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I . INTRODUCTION

In an earlier examination of the Cerenkov radiation of charged

particles passing over a dielectric plate,* it was noted that, under

certain conditions, a beam of these particles could support a number of
intrinsic electromagnetic modes. This was a surprising result, as we

had not before encountered a discussion of these modes, and a search of

the available literature turned up only one study of these modes, with a

brief analysis, for slab geometries only, of the results.' In view of

the relevance of this topic and our findings to the expanding field of

near-millimeter waves, we decided to continue our analysis.

This report discusses the derivation of the interaction between the

electromagnetic field and the electron beam. Although this derivation

may be found in many books containing sections on Cerenkov radiation or

monographs on travelling-wave devices,2'3 the derivation appears here to

familiarize the reader with our particular notation and assumptions.

This derivation generates the wave equations satisfied by components of

the electromagnetic fields within a suitably restricted electron beam.

The theory applies to the case of a ribbon type of electron beam in free

space. It is demonstrated that the form of the wave equation for this

situation suggests a superficial resemblance between the propagation

constants of an electron beam and those of a dielectric of identical

geometry. By selecting some realistic parameters (such as current

density and beam size), we find a few modes of ribbon beam.

Istvan Palocz, A Leaky Wave Approach to Cerenkov and Smith-Purcell
Radiation, Ph.D. Dissertation, Polytechnic Institute of Brooklyn,
University Microfilms, Inc., Ann Arbor, MI, #62-5658 (1962).

2 M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics,
McGraw-Hill Book Co., New York (1964), 141-177.

3 R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes, D. Van
Nostrand Co., New York (1960), 182-233.

*Clyde A. Morrison and Richard P. Leavitt, Cerenkov Radiation from an
Electron Beam Passing over a Dielectric Slab Backed by a Metal Surface,
Harry Diamond Laboratories (draft).
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This same procedure is then used to find the modes of a cylindrical

beam in free space. Because no available literature deals with this

case, we examine these modes in considerable detail and discuss the

amount of energy coupled out of these modes.

2. ELECTRON BEAM WAVE EQUATIONS

These are Maxwell's equations listed in the form used in this

report:

V x H = -ikE + (4w/c)J , (1)

+ +
V x E ikH , (2)

9 • = 0 , (3)

E • w E t  ,(4) I4

where H and E vary as e- i t  and k = w/c. In equations (1) to

(4), H and E are the magnetic and electric fields, Jt is the current

density, and pt is the charge density. Unrationalized cgs units are

used throughout this report. We make the following linearizing

approximations:

Pt P +p ' (5)
t'0

6



Vt =Voez +v , (6)

Jt =JoeZ + (7)

4 +

where po, Vo, and J are constant in time and space and p, V, and J vary

as e We assume that p, V, and J are small in comparison with po'

Vo, and J Also,

+ +
it p *

tV t  (8)

The Lorentz force equation is used here in the form

VI
d (Y+E + x H(9)

Here,

y /(1 - v/c2)1/2

and

d +
dt 3t t

From equations (1) and (4) comes the conservation condition

Pt = 0 (10)

7
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Inserting equations (5), (6), and (7) into equation (8) and keeping only

first order terms, we obtain

+Jo PoVoez ,( 1)

4 +

J pezVo +pV . (12)

Note that all variables in equation (11) are constant with respect to

time and position.

The next step is to search for travelling-wave solutions of the

fundamental equations. We assume that, for all functions of z,

F(xy,z) = F(x,y)e 
az

Using equation (9) and the above assumptions, the following expressions

are found:

ie(E x 
- SH

x my3 (w - aV)

ie(E + $HX) (4
V = (14)

Y mY3 (w - aV)

leE

z (15)z MY3(w -(IV)

where 6 - V/c.



By substituting equations (13), (14), and (15) into equation (12),

we get these results for the components of J:

4".y (Ex - 0.) 16
j p y , (16)

X 4wy 3 (w - aV)

iw2E+ BH
J- p y x ,(17)

y' 4iy 3 (w - aV)

iWEJ = p z ,(18)

z 4?ry3 (w- aV)

where w2 -4 noe 2/m. To derive equation (18), it is necessary to use
p

equations (16i and (17) in equations (10) and (4). Doing so gives also

iaw 2 Ep z (19)
= 4wyc(w - (V)

We can now get the wave equation for our beam by taking the curl Qf

equation (1) and using equations (2), (16), (17), and (18):

2 + 2 _2 H 0 (20)

and similarly for E,

. = 0 , (21)t \c 3 / -

9



where

_ 
2  32

,72  -2 + 2

t x2  y2

Except for a change in propagation, these equations are the same as

one would find for an ordinary medium. There are two sets of solutions

corresponding to transverse magnetic (TM) and transverse electric (TE)

modes.

3. RESTRICTED BEAM

Consider now an electron beam restricted such that Vx = 0, Vy = 0,

and as before (eq 15) we have

-ieE zV = . (22)
z mY3 (w - aV)

The assumption that Vx = Vy = 0 is physically realizable with the

application of a strong magnetic field in the z-direction.

Also, Jx 0, Jy 0, and from continuity (p = Jz ) we obtain

j = z (23)
z 4ny3 ( - V)2

10
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and

iaW 2EP = z •(24)

41ry3 (w - dV) 2

The restriction on the beam has a considerable effect, as can be noted

by comparing equation (23) with equation (18) and equation (24) with

equation (19). Using equations (1) to (4), we can find the wave

equation

.) -2* = k2  + ik 4f , (25)

c

which can be written in component form as

(Op) - V2E = k2E (26)
xx x

(4p) - V2E = k2E , (27)

a (4wp) - V2E k2E + ik J •* (28)
Zz z c z

Substituting equations (23) and (24) into equation (28) yields

12E Q2 W2 E
V2E + k2E - V_)P z| p z (29)

z z cY3(w V)2J y3(w -V) 2

Y Y



~k21

V2E +(k2 .c2)[ - E 0 ,(30)t zy 3(k - C,0)2

where k2
= w2 /c 2 . This equation is frequently encountered in

p p
discussions of travelling-wave devices.

2  The factor k
2 /y 2 (k - ao)2

p
gives rise to solutions for a near a8 = k, in which the phase velocity

of the wave is nearly equal to the velocity of the electrons in the

beam. The beam must be restricted in order to generate these additional

solutions. No such behavior is possible from the wave equations for the

unrestricted beam given in equations (20) and (21).

3.1 Ribbon Beam

Consider beam geometry
+x

}b/2

where the y-axis is perpendicular to the paper. Assume the beam to be

infinite in the y- and z-directions and a/ay = 0. Then, in component

form, Maxwell's equations become

-aEy = ikH , -itHy =-ikE , (31a,b)
y x y x

aE
iciEr = ikHy + ax z iaHx = ikEy (32a,b)

2 M. Chodorow and C. Susskind, Fundamentals of Microwave Electronics,

McGraw-Hill Book Co., New York (1964), 141-177.
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ax - z ' a H - ikE + J , (33a,b)

a E + i wE 4p H - iaH (34a,b)

Further, considering TM modes only, Hz  = 0, which from

equations (31) to (34) immediately gives Ey = 0 and Hx = 0. From

equations (31b) and (32a),

H ik - E(5
= k2 - a2 ax z

for all values of x.

Inside the beam, equation (30) becomes

-- E + (k2 - u2  - k2  ]EZ= 0 (36)

x2  z
3 (k 

and outside the beam kp = 0 so that

- E + (k2 - a2 )Ez = 0 (37)
ax2

The symmetry of this geometry allows one to choose either even

or odd solutions to these equations; thus, we can restrict ourselves to

x > 0. Looking at the even solutions, then, we can write

E z  A cos (k1x)eiaz , 0 < x < b/2 (38)

13



and

E = Be ik2xei z  , b/2 < x (39)z

where

k 2 - 2)[ - (40)

and

k2 (k2 - a2) ,(41)

and A and B are arbitrary constants.

Also, from equation (35) we can write

H ik [_kIA sin (klx)eioz]  0 < x < b/2 (42)
Y k2 - L 1 j

H = ik2  2 (ik 2Beik2Xeiaz) '  b/2 < x (43)

Continuity of Ez and Hy at x = b/2 yields

A cos I Bei2b/2  (44)

1

14
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and

-kA sin ( ) = ik2Bek2b/
2  (45)

Dividing equation (45) by equation (44) gives the following

transcendental equation:

-kc tan _ ik2  (46)

This expression has no solutions if both k 1 and k2 are real.

Assume that ki is real and k2 = ik , where k2 is real. 
Thus, k2 must be

positive if e ik2x is to decay and produce bound modes outside the

beam. Also, from equation (41),

kI2 = a2 - k2  (47)

so

k2.
k2  -2 k- p (48)
1 2~ ~ y3 (I c) 2 ]

Now equation (48) satisfies the assumption that kI is real only

when

k
2

P > 1 (49)

y3(k -
2

15
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One can rewrite equation (46) as

tan(- (.2 - k2) [cB 2  ]/2

(50)

= Yk 2  
- 1/2

3Y(k - aal)
2

For a given set of parameters such as electron density,

velocity, and beam width, there are successive values of a that satisfy

equation (50). Each of these values corresponds to a mode whose phase

velocity is w/a. Further analysis of these modes, including the

calculation of these modes for a certain set of conditions, follows in

section 4.1.

3.2 Cylindrical Beam

The discussion in section 3.1 (up to eq 30) applies to any
restricted beam where Vx  V M 0. Thus, the examination of the

cylindrical beam begins with equation (30). This time, in order to

impose cylindrical symmetry on the problem, we will let a/3e - 0. In

this case, the component forms of equations (1) and (2) become,

recalling that F(r,6,z) = F(r,e)eiaz,

ikHr = -iaEe , -ikEr = iaH0  , (51a,b)

16



ikHe ictE - Ez -ie- a(5abr 3r ziE iQr(5ab

ikH = ~(rEe) -ikE~ +J (3aOr 3r z c r 3r (kH9)b

Here again, to get TM modes, Hz is set to 0. Solving for Er in

equation (51b) and substituting the solution into equation (52a), we

have

H ik a3 (4

and equation (30) can be written as

32 13 a 2E
-r +r3 k2 E, r <a ,(55)

(3r2 1r T 3

L-+ - -k;2) E = 0 r r>a ,(56)

where k2 and k 2 are def ined as before and a is the radius of the1 2
beam. These are Bessel's equations and have solutions,

M0 krj ,rz (57)b

BK0(k~r) r r>a

where A and B are constants.

17



Using equations (51b) and (54) and the Bessel recursion

formula,4 we find for r < a

d [x-nj (x)] _xnn W(x)
dx n n+I

E z - O(kIr> , (58)

izk,ios 1
Er - AJl(klr) (59)

k2

ikk
H = - - J(kr )  (60)

o kI2
2

and we find for r > a

E = BKO(k-r) , (61)

R r - _ BK ILk;rJ (62)
r kI2

2

ikk'

k2
He " - - BK1k~r) . (63)

2

Both sets of solutions must agree at r - a so that

4M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards (November 1970), 355-434.

f8
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AJo(kla) = BK0 (k~a) , (64)

and He must be continuous, giving

Akl l(kla) = BkKl(ka) (65)

Dividing equation (65) by equation (64) yields

k I  jkla) K(ka)

k, J0(klaJ = K0 (k;a * (66)k2

Once more, the values of a that satisfy this relation represent

modes that can propagate down the beam. Section 4 contains analyses of

equations (50) and (66), including the determination of some modes for

both cases.

4. ANALYSIS OF BEAMS

4.1 Analysis of Ribbon Beam

For a ribbon beam of thickness b, the modes that can propagate

are determined by solving equation (50). So in terms of k and k,

tan (t) kI . (67)

19



Let us begin by def i.'ng g and r such that

k2

Y3 k2  k

Equation (50) becomes

tan {- [(1 _ ,')2 02]112 - 2 1/2 (69)
120 - 12-8 2 42(9
To justify some of the following approximations, it is

appropriate to define what we consider realistic values for the

parameters of equation (69). The current state of electron beam devices

makes relativistic beams with currents of several amperes obtainable,

depending on the size of the beam. The values used here are designed to

describe a system with a relativistic beam, 8 = 0.7 typically, and a

current of about 200 mA for a cylindrical beam of 0.5-cm radius. This

current yields an electron density, no, of about 7.5 x 107

electrons/cm 3. These same numbers are used for the ribbon beam.

Because of the interest of producing power sources with operating

frequencies between 200 and 300 GHz, we consider an output wavelength of

I . In summary, the calculations are carried out with the following

values:

A.0. cm

b, a - 0.5 cm

20
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n i 7.5 x 10
7/cm3

0

-0.7 ,

which correspond to 198 mA for the cylindrical beam or 252 mA/cm2 for

the sheet beam (recall that we did not specify a boundary in the y-

direction).

To continue with the analysis, to get real arguments for

equation (69), n must be between +g and -g. For the values of kp, k,

and B, g is fairly small (about 1.5 x 10-4), so we first let

z )(70)

and then make the approximation n = 0 in the expression

[(I -n)2  2] 1/2 ~ 1/ .

Now equation (69) can be written as

z tan hj 2)- 1 (71)

Finally, we further simplify the argument of tan by letting

kb
Z -- z (72)

20y
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so that

Ztan Z = k (73)2$y

The roots, Zm, of equation (73) are not difficult to find. A

brief glance at the function Z tan Z shows that there must be values of

Z in every w interval that satisfy equation (73). Figure 1 illustrates

this result for the case where g, b, and $ have the values chosen

earlier. Only the positive portion of Z tan Z has been plotted. Table

I contains the calculated values of Z corresponding to the first 11

modes.

The third column, Z tan Z - kb/20y, gives some indication of

the accuracy of the roots.

Combining equations (70) and (72) gives

in I + (2 y) -- Z2 .(74)

Thus, for every value of Z there are two values of n to be

considered in the exact case, that is, when n is no longer approximated

as zero in [(( - r)2 - 02]1/2 .  In this way, two values of a are

generated corresponding to "fast" and "slow" solutions of equation

(50). Table 2 contains the fast and slow propagation constants for the

first 11 modes.

The fast solutions, corresponding to smaller a's, are found by

taking the positive case in equation (74). Slow solutions are generated

byusing the negative case.

22
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kb/2fy

N 15

10

a 5 10 15 20 25 30 35 40

Z IRAMANS)

Figure 1. Behavior of Z tan Z as function of Z

demonstrating periodicity of values of Z that

satisfy equation (73): X = 0.1 cm, b = 0.5 cm,

and 8 = 0.7.

TABLE 1. ANALYSIS OF RIBBON BEAN,
APPROXIMATE ROOTS: A - 0.1 cm,
b - 0.5 cm, no - 7.5 x 107/cm3 ,

AND 0 - 0.7

Mode number, m Z Z tan Z - kb/201

0 1.47878 1.144 x 10- 5

1 4.44199 9.5367 x 10-6

2 7.42034 6.485 x 10
- 5

3 10.4191 0.0

4 13.4393 9.5367 x 10- 6

5 16.4794 -2.0981 x 10- 5

6 19.5365 2.4795 x 10
- 5

7 22.6078 5.722 x 10-6

8 25.0905 3.6239 x 10- 5

9 28.7824 3.2424 x 10- 5

10 31.8817 2.6703 x 10- 5

23
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TABLE 2. ANALYSIS OF RIBBON BEAN, One can see from figure 2
XACT ROOTS: A - 0.1 cm, b - 0.5 cm,

n, - 7.5 x 107/cm3 , AND 0 - 0.7 that, as the mode number increases,

the difference between a fast and a

mode number, m a fast a slow slow decreases. in fact, a fast and

0 89.7459 89.7739 a slow converge to the value of a

189.7464 89.7734 that would yield a phase velocity

2 89.7472 89.7726 equal to the particle velocity of

3 89.7481 89.7716 the beam; that is, a = k/$.
4 89.7491 89.7706

5 89.7501 89.7697

6 89.7510 89.7688 It is possible to

7 89.7518 89.7680 investigate the ratio of energy

8 89.7525 89.7673 flowing outside the beam to that
9 89.7531 89.7667 flowing inside for various modes by

10 89.7536 89.7662
_ 0__9.7536_89.7662_ integrating the average Poynting

vector over a cross section of the

beam. Thus, we want to evaluate

fs * da=2f Re(E x H*-da(5

Since we are interested in energy flowing in the z-direction

andH =H = Ey = 0,

W = ReExH*) dx dy (76)
2 fs 'xy'

_ ik

Ex -k~" (2-kA sin ;k ei '  (78)
X k 2 -a 2

24



thus, for -b/2 < x < b/2,

WI =i .LI 2 (~k k2A 2 sin2 (k x) dx dy ,(79)

0 0 (k2- ,,
2 ) 2

where W I is the energy per centimeter length in the y-direction.

Integrating equation (79), we obtain

akk2A2 1

W,(b-- sin k 1b) .(80)

k 1-

(k2 32)2

Figur 2.Bhvo fpoaaincntna
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Outside the beam,

H* = k (ik Be-k2Xe-az) , (81)
Y k2 xi2

E - (ik Be-k2xe i az ) (82)x k2 _ ,2

thus, the energy flowing outside the beam, Wo, is

WO  f f 2 2  2)2 k22B2e-2 k2x dx dy (83)

o b/2 (k2 - a22

akk2OB
2

= k e -k2b (84)

2(k2 - a2)2

From equation (45), we have

kA (k 1b) j/
B k sin e 2,e(85)

so equation (84) becomes

cak2kA
2  kb

= sin2  (86)

O 2k;(k
2  

- *2)2 2

26
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In equations (80) and (86), A is determined by the manner in which the

beam is perturbed from its ideal steady-state condition. Such

perturbations are nearly inevitable, but very difficult to predict. We

can nevertheless consider the ratio of these energies independent of

A. Thus, after cancellation of the common constants,

WO2k sin2

0 2 •(88)
sin2  + 2kb sin k1b

sin2 LIL + 2k~b- 2 - sinkb

Hereafter, W0/(W0 + WI ) is referred to as Q. Table 3 contains values

for Q for the first 10 modes.

Figure 3 compares the energy ratios for these modes. For the

first mode, at least, the slow waves are more efficient, coupling a

larger percentage of the energy outside of the beam. Even with the

first mode, however, Q is less than 1.7 percent. For both fast and slow

waves, the efficiency is monotonically decreasing with increasing mode

number.

27



TABLE 3. ANALYSIS OF RIBBON BEAM, EFFICIENCY:
A - 0.1 cm, b - 0.5 cm, no 7.5 x107/cm3,
AND B=0.7

Mode number, m Q fast Qslow

0 1.57364 x 10-2 1.69584 x 10-2

1 1.51604 x 10-2 1.50324 x 1i-2

2 1.32180 x 10-2 1.32568 x 10-2

3 1.12045 x i0-2 1.17251 x 10-2

4 9.31548 x 10-3 9.15241 x 10-3

5 7.69732 x 10-3 7.80541 x 10-3

6 6.61363 x 10-3 6.10717 x 10-3

7 5.55854 x 10-3 5.67797 x 0-

8 4.62158 x 1- 4.74057 x 0-

9 3.46832 x 10-3 3.58016 x 1-

0.022

0.020
-FAST M40S

0.018 --- SM MOS

0.016\

0.014

0.012

0.00-

*.02 1 1 1 1
0 1 2 3 £ 5 S 7 0 9 it

MoW uMuaMBR [
Figure 3. Efficiency as function of
increasing mode numiber for both fast
and slow modes: X = 0.1 cm, b -0.5 cm,
no =7.5 x 107/cm3, and B=0.7.
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4.2 Analysis of Cylindrical Beam

For a cylindrical beam of radius a, we derived the relations

I J1(k1a) Xj(ica) (89)
k 30(k1a) K0Y(k~a)

where k,1 and k are defined as before.

If we again define g and i as in equations (68a) and (68b),

then

( 2 1 / 2 J i - 8 2 ( 2  
- 1 2

01 [(1 n- 82] )/2

(90)

n 1)2 - 02)}

As with the ribbon beam, we let z = (g2/n2 -1)1/2 and make the

approximation n - 0 in I(, - n1)2 - 8211/2. Then equation (90) becomes

z O ) By___ (91)

From the previous procedure and equation (72),

y
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so that we have

1 (Z) _ Ia __

Z (92)(Z) B O ka)
0 X0 --

The evaluation of this expression is not too difficult,

especially when one recognizes that the right-hand side of equation (92)

is constant. Now, J 0 (Z) and J, (Z) have zeros occurring with the same

f requency in Z. Thus, we would expect J 1 (Z)/Jo(Z) to reach any value

between -~ and +- once between each zero of, say, JO (Z). This range is

illustrated in figure 4.

i0.

s-

0 2 4 6 1 10 12 14 is

Z (RMSSI

Figure 4. Behavior of Z[J1 (Z)/J 0 (Z)] as function of Z
showing periodicity of values of Z that satisfy
equation (92): A~ 0.1 cm, a =0.5 cm, and different
value. of B
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By Hankel's asymptotic expansion4 for large Z,

J (Z) = 4WZP(v,Z) cos x - Q(v,Z) sin x

x= Z- + . ,

where

P(VZ) 1 - (4v2 _ 1)(4v
2 - 9)

21(8Z) 2

.(4v2 - 1)(4v 2 - 9)(4V2 - 25)(4V2 - 49)

2!(BZ)
4

and

(4v2 - 1) (4v2 - 1)(4v 2 - 9)(4v2 - 25) +Q(v,Z) 8 -3 (8 )

ez 31(8Z)2

we can write, keeping only the first order terms,

J (Z)
J (Z tan z -), Z large (93)
0

which explains the tangent-like behavior in figure 3.

4N. Abramowltz and I. A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards (November 1970), 355-434.
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In the actual calculation of equation (92), a short power-

series routine was used for small values of Z. Machine limitations

reduced accuracy for Z > 10, so we resorted to Hankel's expansion for

larger values. It was found, however, that the second order terms were

necessary to achieve the desired accuracy for Z near 10. Table 4

contains some results for realistic parameters.

TABLE 4. ANALYSIS OF CYLINDRICAL BEAM, APPROXIMATE
ROOTS: X - 0.1 CU, a - 0.5 CM, 0 - 0.7, AND
X - ka/OX

Mode number, m Zm ZJI(Z)/Jo(Z) XKI(X)/K 0 (X)

0 2.33219 32.5468 32.5468

1 5.35454 32.5470 32.5468

2 8.39744 32.5460 32.5468

3 11.4489 32.5469 32.5468

4 14.5062 32.5476 32.5468

5 17.5699 32.5468 32.5468

6 20.6397 32.5472 32.5468

7 23.7156 32.5468 32.5468

8 26.7972 32.5468 32.5468

9 29.8843 32.5469 32.5468

10 32.9763 32.5474 32.5468

11 36.0728 32.5467 32.5468

As with the ribbon beam, we used equation (74) and plugged back

into the exact expression, equation (90). Table 5 lists the fast and

slow roots. These results are plotted in figure 5. Once again, the

fast and slow propagation constants are converging to the phase velocity

.of a wave travelling at the particle velocity of the beam. This time,

however, they are approaching this value at a slower rate than with the

ribbon beam.
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TABI, S. ANALYSIS OF CYLINDRICAL BEAN EXACT ROOTS:
- 0.1 cm, a - 0.5 cm, no - 7.5 x 10f/c m 3, AND0.7

Mode number, m Z (approx) a fast a slow

0 2.33219 89.74579622 89.77378403

1 5.35454 89.74595104 89.77362938

2 8.39744 89.74621742 89.77336329

3 11.4489 89.74657698 89.77300407

4 14.5062 89.74700762 89.77257377

5 17.5699 89.74748676 89.77209494

6 20.6397 89.74799375 89.77158820

7 23.7156 89.74851130 89.77107083

8 26.7972 89.74902600 89.77055625

9 29.8843 89.74952809 89.77005422

k
i -

IN
n.746

S 4 5
urn -u. 4

Fiqure 5. Propagation constant, a, as function of increasing
mode number: values of a above and below a - k/O correspond to
fast and slow modes, respectively: A - 0.1 cm, a - 0.5 cm,

n 7.5 x 10 7 /cm 3 , and 0 - 0.7.
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The calculation using the average Poynting vector is a little

more complicated for this geometry, but it is still relatively

straightforward. As before, the expression to evaluate is equation

(75),

++ +

fs S v daReE x H-) d~aSav" 2)

and again we are concerned with energy travelling in the z-direction and

with TM modes, so

W fRe ErH)r dr dO (94)

For r < a,

ikk 1

= - AJl(klr) (95)

2

-i Itk (96)

r -k 2  AJ(kr)

2

which, when substituted into equation (94), gives

cakk2

W 2 k
1 A 2J j2(kr)r dr d (97)

2
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Now,

fX tJ(u)dt =-[(u)-J(UX) J (Ux] , (98)

0

which holds also for K2 in the irtegrand,5 so
1

WI rakk 2  A--(9

(k2 _ .2)2 [0(a JQa) 2 k 1 A)

or since

S2 (k1a) k a Jl(k~a) -J 0 (k~a)

12

WI A2 n 2kk a + j2 (k ,a)

(k 2 
- (12)2 [ 1 0( 1 1

(100)

k 2 J10 (k 1 a) J,(k1 a)]

I

5 E. D. Rainville, Special Functions, Macmillan Publishing Co., New
York (1960), 108-119.
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Similarly, for r > a,

ikk'
Sk 2 

- (2 BK(k2r) -(101)

E 2 BK(kr )  (102)r -2 _ K k 2

which yields

a2

Wk 2 EJJf K2(kr)r dr dO (103)
0 2(k2 - a2 )2  0 a

arnd from equation (97),

WO aikk'2  2 ,~ 1 4

2 a r 2 2
o (k 2 - CL2)2 1 2  0 \/ 2 J

Here,

K(k;,a) =, KIk;a K0 (k 'a)1

so
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W wckk 2  B2  2- [2(ka K2(
0 (k 2  - a 2 ) 2  2 LO\ 2 ) 1\2k~)

(105)

--K0 (ka)Y1 (ka)]

We can use equation (64) to solve for B:

B AJ(k~a) (106)

KO (k ~a)

Utilizing equation (106),

7rckk 2 A2  a 2 J(k a)

0=(k2 - 2)2 2 Kja)

(107)

[y2(~a - 1cj(ka) + -I- KO(k a)K,1QC~a]

irakk 2  a2

k2 A2!2) 2 0 18

,2 2Ii

[ -!c(k;a) _j 2 K (k2a)_
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As with the sheet beam, these expressions for the -energy are

not useful without some way to specify A, but the ratio of W0(W 0 + W I )

is independent of A. We have, then,

,2 22 KWk2 1 - 1 +

0 0Y
O (109)

:K1 ++k
k? 2i 1 1 ka

where the argument of Jo and J, is kia and that of K0 and K, is k~a.

Table 6 contains some calculated values for WQ/(WO + WI ) (which

is called Q). These values are plotted in figure 6. These efficiencies

are roughly twice as large as those of the ribbon beam and have a

smoother behavior as the mode number increases. Consistently for any

mode number, slow waves couple out more energy.

TABLE 6. ANALYSIS OF CYLINDRICAL BEAM, EFFICIENCY:
A - 0.1 cm, a - 0.5 cm, no - 7.5 x 107/cm 3 ,
AND 0 - 0.7

Mode number, m Q fast Q slow

0 3.20058 x 10-2 3.32486 x 10-2

1 3.12990 x 10- 2 3.25074 x 10-2

2 3.01073 x 10-2 3.12456 x 10-2

3 2.85307 x 10- 2  2.95827 x 10- 2

4 2.67009 x 10
-2  

2.76532 x 10
- 2

5 2.47362 x 10-2 2.55864 x 10
- 2

6 2.27388 x 10-2 2.34890 x 10
- 2

7 2.07866 x 10-2  2.14423 x 10- 2

8 1.89319 x 10-2  1.95021 x 10- 2

9 1.72068 x 10
-2  

1.77009 x 10
- 2
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0.030 -

0.020O SLOW MODES

0.015 -

.I I I
0 1 2 3 4 5 6 7 8

MODE NUMBER, m

Figure 6. Efficiency as function of mode number for both fast

and slow modes: A = 0.1 cm, a = 0.5 cm, no = 7.5 . 107/cm 3 ,

and $ = 0.7.

5. CONCLUSIONS

Except in the ideal case of a perfectly unperturbed electron beam,

bound electromagnetic modes will be propagating down a beam of charged

particles in free space. The behavior of these modes is quite similar

for both the beam geometries considered. In fact, for both types, the

dispersion relations produce similar values for the propagation

constant. This similarity is not surprising since the dispersion

relation for the cylindrical beam can be characterized by a tangent

function for larger arguments and the ribbon beam dispersion relation is

in fact a tangent function.

It was interesting to examine the percentage of energy flowing

outside the beam because if an attempt to use these modes were made, one
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would almost certainly try to couple to them outside the beam. For our

parameters, the maximum efficiency for a single mode was little more

than 3 percent. Although the numbers were very similar, the slow modes

couple out slightly more of the total electromagnetic energy.

A more difficult problem is to be able to predict and characterize

perturbations on the beam in the laboratory. In addition to increasing

our understanding of the beam's behavior, it might enable us to excite

the beam for some desired result.

The problems considered here should not be taken as a result, but as

a step toward the solution of more complicated problems. Of immediate

technological interest is the inducement of Cerenkov radiation in the

millimeter wave range. The regions outside the beam considered here

could be occupied by dielectric or partially filled with dielectric.

The ribbon beam case considered here could be applied to the dielectric

configuration considered previously.* The calculation of the fraction

of the total energy propagated outside the electron beam could be

repeated for the Cerenkov radiation induced in the dielectric slab.

Such calculations could be used to optimize parameters of the system for

the production of Cerenkov radiation of a particular, predetermined

frequency.
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