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:1 An Expansion of the Gegenbauer Polynomial Cn(xy)

Introduction

Sonine's second finite integral [1, p. 376] may be written

f /J(x sin 0) J,(y cos 0) sini 0 cos+' 6 dO

= xYAJ++l (VX-Y) (1)

~1 (VX2+ y2 )11+1+1

for all complex x and y, and is valid when both Re(j)>-I and Re(A)>-1. At least twoSproofs of this result are known. One involves expanding the integral in poesof x

and y; the other involves integration over subsets of the surface of the unit sphere in
R3. Both are given in [I].

For the case of real W and A, a third proof is given here that depends in an
essential way on the identity (7). In this connection, the particular form of the
coefficients ak,n(y) is important; that is, the easily derived identity (10) does not
seem to be at all useful, but the identity (8) is exactly what is needed. It facilitates the

investigation of the limiting form (27) of ak,n(y) as n tends to infinity. The identity
(8) is apparently new; however, the special case of y = 1 was known to Gegenbauer.

Equation (8) is interesting in another regard as well. A simple inspection
suffices to prove that ak,,(y)>O for all n and k whenever y>l and Ma A>0. The

coefficients remain positive in the two limiting cases IA > 0, A = 0 and I = A = 0, as can
be seen from (18) through (21). In fact, it was only this positivity result that the
author originally sought.

The result (3) of Mehler-Heine type is apparently new. It is needed to prove (l)
by our methods. It has additional interest in that it duplicates Szeg6's result (2)
simply by setting y = 0. Since Szeg6's proof of (2) may very nearly be lifted verbatim

* to prove (3), it is perhaps surprising that he does not mention (3) in [2]. The special

case (4) involving Chebyshev polynomials is particularly striking and seems to be
new also.

i1
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Derivations and Results

Let a and 3 be arbitrary real numbers. For any complex number x, the Mehler-
Heine theorem states that

lim n-a P( 'I (cos--) = (x/2)- * J (x), (2)

Kn
where J(x) is the Bessel function of the first kind of order a [1, §3.1(8); 2 (1.71.1)].
A straightforward proof of (2) can be found in Szego [2, Theorem 8.1.1]. Szeg6's
proof can be readily modified to show that

Cos- -

lira n- - P(046) (o-f _(/ - ~! y (3)

for all complex x and y. Like the Mehler-Heine result, this formula holds uniformly
for x and y in every bounded region of the complex plane. The special case

a=fl=-1/2 gives the interesting result

lim T cos n cos V (4)
n'-o Cos _n/

where Tn(x) is the Chebyshev polynomial of the first kind [2, (4.1.7)]. This follows

from (3) by using Stirling's formula and the well known result [2, (1.71.2)]

1/22COSL i/2 (Z) Z cosz. (5)

We will need another special case of the general result; specifically, for p>-l,
___ (Cos ________

lim c I J- (VCI2)
n'\ 2ACos 2P r(JA+ 1)(v'T) -  (6)

where Cn(x) are the ultraspherical, or Gegenbauer, polynomials [1, (4.7.1)]. (Szego

uses the notation P)(x) instead of CA(x).)

We derive Sonine's second finite integral by finding an alternate form for the

left-hand side of (6). This requires the following result. For /ar>0, the coefficients
akn(y) in the expansion

fn/21

areCg(xy)ie = ak,n(y) C n_ 2 k(X), n = 0,1,2 .... (7)
2k=0

~are given explicitly by

.............. I I I II II I I 1 11 II I 1 | II I .... . .. . ... . ... .. .
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a k l( Y ) = n 2 k + (A ) -k ( -A + m ) , -m ( y - ) m y n -
2 m (=kny n2+A y,- (8)

• m~o m! (k-m)! (A)nkm +I

where we take 00= 1 and (0) 0 = 1 whenever they occur. Setting y = I in (8) gives

ak,n(l) = (n-2k + A) (U)n-k ()-A)k (9)
k! (A)n-k + I

which is due to Gegenbauer (2, (4.10.27)]. Furthermore, for real y> I and JA A>0,

the coefficients a kn (y) are all positive as can be seen by inspection in (8).

The formula (8) is derived as follows. Let >!A>0. In the expression [2,

(4.7.31)]
, 'i [n/2l

[nC/(x) = X(2x)n-2m+
n m=o m! (n-2m)!

we replace x with xy, substitute

(2x)n-2 m - X (n-2m + A-2s) CAn_2m_ 2s(X),

(n-2m)! s=0 S! (A)n-2m-s + I

and collect terms to get

ka (y )  = : ( { 1) m- ' - 2 k  +  ') ( u) n - m  y n - 2 m :

(lmk~+AGnf m M= (10)m=o m! (k-m)! (A)n-m-k+ I

= yn-2k (n-2k +A) Qk(2y 2-1), (11)

where Qk is a polynomial defined for general complex argument u by

Qk(u) = X ~ )(4mu
m=O m! (k-m)! ()k+ 2 (12)

For arbitrary a and P, the Jacobi polynomial of degree k 0 can be written

k / k-m
P(a.,(u) = (-I)m +)kmk m=O m! (k-m)! (13)

3
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which follows from [2, (4.21.2)] using the identity [2,(4.1.3)]. Setting a= M-A-1 and
/=A + n-2k in (13) shows that

Qk(u) = (U)n-k p(uA-I, (u+n-2k)(U). (14)
S) - +- k

Expanding the Jacobi polynomial in (14) using [2, (4.3.2)]

(1(u) = I- +)k -\ / l , (15)
m=O m!(k-m)!(l+a)m (+2)km

k ( +)k 2y2 'I

and substituting u = 2y 2-1 gives

2ky1) = )n-k 0 m)km(Y2-1)m y2k-2m (16)

m= m! (k-m)! (A)n-k-m+ I

Thus (16) and (11) establish (8).

Two limiting cases of (7) are easily derived from [2, (4.7.8)]

lir 2 C (x) = T(x), n > 1, (17)

and are worth recording. Thus, for A > 0,

(n/21

Cn(xy) = (y bn(Y)Tn_2 k(X), n=0, 1,2 ..... (18)
k-0

where

bk(y) = 2 ()k (U + m)k-m(y2-1)m yn- 2m (19)

m=O m! (k-m)! (n-k-m)!

and

(n/21
I

where " (xy) k, T (x), n= 1, 2,3.... (20)
° k-0

~where

k (y- n-2m
Ck,f(y) n(n-k-l)! " (m)k (y 2Ml) k- (21)

rM=O m! (k-m)! (n-k-m)!

4
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The notation I' means that 1/2 the last term in the sum is taken if n is even, and all
of it is taken if n is odd. Note that inspection shows that y > 1 implies bkI (y) and
C,,,(y) are positive.

Sonine's second finite integral is now derived from (6). Fix x and y. Let
N = [n/21. From (7)

n 1 -2 ju CXo s -
n CO Cos

I N Anl-2p (1 + N) I (n-2k)-2A CA(COS-'-
a knn kV2Aakf n  )

I +N k=O 1-(n-2k)- kn 2A

=fo f(1-C) g (I1-C) Qg, (22)

where we have defined for 0 4 1,

N An'-2(1 + N) ( I1
akfl XE k00

k=O y(n 2k)l_2A cOS n

N

g (l-) = (n-2k)I - 2A Ck x
= n-2 (Cos-L) Xlk(1-C),

k =o 2A

and XEk is the characteristic (indicator) function of the interval

k N.

IN+) Ik 1 N + 1.

,1

It can be verified that XEk( 2 k/n) = I for k = 0, 1, ..... N.

Assume for the moment that both If(C)I and Ign()I are bounded above by
integrable functions of C. To do this, it will be seen that we must restrict attention to
A>-1/2, IA> -1/2, IA>A, so that the integral [2, (1.7.4)

f 21(1 _42)P-A-Id4 m ( + /) r(,A-x) (23)
0 2r(m + /2)

5
_2tL. )--d = 2'a+
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will be finite. If f=lim f and g=lim gn, the bounded convergence theorem [3, p.
110] implies

n 2  C COSI -2Jim (___ = ff(-C) g(-4) d4. (24)

Let in (0,1) be rational. Then 1- =2k/n for sufficiently large k and n, so that

g(l-4) = lim gn(l-4)

n- n-k 1 2;

=Ju (n-2k) Cn_2k(Cos -- )n---* 21 2

l-C=2k/n

= JA-/2( x) (25)
VnI 2kr(A + 1) (C~x)A-/2  (5

with the last step following immediately from (6). Thus, (25) holds for all 4 in [0,1]
by continuity. Similarly, from (8) and for all 4 rational in (0,1),

f(1-4) = lim fn(1-)

lm An'- 2P( + N) 1= J ma 
k,n  I

-. ~~~~n--*00_2~_xc
- =2k/n p(n2k)I2A

lim " + l)(]kA+ n -2(p-A- ) + )-A+m) sin2m*

m=0
n-o o V1-2 CO Sn  n  m (k )!( + l n k m ( 6
J-C=2k/n (26)

Interchange the limit and the summation, and evaluate the limit of the m th term
(convert Pochhammer symbols to Gamma functions, apply Stirling's formula, and
use k(n-k) = (1-C) n2/4) to obtain

f ( -C ) I _ C4 ( 2 ) M - - I '(A + 1 ) (4 , / ) 2 m

m=O 2 21-2A- I r&A+ 1) m! r(u-k.+ m)

- 42(l1- I"(A + 1) I- 1- (Y \/f 7 ) (27)

22 - 2A~I r(+ 1) (1Vy ' ) -' I

where 1,(z) denotes the modified Bessel function of the first kind of order v (see [1,
§3.7(2)]. We must require IA>A in (27) to have convergence. Continuity again
assures that (27) holds for all C in (0,1). Now, interchanging the limit and the sum

6LA MMM
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was valid because an upper bound for the total sum can be found. Since the absolute

value of the mlh term in (26) is bounded by

B r(A+ I) (/,'y Vi-- )"

r(A+ l) m! ru-A + m)

where

B n 2( -  (I - r(k + u-A) F(n-k + j)
i-2k n2mjcosn- 1--n 4 r(k-m + 1) r(n-k + k+ I-m)

c 2A 1-42 ;-- I~I2I n-m-cosn

the total sum in (26) is bounded by

F(C) = LI2(l-/2)
-A

- r(A+ ) (Vzly{ VF) 2m (28)

r(4+ 1) m=0 m! ro(4- + m)

for some constant L independent of C. The series in (28) is a continuous function of

C on [0,11 if MA> .. Hence, from (23), F(4)is an integrable function that bounds I (CI
for all n.

From (24), (25), and (27) we have

~ 2j~acos -n/

VirI2V /7* (IVT- T)L-A-' Jx v (cix) IM_ (yV - 2)de

2 r(A+ ) x 
1 - A --

d

2PFOA +I) (Vx - )P

with the last equation from (6). Substituting i=sin 8 and y =iy' in the last two

formulas, and setting

IA' = A- Az > -A and A' = -A- > - 1 (29)

yields Sonine's second finite integral (1). The only thing left to prove is that Ig'(0) is

bounded by an integrable function on [0,11. Szeg6's argument (2, p. 1921 in the

7
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proof of (2) can be modified easily to show Ig,(4) is bounded by a constant.

Conclusions

The special case u =A in (27) may merit further study. In the more restrictive
case I =A=0, it is known that [4, (871.2)1

in/2

cos .: -cos x = y flf I(y cos 8) cos(x sin 0) dO.
0

However, we do not pursue this here.

/ Another question that we do not investigate here is the expansion
n

n k O-k

It would seem difficult to obtain a form for Ak,n(y) from which it is directly evident
which conditions imply Ak,n(y) > 0.

The proof of (1) presented here was intentionally restricted to real JA and A.
However, it is not hard to see from (23) and (29) that the proof can be carried out

for complex W and I provided appropriate remarks are made in appropriate places
about the complex case. If such remarks are made, our derivation proves (i) for

Re(p) >-1 and Re(A))>-1. Divergence of (23) is seen to be the cause of the restric-
tions on IA and A.
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