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An Expansion of the Gegenbauer Polynomial C"“(xy)

Introduction

Sonine’s second finite integral [1, p. 376] may be written

P : n/2 .
. f J(x sin 8) Ji(y cos 6) sin**! § cos**! 6 d@
0

; +
k| _ XL (Ve +Y?) ()

- n\* (\/xz_+_§ 2 )p+A+ 1 L4

for all complex x and y, and is valid when both Re(u)>-1 and Re{A)>-1. At least two
proofs of this result are known. One involves expanding the integral in powers of x
and y; the other involves integration over subsets of the surface of the unit sphere in
R3. Both are given in [1].

‘ For the case of real u and A, a third proof is given here that depends in an
essential way on the identity (7). In this connection, the particular form of the
| coefficients a, () is important; that is, the easily derived identity (10) does not
| seem to be at all useful, but the identity (8) is exactly what is needed. It facilitates the
investigation of the limiting form (27) of ak’n(y) as n tends to infinity. The identity
(8) is apparently new; however, the special case of y =1 was known to Gegenbauer.

ittt

Equation (8) is interesting in another regard as well. A simple inspection

suffices to prove that a, . (¥)>0 for all n and k whenever y>1 and u2A>0. The

’ coefficients remain positive in the two limiting cases u>0, A=0and u=4=0, as can
be seen from (18) through (21). In fact, it was only this positivity result that the

i . author originally sought. ;

The result (3) of Mehler-Heine type is apparently new. It is needed to prove (I) L
by our methods. It has additional interest in that it duplicates Szego’s result (2)
simply by setting y = 0. Since Szego’s proof of (2) may very nearly be lifted verbatim
’ to prove (3), it is perhaps surprising that he does not mention (3) in {2]. The special
case (4) involving Chebyshev polynomials is particularly striking and seems to be
new also.

?
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Derivations and Results

Let a and B be arbitrary real numbers. For any complex number x, the Mehler-
Heine theorem states that

lim n™ P 9 (cos ) = (x/2)™ 1 (x), @)

n—vo

where Ja(x) is the Bessel function of the first kind of order a {1, §3.1(8); 2 (1.71.1)].
A straightforward proof of (2) can be found in Szego [2, Theorem 8.1.1). Szego’s
proof can be readily modified to show that

X
limn~e Ped [ 0% ) = (12 VkiTy7 )e I (VeioyT) 3)
n—+co

X
cos

for alf complex x and y. Like the Mehler-Heine result, this formula holds uniformly
for x and y in every bounded region of the complex plane. The special case
a=f3=-1/2 gives the interesting result

X
cos 4

lim Tn = cos Vxi-y? , @)

n—>o

XL
cos -

where T (x) is the Chebyshev polynomial of the first kind [2, (4.1.7)]. This follows
from (3) by using Stirling’s formula and the well known result [2, (1.71.2)]

5 172
J_l 2 = (E) COs Z. 5)

We will need another special case of the general result; specifically, for u>-1,

X
lim ni-2 C,; s | = a2 Jv (Vxi-y?) ,
e 2 cos - T (k1) (VRE-y? ©)

where CH(x) are the ultraspherical, or Gegenbauer, polynomials [1, (4.7.1)]. (Szego
uses the notation P¥(x) instead of C¥(x).)

We derive Sonine’s second finite integral by finding an aiternate form for the
left-hand side of (6). This requires the following result. For u2A>0, the coefficients
a, (y)in the expansion

{n/2}

Chxy) = &, () Ch g, n=0,1,2, ... Y
k=0

are given explicitly by




-

roc L. .

- T T

——ms an — o —

G T N TS T

«
i
€
3
f

< - 2_1\ym yn-2m
a, (¥) = (n=2k+A) (), _, p3 (u-A+m),__(y*-1)my"2 ,

m=0" m!(k-m)! (})

n-k-m+1

where we take 0°=1 and (0), = 1 whenever they occur. Setting y =1 in (8) gives

a,.(1) = (n-2k +A) (), (u=R),
k! (A)n-k +1

which is due to Gegenbauer (2, (4.10.27)]. Furthermore, forreal y>1 and u241>0,
the coefficients a, (y) are all positive as can be seen by inspection in (8).

The formula (8) is derived as follows. Let u2>A>0. In the expression {2,

(4.7.31)]
[n/2] (“)
Chx) = D™ _Flam _ (2x)2m,
" mz= 0 m! (n-2m)!

we replace x with xy, substitute

[*5"]
2x)n-2m (n~2m+2A-2s) i
( .___x) = —_—— Cn-2m-2s(x)’
(n-2m)! =0 SLA) amoey

and collect terms to get

Zk 1ym -2k +2) ),y
m=0 m! (k-m)! (A)

a,

b

n-m-k+1
= y*2 (n-2k +1) Q, 2y-1),

where Q'k is a polynomial defined for general complex argument u by

K m ' "
Q=3 P W =)
m=0 m! (k"m)! (A)n_m—k+' 2

For arbitrary a and f8, the Jacobi polynomial of degree k > 0 can be written

k
PP w =2

m! (k-m)!

(-1ym k+a+p+1),__(k-m+p+1) (u+l
0

(8)

9

(10)

an

(12)

(13)
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which follows from {2, (4.21.2)] using the identity [2,(4.1.3)]. Setting a =u—A-1 and
B=A+n-2kin (13) shows that

Q(u)=_%k_ pli-h a2kl (14)
W,

Expanding the Jacobi polynomial in (14) using [2, (4.3.2)]

Piaﬁ)(u)=zk (I1+a), (1+P), u-1\" fusl’ k—m’ (15)
m=0 m! (k-m)! (1 +a)_(1+B),_, 2 2

and substituting u = 2y2-1 gives

k 2 m 2k-2m
-A+ -1
Q@y-l) = w,, 2 WAt M DTy (16)
m=0 m!(k-m)}! Q) , ..,
Thus (16) and (11) establish (8).
Two limiting cases of (7) are easily derived from [2, (4.7.8)]
lim 2% Ce9 = T, n>1, (17)
and are worth recording. Thus, for u>0,
fn/2]
[}
CHxy) = kzo b T, X, n=0,1,2,..., (18)
where
k 2_1)m yn-2m
+ -1
bk.n(y) = Z(F)n-k z 0‘ m)k—m(y ) y , (19)
m=0  m! (k-m)! (n-k-m)!
and
[n/2]
[
T(xy) = kZO G T 0, n=1,2,3,..., (20)
where
K 2_1)\m yn-2m
) = ntnk-1t 3 (Mhen=DTY : @)

m=0  m! (k-m)! (n-k-m)!
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The notation ' means that 1/2 the last term in the sum is taken if n is even, and all
of it is taken if n is odd. Note that inspection shows that y > 1 implies b, (y) and
¢, o(¥) are positive. '

Sonine’s second finite integral is now derived from (6). Fix x and y. Let
N =[n/2]. From (7)

1-2 X
n!% cos
n

2u cos-),ll~
1-2 3y l-24
Sy a0 M2 oo X,
1+N k=0 u(n-2k)*-2 cos-%— 24
s
= [ t01-9g,0-0d¢ | (22)
0
where we have defined for0< <1,
N 1-21 f
f-p =3 MAHN ! Xg, (1-0),

k,n
k=0 _ ' y
u(n-2k)'-2+ cos+

N Ay1-24
g1-0=2 T cosE) x,1-0),
k=0 24

and X, is the characteristic (indicator) function of the interval

k. , 5il> ,k=0,1, ..., ,N-1, ﬂ
_N+l N+1 4
E ={ ¥
ko, kI ken ¥
[N+1 N+l 51
i

It can be verified that XEk(Zk/n)=l fork=0,1,...,N.

Assume for the moment that both |f ({)| and |g ({){ are bounded above by
integrable functions of {. To do this, it will be seen that we must restrict attention to
A>-1/2,u>-1/2, >4, so that the integral [2, (1.7.4)]

F(A + v2) M(u—3)

(23)

f - gy g =
0

M+ v2)
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will be finite. If f=1im fn and g=1lim g , the bounded convergence theorem [3, p.
110} implies

. nl-2u u COS”:T - .
lim c* = [ fa-pen-paz. (24)
n 2’4 Cos 4 0

Let ¢in (0,1) be rational. Then 1-¢=2k/n for sufficiently large k and n, so that

g(1-4)

lim g (1-¢)
n-+w

9Ly 1-24
= tim (2077

n—>c
1-{=2k/n 21

A X
C n-2k(C°5 )

= \/172 JA-‘/z(cx) 25)
(A +1) (Exr-"

with the last step following immediately from (6). Thus, (25) holds for all £ in [0,1]
by continuity. Similarly, from (8) and for all { rational in (0, 1),

f(1-§) = lim f (1-0)

n-»c0

- lim AnMI+N) 1
n—o 1-24 ko A
1-¢=2k/n u(n-2k) cos g

A YR | N \
= lim Zk €+ )+, n 264 ”(F* F) (~A+m), smz’"*‘nL
m=0 ’

n—»o 1-24 n Y (k- ]
1t = 2k/n g Acos" - m! (k-m)! A+1) 26)

Interchange the limit and the summation, and evaluate the limit of the m'" term
(convert Pochhammer symbols to Gamma functions, apply Stirling’s formula, and
use k(n-k) = (1-£2) n?/4) to obtain

o= 3 QU= Ta+D ey Vg
m=0 22u=2A-1 r(l‘"‘ 1) mt I'(F—-A.}.m)
G-y A L, 0D g
22u~2k~1 l"(y+ 1) (l/ly\/l—(’ )u—/\-l

where I (z) denotes the modified Bessel function of the first kind of order v (see [1,
§3.7(2)]. We must require u>1 in (27) to have convergence. Continuity again
assures that (27) holds for all ¢ in (0,1). Now, interchanging the limit and the sum

TR 6579
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was valid because an upper bound for the total sum can be found. Since the absolute
value of the m'h term in (26) is bounded by

FA+1)  (alyVI=g)™

B )
Fu+1) m! M(u~A+m)
where
T 1-82 \™ (K + p—A) F(n-k + )
g p2mcos” )r;—l 4 Mk-m+1) f(n-k+Ai+1-m)

R

—i-1
I (_l;c_z)u , n—>oo,
4

the total sum in (26) is bounded by

ra+n 5 aIVI-EYT
Mu+1) ™% m!T(u-A+m)

F(¢) = Ler1-gap 2! ©  (28)

for some constant L independent of £. The series in (28) is a continuous function of
¢on [0,1]if u> A. Hence, from (23), F({) is an integrable function that bounds lfn(é)f
for all n.

From (24), (25), and (27) we have

X
. 1-2 —
lim nt-<¢ Cﬁ COs i

n—co y
2u cos

 (WVI1-¢7)d¢

umk-

_ Va/2 f‘ P ! USRI (<9}
B+ iyt 70

Va/2 J“_l/z (Vx-y?)
26T+ 1) (VxZI-y2 ¥~ v

with the last equation from (6). Substituting {=sin8 and y=iy’ in the last two
formulas, and setting

W =2a-%>-1 and A =pu—=i-1>-1 29)

yields Sonine’s second finite integral (1). The only thing left to prove is that |g ()| is
bounded by an integrable function on [0,1]. Szego’s argument (2, p. 192] in the

Fe




proof of (2) can be modified easily to show lgn(C)l is bounded by a constant.

Conclusions

The special case w=A4 in (27) may merit tfurther study. In the more restrictive
case u=A=0, itis known that [4, (871.2)]

n/2

cos Vxi-y? —cosx =y f 1,(y cos 8) cos(x sin 8) de.
0
However, we do not pursue this here.

Another question that we do not investigate here is the expansion
n
4
PEA() = 2 Ay o) P IX)-

It would seem difficult to obtain a form for A, (y) from which it is directly evident
which conditions imply Ay ()>0.

The proof of (1) presented here was intentionally restricted to real u and A.
However, it is not hard 1o see from (23) and (29) that the proof can be carried out
for complex u and A provided appropriate remarks are made in appropriate places
about the complex case. If such remarks are made, our derivation proves (1) for
Re(u) > -1 and Re(A) > -1. Divergence of (23) is seen 10 be the cause of the restric-
tionson u and A,
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