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| INTRODUCTION
|

‘ Many current interceptor systems use a guidance system based on propor-
tional navigation. In a proportional navigation scheme, the direction ~f the
interceptor is controlled in such a way as to make the rate of rotation of the
interceptor velocity vector proportional to the rate of rotation of the line-
of-sight (LOS) from the interceptor to the target [1], [2]. The derivation

of the proportional navigation equations is carried ocut below.

From time to time in the analysis and design of automatic oontrol sys-
tems, it is desirable or even necessary to have a closed form analytic solu~
tion for naminal system response. Determination of optimal control laws and
stability studies often require that such nominal solutions be available. In
the present paper, we obtain a closed form approximate solution to the classi-
cal proportional navigation problem. This solution is obtained through the
application of quasilinearization to the governing nonlinear differential
equations. As it will be demonstrated, this analytic solution exhibits very
' good accuracy when compared to numerical solutions of the nonlinear equations

of motion.

DERIVATION OF BQUATIONS

In the following paragraphs, we derive the differential equations govermn-
ing the trajectory of an interceptor following a proportional navigation gui-

3 dance law. The geametry of the target and interceptor are shown in Figure 1.

SNl

The interception is assumed to take place in a plane. The position of the

[,

interceptor relative to a fixed reference frame is given by the position vec-
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Figure 1. Geometry of interceptor and target. ’
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‘ ' tor R. The target is located at Er The position of the target relative to
f

the interceptor is r. The velocities of the interceptor and target are V and

»VT respectively. As shown in Figure 1., the heading angle of the interceptor
)

is ¢ and that of the target is ¢,. The angle between the velocity V and the
R

LOS, r is y . Since

(1)

)
"
’_;ul
1

1|

! & _5.5 -7
G-V V,r v . (2)
1
-
L Writing the relative velocity vector v in polar coordinates, we find: !
v=re +r(s+vle, (3)

where, Er and 'ée are radial and transverse unit vectors. By inspection of

Figure 1,

v = VpCos(e + ¥ - o) - VCosﬂ'ér - [V Sin(e + v - ¢p) - vsmﬂée . (4)




Camparison of Pguations (3) and (4) shows that

r= VTCos(¢ + ¥ - ¢.)-Vosy (5)
1 T
:
4
and
¢+t v= —VTSin(¢ +y- ¢T) + VSiny . (6)
|

| ' Proportional navigation is defined by the choice of the control variable
]
“ ¢ as:

(7)

- ¢
]
>
<

In this equation A is called the navigation constant. Clearly if A is a oom

stant, Bauation (7) admits a first integral of the form

$= 0+ AV - ¥, (8)

where the subscript o indicates that the variables are evaluated at same ini-

tial instant. Fram Fquation (8) we can write

~
A ey




¢ty =ayp+8 (9)

E where a =1 + 2 and 8 = 4 - ”o’ Upon substitution of Bquations (7), (8) and
(9) in Bquations (5) and .(6) we obtain: )

B

r = VTCos(aw + 8- ¢T) - Wosy (10)

" r(l + A); = —V,rsin(av + B~ ’T) + VSimy (11)

For the purposes of this paper, we transform the two above equations to
make r the independent variable. This is easily acoamplished by dividing

Equation (11) by Bquation (10) and by taking the reciprocal of Equation (10).
Thus

at _ 1 !
dar TVTCOS(u + B - ¢T)-Vt:osw (12)




dr (1 + x)(VTCos(cw + 8 - ’T) ~ VCosy) (13)

i

| s _ . j
i ay 1 [ v,rsln(cw + 8 "r) + Vsinyl
f

DERIVATICN OF ALGORITHM

In the next few paragraphs, an algorithm for obtaining an approximate
analytic solution to the equations derived in the previous section will be

developed. This algorithm is based on a technique called quasilinearization.

Ouasilinearization is an iterative technique which can be applied to the solu-
tion of nonlinear differential equations. The technique was apparently intro-
‘ duced and developed by Bellman and Ralaba [3]). Using this technique, the
solution of a nomlinear Two Point Boundary Value Problem (TPBVP) is reduced
to the recursive solution of a set of linear TPBVP°s. The convergence of this

technique can be shown to be quadratic. This is in contrast to the linear con-

vergence rate of the well known Picard iteration.

In that which follows, the quasilinearization algorithm will be briefly
derived. For further explanation of the ideas utilized, the reader is
directed to the work of Bellman and Kalaba previously cited. Wwhile the field

5 of quasilinearization is quite broad and rich in both applications and theory,

the central idea lies in the approximation of certain nomlinear functions by

this type of expansion is not unique to the work of Bellman, et al. However, ]

1

|

|

X means of Taylor series expansions in function space. It should be noted that !
!

i

| ia s . .

: it seems clear that the technique utilized in this paper should be at®ributed

to Bellman. \‘




We shall restrict the present solution to cases where V and VT are speci-
fied oconstants and o = 0. These restrictions are consistent with approxima—
tions usually made in the analysis of control systems. The second assumptinn
simply reflects a rotation of the reference coordinate system. In cases where
the heading angle of the target is constant, there is no loss of generality in

utilizing this assumption. Introducing these assumptions into Equations (13)

and (12), we write

r(l + x)id’—g = g(y) (14)
and
‘ at _
{
where
3 -V,rsin(aw + B) + VSiny
9(¥) = V,Cos(ay ¥ B = Vosy (16)
3
u
e
2
- and
1 _ 1
: aly) = VTCos(av + B)- VCosy (17)
l ,
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Note that if the solution for y=y(r) can be found, the solution for t=t(r) can
be found by quadrature of Fquation (15).

We begin the derivation of the solution by expanding the right side of

Dquation (14) in a Taylor series in function space . i.e.,

dy
r(l + A)ar—“ = g(pn_l) + 29 (wn - "n—l)'"

TR (18)

where we have truncated after the linear term. In this equation, the sub-

scripts are used to indicate the iteration number. For simplicity let

By differentiation of Pquation (16) we easily find:

-av,f, -+ (1+a)WCos(Ay + B)

[V Cos(ay + g)-VCosy]

Utilizing the definition of h, we can write




|
i
1
. 1 Bquation (18) as
|
d*n
rl + Mg = h ¥, =93 “h ¥y - (20)

With this equation in mind, the recursive algorithm becomes apparent. That
is, a solution Yo is assumed which satisfies the terminal oondition
v(Ro) = !0.2 This solution is used to compute the functions go(r) 2 g(v = ¥, _
and ho(r) = h(y = upo). Those explicit functions of r are then substituted 1
y into Pquation (20) and the differential equation solved subject to the initial
condition vl(Ro) = !0. This process is repeated recursively until satisfac-

tory convergence is obtained.

As previously noted, if an analytic solution for ¥ is known, the solu-
tion for t(r) can be obtained by quadrature of Pquation (15). Note, however,
that the functional form of the right hand side makes it difficult, if not
impossible, to obtain the integral. 2Again, recourse to the technique of
quasilinearization provides a recursive algorithm for obtaining the desired

solution. We begin by expanding Equation (15) in a Taylor series in function

space,

dat
n

= 24 -
aF =9y Yoy yn_l‘*n Y1) Foeee o ’ (21)

2. Note, Y, is the LOS angle at the initial position r = R.

9 r




As before, the subscripts indicate the iteration number. Again, for simpli-

city let

_ 9d
e(*) H —a-; .

By differentiation we obtain:

aV,ISin(aqp + B)-VSimy

}
! el(y) = 5 (22) !
( v Cos(av + 8)-VCosy] |
i :
|
Thus, we are able to write
*.'.‘
' at
a - A1 * en—l("n - *n—l) e (23)
F 1
f' !
4 ’ The above equation defines a simplified quadrature algorithm for the determi-
' { nation of the distance-to-go and time-to—go. This equation is integrated sub- ’
-
: 4 ject to the terminal condition t(0) = 0.
i

10
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Having derived the algorithm in the previous section, we now turn to the
application of this algorithm. In this section we shall assume an initiai
solution (subscript 0) and obtain the next approximation (subscript 1). The

accuracy of the solution will be discussed in the following section.

The quasilinearization algorithm requires that an initial approximation
to the solution be assumed. Obviously, it is advantageous that the initial
approximation be as accurate as possible. Our choice for the initial approxi-

mation is based on the well known constant bearing solution [1].

It is easily shown that for a constant speed target moving on a straight
line path , it is possible to choose a straight line interceptor ttrajectory
which will intercept the target 2. This type of interception is known as a
constant bearing interception since in such cases, the angle between the
interceptor velocity vector and the LOS remains constant. Note that if the
initial engagement conditions in a proportional navigation interception are
such that the angular rate of the LOS is zero, a constant bearing trajectory

will result.

For our purposes, we choose the initial approximation po(r) to be given

by

wo(r) =¥, (24)

2. Providing that the interceptor speed is greater than that of
the target.




where, of course, ¥

TR L g

o is the initial bearing angle to the target. When Byua- ,

tion (24) is substituted into Pquations (16), (17), (19), and (22), the fol~- ,
lowing constants are defined:

-VTSin( a‘l'o+8 )+VSin!o
% (¥} =Gy = VCos(a¥ +8)-VCosY , (25)

—av,f,-v2+ (1+a)VV, Cos(A¥,+8)

hy(¥y) = Hy = Vi (26)
[VTCos(aYO+B)-VCos!0]
- d,(¥,)) =D, = 1 |
-‘ 1 0'°0 0 VTCos(a!’0+B)—VCosYO (27)
aV. Sin(a¥,+8)-VSiny
e (¥y) = g = °1n(e% % (28)
, v, Cos(a¥,+8)-VCosY ]
i
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X

When the above four constants are substituted- into Bquations (20) and

(23) we obtain the following constant coefficient, linear differential equa-

-tions:
dvl _
r(l+y) ac - Hoﬂl = GO - HO'O (29)
and
dtl
'a—r— = Do + EO(*]-’O) . (30)

When these two equations are solved subject to the initial oconditions,

!(Ro) = '0 and t(Ro)=0 , we obtain

) (31) F
_r)1+A - 1]

Ro

Co
01='!0+ (ﬁg) [(

13




(32)

H.ta

EqC 9
070 a rya
— () & -1
Hy (Hy*a) "Ry

Bquation (32) can be used to obtain the time-of-flight by substituting r
= 0. Thus

EaCo
TRy ['H—0+a = Dy (33)

RESULTS

In order to gain insight into the accuracy of the first iteration solu-
tion, a series of comparisons of predictions made by the quasilinearization
solution and numerical integration of the exact equations has been carried

out. Some of these comparisons are reproduced in this paper. It should be

14
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noted that the number of parameters in the problem makes it difficult to draw
general conclusions. Instead, we present specific results and attempt to

infer more general results.

Table 1 shows a comparison of a trajectory camputation using the exact
solution and the gquasilinearization solution. To obtain this solution, the
following parameters were used:

V = 900 n/sec
V= 300 m/sec

Note that the exact equation for y has a singularity at r=0. Thus, the numer-
ical solution is not reliable in the vicinity of r=0. For this reason, the

last entry column 3 of Table 1 is indicated by asterisks.

TARLE 1. Comparison of Exact and Quasilinearization Solutions of
an Interception Trajectory

PSI t
r QUAST EXACT QUASI EXACT
1.000 -.0146 -.0144 .0000 .0000
.900 -.1523 -.1523 1.6401 1.6401
.800 -.3195 -.3194 3.2831 3.2830 ,
.700 -.5052 -.5049 4.9293 4.9288 1
.600 -.7145 -.7137 6.5791 6.5777
.500 -.9554 -.9535 8.2330 8.2298

.400 -1.2407 -1.2365 9.8917 9.8854
.300 -1.5933 -1.5845 11.5561 11.5448
.200 =-2.0630 -2.0439 13.2279 13.2081
.100 -.7971 -2.7503 14.9102 14.8755
0.000 -8.9066 hkkk 16.6155 16.5449

Examination of Table 1 shows that, for this case at least, the quasil-
inearization solution provides an accurate solution. In general, if the ini-
tial LOS angle was small, quasilinearization provided an accurate solution.

15
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As the initial LOS angle became much greater than the LOS angle required for a
constant bearing solution, the accuracy of quasilinearization solutions

degraded scamewhat.

Clearly, the error in the solution is greatest at the end of the trajec-
tion (r=0). It would thus appear that a reasonable measure of accuracy would
be the percent error of the time of interception. A number of solutions were
carried out to obtain the set of error curves shown in Figure 2. In this fig-
ure, the independent variable is the initial LOS angle (!o). The initial
azmiuth angle (measured clockwise from a direction parallel to the target
velocity vector) was varied parametrically to generate the family of plots.
Examination of this figure shows that the maximum error in the use of the
guasilinearization solution remains remarkably small over a substantial range
of trajectory conditions. It appears that for practical cases where engage-
ments would be made with LOS angles within ten or fifteen degrees of a con
stant bearing solution, the error induced by using the approximate solution

will be less than two or three percent.

CONCLUSIONS

Having derived an approximate solution for a proportional navigation tra—
jectory in an earlier section and having compared the approximate solution to
numerical integrations of the exact equations in the last section, we are in a
position to comment on the efficacy of the solution technique. As was previ-
ously noted, in cases where the initial LOS angle ¥ ° is relatively near the

lead angle for a constant bearing solution, the quasilinearization solution is

16
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very accurate. As this angle becomes larger, the accuracy degrades.Since the
quasilinearization procedure produces a sequence of solutions which converges

guadratically, an additional iteration will provide even more accuracy.

Since in certain aspects of control system design, it is advantageous to
have an explicit approximate solution, the use of quasilinearization can be of
real benefit. In such control applications, it is usually desired to use time
as the independent variable. The present solution utilizes range-to~go as the
independent variable. Since, in general, the first iteration results in a
nonlinear function of range, analytic inversion of the solution to functions
of time is not practical. However, the form of the solutions is simple enough

that numerical inversion may be practical even in on-line applications.

Overall, it is clear that the use of the first iteration of the cuasil-
inearization solution for proportional navigation provides a straightforward
and accurate approximate solution. In a subsequent paper, we shall explore

the relative accuracy of the second iteration.
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