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ABSTRACT

The notion of a generalized finite element method is intro-

duced. This class of methods is analyzed and their relation to

mixed methods is discussed. The class of generalized finite ele-

ment methods offers a wide variety of computational procedures

from which particular procedures can be selected for particular

problems. A particular generalized finite element method which

is very effective for problems with rough coefficients is dis-

cussed in detail.
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1. Introduction

Although the general ideas involved in finite element

methods (FEMs) are very old and are in fact closely rito I~ed I(,

classical variational principles (see [1 1, e.g., for a history of

the finite element method), the full power of these methods is

only seen in their implementation as computer codes. (For a list

of over 650 codes for finite element analysis of structural me-

chanics problems see [ 2 ]). The success of finite element methods

is due to several factors.

a) They allow for effective implementational procedures based

on a collection process which leads to the construction of

a sparse discretized system (stiffness matrix).

b) Finite element methods are robust. In many contexts this

robustness is a consequence of underlying variational

principles in mechanics.

c) These methods allow for the possibility of effective post-

processing,, as, e.g., in the calculation of stresses at

arbitrary points.

d) Many finite element methods have a physical interpreta-

tion which permits an intuitive understanding of the com-

putational process.

From the point of view of present day computational studies,

properties al, b), and c) (especially a) and b)) are essential.

Although d) is important, its importance has diminished because

of progress in the mathematical understanding of finite element

methods, the expanding field of applications for these methods,
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and the progress in computer technology.

Since FEM s are increasingly used by unsophisticated users

in a widening variety of fields, it is important to generalize

the notion of the finite element method as far as possible while re-

taining the basic implementational architecture of the standard

finite element methods (see a) above), so that a particular version

can be selected for a class of problems so as to be maximally

robust and to allow, if possible, for effective postprocessing.

This paper addresses the problem of generalizing the notion

of the finite element method in the context of a simple one di-

mensional problem. We restrict ourselves to this model problem

in order to clearly illustrate the ideas; the extension to two

dimensional problems will be presented in a forthcoming paper.

We thus consider the boundary value problem

-(a(x)u')' + b(x)u f,0 < x < 1

u(O) = u(l) = 0.

Robustness of a FEM for this problem will mean that the

method performs well independently of the smoothness of the coef-

ficients a and b and the source term f. More precisely, we

will say a method is robust with respect to a, b, and f if

the rate of convergence is essentially governed by the approxima-

tion properties of the trial spaces we employ and the smoothness

of the solution.

We will say thata method allows for postprocessing if it

allows a significant improvement in accuracy to be obtained by a

local procedure involving only a single element.

*
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The concept of a generalized finite element method must, of

course, include practically all known FEMs satisfying a), espe-

cially the standard FEM mixed methods, methods using different

text and trial functions, and methods in which the shape of the

trial functions is governed by the differential equations, as

e.g., in methods for the convection-diffusion equation (see, e.g.,

3] and references therein).

Section 2 introduces notation and preliminary notions. Sec-

tion 3 introduces and discusses the Generalized Finite Element

Method (GFEM). Section 4 analyses one special type of GFEM which

is closely related to finite element methods based on L-splines

(L here referring to a differential operator). This method is

very appealing theoretically and is extremely robust, but in

practice has various drawbacks. Nevertheless it provides valuable

insight into what we could expect at "best." Section 5 analyses

a modification of the method of Section 4 which better satisfies

requirements of implementation. Section 6 analyses a further

modification which is still very robust and is easily implement-

able. In Section 8 we show it is identical (in the sense of

leading to the same approximate solution) to a certain

mixed method. In addition, the method is shown to be very rewco-

tive to postprocessing. Section 7 discusses briefly the stanmlari

FEM (as a GFEM) and shows that it is unsuited for problems with

, rough coefficients. Also, the standard FEM is shown to be iden-

tical to another mixed method. Thus it is seen that various mi>:.1

methods (or versions of the mixed method) have substantially dif-

ferent robustness properties. In Section 9 we further elabotateIhe

.1
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method introduced in Section 6 and show that it "reacts" very well

when the roughness of the coefficients is reduced. More precisely,

we show that changing from measurable coefficients to coefficients

with bounded variation improves the rate of convergence-as we

should expect from a robust method. Section 10 contains some

illustrative computations and Section 11 presents a summary of the

conclusions of the paper.

Some of the results of this paper were announced in [ 4 ].

Ilo
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2. Preliminaries

Throughout this paper we will deal with one dimensional

boundary value problems. Thus we consider the basic model

Dirichlet problem

Lu - -(au')' + bu = f, 0 < x < 1
(2.1)

u(0) = u(M) 0.

If b - 0 we will denote the differential operator by L instead

0

of L. The coefficients a(x) and b(x) are assumed to be

measureable and to satisfy

o < a _ a(x) < , 0 < x < 1

< b(x) < 0 < x <1.

Let I = I(t0 ,t 1 ) = {x : t 0 < x < t where 0 -< t0 < t I < 1.

I(0,1) will often be denoted by I. By wk (I) with k=0,1,...
it p

and 1 _ p < we denote the usual Sobolov spaces.w I) denotes

the subspace of wk (I) consisting of functions which vanish to-
p

gether with their derivatives of orders less than k at t0 and

On W k(I) we have the usual norms and semi-normsp

m U() lip <)/

and

lulklp i = flu k) 11Lp (I).! p
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We will also use the negatively indexed space W- (I) =

( 1 ) I ) ) ' with the norm
q

SIf uvdxIlul-l' ' IVEOq (1) Illvll,q, I

where1 + 1 1 We will mostly work with p =o and p = 2.

If p 2 we write

Hk (I) Wk (I),
2

llull k, I  i1U11k, 2, I ,

and

aulki 
lulk,2,

1.

For r >_ 1, pr (I) will denote the space of polynomials of degree

less than or equal to r on I.V._

The solution of (2.1) will be understood in the usual weak

sense in i(y).

In our analysis we will use various a priori estimates for

the Dirichlet problem. We now state these easily proved estimates.

'I Lemma 2.1. There is a constant 0 < C(a,6) < such that

i_. ,(2.2) HlU11l,1 C(ct,6) ILuj 0 ,j

for all u for which Lu f L2 (1) and u(0) = u(l) = 0, and

(2.3) lull i, < C (c , ) Lu ll01, I

I:
- *m'-% ~--
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for all u for which Lu C L (I) and u(O) = u(1) = 0.

Lemma 2.2. There are constants 0 < C(tx,) < and

0 < (t, such that

(2.4) C(a, ) 1Lul oj IuI)ll 5 C(a,$) )ILuIl y-

_I~Ifor all u E p() and

(2.5) C (ot, i) lLu ~ I fufll C((x, ! Lull

oo0 , l o

f l1

fo lluE I
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3. Generalized Finite Element Methods

We will now consider a class of finite element methods for the

solution of (2.1). Let A = {0 = x 0 < x 1... < x n  1, where

n = n(A) is a positive integer, be an arbitrary mesh on Y and

set hj = x. - xj and Ij = I(xjlX j) for j = 1,...,n, and

h = h(A) = maxh. With (2.1) we associate the bilinear forms
j

B0 (uv) = au'v'dx

and

B1 (u,v) = buvdx

and the linear functional

F(v) = fvdx.

The exact solution u of (2.1) is then characterized as the unique

u E~01 (I) satisfying

B(u,v) B 0E(u,v) + B1(UV) = F(v), for all v ( H (I).

Given a finite dimensional space S c fi(I) we define an approxi-

mation uS E S to u by

(3.1) B0 (UsV) + Bl(Usv) = F(v), for all v E S.

The usual choice for S is

= S,0r = {E l (Y) : iI E pr(I.), j =

where r = 1,2,..... Then us = u A is the standard finite element

approximation to u.
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Remark. Sometimes the condition Sr 0 H () is relaxed• A,0

and the bilinear forms B0 and B1 are defined as sums of integrals

over the subintervals I . In this paper we will always assume
Sr

S, HM.However, the extension of the ideas developed in thisA,0"'

paper to two dimensional boundary value problems will utilize such

a generalization. This will be addressed in a forthcoming paper.

The finite element method based on Sr , uses local basis
functions, namely those functions in Sr that are characterized

by nodal values together with r - 1 values associated with each

I.. We can in fact writeJ

Sr = S I 1 §r

A ,0 A,0 A,0

where

1^rS ,' 0  A {, 0  : ( x ) = 0 , j = 0 , . . . , n } .

It is clear that dimS 1 n -1 and dimSr (r-l)n. S isA,0 A =,0

called the space of internal modes or a bubble space and is charac-

terized in various ways, e.g., by function values at r - 1 in-

terior points of each I. or by values of the first r - I momentsJ

on each I.. This is especially important when r is large. In
:1 34 this case hiearchical elements are of importance; for more on these

elements see [5], e.g. Local basis functions lead to a "collection"

process for the construction of the sparse global stiffness matrices

from the local stiffness matrices (which are associated with the indi-

vidual Ij). The load vector is constructed in a similar way. We see

immediately that this essential feature of the standard finite element

method is preserved if we replace the finite element equation (3.5) by
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(3.2) B0(AIuA,BIv) + Bl(A2uAB 2v) = F(B3v), for all v E SAP 0

where A i , i = 1,2, and B i, i = 1,2,3, are one-to-one linear

mappings of Sr into Hl(Y) with the property that formappngsof A,O

Sr 0 Api1  and BiiI. depends only on For sim-SA, 'I. I.. orsm
3 3 J

plicity, we will in addition assume that

(3.3) (Ai ) (xj) = O(xj), i = 1,2

and

(3.4) (Bio)(xj) = O(xj), i = 1,2,3, j = 1,...,n.

(3.3) can be weakened while (3.4) is essential. Such a weakening

is important in the two dimensional case. (Cf. the previous Remark.)

We note that the standard finite element method corresponds to the

choice A. = B. = E = the identity mapping. We will refer to the method1. 1

defined by (3.6) as a generalized finite element method (GFEM). The

method will be denoted by the vector L = (A 1 ,A2 #,BI 2 ,B3 ) of mappings,

and the corresponding finite element approximation by uA(L).

eA(L) = u - uA(L) will denote the error.

Remark. The existence and uniqueness of uA(L) as defined

by (3.2) cannot be established without further assumptions. This

*g question will be settled for each of the specific generalized finite

element methods discussed in the paper.

Practically all finite element methods, including methods for

solving diffusion-convection problems and reduced integration

methods, can be put in the form (3.2). The form (3.2) obviously

preserves the possibilities of the collection process for the con-

struction of the stiffness matrix and preserves the

sparsity of these matrices, so that one of the main ingredients of
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the FEM is unchanged (see Section 1).

A number of questions arise in connection with generalized

finite element methods:

i) What is the optimal choice for the mappings Ai , Bi

i.e., what is the best choice for the local stiffness

matrices?

ii) How do implementational requirements influence the

choice? How much effort should be spent in the construc-

tion of the A., B. as compared with effort spent in1 1

mesh refinement?

iii) Which choices lead to robustness of the method?

iv) What is the accuracy of the generalized finite element

method?

These questions will be addressed in the following sections.

I

L'1 • , , :,,++

4 - L,.. . : .-.. - - - -. . ' . .. .~ i r .i. - T l
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4. The L1-Finite Element Method

In this section we introduce a version of the GFEM which, al-

though it is rather impractical, gives valuable insight into the

best that could be expected from a method for solving (2.1) when

the coefficients are rough.

In addition to the usual finite element space S intro-

duced earlier we will use the spaces

{ HI (I): LiIj. E pr-2(j) for each j}

r Jr
and~r S H (I). (If r = 1 we require that L = 0 on

A,0 A

each I We see that dimS =dimSr = nr - 1. We now dis-

cuss several properties of the spaces 
SA

Lemma 4.1. Given a function u H IO) there is a unique

Ir(a,b) = I satisfying
A

I IAu E sA

(4.1) IAU(X j ) = u(xj), j 0,1,...,n

(U-IAU) (x-xj 1 ) dx=0, t=0,...,r-2,j=l,...,n.

A1-

Iu E ft (Y) if u E
A

Proof. The existence and uniqueness of IAu will be estab-

lished if we show that u = 0 in (4.1) implies IAu = 0. Thus

suppose u =0. Then from (4.1) and the definition of Sr we

have

11
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0 1 Au LAU u)dx

A Aj
J

I [a((iAU) + b(A U) 2 dx,

from which we get IU = 0.

We will refer to IAU as the SA -interpolant of u.

Lemma 4.2. For u E H I u Er is characterized byLema 42. or E l~ , Au  A, S0

1 rl
(4.2) UAU)'v'dx J u'v'dx, for all V S SA 0

0 0 '

or by

(4.3) B(lAuv) = B(u,v), for all v ( r

Proof. The characterizations (4.2) and (4.3) can be seen by

writing

i t 1

(ui~ u A vd = jfJ (u-Iu) (-v")dx + .(U-1 u) (x 4Jv' (x)

and

B(u-IAU,V) = f.(U-I u)Lvdx + [j(u-I u)(x.)Jav'(x.),
A I A

where Jav'(x_) av'(x-) - av'(x+). We note that Jav'(x.) is

well defined since Lvi1  E Pr-2 (I) and therefore

av'JI E H (I for Z ,...,n, which implies av' has left

and right limits at each node x..
3

Remark. (4.3) shows that IAu is the Ritz projection of

(Y) - A0 with respect to the form B.

Lemma 4.3. For =0 or 1, k >0, and r > 1, we have
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(4.4) Iu I U11Z C ((,3 h 1 III
AI. k ,i I . k,~,P1 P14 I

and

(4.5) tlu - T jI A<,. - C(a,6)h ILuI k,-,

where Pi min(k+2-k,r+1-Z), and C(a,a) is independent of u but

depends in general on a~, a, Z, k, and r.

Proof. We first prove (4.4) with k = 0. Suppose

iw -(aw')' + Bw = F on Y

(O) =w(l) 0

where ca (x) 0 Ob(x) -5 on Y, and let v be the Ritz

projection of w onto the subspace

with respect tosthe fom K:u:vr= ;1 (au22'buv2:x, i?2., suppose

B(w,4) , for SE S0

We write a, b for general coefficients in order to distinguish

from a, b in (2.1) and a, b introduced below. Now, using (2.2),

(2.4), and the fact that all norms on the finite dimensional space

4 (Y) are equivalent f or 2 p we have

-I P (I
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(4.6) flLII '0 I CH Lv!l ij

f- C (ot )lIV11lC(a,6) HIw1 iy

Now consider u - IAU on I. . For any function v(x),
A x-.x

x E I. , let v(x) = v(x), where x = h I By a standard

scaling argument

(4.7) Hju - IAU1I1I - Ch. i2 1u - U u11 0,A •' 3 1

where fu is the -interpolant of u where

= { :L = -(ap') ' + h25 E pr-2(Y)

i.e., T u is the element of Sr having the same values as u

at 0 and 1 and having the same moments of orders up to r - 2

as u (cf. (4.1)).

From (2.2) we see that

(4.8) Iu -u 110 , y , .) -L(u-Iii)IIOT.

Write

I u U u) 1 + (lu) 2

where

L( u)1 = 0 on Y

(Tu)1 (0) = u(0), (Ju) 1 (1)

!
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It is easily seen that

u~~ ~ (TL)11() u (TTii) (1) =0

and that U u) 2  is the RitZ projection of u - (u) 1  onto

S0with respect to the form B(u,v) =o (au'v'+buv)dx, where

= {*f E Pr-2 (I), 0(0) =~1 01.
0

*Hence from (4.6) with w =u - (l-u) 1  v (I (U) 2  and p =2

we obtain

(4.9) IIL:(TU)IIOT- = IIL(T U) 2 I1IO,

Combining (4.7), (4.8), and (4.9) we have

(4.10) Iiu - I ~ulo, < C(cL )h 1/2 IIU1
A J, ,

< 1/2-

since pi > 2 for k 0. Now

Iu - I A UIII = I(u-0) - A(u-0)IIOI.

for any 4~such that L JI1  E r2(1 J Combining this with (4.10)

.v1 ~we see that - UIo

Since ET is arbitrary in r-2 (f) we have
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H ~ 1/2 j
A 0,1 Pr-2 2 - 2 f

12

Then a further scaling argument yields

(4.11) 1Ju - I U110'I' -< C(ot,8)h"'ILul -2' 3.

(4.4) with £ = 0 follows immediately from (4.11).

(4.4) with £ = 1 is obtained by a slight modification of

the above argument. We finally note that (4.5) follows from a

similar argument based on (2.3) and (4.6) with p

Lemma 4.4. There is a constant C(a,6), independent of u

and A, such that

(4.12) 11AUIlll,TY  c(e,6)IlUII

and

(4.13) 1IAUJ 11 - C(ct,)uil,

Proof. (4.12) follows directly from the coercivity of B.

We turn to the proof of (4.13).

Let z E WI(I) and suppose w satisfies

Lw -(aw')' + bw = Q E pr-2() on Y

-i w(0) = z(0), w(1) = z(1)

f1 1
o wx dx =f zx dx, j = 0,...,r-2
0< 0

Swhere 0 < :a(x) (3 , 0 b(x) (3s. write w = w1 + w2 where

w I w 2
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wI (0) = z(O), w1 (1) = z(1)

and

w 2 = Q

w 2 ( 0 ) = w2 (I) = 0.

We also write z = z + z2  where

SZ 1E H1 (Y), z1 (0) = z(O), z1 (1) z1

t(Zio) = 0, for o E Al(Y)

and

z2 E

9(z or E01B(z 2,o )H, for 4 E Hl(I),

where B(u,v) = 0l(au'v'+buv)dx. B(zlz 2 ) = 0 and hence

(4.14) 11z 11,i C( ,.IzII

Observing that w2  is the Ritz projection of z2 onto the sub-

space

{0 = r-2(Y)o , o(0) o (1) = 0}

we see that

(4.15) 11w 2111  C(E, ) 111

We now show that

(4.16) 
Y _ C(-, a) z 0l,, f
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First we show that

(4.17) 1w l-- C 1,3 ) 1 z1 0 ,

if b=0,

Wl(X) = z(l)-z(0) +x zdo+ z(0
1dt 0o a

0f a

and the result is immediate. Now suppose b $ 0. Let v satisfy

( 0 v -(av')' 0

(0) z(0), v(1) = z(1).

From (4.17) with b = 0 we have

(4.18) IlvIIl,j, Y  _ C(aB)jjz!!,, .

Letting y = w1 - v we see that( y = -by

y(0 ) = y(l) = 0.

using (2.3) and (4.18) we obtain

+. ii Ilyll, ,g  _< (a, ) lvll , ,

I (4.17) follows immediately from this result and (4.18).

Next we show that

4 (4.19) 1jw2 11 1,c ,I C( , 8) ,, •

Using (2.3), (2.4), and the equivalence of norms on the finite

dimensional space P (1) we have
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(4.20) 11w2 i y C(,) IIQII0 y

- C(x,8) II _I,

::C(czf) f{w2ff iy.

Combining (4.14), (4.15), and (4.20) we obtain (4.19). (4.16)

follows from (4.17) and (4.19).

Now consider u - lu on I. and recall the notation in-

troduced in the proof of Lemma 4.3. By a scaling argument we have

(4.21) lu - IAU l, . Ch -l u -TujI , ,

where Tu is the sr-interpolantof u where

r = : =-(a') + h2- pr-2 (- ) }.

From (4.16) and (4.21) we obtain

(4.22) lu - IAUll,-,I. < C(O, )hj l II -l, , .

From (4.22) and (4.5) we have

(4.23) IUAUI1,c,1. < Il(u-Y)+IA(u-Y)l,00 ,Ij+IYIL1I-A1I1 ,,1

<1,-,,y + lylhj]

for any constant y. Now select y = udx. Then

t1 - Ii , , - < clu l, ,
flu - 1,0<,1 - 1,00,1

and

IYI -< lulo ,Oo,y-

Thus from (4.23) we get
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(4.24) iu - I 'Aujl , C(oc,B) [h. H -,. + h lul " Y-

A second scaling argument applied to (4.24) yields

Iu A AuI 1-, < C(x, ) [IuI11 .', + h IuI 0"" 1 ]

and thus

(4.25) II ul C (CL, ) liul!A 1,-,I.i

(4.13) follows immediately from (4.25).

The main goal of this section is to consider the L 1-method,

where L (A,A,A,A,A) , the mapping A :Sr +fi(i being
1 A0

defined by Au = I r (a,b)u for u E S r It is immediate that
A A ,0

A is one-to-one and onto rAulI. eed only o

uJI . Au(x )U(x) and that A _lw~ =Ij(l, 0)w for w E r

Theexitece nduniqueness of u A(Ll1 is clear. We see that

u , E=mle ux 0 and that

Ar AS1 A
A ,0 A ,0 A,0

This fact plays an important role in implementation.

~ ILemma 4.5. There are constants C and C(,V), independent

of A, such that

(4.26) "Au~ 11 Car)l 1 ,

and

(4.27) JIAuIj ,. C(CX43) uI for u E Sr

and
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(4.28) !!A - w -, C l1w 'I

and

(4.29) 1A-wll I - ClWw1,1f 1  for w Sr 0

Proof. (4.26) and (4.27) are essentially restatements of

(4.12) and (4.13), respectively. (4.28) and (4.29) are special

cases of (4.26) and (4.27), respectively, corresponding to a = 1

and b = 0.

We present the error estimates for the L -method in the

next two theorems. Let eA(L) = u - AuA(LI)-

Theorem 4.1. For Z = 0,1 we have

S(4.30) e A(L I  C (ci, j ) h" 11 f 11 k,
Z,1

and

(4.31) l!e A(L ) I - (aL)h If1, kf,:

where P = min(k+2- , r+l-k).

Proof. It follows immediately from the definition of the

L -method and from (4.3) that Au (L = U. Thus (4.30) and

(4.31) follow directly from Lemma 4.3.

. .



24

Theorem 4.2. For Z = 0,i we have

(4.32) 1leA (iL)f£, C(a, a) hl- fl ,

and

(4.33) Ile A (L fl q", ,j C (a, 6) hl- 11fI10, ,y

Proof. These results follow immediately from Theorem 4.1,

rthe fact that u (LI  is the SA,0-interpolant of Au (LI)

standard approximation result for Sr ,0 , and (4.26) and (4.27).

Remarks.

1) The rates of convergence given in (4.32) and (4.33) are

clearly the highest that could be proved under the governing hypo-

theses.

2) Suppose that we have found uA(L). Then, although the

accuracy of uA(L I) is low (see Theorem 4.2 and Remark 1),

A (LI ) has high accuracy (see Theorem 4.1) and can be calculated

locally, element by element. Thus the highly accurate Au(L)

can be constructed by post processing.

3) Theorem 4.1 shows that we can obtain the same rate of

convergence in the norms II' .I = 0,1, for problems with

rough coefficients as for problems with smooth coefficients when

post processing is applied. This shows the maximum possible

robustness.

4) It is easy to show that postprocessing does not improve

the rate of convergence if a and b are smooth and so e, (L]
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and e A(L ) are of the same order in this case.

5) The L -method is closely related to Ritz method using

L-splines (see [61, e.g.) and, as would thus be expected, yields

the exact solution at the nodes.

6) We have presented estimates in only the norms

-and IIy for Z = 0 and 1. Parallel results hold in

the norms jI'1£p~, 2 p Z , 2 = 0,1.
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5. The L O-Finite Element Method

LO (A ,A 0 A 0 AOIA 0 the mapping A 0  being constructed from

T, as A was from L in Section 4, i.e., A Ir (a,0)u for u Sr'0
0 A,0

The existence and uniqueness of u A L a is immediate.

Theorem 5.1. For Z. = 0 or 1 we have

(5.) u-A u (L il2 , - C(cz1 )h 2tlf1

and

(5.2) Iju-A uA(L)I H wj C((x, ) h 211f

Proof. Let F = f - bu. Then from (2.21) and (2.3)

and

Clearly

(5.5) {L 0.

Let Ul\(L )denote the L -finite element approximation to the

solution of (5.5). From Theorem 4. 1 applied to (5. 5), (5. A I~

(5.4) we have

(5.6) U-Au() - C(~~) 2 p'

andI0,

L
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(5.7) 11u-A u (L 0  { , ,- - _ C (a, )h2-£Hf 11 ,

Writing

(5.8) uA(L) = uA(L0) + z(L0)

we immediately see that

(5.9) B(A 0 z,A 0 v) = B(A0uA(L0),A0v)

- B0(A iA(L0),A0v)- Bl(A 0A(L0 ),AUv)

= BI(u-A0 u (L0 ),A0 v), for V E Sr
1' Ap0"

From (5.9) and the coercivity of B we have

1A Z11 2, < C (O, BB(A z, A Z)
0.,. 0 0

:f: C (a, 11 u-A 0 uA ( L 0) 110,yjjA~zjjO0, Y

and this, together with (5.6), yields

(5.10) HA z 11I, < C((x, ) h 2 lifil0,

(5.1) follows from (5.6), (5.8), and (5.10).

For Z = 0, (5.2) follows from (5.7), (5.10) and the fact

that

(5.11) 11A0 zll0,I <- IAz 111, .

It remains to prove (5.2) for Z = 1. It is easily shown

that there is a positive constant C(a,S) such that

L _
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lB0 (u,v) 1
(5.12) sup iruF ' 'I  C(a,v)Ill,1 ,1, for u E W(I)

u E W (I)

From (4.3), (4.13), and (5.12) we have

(5.13) p IB0 (w,v) I IB0(IA(a,0)u,v) I
(.w= sup Ill(a,0)u

wEA0 SA ,WWuEW (I)

I(uv) I TIU~al,),ysup 0l~ -r i ',0)uI ,
u E. -(Y ) I , ,11001Y A ( , ) 1 , 0

- C(a,)jV!Il, for v ( A0S .

(5.13), together with the fact that an operator and its adjoint have

equal norms, yields

IB0 (w,v) f r
(5.14) sup fVl > C(10)ll,, for ( A *S.

yEA S r 1,1,1
0 A,0

Now from (5.7), (5.9), (5.10), (5.11), and (5.14) we obtain

IS 0(A 0z,A 0 v)
(5.15) IA0Zl y - C(a,) sup BA 0 vI

* vES 0

= C(a4) sup IB1(U-A0u (L 0 )-A0zA 0v) I

V' Sr IIA0vll, 1 Y

C(o.,3)(Iu-AOUA(L0) IIO o Y + IIAoZIImf)

< C(O, )h 2 l11 0 , .

(5.2) with Z = 1 follows directly from (5.7), (5.8), and (5.15).

44 I -
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Remarks.

1. The rate 2- Z in (5.1) and (5.2) cannot be improved.

This can be seen by examining the special case a =1 and b

rough.

2. (5.2) with £ = 0 shows that

2Iu(x )-u (L0 ) (x.)I £ C(a,8)h2Ilfl0 - j = 1,...,n- 1.

We also have the analogue of Theorem 4.2.

Theorem 5.2. For £ = 0 or 1 we have

(5.16) IIeA(L0)I, C(a , )h 1-911f 0,1

and

(5.17) IeA(L0) < S C(0, 3)h l fil -

Remark. Comparing Theorems 5.1 and 5.2 we see that the

L0 and L1 methods have the same rates of convergence. On the

other hand, implementation of the L0 method is much simpler

since the equation L0  = can be solved by quadrature.

ii

. I-
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6. The L 2-FEinite Element Method

22

where E is the identity mapping and A 0is as defined in

Section 5. First we analyze the case b =0.

Lemma 6.1. Suppose b 0. Then for k 0,1 we have

(6.1) 'u-A 0u A(L 2 )IZI~ f- C(cc,8) 11"11 fI k,

and

(6.2) juA u A (L 2 )l 2 y~ Cc,)~~

where ~a=min(k+l,r).

Proof. We will prove (6.1) in detail for r =2. InS2
A ,0

we construct a basis by choosing

C11.. 1 n-

satisfying

P(x.) =6.., i,j =l..n-1

f Pdx =0, i 1,...,n-1, j l..n.I.1

1(x 0, i l..n, j~l..nl

f .dx = 6., i,j 1,.,n

For f EH k(Y) let
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f = X-l (ff jdx) 6 + n = (fyf dx)x

where 6 is the Dirac distribution at x. and X. is thexC. J ))

characteristic function of I.. It is easily shown thatJ

A0UA(L 2) is the exact solution of problem (2.1) with right

hand side fA" We note that this fact implies the existence and

uniqueness of uA (L ). Thus from (2.4) we have

(6.3) lJu-A0uA( 2 ) 11,1 C(u,()L )f-fAll 'l '

Now let w be the solution of

(6.4) [-w" = f, x E
w(O) = w(l) = 0

and let wA be the standard finite element approximation to w

in the subspace i.e., let wA be the Ritz projection of win te sbspce A,0 .,

onto S with respect to the form f1 u'v'dx. As above, weA,0 0

see that wA is the exact solution of (6.4) with right hand

side fA" Thus from (2.4), applied to the problem (6.4), we

obtain

(6.5) lIf- f I 11 CI1w-w 11l -

Combining (6.3), (6.5), a well known estimate for the standard

finite element method, and a simple regularity estimate for

(6.4) we have
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Ilu-A0 UA(L 2 ) Ili, C C(t, )h211WII k+2, I

< C((x, r,) h 2 11flk .

This is (6.1) for r = 2. The proof for general r is similar.

Finally we note that the proof of (6.2) follows the same lines

but is based on (2.5) instead of (2.4).

Remark. In general one cannot obtain a better rate of

0 - 0
convergence in H (I) (W0,(I)) than one obtains in

,~ I ) (Woo(I))

Lemma 6.2. Suppose b = 0. Then for Z = 0 or 1 we have

(6.6) IeA([I2 ) !Iz,y < C(at 1)h -tI1f1 0 1

and

(6.7) Ilea (L2)IIz, -< c(U,8) hl-£1 fl{ , y

Proof. The proof of this lemma is similar to the proof of

Theorem 4.2.

We now turn to the general case.

Theorem 6.1. There is a constant ho = h (,B)such that

0

for 0 h < h0 , uA(L 0) is uniquely determined. Furthermore

there is a constant C( i,6) such that

(6.8) Ile (L C(a, )hIf 0 1

and

(6.9) Ile (L , <_ C(a, )hllftI{0 ,A 2 0 ,OD,I 1 -

for 0 < h < h 0.
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Proof. Consider the problem

( -(aw')' = F, x E

w(0) = w(l) = 0.

Let T be the corresponding solution operator, i.e., let

TF = w, and let TA be the L2 approximate solution operator,

i.e., let TAF = wA(L 2 ). We regard T and Th as operators on

L 2 () From Lemma 6.2 we have

2<

(6.10) lIT - TAIIL ,L 2  C(2f L)h

Let u be the exact solution of (2.1) and u A(L ) the /2

approximation to u. Then

(6.11) u = T(f- bu)

and

(6.12) uA(L 2 ) = TA(f-b uA(L 2 ))"

Using (6.11) and (6.12) we obtain

(6.13) u - uA(L 2 ) = (T-TA)f - Tb(u-uA(L 2 ))

+ (TA-T)b(uA(L2 )-u) + (TA-T)bu

which can be written as

(6.14) [I+Tb + (TA -T)ble (L2) = (T-TA ) (f- bu)

where I is the identity operator on L 2(I). Now TbI is com-

pact on L2 and it is easily seen that I + TbI is one-to-one.

- iThus (I+TbI) exists and is bounded. From (6.10) we see that

I .-, : . . . . , ', ~ m
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L(TA-T)bICIL 5 h
2' 2

and hence

(6.15) [I + TbI + (TA -T)bI]- L C(a,

for h sufficiently small. Identity (6.14) together with the

invertibility of [I+TbI+ (TA-T)bI] implies the existence and

uniqueness of u A(L 2). It follows immediately from (6.10), (6.14),

and (6.15) that

ile L 2) l0,1 < C(Y, )hllf - bull 0,y

<C (ot, )hllfll

This is (6.8). The proof of (6.9) is similar.

Remark.

1. The assumption that h is small is not necessary as will

be shown in Section 8. See Remark 2 following Theorem 8.2.

2. In Lemma 6.2 the case Z = 1 is essentially a stability

result, this result is also valid in the general case (when b 0).

See Remark 2 following Theorem 8.2.

Theorem 6.2. For k = 0 or 1 we have

-k
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(6.18) Jju-A 0 UA(L 2 ) I , - COe, )hllf 110, [

and

(6.19) 1u-A0UA(L 2 ) Z,,y < C(ct,)hIifi0 - Y .

Proof. Recall the notations from the proof of Theorem

6.1. Now let TA be defined by T A F = ATAF Just as we

obtained (6.13) we now obtain

(6.20) u AU(L2 ) (T-TA)f Tb(u-uA(L2))

+ (TA -T)b(uA (L2)-u)

+ (TA-T)bu.

From Lemma 6.1 we have

(6.21) JITTAi 1 < C(c'83)hflI
L2

1 H ,

Using (2.2) we see that

(6.22) IlTb(u-uA(L 2 )) l -i C(,) U-UIA(L 2 ) 0',Y.

Finally, combining (6.20)-(6.22) and Theorem 6.1 we see that

Itu - A0u (L2 )iI ,-f :5 C(ct,a)hifi 0 .

This gives (6.18). The proof of (6.19) is similar.

Remarks.

1. Estimates (6.6) and (6.8) cannot be improved when general

a and b are present. If a and b are smooth then, of

course, better estimates can be derived, namely
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(6.23) 0 e ( 2 l , L Chf"k, .

where = 0 or 1 and i min(k+2- , r+l-'). Here C

depends on the smoothness of a and b as well as on a and 3.

Similar results hold in connection with the norm

2. (6.16) and (6.17) canno in general be improved.

Theorem 6.2 shows, however, that the accuracy can be improved

by post processing.

3. The rate of convergence in (6.23) is the best possible,

as cdn be seen from the theory of n-widths (see [ 7 ]). If

a and b are merely measurable it is also possible to show

that (6.8) and (6.16) give the best possible rate of convergence.

Thus we see that uA(L 2 ) yields the optimal rate of convergence

in all cases. Similar results hold in connection with the

norm

4. The L2 method is well suited for implementation. In

fact we will see in Section 8 that it can be obtained as

a mixed method or can be easily implemented directly.

5. We could also discuss other choices for the A. and

B. which would modify in various ways the accuracy of the

approximate solution.

b-.1
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7. The Standard Finite Element Method (The L 3-method)

The standard finite element (or Ritz) method corresponds to

the choice L3 = (E,E,E,E,[). In this section we discuss a

negative result that shows the contrast with the L2-method. We

assume r = 1.

Consider the family of boundary value problems given by

a, b = 0, f = 1, where A = {x0' 'X n} = 0 ' n-l' In n O 'n n n

and

x +X
2, j_ 1 < x < 2

a n(x)

2
i, 2 < x < x., J = i .,

and let un denote the exact solution. It is easy to see that

uA (L3) (the standard finite element approximation to un) is

n

the piecewise linear interpolant to the exact solution of the

problem

v(O) = v(l) = 0

From Lemma 6.2 we have

C
IlUn uA (L2 )!0, 1  < nn

and it can be shown (see Theorem 9.3) that un converges in

L2  to the exact solution of

2
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_4 Wit

w(0) : (1) =0.

This shows that the L2  approximation, uA (L), is very
n

accurate while the standard finite element approximation,

UA (L3), fails to "converge", i.e., un - uA (L 2 )---- 0.
n n

Remarks.

1. We see that the standard method is very nonrobust. It

does not converge for rough coefficients at all, and gives very

poor results when a changes significantly between the nodel

points. In contrast the L2 method performs well whether the

coefficients are smooth or rough. Because the implementation of

the L2  involves the same amount of work as does the standard

22method, the L-ehdshould be prefered in all cases.

2. We have analyzed only linear boundary value problems.

Many of the ideas introduced here are valid for nonlinear problems

also. For strongly nonlinear problems the L2 method is very

promising.

71
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8. The Relation Between Generalized Finite Element Methods and

Mixed Methods

In this section we discuss the relation between Generalized

Finite Element Methods and mixed methods. Mixed methods for the

approximate solution of (2.1) can be derived from the displacement

formulation (2.1) by introducing an auxiliary variable, writing

the second order scalar equation as a first order system, casting

the systems into variational form, and then discretizing the

resulting variational equations. This can be done in various

ways. We consider two mixed methods for (2.1).

Letting s = pu' we write (2.1) as a first order system

in two ways, namely as

au' - s = 0, 0 < x < 1

-s' + bu = f, 0 < x < 1

u(0) = u(1) = 0

and

s
U -- = 0, 0 < x < 1

a

-s' + bu = f, 0 < x < 1

u(0) = u(l) = 0,

and then consider the associated variational formulations
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01-
u H (I), E HO (I)

(. au 'odx - sadx = 0, for all o E H0 (I)

1 

10 

l0

1 sv'dx + Jbuvdx = fvdx, for all v E (y)

and

01 
f)

Cu ( (I), E Ho(I)

rl 1 OI

(8.2) u'odx - a dx 0, for all a E H0 (I)

1. 1 0 01

sv'dx + buvdx f fvdx, for all v H i
0 0 0

The mixed methods we consider are now obtained by discretizing

(8.1) and (8.2):

S r r SA -r-iU A ( SA "A A
A A

1AudX sodx 0, for all a r-l

(8.3) f, 0 A" ~ 0 o ~E A

s v'dx + b vdx = fvdx for all v E

UA A S 01r

(8 4 r S r- i,' u0, s'A S A

(8.4) -10_ dxa for all a E SA
0 0

sAYdx + =uvd fvdx, for all v S r '
0 0 0'

loll
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where Sr = $ E H (I): /I = Pr(Ij) ' j =,...,n}.i ]

As indicated above, the mixed formulations (8.1) and (8.2)

are obtained from the displacement formulation (2.1) via the

introduction of an auxiliary variable. Clearly this process

can be reversed, i.e., (2.1) can be obtained from (8.1) or (8.2)

by eliminating the variable s. It is also possible to eliminate

this variable at the discrete level, i.e., to eliminate sA

from (8.3) or (8.4), obtaining a Generalized Finite Element

Method. This is made precise in the next two theorems.

Theorem 8.1. The elimination of sA from (8.3) leads to

the L3 finite element method for uA, i.e., uA is the

standard finite element approximation to u.

Proof. Suppose uA , SA satisfies (8.3). Letting a = v'

in the first equation in (8.3) we find flau~v'dx flsAv'dx.

Using this in the second equation we see that

uA E A,O

f 1
v'dx + Jbuvdx fvdx, for all v S r0 fo Af ,0

i.e., uA is the L finite element approximation to u.
A3

Theorem 8.2. The elimination of s from (8.4) leads to
sA

the L2  finite element method for uA.

Proof. Suppose uA, sA satisfies (8.4). From the first

equation in (8.4) we see that
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ISA SAu I

where P is the L2-projection onto r-l (I). The mapping

-* R (s ) P (S from pr-1 ) to r-l is one-
A i  sAl i  ) a ((I)

to-one; let Qj = R.I. Then

s Q

sAli = Qu l1

Using this in the second equation in (8.4) we see that uA

satisfies

uA EA,II
[n I J'IruA v'dx + vdX = fVdx for all v ES

u Ja I A Ao (

It remains to show thatQjul = (AOuA)'I. From (4.2) we

that P(AOP) for S and from the

definition of Sr we have (A0u) ' I pi (Ij). Thus
3

Rj[a (AU I. P(Au I

This completes the proof.
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Remarks.

1. If r = 1 both the L and L methods can be viewed

as arising from the application of the standard finite element

method to a problem with appropriately perturbed coefficients.

Consider the problem.

-(a Au')' + bu = f, 0 E f

u(0) = u(M) = 0

where aA  is constant on each Ij, and consider its approximation

by the standard finite element method. If aA = aA, where

'I.adx

aAi I i.e., if aA is the piecewise average of a,

we obtain the standard finite element method for the solution

of (2.1). Also, it is clear (when r = 1) that

SuAli .
i QjQUA j 3Id

Iix
' 'fI---a

where Q. is the operator introduced in the proof of Theorem 8.2.

=I "a- 1

Hence if aA aA, where (fAx I h. i.e., if a,

is the piecewise harmonic average of a, we get the L method.

It is obvious that a A and aA can differ significantly if a

changes significantly on the subintervals I., while for smooth

a, aA and aA differ by 0(h 2 ).

The observation that the L2 method is tha same as the
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standard method applied to the problem with a replaced by

aA" where aA  is the piecewise harmonic average of a, shows

that the L2 method can be easily implemented, its implementation

being of the same difficulty as for the standard method.

2) Using the operator R. introduced in the proof of

Theorem 8.2 we can prove the existence and uniqueness of uA(L 2)

for all h. See Remark 1 following Theorem 6.1. R. is positive

definite on pr-l (I with respect to the L2 -inner product and

its eigenvalues are bounded away from - and 0 uniformly in j.

Thus

(Q z)zdx X z2dx' for z E Pr-l (I)

with X > 0 independent of j. Now suppose

)I1 V + rI a[A0 uA(L 2)]'v' + AbUA(L2 )v dx = 0, for all v E SA'.

Then

0 JI[Q u(L 2 )]u' (L2) dx + fb[uA( 2

3

>X J. Eu (L 2 )] dx

which implies uA(L 2) = 0.
-A 2

3) Nemat-Nasser, in [81 and a subsequent series of papers,

suggested the use of the variational principle (8.2) in

conjunction with trigonometric polynomial approximating functions

for the approximate calculation of eigenvalues of problems with
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rough coefficients. The authors derived error estimates for

this method and corresponding finite element methods (cf. (8.4))

in [9].

I
S.
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9. Additional Properties of the L2 -method

So far in this paper we have assumed the coefficients a(x)

and b(x) are in L.(I). In this section we derive additional

properties of the L 2 -methodin the case in which a(x) has bounded

variation and r = 1. We begin by proving a perturbation of coef-

ficient result.

Let u denote the solution of (2.1), i.e., let u be thea a

solution of

(9.1)-(au;)' + bu a = f,x E T
~(9.1)

Ua(0) U (1) = 0

a a

and let u be the solution of the corresponding problem with a

replaced by aA, where aA  is the piecewise harmonic average of

a subordinate to the mesh A = (0 = x1 < x2 < ... <xn i1, i.e.,

the step function defined by
a =I = j Ti

,IK h.

We now present an estimate for u - u under the hypothesis

a aA

that a(x) has bounded variation.

For a function c(x) with bounded variations denote by cA

the piecewise average of c. We will assume functions with boundled

variation to be right continuous at each x < 1 and left contin-

uous at 1. It is easily seen that V(c A ) A V(c), where V V1

denotes the variation on I.

Lemma 9.1. There is a constant C such that
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(9.2) I (c-c A dxI c (CV ) h~ -

I f 01,p,If

for PE W 1(T), p <-~ j

1- A
Proof. Let E W (I) , let c~be the piecewise average

of 4,and set 4 (x) = x(P-1 A )dt. Then

I 0

- f ji (c-c A)4,'(x)dx

0

- Ifo Idcc)

5 - Vd(c-c A

C1 , , - (C C

< cIlkD!I - V(c) .

Now we bound 1j 11oDj T Suppose x 5ix < x ~.Then

4 (A fA
4, j X)' dt + (I-IP )dt

if0 
z-
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x£-
Z-1

p-i< - (D ¢-A 1O,p, (x-x -l) P

and thus by the Poincard inequality we have

p-i

(9.4) H(x) I h 0I0p,I z h£ R

2--II' 10,p'i£ h P

(9.2) follows from (9.3) and (9.4).

For b -E 0 we obtain two estimates for ua -u . The firsta aA

is an estimate for IjUa- au0 u and the second is an estimate

for ua(X j) - Ua(X j), j = l,...,n-l.
I.aj a A

Theorem 9.2. Suppose b - 0. There is a constant C(I,)

depending only on a and 3 satisfying

1+-
(9.5) (u a-u a)zdx C(c,8)Vy(a)1!z,!O,q,flf!'0,q,I h Pa hA

for z E Lp (), 1 < p <, where + = 1.
•- q

Proof. The solution ua of (9.1) is given by

(9.6) Ua (x) -Da f(x) + a,f()Ea(x)
a , E a(I) -

Lw I
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where

ft f(s)ds
D f(x) = a(t) dt

and

x dt

E(x) = a(t)
f0

and the solution u is given by

D f(1)E(

(9.7) u (x) = -D f(x) + Ea A (1)

a A A', a A )

We first estimate f1(Daf-Da f)zdx.
A

Set Q(x) f l z(t)dt. Then
i11

(Da -fD A'f)zdx = fi(Jx ( a A_ 1 ) 10 f(s)dsdt+z(x)dx

= -0 (a(x) aA(x)fO f(s)ds Q(x) dx.

1 1 A

Noting that - = (1) we can apply Lemma 9.1 with c a'

j(x) f X f dsQ(x), and x. 1 to get0 3

1+
(11

(9.8) (Da f-Da a )zdx _ a l,q, h z,q,IJ0  a Alf CV(-)1H h izi

_ C(a) V(a)IfI10,q,i IIZIIq, h

.. -...... '"..... '. ............. '..
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Next we estimate fl (E-E )zdx. we see that

E1 (-E )z dx = f X(-!)dt z(x) dx
0 A 0 0A

= fl( 1 - 1 )Q(x)dx.

0a(x) aA(x)

Now we apply Lemma 9.1 with c 1 - and flx) =Q(x) and obtain

1 
1

(9.9) 10(EaE)z dx C ((x) v (a) '~qh P

Applying Lemma 9.1 with c ad sx)=fx f(s)ds we see that

(9.10) IDaf ()D a f(l) I f(~ 1 f (s) dsdt I

at faaA

(9.11) u a(x) - ua (x)

=D (x) -D (x) + E M1)1 [ D(1) E(x) -D M1E I
ap f a~f a a,f a a f a,,(x)

= ID aff(x) -D a,f (x)] + E a (1)- {[D a,f (1) -D a~rf (l))Ea (x)

+ Da f a)[(x) -Ea xI
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(9.5) follows immediately from (9.11) and (9.8)-(9.10).

Theorem 9.2. Suppose q 0. Then there is a constant

C(a) such that

(Ua(X -ua A(xj C(cx)Vy-(a) "jf10,q,I h P
A

Proof. From (9.11) we see that

uax j) - ua A (xi)

D a,(x) - Da,f(x) + Ea(1) [Da , f (1 ) -D aA f(l)]Ea (x).

Applying Lemma 9.1 with c - and .(x) = x f(s)ds we obtain
a 0

(9.12).

We now consider the general case in which b 1 0.

Theorem 9.3. There is a constant C(a,Lp) such that

1
1+-

(9.13) lu -uaA0, < C(a, P)V-(a) jf10qy h P
a a .. Oq

for 1 - p -

Proof. If b - 0 we can apply (9.5) to get

fl (u -u )zdxl
u a aA
Ua - aA0,p, =zEL sup(I) d A

'pl

• hPC ((x) VT (a) 11fio I 0, h_ P,.

L.

-'p-i,



452

If we let

L0 u = -(au')'

L A0u = -(aA U') ',

and

Bu = b(x) u

this result can be written as

1+1
(9.14) IL 0 1 -LAI,011L qY),L (I) C(a) V(a)h P

where - + - = 1, and the desired result amounts to proving

1+

I(L0+B)- -1 (B , +B)l () Lp() E C(ct) V(a)h P

We observe that

(9.15) (LA+B) - (L+B)

*=(LA+B)- (L+B)(L+B)- 1 (L+B)-II

S --1 -1 -1
* = (LA+B) LL [I-B(L+B) B[-(L+B) B+I]L L(L+B)

-'1 -3

[I-(LA+B) -BILA [I-B(L+B) '  - [-(LA+B)- B+I]L - [I-B(L+B)-

= [I-(LA+B) -B] (LA -L- ) [I-B(L+B) 1.
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It is easily seen that

(9.16) II- (L A+B)-1B Lp(T) ,L (T) C(a,8)

and

(9.17) 1j - B(L+B) 1 L (T),L (T) - C(c,8).

It now follows immediately from (9.14)-(9.17) that

Ilua - ua Ap0,pI

If (LA +B)- f - (L+B)i fII0,p,Y

II-BIlLp L L L-1

-(LA+B) -1 1 -l (I) ,Lp(I) 1 -B(L+B)-I 1L ,LY

1+1
_s C(ce~)Vy(a)IfIfI 0 ,q, h P

This completes the proof.

We now return to a consideration of the L 2-method under the

assumption r = 1.

Theorem 9.4. There is a constant C(a, ) such that

1+!
-ro.(9.18) flu-ui ,p, Y  C(rem)VY(P)"f'I0, q ,' h P

IProof. Using Theorem 9.3 we have
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(9.19)

llu - u Al0,p, - flua UaAIl0 Pp + lUaA- UAl] ,p,y

1+-
< C(a,)Vy(a)h P llfII0,qJ + I'uaA- UA Op,1.

We next observe that u A can be viewed as the standard finite

element approximation to u (cf. Remark 1 following Theorem 8.2).

If b = 0, uA is the piecewise linear interpolant of u and by

standard approximation results we have

1+-2(9.20) IuaA - uA 10,p'y < C(a,6)h P llfll0,q,-f

If b 1 0, (9.20) can be proved by a slight modification of the

usual duality argument. (9.18) follows directly from (9.19) and

(9.20).

Remark. The estimate given in (9.18) is optimal.

Theorem 9.5. Suppose b = 0. Then there is a constant C

such that

1+i
(9.21) Iu(x) -u A(x) I < C(a)Vy(a) 11f1l 0 q, y  h P

for 1 p <-

Proof. This result follows immediately from Theorem 9.2 and

the fact that uA (x) = U (xj)•A aA
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I Remarks.

1) Theorem 9.4 gives the rate of convergence of the

L 2-method without post processing. It is possible to prove that

the same result holds for the L 1-method.

2) One can prove that under the hypotheses of Theorem 9.4

we have the rate of convergence hI/ p  in the norm

74

~ . .
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10. Some Illustrious Computations

In this section we illustrat e t he kieVt'lie'ut II t, tjy 1.i

L 2-method over the L 3-method thC stuldaid i iiLte element method) by

considering two examples.

Example 1. Consider problem (2.1) with

(a, 0 < x < 1/2

ar 1/2 x< 1

and

b(x) = 0

where a£ and ar are positive constants and consider the approxi-

mation of the solution u by the L2-approximation uA (L2) and
n

the L3-approximation uA (L3) corresponding to the uniform mesh
n

An with an odd number of subintervals (xj = jh, j = 0,1,...,n,
n-i

h = n , n odd). One can obtain exact expressions for the errors
1

at the nodes. For the node just to the left of !(X )

we find

I 1 h 1 h 1 h
eA ( 3)(~~ u( ~~ -A ( 3)(7 -fn n

Ba(a£a)3
a- h2 (aP-ar) 2 2 2 2

3 + {8a ra(aq+a) + (a -ar8aaz+ a k (a z+a r )  ",:

Iand

1 h 1 h 1 heA ( 2 ) (- u(- ) -uA (L2) (--)n n

h2 (a£-ar) h3 (a r-a

8a£(a 9+a) + 8a 2 (a£+ar) " +
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From these expressions we see that if ar - a, is large
r~ a9  isg

relative to h, then eA (L2 ) <, e(L3 ), while if a - a is
r3

approximately equal to h, then eA(L 2 ) "e(L 3 )-- -h Tables
16a

1 and 2 give numerical values of the errors at the nodal points

for the case a£ =1, ar = 100.

x eA (L 3 ) eA (L 2 )
n n

.2 9.23-3 -1.96-3

.4 1.85-2 -3.92-3

.6 -1.85-4 3.92-5

.8 -9.23-5 1.96-5

Table 1. eA (L3) and eA (L2) for a£ = 1,
n n

a = 100, n = 5.r

x eA (L3) eA (L2 )
n n

1/21 5.32-4 -2.65-5
2/21 1.06-3 -5.29-5
3/21 1.60-3 -7.94-5
4/21 2.13-3 -1.06.4
5/21 2.66-3 -1.32-4
6/21 3.19-3 -1.59-4
7/21 3.72-3 -1.85-4
8/21 4.25-3 -2.12-4
9/21 4.79-3 -2.38-4

10/21 5.32-3 -2.65-4
11/21 -5.31-5 2.71-6
12/21 -4.78-5 2.44-6
13/21 -4.25-5 2.18-6
14/21 -3.71-5 1.92-6
15/21 -3.18-5 1.65-6
16/21 -2.65-5 1.38-6
17/21 -2.12-5 1.11-6
18/21 -1.59-5 8.35-7
19/21 -1.06-5 5.58-7
20/21 -5.30-6 2.84-7

Table 2. eA (L3) and eA (L2) for a. = 1,

n n

a r 100, n = 21.
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Example 2. Here we consider an example with a smooth but

rapidly varying coefficient. Let
1500 (x -

a(x) 6 + b(x) = 0,
1+1001x- f

and consider the same mesh as in Example 1. To give some idea of

the variation of a x) we present a table of its values (Table 3).

x a(x)

.0 1.10

.1 1.12

.2 1.16

.3 1.24

.4 1.45

.5 6.00

.6 10.55

.7 10.76

.8 10.84

.9 10.88
1.0 10.90

Table 3. Values of a(x).

Table 4 gives the errors at the node just to the left of 1/2

for the standard method (L3) and the L2-method for this example.

n eA (L3 ) eA (L2 )
n n

9 1.48-3 -4.31-4
15 6.31-4 -1.15-4
21 3.34-4 -4.60-5
27 2.00-4 -2.28-5
33 i.30-4 -1.28-5
39 9.03-5 -7.75-6
45 6.53-5 -5.12-6

Table 4. eA (L3) and eA (L2) at the node just
n n

*l to the left of 1/2.
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11. Conclusions

In this section we summarize in tabular form some of the re-

sults we have obtained on the convergence rates for the various

methods and then make several remarks on conclusions that can be

drawn. The convergence rates in the table are for smooth f.

L 3-method Ll-method L2-method

(standard
FE method)

1el H0 1el 1I 11ellH0 11lell l 11ellH 0  ilelil1

H H H H H H

a,b smooth hr + 1 hr  hr+ 1 hr  hr+ 1 hr

a,b measurable, 0
without post- h h h h h
processing
a,b measurable,r
with post- h h h h h h
processing I__________

a bounded0 0 3/ 1/ 32 12
variation, h0  h0  h3 / 2  hI / 2  h3  h
b measurable, r=l

Remarks.

1) The standard FEM is very nonrobust.

2) The rates for the L -method show that by investing a

considerably larger effort in the construction of the micro-

stiffness matrices, one can significantly increase the accuracy-

-as compared with the standard method. This suggests that the

goal of minimizing the entire computational effort with respect

to desired accuracy could well be served by increasing the per-

centage of total effort that is spent at the micro level. This
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could be especially important in convention with adaptive pro-

cedures.

3) The computational effort involved in implementing the

L 2-method is exactly the same as with the standard method. Thus

the L2-method should clearly be preferred over the standard

method in all cases.

4) The Generalized Finite Element Method offers a much

larger freedom in the choice of computational procedures than

does the standard finite element method, and as a -onsequence

offers the possibility of significant improvement in accuracy,

especially when used in conjunction with adaptive procedures.

4J
.- 4 -- I . . . . .
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