Figure 4.4-9 Crypto Requirements for Static Disk Data Base
Encryption

4-59

-- 'I

DATA OUT

PERMITTED ACCESS

CLASSIFICATION MUX

DISK, TRACK USER
SECTOR ADDRESS NUMBER

., ... r
' ' - - P A TH

KG NATO

x'aio Tabl CRYPTO

CRYPTOC

LFRLAKEY I

~KEY

I *EQUEST

ACCESS CONTROL PARAMETERS: CREENE ETI ED
A) FILE - DISK, TRACK, SECTOR ADDRESS
B) FILE OWNERSHIP-USER NU'ER WR1T ACCESS/C)MDE-READ/WRITE t,,,...,,,BU LT FL G VIOLATION

D) PERMITTED ACCESS CLASSIFICATIONS-

LEVELS, COMPARTMENTS LEVEL COMP T1

:1 DE14UX

:XIDATA IN

Figure 4.4-10 Static Encryption Architecture for
Multi-Level Compartment Files

4-60

loo

This change of security granularity from the disk access level to

the data item level also requires that all security tags be screened to insure

security. That is, an unclassified user cannot be allowed to read the classified

data in a file containing unclassified and classified data. Therefore, the KG's

output PN sequences require gating with the access classifications permitted for

the current access as well as the security tag of the data item. Violation of the

current access classifications permitted merely results in blanking of the data

for read operations because this is allowable given the concept of multi-level,

multi-compartment files. However, during write operations violation of current

access classifications permitted should result in termination of the operation and

immediate notification of the security monitor because such action constitutes a

security compromise (unauthorized declassification) and/or a data integrity (spoof-

ing) threat.

There are two disadvantages with this approach. The primary dis-

advantage is the high overhead associated with a security tag for each item of

information. This is not only true for disk throughput which could be diluted as

much as 50% but even more true of the software and special hardware in the DBMS

processor which must generate these security tags for write operations. The other

disadvantage is the number of KG units required, apparently 9 to 24 for a 4 level

5 to 20 compartment assumption. However, if a user is restricted to only a single

compartment at a time, then the number of KG's can be reduced if the KG's are

capable of storing a number of compartment keys with only a single key selected for

a given access. In addition, because the encryption of unclassified data is op-

tional, the actual number of KG's required should be under eight.

..

4.4.1.g Summary/Base Line Design

It is clearly feasible to provide complete data separation for 4 DoD

security levels, up to 20 security compartments, and several thousand users over

10 Gbytes of high speed random access disk storage with data item security granu-

larity by using the base line architecture described here to provide static encryp-

tion with only minor degradation of disk performance.

Figure 4.4 -5 of section 4.4.1.4 shows the baseline architecture.

For each disk access, the disk, track and sector address is converted by a dedi-

cated processor into an initial load of a length, 63 maximum length linear feedback

4-61

shift register (sequence length 1019 bits). The user identifier of the owner of

the file being accessed is used as a secondary key to select a code phase offset

via an assigned set of taps for a length 16 linear programmable adder (LPA).

These LPA values are empirically mapped to the user identifier to provide user

separation of at least 1011 bits (A 10 Gbytes). If each access is constrained to

a single security level and a single optional compartment, then a single KG with

storage for 80 keys can be used to provide separation for all combinations of

security level and security compartment. The KG key is selected for the security

level and compartment of the current access to allow for the KG sync. (This KG is

assumed to be a non-linear network with a length m shift register and no internal

feedback). At the end of this crypto transient this KG network is now in crypto

sync and is ready to either encrypt or decrypt the data access beinq made. Based

on current disk technoloqy, (see Section 4.4.1.6) this KG network must run at at

least 10 Mbd and the computation of the initial LFSR load and the crypto transient

should average less than 10 ms to keep from appreciably degrading disk 1/0 per-

formance. If security granularity is provided by security tags at the data item

level, then this architecture must be expanded to support mult -level and multi-

compartment data items within a single access. This requires n + 3 KG's and an

extensive gating network as shown in Figure 4.4-10 where n is the number of dis-

joint subsets that the set of security compartments can be broken into such that

the elements of each subset are mutually exclusive for a single access. It is ex-

pected that almost all applications will require no more than 8 KG's.

As data flows through this expanded network, the security tags are

extracted. Data items with the security tag gate which set of KG's encrypt or

decrypt each data item. Encryption of sec.urity tags and unclassified data is op-

tional. Each data item may be encrypted/decrypted by one or more KG's. If the

security tag violates either security level and/or compartments authorized for the

current access, the data is blanked for a read operation or the access is termin-

ated and the security monitor notified for a write operation.

3
4.4.2 End to End Encryption (E) and Link Encryption Applications

End-to-end link encryption can be used to perform authentication,

provide secure communication links, and for this application, potenti-lly provide

.1
4-62

. .. , I,

user crypto separation at the user terminal level. The basic approach is to en-

crypt all data transfered between the HSF and a user's terminal in a user-unique
key. This requires a single key crypto in each terminal and a multi-key crypto and

possibly a key generator at the HSF as shown in Figure 4.4-11.

In practice, such an approach is only compatible with a back-end

Internal Bypass Multi-level DBMS approach and requires further customizing of the

DBMS to support this feature. The major advantage of this approach is that by hav-
ing the ACS simultaneous control data base accesses and E3 key selection it can

enforce discretionary security for terminal users.

A more general application of End-to-End encryption is to provide
link encryption for secure communications links in a transparent fashion.

I

4-63

f0

NEED KNOW
DATA BASE CDB DATA SEPARATION

BY CLASSIFICATION

ACS
DISCRETIONY NON-DISCRETIONARY
SECURITY --- RT

KEY SELECTION1

-..--_.DATA SEPARATION
REQUEST BY USER

SECURE COMYNNICATION

DBM PATH TO N USER

QUERY If

Figure 4.4-11 ACS Translation of Data Separation by Classification
And Need-To-Know To Data Separation by User

Si

5.0 FUNCTIONAL DESCRIPTIONS

A complete functional description of a system that meets the require-

ments of a specific application normally takes the form of functional specifications
(e.g. B specs.). These are the baseline for subsequent production specifications

(C specs.). Because there are no application baseline requirements, e.g. number of
security levels and category combinations, number of concurrent compartments, number

of terminals, data base size, number of queries per second to support, reliability
requirements, data base structure, etc., this normal top down approach cannot be

used. Instead, a bottom up approach has been used in this report.

The information in Section 4 is the basis for the top level of a
production specification. Section 5.1 contains some general system functional

specifications and design goals and more detailed subsystem functional specifica-

tions and design goals. These general system functional specifications and design
goals basically partition functional responsibilities among subsystems and call for
relatively minimal degradation of central data base throughput and latency. the su b-
system specifications and design goals are much more detailed as they are based on
current standard disk technology capabilities. For example, the central data baseIsubsystem specifications are standard disk specifications and other ACS and HSF
subsystem specifications were chosen to be compatible with these.

Section 5.2 contains four example functional systam descriptions

with different features. These systems are:

o Front-End Architecture Without Encryption

o Front-End Architecture With Static Encryption
o Back-End Architecture Without Encryption

o Back-End Architecture With Static Encryption

Finally Section 5.3 contains a functional description of the-alternate architecture
approach that employs end-to-end encryption, a back-end DBMS, and secure message
switching (front-end I/O) processors. This can be considered a major variation on

the last system described in Section 5.2.

5-1

5.1 Subsystem Specifications

The following five subsections present general system design re-

quirements and goals for the four major Secure DBMS subsystems. These specifica-

tions are referred to in the functional descriptions of the four systems presented

in Section 5.2. In most cases, the specifications are general and apply to most

systems. However, in certain cases, a particular example system will take execu-

tion to some !pecifications and will require that additional specifications be
stated. In these cases, any specification modification will be noted in the

individual system implementation discussion section.

This section contains the following specifications:

5.1.1 General System Specifications (SYS);

5.1.2 Central Data Base Subsystem Specifications (CDB);

5.1.3 Access Control Subsystem Specifications (ACS);

5.1.4 Hardware Security Filter Subsystem Specifications (HSF);

5.1.5 DBMS Processor Subsystem Specification (DBP).

Section 5.1.5 also describes the requirements for the "secure" operating system (OS)

employed by the DBMS processor. The above abbreviations in parentheses are used as

prefixes to the applicable specifications. A suffix for each specification is

created from the following schema:

Number Range Type of Specification

11-39 Commion Subsystem Specifications

41-49 Additional Specifications for Systems
Without Encryption

51-69 Additional Specifications for Systems
With Encryption

71-99 Design Goals

In the course of discussing the applicability of these specifications

to the system implementations of Section 5.2, references are made to various

systems by number, as follows:

System 1: Front-End DBMS Without Encryption

System 2: Front-End DBMS With Encryption

System 3: Back-End DBMS Without Encryption

System 4: Back-End DBMS With Encryption
System 5: Alternate Back-End DBMS Configuration

5-2

5.1.1 General System Specification

The general specifications for the implementation of a secure DBMS

are presented in this section. These specifications are divided into four categor-

ies:

o Common Specifications - applicable to all secure
DBMS designs Figure 5.1.1-1

o Additional Specifications for Secure DBMS
Designs Without Encryption Figure 5.1.1-2

o Additional Specifications for Secure DBMS
Design With Encryption Figure 5.1.1-3

o Additional Secure DBMS Design Goals Figure 5.1.1-4

5-3

4J 4.J' C .' /)0) SO .-

OO U S-
>)4- 0) ~ CA

U S- -1 L

0 4 S- ,) u c 0) c

m C -- Cj u. I OM-CI4- ~OL CL *4 .) (t) (U.0

CD J4J 0* O.If 0 U-E C7 U)

C) (D.c 1 0 > 00 0" '- 0)

"O
"

'. 0 M-(A, L 4..- V) -0V

tn >0 0 S- E-a 'S- 4LU1 o 4U I a) S- EO-0)

.0o 0 (AJ 0 C m- (D >. M1 (A 4 - 4J

4 ,. LU Z) 4 &- (.-- > 0U -r tn-

4 4.C 0 .. - C 4 4 %- a) (1 O
• to L. L ., 0 u toa) wa- "3 0 - 0 4 " .

'a- S- to -- 4) U. J 4 CL 4-- to

'a 0 04-) 0
-

__ 1 4 %- 4) 0"

(a*0 CU > C) =- -) a)O-- > - 4 V S- 4J
- 4

-
r - o + tn -, -w +S- S 0)

4-) M 0 (a - u o) ' 0 .,- S- 4, ,

-) 4 O) X)0 4 -A 0 .0 g

V- - 4 S- C' C .0 w u--' .
00 +--S- fu LO 0 (

0 4- 0- = M (-. A 10 r0 4
r_)>- 0) .M. -- 0 4.) U in C

C C W) - -M - 4-- 0)0 C.a- .L - a.- 0-a

4-CO CO Q) t=m> -- U 0 0C4- 0L

.4- . J 0) U (a . -O0C 0. f , Q-

to ' V) -0 .- D - 0 .(- 4-) fO t.n cm 0 C 4-L.)

0 - 0 S- 0 m (A z = 4- S-- 0 -) CO--
4- > 1 to.- u .oo 4- -) ' U U S- (A CU-- 4- -E r , o s- 0 =,0) 3

CO, (" D S- (U C Im 0. S- -a-a-C 0 -

L.-I -0 .0 a *'-E (A C .-) (U .- -
fO- .CE- UJ tuu4 0 0) U 4-0) U

CV. - - ,- 1-
'

),1) S 'o, (0)

OUW) o (to.C tvLCC -C- -u 0 Cto 0.IA X

0 .- O0 L(U4- .- -C C0 M 4
4-

((A - EU u a (o
m" to (A r U--. (0 0- C V o 0) - 0 .

- Go -T-- ., -'bO (- I-- S0- CL I- " (A E
C 0 S- 41 -C *. 4-)t4toI 4- I

u S- (A n 0 -r_'A c- C .- S-0 C- 4

OL #A(-CrO -)4 - 0 C 0) 04I vi .. > toU)4
LL-) V)C 0) %- IJ 0 (A'U (A- r E M CC a

0>U m >- 0.- r_) 0 C--) 0). (D, to(A0 V
EUU4- MU S- 4-3+ ot 0 MC0 . -00 U 4..- U0 4- E 10 a

o. mCn4 ."U =C - = L- 0))-WCa 0 - r_
o) (U 04-) -.. M A(C> A A4) 0-C4-'0 U)- u . S- U- 4-

- - S alt C 4- (A go 0 to u

LLJCIDm- >L0) S- 4 d) N 9S S- C 910 CAU S)--
F- 4)I COL - 4-)) +J0 4-J 4E (EU 0) 4- O 4>.,44.Q)
V). (A) U) V) C 0) 0) (A- U-) r-C 0 (t (-U0
>-> jC 0 > M.))4- CUE -4-)011 >C r- . 0U) m U 0.0)

- V - tn 4- = S- 4-iU -1 -A (A U C 0)C

-0 4-J ~ 0 0 .) 0 m.W -
M: (EL-4 > UA C LA 4)Ua)Cr U)4-J) C CA -0 4- O - >1 .0UoU .0.ai(a 00t .0 r_ > 4 IE)4- $A U-

S.-0) L. L. - -L- M -o S- .- -4j 04-- C
0(AS. U)0 4:1' U)04. U)) U) .= E 4-- 0.04-) 01 Lt

(A_4- (AL 4J-4J (4E U 4-U U) 4 -)) 0 4-U
=D 0JC(EC N L(Av-.- t 4L - u E 4 01 r_ . US- U S
u 0 4 0)-. U U"S- 4 0) 0N X) WLLU W0 .0

4-iOU(L0 - W .- 4..i0)%4.(U4) 4.1) 4- >-0 41> -C tn 4 M
o) U) 4.. U)-- S- U -I-*rL-0 U) U) - -U U) A U)

V)0UE (7 V) *m -t 0) w .---. IU m 0 C.0 > (A EC . L
(A U- - U o 4--XCL C 3c4)- V 4 A "0 U) =U ULn 0) ..-
a) 04 W CJ 4J000 "00 UA >~ V) .)0) .00 4.. IA 0

-c u - S ar-0 >EU> >)0 c SLU _ a) u UL. 41
U U4) u U)EU) (a-o u t .0 Q co U) U)0.L 4). u 0

M AM) M AU m L L 0U QC M-.0 W- (at

i S- (A-4 4-CE U4S) U . >U +j V)~5. Lr)0
aUua)4 4-)) 4i-. &R 0) -.MC- 0)00-) U) 4J) 4 4>-) 0) 0)

U CL=) C QCl m) ~ 4 0)=c =-Mt C- ."- toU Lcot

(A 0 4-) C-r-k L- L L0 LAV"aF U)- 3C . U)

UA -.- UE) L-C LEO (AJC 0) U L-
UU4- V)C0 COO U) CO0 U L)) 0.0

EOU)EU0) UU)U .CL -4. E-

2CC

41'

L

Lii

W 00

o 4J~4J

. a o >a Lu
to) 0W 4-4 LA 4A
L+J t .. .04.o
e.- 4j a 4A ,-)* i
0 cLt 4-) (-L

C'a 0~ >-,0)

> - S- to - u

fS- Le Uv o
03m r) 0 ~ CL 4-

to 0 to i

cmo 4-) 4-) (at

CA 4) A a

oc-4 (we - o Q
.0 4A 3 -0

z-) S-a- U

LAU F3 4- US.- 0
a) 4 4J 0

0n (AL tu U
tol 4) CL 4 -0

(a.) r- 0 -
4- E t 0)

to =u > o.3
4.) 47 =) fl~Gi SS-

Q)4- 0 4- 0.
> 0) 1. 1-)C

(D (A S 4-) 4 . -

C to- $- 1 'C S-c*
'a -cm (~aW *4. 4 4

La U.0 U 4-4J L 0)

= O 4) 3wt
1-- .) U04 IAa' .CL

CL.

-1 .C .CU

5-

C>C

41

I---

00

C S-

o ; S.-

>) 4-. -4-

4--) 3 I 4--0.3 .+- t u

4 n.) (v

M-" CL 'U (aCC E E C a)

-) U s. 4-

4-)) 0- 4- 04 (

(A 4- .-- ' (a

9-S. EU 0.--

(.- -0)0 ,-

• - - ' -;4 4-

.=. 0 0 U0 4
LL. 0 u .0 +0

-, ,U c4I- EU 4. I

C.. U) 'Ul 4..

u- ,U -10 0- c
~s 4 0 -)

f. 4-)) LA CE'4-
4-. a)0 >- E

(A U)- -- a- -C

a) (A U 4-
to e 4- 0. 4Q)

f4-J 0)U) ED. fu

ea 0)1 S-a 45..

C~j a) u>t -
4-) to>

EU S- 0 4-J

4~) 0(0 a) 4
'4 - c). (A

)- U)(Uto4(a

0 4--.d "0) L 4.
LU - S.- 4) -)

cA Q C C V) LA.
4-)(0) <0 .1e

co .C.C mf0

CL 0 n V l

C5-6

-. C-NEW -___

LAL LA LA L

LO L U) L 4- 0 X L)

go m.
4j 41 4. -1 4) C) C)

CL~ .C-- in in in in u Cfl' C
0- m~c >1 >) > >11 c.L

Cin -4o uut o u

2- LA-. LA.) L*. LU LUJ LJIVI S-cn (

S.-

1- CA

E 1 -o 3a

0n E

in r_

a 0 0

.- C 0 4J

_b 4.) W > to
u to. 4Uin S. 4-) 4-) E
toE 41) 0 . a)
CL faU . 4-)

S- fa V)E i
-b) o0 0 0. -

EA CA a) (a toEUL/
to -0 -u S.-

.0 04- V)
- EU 0 -~ CL

a)(EU a)Cin OO
4) 4- Ln 4- *. Un C3
EU 0) *-

4-) 'a u w 41.) Oin
u EU S. &-. a) 4 0J)

L) a) - M EU S- 5 4.)
2c 4- EUo) 3 u EU0 01 >-
0D 4- S.. 0. C C.0

4) 4.) 1+ - 4- (A .- N V
r_ 4-) 0 0 4-)
0~a) .- LA a-l S. C)
U 3J 4 C 0 O

EU 0 - LA 0Cj 4-)
La. S- a) 4-) c 0.

ol N C_ EU 0 EU = 4- .
o) tv E EU E 0 0S. 13a&) EU a) 4--

a.)(S-. > 4- 4J
Ln 4 C - tu 0) EU 0~ (A

o0 0 3: .CC
C o4) 4-) JCE

S- IM-)
- .. U)= 0 CD

- ~ ~ ~ ~ t 0 C N- U
EU EU m L. .. a

to E 4- E eo. 0)m
(A (A 4- - . a) 0 4-)

t) CCA i
fa fu 0D .C .- UV)-0
4.) E . in E .0 OE

Z)(4) ,)
mU 13-. 4J M ,-0

I-4- >., EU 4-'E EU EU to fa
Li) 0 in =C IL u m -CE fa

.0 '44-) 0I

to SE U LA;
O)~ (ii 4-)J S. 4.) 4-) 4-

V) S-O CL (A r._ CA
mUi co > Eu >1 a1) >)O S.

(AJ in 0)3 IA u IAc
c CS- 0 im

0)Eea 0) (L) LU)) 0) u)L

- -4) I- m- Li3 to -Ilin

0A cn CJ (A) V) cl Ln 1

Li) L) L/) Li) Li L) Li)

5-7

-V

5.1.2 Central Data Base Subsystem Specifications

This section describes the specifications for the Central Data

Base Subsystem as described functionally in Section 3.3. These specifications

are presented in three parts:

o Common Central Data Base Subsystem Figure 5.1.2-1
Specifications

o Additional Specifications for the Central Data
Base Subsystem For Systems Employing Encryption Figure 5.1.2-2

o Design Goals for the Central Data Base Sub- Figure 5.1.2-3
system

Actual implementations for these specifications are detailed in Section 5.2.

5-8

.

I-)
41 >

3 00

4-) 4-

4.)

4-) 4-
4- 4) 4

.0 Lf CA .L

- S u . 0

4-) U-) 4J4).-
) 41 (A m a+3t

0) 4) 41)
U)~' 4- (AU -- U

0) 4A >)..0 >
41 0 CD 04.0o) 0 .to - L.U -r-

-) 4- CL LC- . (.

(A U1 o) .0 4-

to U) 0) to 0_cu

xA - o 0 S- 0. Lr_4-
co to 4- 01. to 0
ca 4) .0 E . ' U .

CA -) 4-) (Aa u04
(A to S- U) w L.U 4-)
o) %U , -. .1 (A to

L.) > 0. S- E to c @1 3
EUI 01 o) to EU 0

(A %- I 4- U U i-L
W (D U) c 0 (- EU4

r_) 0 3 .UC-~ I-

LaJ CL 1 "a EU -)
$A 4J 4J S- u-0 . .

4J U)d CA 0 C- EU)

CDW 0 m 0vi
0. 0. 3-) 3 0 @3 L

mi -or 4. n 4- o L

ti5-9

V)V

&jJ

0- I ") 0 ,
U U na >) t

-

4+ - (4J> C
4- 0 0 .-

S.-,,_ .. 1- "

0- 0) 4 - -4 W)
4-' M (0 U 0>1 0. 4A

(D' CU 0n to 0o
- -C .- 0) S.- 0) (A

EA > 0 V a r_
4-) to - 00 (a

"0 -0 4-4-) U)-u to 0- 4 iL Cn 400t
-a .. to .a) S-

4-4-) +J 0. - -
- . to 00f Co

&- 0o L c 04- S.
-A (a 4-- E 0 to •.- 1-

() CA 0) 4A , S-J
4 4-) S. >L cm>-

C 4. 4-. 0- >)4. 4- C
SS-0 >I -") 4

o 4-) . ", 0 S - "
) " 06) 0-'

4..) 4J S- r_ oe' 41

C 4 4- 0074-C
' o L0 0 Q CLU->.

4- tC>A.-C
Z~ OC

4- E C0 +a I3
"" "7-' (A ' 0 LL

.

L) 4)- (*0 -) 401!.€-' 0 U f,,,. - - a)
a3u >,,z 4)-fa 0

04-) CA i 4-'00
cu CA .0 -0 S--C to 0

L0) r_ 3) .- 0) w

• S-- E u - 0 4-' C

o) . .- >)~ 6L ~0-
001 CA CO 0 S

I 0 In.a-

4- U> U 0 0 C Q)
(U a)- 4 to -

Oi . L.1IE)1.. * %

"a 0 4I to QS- M 4-

c > - to M, Wn d)00rc

0- Q) U) =nO >E A

4-C u C CC LA .0 0. tno = 0i

01 4- - 4- I
c %- 0)0 % C- r 9a ~ 0

- --- A (4- -- M -- Z n 04-

0 - &- 0 ' CAw > E c c
- A (A A LA=9t e 4

.- Io (AI

41 IA 00 00 0G4

Ln LO CO Ln

5-10

L

E L 4J

0.J 4.

0)C~E

4- .- 1E

CAU 4 J .

U) V

0 4-J0

LA S- 4.)

L-) - - >
S.) 0-) - -)

o)> 4 .) 4-

V) - CL 4J to 0
c 4t) > 4)

-0 00 S.. "IS- to V~ 4-)E

u co to (A O (
to O mU U 4-)

01 0 ~ 0))
u *- 4- >

£0) > to t c 4) to
Ia U 0 . = 4.) - r 0

S- S.. 4) 0 - iU

0) = x - CD 1 -)
a00 r_ ~ (a 0 0 L

Ln EU 0 =C - = 0)
3o to. to c S

(A. EU) cu 4)
co S- 0. S.- EU

0U) 0) M) 4-) 4
C.) 0E U) 0 0 0

0 EU 0 .0) a4-9
.. 4-3 4-) 4- 0") t

5-) 4-- c-- a~ c) -
Ln. t 0 0 0 C 41 -C 0 a

0. a) > A (U4

(A *- 4 .- -C (.- 0) (a
a-U)- M lu + 0 = E=

CCA 00 -C - C u00
0to '-U C 00)'

1.. 0. =. 0) C~

co 0 0)i 0) 04- >n 10)
r- f- 4.)O EUl 4-

LU cor c - U) c C 00 -

U U 0) -E5-11

5.1.3 Access Control Subsystem Specifications

This section presents the design requirements for the access control

subsystem (ACS) previously described functionally in Section 3.3. These

specifications are presented in three parts:

o Common Access Control Subsystem Specifications Figure 5.1.3-1

o Additional specifications for Access Controi

Subsystems employing encryption Figure 5.1.3-2

o Design goals for the Access Control Subsystem Figure 5.1.3-3

i

5-12

0 : :

4- ,O C" 4) 1 4)

a 5- .- .: a - a)
4(30.CC InU €

C4-- 0 u Oc0L)aI. Ifl U LO LA
(D. -) M0

0 41. u= 4- "J 4-fE
l u) U (

CA.-4 to (A)' -4 CA -)

> u E-
4. S- -- 4.1 41 . C

•D S.- 4- 1+- V, ._O
+j 4- , c 0 >Q;)(A

U 0 .; 43 LA 4-)) U,43 4-

E U , .,- - ==.-- 0-

L- 4- S--1- f. V 4-3 ,

- J 0.1 ,)"- 43 ~ ') LflU, 43

S,, 00,. U *- > In -,-
.)4- 0 4 -" W 41) 4- u S- ,4 .0

(A .0 0o FE
4C 4o) cJ Uj = (C
C4 0 to- 0" . 3 "

EU S 4-) .0 4 , (3,.

d- , u U..O 04-)4-)

>4 4")- 0 .-. 3 1-..0-) 0 (7 0

4A ,- rl 4-) toI I (I

#A1- 0 1- u 0 4-) 00 4-)
." ' C (--A "(A -) (..44-

U) 00) S- (U co C 43)
toV' -) - u 4))1 43. - 0

iv- SU - U 4- 0, n .0 0
= , 4 - 0 ,. S. 0 (0

0 oO 0 0.- 0 04-" N ". 43
.1 V 0- "- U 04- E 4-) E
c c U4JL 0 'o f S- 0 4A 43
0 C 1- E a) 4343 43 0>, 4-)

U? ~ 4 0 4-) C)' 543 to, = U,

1 4) U4 4 04- C.0 > U
0 n L- C AA Q) 5 .- S- toU).

0) 4-)0 CC V 4-' J= "a 043 43 0-
U- 0 1: *.- U 4() - 43.- =C to- L.1
v > 4-. 41 o " c 4-3 u 40

L) tA 4-- (a. 53 c. S-I 4
.00 S- 4 * r tu 0 0

LL- C = W 4 M 43 * v 4-) ' 4-43 S.-
t I4 I- 4) I- It 43 C - -. a 00 4-)

L16J 4-1.(A4(D 1-L-4-3 IM0 3: -: 4)1- 0
9. , E-- 90 ,- 4 43 ,, ,30 c, ,, LV) 0 4- >- M " - uC

2: 4-)-. 433. -- *.v to- 0o- to) V
WA W, 41) a t!41 C > u 3: (A. 4- 06M U,

F- *- 4)1 *- .Ou L 43.- 43 4) S-I (A (ac 43
U) 4A =C(D > 41 tu 31 - 0, 0n I10 (U .1 0 0 U

-C 4-) U 00u IL 106 c 43 4-) C u
Vd) 0 S -43434 U 43 0 -N CC 1

u 00 0-1-U Inu t C> *A = -- - m 4
U') 4J 43 -C In(A 4. 4-3 + M- 0L c:

x 4.) to~ .4) 0. U tCo -43 0
co (A)I (A C -U -a S- M In.- . -0

Q01 oo4- .00 =0 fa 14 C(D m -1=u at ocH
=4 - =0-- 4 .J =) U, 4-) = 4A

Lu 0 90 W -J- C C CA In4 04 n
cz'I 4- t0. 41 0LA (A413 4) Q)-

LU 4-) 4 InM4Jn +f4j .- 0 0 .00A I4-)' I4-)

>,,. > I- >C 1- *1 Q,430 >1 CLInO4 0 nA CO 0- C4 I0 0 In 0

4J -M = 8 ."4-J (A) 1/0 = ~ 4)

#A U 0S <U<-)0n~ 1 .0f An C43A L) QJ A ,3CO Ifa'
S. , . -U - 01- 4) t -- C 0 4
to- =-. E* _ .- = to- mn 431 40 4) Ua-I

C7 f" fo X4 F- 0

. Lai V) Cd d) U) V) Ln' Vi)

5-13

C)

4-) 4A) 4) V

CL 0) " .S- #A S- CU a' 1 0
-,,.,-U- 0

-4-C V.4-) U (A U U) .
cu0 -0 ' 0) Q

0 0) 9 (-+/)- (ULA 4-J (AinO L/ ~ U VC 0) i

c 4-3 'U-) (A>C' n)
(-n +I 4-- l S.- to0 :3 -

in >1 (0 oC 4-) - > 0 0. r
- (A) 4J - 4-0 0 0
1- 9 VA Io . - o U- W o >
0 - a a0- 4-' Q) Vu) 4J 4 _1
n .() L . o. '

kn >in-. -,- .0. 3t -V 4A U

U cn i. . , a - 0 U 0J (A U U-
c1' C a 0 4 1)", ,- 0 " '- u u1-) V(o= IU >bi :3~n (to 'U U

0. C 4- 4-) (1- ~ 4. 06+--o 4-' a)
= u4-3~ LA 0 L) = >-, (A :3- c a 0)L0

n 0 " 0S
,

. - 0 .. ,- -3 0) *.- i - E

o. aJ (.. wJ :0 0J CU 0- > d)

-0CUa . U 0 S.-4' C L . LL. L.to4-

4-0 V0 - 5-14 04)j0- * -0

C m4) -o4-) 64-3 T- - -0 ;A () 0 to 4J V-
0cu 0 4- (a '3 0 -0V'Ui(An() >,U 4- toU>

.- a'-) S - &. -01S.-) iU 4-)-- a) "0 in
+j 4-)0 0.C0 -9-u M4-3 L. -4 (0) 0*-4- a r_ .0

Ln C 4-3 4- 0 4-) CL Ui(n c c LC SU - .. 4- to .- .-
S0- E 0 0.- ~0 w wU~ u U. 'U 1)

o -.EC.' 0 5- U .u vo U 4-) S-1.
4- L)-(n 0jL ()L) U o~) >1 > 4-1

-C' V04- .Cg Q.CO 2: V) +) a) L.
(a CL 0U 4-J Ci V) cm C-) cuS

:3 tv tu -r u 0) s- 0 in QU,-
LL 0VC ~ 4 0 .41) = 4- Q L. :3 E c

(A c41) ro C L- () 4-'fa Ln.- a) tou 4-- C) 0
fa 'U 0i .- S- to =C3 0) 0 0 C~l

LA oE 6 (a~ a: C) LA 4-) 4J 00 4- c
0 -0- a--1 (n Q)0 ea s-

S-S D Q)o o () (1) (Ain 4-0 a ' u C tou mC > .0 0)
.Ceu- 5 '4-3 'U Q)' 1 M 4-) to to 0)U

0 Us- A (4-' O 14--a -C M-'4- 4) .C .
0jo3 e Sa - 4.-1s- = -C to .0

0in 4o 0) Q) fa 0. 4-) CO4-)- + -1 U t'
-le L.(U LA -0v 41 CU 4J 0~ + *. r-4 0. Q

CO_ 00)4-Wa) a =- r-in 4) 0) mo 'U 3C U 0
U u L-- '-+- U' UV4-4 .M .0U

-~ r-'LI mn 'Ua

S.0 - S.. 0 = .- i=4-C S V0) S- 4AS4J
Lin.1- 4.) 0 (0-0 CL 04- >4-) C '0 'U
4) S.0 C) o 0n C-,- -C 4.) .- - u 4-) - =C '

= U. ~U4-) A 0 A (A(mni ini QE)C > (Im (n
4.J 4J Q) Q4..-) in 00)UO0E 42 >1 t '.

-0u aU S1- u 0 541 4-)CUJE 0.- (A -C -

>,' S-C r- S- . 4 -) .4.J o >$ > = r_ 41)
S-- CL (A ' (Ay (in -iE.n U 'A) 'A 0
t ' r- 1 0- >-,C >$ +S.) a (-A GO) 0a. >, 04 4
in - 0 4-jU in' co' .0 (a (A0 4.JL)e S-l 4)t V 4J =

tA i4-C C 0-0_ o) .0 .0 C 0L1i U Zi) ul ino x -A
0) 4- 0'- +.) =S- M.- u >, uU#A C ~4J >1=C I
u (a U S-0o>1' m 0) in> S- &A)' J COn 4) M A t C IM '
0) a)) 4- S-r (3 U ** 0)) (U 0 I 03

C4-).0- 4-)5., Ln (A) (A 4JI ' UC to ~ i_ = I(n#
c - -0) -4- -U Q) -0 4)'M U0 *-IA 000 .0 4-4 () = 4- -Ca) =C--. to'=. to') .C =C.
E4-) U -U-V F- 0 1- i- LL4-) toV u Liii. S- - -4.)

CD -4 0 c'-) Lfl '.
- 4 'j C14 clJ c'li * l C\ 4 USJC%

Lii V)j V/) (d1 () (A CA V)

5-14

2E1

4-) E

4-).D S- u 0 a" A a, 4.. 0 0 ..-

a)J t -u =3 3: (a- W CA .,- tn 4-)(-

0) E a -Ww S- 4-J Q) a wCA LA ...-. 0 0-- -a, co +UC-) Eto

C - 0 LU ,- -- C . 4- ..

0) 0 C 310- 4- . 0) n fO,*-. 0,-- 4- U

o) (AE-0 x04'J S 4-w a) a)

-- 4. cn t > 0- . _ c c E .4e-o-) 00

f u -) CM - W U.- u .- *- -
0 * -0 W L.-..u.'. C S- 0 -

0) a) < S-.. 0)) oL-=u0 DV) Eu Ci 0 a

4- o au-,0 - - 4- (A Ei- CO
-

-
V) 0)) L ' V)LI u to -0-0 i0 4- 4-0) U (0 CC.oWU.- U U 4- .-

- 7-a V

*0ocaL 40) 4 *. LU - 4-40) 0 roC

C- 4-M Q) M C S- --- EU - 0 "
S)0 0) U-- CU m U C 0 -

,,,,0 0€,) 0 .4-0 -04- "4-' ") i-" -U

, J - S. S- - M E U 0 ,-- ,- 4- 0
U , -. ,-0 .- -s- E • S- C:f

- 4 a E o -- t 0- '> -C U Uo) 4-))L CWD >U CU. L 0) CL 0 4
4-' U.-U C 0-3 j E) to Q L

•0 - 4 0 4) r_ cE L-L

0. . .- .- 0 * --n '4 - 0) 0 U - --

4' 0 C - 4-) > 4- C C- U.,_ (A n (A 00
v 4-), w - U M-- 4-0 (N, E

•) ,- > fl-En u C .- (A> , n 0 a)
0o LA (A l -0 (A -0 '0 4- '0 cm .0 . -

o .--- U.,4- a 4-a 4J'' X-30 L ea nC_ (uOL0 iv U - 0 r-- lo0
0 LS C. t Cr---- C 0 u .0 - 4

.4-) -. 4-) ..) ~.- 3 4- tu &. a) 0 C 0 *.
C 0 C -) - 0 (Au 0 3I I,

) 0 0--- .- O 0 to CL r- n
LL 4V UL0-)W4-- &- C L $- a) .40 (V (D (-

cm 4-=C = 0 004-1 =C IV cU(4- U C 0
S0 4) =4-')0 M UC 4- 4-) (U)a) 0 0 0 L

rL - =o F 0) (A"0C0 4-3 E- L&- 4-)
L.4J u a 4-'- i.n (a - 0u a)fr 4) -) c

0) rL_ S-ac0) >0 -U - U 0
.0 c 4Am u (r 0LS->, C 0o- C. .0 (

(A~ OL S... L-) .0) 2- 0w
- (0 ()iCA M 04J 4-0 (A *.Li 0 mC 4- /

- 4- U LS- 4- M 0 4-3f V - ca M CA
r_0 CU)U> CE U r0- OC (a u 0)M0r Q(

Co (AOQ 4-' .- L. 02- i DCU c n o 0)U
(A (.0 (>,. 0 LL S- C- r L - E 0) -U

20o) E 24- 4- -- O '0 ~ V) "a ED (a -o
c00o -0 0 C 9

0U4- S.-L. 1 -*. 0a LS L .0 S- Co '
> (a =~ m 0)(V -c- c oC 0

toC u L 0>, ea S U 0 4-) (>0 00
Q) C.4- 0) M -CL - O U CL-CS c _-

U tv 0 0 u (A 04-).-4-) 4-0)0) m(A 0 A 0
W)4- 4-) . tnUL 4- (A S 4-U 0 (a

S- C 4-) - -S -> U 0 i A Et
So .(A cu r 0) (ULAlCu -C A o a))Q) c) (A E

V) 4- U.->.-V. 4- L.-0 >l 4-) S-L. 4.)
W). (D W-) i 0 .4-) .- 4- M (A.. 0n E 20)

>1 0c*--) ca)m -- >"v ~ >.* 0) W -
(0 to 0 0 0) U IA to.C 0A r- 4J 4-) 0 4-'
iLA S- 0 t >, s-0 .0> =-"a --o- .o- ea .0 (A tA E C-
o 41

4
M. -4J-- . cm).4) 0 U C :3.- >-, > 0

4A) 4J- CL) (A Sn-L 0 W >, 0 fL - 4J (A (A (A- 'a
E4- SL*. to CA- c4-1 a.- /

(A (D 1 EV) A C + .00 i> ~ (A 'A- 0

v i X .(A 0 W S (A (A . . (A 0A

C~ L) L)im V m c
il

5-15

LAJ

a)

4-i

.,-

'4-

E 0
to . 4-)

S- LS '

0 S.. M4-
Ln C0.0

0.- S.- V),

4-) 40

0 -C

a,. 4--)I

4.1 to 4 0

0.) 0 -

>S 0 C ea,

0J 0 0

S- 0 fa

0'a . 4-'

030

4-) (D 4-' 4

(AOS 0 07
(U to

>)*U CU 0

0 A '.9 1-
LU.

. L. o .fc (A)
4-) .% cm 3

r_ V-to

0 (

0

L'I

0 >0

E~

-u-

L- SC-

di4- IA t
S-L 0-
06(a 4.) EU

U .- to

'a.m 413 1

0. 4-)-'

. -
0

I
-0 CA i M. t

=J~ 0 E $-w>-
S-EU mO. C -*C4

0 0
S- EU S- 0 (U

V) u- 0- 4J
Z) - 0c

0 S- 5 d 4

41 OC 4-'4-0
-o aid) .C..-

La- 4-" 4 -3d C -
0 Ed) 0.-E

(. ~ ~ S cc -d>

o) 0 D Z-C. IA

d)C >-.-W
0 0) S.

I- Add m4'

co CA- UI

w- O- 9-.0 -

'I di 5-5-1-

I.-z

0 ru 4-)
)0 4--

"E - ,-

0.i*.- E .

0- 0
.- 0 4-

eo 0 . (L) .

4-

4 -- m
t

-

4. .- *-

S- 41 E- 4-

•E --
.0

a

4- 40 -U
.. 4-,

E)U S- >
F- _ 4- 4J CL S-4

E1) -0 0) 0

w 1 4-

L- - W

LAU
CL, (A 4

>- 4- 0 -r

5.1.4 Hardware Security Filter Subsystem Specification

This section describes the requirements for the design of the Hard-

ware Security Filter Subsystem (H F), as described functionally in Section 3. 3 •

This specification is presented in three separate segments due to the differing

system requirements for the various system implementations. These implementations

are:

o Common Hardware Security Filter Subsystem
Specifications Figure 5.1.4-1

o Additional Specifications for HSF Subsystems
Not Employing Encryption Figure 5.1.4-2

o Additional Specifications for HSF Subsystems
Employing Encryption Figure 5.1.4-3

The specifications for the encryption systems of Figure 5.1.4-3 are

presented in two sections. The first half apply to all systems employing encryp-

tion data separation techniques. However, because of the uniqueness of the imple-

mentation of System #5 (Alternate Back end DBMS Configuration) some additional

specifications are presented (HSF-68 through HSF-71)which supercede several pre-

viously presented specifications.

5-1

5-19

4-4- S L

LOV AL XC/)f -

4-~4- LA004)0 G

4-) L -

(n u o 10 o w A LL-
- ~u LJLLJ (A)

4.4- CV 4+)*-) (A 4.) 4.
(a 0)-- I> 0)' tLA c > S .0 . u(4.J- WIa) C - 0) :3 0 VI4-) 0.- XU VA) :3 .0.0 ' .. 0~ ~ 0 4.' V) -- 1S V 4- (0 (I -A - a)- VA 4-1

IA C .- 4-) 0 >1 to '>L. toC S LA 0 >G4) 0) -UV) oV *-U0 S-/ C - 0 L 0
2: > OL/ *->, C 4-) E s- 4-

EIAO --- a)O C 4- > 4J)im 'a 0--- - >1 . 0 f- C_ Uc U.C 0 UC c 0) U) E- 0 0)
fa S-V I A 0 SAA0 L- 4L)U L)4- 4-) ., - > (A' IA 4) :3 ()V 4-) U- 0 CI 0 0 4)~ Io A IA IA

0) M :3 CL 0>, 0 U 0) >,0C I
- E U- CL UV UIAAe0S- IA m - -CC4J U 0 C U

0 0) 4- CU0 (ACr 00 (v (0 ~ < toU U IAI+. IA 4.' L. a - a) n (A4-3 -- i
0) 4.) a) cc CA>, 0u'0 U> CQ 4-), (A L 0 $-45 C-A 0) u 42 0- (a 4.) 0 .-0 S-4 CA 0aF. U' 0 - *A)(

- ~ 4-)j S- 4-) 4-) E 414)t0 W (A c'V to IAIVAn C 0 C 4) 0 1. u ~ 0 . C U I A 0)) S.- >, U 4-)
-. UE) ccVd) (V)4-3 U.) 6- 0 0 .tO- 0 - A uC c V f

S-U 0) UE A -- 06
0 (A cmtoS-r .4-) 4-) Q), - LL-- >.C 0J>, 0~ '~ 0J.~'I S- C V7

u u .4- 4.1 4-) 1) S- 41) >1 0. (L 0 x 0.
< oU - fVa 4.)-.- _ 0A a 0) 3 0.CL4

. fa S- O S.- >, 'V 4-3.0 S-
= ~ ~ U- A- TUS

IAS- 0U 0. 00a) .I(A - AA0(A u 0o 4 0) 0 0 (0 -S%- 00) 0 IAC c0) u0) a) 4 VA. -M A4- -U u n - 4) 4) t .0 0)w& u IA
4

S- -~ I) A 4- CO M 4-) .0U (u 'V10 S.- a0).0 4... - C4- C C U -ea a) >1 a.0r_) > 0C 0S- 0 -E > -0

1-- U - 4- 1 4-) eo rC 0) .00 I 39S.M3 3c-s- -4- to > IA 4.)4.-(A) 0 0 00) 0 (aJO (0 0) 0) .- U -- 4.)-4- - > =2 - >' 0a() (A0 'V t(A r_ a) -0 > Z (A ~ (04-0 U 4.).-~-
(A * S- =U-. EU # CU.) ~)A 4' C

X:-4-) V ~ M (A. 1 .A-- 0
ao c - S-.-5 L) V tmfa-~ - Q) C_ 4. 00

cm0 r_ to o. <- 0 U ---
0 tuC 'V V-U) IA L. to C' r_ to) IA

rC U L) U.0 0) 4-)(Ln to4- -- .4-WU Ia' IAV ~) VO- IA X 3 49 41)(A (Ar --- 0 .CS.. -(A di E00 o (OA ~0 4 + 4) tOE 4.)a0) 0IA. to' 0)0.- .- E - C -- . IALA J u 4.) 41 ~ U- 4-) (A 4) 4) 0 35(A (AU IA (A IA0> IA(A U 0 0* >,' >,'V >,) 3 IA >),r 0,E cc0)IA > IA wA4.0 4.- IA0E IMCC 0U 4 IA (A u -.0 0 .004) .0-.--- 4-C-0 r_0r_ .0 tic .0 U-C >, --
(A L 04. fU 00) 3c-E fl "' '4. >)

$- -. 0)9 4-0 4- to') L IA 0)IA (A' IAV0.M +) ou IA (a- IA 4. IA (A0i O S--- -0. 0VI o s- - = .- AW a- 01)0 .r_ CC .0 0)->, $- 0 .4-Eto C>1a C71- I--.- I-I S-I3L- A 0-4- -0 44- I-AU I -uIA ~
LL.

1" --

-L uJ LL. LL A L LA LLO L. LL A- - V)) V ,-4 L-4 V) V) Ln

-5 2

II

4- 2 "0

(A 1-. U 4)

Ln = CD r . '-
2C 004-'4AU.. -1£ 4J 0 " j -
z Q CL o/

rL , *- U 04

4-) 0.- >, A .-)1
m c w) S- >I > 0.

jl I&tj CA~

IA)
4- I

U 4) - .',- C 0

r_ 4) 3t O 0 J 4J4
)- U U.- (M

-.) 3 .0 54- >- 4
E

4. "
" L) ,-,, L 4 (A. _ -=-A t
0-- e 4- f i . - 0 .- -0a to 4- , 4U))0 4) 4- r_-'.---

E &- S - 4- 0 U1 "a C• "

Eo 4) 4) S -) (n 40 0
-) -C L 4J 0 0XA) S-'0

= 3. co .0 fa tu5-
404J 4-' 4J' C3 L- 0.0() ,0

- " 4. Ve - .e- >.- 0), 50-.4..' 0.

(A - 4-3
"

#0 >) 0a
r go -4 + 4 i...) 0 -4.- 0.

CL 4- C . 4) S- LA M r-

4) r.,- 0 € .. -. ,- X: 4- - ..a .,-m to - .0 4)

to0 4-)
= U EU 0 J>- 1 0 .m 30 4-c41 4 Lu~.- -U o . cua CLE4J 4

4-) M -4J 0 4) .
S. A 04-) w U toC c - 4.J' L)- (A > .

0U 0 En.-U4 to OL- (AU) 4-)E 4.) 0
4 4- (0) U4) 4-) > t LnE r-

to~ a,.-N a 0n >~ C 4- 06 aCOO) 0) M04-3 a) 4=S
IC4J , '0 - 0) C 0 4)

o 4 -
=' .4) E 01 0 0 +
4- " M" 0M r- +"' U U) 4-) "

c 0. > -'V4J 0f" 0 E W oj0 to S-
o M~~ 4) (A- go)U 0 A U -) a, .0 U

- -- 4J + CC Q t 0 002 0) ws,0. .C04)* M 0 = ~ 4J) M .0 04.- - "LL. L. ' U C V) CA S- LA 4)4- 21
o a.U)- A 04- 4

LA 4- 4J .0 r- (a -t 4--Q 0o -. 0 U
CL Q 0=. U M * 0 U) - a 4 -) (a W0)u ') 0 . C 0 >C u Nlc 4- 'a > 0m 0-V) - ~ 0 0 C0 c 4-) E0

.0 . 41 4) 4 0 5- cin 1U)d 4- -) 0
.- 4 4- E4-),. 0. o) 4- 4-)) CU o 4-) > 5

> E)0 (A M4)Ln (QU-)E .- 4) 4 0
4J EGM CA 4-) 04a' 4-) 0 S- a) 0

U) w> .0 0)1- 4-) S- 4)CL4)0 > L. o = +- .0 cc 4)S- rC- 0- A -C)0)4 0) 0 S-5-. 4-) wCO .- 4-) .-
0 .04- m 40)0) 0C 4J 4- - 0 0

>- 0))aC 4 D(
(A 4AL = t 00. O 4 > i-0 c r_ 34 (A L

3.E 41.- U) f") CC 3Q- U) 04 4) 4 -0 4-' (a U) - o
0)- (A S-0)04

CA J 0). V 4)0 ID 4)-C A- -AU)c 4A Z C) r--C-' 4- 4 A > E > n-, J VOVC M c0-)- m) 0 4- 4A..- U

fa0 U) 0 Z4-) = .0.- .0 .0 I-

w Q00o U>1 03: 0U -A Ln ~ U) '0
0 .L.r 5--C (a 5-0) ea0 U) (A

4. +)4. ~4)- 4~) 4- S- 0u =)0 U)
V) -U) 4-)4-CCr-'e- CO 0-) -0 u)u c 4

CA 4) C.. (*W *U* 0i '.a to
>NC J C') U LC - L) m ' m ' (a) C' --

C~ -c I I I

w LL.LA LL- LA LA- (A

5-21

. l -€-4J- 4"J S" U "
(A 0) > r_ 0

, - S- CA
L S.- ft

" m " OlO ' 0M U4-0) (A

4- S- (U. 4, c '0 m - I - n1 0 n u 1
IA4.. 0 (U (2!:, .,' 4-) (a 4,

= I 0 4J 0 .u._ - . - 0'E0 "
I

0> - 'A in w 0 (U (A

o fa 0
W~ j) = .~- >I*. *- 4-)

00) o>)) 0 a0w S.. S. 0 aS.-
-o 4 > .. -M 0. -s-m 0+. E,

C,.

0

0 0o

V~) / o

5-24-

0 U 0.
0)

InS.- 4A)

-4- 4- 4-

0

Ln LA

2: 00
o

- 4-) 4-)

>0

00)

u 0,

C.) 4-
uL 0= 0

U, 4-
03

00

co:4 -4

V0)

-z7
a.0 7w

LJ

0

CA
- E

V) 4--->

4-)) *- 4-3 >n

(U m 4-1 .

a) o i 4 S-

r_ 0) 0))

S-0 u (a tn - L
.4J 4.i S- .. 0 4-)

CO 0 -- u- S-
o~ t - 0) 4-)) -

0 w, 4-n) -'5
CU U L C- G .

S- o e 049 coo 0
00 - S- 0) - 0.

3 o to r- >(CL
4- 0 .C+0 a- to ' U- 41
04) - 4- 4-jS >. 00 -.

3~~~ 0 - V > 0

u'4- (1A 4-)C in Mn S-
0n 4C. n *- "a OC

U x () S.. 0 a V 4---
F- 4-"4 U_ 3.>1.

4c to 4A 0
L) 3.- 0 > to r-

(A o +- o) 4-) 0 0 00.
L. U C to- 0a a5z.- 0l a 0 .Ie >4

L) 0m >) U 4) co
4-0 4- 0-4-) - 0 -U

wL CL 0- U - - -0
I S.- to- 0 0 *) 4-

(CA t*- 0 _ ~
V) - 4-r_ S- L a)U C S- m-~

tn c.4. C S-) W) =) =-
LL. c) 0in I) S.. 41- 0

V)- Ca Cn (a U) U
(Au IA CO U(A. 0

- to. >))0
(a0. C ,- 4j . .4 4-~ M

ea to 0S- -
F- 0 i_ =C QC C -

(A ino VL inV in- U a =
(1) g-1- 0) 0V

ix E t t E (*-0 VU- (v. m :30 4) cm g -C
4-)i (A 4-3j0t 4-S 40 fn (a

I >t4- 4-') >j >,C >) 41 *.-.

0 no (A- Ei>1 (A 0 O.

4in in nO) = nn iW U-
U 0> U to 0I U

in). in 0*. n) in .CO

1- -C im -C toU -CO 4-
- F -i to.- 4- -J, LLJ 4 J

co - - C..4 en ~ U-) L .0

- I I I I

0 U LL. LL. LL. LA. LL- LL.

5-23

-9L

V4-

x1

Cc

Le) 00

(A ..- c()i...--

LO :3 L)(i

4- -

2 JLL. a-C.

0 .4 J (A VWJ. .I-
(n.- 0. 4-- M-

V" -I- V)- "L 4A-.- 0 Jo~ o

•r- 4- m.0- = -e r- C-.- tn 4- -

o4>4
s- u (A 4-. i-

0.

" ., c + -o -, (A

4 0E :3 C)e t Q _ O eC

IL ._ L u = .- a > 1) 1- 1:1 (D =: t >1-C
0- r - - (A (D 00 0 -) w- 0 0

- - V 0 v - * U a) Vn 30 (A 4-'
u.X: 1- 0 i d 4) C 00 .W -

r_- i o) - _ D *4-) C (U A " o-0

cuS m f C (D 4J S-0 C= - - 20) to-cr_

o 0-0 4- > > 4- - -i+J- (a co 4

• .u .a C 4-) - L .) u (ac 0 4-) 4-) to 3 0 ,1
(a (U (D z- -3 C l =--.- ..

0 C-0.-I) . $", n 4C1

4- -~ 4-i -0 Wn fa S) 4'C0- cn. r_ I o
o A)SC 4 0 0 '-o-4- ~ r-C-) C~C UC =0U(I

0,-4 S 0.0 (A a-~ +'.- C). 00 0)S-C

. D SJ- 0. CA a- (A - L.. o (- I4- -
0 6 o U) "-- "3 0)C- =--" s-"Vi4

-e -'00 4- 200 L 0 V -4' 0 ~ >

0 C 0 00 0 4--J0 -C0 0 f - 0 4-C

4 n)- S- 01 0M M 4J -0 4J0 3.- o .04
C) a *_ - u.. 0+- (U)O a .u r-

C)2 -) M0)o)Cb -he >, Ein in i 10 m - 4-Ja)0) S 0 0 >1

(0 5-24) a0Q 04 CU - U '-
4-O 4J 0 -he)r-n0%a0) -v CO

-a 4-3- a 0 Ca c- ~ 0 03SV. r-0 0 0 C ftom
cc C-0 o > - 0 - 4- Vo d)0 1- go to 4--

"D . 0 1-) cC-.~ OC eato)*u..-4
4-'U L ct 24- :3. 1- (U4> r- JV=4) wit ' A --4- 4-3

S- >A C- -4- 0) >1 00m r_0 .- C A q-a C to0 C-.0

ZA 4-- U 0 a) (0 4.-) S-0>0. .0 41-0 0>4
in o fa1 u c in)- to 4- 0-> 4 -w)

Vn-) C- 4-J 0 04) 0)c >4) 0.. C fl
0)410 t 0>) -.1 4~-) -3 00 O 4-)O 0)100.

C- tA .0u r- 0 a L0-4r-2 1-->f..- .0 U ._,-t
V) - 4-) 4 O-' - 00031 4-' cu u t

(A 1-.i S.0 o tu0 . C *-n) 03 00

LL r_ -- w 0 = 'a 0A .-- 1> i = (A~i 0.
V) 0 = 000 .- 0*S- C) a)1 I, 0 0 eal to- 200 W(1A$A4

A4--0 000 (A)(D4-) 0- to O0- = M a--0

(-- 0 4-3 r_ ~ . 330 0-A CA CCO CA '
(00 - C 0-.- 1 0- (U. 0 4 '- 00 10

CL >- L CC0S- (U- c 4Ai . V to - CU cc- Ci
tu 0 (U 4-0S- (D 00)>) .- 0 o 0.- 0A) 4- 4)n .

0c4 - C(3 r_ * = -i .. go in V- o
CL(Au -04 C-. 4 4- V) V) .. 4)) 1-2 inn

0 - C 4->, S-1-4C 39nV . 4A -0)

to rC Wi -C to E C >v-3.,4 i
0.~4 inO. :3 m 0) w =- Sn. V .-- (A-> to4

200 4 MO E.a)- 2J C-U>)W..- 3t
C-) (A3. (Va >4 (A~ 0 0.C 1- toi -0..

= 4 4-'i >) 3 C. + 4-) 4-).-. l =0 0- Q-C
V)i 411 ino 4) C 0 inZl in0 SC o 0

(A404 (A .C 1- -v-
4 -

A0L > 0 63~ 4 .4-3 uCV m
i- O i04-) ,0) i .0 S- 0 1- 4n4 C')c o

M-(0t =C = w. 0 4A Z4 .0-OC- 0ja (- . .-

>,4- C1 3 4) 0.-44- - 0 (A 4- V -r (A4 4V4WC-

S- 0 in c 0.- - 0-aac)4c ~.0 CONra=

I.- V .C1-(UU0 .C- to00 .Ca CC 0) -JC. 0-COS

1-

ca.- LA c.0LC)
- LC) LA LO LaL Ln LA

0- CL L V))n(

5-24

- -. ,01

'7c

0

V)

Wi o 4 +

S- M . (A 4=I (Am W L * f€- E

'a -; .rO M) 1 t-- .S.. 0

S S- u go C- 4S-0 s-
o 0)0 U *)0(4- E4

4J 4- 0 to. f (A 4-- - >
C- M M 0) to.i 1) 4)S $-(CL

A- t o3 4- 0 4J-- 0
0) (a aUU.- 0.--.r- ..)

,) 'D 4
,

> S- CL -0,

(U .4gt -. 0 W o 3 1S- S
0-= >r_ r<) S- lL) r 0.)

• 0-- 0 to LL) 0) O . M 4-J 41 4.
S S- do) o 4-)0." -0 to

4-- 4 0 U CL 0: cu = .E- S',-. ,,

ea 0), 0 (A > to - S- .- 0 0)L-a

4 4 OU) 4.M- 0 -(.- 0 0
(A V 4 0-) m 0 - 4 . 0 4"- CL

M- C> 04) t 4JL/ Ca) tC 0 o0)>1

U -W - 0 .-W . A M-L.) 4*- 4

44) U Cl 00 4) 0 0 41ES- 0>

0 .) =- "- 9 0"to S.- 00 - C

4f O u 0 S- rU 4) L 4. S-C 4ca 0Au

U
- -
) 0 0 0C C 4J IA m to a a- M D c-

4- - -C 0 C.A 41 U) (0 .- 0D .U ,---
3S 0 0 o r 4 (A - -

• ,-C-- - 0 =."O -0 - lv 0 to)
.-3) S-. L- (A)1 - (a 0 -
4 -0 "0 W-- L.)- -=0C 4 0

Q 4-)3 r- C (e4U) 4 - 04 ' o .0 .- *r_ U) (at Aro(- :3 U E S-0
ia v W0 r-=Co .00(D 04)5 VOo S
'a r_ t ,- S. A S- aS- C (A r_

•) C" =) IC4- 4J :3 fa .f- (U L" 0. E-e

:- U S- S- to = .- a fa0.)r- 0 c

-U=-al 4) tu m I- 4A 0 U u_ 1

- 0) S-3 44A U S-4.J C 0r-4-0 U)
- C o). . -UOOS-S- 4-0

>t S- u) - S- 0)U) 4-
1
S- -.r 0.0 IA

L 4- to tuU0 D 0U 0 C3 -e4-J) 0. 4) CA
0 = 4-C) QU (U0) .- W0)U.-00 S- C

IC c (a 4AS- U to 0>0) .0 - 0
4J - C S-r-4- 0)0D o. -u O 0)er-iDn-.m)e-
IA)000 S- U m 10S- (A - Q)0 CL~ 41 .41

r.-.4-> 0) 00 CD -0 (A 00 O 0 0t
CA 4J 4J 41.)41 S--...0 > 41 L U->1 UCas- 4- U

C > uS-r- 4.) S.-a) W (D 10) 4-) 4-
U =S- to L U-0 0-U) S-..0 4 c
4-U U .S- Z: c M C_ U

c- C0 m).Q = -n .)0 (M 0 0
CC 40.) CL Ce4-U) 4J LJ -S&- C Q. 0

0o MUA 4.104) 0~ to IA 4-*-
M.C *U -S-) 0C* c C 5 .C S-
CAU),)- 0 MU 4-J0 _:> ,0-UO -
S-ES- 0 S-. 4-% S 0 -o o- a

- - 0
tu. U)) S) L-0 4-o Q) E C

3c)C 4-)CL (C a) U)0 U U)0) O
4-) 0 >10.- >) 0) U)U-10 4-0) L-. X C (A

= .D4 -- = - 0- W rt C 0-

I- I 4*) U --) C -) = U-) t

C 1. 0 r=L t U . A 0 U (C = =r

5-25

a LI

5.1.5 Data Base Processor Subsystem Specifications

This section presents the requirements of the Data Base Processor

Subsystem, as functionally described in Section 3.3. The specifications are pre-

sented in sections as follows:

o Common Data Base Processor Specifications Figure 5.1.5-1
o Additional Specifications for the Back-End

DBMS Process Subsystem Employing Encryption Figure 5.1.5-2

o Design Goals for the Data Base Processor
Subsystem Figure 5.1.5-3

o Operating System Requirements for the Data
Base Processor Subsystem Figure 5.1.5-4

The separate specification For the back-end with encryption imple-

mentation is necessary due to the major difference in approach that this design

represents compared to the other systems. Although not directly a DBMS Processor

specification, the requirements for the operating system (OS) used by the DBMS

processor ar also presented in this section.

5-26

':- i I -

0 0

4-) -J

V0)

0 40 0 4--

CA L
:ct V) V:: } 4) •

~ww>1
IAL 4. to 4-- Mu4-

-C 3: S- . , - : 0- ,V S. .. S-0 --- 0. to 0to- -0 ,- o' u1 a-t) >1 (D. 0J (U -C A_ - Ln '- u

s. s "7 _ CA) -.- 0 4-) r C- - CL -

(D. 0 "-0 41 :3 S (D 0 0 0
CL 0 a) ,A = 4-- 37 CA 0

0n "0 S- Q.) 4--,_ 0 r_ x: 0 u

c.- o' fa to r- ' aj -0 C:) u o Q.j, u 0J A

L. S- in et ., - 0 0 , -' "0 cu (a ; c
(
aj -

I,-- on En (A 4-o ul4 a, -' J) S- Q-)• {
n (an) >1 (A) (0 = (D.r =n o" 0 - :3 E - (. -

>- 4- 4 3 I- . (A,- - u- ea (.. Q , r ,-A ,-)

%n = kn . n a) ea _g- 0 cu (D " c o S-
r,,> .- 0 " > E- Ln -I- d)., 0- E QI 4--- } :3 4o c or

L 4-. CA V (U
"

4 E, 4- Q) W S.(; > 0 (-'- 0 0 c E 0

(A . 4J 4- - ,-- 4 ,-3 S- t 4-) Q" :I cu E{ 1 0, C,..

4) 0", S. >, 0)L-,- 0,-- J u S- (a 31.= .n,

::4-J ., eo V" -0 '- >" 3: Ln. aj .- 3 - (m I' o) u:
c . 0) :.3 S 0 " . 0 a) u :3 0) to "3 0.- 4- S

E: to s- (A4 o4 W C 3 a
oI 4 J IJ - (A U; Q; 4,-)0 0 0 J-,- }) Ln' -

:C e- r,- (a a) 0 S- -- C e- S-e.- . ." e (D w"0 ,

o a u c c (D 41 0 4-4 - - cu .) = V

S. c = z U) c S 4) A - -5-427A .

eaM 04)oa - 4 -•L j U- - a .

0 0 0 0

4J) U1 4-)

U-)C CU LO
mf .. zuz m .t.L w C

0) 0.- 04- 0 41 0 41

4V) 0A Ln(C AC
CU >4 0 >). U U1 -

S- 4-) U0)(0" toEU
u. 4) .-- 4- 4-) r

SV -. O) L - 00 $- 3 0.-I
(1) * 4-) S- u. L 0) 0 0 u
LA 1.4 (a toEU 0 4-1 -

- . 2 3: O C c 4- LV1
> c 0 4-) 0 A U 0 -L 00

5. ' 4-) 4- S- .- Q S- (A U
() .- o CU ea

4 . 2 *.-0 C
0. <) CA u =C C) 4- 4- 0

CU a cu (0 (A0 4- 0 'a
V) S. C -O > 4- L- L -aJ) 4-)

EU C_ W S- CU S >) C EU'v 00
a) U) (1 EU o V)U) 0 .- 0 U

a) V rC 4-1 (EU .0 S-- LU *
(A 0) a) oU- 4- +j 4.) C 4-

& - SL L- S-- (A m) CA U)
- > CU -0 EU s L)o 4-) U

0- (A 0) a Le -L L) C) ~ () 0) C
V) L) S*- - L 4. b 4-) -EU ()

4-) CU 0 4-) = C >1 V . C 2 S-
C 4-) u 0L) CA2 S3 4- 0. 0 -- 4- 0
CU -0 4-3 4- .0 4-)E 2.E - 0) U)c

E >1 CU c -
4-

_ :3 C U3: >1 *4) EU Ln
(A U -0 0)Cw a) %._ CA >1 L. 4-) EU 0- CU (

LS- -0 2 .C 02- O - (A0 -- S- 3 u
eU - (A 06 -0 0 .0 L' LS- 00)V 4-J ' 0
a- (A c - -UQ 1 4.) CD o0 = -. CL .0 S-
E o EU -o CU = L- S- O r4MU cu - 0 CUEM 0.

0D 0 CU =0 EU-0 m C -)) 4-) (r (C _ m) EU U)
u CA U) m0 4-) a C- .--.- U) C- a)C
I CU U)D I O0, O 0U 0 >1 EU LAU

.0 tA S- 4L 4- U U (A C. -O -(D EU
S 4.) CU #A = 4- =C CU 4-) LU EU. -oCI

CA :3 E 0 0 -0-0 U)(A0) a00. EU --)*.0
0 7 (1 CUC L)0U IAE 02 o ~) 3 toE

(A U).4' - 4- U a S LL 0)) UC u) 0 () 0 - 4.)
Ca LU)_0n L. 0 CU UU)A L- 0)0 La)- EU

0. 00() >1 S- >)L EU SL- UC W) to0 U0L U 0
(- U U A U0- v - o EtoE (A) m t to~ 0U)

L-. . CU to C, EU --. 0)0r 1-1.o 4-U 4-C r- c
aU- 41) CU EUt 41.' mX UC 2 c S- S- 0

> 4- I.- U 4.) Cr a) UE CU- CU- L)
0 - C (A U) UE

3
4-)- EU- 4.)= 4.J 4-) 0

Q) 0 (DU4-) 4)0 U CEU C _o U 0
U) >. C.- w) CU w U 2va >.,.E > >4- .-. -Cr L.)
(U4J 40. CUEU U)) (aC U)A. r_> U A 4) U) C
.- =U CL. - -) .0U)A 4-)L .010 Li. IL.

-- U- 4J 0. 24- EA LA U) = m. vV LOL S.
- fO >- 4A LE> U0 >-, U) (AX Z=O CU I-

0U u 4.1 4- -CU 0L.U) C A U0 0 to U ~4j 41)
(L)C 3: c 0. EU-t 4J 0) L- .0 L.-4 L- L-U)0() c
EA) 4 to =U .0.(A0 uf =U .- 0 02 00() 4 0

U) U 0 = C v (U-.- 4.) 0 UX(A0) U)EfU (AE U)U (AOE 4A.0= .t
V) 4)) L. 4-) 00) S 0 w CA UU C A U) U.- Au)UL.
4). = U (D z .- go t 0))-1 S O 04) CUC CUC c 4r
U 4 U) EU 4J. c)0 rL S- o 0-- U L.uEU UEU M
u ea L/ 4-)4- (A)=U(0U (A(A4) 00 0- = om) LO
to E>1 L L-. -4 U) U- .r=US- L U)U .0 .U L. c

40 0) o) W >)- J' 4i- G.C 0. 0)0 0.D 0.0 m) 0.-C c -
- 4.) U) c. U)c 0 0)4 CD UL S- 4.EV

WIC 0o 0.- .00) L - 0-.- LnU th V) c.- M in
c 00) CA U) ~4J 0)cu0) S-LV x m' 2 E3cU
C 4) 4- Q)S U)4Ax (N otu C 0-.- co co0 co W
0U u . 0 0)() 0 Ca.- C3 r M mS- mU) L
U).S-U U) EU 4. .- S -1 4 US)t 4) c a)r
L)4-I _ A 1 S- C = = r 4 0) - CUL c =UE m0 =UC -- .

0) N. C) -4 0 L m. .0 4- -O W.
00 -CO

I0. 0 -

ia . CL CL 91. C. CL CL aL C. C. CL
o am cc 000 o 0o o 0o 0o o 0o

5-28

0

F7 n

4J

_

LL) C ,) 41z-

Li)

to

0 4-J
#A CA

4A
S-

4-E

,m

41

OL1 4-

1..- C.)

o u u

04- .4-

C C.)

0- u -

4-)
04. 0.

4 i. , i-

- CL

ou A
CLS- m

4J

b-45-
IA

41-

-0 4

Eu 0

.00 o
1-0-

0)u)

C-ia

0 LL

LUJ

o >1
u S-

LnL)UL S.-

1) V f 4 u

02 Id0
4-)U02 *.- 4-) 0

+- 02 0

4) 4--)a.
to Eu AEU(
4-0 L s >.

EU 2

02 a 4- >U *-. (a f

01~u 4-) - 02 4-
to , - U m2 4-' u -LA -

C)2~ S- 4-2 (A 4- 0
M '4-C 0 0i V-' E UE

-0 0 4- S- CME CA +
(ALu 02 4)) +j)-

CL20- (S- m~0 0Q
>- 4J U : (=3 4-

LL- L-A 05- us 4- t
m (U U (U $.-20 4

to 5-:- V) 0 V) Q - 0t

(D V) MU- f al 4- 4-
-- 4- 40-') >1~f $.-'

C) .- l' 02 E,0

0.ea 4- S-.SU to ~ U
4-02Cf S- C Aor

4-J rU - 02 5-0 () -. 0
0U LU U S- C

ea tic00- 4C' 020) 02

C) 4- . .3 4- s- 0-

0~ *-oS oo.
Lr)L4-)EU - CL0 V.

0E LU a)E 0 <
LU (A0 4-' to (0 .(1) EU

V)E 1-I 0.) . 4-

0- ~ ~ 4 4) M M = c
0 m-o=oc t

CLA
,a cm

CA CA~AL'5 - 5- 30

>1 >'
) 0 .0

_0 41- a z
-0* 00LLi 4) ()

--4-) - 8

uA1 VI) LUI C/

'A
S.- V
(1) C)U
0 1

a2) a) ~ -0
to - L) c

a)~r a)' >~)
u4-) S 0L S-- (I
a) LA o c 4-,

CL0 " S.- E 0 c
IC o 'U U.- 0
0_ ' Ln E 4-) s

o - (A , (U 4-
0 4-) a) a) -0 S- u

-- S - u - 0."- E
• 0 0 ,-- 0 ,4 C4- a)

4) 0. - L 'U3c 0, C 8)' 4-'

41 0. 0S,- to c 0 ; .0 . ,'
L. Z-. .- I CIO 0 >,
0 C c ,--- E ra E E
0.U- 4' 00 > U S-' a) .0
C0 " .- o ' S

- o0 U)O
:30- - -4-) .u (A> 0/ 0
("a ' 'U E (a U)(U 0 (A0

--a - S.. .0 L.) a .,- 0
,--0 ") 0 4-) 0 0) 0. UC.0
,- 0_ - " ",- ,'- 0,) 0
"n) o 'a U 0 S- U) 4-), '-3
3"A .) ca 0 0 0 x u

S) 4-) u 0 S- W0 u

-- 0 a 0- -C 4-) 0
,- 4- :, :3 -- CL

>A to a) V) 4-) C

'U 0 a) > E--

'U 'U .C a) x S a)
LL - AC w OL 'A 'A ea.S.hIl1I'A S.- ro n I a -

C)~ ~~ EL N0 E to
LA 4-) 4.) u- c

I LLJ (A-) 4-) +- 0 MA ro 'A
LU ~ ' a) a) 'Ara t >, = ~ _9_ O'Ma)V

cl. L ->m -C -0 (A A L CL.D
'US. 'U) - E 4E 'U 3

a-U 0lS a r - 0) a) a*O*-- S-
01.0 0C 'a (v+) 4- .0 L
C'U LA' 4-) r_ -)4- L UL O4

CZ' u ((

00 :3 Z0-e+0r
'AC. S- .- Q) a A (A (A 0~ 0

-L 03-- = _r_ ' _r 4-)'U)-4
F- (0 4)4) (0 V) V

V) -. 1 a ~ X: xf 7: r

%D S-) M M M I I I
to ol (a) (CA to CA '-- CA (A
0. a (0 0r 0 0 a) a) 0.

ca~ 0c 4- - (

IA 5-31.-ro-1

V)

CC

V))

(A 0

-L ci S-tzV)S

LU S- uc 4.) +-..0
tA *.- to L.- V; 0
0) E1 4- Q) 4A

Z3 S r_ (A~ 0)z- 0L 0_
> V) tu0 U0 0 *' a)0 0 .I

LL) m cL 4-+ 0.0- -
co 0 (. -0r-X)4- e

F (>)0 1) 00 4-3 'D

4S- /) 4-J 4-) -0 0 0 4
4- C t 7 - C 4---'

V) 4- FA S- 'U 4
U a - >. 0 + M0 0 4-)

CS ea 0 0). 0.1 +j.~ ,. U -*.-Z E.

=U EW 0. . - 4) 0 M' CA 0S4-

3u LA 10 4-) c U -- o) 0
u) U'U C: 'aJ - IA 4-

- 0) 0)0 40- - A
tA) a) C . 4-.) 4-.) 4JU 4-)

oD aC 4-) 0 S- S-~ cm u
LI)- 4.) o 0 r_9) 0 S.-0) o. 0)>- 0. .. - 0)

CA S- u > S- CL O U to 4.)
tu aU) c toW (D 0'U 4- 4- S..

I-.f0 (. A EA- 0 to

'U o : 0 -0 0 (U=-DC -)
C-) +j 4. -) 410 +.) - 4-) (n 0) 4)><LU c rro> = - r

Li. _0 "0 01 CC7--1> 4--
Li, (A 0)4-) a) W..0 C c .3

- ~ L 0I - *,O 4)
2:'0 4- (n (a 4- 4-0)r_ S..4.

LUI C4-) *. C S- .- .- - --. c)I
I-o -oa ' -0 0o o U U

VA .- . 0 0) 4 0 0 0 4 --) c(AV
>- 4--0 F S-. c E C - S..

Li) 'U a) =.I- --I~~ m'
S- a) L) Uc (V).0 otU 4)

a).J~r -0 (D 0 -0 .0 E4-) .fl
co (/).. - IA

S- -) -- 0 4A
oS.- =) 0-- IA - -(

wU IA _ 41)' to to CLU.C0
(A 4- IA a 0 A IA 3 IA C

(A L0 0 V V) -0 V
0.0 0o 4-)> 0) 0))O.r_ C)

(v a)... a. +- 4,) '0. a). *C -
S.- 4.)4 41 OVO. S- CIA U ..

'-n- U 4J). = Q4~.C u
a) 4) 0.4* .- (U~ -- 0

SA QA I .0 IA tA4) 3C4- (A
S) ro =J' a)-- 0)

0) (U(U0) r)- c. (U 4) a- r_ -L
-C > -I-- V) 3' 4) M 0) 0 .

- Li.

kn V) V) (V) V) LA

D C0 -C C

5-32

5.2 Functional System Descriptions

The primary differences between the four systems subsequently de-

scribed in this section are the use or non-use of static encr)ption in the HSF and

the use of front-end or back-end DBMS processors. In terms of the distributed

architecture, the use of static encryption may result in a separate KG compartment

(subsystem) with access limited to NSA cleared personnel. The back-end DBMS pro-

cessors are likely to have one or more host processors supporting some of their

users. While functionally different in terms of the basic distributed architec-

ture, these systems are only minor variations on a theme.

These systems can conceptually be described in terms of protection

ring structures consisting of a multi-level, multi-compartment central data base,

a hardware security filter ring including a switching network and entrance/exit

guards, a software security monitoring ring in the form of a central access control

subsystem, and multiple compartmented DBMS processors, as shown in Figure 5.2-1.

The security ring structures shown in this figure are rather unique in that each

ring and each of the outer compartments consist of separate hardware elements in

a distributed architecture. Because of this physical separation, it is relatively

easy to proveby control and data flow analysis that hard access control of each

combination of read/write, security level, and security compartment(s) can be en-

forced in hardware for each DBMS processor. Note that the control flow goes from

the separate DBMS processors through the software (SW) monitoring and Hardware

(HW) access control rings into the central data base, while the data flow is bi-

directional through a single hardware security filter ring.

The remainder of this section is organized as follows:

5.2.1 Front-End DBMS Architecture Without Encryption

5.2.2 Front-End DBMS Architecture With Static Encryption

5.2.3 Back-End DBMS Architecture Without Encryption

5.2.4 Back-End DBMS Architecture With Static Encryption

5-33

COMPARTMENTED
DBMSs

~~LEVEL

7 ~ DATA2
ASE

5 4

CONTROL RING STRUCTURE

~COMPARTMENTED

LEVEL2
DATA
BASE

DATA TRANSFER RING STRUCTURE

Figure 5.2-1 Security Ring Structures of Distributed Multi-Level DBMS
Architectures

5-34

fI

5.2.1 Front-End DBMS Architecture Without Encryption

Functional Description

The distributed architecture that implements this access control

structure is shown in Figure 5.2-2. The key element that makes this network a

secure multi-level DBMS system is the hardware ring which includes a switching

network and exit guards. These exit guards control the security level and compart-

ments, read/write and channel (DBMS processor) combinations allowed, thus imple-

menting a trusted security filter. The ACS monitors and arbitrates central data

base access requests from the numerous compartmented front-end DBMS processors.

Thus, this system consists of a central multi-level data base subsystem, a hard-

ware security filter subsystem that provides an exit guard for each DBMS processor

subsystem, a software security monitor subsystem (ACS) that also arbitrates central

data base access requests, and multiple front-end DBMS processor subsystems.

Functional System Specification

This system shall consist of a central multi-level data base sub-

system, a hardware security filter subsystem, an access control subsystem, and mul-

tiple front-end DBMS processor subsystems. The multi-level data base subsystem

shall provide logical data separation through use of a unique security tag for

each combination of security level and security compartment. The hardware security

filter subsystem shall tag all data written into the central data base and shall

screen these security tags for all data read from this data base. The hardware

security filter subsystem shall allow the security officer to select which combin-

ations of read/write, security level, and security compartment(s) will be allowed

for each front end DBMS processor subsystem. The hardware security filter sub-

system shall enforce the selected access control policy for each DBMS subsystem in

a provable manner. Such a proof shall not require any restrictions on any other

subsystem except their interconnections. ieaccess control subsystem shall provide

arbitration of central data base access requests from the DBMS processor subsystems,
central data directory operations required to support these requests, and security

monitoring of these requests for violation attempts. The access control subsystem

shall be a system high, collection (receive only) node except for control lines to

the hardware security filter subsystems. This control data shall be internally

audited by the hardware security filter subsystem for compliance with access control

5-35

U,

1 LU

LAJ~

I-c

zj -i 0L
LJJ 0 -
I-. a,

U A I-. L

in c CD LJ V

0(A~

LJJ

L)L.uJ LAJ 0&U

CD @1

0) X~ V) 0

I L

5-36

policy. The access control subsystem node may also generate local reports for use

by the security officer and/or data base administrator. The multiple front-end

DBMS processor subsystems shall be physically independent and isolated from each

other except for indirect connections provided by the other subsystems. The DBMS

processor subsystems will use a secure OS.

The hardware security filter subsystem shall not appreciably degrade

central data base performance, i.e., additional throughput and shall not increase

average access latency more than lOOms over a 0% to 60% central data base utiliza-

tion range (M/M/1 or M/D/i traffic). As a design goal the tagging of data shall

not degrade effective disk packing density more than 3dB.

As a design goal the DBMS subsystems shall minimize central data base utilization.

As a design goal the system shall be fault tolerant with graceful degradation.

As a design goal standard off-the-shelf hardware and software shall be used or modi-

fied where practical. As a design goal the system shall minimize the amount of

certified and/or trusted software. As a design goal the central data base will

have a 50% spare disk capacity. As a design goal the system shall be capable of

supporting 20 central data base accesses per second with a total throughput of

250 Kbytes/sec.

Functional Subsystem Specifications

The following subsystem specifications and design goals from

Section 5.1 are applicable:

SSubsystem Specifications 11 -49

,Design Goal Specifications 71 -99

; I

5.2.2 Front-End DBMS Architecture With Static Encryption

Functional Description

The distributed architecture that implements this access control

structure is shown in Figure 5.2-3. The key element that makes this network a

5-37

-JA

4-)

VI)

I L I +)

C) -j

F- C)
If)

LI)
4) 4)

4-) U

C r F- F--i)L

LL L#iOLI) 0-- wF -L
/-) C) i >>- < 6-4 L

CI-i 4

C>

L C d~ LLI -

4-)

-4-

LI))

C,-

5-38

secure multi-level DBMS system is the hardware ring which includes a switching net-

work and multi-key enct/ptor/decryptor. By having each security level and set of

compartments statically encrypted by a unique key and limiti.g the key (security
level aid compartment), mux/demux, (read/write) and channel (DBMS processor) combin-

ations allowed, this hardware implements a trusted security filter. The ACS moni-
tors arbitrates central data base access requests from the numerous compartmented

front-end DBMS processors. Thus, this system consists of a central statically en-

crypted multi-level data base subsystem, a hardware security filter subsystem that
provides the encryption and decryption, a software security monitor subsystem (ACS)

that also arbitrates central data base access requests, and multiple front-end

DBMS processor subsystems.

Functional System Specification

This system shall consist of a central multi-level data base sub-

system, a hardware security filter subsystem, an access control subsystem and
multiple front-end DBMS processor subsystems. The multi-level data base subsystem

shall be statically encrypted with a unique key for each security level and security

compartment. The hardware security filter subsystem shall encrypt all data written

into the central data base and shall decrypt all data read from this data base.

The hardware security filter subsystem shall allow the security officer to select
which combinations of read/write, security level, and security compartment(s) will

be allowed for each front-end DBMS processor subsystem. The hardware security fil-

ter subsystem shall enforce the selected access control policy for each DBMS sub-

system in a provable manner. Such a proof shall not require any restrictions on

any other subsystem except their interconnectbns. le access control subsystem shall

provide arbitration of central data base access requests from the DBMS processor
subsystems, central data directory operations required to support these requests,

and security monitoring of these requests for violation attempts. The access con-

A! trol subsystem shall be a system high, collection (receive only) node. This con-

trol data shall be internally audited by the hardware security filter subsystem
for compliance with access control policy. The access control subsystem node may

also generate local reports for use by the security officer and/or data base ad-

ministrator. The multiple front-end DBMS processor subsystems shall be physically

independent and isolated from each other except for indirect connections provided

5-39

N. ,

by the other subsystems. The DBMS processor subsystems will use a secure OS.

The hardware security filter subsystem shall not appreciably degrade

central data base performance, i.e., throughput and access time degradation vs ef-

fective utilization shall be less than 3dB. The access control subsystem shall not

degrade central data base throughput and shall not increase average access latency

more than 100ms over a 0% to 60% central data base utilization range (M/M/1 or M/D/i

traffic).

As a design goal the DBMS subsystems shall minimize central data base utilization.

As a design goal the system shall be fault tolerant with graceful degradation. As a

design goal standard off-the-shelf hardware and software shall be used or modified

where practical. As a design goal the system shall be capable of transparent on-line

re-keying. As a design goal the system shall minimize the amount of certified

and/or trusted software. As a design goal the central data base will have a 50%

spare memory capacity. As a design goal the system shall be capable of supporting

40 central data bas accesses per second with a total throughput of 500 Kbytes/sec.

Functional Subsystem Specifications

The following subsystem specifications and design goals from

Section 5.1 are applicable:

ISubsystem Specifications 11 - 39

51 - 69

Design Goal Specifications 71 - 99

5.2.3 Back-End DBMS Architecture Without Encryption

1 Functional Description

j The distributed architecture that implements this access control

structure is shown in Figure 5.2-4. The key element that makes this network a se-

cure multi-level DBMS system is the hardware ring which includes a switching net-

work and exit guards. These exit guards control the security level and compart-

ments, read/write and channel (DBMS processor) combinations allowed, thus implement-

ing a trusted security filter. The ACS monitors and arbitrates central data base

5-40

WLAJ
C:) -j

CC .

V) In C

C 0CD

cm U

LU C-)

I- I u
U,~: UZ

-JJ

-1

C) C)

LU>D I>

C:)~L C) V)C

F--

I SbS33b ISOH

5-41

access requests from the numerous compartmnented back-end DBMS processors. Each
back-end DBMS processor may support one or more host processors as well as on-line
interactive query user terminals. Thus, this system consists of a central multi-
level data base subsystem, a hardware security filter subsystem that provides an
exit guard for each DBMS processor subsystem, a software security monitor subsystem
(ACS) that also arbitrates central data base access requests, and multiple front-
end DBMS processor subsystems.

Funonal Sem ecification2 s

This system shall consist of a central multi-level data base sub-
system, a hardware security filter subsystem, an access control subsystem, multiple
back-end DBMS processor subsystems, and numerous users. The multi-level data base

* subsystem shall provide logical data separation through use of a unique security
tag for each combination of security level and security compartment. The hardware
security filter subsystem shall tag all data written into the central data base and
shall screen these security tags for all data read from this data base. The hard-
ware security filter subsystem shall enforce the simple security rule and the *-
security rule for each single level back-end DBMS processor subsystem. The hard-
ware security filter subsystem shall enforce these security rules for each DBMS
subsystem in a provable manner. Such a proof shall not require any restrictions
on any other subsystem except their interconnectbns. Wh access control subsystem
shall provide arbitration of central data base access requests from the DBMS pro-
cessor subsystems, central data directory operations required to support these re-
quests, and security monitoring of these requests for violation attempts. The
access control subsystem shall be a system high, collection (receive only) node
except for control lines to the hardware security filter subsystems. This control
data shall be internally audited by the hardware security filter subsystem for
compliance with access control policy. The access control subsystem node may also

generate local reports for use by the security officer and/or data base adminis-
trator. The back-end DBMS processor subsystems shall be physically independent and
almost isolated from each other except for indirect connections provided by the
other subsystems. The DBMS processor subsystems will use a secure OS.

The hardware security filter subsystem shall not appreciably degrade
central data base performance, i.e., additional throughput and access time

5-42

degradation vs. effective utilization shall be less than 3dB. The access control

subsystem shall not degrade central data base throughput and shall not increase

average access latency more than 0ms over a 0% to 60% centval data base utiliza-

tion range (M/M/1 or M/D/1 traffic). As a design goal, the tagging of data shall

not degrade effective disk packing density more than 3dB.

As a design goal the DBMS subsystems shall minimize central data base utilization.

As a design goal the system shall be fault tolerant with graceful degradation.

As a design goal standard off-the-shelf hardware and software shall be used or

modified where practical. As a design goal the system shall minimize the amount

of certified and/or trusted software. As a design goal the central data base

will have a 50% spare disk capacity. As a design goal the system shall be capable

of supporting 20 central data base accesses per second with a total throughput of

250 Kbytes/sec.

Functional Subsystem Sepcifications

The following subsystem specifications and design goals from Section

5.1 are applicable:

Subsystem Sepcifications 11 - 49

Design Goal Specifications 71 - 99

5.2.4 Back-End DBMS Architecture With Static Encryption

The distributed architecture that implements this access control

structure is shown in Figure 5.2-5. The key element that makes this network a

secure multi-level DBMS system is the hardware ring which includes a switching

network and multi-key encryptor/decryptor. By having each security level and set

of compartments statically encrypted by a unique key and limiting the key (security

level and compartment), mux/demux, (read/write) and channel (DBMS processor) com-

binations allowed, this hardware implements a trusted security filter. The ACS

monitors and arbitrates central data base access requests from the numerous com-

partmented back-end processors. Each back-end DBMS processor may support one or

more host processors as well as on-line interactive query user terminals. Thus,

5-43

-J

L.J .J
LLJ -j >-

0C)C

Ur I

o L

-J-

UL -j

>- V)0) tj

CDU

u u
uj -j C cl: S
F- Ln C) V) p,

S--

T~~~~~f~~~~ -ZII II ~ ~ OS3~d.S H

5-4)

this system consists of a central statically encrypted multi-level data base sub-

system, a hardware security filter subsystem that provides the encryption and de-

cryption, a software security monitor subsystem (ACS) that also arbitrates central

data base access requests, and multiple back-end DBMS processor subsystems.

Functional Specifications

This system shall consist of a central multi-level data base sub-

system, a hardware security filter subsystem, an access control subsystem and

multiple back-end DBMS processor subsystems. The multi-level data base subsystem

shall be statically encrypted with a unique key for each security level and

security compartment. The hardware security filter subsystem shall statically

encrypt all data written into the central data base and shall statically decrypt

all data read from this date base. The hardware security filter subsystem shall

enforce the simple security rule and the *-security rule for each single level

processor subsystem. The hardware security filter subsystem shall allow the

security officer to select which combinations of read/write, security level, and

security compartment(s) will be allowed for each back-end DBMS processor sub-

system. The hardware security filter subsystem shall enforce the selected access

control policy for each DBMS subsystem in a provable manner. Such a proof shall

not require any restrictions on any other subsystem except their inter-connections.

The access control subsystem shall provide arbitration of central data base access

requests from the DBMS processor subsystems, central data directory operations re-

quired to support these requests, and security monitoring of these requests for

violation attempts. The access control subsystem shall be a system high, collec-

tion (receive only) node. This control data shall be internally audited by the

hardware security filter subsystem for compliance with access control policy. The

access control subsystem node may also generate local reports for use by the

security officer and/or data base administrator. The multiple back-end DBMS

processor subsystems shall be physically independent and isolated from each other

except for indirect connections provided by the other subsystems. The DBMS pro-

cessor subsystems will use a secure OS.

The hardware security filter subsystem shall not appreciably de-

grade central data base performance, i.e., throughput and access time vs. effective

5-45

utilization shall be less than 3dB. The access control subsystem shall not de-

grade central data base throughput and shall not increase average access latency

more than 100 ms over a 0% to 60% central data base utilization range (M/M/l or

M/D/I traffic).

As a design goal the DBMS subsystems shall minimize central data base utilization.

As a design goal the system shall be fault tolerant with graceful degradation. As

a design goal standard off-the-shelf hardware and software shall be used or modi-

fied where practical. As a design goal the sytem shall be capable of transparent

on-line re-keying. As a design goal the system shall minimize the amount of

certified and/or trusted software. As a design goal the central data base will have

a 50% spare memory capacity. As a design goal the system shall be capable of

supporting 40 central data base accesses per second with a total throughput of

500 Kbytes/sec.

Functional Subsystem Specifications

The following subsystem specifications and design goals from

Section 5.1 are applicable.

Subsystem Specifications 11 - 39

51 - 69

Design Goal Specifications 71 - 99

5.) Alternate Approach Functional Description

This system can be described in terms of a protection ring

structure consisting of a multi-level, multi-compartment statically encrypted

central data base, a hardware security filter ring including a switching network,

static encryptor/decryptor with multiple keys, and an end-to-end encryptor/decryp-

tor with multiple keys, a software security monitoring and discretionary access

control ring in the form of an access control subsystem (ACS) and a system high

back-end DBMS processor with multiple single level front-end I/O processors, and
3

numerous smart terminals and/or host computers with E encryption as shown in

Figure 5.3-1.

The security ring structure shown in Figure 5.3-1 is rather unique

in that each ring and each of the outer compartments consist of separate hardware

5-46

FRONT ID IOC

~HW RING

LEVE

ADATA TRANSFER

" AA _ RING STRUCTURE

/',' Figure 5.3-1 Security ing Structures of the

Alternate Back-End With Encryption
i Architecture

5-47

HSF"ACS

elements in a distributed architecture. Because of this physical separation, it is

relatively easy to prove by control and data flow analysis that hard access con-

trol of each combination of read/write, security level and security compartment(s)

can be enforced in hardware for each front end I/O processor. In addition, the

use of an access control subsystem and end-to-end encryption will enforce compart-

ment and discretionary security for users through crypto separation. Note that

the control flow goes from the users through a system high back-end DBMS processor,

the SW monitoring and the HW access control rings into the central multi-level data

base, while the data Flow is bi-directional through a signal hardware security

filter ring and multiple single level front-end I/O processors with intermediate

encryption interfaces.

Functional Description

The distributed architecture that implements this access control

structure is shown in Figure 5.3-2. The key elements that make this network a

secure multi-level DBMS system is the hardware ring which includes a switching

network, static encryption, and dynamic end-to-end encryption (E 3). These ele-

ments are combined to act as exit guards controlling the security level and com-

partments, read/write, channel (DBMS processor) and E3 key combinations allowed,

thus implementing a trusted security filter. The ACS enforces user compartment

and discretionary security controls through choice of E key and monitors and ar-

bitrates central data base access requests from the other processors. Thus, the

system consists of a central multi-level data base subsystem, a hardware security

filter subsystem that provides an exit guard for each processor and end user, a

software access control subsystem that also monitors and arbitrates central

data base access requests, a system high back-end DBMS processor, and possible

host computersand numerous smart terminals for each back-end DBMS processor.

In essence, this architecture places a security filter subsystem

between numerous terminals and a central data base as shown in Figure 5.3-3 that

is capable of enforcing access controls for each user with a common system high

back-end DBMS processor generating data storage and retrieval locations. This

approach only supports interactive data base queries, i.e., there are no user

programs or code. Further, all DBMS generated data is placed in a user inaccessable

5-48

La -4

z

U, L0

CAC

U

S.-

u

L)

LA-

5-49

UJU

0 u0

z LLL
ui V)

0U

U WJ = m

LUL

w
a

C,3
*l W

-4-1

5-50-

compartment and no direct I/0 is allowed from the DBMS to the users. Instead, the

DBMS supplies the address to where the user data or a canned message is to be

retrieved from or stored to the access control subsystem. The security filter

subsystems are responsible for determining if the user is allowed the associated

read or write access. The net result is that all hardware, software, or firmware

responsible for non-discretionary and discretionary security resides in the

hardware security filter and access control subsystems. Hence, the back-end DBMS

processor does not require a secure OS or any trusted software.

Functional Specifications

This system shall consist of a central multi-level data base sub-

system, a hardware security filter subsystem, an access control subsystem, secure

message switching subsystems, a system high DBMS processor subsystem, and numerous

-users. The multi-level data base subsystem shall be statically encrypted with a

unique key for each security level and security compartment. The hardware security

filter subsystem shall statically encrypt all data written into the central data

base and shall statically decrypt all data read from this data base. The hardware

security filter subsystem shall enforce the simple security rule and the *-security

rule for each single level processor subsystem. The hardware security filter sub-

system shall place all DBMS computer generated data in a special security compart-

ment that shall be inaccessable to users. The hardware security filter subsystem

shall enforce these security rules for each subsystem in a provable manner. Such

a proof shall not require any restrictions on any other subsystem except their in-

terconnections. lhehardware security filter subsystem shall send and receive user

data in an end-to-end encryption (E3) form, with the user key selected by the access

control subsystem so as to enforce compartment and discretionary security controls.

The access control subsystem shall also provide arbitration of central data base

access requests from the DBMS prucessor subsystems, central data directory opera-

*tions required to support these requests, and security monitoring of these requests

for violation attempts. The access control subsystem shall be a system high, col-

lection (receive only) node except for control lines to the hardware security

5-51

-- : -" -. .

filter subsystem, the end-to-end encryption system attached to the hardware secur-

ity filter subsystem and the secure message switching processors. This control

data shall be internally audited by the hardware security filter subsystem for

compliance with subsystem access control policy. The access control subsystem

node may also generate local reports for use by the security officer and/or data

base administrator. The secure message switching subsystem shall consist of an in-

dependent single level message concentrator acting-as a custom front-end I/O pro-

cessor for the back-end DBMS processor. This subsystem shall handle routing of E3

between users and the central data base and/or messages from the users to the DBIMS

processor and the access control subsystem. This subsystem shall ensure that there

is no direct I/O from the DBMS processor to the user. Indirect I/O in the form of

canned messages shall be supported. All data exchanged with the hardware security

filter subsystem shall be encrypted user data. Smart terminals with E3 capability

shall support a DBMS query language with data base data sent and received in an

E3 form.

The hardware security filter subsystem shall not appreciably de-

grade central data base performance, i.e., additional throughput and access time

degradation vs. effective utilization shall be less than 3dB. The access control

and secure message switching subsystems shall not degrade central data base through-

put and shall not increase average access latency more than 200ms over a 0% to 60%

central data base utilization range (M/M/1 or M/D/1 traffic). As a design goal

the DBMS subsystems shall minimize central data base utilization. As a design goal

the system shall be fault tolerant with graceful degradation. As a design goal

3tandard off-the-shelf hardware and software shall be used or modified where practical.

As a design goal the system shall be capable of transparent on-line re-keying of the

statically encrypted central data base. As a design goal the system shall mini-

mize the amount of certified and/or trusted software. As a design goal certified

and/or trusted software shall be confined to the access control subsystem. As a

design goal the central data base will have a 50% spare disk capacity. As a design

goal the system shall be capable of supporting 40 central data base accesses per

second with a total throughput of 500 Kbytes/sec.

5-52

5.3.1 Secure Message Switch (Front End 1/0 Processor Subsystem
Specification

These subsystems shall consist of multiple front-end 1/O processors,

certified firmware, and numerous serial communication links. Each processor will
be run at a single level and will interface terminals to the other subsystems.

These processor systems shall provide a secure message switching

function. These processors shall relay clear text messages from serial user links

(terminals or hosts) to the access control subsystem or the DBMS subsystem as ap-
propriate, and relay end-to-end encrypted data base entries between the users and

hardware security system. Limited control inputs shall be accepted from the DBMS

and Access Control Subsystems including sending canned messages to the terminal.

Log-on and directory messages shall be routed to the Access Control

Subsystem. Query language commnand messages shall be routed to the DBMS and Access

Control Subsystem Audit Trail. Canned messages from the DBMS subsystem shall be
routed to the appropriate terminal and the Access Control Subsystem Audit Trail.

Canned messages from the DBMS subsystem shall be routed to the appropriate terminal

as directed by the Access Control Subsystem. Encrypted data from users will be
atre until requested by the Access Control Subsystem.

This subsystem's code shall be certified that all messages sent to

a terminal are either canned messages or formatted data received from the Hardware

Security Filter Subsystem. All code shall be placed in ROM. Each processor will

run at a single access level.

5-53

6.0 BENEFIT AND TRADE-OFF ANALYSIS

This section analyzes the benefits and tradeoffs in using a

distributed architecture to implement a secure multilevel DBMS. Comparisons to

standard approaches such as secure OS, system high, and period processing are

made where appropriate. The section is organized in subsections as follows:

6.1 Security Analysis

6.2 Performance Analysis

6.3 Reliability and Maintenance Impact

6.4 Cost Analysis

6.5 Flexibility and Operational Impact

6.1 Security Analysis

This section presents the security analyses of the DBMS architecture

proposed in this study. Three major areas are discussed:

Non-discretionary Security Section 6.1.2

Discretionary Security Section 6.1.3

Integrity Protection Section 6.1.4

In addition, a summary of the protection processes is presented in Section 6.1.1

6.1.1 Overview

This architectural approach can easily solve the multi-level security

problem without any trusted software or a secure OS if users can be restricted to

single level DBMS processors. It also offers at least a partial hardware solution

to compartment controls. Discretionary and integrity security controls require

i Jcertified and/or trusted software. The use of static encryption restricts SFA

hardware concerns to the Hardware Security Filter Subsystem (trusted hardware) and

reduces the sensitivity of the Central Data Base Subsystem.

The primary advantage of this architecture is that users can be separated

on independent DBMS processors with each processor having different limited access

rights to a common data base predicated on security levels, security compartment(s)

and read/write access mode. Because an access control policy (ACP) can be enforced

*6-1

for each processor solely in hardware, certified/trusted software and/or a secure

OS are not required to enforce non-discretionary security controls. Further,

enforcement of these controls is easily provable by flow control analysis and is

thus certifiable.

The drawbacks to using this architecture to provide hardware enforce-

ment of non-discretionary security controls are the lack of downgrade capability and

the potentially very large number of DBMS processors required to enforce compartment

controls. Use of an additional DBMS processor with a system high ACP will add

downgrade capability but only with a loss of hardware enforcement of all non-

discretionary security for that processor.

The potentially large number of DBMS processors can be solved through

a combination of approaches. Four single level DBMS processors with no compartment

access are required to handle the non-trusted non-compartment users (levels U, C,

S, TS). Batch production jubs requiring special compartmented access can be handled

on a period processing basis with the ACP tailored for each period. The most

difficult problem is servicing on-line compartment users. A partial solution is to

provide additional processors at the S and TS levels with compartment access, thereby

isolating the non-compartment users from the compartment users. This approach

provides provable enforcement of security level controls (simple security rule and
*-security rule) in hardware, aliows non-trusted, non-compartmert, on-line users to

be allowed access to the data base when desirable (.versus when required), and moves

current multi-level operation problems down to the multi-compartment level.

The solution to this multi-compartment problem is solved through

combinations of one or more of the following: 1) clear compartment users for all

compartments; 2) period process compartment users, and 3) add additional DBMS

processors for each compartment requiring concurrent access to the data base.

From a security and functionality perspective, the'best solution 's the third

approach. While the cost of such an approach 'is prohibitive today, it can be

<It expected that the cost of an appropriate DBMS processor will drop below $40K within

5 years? In the interim, period processing of those DBMS processors requiring

compartment accesses is the best approach to minimization of the number of processors

required.

*32 bit microprocessor, IMbyte of memory, a 50 Mbyte Winchester disk, a 10 Mbd

fiber optic link, standard I/O, and a relational DBMS.

6-2

9'

Discretionary security will require a secure OS or equivalent technique,

a user authentication methodology, and trusted software. These will be supported by

the access control subsystem (ACS). This architecture requires that all user requests

be"funnelled"through the ACS. This architecture thus has the advantage that the trusted

discretionary access controls and audit trail software can be removed from the

user accessable DBMS processors and placed in the user inaccessable ACS. If

certification of this trusted software is desired, the access control subsystem can

be implemented in a distributed architecture that eliminates the need for a concurrent

multi-processing environment (operating system) by placing each task in a separate

microprocessor. By restricting the software complexity per microprocessor task,

the certification task is facilitated.

The methodology for enforcement of integrity protection depends upon

the granularity of that protection. If integrity is handled at the file level, it

can be handled as a part of the discretionary protection mechanism. If integrity is

handled at the data item level, it must be enforced by trusted DBMS software.

Static encryption can be used by this architecture to provide data

separation by clearance (level and compartment) and possibly by owner. The

primary advantage of using static encryption is that faults in the central data base

subsystem will not compromise security; that is, reading from and/or writing to

the wrong disk location cannot compromise data. A secondary advantage is that the

central data base stores black (encrypted) rather than red (clear) data and is thus

less sensitive.

6.1.2 Non-Discretionary Security

Appropriate choice of processor access control policy (ACP) by the

security officer will allow the hardware security filter (HSF) to provide certified

enforcement of non-discretionary security controls for single level processors.

By providing appropriate physical access controls, the HSF wili enforce non-discretionary

security controls for non-trusted users. The primary non-discretionary security

threat comes from any multi-level processor, such a system high processor used for

downgrading. The trusted users and software used on such downgrade processors should

be limited to the degree feasible. Limited trust can be enforced for application

programs which produce lower level summaries (products) from higher level data by

period processing such runs on a batch machine with the ACP tailored to the

application program.

6-3

The primary non-discretionary security check for multi-level machines

is the centralization of all data base access requests through the ACS which provides
an audit trail and security monitor function. Because the audit trail and security

monitor reside in a dedicated processor isolated from potentially hostile user code,

it is possible to certify or at least trust their operation. The security monitor

can notify the security officer of all downgrading (write access) requests and even

delay execution of the downgrade process until explicitly approved by the security

officer.

The HSF can be designed to enforce ACPs selected by the security officer

independent of ACS access requests. That is, the ACS does not require any certified

or trusted code in order for the HSF to enforce non-discretionary security for sinqle
level processors. The HSF can also be designed to be fail safe (for single point

failure) from a non-discretionary security perspective. Such a design requires static

encryption of the central data base so that any data incorrectly acquired by the central

data base subsystem is subsequently incorrectly decrypted.

6.1.3 Discretionary Security

Discretionary security controls require the identification and
logical separation of users through certified or trusted software/firmware enforcement

as opposed to the physical access controls and certified hardware employed to enforce

non-discretionary security. Logical separation of users can be: entrusted to a

standard cormmercial OS; certified with a secure OS; enforced with end-to-end

encryption; or achieved with individual (personal) processors.

The logical place for the actual discretionary access control software

and the associated data base containing access permissions is in the ACS. This

j centralization of discretionary access control isolates it from potentially hostile

-, user code, and provides good physical protection through its location in a system
high compartment with access primarily Itmited to the security officer and potentially

the data base administrator.

The largest discretionary security problem is user authentication.

The clear text passwords traditionally used for user identification is the weak link

in most computer security systems. Smart terminals with encryption have been

proposed to strengthen this link, In one approach users carry individual keys on

their person that are used for identification. Physical protection of these keys

6-4

is the major disadvantage of this approach. A more sophisticated approach prevents

impersonation (via playback techniques) by using an encrypted link. In this approach,

a secure dedicated key distribution center (KDC) generates session keys and stores

protected clear text passwords. When the user desires to initiate a session he

signals the authentication processor to get a new session key. He then enters his

password. The password is encrypted in the session key at his terminal and is sent to

the KDC. The KDC decrypts the password and compares it to the stored password for

validation. Because the password is encrypted between the terminal and the KDC in a

session key, it is secure. Without such a hard user authentication technique, the use

of more than a commercial OS for user separation is unwarranted.

If certified discretionary security is required then commercial OSs

cannot be trusted. The traditional approach to DoD computer security is development

of a secure OS. While technically possible, past attempts at developing a secure OS

have not been certifiable in practice and have proven to be very expensive.

A technically more feasible approach to a secure DBMS is to use end-to-

end encryption to enforce user separation at the terminal level, use a system high
back-end DBMS to create non-user accessable access paths and locate central data base

locations, use certified single level front-end I/O (secure message switch) processors

to route data directly between the HSF and terminals, and use certified firmware in

the ACS to enforce discretionary securing through the choice of E keys at the HSF

interface. (This is the architecture described in Section 5.5. While technically

feasible, such an approach is likely to be as expensive as a secure OS and even more

limited. Further this approach limits users to interactive DBMS queries with no

application processing capability. To add such application processing capability

requires the addition of a host processor between the user's terminal and the E3

subsystem. If a host processor is shared, the need for user separation immediately

reappears. As a result, this solution is limited to interactive terminal queries

with no processing support.

The most secure approach is to isolate users on individual processor

systems. Discretionary access control can then be enforced by a relatively small

amount of certified software in the ACS.

6-5

6.1.4 Integrity Securit

Integrity protection is a dual of security protection. Integrity

attempts to protect high quality data from being corrupted by being directly mixed

or replaced with low quality data. The placement of integrity security is sensitive

to the granularity required. If file level granularity is chosen it can be

implemented in the ACS in a manner similar to that used for discretionary security.

If lower level granularity is chosen, it is recommiended that it be incorporated into a

custom DBMS. However, integrity protection can possibly be implemented by upgrading

the HSF and modifying the ACS.

6.2 Performance Analysis

The following sections discuss the expected performance for a secure

DBMS in terms of system throughput, data base efficiency trade-offs, and processor

capabilities. The following subsections are presented:

6.2.1 System Model

6.2.2 Detailed Traffic Model

6.2.3 M/M/m Queue Performance

6.2.4 System Performance Analysis Conclusions

6.2.5 Relational Data Base Performance Characteristics

6.2.6 Processor/Mi croprocessor Performance Characteristics

The system performance analysis is based upon a system
traffic model. The analysis is performed by applying M/M/m queueing theory to
the model. The discussions presented here in Sections 6.2.1 through 6.2.3 are a
summary of the analysis. More details of the model and queueing theory used is

* provided in Appendix D for reference purposes.

6.2.1 System Model

For the purposes of performance analyses, a general M/M/m queueing
network can be used for a system model, as shown in Figure 6.2-1. (For details

see Appendix D.) This approximation reduces the complexity of the analysis and does

not need additional unknown parameters that would be required for a more detailed

model.

6-6

AD-A113 6" HARRIS CORP MELIOUDRNE FL OVERNMENT ELECTRONIC SYSTE--ETC F/8 9/11

ME St T D WORMNITON, C E OIElLER F306O*-90-C-Oaas

WiCLASSIF lEO RADCTR-139 R

(%JJ

243

CDI ixJ

CD C) m

(-) c

CDD

CDC)

L) Cn
C-,D

C-C)

Ic CD

CD,
CD9

-6-

The primary metric for the secure DBMS is the average sYstem response

i ~ time, Ts. T s is a function of the subsystem loads, subsystem capacities, and average

subsystem service times. For M/M/m queues these parameters can be reduced to two types:

average subsystem service times and subsystem utilization. This metric is used here to

compare use of virtual memory and non-virtual memory DBMS techniques with the
performance of a single DBMS processor with a single disk channel.

6.2.2 Detailed Traffic Model

This section summarizes the traffic model used in the secure DBMS

performance analysis. Details and further discussion of this model are presented

in Appendix D.

The benchmark traffic model was chosen to be an on-line user making

a query of a two relation view with the query containing the key to the first relation.

The key for the second relation is provided as a foreign key by the record requested

* I in the first relation. This benchmark query is converted to a physical traffic model
* by specifying the sequence of processor tasks and disk accesses, as shown in

Figure 6.2-2. This model ignores 1/0 and OS overhead and assumes multiprocessing

as opposed to true timesharing. Note that disk access 6 is not a part of the

system response timeline but does increase the disk subsystem loadingand consequently

indirectly increases system response time.

* IFigure 6.2-3 summarizes the traffic model parameters chosen for
evaluation in this analysis. The sequence of disk accesses corresponds to that of a

VM system. For a non-VM system, disk accesses 2 and 4 of Figure 6.2-2 are assumed,

optimistically, not to be required. These pointer tables are assumed to be resident when

the user~s program is rolled in. However, although fewer disk accesses are assumed

to be required, the model assumes that both the VM and non-VM systems require the

same amount of DBMS processing. Basically, this model assumes that the users
generate a query every 20 seconds on the average and that a new relation is accessed

once every 30 queries. Disk response is assumed to require an average of 2.5

revolutions at 16.6 ms/rev.

Two major assumptions are made for this model:

1. The DBMS systems are 1/0 bound; and

2. The access control node is very fast relative to the disk

performance.

6-8 _ _ _1

.44

.41
. ,- ..e V o.-o 4-) U(A U E ."

"0 (A0 or-o"
4-) to 4-) 0

C .,-- * - "1 .C 1- ,- €

r_- "
E-) 'A 0" a 0 U

4- - 0 CA 4J (n
0 ., - U) ".) ,,

-1 U..0 4- a-) V- 0 .U) a)

o,1- .- C) 4 .-)
"- 4 -- • V 0 4- V 0

.0 a 0 EU VX . V 0.

n- C. " S -- C . (A

0. "- *. "- a) - U) "-"U)U - /

- C ") - .- 4-)
a .).- 0 C 0 . a)

a) D a0 to 4-1 o a 0
9- 4.) 4.j S- 4-)
4-) E 4- 0

,,) -- a) O - a)
= .(U,, 4 , L) C_ 43 4.)

4,.. 4-3 4-) 4,- 4J .

r_ C C_ C 0. -
a) .a E V'a V E Ca

rC 0- 0 a)0 fa 0 V fa
a- to. 0.4-) L) >0. a) u ea

r_ S - a) V0 *
S.. S- Va) 0oa 0 S- a) 4-;

a) aU a) (U - 4.) -C 4) 4J) 4-) ~
U) U4-1 4-). -. .) (A0uU)

Ua)) V d) V wa
(a L) >1. S- CA tu C .- A 41) 0

0 0 C_ a) .- .0 C.AU . S-.
14- S- -) S - >) E to 0 r- - L
0S- C. V U) - a) S- 4-) U) u 0 0

0 V0 >) (a -* 0 U) Jda a) Ui 1-C
4A- (A Ua) 0-) %.- .- 4.) S- S.- W

(a (AU -- S-- s-0 oca) a) S- U) U) w)
0 >a)U 0 EU - aU V a mV 4.) *) V ~-U

-zU L)) U - 4-)) (D - r -' 4.) CU
4-) 1- - 4-) cL 0 4) 0 * 4-) c 0 3

(a E0- :) (A fao 0 4) a) 0 ca.a) 0V a) 4AU)E
S- E 0C Q.= S.. 4-V V0 0.1 m) > 41)

Q CC/) -a4.)(a) U- 0
U) OE a) aU)4- a) a) a (A-U aU a) c a) a)
a) C M. =CU .*- M4- =C -C = a) = =C =C =

=D.1 I-3 IF- 0- F- Va)

go

U) U) 0) c) U)

0A 0 0 CA 0A

U)Lr 0LA.0

S- S- 1 . .
o.0 . 0 . 0

ta - i) LI 0 0 -

LAJ -

6-9

* IJ

I n LO

wt LA C)

>- Id.

V) 0D LO

LA () C J C;

z0 0 0~0
*~~ (A W - A

0) 4) 4
1- 1- 1.u

(D o 0 0

03 03 4n V) (

L 0 0I CA (A

4n 0) V) U)

4--

00

-> 4A ImC..

F- S-0

o to V
.9- .W C i i
I-J >) 0)%

Ff @3 u3 U 04-4-
LI V) a. W A 4J'

(D -r 0) . LI a g S S

0. .9 u - C --
I.- S.1 m- 4v U

4.a LI IV 4) r_. 11

I-~~6 100L 0 044

LJ C) 1.In - 0 0

These assumptions are formulated as

1/'NVM = (l/lO) and 1/PACN = 1/8 (1/ID)

and are reflected in the values of Figure 6.2-3.

6.2.3 M/M/m Queue Performance

The average normalized system response time for an M/R/m queue with

infinite population can be analytically solved in terms of its utilization, i.e.

percent of capacity loading. This in turn allows a maximum subsystem degradation

limit to be converted into a subsystem loading limit. For our analysis of subsystem

response time, the system degradation specification of 3 dB (Section 5.1) is used

as the normal operating point. For a heavy load model, a 6 dB response time degradation

is used.

Figure 6.2 -4 presents the service time metric as a function of

system utilization for several queue statistical models (M/M/1, M/D/1 etc.). The

curves describe the system utilization factor for the desired 3 dB and 6 dB degradation

of service response time for the DBMS. Figure 6.2 -5 summarizes these results, showing

fraction of system utilization (p) resulting from the specified degradation figures.

(In addition, this figures also shows the normalized capacity of the system (X n)

(for m> 1), as the capacity ofan m server system is m times the capacity of a single

(m=1) server system.)

6.2.4 System Performance Analysis Conclusions

Based on an interactive single query (with key) benchmark and a maximum

subsystem degradation of 3 dB the Virtual Memory (VM) Systems are clearly superior

to the corresponding non-VM Systems in terms of total and local DBMS query

capacity, in terms of minimum and average query response times, and in terms of

4 potential central data base throughput. These conclusfons are reached from the queue

analyses for the benchmark model selected in Section 6.2.1 and shown graphically in

Figure 6.2 -6 through 6.2 -8 It should be recalled that this model only predicts

the performance for a maximum likelihood user query function. Other types of query

processing would likely show less differences between VM and Non-VM systems although

VM performance will still be superior.

6-11

2l-

000

'-4

0o

CD(1

CD (v

C)I
0D

fa JA

LAL 'a0) t

Of* S.
a)~

IML

(Das) i 33~~j1]1AN3S 39b'd3AV 03ZIIVWNiON

6-12

120p

QUEUE SYSTEM PARAMETER AVERAGE SYSTEM RESPONSE DEGRADATION

3 dB 6 dB

p 0.5 0.75
M/M/1

0.5 0.75
n

p 0.67 0.86
M/D/i

0.67 0.86

p 0.71 0.865
M/M/2

1.42 1.73

p 0.84 0.93
M/M/4

3.36 3.72

p = Utilization

Xn = Normalized # of users supported by system assuming CM = MC1

Figure 6.2-5 Sunnary of System Utilization for
3 dB and 6 dB System Response
Degradati on

6-13

The performance curves of Figures 6.2 -6 through 8 present the

following information.

Figure 6.2 -5. VM System Performance

This curve shows the system response time for two VM systems: single

and 8-processor DBMS. It should be noted that there is virtually no difference

between the single and multiple processor configurations in terms of overall system

response.

Figure 6.2 -7. Single Channel Non-VM System Performance

This curve shows that the system utilization factordecli,,es relatively

rapidly as more DBMS processors are added to the Non-VM system. This is due to

saturation of the disk service process. The key conclusion here, is that the VM

system permits additional DBMS processors to be added to the system with little or

no system degradation. This figure also illustrates the inherent additional system

latency of the non-VM system -0.4 sec versus 0.25 sec for VM systems at a system
load of zero.

Figure 6.2 -8. Dual Channel Non-VM System Performance

This figure illustrates the system performance improvement achieved

for the Non-VM system when the system is configured in dual channels when compared

to the previous plot. The VM system with a single DBMS processor is also shown for

reference purposes.

The two primary problems with the use of a central data base for multi-

ple DBMS processors is dilution of disk throughput and the increase in access latency.

The use of VM technology can largely offset these two disadvantages providing per-

formance close to that of a single DBMS processor with a single disk channel. With

VM technology the performance impact of a shared central data base is evident only

when opening a file or closing it following an udpate session.

With a non-VM DBMS processor approach, each disk access associated with
a query suffers from an additional latency of approximately lOOms due to delay
in sending a request message to the Access Control Subsystem. This more than doubles

effective disk access time and approximately doubles minimum query response time

relative to a single DBMS processor with a single disk channel (performance reference).

In addition, since this central resource is shared, the total query capacity of the

system is limited by the central data base throughput. Further, the query capacity

6-14

0

C:)

CL0

F- 0

CA
____ cO1

0 * l

00)

S-

0

6-10

4-
W

00

C.,

C

0)
0 CL)

Q~~* C)c

tA

C:>'

6-1-

.4-

00 0

C- 0

LI) w

1)

000

M: L 0

0' 0

w -44

'-4C1 ____ f

LL.

oo **

10:- C"
C.)

6-o17

per DBMS processor is then inversely proportional to the number of processors and

can only be increased by adding additional central data base disk channels, preferrably

with dual ported disks.

A VM DBMS processor approach suffers no additional latency per query

relative to a single DBMS processor with a single disk channel (performance

reference) as its disk accesses are also local. Furthermore since the central data

base is utilized only when opening or closing a file, the demand on the central

data base resource is much lower than for a non-VM approach. Consequently, the query

capacity per DBMS processor is limited by the local disk query capacity and total

system query capacity will be greater than that of the non-VM system capacity.

Further, the local VM disk capacity can easily be doubled with standard dual ported

disk technology. A secondary benefit of the VM approach is that central data base

throughput potential (Kbytes/sec) will be greater than for the non-VM approach. This

is because the VM accesses will tend to be larger serial accesses while the non-VM

accesses will tend to be shorter random access accesses.

It should be remembered that these performance conclusions are based

upon a maximum likelihood type of benchmark and does not represent actual system

performance. In particulathe small percentage of queries that involve multiple

responses and/or do not use a relation's keys typically use the majority of a

relational DBM9 resources. This type of processing is more likely to be processor

bound than I/O bound and normally requires sequential access to all records of a

relation. For this type of query the differences between a VM and non-VM approach

will be less pronounced although VM performance will still be superior. The key

conclusion is that a VM approach will allow additional DBMS processors to be added

to the system with little loss to individual DBMS performance, while a non-VM

approach will dilute individual DBMS performance unless the other subsystems are

improved to compensate.

6-18

6.2.5 Relational DBMS Performance Characteristics

The compromise between performance and flexibility in the implemen-

tation of DBMS systems has generally been made to achieve rapid standard query

access at the expense of flexibility. In contrast, flexibility is the key feature

of a relational DBMS with the result that a relational DBMS requires more computer

resources to respond to a query than other commonly used DBMS approaches. With a

classical network approach only two or three random disk accesses are required for

a query. For a standard query, a hash code is used to indicate the record in a

partially inverted pointer structure to be scanned for the pointer to data requested.

If secondary fdata is required the primary data record will have direct pointers to

any secondary data records. With a relational DBMS approach, sequential scanning

of all recbrds and indirect linkages generated on the fly are often required. For

a relational query, a sequential search of data records of a first relation may take

* place. From a selected record, a foreign key is extracted and is hash coded to in-

dex a partially inverted pointer structure. This pointer structure is subsequently

scanned for the pointer for an associated second relation's data record. The infor-

mation from all records thus selected is combined in a defined fashion view and

* compared to Boolean specifications of the query. Conversely, relational DBMS up-

dates are easier to implement as fewer linkages need to be created or modified

during the process.

In conclusion, a relational DBMS needs a large memory and a powerful
processor to be efficient. The use of VM is advantageous for relational DBMS im-

plementation because VM eliminates the overhead of multi-buffer management for each

random data base access. Additionally, as potential enhancement to data base pro-

cessing, newer processors are providing record addressing modes and string and queue

.nanipulation instruction sets which are well tailored to DBMS support.

6.2.6 Processor/Microprocessor Performance Characteristics

As the Secure DBMS architectures described in this report replace a

single large DBMS processor with multiple smaller DBMS processors, it is of interest

to compare the performance of a range of mini and micro processors. Figure 6.2 -9

indicates a typical FORTRAN benchmark for various sizes of processors. In particu-

lar, it shows the sensitivity to implementation, e.g., interpretive HOL versus

assembly, and hardware support, e.g., with or without floating point coprocessor.

6-19

Super 32 bit Minicomputer (fp) 1000

Standard 16 bit Minicomputer (fp) 400

32 bit Microprocessor (fp) 200

16 bit Microprocessor (fp) 100

8 bit Microprocessor

(assembly with floating point) 50

8 bit Microprocessor

(assembly with out fp) 5

8 bit Microprocessor

(interpretive higher order language-
HOL without fp)

Figure 6.2-9 Whetstone*Comparison of Processors

* The term "WHETSTONE" refers to a composite machine level instruction used in
comparing CPU speeds between various machines when executing typical higher
level language statements. The term is used within the context of the "WHETSTONE
BENCHMARK" program. The "WHETSTONE" program attempts to provide a true bench-
mark of higher level language usage by assigning relatively higher "weights" to
those instruction types most frequently used in actual scientific programming
applications. The program was developed by two British researchers, B.A. Wich-
mann and J.J. Curnow, based upon Wichmann's statistical analysis of 949 ALGOL 60
programs. The benchmark simulates the actual frequencies of "WHETSTONE INSTRUC-
TIONS" as recorded in Wichmann's statistical profile. The Whetstone Benchmark
has now become the industry wide standard for measuring performance capabilities
of various machines and/or compilers in executing higher level languages such as
FORTRAN, ALGOL, AND PL/I. Speed is expressed in terms of thousands of "WHETSTONE
INSTRUCTIONS" per second. One Whetstone instruction is approximately equal to
two machine instructions.

6-20

Although this is not a good DBMS benchmark, it is indicative of relative performance

differences. Hardware support consisting of large physical memories, VM, record

addressing, string manipulation instructions, and queue manipulation instructions

all offer potential DBMS performance improvements.

6.3 Reliability and Maintenance Impact

Reducing such as found in this architecture generally improves both

reliability and maintenance, and is particularly beneficial in critical applications

where fault tolerant, fail safe operation is required. Depending on the degree of

redundancy and feasible recovery options one of three reliability results occurs:

o If an ACS and HSF is placed between a DBMS processor and its
data base, this increased quantity of hardware will obviously
degrade the individual system reliability.

o If a spare DBMS processor is available, or if higher priority

users can preempt lower priority users from another DBMS, or
if it is operationally acceptable to share another DBMS pro-
cessor on a degraded period usage basis, then the reliability
of the individual DBMS is effectively replaced with the com-
posite reliability of the ACS and HSF plus an adjustment for
the recovery time following a DBMS subsystem failure.

0 If a redundant ACS and HSF is supplied in a self-checking, hot
standby or fault tolerant configuration, then there is essen-
tially no reliability degradation introduced by those subsystems.
Finally, if the central data base is configured in a parallel
dual-ported manner and a "spare" DBMS is available then ex-
tremely high system availability and possible fault tolerant
operation is achievable.

Maintaining a larger number of lower cost DBMS processor systems

should be easier than maintaining an equivalent single DBMS processor system due

to lower sparing cost. This advantage is largely offset by the additional require-

ments for maintaining the data base ACS and HSF. A common DBMS and ACS computer

would obviously help this situation considerably.

6.3.1 Reliability Model

A system model of such a DBMS architecture in a partially redundant

form is shown in Figure 6.3-1 . The corresponding reliability model for this

system is shown in Figure 6.3 -2 consisting of four types of components designated

6-21

-

A,B,C, and D as described in Figure 6.3-3. As components B and C are the two po-

tentially serial elements, they are the primary candidates for replication if en-

hanced availability is required.

Based on a 50% spare central data base storage requirement, 2 of

every 3 drives (2/3M) must be available for the system to be available. Follow-

ing the loss of any drive, a degraded mode exists while the files contained on

that disk are reloaded. Unless a fault tolerant design keeps (writes) redundant

files on separate drives, this reloading operation can require as much as an hour.

Furthermore, this recovery operation requires the use of a DBMS processor (D com-

ponent) during this period.

If both B components are down, the system as shown is down. If only

one B component is down, the system is available in a degraded mode, unless the

B component fails during a rekeying operation interval. If both B components are

required for rekeying, then loss of a single B component during a rekeying inter-

val can result in unavailability of the system until both B components are restored

If C is down the system is down.

Each D component supports a separate set of users. An operational

policy in which higher priority users will preempt lower priority users is now

assumed. Under these rules at least N-i of the N D-components must be available

to support the i th class (priority) of users (i = 0,1,...,N-1). Furthermore,

when a particular D component fails, the system is unavailable to its users while

they replace lower priority users on their processors and recover operation. This

movement to a new DBMS processor of higher priority users is at least equivalent

to a security level change of a period processed machine. If the system has a

spare DBMS processor, there are not 0th class users as described above.

In addition to the DBMS components described above, power and air

conditioning are also required for operation. Also, if static encryption is em-
ployed, data base rekeying is required periodically. We therefore define three

more reliability components:

P for power source

AC for air conditioning

RK for rekeying

6-22

CENTRAL
DATA BASE M DUAL PORTED WINCHESTER DISK DRIVES WITH 2/3 M REQUIREDSYSTEM

ACCESS CONTROL SUBSYSSECURITvPEP 8 N INTERFACES FILTER SUYTM
' FILTER SUBSYSTEM

DUAL CHANNEL ANDIN EP PP N DBMS INTERFACES

FACEn C.C 0
DBMS SUBSYSTEM

N COMPUTERS

Figure 6.3-1 Subsystem Model

A A

Figure 6.3-2 Reliability Model

6-23

, - - ,9 .
-

. .

(A
LiA

LL -j

LLJ m

2! U-Li

-- < L)
co -J - LL. -

W- >.V -- C

U - . ~ -) =~ Le) V) V) iCJ0

Li cl LiJ U -5 0
LAJ I.- C *

-i -j-J in
Oli Li w

F- 0 = (A(

L) L) <c~ co w 0

0n U-i. Li. (A <

(A 0 Li Li 2 LiJ

Zl 0) L LL.< .-.

-- CD 0u ~
"E - 0- =)< m L 0)

CL

F--

F--

-z-

U U-

6-24

ii

For each reliability component, there is a mean time between failure (MTBF) and a

mean time to restore (MTTR) designated as MTBFi and MTTRi where i = A,B,C,D,P,AC,

or RK. By assuming that the MTBF for a component is much greater than its MTTR,

the resulting equation for the system reliability model can be written, as presented

in Figures 6.3-4 and 6.3 -5. To simplify the form of the equations, we define

the MTTR.
1 c1. (Eq 6-1)

From Equations 6-2 and 6-3, the probability that the system is avail-

able to the ith priority class user is approximated as

P(Total System Available to i th Class User)! 1-P(Degraded Operation)

- P(System Not Available to ith Class User) (Eq. 6-4)

To give an indication of actual reliability impacts, the availability

of three system configurations was determined using Equation 6-4. Figure 6.3-6

presents the assumed parameters chosen for this sample evaluation. The resulting

availabilities are presented in three figures for the systems considered:

0 An Independent System (single DBMS and Disk, with no ACS or
HSF) - a single system reference Figure 6.3-7

o A non-redundant distributed system Figu-e 6.3-8

o A fault tolerant system Figure 6.3-9

The results show that in the system approach described by Figure 6.3-8, the non-

redundant system gives only a slight availability improvement over the reference

system while the redundant system yields nearly an order of magnitude improvement.

Figure 6.3 -9 shows that addition of an ACS and HSF for fault tolerance provides

somewhat lower system availabilities than did the user prioritized approach. Again

it should be noted that these figures are only representative for the example system

Formulated for illustration. Obviously, actual systbm implementation and component

choice greatly impacts the availability of a system.

6.3.2 Maintenance

Maintenance is multi-faceted, involving fault detection, fault iso-

lation recovery, and repair operations. In addition to normal hardware maintenance,

6-25

- --. .. =Mod

.01

j I

J4)

C

laJ - V.00

AJ 0

C4() V 0 m
L4J IM0

- 0-

- L. c.

C , a) 0 0

4-r

o0
o 0 iV

- e-*- L: *

0 > -~ a,

0

0 , 4-, ,- " 4-) .-
E) - C L4 1 0

C.J-. *- - L

4j a) 4-) 4'-

4 .) 4J)

0 . .

to O .- .
4-) 0 4.) 4J 0

0a) *. 0-f

0 (D

4-2

0 S.-

o 2 4-LL4.L.
L ~ F 03C -)

4.) a 4.) 6-26.

!,r

)a

IA 4A

0

LC)

0,.1

0~0

r. -- u

+ +_ _

+w
0 0 0

- 4-) 41

°1-. ClD 00.

tt

>1

4C)

to0

41 0 w
0 d

Bf

"0 + +LA

1.. 4.)

6-27

(A S.-

-0 0
LU H ~ C- 4-)

~~>-,

LU = LUI
V) C) 2= w-

=Z L3 e

~ U = 10
F-L -(D (A

3>- (AJ V-) (A
-j <.. -J L0 0(n

-~~C LJ .. JU
LU_-MH >- C-) U- 4-

uo (MA C) n0 (AA

e)J g- >-J "-4 L.) s- E (4-1
= < (A LU U. o "A 0 -

~ ~ ZLU F- - 0 m 0C).

LU 0 =- V C) H =- HC) H) I=A0
e-j >- _Z (A LLO 03 < Ln~~ S..

V) H L (D - LU > umi H4 F- 0)
- n C) C/ - n -) C>) (A.-

0 0j < a U - C) <~ C)0>LU H4
CL. C) L. (>- M: H) w.. mA to> CA

0 (AI LL C .4. (A" (.1 CLUj -1-0
LL C-) 0) F- >-' (A- -J F- :) LUt
L. - N- 0C) = V) LUC c U= cmS

(- -L LU H y UH >- =~ H= 0 " 2t a.-u

HD Hn CC C3 >- Z(o <c Co LU LU LU

0 0 Le LU .4u -) C) U- IA 10

F- LU HQ vAC)(0.) CD) Lu (A U (A
= V - L) = LL. (A (0

<Z LU HO- LIF -(A LU FI-)L 0

< = UJ H)V CLY C.J H COM (A :: 0 s- M
=L L LL. LJ -LJ u4. U = - = L C I V

H 0 0 0L 0i 0) V)J 04 04U0 O L
0. s- F - -V)>Jc

(aA(A(A o A

0~~~: 100 U 0 U 10.0 w

u- D0 CD C (D C) LC)a LAJC '0 0 .0LL
HA - i - j _ jC j - r j _ ezA a)UW LLU L

L3 HH H H H H

6-28

L

00

-~4-J

cr--

o o
S.- 4-

oo a0

V) 0 0

LAJ C C) # 0 i
X-4 VI 0 0) 0)&

l 0n 0 0 0 I i~
0IL 0A 0 04A

c~&A Q) co..
ID 0. L (A

-x $- ,' 0

4 0.

> A > u

4--- 4- 0
C>. .

in 0LU-
I-Lu 0 0 A LA

z~~i o o6-29

CASE I CASE I I
DISK SYSTEM 0.996 0.9996

DBMS 0.992 0.9992

Figure 6.3-7 Component Availability

CLASS
-~_______ INDEPENDENT NON REDUNDANT REDUNDANT PRIORITY

CASE I 0.992 0.94 0.94 0
0.994 0.997 1
0.996 0.999 2 7

CASE 11 0.9992 0.99 0.994 0
0.997 0.9999 1

10.997 0.9999 2 7
Figure 6.3-8 System Availability by Priority (Including

Degraded Modes)

INDEPENDENT NON REDUNDANT REDUNDANT CLASS
______________ ___________SYSTEM SYSTEM SYSTEM PRIORITY

CASE I 0.99 0.94 0.93 0I_______ 0.99 0.99 1
____0__992_ 0.993 2-7

0.99 0.992 0
0.997 0.998 1CASE 11 0.999 0.997 0.998 2 -7

Figure 6.3 -9 Total System Availability (Non-Degraded Mode)11 By Priority

6-30

DBMS maintenance,which is primarily software related, is also needed to perform

data base recovery operations. Such maintenance operations are typically built
into DBMS systems. However, they may require modification to work in a distributed

architecture, especially since full duplex interprocessor communication between
single level machines is prohibited by the non-discretionary security policy.

Maintenance of the HSF should be very easy due to the self-checking

required to satisfy SFA fail-safe requirements. Little additional cost is required

to design in on-line fault detection and automatic fault isolation (AFI). Use of

signature analysis*techniques should allow easy design of AFI with better than 95%

confidence at the LRU level.

Maintaining a larger number of lower cost DBMS processor systems

should result in appreciable less cost for complete sparing than for an equivalent
single DBMS processor system. However, the impact on the skill level of maintenance

personnel is not as clear. Many recent minicomputer systems have been designed for

improved maintainability by offering near automatic fault detection and isolation

capabilities. The most advanced offer a separate maintenance processor for per-

forming diagnostics with an optional link to remote diagnostic centers. It is

questionable to assume that lower cost DBMS processors will offer such trouble

shooting capabilities. Thus, either a higher skill level or increased sparing with

depot level repairs is likely to be needed. In either case, the mean time to re-

pair will obviously be less critical for this redundant (distributed) architecture.

The largest maintenance problem is likely to be the ACS. The use

of a standby ACS is recommended to avoid ACS maintenance impacting system avail-

ability. In addition, utility software to back-up and reload ACS data bases will

be required. If the current ACS directory is lost, the entire central data base

will have to be reloaded. To avoid this problem, it is recommended that the ACS

operational software maintain duplicate copies of its data base on separate drives

with the ability to perform from a single copy and later restore the other.

Distributed DBMS maintenance is largely a state of the art problem.

At a minimum, a write interlock is required to keep two processors from making

TM -HP

6-31

simultaneous incompatable changes to the data base. However, the simple security

rule prohibits a lower level machine (which may make blind updates) from observing

such a semaphore set by a higher level source (a potential covert channel). This

can be handled by locating such semaphores in the system high ACS and thereby de-

laying a second write request to any file already engaged in the write mode. This

solution provides a low speed covert timing channel. The speed of this channel

can be further degraded through techniques suggested in Section 2.4 such as the de-

laying of the initial write of a write access to a file from a processor by a ran-

dom length of time.

Distributed data base recovery is a greater challenge. Normally

the entire data base is periodically backed-up and subsequent changes logged on

magnetic tape. When a file or disk is lost, the most recent version of those files

is reloaded and a utility package scans the change log to recreate the subsequent

changes. An equivalent approach would require the system high DBMS (assuming that

one is provided) to back-up the data base periodically and receive changes from all

processors for update logging. A more recent approach that meets on-line DBMS

maintenance requirements is to maintain duplicate copies of files on separate disks

with the ability to operate from one and later reload the other. Ignoring the cost

impact, this technique is preferrable because it can be performed transparently by

the ACS~except for a small utility program to perform the actual reload)without

modifications to the DBMS.

6.4 Cost Analysis

Cost can be considered from several perspectives. In particular,

development costs, recurring costs, life cycle costs, direct costs, and indirect

costs are all of interest. This distributed approach to secure multi-level DBMSs

offers the potential for much lower development costs than that of a secure OS

approach. Besides the lower direct development costs, the potential to use standard

commercial software in a secure multi-level environment offers the possibility of

even greater indirect savings in terms of other software development. While the

secure OS approach has no direct recurring cost it is limited to a particular pro-

cessor. In contrast to the cost of a new secure OS development effort required for

a new processor, little cost is required to adapt this distributed architecture to

6-32

A

a new processor. Considering total life cycle costs, this secure multi-level DBMS

architecture should recover its costs from the reduction of the quantity of high

level clearances previously required for system high applications, increased avail-

ability over that previously available through period processing and improvements

in mission efficiency by allowing personnel access when desirable rather than where

required.

6.4.1 Development Costs

A wide range of development costs are possible depending on the

particular system desired.

The lowest development cost is for a certified HSF with single-level

file protection granularity and an ACS with trusted code that is transparent to a

commercial processor, operating system, and DBMS. This system provides certified

hardware enforcement of non-discretionary security but relies on the commercial OS

for any discretionary security protection.

The higbest development cost is for a back-end system with end-to-

end encryption, certified single-level front-end (message switching) processors,

certified distributed ACS, certified HSF with multi-level file support and static

encryption, and a custom DBMS. This configuration provides external certified

firmware enforcement of discretionary security in addition to non-discretionary

security controls. The development cost of such a system would easily rival the

development of a secure OS. The primary advantage of this back-end configuration

is their certification is more technically feasible than for a secure OS.

Figure 6.4 -1 ranks development costs that might be found in par-

ticular system developments.

In addition to these possible direct development costs, TEMPEST,

SFA, reliability, maintenance, fault tolerance, expandability, adaptability and

other factors will have indirect development costs. Given the high cost of cer-

tification, it is recommended that a modular HSF system with standard options be

developed that can be easily configured to meet a range of requirements. In par-

ticular, consideration to adaptability to different processors, modular expansion,

and high reliability/fault tolerance is recommended. Such preplanned product im-

6-33

provements can be added to the ACS as needed if the ACS merely contains trusted

code. If certified ACS code is deemed desirable, the initial design and preplanned

upgrade support for the ACS will require increased care.

High: Secure OS
Custom DBMS
Certified ACS
End-to-End Encryption
Certified Multi-level File HSF
Certified Single Level File HSF
Static Encryption
Trusted ACS

Low: Transparent I/O Handler

None: Commercial DBMS
Commercial OS
Commercial Processor

Figure 6.4.1-1 Development Cost Ranking

6.4.2 Recurring Cost Estimate

It is estimated that the additional direct recurring acquisition

cost required to provide a secure multi-level DBMS is less than 25% of total system

acquisition cost excluding any additional costs required for physical security,

Tempest, or KGs (which are Government owned equipment). The savings in operational

cost over a 10 year life cycle will easily dominate this increase of initial acqui-

sition cost. This estimate assumes that the DBMS processor subsystems and central

data base subsystem or equivalent are required by the application with or without

a secure multi-level DBMS requirement and that the direct additional cost for this

capability is the recurring cost of the access control subsystem (ACS) and the

hardware security filter (HSF) subsystem hardware. Figure 6.4-2 details the sub-
system costs used in this estimate and Figure 6.4 -3 describes the equipment as-

sumed for each subsystem to arrive at these costs. From these figures, the total

system cost for a four DBMS processor system would be around $1.4M of which less

than $300K (21%) is directly related to multi-level security. For an eight DBMS pro-

cessor system these numbers would be $2.5M and $300K (12%) respectively.

The dominant recurring cost of the secure multi-level DBMS is for

the DBMS processor subsystems and is obviously very sensitive to the number of

6-34

F- xA

V)~ 0) C 0 0D 0 0
m (D CD 0D 0D 0D 0CD
CO -4 0D -4 -4 CMJ -* w-

le MIL Z iC1

L4.

I-
(n

0A 0 0. 0 04.

m- U- 4.)4.
CA to

0) 4-
4A)

0)0
u

I-m

0) 0 0 0 1
:-z Ln 0D 0D 0a

.-.64 C-J -4 -4 04~
2c1

CL
LAJ LA-

V) 1. 0

LA I-I
LAJ u (A

* 4 w =~~

>- 0 41.

LAoI V)V L L

LA ~ Lij~L u)

6-35

DBMS PROCESSOR SUBSYSTEM EQUIPMENT

DEC VAX 11/750

1 Mbtye of ECC MEMORY

OPERATOR CONSOLE

LOCAL DUAL-PORTED 67 Mbyte REMOVABLE DISK

1600 BPI MAGNETIC TAPE DRIVE

600 Ipm LINE PRINTER

15 VT-100 USER TERMINALS

FRONT END I/O PROCESSOR

SOFTWARE LICENSES FOR

VMS OPERATING SYSTEM

BLISS SYSTEM LANGUAGE

FORTRAN 77

COBOL

ORACLE RELATIONAL DBMS

Figure 6.4 -3 Equipment Used to Estimate Subsystem Costs

6-36

CENTRAL DATA BASE SUBSYSTEM EQUIPMENT

Two Disk Controllers

Four Dual-Ported 124 Mbyte Winchester Disk Drives

ACS EQUIPMENT

PDP 11-44

256 Kbytes of Memory

Operator Console

Single Ported 67 Mbyte Disk Drive

1600 BPI Tape Drive

Front-End I/O Processor

RS 232-C Compatible Direct Wire Modems

Custom Hardware Security Filter Subsystem Interfaces

. HSF EQUIPMENT

Custom Hardware

Single-Level File Support (File protection granularity)
* .1 . . .

Figure 6.4 -3 Cont'd Equipment Used to Estimate Subsystem Costs

6-37

such processors required and their cost. If an ACS/HSF security filter can be built

so as to be adaptable and transparent to the operations of the DBMS processors,

then a variety of DBMS processors can be considered for any given application,

thereby permitting a trade-off between acquisition costs and performance. Con-

sidering technological developments (see Section 7), it is estimated that an 8-

fold reduction in suitable DBMS subsystem price (to $40K each in constant dollars)

is likely in the next five years. The ability of this architecture to exploit

decreasing hardware costs and make multi-level security an add-on to new computer

systems with no appreciable development costs are the key features of the recur-

ring costs of this design.

6.5 Flexibility and Operational Impact

The largest operational impact of providing multi-level security

will be the introduction of secure multi-level DBMS operation. If appropriately

designed, the ACS/HSF with its hardware enforcement of non-discretionary security

will be a transparent add-an to standard hardware which is compatible with standard

software. Non-discretionary security rules will impose some inherent limitation

on multi-level data base structures (schema restrictions). In addition, multi-

level data entry and updates from a single-level processor may require custom DBMS

and HSF support to be feasible.

Certified firmware enforcement of non-discretionary security will

have large operational impacts and limitations unless personal DBMS processors

are used. Rekeying of a central data base subsystem and maintenance of the data

base itself can either be performed off-line or on-line, in a transparent

manner. A fault tolerant design (as described in Section 6.3.1) can meet critical

on-line reliability requirements.

There is a need for a system high processor and trusted subjects

to perform downgrading operations. There may be a need to augment a standard re-

lational DBMS with a write interlock enforcable in the ACS to handle multiprocessor

data contention. If back-end DBMS machines are used, the user interface will be

essentially limited to a query language and any user processing will require a

separate host processor.

6-38

Providing a secure multi-level DBMS alleviates the requirement of

clearing all personnel to system high, and thus indirectly induces operating costs in

terms of fewer high-level clearances. In addition, the use of a secure multi-level

DBMS increases functionality for many applications where it is beneficial but not

necessary to allow lower security level personnel access to some low level portions

of the data base concurrently with data base accesses by higher level personnel.

Period processing may be used in conjunction with this architecture to reduce the

number of concurrent compartments required.

63

6-39

7.0 TECHNOLOGY ACCESSMENT AND FORECAST

Within five years technical developments should allow a suitable

DBMS processor system consisting of a high performance 32-bit microprocessor, 1

Mbyte of ECC memory, a local 50 Mbyte Winchaster disk drive, high speed fiber optic

central data base link, multiple relational DBMSs, and RS-232 links, to be con-

figured with commercial, off-the-shelf hardware and software for as low as $40K.

This development will make use of an HSF architecture economically feasible for

multi-level/large multi-compartment applications.

The following is a detailed accessment of current applicable tech-

nology and a prediction of future developments over the next five years. The

following topics are covered:

7.1 Processors/Microprocessors

7.2 Software

7.3 Computer Communications

7.4 Mass Storage

7.5 Memory

7.1 Processors/Microprocessors

The rate of major advances in this area is continuing at a rapid

pace, allowing further significant decreases in cost and performance improvements

to be expected in the next five years. There has been an explosion of super 32 bit

minicomputers with previous mainframe performance (above 1000 Whetstone*) at low

system cost (in the $150K to $500K range) in recent years. A similar explosion of

32 bit microprocessors now appears imminent. Intel, HP, Bell Labs, and Nippon

have already produced 32-bit microprocessors (using VLSI technology) with

the revolutionary Intel iAPX432 design advancing thestate-of-the-art of computer

systems. In addition,virtual memory (VM) technology is now available in top of

the line minicomputers and microprocessors and is fast becoming standard. Equally

important, instruction sets are becoming 'more powerful and specialized. Advanced

string, record, and queue instructions in particular are well tailored to DBMS op-

eration and offer large improvements in DBMS efficiency.

* Section 6.2.6 and Figure 6.2-9 discuss the Whetstone as a measure of system

capability.

7-1

--M, ojj

Better protection mechanisms are also appearing. Perhaps the most

innovative are the object orientation approach (e.g., iAPX-286,432) and public

double key password encryption. Another development of interest is the movement

of large portions of the operating system into hardware and firmware.

Finally, the trend in computer architecture of functionally special-

ized distributed processing (e.g. I/O processor, array processor, etc.) has led to

the concept of a data base machine attached to the back-end of a host computer or

directly to terminals through a query language interface. There is currently a

large amount of industry activity in this area with some systems already out.

7.2 Software

The preeminent upcoming change in the DoD area is the advent of ADA.

Initial release of a validated DoD developed Ada Compiler is scheduled for early

1983 for the DEC VAX computer family. In addition, commercial interests are de-

veloping their own Ada compilers. The largest projected near term commercial soft-

ware (S/W) impact is the large scale use and further development of Application

Generators on the basis of their potential to dramatically increase S/W productivity

and in some case allow the end user to directly build applications without program-

mers. (e.g. IBM's ADF, National's CSS Nomad, DEC's Admius 11, etc.) In the same

vein, large scale use of query languages and their further development is also ex-

pected, thus allowing end users to directly interface with their application data

bases without programming support or skills. In addition, the adoption of a stan-

dard query language offers the hope of compatibility and possible transportability

between different DBMSsand computers. Along this line relational data bases are

projected to be the data bases of the future, partially for human factors reasons,

but primarily for their flexibility in creating new applications.

7.3 Computer Communications

The use of available low cost ($500 to $2K range) high speed

(lOMbd to lOOMbd) fiber optic links will easily handle local point to point com-

puter system links. These links are readily available in hybrid form and are

standard on the Intel, DEC, and Xerox lOMbd 2.5Km ETHERNET Standard. Development

of even lower cost integrated ETHERNET transmitters and receivers has been underway

7-2

for some time. Commercial use of DES encryption for computer security should be-

come widespread as low cost integrated circuit vesions are developed.

7.4 Mass Storage

The development of the Winchester disk drives has solved the majority

of previous mass storage problems. The result is low cost, high reliability mass

storage with a standard dual port option allowing fault tolerant designs. The

majority of the low end Winchester disk cost (=$2K) is in the disk controller.

Disk controllers employing custom LSI chips are now appearing that reduce compon-

ent counts, creating cost, reliability, and performance benefits. The next major

advances in mass storage are already underway in the optical disk area. This de-

velopment will greatly increase future mass storage capacity.

7.5 Memory

The forecast for memory is for large production of 64Kbit chips

driving memory cost down further. This development is lagging earlier prodictions

butJapanese firms are now introducing such chips. Because of reduced cell size,

alpha particles have caused an increase in soft error problems further reinforcing

the trend to error correcting coding. Another development of interest is serious

development of EEROM (e.g. Intel 2816). Such electronically erasable ROM offers

tremendous protection advantages for static security related data bases, i.e., by

controlling associated write circuitry the security officer could control updates

to EEROM resident security data.

7-3

IEo

I~! ~IU ~MU "P JILMUN IJW' ' ~ '~'* ~________________10000__

8.0 CONCLUSIONS AND RECOMMENDATIONS

A distributed architectural approach to secure multi-level data base

management has many benefits and is quite feasible using existing technology. The

primary benefit is provable hardware enforcement of non-discretionary security.

There are many possible implementations that allow trade-offs over a large range

of complexity, cost, performance, reliability, flexibility, functionality, features,

security granularity, etc. These trade-offs generally follow the rule of diminish-

ing returns and with increasing complexity these sytems usually become more

specialized and less generally applicable. For example, by providing a general

design approach addressing some 80% of the requirements and design goals, and cap-

able of satisfying maybe 80% of the potential applications, a net 64% solution is

achieved. However, if instead, a design meeting 95% of all the requirements

and design goals becomes so specialized as to apply to perhaps only 10% of all ap-

plications, a net solution of only 10% is achieved. Therefore, a general approach

with some compromises is preferable to attain general usability, particularly if

it is sufficiently flexible so as to be usable as a basis for more specialized

design.

8.1 Conclusions

Feasibility

This architecture easily solves the multi-level security problem

and is a partial solution to the multi-compartment problem limited only by finan-

cial considerations. The dominant acquisition cost is the DBMS processor subsys-

temn which grows linearly with the number of concurrent dedicated levels and comn-

partment combinations required for a given application. Thus, the availability

of a suitable low cost DBMS processor is the key to using this architectute to

handle applications with large numbers of concurrent compartments.

Non-Discretionary Protection

The primary advantage of this architecture is that it provides

provable hardware enforcement of non-discretionary security for single level pro-

cessors sharing a common multi-level data base. By physically isolating these

single level processors and providing appropriate physical access controls, certi-

fiable multi-level operation is feasible without certified or trusted software,

8-1

i.e., there is no requirement for a secure OS to enforce non-discretionary security.

Discretionary Protection and Integri_ K

If a standard OS is deemed adequate to enforce discretionary security
and integrity (that is, the OS can be trusted),then this architecture will allow
the use of standard commnercial software, such as astandard DBMS to be used for multi-

level applications. This offers the potential for large cost savings relative to
development of custom system software for secure OS, DBMS, etc. This approach also
provides the greatest flexibility, making non-discretionary multi-level security

an add-on with no overhead except for increased central data base latency. Because
of this flexibility it can be used to upgrade existing systems and support new

applications.

Alternately, it is technically feasible to enforce discretionary
security and integrity with certified software/firmware. However, this special-
ized software drastically reduces flexibility, e.g. compatible cormmercial software,
and is unlikely to be provable.

Three technical approaches for providing certified discretionary
protection were found:

*Use a secure OS and compatible DBMS in a host computer

* Use a certified front-end 1/O processor, end-to-end encryption
and a custom back-end DBMS; and

a Use individual personal computers and a modified OS.

For these three approaches, the distributed architecture of the secure DBMS designs

offers the advantage that the discretionary access control software can be placed
in the central access control subsystem, thus physically isolating this discretion-
ary security software from potentially hostile user code environment. These last
two approaches provide "external" enforcement of discretionary security, require
less certified code, and can be placed in firmware, advantages not found with the
traditional secure OS approach firmware. The hardware cost for these advantages,

unfortunately is very high, in either individual encryption equipment or computers.
Thus, providing certified discretionary security and integrity is considerably more

'. difficult than providing certified non-discretionary security.

8-2

Data Base Selection

A relational DBMS approach was selected for the purpose oi a greater

detail system evaluation; however hierarchical or CODASYL-DBTG DBMS approaches are

also feasible. The formal math model developed for a secure multi-level relational

DBMS is generally applicable to these other approaches as well, although the impact

is different. The requirements for both secure multi-level operation and physical

implementation of a relational DBMS result in some fundamental limitations and

make other operations difficult. In particular, the schema (description of data

structure), primary keys (data that uniquely determines a record), and associated

access structures (e.g. hash code tables, pointers, etc) must be at the lowest

level and common compartment(s) of a multi-level relaLion. The simple and *-secur-

ity rules combine to prohibit downgrading. Thus, a system high DBMS processor

with trusted users and software is required by this architecture for downgrading.

Multi-Level Protection

Three feasible approaches for providing a secure multi-level rela-

tional DBMS were identified:

o Multi-Relation View approach

o Domain-Separation approach, and

o Internal Bypass approach

The multi-relation view approach was the only technique permitting

the use of standard relational DBMSs. In this approach relations are restricted

to a single level with views of multiple relations used for multi-level operations.

This approach requires segmenting a logical multi-level relation into multiple

single level relations with the primary data base key(s) replicated in each rela-

tion. This approach to multi-level security increases DBMS overhead due to the

processing requirements to write the view segments to form the users view of the

data and the additional storage required for the replication of the data base keys

at each level. This overhead is linearly proportional to the number of security

classifications in a view and is unlikely to be excessive for most applications.

Other difficulties with this approach are multi-level entries or updates cannot

be made from a single level machine and partial logical multi-level records can

exist in the data base.

8-3

I

To use a domain separation technique requires the devel-

opment of a custom DBMS for secure multi-level DBMS operation. This

approach incorporates classifications within the schema and segments domains by

clearances into different single-level files. The overhead for this approach is

similar to the multi-relation approach since a multi-level record must still be

pieced together from different files. However, if a flat storage structure is used

(i.e., no variable length physical fields), then it is possible to make multi-

level entries and updates from a single-level machine operated at the lowest data

level and common data compartment. Entries and deletions must be made from this

level. In addition, because a custom DBMS is required, integrity controls can be

provided at either the domain or data item level.

The third technique is the internal bypass approach. It requires

an upgraded hardware security filter that handles multi-level files and provides

a read-modify-write capability: internal bypass, buffer and merge hardware. In

addition, a custom DBMS similar to that required by the Domain-separation approach

to exploit this multi-level file capability is also required. Since multi-level

records can be stored in a single multi-level file, this approach does not have

the direct overhead of the other approaches. There is an indirect software over-

head for this multi-level operation in terms of formatting security classifications

within the file and possible hardware overhead in terms of effective disk storage

and transfer rates. Again, integrity controls may be directly incorporated into

this custom DBMS. The requirement for multi-level file support with this approach

requires a significantly more complex and extensive HSF and is thus not recommended.

Hardware Security Filter

The hardware security filter (HSF) is the key to providing provable

hardware enforcement of non-discretionary security. It acts as an entrance and

exit guard separating data by classification and controlling which levels and

compartments may be read and/or written by a given processor in accordance with an

access control policy (ACP) supplied by the security officer. Four separation

techniques were found, with static encryption being technically best and the most

costly. The primary advantage of this technique is that failures in the central

data base subsystem, such as that resulting in the wrong data being read, will not

compromise security; i.e., with this approach the central data base is provided

8-4

a security fail safe guarantee. However, static encryption does not provide COMSEC

link protection. Additionally, while the central data base stores encrypted rather

than clear text dataand hence is more secure, it will still be a sensitive, possibly

system high, compartment. Hybrid data separation techniques are also feasible and

beneficial. Comparisons of the four primary separation techniques are shown in

Figure 8.1-1.

The hardware security filter can be built to handle either single-level

or multi-level files. (Multi-level DBMS operation does not require multi-level

files). The single-level files HSF is relatively easy to build and is estimated

to involve 5 to 10 line replaceable unit (LRU) types and occupy less than a rack.

Tempest, (security failure analysis, SFA) and possibly crypto requirements are ex-

pected to heavily influence the detailed design, e.g. reclocking, redundancy, self-

checking, etc.

The multi-level files HSF is much more complex requiring on the fly screen-

ing of data items against access control policy and a read-modify-write capability.

In addition this type of HSF must enforce that the dynamic, internal file security

level structure can be created (written) only from the lowest level and common com-

partment(s) of the file to prevent a high speed covert channel. Hence a secondary

file level separation technique is also needed. The read-modify-write capability

requires an additional internal bypass buffer, and merge hardware which was not

required for a single level files HSF. Obviously, a multi-level files HSF is much

more complex than a single-level files HSF and correspondingly more costly to de-

velop and certify. Custom software is required to support a multi-level files HSF

as well.

Access Control Subsystem

Because the HSF is shared by numerous processors, a mechanism to handle

this contention is required. Arbitration and queuing of these processors requests

for central data base access is easily handled by preceding the HSF with an access

control subsystem (ACS). This is also a convenient location for a central audit

trail, security monitor, and possibly discretionary access and integrity control.

It is estimated that a small minicomputer is quite suitable for performing these

functions.

8-5

L > 4-

) 0

CL c

.- 4-)

F-

0 Li

I~~Lt cvl 0~ :

u 0~~~V fu C. 0

u~ L L fa

'- 4--

40 'UL '

va C t

0~~ V) 0 if-3
4- -

-

fO0 S - - Cr 4-

0*4.4)

11)- > <
Q)~40-

'K U ~ C e-o

4-) 00

4A 4! c) i

t.D-c () CAL o
cc C% 0) -- >11 u

oL. oI0 0
4-J

I ____ I6
.. I

V) :2 k

While the ACS contains security related software, the requests relayed

through the ACS are internally audited by the HSF for compliance with ACP. Con-

sequently, there is no requirement for certified or trusted code in the ACS to

enforce non-discretionary security for single level processors. Because all central

data base requests are funneled through the ACS, it is the ideal location for a

central audit trail. The security monitor function provides the primary security

check on multi-level processors, alerting the security officer to all downgrading

(a write access requests) activity. Central discretionary access and integrity

control software can also be located in this system.

All these security functions require the requesting DBMS subsystem proces-

sor OS to identify the actual user and logical object (file). Hence, a logical

access request interface with these processors is preferable with translation to a

physical access request to the HSF occuring within the ACS. To eliminate the pos-

sibility of covert channels, this logical access request interface should be uni-

directional. The ACS must be run in a dedicated system high mode.

Another advantage of this ACS architecture is that the security related

software and the central security data base in the ACS is physically isolated from

potentially hostile user code. If certification of all or portions of the ACS soft-

ware is desired, a distributed dedicated microprocessor/firmware approach is pre-

ferable. This approach can be used to segment the ACS software into smaller tasks

and eliminate the requirement for concurrent processing within any microprocessor,

thereby greatly simplifying the certification process. The static portion of the

ACS security data base can be further protected by storing it in Electronically

Erasable ROM (EEROM). By locating the support circuitry required to enable EEROM

modification on a removable board, the security officer can physically control

changes to the primary security data base such as user's clearances, and still be

able to easily modify this data base.

* IDBMS Processor and Interface

A key technical challenge in this architecture is the sharing of a single

central data base among numerous DBMS processors without limiting individual DBMS

processor performance. The challenge is actually twofold: supplying data at disk

rates to a locally distributed star network and providing enough total central data

base throughput. Use of existing commercial fiber optic links with a block link

8-7

protocol will easily handle data distribution at disk rates up to several hundred

meters. The obvious solution to the data base throughput problem is to increase

the number of central data base channels. Unfortunately, that solution requires

similar expansion of the HSF. A solution with more finesse is to reduce central

data base demand.- This can be accomplished through use of virtual memory (VM)

technology in the DBMS processor and DBMS. The key is to read a relation's files

once from the central data base when a user opens a relation and to use a local

copy thereafter for query processing. This approach requires each DBMS processor to

have a local system disk, i.e. a distributed hierarchical storage architecture.

Specialized write interlock facilities are required to provide consistent multi-

user views of the data base.

There are two fundamental architectural approaches to DBMS processor

systems. One is to use a general purpose computer. More recently, the approach has

be'~n to use a functionally specialized data base machine (back-end DBMS). The-.

data base machine's user interface is limited to a query language and thus another

(host) processor is required to run user application programs, although directly
connected interactive user terminals may be supported. This offers the advantage

that no potentially hostile user code can exist in the DBMS processor. In addition,

query languages generally reduce skill level requirements and often allow end users

without a programmning background to interactively make direct use of a DBMS.

Choice of Data Base Type :Relational

The two primary relational DBMS advantages are its good man-machine-inter-

face (MMI) and its flexibility (Figure 8.2-1). Because a relational DBMS MMI can

be thought of as a set of tables it is very easy for people to visualize. Addition-

ally a user can join tables and select various columns, so as to create his view of

the data base, again in tabular form. This flexibility supports rapid development

oF new applications, i.e., new applications do not require data base modifications.
Conversely, the primary disadvantage of a relational DBMS is the large amount of

memory and processor power utilized.

Reliability

Another potential architectural driver is reliability requirements, espec-

ially if fault tolerance is required. The three criticai subsystems are the central

8-8

¢J (U

0 o - 0 LuS.-
.0 C .0a)+a €= . .,." 4J f.

to Qj .J Q.w

.c .,-. -. 3 . r. " O .-- I

> Vaa3 4) d- la
" t

Q) "- ". - *71 'o- L Cc"
t-o - "1 3 -- a 1 4

o o .a) .,- U- - I 0 C)

a)) L C_ 0 0 -) a
- (0 - 0 0- t N S- 0 4 I114-
0- .- . * C a ' 0 .,- .- w

, d) NA j 4- c,,.. 0. .

- V .-.0 ,- .10 - C+' a)V 0- 0 .' 'l :.

LA 5- 4 to u . C ~ <' va)V v 0 0-
tu Q) (A 0) 0- E -

4-) : c_ a) 4- o-U 0 V- W 4 .- C

r4- (.,-A- N
0- 0 0 * ,eo *. C a -,- 4 4)

0 -- o +" - vi .-.U a4-' C,/ 0 (A
4J) 01 EC to E 00 m to 'LflIm
eo 0 4h- 4--W m CA

- ,--).. - s 0 r- .- - L)
) - o) 0 -a u.- > 0 04 .,

S- 01 ea 4-) .- 0 -CUV to)
c, C n 0n ~ 4J~i V) 0 -r

4-) to0 (a to 0 10to
O s U- - . 0 5 4-) .0 00a.c

cu0) 0 4-Ow (A a)
c 4-)LMl 'aS.. : r o 1000 a) M4-
O u 3 c CO C 4-) tOU n L .- . - 0 0 ..1

a) c 00) c, ',4-) rl4- V 4- toq- Na) 4-J C 4)4'-
ea 00 0-0 r_ r_-C (a O~i)
4-) S- 0 a~s4' - 0) u C
a 0. >, Cdi 41) U)o a) .- E 4-) > 3cu 4-' r0- V- 4J) - Z EU 4J (U 0 4- 413
0n (A () M, 0 42) .- L : (C c 0io..- 0 0
V' to -- 0)10 (0 4-4-) 0 S-0 .0 Cu r c x $

S- 5- E L) U) C4-'- r :3 .- a) M

0) Q0> toV a) C ox t 41) V0L- C 0 0.-s o
L • C. .0 a V-) S m to _j " "" o 4)

0A L. 4- e- C o l() - 0- 0) c
o) d).- CL a)0'-) CA .0 a) Q 0)

A I>, LA 4-) Va -4-0 to : 0 'D . c
.0 5.0 *-0 U 4-- 4- 0 (A 0.0 Ln LA >%.-

$0 0 .- w- O C) C 4J 03 t A -
4C) 0J E=a 0)4 0 .- (a11 C- S21C005W-

o 0a- S-~ - -- 0P a)oUS-) 0 -4 00Uto0

() e 0 t o u..:' r (
u A (- 4-3 +j)t

eo A 1) u S-M --)
(U t r 4 > 4 a S-rC o

.- E .-- u o)a (c - -)4
- -) o 4-) W - (1 3:- -

e -C -0 4-U A3t

- - - 4- o 04 L.a 4)'0 6
3c cu c 5a) eu (1 LU - - -0 0 t) (1

Cc (U ClU 0I .J tn 4-U 5 oL

LU U.. 0- VA ~ LU S0 1-

8-9-

F-1
U-11

bU

data base, the HSF and theACS. Winchester disk technology is capable of providing

the required central data base reliability. However, spare disk capacity and back-

up DBMS utilities will be required for recovery operations. The key to high HSF

reiiability is a design with a minimal parts count consistent with (SFA) concerns.

Good fault isolation and sparing or a standby are the primary mechanisms for good

ACS reliability. If fault tolerance is required, a parallel disk controller, dual

ported disk, dual channel HSF, hot standby ACS architecture is desirable. The

central data base is off the shelf and the hot standby is standard design. The

HSF however requires a common ACP but independent channels for SFA concerns. A

solution is for the two channels to share a triple mode majority voting ACP system.

8.2 General Recommendations

It is recommended that a standardized general purpose ACS and HSF be de-

signed as a security filter. Special, custom I/O handlers can then be designed to

transparently interconnect this security filter to the desired DBMS processor and disk

5ystems. In other words, the DBMS processor should merely "see" a set of single level

udisks" with independent directories and should be unaware of the presence of any

other DBMS processors, the ACS or the HSF. It is further recommended that the HSF

provide certified non-discretionary security enforcement independent of other sub-

systems. Furthermore, it is recommended that the basic minimum design be a low cost

system with standard modular options for expansion and upgrading for example en-

hancements for fault tolerance, etc.

8.3 Resulting Technical Recommendations

Based on the preceding general recommendation the following basic technical

baseline is recommended:

o the basic HSF support single-level files using static encryption
and address separation techniques

o the multi-relation view approach be used to process multi-level
relations

o a commercial DBMS be used

o a commercial operating system be used

8-10

o the ACS be initially implemented with a trusted microprocessor system
and later upgraded to a certified, system through a validated, dis-
tributed microporcessor/firmware ACS architecture.

o the HSF be expndable for a range of 4 to 32 DBMS processors.

o the entire security system (ACS, HSF, central data base subsystem,
etc) support a fault tolerant configuration based upon dual ported
disk supporting parallel controllers with twice the potential data
base throughput.

o the HSF be designed to permit future add-ons (P 31 -preplanned product
improement) to provide multi-level file handling using fixed format
security tags

8.4 Development Recommendations

It is recommended that a distributed secure multi-level DBMS architecture

be developed in a staged, evolutionary fashion with initial emphasis on the hard-

ware security filter.

The initial stage would consist of design of a modular HSF, development of a basic

prototype and minimal ACS and evaluation and certification of the HSF.

The second stage would concentrate on the development of a more extensive ACS,

certification of other HSF configurations, and integration into some operational

test sites.

The third phase would concentrate on the certification of a revised ACS with sub-

sequent widespread use of the system in suitable applications.

If commercial development of low cost data base machines parallels this

HSF and ACS development, the resulting system is likely to be a relatively low

cost approach to multi-level security.

8-11

...._.

APPENDIX A

Formal Mathematical Security Model

INTRODUCTION

This section details a formal mathematical proof of the require-

s for a secure system using the concepts of DoD security rules, need-to-know,
an integrity policy. The discussions are presented in detail in this section
reference purposes and are summarized in the discussion of security require-

s of Section 2.

The material presented here is divided into the following sections:

A.1 Data Security Mathematical Model

A.2 Mathematical Concepts

A.3 Model Description

A.3.1 State Model Description

A.3.2 Current Access Set: b

A.3.3 Protection Levels: P-Non-discretionary Control

A.3.4 Access Permission Matrix: M1j-Discretionary Access Control
A.3.5 Data Base Structure

A.3.6 Trusted Entities

A.37 Rules in the Data Base Model

A.4 Security Item Definitions

A.5 Theorems

IF

A-i

A.1 DATA SECURIT MATHEMATICAL MODEL

A data security mathematical model is an embodiment of

security requirements into a logical and systematic collection of rules

which can be proven to proviqce the desired degree of protection. There

are several approaches which can be taken in the formulation of a
6

security model. Historically, there are approaches described by Bell
7 1 28

Hinke and Schaefer 7 Bell and LaPadula I Grohn , and Robinson", and

many others. The models of Bell-LaPadula and Grohn are adopted with

alterations for the purpose of this study.

The data base security math model is used to 9enerate

the requirements of actual data base handlers. In order for the data

base to be secure, two major conditions must be provably true: all

software utilized to permit a user to access or modify any protected

entities of a data base must be flawless, complete, and totally speci-

fic in the restrictions required for security, and all hardware used

to enforce security must either be totally flawless or be sufficiently

redundant to prevent a security failure. In this study, it will be

assumed that all security enforcing software will be created in a

secure environment by persons 6 f adequate integrity and that sufficient

code verification will be performed. To facilitate the ease of quali-

fying software, it will be fu *her assumed that all software routines

will be size restricted.* With these assumptions, it will be concluded

that the sofLware can be created without any flaws. Hardware re-

quirements for a secur% data base system are detailed in a later sec-

tion,3, wherein the system configuration and requirements are detailed.

It is the purpose of the data base model to ensure that

L the security-relevant enforcing software is complete and specifies all security

enforcement requirements. In this study, mathematical proofs validate

the data base model. General discussions of the security protection

requirements are presented in Section 4.3 of this report. Formal

proofs are detailed in a later section, A.5

A-2

Section A.2, which follows, prefaces the model discus-

sions by presenting some of the mathematical concepts required in pre-

sentation of the math model.

Comparisons to Past Models

As mentioned above, the model discussed in the sections

below are based upon the models described by Bell-LaPadula and Grohn.

Grohn's model itself is based upon that of Bell and LaPadula. The

model of Bell and LaPadula describes the requirements for a secure

system and the requirements for preservation of a secure system during

state transitions of the system. The secure system is defined to be

secure in terms of DoD security requirements and consists of non-dis-

cretionary and discretiondry access controls.

The model for data base security is described in terms

of secure state transitions. State transitions define the changes in

elements of a secure state. A transition is-a secure transition if

and only if it results in a new system state which is also a secure

state.

Grohn's model uses the same definitions of security and

adds an additional feature to the model called integrity. Integrity

refers to the "trustworthiness" of information added to a data base.

Security and integrity are subsequently combined into what is termed a

protection level. In addition, Grohn defines a tranquility principle

A-2a

F-0

which declares that entities in a system shall not alter their protec-

tion level.

The data accesses are controlled by a DBMS directory. The

Bell-LaPadula model performs data accesses through a tree directory with

certain dominance relationships between parent and child. The Grohn

model utilizes a set of directories, each directory at a given protection

level. Several other model differences exist. However, these are some

of the principle elements of thdse previous models.

The model for this* study will rely heavily upon the

model described by Grohn, utilizing his extensions of the Bell-La-

Padula model. However, the approach to the declaration and proof of

the model is different from those of Grohn and Bell-LaPadula. For

example, rather than emphasize the constituents of Protection (security

and integrity) and their characteristics, the model emphasizes pro-

tection and treats its constituents (security and integrity) as sec-

ondary. Also, the proofs of Grohn lacked mathematical formality. Bell and

La Padula's proofs are considerably stricter and therefore, their ap-

proach is used with the necessary modifications for this model. However,

the Bell-LaPadula theorems are often difficult to comprehend and

therefore the attempt here is to Oresent these proafs in a better or-

ganized and more intelligible manner.

A-3

A.2 Mathematical Concepts

A number of mathematical tools and relationships are re-

quired for the discussion of the Secure DBMS and during the validation

of the mathematical model. This section presents those concepts de-

scribing the data base model in a formal manner.

1) SET

A set is an unordered collection of mathematical ele-
ments (such as numbers, characters, etc) that are
listed or are identified by a common characteristic or
by a rule of formation. The enclosing brackets {.}
denote a set. The symbol 0 denotes the empty set, also
called a null set.

Some examples of a set are:

A list of grouping A= {cat, dog, horse} set of animals

identified by characteristic B={all prime numbers}

identified by a formulation C={all numbers with integer

square roots} ={1,4,9,16,25,...}

C=fx i I : xi2 is an integer

Because a set is unordered, the sets {1,2,3} and {3,1,2} are equiva-

lent.

Subdividing a set by retaining only portions of the

original set generates a subset. From the above example, a subset D

of set A above is D={cat, dog}. The null set is a subset of all sets.

The symbol for the subset operation is C: AC B means that A is a sub-

set of B. Formally a subset is defined ACB if AAlB=A where n is

the interseciton of the two sets and is defined as an operation below.

2) UNION

A union is a logical set operator which includes in a
resulting set A all the elements of the two sets it
operates upon. Duplicate elements are deleted from
the resulting set. The symbol u is used to denote the
union.

For example:

Let B={1,2,3}

C={2,5,10}

D={1,10,25}

A-4

A1 B U C = (1,2,3,5,10)

A2 = C U D = (1,2,5,10,25)

A3 = B U C U D = B U (C U D) = (1,2,3,5,10,25)

The union operator is associatative and commutative.

3) INTERSECTION n.
An intersection is a logical set operator which
Includes in a resulting set A only those items common
to the two sets it operates upon. The intersec+ion
of the two sets with no common items is the null
set, 0.

For example: using the same sets A,B,C,D from the above union example.

A = BnC = {2} A2 = CnD = {lO
A = BnCnn = (BnC) nD = Bn (CnD)= 03The intersection operator is both associative and commutative.

4) SET SUM: +

The set sum is a logical operator identical to that of
a set union. For example, if B and C are sets, thet,
A = B+C - BU C. The set sum is commutative and asso-
ciative.

5) SET DIFFERENCE: -

The set difference is a logical operator which includes
in the resulting set those elements differing between
the two sets it operates upon. If the two sets oper-
ated upon are identical, the set difference is the null
set, 0. For example, using sets B,C, and D from the
Union discussion;

A1=B-C = {1,3,5,10} = C-B

A2=C-D = {1,2,5,25} = D-C
A3=B-C-D = (B-C)-D = B-(C-D)=D-B-C = (3,5,251
A 4=B-B

The set difference is commutative and associative.

6) CARTESIAN PRODUCT: X

A cartesian product (a vector product) of two setscre-
ates a resulting set consisting of a set of ordered
pairs. If A and B are two sets and a. are elements
of A and b. are elements of B, then tAe cartesian pro-
duct of AxA is the set {(ai,b.)} for all i and j.

For example, let A ={a,b} and B ={1,2,3,4}.
Then, AxB = {(a,1), (a,2),(a,3),(a,4),(b,1),(b,2),(b,3),

(b,4)}

A-5

The ordered elements of the cartesian product are refer-

red to as tuples, or n-.tuples where n is the number of elements. The
cartesian product is associative but is not commutative due to the
ordering of the tuple elements. The size of the tuples which are the
elements of the resulting set is equal to the sum of tuples in the

sets in the product.

Foi- example, let A ={al,x),(a2,12),.. .1, (2-tuple)

B{(b 1,),(b , 2 .. (-tupl e)and C c = {c ,I)

(c2 %Y2 %2).1(3- tupl e) t hen R=AxBxC ={a,Pc,bl Pal C 1,Y1,1)

(al, 1,bl, 1 1CVY 22,etcl which is a 7-tuple.

7) TUPLE OR N-TUPLE

An n-tuple is an ordered group of N items. An n-tuple
is formed as the result of a cartesian product. An
example of tuples are (1,2,a) 3-tuple

(dog,cat,house,boy) 4 tuple

8) POWER NOTATION: AB

Given that A and B are sets, the power notation Ade-
notes the set of all functions from B to A. For exam-
ple, let A= a,b , and B=1,2,3 , then

AB={f1 , f2 f3, I such that

f 1 ={(l,a) ,(2,a) ,(3,a)} f5= {(l,b) ,(2,a) ,(3,a)}

f 2= {(1,a) ,(2,a) ,(3,b) f 6={(1,b) ,(2,a) ,(3,b)}

f 3= {(1,a) ,(2,b) ,(3,a) f 7={[(1,b) ,(2,b) ,(3,a)}

f 4= fl~a),2,b),(,b) f8= (~)(,)(,~

-- IIf nA is the number of elementsof Aandn B is the number

aof elements of B, then the number of functions in the set AB is

* I (n B.

A given function, fi defines the relation between set

B and set A. For example, given f3 is chosen, the element of A

corresponding to the B element b is 2. That is, (2,b) is a tuple of
fi containing the B element b.

A-6

9) DOMINATES:r-

The dominates operator,t-., is a binary operator. A
relation, R, such ast.,is a partial ordering relation
if and only if the relation is reflexive, antisymmetric,
and transitive. Grohn4 proves these requirements forb
and it will not be repeated here. For example, let

M={L 1,L2,L3.**Lr} where Li= (ai.,bi) and ai is the
element of A, and bi is a subset of set B. Then Li is

said to dominate Lj if and only if their elements
dominate.:

i iff

(i) ai 2 aj and

(ii) b i b j.

10) SET OF SUBSET OPERATORS: P(.)

P(.) is an operator which denotes the set of all sub-
sets of the set which it operates upon. For example,
if X is the set

X={A,B,2} then

P(X) = {A,B,2},{A,B},{A,?},{B,2}, 0,{A},{B},{2}}

11) EXCEPTION OPERATOR:\

The exception operator is a binary logical operator
used to permit change of the contents of a set or pro-
position. The expression A\B means propositional A
except as mgdified by B. For example, define a func-
tion see AO) f:

f = {(A,I), (B,2),(C,3)}. Now f(A)=l, f(B)=2, and

f(C)=3. However, if the function f is modified as

f' = f\ (B,8), the new function is fl{(A,1),(B,8),(C,3)}

and f'(B)=8.

A second example using a matrix is of interest in the

area of discretionary protection. Given two-dimensional matrix A

with elements Aij. The following operations are defined

A\Aij=a change element Aij to value a

A\Aij+b add b to Aijth element.

A-7

Finally, a third example wherein\operates on a set of

elements. Given the set z={1,2,31, a new set z' can be formed as

z'=z\3-A,B whereupon z'={1,2,A,B} where the elements A,B replace

the element 3.

The math model uses an extremely large number of symbols.

Figure A-i, presented below, summarizes these symbols.

MODEL SYMBOLS

b current access set b cP(SxOxA)
M discretionary Access Matrix Mij = x where xeA for 0. and Si

P Set of all Protection levels P = Ps x ox PC
F Set of data base forms F = {H,R,C,...}

S set of valid Subjects S =[s it S2,.'Si,... Sn}

0 set of valid objects 0 ={Oi, 02, ...O ,...0m

A access mode A ={r, e, w, a }

r read access r E A

e execute access ec A

w write access w c A

a append access a EA
!_

B all possible access sets B = SxOxA

MOD modify access mode MOD e{w,a}

OBS observe access mode OBSc {r, e, w}

S i an individual subject #i Si ES

0. an individual object #j Oj C0
x general access mode x E X

X set of subsets from access A X = P(A)

t protection dominance AvpB~as .1 bs, ai bi, as? Is ai qi

M i set of accesses for subject i Mij P(A)
to object j13

V set of all possible system VSBxMxPxF
states

v current system state v EV v (b,M,PF)

v* next system state v*C V

Figure A-i Math Model Symbol Definitions

A-8

p set of all possible rules p q (DxV)(Rxv)

pi a particular rule from p piE p

M* next discretionary Access Matrix (D, v*) = pi(RkV), v* = (b,M*,P,F)

b* next current access state (Dmv*) = Pi (RkV), v* = (b*,M,PF)

R set of Requests R={get append access, get read access,
add permission, etc.}

D set of Decisions D c {?, TRUE, FALSE}

Rk a system Request Rk c.R

Dm a request Decision Dm ED

a current Access set function a e (OxA)s a(Si) = {01,X1),.. .(Oj,Xj)...

T set of all Times T ={to,tl,t 2,t3,.. .t }

t a specific time t c T;i.e, t = to, t 1 , t2, or t=0,1,2...

Cs set of all Security Classifica- C = {TS, S, C, U}
tions '

c s Element of set of Security
Classifications cs e Cs

Ks Set of all Security Categories Ks = {NORFORN, NATO, ...etc.}

k s Subset of set of all Security
Categories ks P(Ks)

Ci Set of all Integrity Levels Ci = {1,2,3, ...} (for example)

ci Element of set of Integrity
levels ci e Ci

Ki Set of all Integrity Categories Ki = {A,B,C,D,...} (for example)

ki Subset of all Integrity k. eP(Ki)
1.Categories

T11 Set of all possible protection nI=C s x P(Ks) x C. x P(Ki)
levels s 1

Tr Element of set of possible
protection levels IT II

Ps Set of functions mapping sub- S
jects to maximum possible Ps
protection levels

Ps A funct 4on element of Ps Ps e Ps

P0 Set of functions mapping Objects 0

to possible protection levels Po = 1

Po A function element of P0 po P0
P, Set of functions mapping S

Subjects to current possible PC 11
protection levels

Figure A-1(Cont'd) Math Model Symbol Definitions

A-9

PC A function element of PC Pc Pc
P System protection level function

mapping max. subject level,
object levels and current sub- P = Ps X PoX PC (PsposPc)
ject levels

W The action of a rule, p W = (RK,Dm,v*,v)

W(p) A rule limited action set W(p)sW

C A mapping of states,V, into
time

z A functional mapping of all c.VT
possible system states into
time

Ct the tth state in a state se- -(tquence t =(b Mt p F)

P() subset operator

I-!

'K

Figure A-i (Cont'd) Math Model Symbol Definitions

IA-1O

A.3 Model Description

The following section discusses and defines the elements

of the formal math model.

A.3.1 State Model Description

The current system state, v, consists of four items:

the current access set,b; the discretionary access matrix,M; the non-

discretionary protection level,P; and the data base form,F. The sym-

bol used to represent the system state is v, where v is the 4-tuple

v=(b,M,P,F). A secure system state is defined through valid specifi-

cations of its constituents, b,M,P,F. The following sections describe

the system state in detail:

A. 3.2 Current Access Set b

A. 3.3 Protection Levels P

A. 3.4 Access Permission Matrix M

A. 3.5 Data Base Structure F

A n additional section, A.3-6, discusses a group of subjects exempt

from the security features imposed upon the secure system: Trusted

Subjects. Trusted subjects are a necessity for many facets of the

data base functions. Finally, the property of Rules in the Math Model
is detailed in Section A.3-7.

A-1I

A.3.2 Current Access Set:b

The Access Set

The current access set,b, is a set containing 3-tuples

which define the modes in which objects in the system are currently

accessed by the subjects:

b={(Sl, n), S10,1103,'t) ... (SiO j$!)

A general element in the current access tuple is written (Si,Opx)

where

Si is the subject, Si e S where S is the set of all subjects

0. is the object which the subject Si has accessed, 0. 0 where

0 is the set of all objects.

and x is the mode in which 0. has been accessed, x 6 A, where A is

the set of all access modes.

The tuple (Si,Ojx) mear.s that subject Si currently has x access to

object j.

Changes to the system state which result in a user ob-

taining access to a file or other data base object or results in a

user relinquishing access to such an item will cause an alteration in

the current access set. The process which gives a user access of any

type (read,write,etc.-see Section A.3.4) results in the addition of

the appropriate tuple describing this new access to the current access

set. Releases of access to an object by a user results in the removal

of the appropriate tuple from the current access set. For example, if

b={ 1 05 1L), (S 3 ,0 4 ,w) ($ 3 ,0 4 ,r)} and subject #2 opens file object 3

in the append mode, the new current access set, b* becomes

b*=b + {(S2 ,03,a)} = {(S1 ,05 ,L),(S 3,04 ,w), (S2 ,03 ,a)}. Furthermore,

if subject #1 releases object 5, then the new access set is

b*=b-((S 1 ,O5 ,r)} = {($3 ,04 ,w), ($203 ,a)}. A set of security specify-

ing rules discussed later in this report govern the system state

transitions, such as illustrated above.

We now describe the elements of the current access set.

A-12

: ., -,.. _ I, il ' i - - I--- I"' . .

Subjects

In this model, subjects are the active entities within

the system. As such, subjects are either users of the facility or

users of application programs. Inactive programs stored within the

data base protection areas are considered objects (see below). As

such, we make no restrictions regarding entities that may be both

subjects and objects beyond the fact that when an entity is active,

it is always treated as a subject. Note that only subjects can

cause changes to the system state.

An arbitrary subject is referenced as S i indicating the

it subject. S i is an element of the set of validated users and pro-

grams, S: Si E S= {S1,S2 ,S} where n is the total number of subjects.

The number of validated subjects may increase or decrease only through

the actions of the trusted subject or data base manager (See 2.2.6).

Objects

Objects are the passive entities in the secure DBMS

model. As such, objects do not act upon other model entities and can-

not generate any system state changes. As previously mentioned, some

objects may be application programs and therefore are considered sub-

jects while actively processing.

The referenced 0j indicates the arbitrary jth object.
0 0 is an element of the set of all objects in the system,

0: 0. E 0 = {O1,02,03,... , m I where m is the total num-

ber of objects in the system. The number of objects may increase or

decrease as a function of time as the result of the activities of sub-

jects.

Accesses

In the course of interacting with data base objects,

subjects must access the objects in one of the permitted access modes.

In general, a subject can access an object in two general modes;

1) to observe (referenced as OBS) and 2) to modify (referenced MOD).

These two basic access modes are further reduced to the familiar set

of access modes A: A= {r,e,w,a} where;

A-13

LwII"1111il

r is read permission observation but no modification

e is execute permission-no observation or modification

w is write permission-observation and destructive modi-
fication

and a is append permission - no observation and non-destruc-
tive modification

As such, MOD {w,a} and OBS c{r,w}. For notational convenience, a gen-

eral access mode is written as x, as in the tuple (Si,Oj,x) where x A.

Properties of b:

The current access set b is a subset of all possible

access modes between subjects and objects, B: bcB= S x 0 x A. This

cross product creates a set B consisting of all possible tuples with

elements from the subject set,S, the object set,O, and the access set,

A. The protection requirements (Section A.3.4) and the discretionary

access controls (Section A.3.3) of this model restrict the set of

accesses of b. This means that b is a subset of B because the security

protection constraints of the model specify only certain access modes

to objects by a given subject or because the subject responsible for

the object does not wish to grant discretionary access of the object

to the particular subject. Figure A-2 illustrates the subset b in

the form of a Venn diagram.

The Current AccessFunction: O(s)

In the course of the data base security model proofs,

a useful function is the current access set function, 8. 6 is an ele-

ment of the set of current access set functions, O(S) c (OxA)s where

0, A, and S are the set of objects, access modes and subjects as pre-

viously defined. B is used to map a specific subject, Si , to a set of

valid object-access mode tuples, (O,x), as O(Si) (01 ,xi),(0 2 ,x2),.

(jXk),... } where subject i has access to object j in mode x, and

S. S, 0. E 0, Xjk e A. This function determines the modes of access

of all objects currently accessed by a specified subject,S i . Formally,

8 is the current access set function if and only if the subject-object-

access mode tuple (SiOi.,) is an element of the current access setb,

then the tuple (Oj!) c a(Si): (Si,Ojl))b (Oj,l) c 1(Si).

This function will be of use in Section A.4.2,Theorems.

A-14

Set of All Accesses

Set of all Protection
permitted accesses

discretionary controlled
accesses

S Current

Saccesses

mb is bounded by this
'. bo rder

Figure A-2 The Current Access Set b

A-15

A. 3.3 Protection Levels: P - Ntn-discretionary Control

Introduction

The protection requirements of this model enforce two

forms of security: discretionary and non,4discretionary. This section

covers the general principles, the reasoning and definition of pro-

tection, and the enforcement of non-discretionary access. Protection is

an expanded form of the common practice of security classification and

information categorization for purposes of controlled access of in-

formation by individuals with the required need to know and security

clearances.

In most cases where the controlled access of secure de-

fense data is required, the information is characterized in two ways.

First, a classification is given based on the sensitivity of the in-

formation with regards to the defense of the United States. These

classifications are typically Top Secret, Secret, Confidential and

Unclassified, in order of descending sensitivity. In this model these

elements will be grouped into a set, , called the security classifi-

cation set. An element of this set will be denoted by c s; formally:

cs EC s = {TS,S,C,U}

Categorization is the second type of information charac-

terization. Although an individual may have the proper clearances for

access to a particular piece of information, he may not need the ac-

cess. Therefore a formal set of "need to know" categories are used

as a second limitation on nondiscretionary access. These categories

are elements of a set, Ks , called the security access category set.

Subsets of this set, denoted ks , will be used as a second character-

ization of protection in this model. Formally these subsets are ele-

ments of a set of all possible subsets of K or:

k sc P(K S)

These characterizations of classification and security category form

a security level similar to those given in most installations with

controlled access to secure information.

A-16

ij

The Grohn model extends data protection beyond security

categorization to include integrity. Integrity is a static property

of a dynamic system, which requires that the initial soundness of a

system be maintained throughout its activities. Non-discretionary

security is sufficient to control the access of information by obser-

vation but since modification is also an allowed form of information
access, some non-discretionary constraint must control the data in-

tegrity of the modifications. Integrity classifications and a set of

integrity categories similar to those of security characterize the

level of integrity. An integrity classification indicates the 'ound-
ness" of information and is denoted by ci, an element of the set of

possible integrity levels Ci:

cie Ci Example of Ci: Ci = (1, 2, 3 .. .)

Integrity categories form a set Ki, subsets of which form integrity

category sets:

k i P(Ki) Example of K.: Ki = (A, B, C. . .)

PROTECTION LEVELS:

The protection level of an element of this model is de-

scribed by the four characterizations presented: security classifica-

tion, security category, intearity level, and integrity category. A

protection level is an element of the cartesian product of these ele-

ments

e nl=C s x P(K S) x Ci x P(Ki)

We must now define some relations and properties of

protection levels that satisfy the system security requirements.

Ordering

To permit comparisons of protection levels, our protection

model must provide for an ordering among the protection levels.

This ordering is similar to that of security levels where Top Secret

is the highest, and Secret, Confidential and Unclassified follow.

This ordering can be expressed as: TS > S > C > U

A-17

a !'w

For this model, we order protection levels in a similar

manner: Given two protection levels, wI and T2 from set I, the set

of protection levelsIl,

1t 1 1
where 71 = (k 1 cI, k!)s' s' 1' k

(kc2 2c 22 = (s' ks' I' i

Then Tr is said to dominate f2 (i.e. I is ordered ahead of 12) if

and only if
ci > c2
s- 3 (1)

(2
kI * k 2 (2)
ks - s

c -I (3)
1 2ki 1 i (4)

Condition (1) requires the security of the dominated

level be lower than that of the dominating level. Using

the ordering given above for security levels, if cI = TS

andad2 = S, then 71 would satisfy the first condition foran s 1

dominance of Tr2 by Tr:

Condition (2) requires that the set of security categor-

ies of the dominated level be contained (i.e. be a subset of) the

set of security categories of the dominating level.

Conditions (3) and (4) apply to integrity and are just

the reverse of the corresponding conditions on security.

The integrity of the dominating level must be less than

or equal to that of the dominated level for Condition (3).

Condition (4) requires the integrity categories of the

dominating level be a subset of the integrity category

set for the dominated level.

These conditions form a partial ordering on the set of

security levels. Grohn gives an adequate proof of this partial or-

dering. For this reason we do not repeat this proof in the next section.

A-18

The symbol k- denotes the dominance relationship and is

read "dominates"

Protection Functions:

We must now define a function to map elements of the sys-

tem (subjects and objects) into protection levels. This function will

be denoted by Pxwhere x can be s,o, or c corresponding to maximum

subject protection, object protection, or current subject protection

level mappings. These are defined as:

Ps E Ps = lS= (CsxP(Ks)xCixP(Ki)) s

PO : Po = T°=(CsXP(Ks)XCixP(Ki)) °

PC C Pc = 1S=(CsxP(Ks)xCixP(Ki)) s.

The cross product of these functions form the system protection level

function,P, the third element in the system state:

P = (Ps'Po'Pc) = s x P x P c

Properties of Protection

Protection levels characterize the element of this model.
In this model, we define a secure access as one which relates the pro-

tection level of the subject (the accessor) to the protection level

of the object (the accessed) through the three properties. These

three properties provide for non-discretionary protection: the simple

protection property, the *-protection property (pronounced "star"-

protection property), and the tranquility property.

Simple Protection:

The simple protection property applies to observe type

accesses where observe is either read or write: OBS E{r,w}. The

simple protection property holds for a given access of object 0 by

subject S in either r or w made if and only if the current protection

of the subject P c(S), dominates the protection level of the object,

P 0):

Pc(S) " Po ().

A-19

Note that the simple protection property applies only to observe

(read or write) type accesses and this prevents subjects from ob-

serving objects which have higher security levels or lower integrity

levels.

*-Protection Property

The protection model constrains modification accesses by

the *-protection property. When subject S is accessing object 0 in

either write or append mode, the *-protection property is satisfied

if and only if the protection level of the object, p0 (0), dominates

the current protection level of the subject, pc (S):

Po(o)t Pc(s).

The *-protection property applies only to modify (write or append)

type accesses and prevents subjects from modifying objects with lower

security or higher integrity. This prevents the posssibility of hav-

ing high security information or lower integrity information written

or appended to objects of lower security or higher integrity.

As detailed by Grohn 4 , the satisfaction of the simple

protection and *-properties form a required ordering by protection

level of the objects simultaneously accessed by a given subject.

Given S as a subject and 01,O 2 and 03 as three objects accessed by

S in append, write and read modes respectively it is required that:

Pc(S):-po (03) by simple protection,

Pc(S)' Po (02) by simple protection,

p (O2) ,=Pc(s) by *-property, and

po(O1)xPc (s) by * property.

Therefore: po(O) -P(O 2)--P (0

It is shown that 1) append accessed objects must dominate read and

write accessed objects; 2) write accessed objects must dominate

read accessed objects and must be at a protection level equal to that

of the accessing subject; and 3) read accessed objects must be dominated by

the accessing subject.

A-20

..

Tranquility Property

The third protection property is called the tranquility

property and it states that the protection level of an object never changes

An extension of this property requires the current protection levels

of all subjects be a constant or:

and PO (0) = constant for all objects

PC(S) = Constant for all subjects.

This property prevents the use of the classification level of an

object as a covert communication path. In addition, the downgrading

of information through alteration of the subject protection is pre-

vented in this model -- only the trusted subject can downgrade the

protection level of an object. Section A.3.6 describes the character-

istics of the trusted subject.

The system which maintains these three properties

(simple) protection, *-protection, and tranquility) satisfies the

requirements for non-discretionary security.

A.3.4 Access Permission Matrix: Mij-Discretionary Access
Control

Protection, as described above, restricts subsets of

B permitted to exist as the current access set, b. (See Figure A.3-1).

In addition to protection which enforces a DoD security policy and a

data quality integrity policy, the subject-object-access tuples of the

current access set are further restricted by the access periiission

matrix, M, which provides the discretionary access control in the

model. The access permission matrix consists of a table of access

permissions as a function of subject object pairs and can be viewed

as a table as illustrated in FigureA-3.. In this table, all valid

subjects from set S appear on the rows and all objects within the

system from set 0 appear on the columns. The matrix entry at the

intersection of the jth column and the i th row is an element from the

access set, A, defining the valid access modes for the ith subject to

the j th subject. As such, the entries for Mij are mathematically

equal to Mij s P(A). That is, Mij is a subset of the set of all sub-

sets of accesses in set A.

A-21

01 02 .. 0 m-I m

SI r,e r,e r e

S2 r,e, r r,w,e 0

Sn-l r,w,e a,r r,w,e e

Sn e r,w,e r,e r,w,e

FIGURE A-3 EXAMPLE ACCESS CONTROL MATRIX

Also Mij forms a mapping function from subject-object pairs to valid

accesses:

f(SiO) x where X=P(A)

Conversely stated, if the tuple (SiO j , x) is an element of the cur-
rent access set b, then access x must have been recorded in M at lo-
cation i, j:

(S i Oj,x) E b iff x E Mij where x c X=P(A)

Entries into the access control matrix are protected

through the same mechanisms of any protected object. To add or re-
move accesses from the matrix first requires that the subject be given
the corresponding discretionary permission and that the subject be at

the required protection level.

A-22

16 NE'72-

A.3.5 Data Base Structure: F

The fourth element in the state model vector is the data

base structure, F. F specifies the form in which the data is stored

and is an element of the set {H,R,C...} where H is hierarchial, R is

relational, and C is CODASYL. It is not the purpose of this study to

detail the characteristics of these or any other data base form. The

important concept here, however, is that the protection provided by

this model is independent Df the type of data structure used in the data base.

It is the implementation of the secure DBMS which most greatly impacts the math model.

The data base structure and the system configuration do

require special considerations in the specification of the data base

access utilities. The type data base and the system configuration may

require that special interface handlers and directory management soft-

ware be written, for example.

The relational view for data base acces is used in the model

constructed during this study. -There are several advantages to use

of the relational data base structure, including ease of usage, flex-

ibility and data independence. Figure A-4 presents many of the

reasons for use of a relational data base structure.

A-23

C)~. (~0 f L)4) o

>~ (A~ .*-L.04- d) 4)Wa (
CU - 0- L) cu C0..C- o 4-)ECA

oa 4) Ln~E IA 4) 4 Laa
a)4) U (0 S

4
- c '- a)

aU*'N 4-) 4- CL4

V) > *Ca) 00 L04) 4a)). 4jMCL 4-).Q
fU-- C)C 'U L) 44 L U U '0 0 (a- 4- :IECL eo E c) mI C4.,Ca)' -- 4- 4-- =3 O S- _a.0 (A 0~L . U ' - EC) ~ 4-S-) ' C -j 0. ()

0o to 4- . > 'U -C 4-o (0
V) - U. ~ U 4 + 4 -) E. (A 90

C) ~~L C L) C -) > L 4 -4 - Ua C LCW a
(1 co 0'U

-0 0U a O W U 0 S- I).- . - - - E 4 -. 0 , U ~ W C L . C)) ,
V ~ ~ (4-O 4)) S - -' C NC . . . 4Q) 4J

C0c -.
(4)

U 4~I ~ Q' - - ~ ~U) 0 4
3 W C~4- -' a) U-' 4-))4 ' - 00 U ')(E A a) .- L) -4 , ~ S- 0) 4-) (

E 4- > C
4- 4- :3 a cm n MO- 'U

0 S- x SCL (U V 04- L-fu 4- 1IC C) 0

(A z L 1 mo n(

ro 4- (A (Acn4
CD 0 -S S- 0 4Jto) m 0 0 m- u L

S - 4 (a 4.) M-4
(D (U 0. taL/3 43 LU) 4-) S-~ 4 - - L SS- a) (U LU LU S- >
S- (&A S- Q o

-Q r_ a) m *1 4- S- r_ 4J (0C

.z I r

A.3.6 Trusted Entities

There are two entities within this data base model which

are not constrained by the protection measures presented for the mod-

el above. Both entities can be termed trusted subjects. The first

set of trusted subjects is the collection of data base security en-

forcing hardware and software. The second group of trusted subjects

are those individuals entrusted with the management of the data base.

Both the hardware and the software of all data protec-

tion processors must be trusted, lest the protection be invalid. The

hardware used in construction of the security enforcement system must

either be accepted to be free of design flaws and trap doors or pro-

cessed through a validation study. Implementation of the secure DBMS as a distribu-

ted architecture removes some of the risk from the hardware: the user of the system

does not have direct programming access to the trusted hardware and conse-

quently cannot attempt to exploit any of its possible weaknesses.

This fact then places the burden of secure design upon the DBMS archi-

tect and the access rule programmers.

All software used in the enforcement processors must be

certified to be free of flaws and trap doors and functionally correct.

The validity of the software is probably more significant than the

validity of the processor utilized because this software provides the

interface between the user and the protection system. The software is

the embodiment of the security enforcement rules of the DBMS security

model of this document. Validation of the software requires proof

that all modules implement only the desired operational functions.

Development in a secure environment by trusted individuals of high

personal integrity is a necessity to ensure that no trap doors or

other unintended code is embedded in the process. (See Threats in

Aooendix B.) Correctness of the software requires detailed checking

against the rules specifications to ensure the intended performance.

In addition, validation requires actual testing of the procedures

operation. Finally, to ensure against tampering with the software

and to prevent subjects from creating their own code for execution

within the security enforcement processors, all software must be

embodied as firmware: software encoded in ion-volatile, unalterable

read-only memories (ROMS's).
A-25

Software certification is a difficult process but ex-

tremely critical. One method of certification consists of using

only very small software modules (approximately 200 lines of code).

Small routines lend themselves to detailed scrutiny and comparison

to the intended process. It is necessary that the software be shown

to accept only the expected requests and formats and to render only

the desired decision based upon the security rule implemented. No

other change in any system parameters or system state can be permitted.

If the process is sufficiently small, and the system of processes pro-

perly defined in terms of any inter-module interaction, the software

can be certified..

The second group of trusted subjectsis a single user or

a group of users who are trusted and of high integrity who are em-

powered to by-pass all the protection elements of the secure DBMS.

Such trusted users will function as the data base administrators

(DBA's). The DBA has several duties which must be executed in

order that the data base functions properly. The most obvious of these

duties are those of adding users to the set of valid users and setting

users maximum protection levels within the system. In addition, due

to the characteristics of the protection rules, and in particular, due

to the *-property, the only mechanism through which the protection

level of an object can be modified is through the explicit action of

the DBA. Figure A-5 presents some examples of the responsibilities

of the DBA.

A-26

V) LU -

I Z - >< LU -

=. Cl .-
LIl LU - -

(A m WD j :z (A Ix

:3 LJ =- Z L C 0>- LL.I
LU > LLi < 2: I-

'-41- LIi 2C LU '4

LL >- -- -i J -

C) - 0 .Lii =A 0 1-
m < ILI(V j < V- (

>. _j .- '- < Lii =D
< LLI (A L LIi CL (A

(A Lii of = C D X: < Lii
(A - Ci 0-j < < 0: co c
Lii () D - F- cc L.)

LL LI~ (A CY F- - < (A 0) < 0)

1- j LLi IX Lii C < (A 0= <x
< _j F-- (A 0) L 03 (A
LI U)i (A = OZLLJ CD -c LLJ
IL - - F- I-- (A =L V) 0

00 C < CL L) 0l Lii m 0 D 0 3 4
>- V-4 (A u m- C-) mli to
F- F'- M ~ A (V) ILl w LiiI

'-4 (C) 0 W V)i(LLJ < CD C) U - 41b
-ii- LL - V) 0 = -: m i 1- V) CD4

C-) >. C -) (An C-) m'- 0 V (A)) CL. .4-
LIi LLJ~ = Lii (nA< =I IL = < LLi-. s- E
(A -j -i = CD < uC-) Lii co -J - LLIii-a

LL. =U LL c>. <A V) 0t X(<AC) <.4<-
(AU 0 < <-I = L CD F-Z -o ~Lii
n '-4'- = < M -= (A F- il0 Zi

cm F- < F- l4LL- I ii Liic (A 0- -40 < to
U)Lii < -<0 Co IZ- Lii CL 0 -I-i

< LUC-U (A0 m M: u (A s-i (< V(A< <(A)
F- - F-) Lii < (A < = >- L.) IX = 0l< to
<(00 C ..JiLA- M - CO (A) L iiW Lii(V) c 4-3
MC(D cei 0 (A C) V)= (nACD (n (A 0n

0: 0- w Li <LIiV (n 0: m 0 0= CCi
(A.!) >- = F- Wi((A 0.r IL = 1
w (nZ (ACu - =A 1-0 C Lii (AZ = A W< d
C(A V)=< LI = LiJC) < J Lii 3 c) i- < xC3

V)(C.D L) ZLJ I-C- u 0:/) LL) (n >. x
W-L " W--L < Li< (i CD 0<

L.) v)CA) L fL) - Wii W I-- Lii uL >- D (An C-) 4--
C V M= ILLs-i LLi = =L< W i LiZ (nAC LiLJ 0
M < <~ 0W 0 L) F- CDO 0l < Ls<L. CI 0

CD C) V
1= IA4

C) F- c-j = = <0

C3 1x C - V)0

0 j .4J Qo>- J ?cci C0 0- F L i LIi -

C) Ix U3 0> (A =C

Z- Z J wi s-. CD> Im

Li < Z < 0 1--J CD
w w -w LUI F- LI1- I-. w

A (A V) u (n
F- Li=

1- 1- 1 1L >- (AV .. 1- 0.
00 0- 0 A l.

A-27

iI I

A.3.7 Rules in The Data Base Model

The data base rules are the most important items in the

secure DBMS model. Rules are the links between the formal model de-

finition and the data base system: Rules are the data base process

embodiment of the security restrictions. The data base designer must

define a set of rules for each data base user process in such a manner

that the formal data base model can validate the rules.

As described in Section A.3.2 a rule is a function which
operates upon a request, Rk, and the present system state,v, to deter-

mine a decision, Dm , and a resulting new state v*, as

pi(Pky)=(Dm,v*)

where Pi is a particular rule from the entire set of rules

within the model,p,

Rk is the request, (i.e. get-append permission),

v is the current system state, v=(b,M,P,F),

Dm is the decision generated by the rule

Dm e D = {?, TRUE, FALSEO, and

v* is the new system state resulting from the decision,

changing either the current access set, b-b*, the access

control matrix, mm*, or both. The protection level is

invariant due to the tranquility principle and F is

invariant under a system.

j If Dm = TRUE, then v* is some new system state, v*=(b*,M*,PF); if.D

- FALSE, then the system state does not change; if Dm = ?, the request

Rk was not recognized and is considered invalid. Thus, a rule can be

viewed as a mapping of a request and an initial secure state to a de-

cision and a resulting secure state.

The rule pi above is one of many valid rules existing in

the secure DBMS model. The set of all valid rules is p, where pi e p.

A-28

The set of valid rules is formulated as pS (DxV)(Rxv) where

RxV forms all possible request-system state tuples and

DxV forms all possible decision new state tuples.

The power notation (see Section A.2) generates a set of functions

fplP 2,P3 ...Pi9 ... Pn} where n is equal to the number of elements in the

set DxV raised to the power equal to the number of elements of set

RxV. Because not all rules will permit transitions form a secure

initial state to a secure resultant state, p is a subset of the set of

all possible rules.

The set of valid rules is specified in accordance with

the desired user access functions. Figure A-6 presents an example

list of user functions for interaction with the data base.

A rule is secure state preserving rule if and only if

the resulting state v* is a secure state when pi(RkV) = (Dm,V*) and

v is a secure state. Similarly, the secure state preserving rule can

be shown also to be simple protection preserving, *-protection pre-

serving, and discretionary protection preserving. Secure state pre-

serving rules are the basis of the security model implementation.

I

/ -- I l II~ l:...... ,, -.-29-

LAJ

LL.
LL.

LI

LJ

LJ
I.- (A

4-) (1

u 0 IV

U (2) 4-) dU
4) .1- a), U - W .) 4) (a
U " 0 r-, (1 S- (A 01

0) 0L CA 0. UQ (a
.0 000 n I 0 0

4-) 0 U 0 0
0 (A 4-) U 4-) a

C) (A I) n L 0) 4) 0 4
o A In i u wn S- -0) Co0

F- o) U 0o U .0 0c 4- 'x S..

U (A d 0 In nu 0 4-) 4-) In
ro 00 4-) 0) G*-U u

r_)) 4A In L- 4J 4) d)
V) "0 Q) U 4-) In W -0 (D r., .11 i-
Lii (a 0. 0) 0) 0 Lo 1-.0 .0 0
O3 (D Q. x S-. U 4 u 0 0

In In In In 0 r_ (A0

4) 4-) 4-) 4-) 02) (A
In In In In (A. 4U)In 0L) ai di
4) (U (1) (L) 04-) (-i > 4I) >

a, C7 * 0 0 0 a' -S- S u

S. 1. . S.. S. 0a. S. U S.- 0D

Lni

di I-v 41
fai CL W ci 0

di 0 x L.. In 4.) w (Udid'I w-. 4) 4) S- w) C
cm c im cm S- *r- e- V) 4)

A-30

A.4 Security Item Definitions

The following are a set of definitions pertinent to the

proofs contained within this Appendix. These definitions, although

brief, are presented to reiterate some explanations of model elements

developed in Section A.3 and as such, should be considered as a

reference to the proofs. For more infcrmation see Section A.3

I State: A state of the system denoted v=(b,M,P,F) is an element

of VcBxMxPxF and represents the current accesses, the

access permissions the subject and object protection

levels and the data base form at any time.

2 State Sequence: A state sequence, denoted z, is a mapping of

states, elements of V, into time or z E ZcV T where T

is the set of times. zt is the tth state in the se-

quence z:zt=(bt,Mt,Pt,F).

3 Current Access Function,a: The current access function, s(Si)

is an element of the set of current access functions,

a(S i) E (OxA)
s

where O,A,S are the set of all objects, set of all

access modes, and set of all subjects, respectively.

For a given subject, Si. a returns the set of object-

access mode tuples, (0jx);i.e 8(Si)={(01,X1),(02,L2)...

(Ojxk).. . where subject i has accessed object j in

mode xk and Si c S, 0. e 0, and xk c A

I Simple Protection Property: A state v=(b,M,P,F) satisfies the

simple protection property if and only if pc (S)--o0 i)

for every subject Si, and all (0j,x) C B(Si), where x

is r or w and a is the current access function.

5 *Protection Property: A state v=(b,M,P,F) satisfies the * pro-

tection property if and only if p (0)V-p (SO for every

subject Si, and for all (0j,I) e s(Si), where x is w

or a.

A-31

6 Discretionary Protection Property: A state v=(b,M,P,F) satis-

fies the discretionary protection property if and only

if X e Mij for every subject Si, and for all (oj,x) E

(si).

7 Secure State: A state v=(b,M,P,F) is a secure state if and

only if v satisfies the simple protection, *-protection

and discretionary protection properties.

8 Secure State Sequence: A state sequence z is a secure state

sequence if and only if for every zt , tE:T, zt is a

secure state.

9 Secure System: A secure system is one which is described by a

secure state sequence.

10 Rule: A rule is a functional mapping of request-state pair

into decision-state pairs. A rule p e(Dxv)(Rxv)

11 Secure State Preserving Rule: A rule is secure state pre-

serving if and only if v* is a secure state whenever

k (Ri,v)=(Dmv*) and v is a secure state. Secure state

preserving rules preserve the simple protection property,

the *-property and the discretionary property.

12 Action of a Rule: An action of a rule is an element of the set

W=(Rk,Dm,v*,v). The element W is the action of a rule

Pi if pi(Rkv)=(Dm,v*).

13 Rule Limited Action Set: A rule limited action set, W(p)c W,

is defined over a set of rules, p={plP 2 ,...pn , as

, (Rk,Dm,v*,v) e W(p)iff

(i) Dm ? and

(ii) (Dm,v*)=PJRk,v) for a unique i, I i n.

condition i) requires that the request be a valid re-
quest rule.

condition ii) requires that for every rule and request
Ri , there be a decision, D m:Dm E {True, Falsel

A-32

A.5 Theorems

This next section contains a set of theorems and assoc-

iated proofs necessary for the support of the validation Of a set

of rules necessary for data base operation. These rules, in actual

implementation, support two functions, From the data base users point

of view, the rules provide him with access to objects in the data base.

From the security point of view, the rules must enforce the requirements

of protection and thus be protection preserving rules.

A.5.1 Mathematical Proofs For a Secure DBMS

This section presents a set of theorems and proofs

formally describing the requirements of a Secure DBMS. These proofs

are presented in four major groupings:

1. Requirements of Actions for Security Preservation
II. Properties of Secure State Preserving Rules

III. Requirements for Secure State Preservation During Additions
to the Current Access Set.

IV. Security preservation during actions of rules which do not add
access, do not change protection or do not remove access per-
mission 8 iou p I Theorems (Theorems 1-3) present the conditions

necessary to restrict the set of actions, w, to those actions which

maintain a secure system.

Group 11 Theorems (Theorems 4-6) prove that an action

set limited by a set of secure state preserving rules forces the sys-

tem to be a secure system. As a result, these three theorems prove

that security enforcement lies in the design and implementation of the

rules themselves.

The Group III Theorems (Theorems 7-9) peettesto

conditions which must be met to maintain a secure state under additions
of subject, object, access tuples to the current access set.

The Group IV theorems present the conditions for the

actions of a rule to be secure state preserving in the special cases

where protection levels do not change, accesses are not removed, and

* permissions are not added.

A-33

GROUP I THEOREMS: REQUIREMENTS OF ACTIONS FOR SECURE SYSTEM PRESENTATION

THEOREM 1:

This theorem proves the completeness of the constraint

conditions on the set of allowable actions which will maintain a sys-

tem which satisfies the simple protection property.

Statement

The system satisfies the simple protection property for

any initial state, zo , which satisfies the simple protection property

if and only if W, the set of actions, satisfies the folloiwng condi-

tions for each action, (Rk, D m(b*,M*,P*,F*), (b,M,P,F,):

(i) for each (S,O,x) E b*-b and x r r or w then
p * (S) -p*(O)
c o
(ii) for each (S,O, x) E b and x =r or w and

p* (S)4- p*(O) then (S,O,x) b*
c o

PROOF

For the system to satisfy the simple protection property,

every state in the state sequence must satisy this property, key de-

finitions 8 and 9.

Given z =(b°,M°,PO,F°), a state satisfying the simple
0 t

protection property, at time 0, we must show that zt = (bt ,Mt pt F

is a simple protection satisfying state for any time t F T.

First, we will show that z = (bI ,MI,PI,F I) satisfies the

simple protection property. As the result of the state transition

creating b1 , either in bI-b 0 or bin b . ElEments in b -b0 satisfy the

simple protection property due to condition ki). Elements in b1 n b0

satisfy the simple protection property due to condition (ii).

Secondly, we must show that for anyz t1=()-1, pt1

Ftl) which satisfies the simple protection property, zt satisfies it

also under conditions (i) and (ii). Similar to the previous argument,t bt t -1 bt bt -1
all elements of access set bt are in either b- b or btn b

t
Elements in bt bt - satisfy the simple protection property due to

condition (i). Elements in btfn bt - I satisty the simple protection

property due to (ii).

A-34

Since z satisfies the simple protection property for a

secure initial state z and zt satisfies the simple protection prop-

erty for a previous secure state zt - 1 under conditions (i) and (ii) on

W, then Z, the sequence of system states, is a simple protection pre-

serving state sequence, and the system is a simple protection preser-

ving system.

Finally we must prove the "only if" condition. Suppose

the system satisfies the simple protection property and has an initial

state z which also satisfies the simple protection. Assume that the

action (RkD,(btMtPt,Ft), (btl,Mtl,ptl,Ft-)) exists such that

either:

(iii)there exists some (S,O,x) E b t-b t -1 where x=r or w

such that
PC(s) - P0 (0 or

(iv)there exists some (S,O,x)Eb t - 1 where x=r or w

such that
pc(S)Apt(o) and (S,0, x) c bt n bt.

t 0
Then there is some (S,O,x) in b t-b t - I which does not satisfy the simple

protection property relative to pt (by iii) or there is some (S,O,x)

in b t-ln bt which does not satisfy the simple protection property rel-

ative to pt (by iv). Since bt = (bt-bt -l) u(btl n bt then there is

some (S,O,x) Ebt which does not satisfy the simple protection propertyt

relative to P Therefore, zt does not satisfy the simple protection

property, and the system state sequence does not satisfy the simple

protection property. Consequently, the system does not preserve

simple protection property which contradicts our supposition and com-

pletes our proof by contradiction.

A-35

• 14 Ui n.u- "

THEOREM 2:

This theorem proves the completeness of the constraint

conditions on the set of allowable actions which maintain a system

which satisfies the *-protection property.

Statement

The system satisfies the *-protection property for any

initial state z which satisfies the *-protection property if and only

if the set of actions, W, satisfies the following conditions for each

action (Rk, 9m , (b*,M*,P*,F*),(bMPF)).

(i) for each (S,O,x) E b*-b and x = w or a then

p*(O)t-:D*(S)

(ii) for each (S,O,x) c b and x=w or a and
p*(0)c4 p*(S) then (S,O,x), 0 b*

Proof

For the system to satisfy the *-.protection property,
every state in the state sequence must satisfy this property by de-

finitions 8 and 9.

Given zo=(b°,M°,P°,F°), a state satisfying the *-protec-

tion property, at time zero, we must show that the system state at time

tzt=(bt,MtPt,Ft),is a *-protection property satisfying state for any

time t E T.
To do this, we first show that z =(b1, M 1, pIF I) satisfies

the *-protection property. All elements of b are either in b -b0 o

bln bO. Elements in blnb 0 satisfy the property by (ii). Elements in

b bl-b 0 satisfy the property under condition (i).

Next, we show that if some general time (t-1) the system

state ztl t-1,Mtlpt-Ftl) which satisfies the *-prutection

property then zt satisfies it also under (i) and (ii). All elements

of bt are either in bt-bt - or bt nbtl. Elements in bt bt - satisfy

the property under condition (i).

Therefore, for any time t cT, the state zt satisfies the
*-protection property under the restricitons on the set of actions W

A-36

in (i) and (ii). So z is a *-protection preserving sequence and thus

the system is also.

Finally, we must prove the "only if" condition. Suppose
the system satisfies the *-protection property and has an initial state

z which also satisfies the *-protection property. Assume there is

some action (RkDm,(b t Mt Pt ,Ft) (tlMtptlFt-)) such that
kI

either:

(iii) there exists some (S,O,x) e bt-bt - 1 where x=w or a

such that po (0)t pt (S) or

(iv) there exists some (S,O,x) c bt - I where x = w or a

such that p (O)t.pt(S) and (S,O,x)E btn bt

By our assumption on the action, there is some (S,O x) in
t-b t - 1 which does not satisfy the *-protection property relative to

Pt (by iii) or there is some (S,O,x) in bt-in bt which does not satis-

fy the *-protection property relative to pt (by iv). Since bt =

(bt-bt - 1) u(b t -I nbt),then there is some (S,0,x) e bt which does not

satisfy the *-protection property relative to pt. Therefore zt does

not satisfy the *-protection property and z does not satisfy the pro-

perty. Consequently, the system is not *-protection property pre-

serving which contradicts our supposition and completes our proof by

contradiction.

jA-I

.1

THEOREM 3:

This theorem proves the completeness of the constraint

conditions on the set W of allowable actions which will maintain a

system which satisfies the discretionary protection property.

Statement

The system satisfies the discretionary protection property

for any initial state z which satisfies the descretionary protection

property if and only if W, the set of actions, satisfies the following

conditions for each action (Rk,Dm,(b*M*,P*,F*),(b,M,P,F)):

(i) for each Si and every(Oj,x) e*(Si) - B(Si) then
x F- M*

(ii) for each Si and every (O.,x) C6(S i) if x e Mij
then (S i ,90 j xe b*

PROOF

For the system to satisfy the discretionary protection

property every state in the state sequence must satisfy this property

by definitions 8 and 9.

Given zo=(bO , MO ,p,FO), a state satisfying the discre-

tionary protection property at time 0, we must show that zt =

(bt,Mt,Pt,.t) is a discretionary protection property satisfying state

at any time t.

First, we show that z1=(b , M ,P1,F1) satisfies the simple

protection property. All elements of bI are either in bl -b0 or b1 n bO.

Elements in b -b0 satisfy the discretionary protection property due to

condition(i). Elements in biln b0 satisfy the property due to condition

(ii).
*. Next, we show that for any state zt_l=(bt-1M-p

which satisfies the discretionary protection property zt satisfies it

also under condivions (i) and (ii). Again, all elements of bt are
t t1 t- -

either in bt-b or btn bt ' . Elements in bt btl satisfy the dis-

cretionary protection property due to condition (i). Elements in

btbt'1 satisfy the property due to condition (ii).

A-38

Then z is a discretionary protection preserving state

sequence and the system is discretion protection preserving.

Finally, we must prove the "only if" condition. Suppose

the system satisfies the discretionary protection property and has an
initial state z which also satisfies the property. Assume there is

some action (Rk , Dm,(btMt,PtFt),(bt-l,Mt1,ptl,Ft1)) such that either:

(iii) there exists some (S,Ox) e bt bt - 1 and x 0 M or

(iv) there exists some (S,O,1) c bt-1 such that x #
Mt. and (SOx) c bt-]nbt

Then there is some (S,O,x) in bt-bt - which does not satisfy the dis-

cretionary protection property (by iii) or there is some (S,O,x) in
bt-l1 bt which does not satisfy the discretionary protection property

(by iv). Since bt=(bt-bt-1)U (bt-1 nbt),then there is some (S,O,x) c

bt which does not satisfy the discretionary protection property at

time t. Thus, z t does not satisfy the discretionary protection

property and therefore z does not satisfy the property. Consequently

the system is not discretionary property preserving which contradicts

our supposition and completes our. proof by contradiction.

A-39

COROLLARY 1:

The six conditions presented are sufficient as proved in

Theorems 1, 2, and 3 to restrict the set of actions, W, to those

actions which would maintain a secure system, i.e., a system which

satisfies the simple protection property, the *protection property

and the discretionary protection property.

Statement

The system is a secure system if and only if z0 , the in-

itial state, is a secure state and the set of actions,W, satisfies the

conditions of theorems 1, 2, and 3 or:

(i) for each (S,O,x) b*-b and x=r or w then
Pc (s)--p (0)

(ii) for each (S,O,x) e b and x=r or w and pc(s)etL1(o)

then (S,Ox) b*

(iii) for each (S,O,x) c b*-b and x=w or a then P*(o)t.p*(s)

(iv) for each (S,O, x)E b and x = w or a and p*(o)xP*(s)
then (S,O,x) c b*

(v) for each (S,O,x) b*-b then x Mij

(vi) for each (S,O,x) e b and x 4 Mij then (S,O,x) c b*

Items i and ii above are necessary and sufficient for the simple protection property.

*Items iii and iv are necessary and sufficient for the *-protection property.

Items v and vi are necessary and sufficient conditions for discretionary protection.

1

-, ,A-40

GROUP II LIMITATIONS OF ACTIONS

THEOREM 4

Theorem 4 proves that under a set of actions limited by

the operation of a specific set of rules which in this case maintain

the simple protection property, the system also maintains the simple

protection property. An important result of this proof is the realiz-

ation that the simple protection property can be enforced through the

specification of the set of valid rules permitted on the system.

Statement

Given P, a set of simple protection property preserving

rules, and zo , the initial state which also satisfies this property,

then the system satisfies the simple protection property under W(p),

a rule limited action set.

Proof

We will prove this theorem by contradiction.

Suppose the system does not satisfy the simple protection

property. Then there is some state zt in the state sequence z which

is not a simple protection preserving state. Since z0 is simple pro-

tection property preserving, t must be greater than to. Choose zt_ 1

such that it is a simple protection property preserving state and zt 1

differs from zt. By the definition of the rule limited action set

W(P)there is some rule P in P such that p.(R k' Zt-1)=(Dm'Zt). Because

zt-1 is a simple protection preserving state and , by definition, is

a simple protection preserving rule, then zt is a simple protection

property preserving state. This fact contradicts the initial assump-

tion and compltees the argument.

A-41

THEOREM 5:

Theorem 5 proves that under a set of actions limited by

the operation of a specific set of *-protection property rules, the

system maintains the *-property. An important result of this proof

is the realization that the *-protection property can be enforced

through the specification of the rules allowed on the system.

Statement

Given P, a set of *-protection property preserving rules

and z0 , the initial state, which also satisfies the *-protection

property, then the system satisfies the *-protection property under

W(P), a rule limited action set.

Proof

We will prove the theorem contradiction. This proof

directly parallels that of Theorem 4.

Suppose the system does not satisfy the *-protection

property. Then there is some state z t in the state sequence z which

is not a *-protection property preserving state. Since z0 is a *-

* protection property preserving state, then t must be greater than to.

Choose a state zt_ 1 such that zt_ 1 is a *-protection preserving state

iand zt differs from z By the definition of the rule limited ac-

tion set W(P)theve is some rule P in p such that p(R,ztl)=(Dzt).

Because zt. 1 is a *-protection preserving state and the rule p,, by

definition, is a *-protection property preserving rule, then zt is a

*-protection property satisfying state. This contracts the initial

assumption and complctes the argument.

A-42

THEOREM 6:

Theorem 6 proves that under a set of actions limited by

the operations of a specific set of discretionary protection rules

which maintain discretionary protection, the system maintain the

property. An important result is the realization that discretionary

protection can be enforced through the specification of the rules al-

lowed on the system.

Statement

Given p, a set of discretionary protection property pre-

serving rules, and z0 , the initial discretionary protection property

preserving state. Then the system satisfies the discretionary pro-

tection property under W(p), a rule limited action set.

Proof

Again, this system does not satisfy the discretionary

protection property. Then there is some state zt in the state sequence

z which is not a discretionary protection property preserving state.

Since z0 is discretionary protection property satisfying, then t > to.

Choose zt_ 1 such that zt_ 1 satisfies the discretionary protection

property and z t1ldiffers from zt. By the definition of the rule lim-

ited action set W(p) there is some rules in psuch that P(RkZt_1)=(Dm ,zt).

Because zt_ 1 is a discretionary protection property preserving state

and pi, by definition, is a discretionary protection preserving rule,

then z t is a discretionary protection preserving state. This contra-

dicts our assumption.

A-43

COROLLARY 2:

This result follows naturally from theorems 4, 5, and 6

which prove that an action set limited by a set of secure state pre-

serving rules forces the system to be secure. Therefore, security en-

forcement lies in the design and implementation of the rules.

Statement

Given P, a set of secure state preserving rules,and zo,

the initial state, which is a secure state, then the system is a

secure system under W(P), a rule limited action set.

A

II

A-44

GROUP III REQUIREMENTS FOR SECURE STATE PRESENTATION DURING
ADDITIONS TO THE CURRENT ACCESS SET

THEOREM 7:

This theorem presents the conditions necessary for the

satisfaction of the simple protection property under additions of

subject, object, access tuples to the current access set b.

Statement

Let the following be given: v=(b,M,P,F), a state of the

system which satisfies the simple protection property; (S,O,x) 0 b;

b* = b U {S,O,x)};and v* = (b*,M,P,F). Then v* satisfies the simple

protection property if and only if:

(i) x=e or a

or (ii) x=r or w and p (S)':p (0)
'. 0

Proof

First, we must prove the "if" section of this statement.

Assume for b* = buL(S,O,x)) that x=e or a then v* satisfies the prop-

erty since v does. Assume for b* = bU {(S,O,x)}that x = r or w. Then

by the definition of the simple protection property (Def. 4) v* satis-

fies the simple protection property.

Next, we must prove the "only if" clause. Given

v*=(b*,M,P,F) where b* = bU{(S,O,x)} and v and v* are simple protec-

tion satisfying states. Therefore if x = r or w then ps(s)-po(O).
Since x e {e,a,r,w) then either (i) or (ii) is satisfied and so the

statement is proven.

A-45

1W

THEOREM 8:

This presents the conditions necessary for the satis-

faction of the *-protection property under additions of subject, ob-

ject, access tuples to the current access set b.

Statement

Let the following be given: v=(b,M,P,F), a state of the

system which satisfies the *-protection protection ; (S,O,x) b;

b* = b'fl{(S,O,x)},and v* = (b*,M,P,F). Then v* satisfies the *-pro-

tection property if and only if:

(i) x=r or e
(ii) x=w or a and p (O)-0 (S)

Proof

First we must prove the "if" section of the statement.

Assume for b* = b U{(S,O,x)}that x=r or e then v* satisfies the *-

protection property since v does. Secondly, assume for b* = b u{(S,O,x)}

that x = w or a. Then, by the definition of the *-proection property

(Def 5), v* satisfies the *-protection property because (1) po(o)%-

Ps(S) and (2) v satisfied the *-protection property.

Next, we must prove the "only if" clause. Let it be

given that v* = (b*,M,P,F) where b* = b U{(S,O,x)} and, v and v* are

states which satisfy the *-protection property. If x = w or a then

Po(O).ps(S), by Def 5.
Since X E {e,a,r,w} then either (i) or (ii) is satisfied

and the statement is proven.

A-46

• 1

THEOREM 9:

This theorem presents the conditions necessary for the

satisfaction of the discretionary-protection property under additions

of subject, object, access tuples to the current access set b.

Statement

Let the following be given: v = (b,M,P,F), a state of

the system which satisfies the discretionary protection property

(Si O,x) b; b* = bU{Si,Oj,x)};and v* = (b*,M,P,F). Then v* satis-

fies the discretionary-protection property if and only if xE M.

Proof

First, we must prove the "if" section of this statement.

Assume b* = bU{(S i,Oj ,x)}and x E Mij. Since v satisfied the discre-

tionary security property and x e Mij then v* satisfies the property

also.

Next, we must prove the "only if" clause. Assume v*

satisfies the discreitonary protection property. Then for b* =

bU {(Si, O,x)}, x C M ij by the'definition of discretionary-protection

(Def 6). The statement is satisfied and is proven.

, 4

:! A-47

COROLLARY 3:

Corollary 3 is a natural connection of the results of

Theorems 7, 8 and 9. Therefore, Corollary 3 gives the set of condi-

tions which must be met to maintain a secure state under additions of

subject, object, access tuples, (Si., Oj.,x) to the current access set.

Statement

Let the following be given that:

v = (b,M,P,F) is a state of the secure system;

(Si,Ojx) l b is a subject-object-access tuple not in v;

b* = bU{(SiOj,x)} is a new access set; and

v*=(b*,M,P,F) is a new system state.

Then v* is a secure state if and only if:

(i) if x=e

or (ii) if x=r and ps (Si) -po(O j) (Simple protection)

or (iii) if x=w and p s(Si)= PO(0) (Simple protection, *-protection)

or (4v) if x=a and p0 (O)rp s (S i (*-Protection)

and x E Mi (Discertionary protection)

7

A-48

ADA1I3 *90 KARRIS CORP MELBOUR.E FL GOVERNMENT ELECTRONIC SYSTE-ET C F/6 9/2
KCUSE OSNS.(U)
FEB 62 T 0 WORNINSToH. C E GIESLER P30602-80-C-OUS5

UNCLASSIFIED RADCTR-81-394 U.

GROUP IV: SECURITY PRESERVATION DURING ACTIONS OF RULES WHICH

DO NOT ADD ACCESS, DO NOT CHANGE PROTECTION OR DO NOT

REMOVE ACCESS PERMISSIONS

THEOREM 10:

Theorem 10 states that if the action of a rule removes

some element or elements from the current access set of a simple pro-

tection preserving state, then the resultant state also satisfies the

simple protection property. Therefore, the rule is one which preserves

the simple protection property.

Statement

Let the following be given: p,, a rule, such that (Rk,V)

= (DmV*); v = (b,M,P,F); and v* = (b*,M*,P*,F*). If b* = b and P* =

p then is a simple protection preserving rule.

Proof

Assume v satisfies the simple-protection property. Then,

for every (S,O,x) b where x = r or w, ps(S)x--Po(O). Since b* cb,

every (S,O,x) in b* is also an element of b. Therefore, ps(S) ,-- PO(O)

for every (S,O,x) E b* where x = r or w. Since P* = P (tranquility

principle), p* (S) = p (S) and p* (0) = p (0). Then for every (S,O,x)

e b* where x = r or w, p*5 (5). P*0 (0)* Consequently, if v satisfies

the simple-protection property, then v* satisfies the simple protection

property and thus satisfies the condition for pi to be a simple pro-

tection preserving rule.

i

I'q A-49

THEOREM 11:

Theorem 11 states that if the action of a rule removes
some element or elements from the current access set of a state which

satisfies the *-protection property then the resultant state also

satisfies the *-protection property. As a result, the rule is one

which preserves the *-protection property.

Statement

Let the following be given: piis a rule such that r(Rk,v)

=(Dm ,v*); v=(b,M,P,F); and v* = (b*,M*,P*,F*). If b* !3 b and P*=P,

then p.is a *-protection property preserving rule.

Proof

Assume v satisfies the *-protection property. Then for

every (S,O,x) e b where x = a or w, po (0)IcDs (S). Now b*C b every

(S,O,x) in b* is also an element of b. Thus, p0 (0)V-ps (S) for every

(S,O,x) E b* where x = a or w. Since P* = P as the result of the tran-

quility principle, then p*(S) = ps(S) and p*(O) = po(O)and for every

(S,0,x) b* where x = a or w, p*(O)v--p(S). Therefore, given that v

satisfies the *-protection property, then v* satisfies the *-protec-

tion property which satisfies the conditions for p to be a *-protection

preserving rule.

A15
A-50

I
THEOREM 12:

Theorem 12 states that if the action of a rule adds no

elements to the current access set (b) and removes no accesses from

the current access matrix,(M), from a state which satisfies the dis-

cretionary protection property, then the resultant state satisfies the

property. As a result, the rule is one which preserves the discre-

tionary protection property.

Statement

Let the following be given: piis a rule such that

PQRkv)=(Dm,v*); v=(bM,P,F); and v* = (b*,M*,P*,F*). If bV: b and

M* D M for every ij, then pis a discretionary-protection preserv-
ij - ij

ing rule.

Proof

Assume v satisfies the discretionary protection property.

Then, for every (Si,Oj,x)c b, X C Mij. Since b*=b, every (S,O,x)

in b* is also an element of b. Thus, x E M ij for every (SiOi,x)Eb*.

Since x E Mij and Mis Mij then x e Mij. Therefore, given that v

satisfies the discretionary-protection property v*, also satisfies

the discretionary protection property which satisfies the condition

for pi to be a discretionary-protection preserving rule.

A-51

I

COROLLARY 4:

Statement

The Group IV Theorems and Corollary 4 form the basis for

the support of the conditions for the actions of a rule to be secure

state preserving. These conditions apply to the special case where

the protection levels do not change, accesses are not removed and

permissions are not added.

Let it be given that;

P is a rule such that p(Rkv)=(Dm,v*);

v=(b,M,P,F) is a current system state;

v*=(b*,M*,P*,F*) is a new system state.

Then if b* b is the new access set,
P*=P is the new protection level, and
Mij ' M.j is the new Access Matrix,

Then Piis a secure state preserving rule

A-52

i

APPENDIX B

SYSTEM THREATS

B.O INTRODUCTION

This section discusses general computer threats. Most of these

threats are present for all computer installations and therefore are not unique to

a secure system.

This section is presented in support of the threat discussions in

Section 2.3 of this report. The following subsections follow:

B.1 Computer System Threats

B.2 Physical Threats

B.3 System Threats

B.4 Data Threats

B.5 Security Threats

B.1 Computer System Threats

Threats to a computer system come from a variety of sources. These

sources are divided into four'major areas: Physical Threats, System Threats,

Data Threats and Direct Security Threats. Physical threats are risks resulting

from physical attacks to the computer itself, such as from the environment, fire

or sabotage. System threats are threats which seek to destroy the computer oper-

ational integrity and these include operation system software flaws and hardware

flaws. Data threats are attacks directly upon data and data protection facilities.

Finally, direct security threats are those which include techniques of subverting

protection such as use of covert communication channels. These threats in-

clude impersonation, tapping, and browsing, for example.

The following sections discuss these four areas of threats in mere

detail. The discussions give extra emphasis for those threats for which develop-

ment of a Secure DBMS as described in this report reduces or removes the threat

risk.

B-I

a.2 Physical Threats

Physical threats to a computer system cause physical dam-

age to the computer or physical impairment of proper functioning of
the computer facility. Figure B-1 presents some of the major physical

threats. Fire, explosion and sabotage are obvious threats. The en-

vironmental threat of power loss can force a system to "dead start",

losing all processing active at the time of the outage. A power surge

can cause circuit protection devices such as breakers, to trip, re-

sulting in a temporary loss of computing ability and a loss of data

(similar to that of a power outage). However, a power surge will

generally result in a shorter outage and has a lower probability of

causing any outage whatsoever.

Computers and other delicate electronic equipment are

sensitive to the effects of temperature and humidity. Thermal prob-

lems can cause damage from merely an erroneous bit in memory to cata-
strophic destruction of the computer. Humidity is a more subtle

threat in that it generally requires more time for humidity to damage

computer system. Corrosion of electrical contacts and the resulting

subsystem failure is the risk of improper humidity control.

Water is an obvious threat to electrical systems and can

cause a variety of system functions to fail. Naturally, direct appli-

cation of water to an electrical system will generate an electrical

short and failure. Water damage to disc andtape media, programs re-
tained on paper tape or cards, or corrosionof the mechanical system such
as motor bearings, and disc head activators are exam~oles of water damage.

Particulates cause poor contact between electrical con-

nectors and fatigue of moving parts. Additionallyparticulates generate

excessive wear to tape heads, disc heads, magnetic tape, and disc me-

dia.

Although a failure of a communication system will not

"crash" a system totally, it will cause a loss of data and control to

users at remote sites for that data of a temporary nature and not per-

manently retained on the system (i.e. on disc or tape). Finally,

4 B-2

o FIRE

o EXPLOSION

o ENVIRONMENT

POWER LOSS/SURGES

TEMPERATURE/HUMIDITY EFFECTS

WATER

PARTICULATES: SMOKE, DUST, DIRT

o COMMUNICATION SYSTEMS FAILURE

o SABOTAGE

o THEFT

Figure B-1 Physical Threats

o SOFTWARE TRAP DOORS
I o HARDWARE FLAWS

o INFORMATION HANDLING PRACTICES

o OPERATING SYSTEM UPDATE PROTECTIONS

Figure B-2 System Threats

B.-3

theft of hardware or software can disable a computer system if the
stolen elements are essential to system operation (i e. the operating sys-
tern disc packs).

There are many means to prevent physical damage to a com-
puter system. Development of Secure DBMS is not among them. Physical
protection generally encompasses such precautions as perimeter fencing,
power filtering, power back-up, systems, and air conditioning (for
temperature, humidity, and particulate control).

B.3 System Threats

System threats are somewhat less obvious than physical
threats. System threats are methods of attacks which reduce the se-
curity integrity of the computer system. Figure B-2 lists some of
these threats.

Software and hardware threats are similar. Software trap-
doors are sections of code inserted into an operating system or other
security process which are normally inactive. However, when triggered
by the data thief, these trapdoor processes enable the intruder to
acquire system control or access to normally protected system elements
or data. Hardware flaws can permit a thief to acquire system control
similar to means employed for software trapdoors. Hardware flaws can be
intentionally created.(like software trapdoors) by -the data thief, or they may
be created through incomplete system design or incomplete verifica-
tion of all possible machine states. Information handling practices
refers to those means customarily employed by the systems operation
personnel and management to safeguard the computer equipment, system

software, and protected data. Operating system updates present a par-
ticularly vulnerable period for an operating system. Illegal access
to the update tapes can permit unauthorized alterations which can po-

5 tentionally violate security.

+1 Prevention of system threats is generally accomplished

through proper system software generation and modification control,
development and certification of system main-frames for a secure oper-
ating environment, use of proper security containers for system

B -4

101

software storage and proper disposal of all system dumps.

Use of a Secure DBMS can partially reduce some of the

above system threats. The distributed architecture developed as a re-

sult of this study permits the isolation of the user work space

from the security enforcing processors ICS and _HSF and

switches. This physical isolation increases the difficulty of use of

trap doors and hardware flaws. Use of firmware (software encoded into

read-only memories - ROM's) for data handling and security enforcement

subsystems concurrent with software development by trusted programmers

with the proper security clearances (i.e., individuals who will pro-

vide software of high integrity) is a must for any secure system.

Additionally, use of static encryption for data and programs residing

in mass storage strengthens information handling security.

The above security practices are therefore to be a part

of the Secure DBMS, namely:

(i) all security related protection enforcement equiDrent
shall provide provable enforcement of simple security and *-
security principles.

(ii) all security related software shall be developed in
a secure environment by properly cleared and trusted
programmers. It shall be certified, as deemed necessary.

(iii) all system updates and modifications shall be created
and added to the system in a similar secure environment

(iv) all system software shall be unalterable through
storage in read-only memories.

B-5

B.4 Data Threats

Data threats are means for potential security violations

through which data, application programs or other protected items are

compromised. Data threats differ from the system threats above in

that the latter attempts to defeat the security protection while the

former is generally a direct attack upon the data. Figure B-3 pre-

sents these data threats.

Impersonation is a computer attack whereby a user ac-

quires data by masquerading as a legitimate user or device. In one

such technique, the data thief acquires valid user's log-on codes and

passwords. In another instance, the thief exploits system flaws to

bypass proper data input/output access controls. The Secure DBMS

developed in this study reduces this threat by physically isolating

the user from the processor which contains the log-on authenticator. In

addition, the special authentication processes, such as encrypted log-

ons may be used to enhance security.

Foible is the system access through unintentional means,

through flaws in either hardware or software. Incomplete parameter

checking on data requests or other input/output operations can result

in a security compromise. The only solution to this threat is dilli-

gence in the design of the data handling hardware and software. De-

velopment of these entities in a secure environment docs not guarantee

a flaw-free system but will prevent deliberate trap doors, as discus-

sed in Section B.4.

Artifice is the introduction of either clandestine code

or hardware changes which permit unauthorized data and program access.

B-6

As such, artifice is the same as trapdoors. When activated, the il-

legal user bypasses all system controls on data access. The trapdoor

code can be supplied during the creation of the operating system or

later through a gift program supplied at a later date (Trojan Horse

Attack). A secure DBMS cannot validate software integrity. However,

again, the isolation of the user work station from the data management

software and the maintenance of the latter in firmware prevents the

use of user software to trigger trapdoors. Creation of data processor

and secure DBMS protection software and hardware in a trusted (i.e. in

a secure environment and by personnel of high integrity)environments and certify-

ing necessary code can alleviate any intentional trapdoor threats.

Another data base threat is that of browsing. Browsing is

the searching of systems residues For unauthorized information. Brow-

sing can be as simple as searching wastebaskets for sensitive information or

passwords, dumpinq core of security protection utilities, dumping system core, or

searching input/output (I/O) buffers for residues belonging to other users. The

distributed architecture of the secure DBMS described in this study can eliminate or

greatly reduce browsing. The currently feasible design wherein a separate DBMS pro-

cessor is used at each security level restricts browsing to within the browser's

own clearance level. Browsing in this manner constitues only a need-to-know viola-

tion at worst. With the advent of relatively inexpensive DBMS processors (See

Technology discussions of Section 7) it may be possible to provide a completely in-

oependent DBMS processor microcomputer for each individual. Under these conditions,

browsing can be eliminated.

Wire tapping is a significant threat. Tapping can be either active

or passive. Active tapping consists of attachment of an unauthorized device, such

as a computer terminal, to a communications circuit for the purpose of obtaining

access to data by generation of false messages or control information or by alter-

ing the communications of authorized users. Passive tapping consistsof monitoring

and/or recording of data while it is being transmitted over a communications link.

It is assumed that all data and query links are contained within a protected facil-

ity at the proper security level or that any line not provided suitable physical

security protection is properly encrypted using dynamic encryption techniques (See

Section 4.2)

B-7

The secure DBMS developed through this study

cannot prevent tapping. We recommend the use of encryption on all

non-secured lines between user sites and the central data base unit

to prevent theft of data on data links. Encryption acts to reduce

database transactions on communication lines to an unintelligible

state. Any changes or additions to messages in an active tape will

be made unintelligible to the processing equipment when the message is

decoded. Proper installation of the data base, protection equip-

ment, and physical protection of the site will preclude direct taps

to the data base equipment.

The final data base threat is one common to all electron-

ic equipment: radiation. All electronic equipment, and especially

devices with switching currents, generate electromagnetic radiaton.

In a computer, the higher the processor speed, the higher the radiated

frequency and the greater the harmonic content of the RF signature

will be. Intelligent interception of these emanations can provide

illegal access to sensitive data. In addition to any electromagnetic

signal, electromechanical devices also radiate signatures in the form

of acoustical emanations. Alleviation of the risk incurred from the

threat of radiation must be designed into system hardware. In addi-

tion, screening the room for RF signals, properly filtering all

power and communication lines, and proper use of acoustical absorptive

materials can reduce the risk of security loss.

B-8

$ IMPERSONATION

e ACQUIRE INFORMATION

0 ACQUIRE ACCESS

I. FOIBLE

* ACCIDENTAL SYSTEM ACCESS

I ARTIFICE

0 TRAP DOOR CREATION
* HARDWARE MODIFICATIONS

I BROWSING

9 CORE DUMPS

* I/O BUFFER EXAMINATION

I TAPPING
* ACTIVE: between-the-lines; piggy-back entry
* PASSIVE: eavesdropping

I RADIATION

* ELECTROMAGNETIC

* ACOUSTICAL

Figure B-3 Data Threats

$COVERT CHANNELS

I TRUSTED SUBJECTS, PROCESSES

I ILLEGAL RE-CLASSIFICATION OF OBJECTS

0 ILLEGAL ACCESS TO OBJECTS

Figure B-4 Direct Security Threats

B-9

B

B.5 Security Threats

In addition to the direct threats indicated above, there are threats

to data security. These threats normally involve at least one validated system

user. Figure B-4 describes typical threats of this type.

Principle among threats of this type is that of a covert commirunica-

tion channel through which a system user is able to send information to an illegal

accomplice or is able to move sensitive data to a position in the data base system

where it can be illegally observed (i.e., intentional divulgence of sensitive in-

formation). Covert channels may exist in several forms in a data base system. A

covert channel becomes a threat when a valid subject uses it to directly transmit

* I information to another person or to bypass the restrictions of the *-.protection

property. In the data base design, we must use every means possible to prevent

the creation of potential covert channels.

There are probably many unprotectable covert channels in any system.

Any multi-level resource or system control register (such as write reservations)

constitutes a potential covert channel. The goal of the secure DBMS is to minimize

the utility of any covert channel by lowering the effective data rate to an unac-

ceptably low level. Section 2.4 describes some techniques for reducing the effec-

tiveness of timing channels. In addition, security monitoring and audit trails are

useful for detecting attempts at unusual system activity possibly associated with a

covert channel. Section 2.6 discusses the value of security monitors in detection

of possible covert communicaitons.

Trusted subjects and processes are required in order to provide the

capability of downgrading classified information, such as in the case of "sanitized"

summnaries which are often desired from sensitive material. Special means within

the secure DBMS can be taken to ensure that only designated equipment can be used

for such downgrading operations. In addition, the security officer can be alerted

to each write from such a process which represents a downgrade operation and there-

by screen this process in real time, if desired. Nonetheless, trusted system

entities remain one of the greatest security risks. Section 2.5 discusses the

B-10

trusted processes and personnel in more detail.

The final two examples of direct security threats, illegal re-clas-

sification and illegal access to objects, are well addressed by the secure DBIS.

The access control subsystem and Hardware Security Filter strictly enforce the

tranquility principle by denying re-classification of objects, and strictly enforce

the simple security rule and *-security property to prevent illegal object accesses.

B-1

I

B-li

.* .

APPENDIX C

Processing Requirements for Conversion of a PN Sequence Index to a
PN State

This appendix supports Section 4.4.1.5 by describing the mathematical pro-

cess by which a PN index can be converted to a PN state. The object of this exer-

cise is to establish the processing requirements of the process for use in a static

encryption mechanism for user, security level and compartment, and data storage
isolation.

To support high speed, random access, statically encrypted, disk I/0, there

is a need for rapid conversion of random access disk location (i.e., disk number,

track number, sector number) (PN sequence index) into the associated LFSR PN state

This involves first converting the disk drive number, track number, and sector num-

ber into a logical data storage bit address which is used as the PN sequence index.
Then this PN sequence index is converted to the associated PN state of an LFSR.
The first operation is very simple, requiring three integer multiplies and two

integer additions:

LFSR Index *Disk Drive Number x Conversion Factor 1 +
Track Address x Conversion Factor 2 +
Sector Address x Conversion Factor 3

§1j1

Conversion of the LSFR index to a PN state is considerably more com-

plicated. This process is based on the representation in a Galois Field as shown
nwith a root a , as:

P(X) = Xn+An1X n-1 + ... + A1 X+1 where A. = 0 or 1 (Eq C-2)

with root n = AnI n-1 + ... + A a+1

From this polynomial, two tables can be constructed. Table 1 is the

representation of a 1, i = 0 to 2n-1 as a linear sum (exclusive or) or ck, k=O, n-1.

That is the ith entry of Table 1 is a vector of coefficients aik such that

i n-1 k
_= a ik (Eq C-3)

k=O

Table 2 is the representation of (a n)2J j = 0 to n-1 as a linear sum of k, k = 0,

n-i. Therefore, the jth entry of Table 2 is a vector of coefficients bik such
that (n2 j n-i

(,n) = bjk are either 0 or 1. Therefore, these two sets

can be represented by linear sums of the first n states of the PN sequence. As

these tables can be pre-computed then stored, they represent only a memory require-

ment of 3n by n bits.

To determine the mth state,m is divided by n and the remainder kept.

This allows m to be factored as

m= (r aqn where q = Ci2n and CI = 0 or 1 (Eq C-5)
i=0

Eq ^-5 can be further factored into quantities stored in Tables 1 and 2 as

n C zn n 2 i

i=O r= r (= (Eq C-6)

I C-2

These quantities are represented as polynomials of degree n-i, hence each multipli-

cation results in a polynominal of degree 2n-2. Before proceeding to the next pro-

duct, all terms of degree n to 2n-2 are themselves reduced topolynominalsof degree

n-i, i.e. after each multiplication of polynominals, the higher order terms are re-

duced giving a resulting polynominal of degree n-i. The implementation of this re-

duction involves exclusive OR-ing of the lower order terms with a table 1 entry

for each higher order term. The end result is the representation of the mth state

as a sum (exclusive OR) of the first n states of the LFSR sequence. These n nbits

states can be stored in a third table.

In summary, the requirements for conversion of LFSR sequence index

to LFSR state is 4n by n bits of memory, 1 integer divide with remainder, up to n

Table 2 look ups, up to n nbit by nbit integer multiplies, up to n • (n-i) table

1 look ups and exclusive ORs, and up to n Table 3 look ups and exclusive ORs.

Worst case and average computation required for conversion are summarized in

Figure C-1.

Category Worst Case Average

Memory 4n by n bits 4n by n bits
Integer Multiplies n -n bit byn bit n/2 - n bit by n bit
Integer Divides i - n bit by n 12- n bit by n
Exclusive Ors i n2 - n bit XORs n/4 - n bit XORs

4 Figure C-1 LFSR Index to State Conversion Requirements

C-3

-VI

APPENDIX D

PERFORMANCE ANALYSIS DETAILS

D.1 Introduction

This appendix describes the analysis performed to estimate system

performances. Additional detail, particularly in the areas of queuing theory,

models, and analysis, is provided to supplement Section 6.2.

This section consists of the following discussions:

D.2 System Model

D.3 Detailed Traffic Models

D.4 M/M/m Queue Performance

D.2 System Model

Analysis of system performance requires a system model, a performance

metric and a traffic model. These first two items can be handled relatively vig-

orously and in detail if desired; however, the traffic model is, to a large degree,

arbitrary and is best thought of as a benchmark.

The DBMS system model shown in Figure D-1 can be analyzed as a

queueing network. To a first approximation it can be modeled as a network of M/M/t

queues 9 ,10 with an infinite population. This model has numerous advantages

versus more detailed models. The three most important advantages of this approxi-

mation are:

*Notation M/M/m queues: In general, queues are described in terms of three
parameters, P1/P2/P3

P1 = distribution type of interarrival time
P2 = distribution of type of service time
P3 = number of servers

Common distribution types used in queueing theory are:
M - Markov
G - General
D - Deterministic

Thus, an M/D/m queue is described as one with Markovian interarrival time, Deter-
ministic service time, and m servers.

D-1

o The analysis of a M/M/m queuing network can be decomposed into
the analysis of individual M/H/m queues.

o Individual M/M/m queues can be analytically analyzed. This
model will provide allower bound on system performance.

o Furthermore, a more detailed system model would be much more
heavily tied to system details which are usually difficult or
impossible to quantify, such as, requires considerable more
effort to analyze, and is incapable of improving the perform-
ance prediction as this is usually dominated by the traffic
model sensitivity.

Thus modeling this system requires quantifying m,the number of servers,and I, the
average service time, for each subsystem.

The proposed system metric is multi-dimensional as shown in Figure

D-2 with the average system response time determined from this metric through1
Equation D-1. This metric consists of the average service time, -, capacity, i.e.,

the maximum number of users the sytem can support, and the average normalized re-

sponse time as a function of the normalized system load, Tn . Since the system model

can be decomposed, Equation 6-1 can be rewritten in terms of subsystem metrics as

shown in Equation D-2. Amore optimistic performance prediction can be made by re-

laxing the requirement that these subsystem metrics come from a M/M/m queue model,

resulting in approximation of Equation D-3.

As previously stated a traffic model is needed for performance analy-

sis but cannot be rigorously determined and hence is somewhat arbitrary. As a por-

tion of the system/subsystem metric is capacity in terms of number of users, a

user traffic model is required. Furthermore the system model chosen assumes only

one type of "user", and hence this "user" model should be the most likely type.

For our purposes this will be defined to be an on-line user making a query by key

that results in a single response every 20 seconds. To increase the load, it will

be assumed that the query involves two relations with the first relation containing

the foreign key for the second relation. Thus, the network traffic flow is deter-

*l ministic.
Details of the traffic model are present in the following section

(Figure 0-3). The process breakdown of the traffic model permits viewing the

model consisting of a finite number of users, K, with an individual query rate, A,

as an infinite number of users with a combined query rate of kX queries per second.

D-2

1Gi0im

USERS DM OA CESCNRL NLIPRE

Figure D1 2N+2 Nd Qeg Ntwr SstmMoe

Figure D- 2N Avegeun Normalize System Reose Tm

Sste Metr/ic7 (users) EQ D-1

lS < /. T~ r (#U users EQ D-1

m

ko (1 1k'r'k EQ D-3

Figure D-2 System/Subsystem Metrics and Average System Response Performance

* D-3

Each query involves a fixed sequence of processor tasks and disk accesses. It is

assumed that each type of processor task has the same avearge service time and that

service time .s a negative exponential probability density function (PDF). The

same assumption is made for disk accesses, although the mean processor service

time and mean disk access time can be different for each processor and disk system.

D.3 Detailed Traffic Models

Based on the simple benchmark traffic model previously defined,a de-

tailed network traffic model is derived for both virtual memory and non-virtual

memory systems. A benchmark traffic model of an on-line user making a query of a

two relation view with the query containing the key to the first relation and the

associated record containing the foreign key to the second record, resulting in a

single response was chosen. This benchmark must be converted into a physical net-

work traffic model, i.e., processor tasks and disk accesses. Figure D-3 details

the processes of the model as a series of requested events consisting of 5 processor

tasks and 6 disk accesses. This model ignores I/O and OS overhead and assumes

multiprocessing versus true time sharing operation. Note that disk access 6 is not

part of the system response timeline and is important only in that it increased

disk loading and thus only indirectly increases system response time.

Based on this analysis, the KX queries/second system load can be

converted into subsystem interarrival rates. For a system consisting of N DBMS
5KXprocessors, this results in a load of - processor tasks/seconds. If a VM system

is used then there is a local disk load of - data base access/second. For a Vm
system it is also important to know how many "new relations" per second are requi'red.

This can be expressed as 1 new relation per j queries or a load of - on the central

data base. The size of these central disk accesses will be much larger than the

local paging disk accesses. For our VM benchmark/analysis parameter values of X

= 0.05hz (avg. query per user every 20 sec) and j=30 (new relation used every 30

queries) are chosen.

For the non VM (NVM) benchmark it is assumed that disk accesses 2
3KA

and 4 are not required, and hence there are 71processor tasks/second and K)

central disk accesses/second. While we are optimistically assuming that fewer disk

accesses are required, we will assume the same amount of processing is required,

D-4

IL

4-
"' 4-

E 4' 0n 4An'U .

IA 4U*- V0 0U G .

'U4- 0-

GD~~ CLL i 4 ~ i
41 L. 4) -0

o . W~ IA 0
0 w D , c *- V0

4)~ .4 0V 0

4- 4 4.) 4- W

W~~g 0 MU . 'U 0 .
.0 to 0 4 4' > .m 4'

4' c &- GD

4) 414- c' 414 41
IA 0 1 0b41v

#A cV L.-

0C 0-. aDO $- 0A S-U

0 EU. 0.a U4 41. W U 0
0 ~ w G 00 4A 0d W GD u0

GD GDG 0a 4w 4D. U, 4'4A~
to A i4) 4'. LS- 0- cn w 0) S-W

41G LU, V 0 - 4j goGD) L = J-c

00 CL GDo 0*) .0 CL (A 0- wL
4- CL L4 mm> L. CL L. W C> -0

VL 01 W in L 4 i
#A in 4 UV - 1 CA- 4' L L) U,

J L Wn 4' C" U 4 C .. U D
4) 4A LA 4' CL 0AA*-4
IA W. (A. LA 4-A .L i

.w 1 .0 _u G id. 0u

v-4 C~jen-.0

4A 4A 4

0-5

.~

i.e., 3KX 1 5KX l r nv = 0.6pvm. If we had made comparable traffic as-N 1 nvm N p v nvm vm*

sumptions the disk load would be 50% higher. For our NVM benchmark/analysis,

X 0.5hz was also used.

In addition to these arrival rates, average service times for these

subsystems are required. This is both a function of the load and subsystem rate.

For the average disk 2.5 revolutions at 16.6 ms/rev is a reasonable performance es-

timate, resulting in an average access time, prD of 41.5ms. DBMS processor task

service time can vary widely. For this benchmark we will assume 1/u nvm

i.e that these DBMS systems are I/O bound, and that the average access con-

trol node service time, ,/ ACN, equals 1(I/iD), i.e., the access control node

is very fast relative to disk performance.

The above traffic model parameters for the system model are summar-

ized in Figure D-4.

D.4 M/M/m Queue Performance

The average normalized system response time for an M/M/m queue with

infinite population can be analytically solved in terms of its utilization, i.e.,

percent of capacity loading. This in turn allows a maximum subsystem degradation

limit to be converted into a subsystem loading limit. For our analysis of sub-

system response time degradation, a 3dB limit will be used for normal operation and

a 6dB limit will be used as a heavy load model.

The average normalized system response time for an M/M/m queue with

infinite population is given in Figure D-5. This function is plotted for a sub-

system utilization (p) range of 0 to 1 for various choices of m (number of servers)

in Figures D-6 and 7. It should be noted that the capacity of an M/M/m queue, Cm,
is m x C1 . If capacity were held constant then average response time vs p would

be as shown in Figure D-8. For our analysis we are interested in capacity for 3dB

(Tn=2) and 6dB (Tn=4) subsystem degradation for M/M/1, M/M/2, and M/M/4. These

values are given in Figure D-9.

In addition, it may be argued some service times are closer to de-

terministic than exponential, e.g. constant processor service time and/or single

.1 D-6

L~Ln

o~r- 0 0 0
C) CD CoJ U C0

>- N

C/) 0
2 , CD) CD ()

* -4 4c r4 Ln 40 0o 0

4'
- L- S-

0 0 0
Ifl Wn (A
#A 4A IA S-
C.) tu)) d.o

w1 >~ 0 0
AA S1 $- % -

Q 0r Q. Q U
aW -S a) (1)

Ln 0n in :3 lf

-. 4141 41 41

4-

0

00

0 %- (

0 4u N

S.. Ztn u S cS. o 0, 0 4-4
4) s 1 0 - f 0

m~ IVC

.LJ S- L t.4

C 0

I- S.. - 'D-7

record accesses with disk optimizer. Thus the M/D/m queue is also of interest.

The average normalized response for the M/G/l and M/D/1 is given in Figure D-1O.

'n= L.¢i = + Pm
m m (I-p)

Where pm Po (mp) m

(1-P)!

And 0o= 1
rn-i k rnE. . + (rapY-m

k=o K! -olin'.

Figure D-5 Average Normalized Response Time vs Utilization

D-

!

I . D-8

-4 20

M/M/rm

-U15

Figure D-6
S- Normalized Average
4A Response Time

5-10

a) 40
E

20
41 10

0.1

0 0.2 0.4 0.6 0.8 .

Figure D-7

Average Response TimeJ
With Fixed Capacity i

101

0
0 0.2 0.40. 08 0

UTILIZATION FACTOR, p

0-9

QUEUE SYSTEM PARAMETER AVERAGE SYSTEM RESPONSE DEGRADATION

S3 dB 6 dB

p 0.5 0.75

x 0.5 0.75

p 0.7 0.86
M/D/1

x 067 0.86

p 0.71 0.865
M/M/2

1.42 1.73

p 0.84 0.93M/M/4

3.36 3.72
Ti

p = Utilization

An = Normalized # of users supported by system assuming CM MC1

Figure D-8 Summary of System Utilization for
3 dB and 6 dB System Response
Degradati on

A "T M/G/1 E{p 2M/G, n p)=l1+P + TF2 ;-

n2 1/)2 1 ,p2/ 2
M/D/i (p) = 1 +p + 2(1lp) = 7p-p)

Figure D-9 Normalize System Time for M/G/l and M/D/i Queues
(from Little's Result and Pohlaczek - Khinchin
Mean Value Formula)

D-10

1000

4A

Cln

16-

0 4J

CA(

>E

D-11-

APPENDIX E

REFERENCES

1. Bell, D.E., and LaPadula, L.J., Secure Computer System: Unified Exposition
and Multics Interpretation, MITRE Corp., RPT. ESD-TR-75-306, Jan 1976.

2. Grohn, M.J., A Model of a Protected Data Management System, I.P. Sharp
Associates, Ltd., Rpt ESD-TR-76-289, June 1976.

3. Martin, J., Principles of Data-Base Management, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1976.

4. Data, C.J,, An Introduction to Data Base System$, Addison-Wesley Publishing
Co., Inc., Reading, Mass. , 1977.

5. Atre, S., Data Base: Standard Techniques for Design, Performance, and Management,
John Wiley and Sons, Inc., NY, 1980.

6. Bell, D.E., Secure Computer Systems: A Refinement of the Mathematical Model",
MITRE Corp., Final Tech. Rpt ESD-TR-73-278, Nov 1975.

7. Hinke, T.H. and Schaefer, M., Secure Data Management System, Systems Develop-
ment Corporation, Final Tech. Rpt., RADC-TR-75-266, Nov 1975, AD#A019201.

8. Robinson, L., The HDM Handbook, SRI International, Project 4828, Contract N00123-
76-C-0195, June 1979.

9. Kleinrock, L., Queueing Systems, Vol I., Wiley and Sons, NY, 1976.

10. Jaiswal, N.K., Priority Queues, Academic Press, NY, 1968.

E-1

r-. Y

Of
RomAir Development Center

RAV ptdn6 and execate" awtoh, devetopmntnt, te~t and
6etected ari~ i6tion pwgu~ma inK appo'to6 ComndW, Conttot
Cowacto and InteLtigme~ (C-71) W-tteh. TtzhniWa
and eJngineeaing a6uppot wULin akea6 oj tedc&at cuope&te
i6 potwvided to ESP) P'Lo9'WJ Ojes. (P0,6) and otheA' ESP
aweentA. The p'Linw.pat tec11nicat mi6i0R a'Lea6 aQ
cownuiicaton6, etectoagnetic guidance and contkot, 6u&A-
uqeittance oj gytowid and aeLoapace objecUt, intel~igenuce data
cottv-U~on and ha ndWing, injo~ewa.tion 6Vpten tedznotogy,
Zio6pheAic. ptopaqation, sotid £&te 4£Wene6, mimowaOIve
phy6A and ete.tAonc~ ketiabiUtiy, maint&LnabiLtij and

-7

~I,*.**,:, *' -Z

