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. I. Introduction
;‘;*his is the summary report for work done under the general title %hltra-
sonic Waves and E1ectrochemistn;g‘task numbers 051-162 and 384-305, During
the years October 1, 1948 tomb;;ember 31, 1981, Starting January 1953, the
task number was changed to 384-305 and continued until December 31, 1981,
The work done under the title ¥Ultrasonic Waves and Electrochemistry®
can be divided into five main groups:
1. The use of ultrasonic waves as a tool in the study of
electrolytic solutions, hydrated ionic melts and
electrochemical interfaces.
2, Ultrasonic study of colloidal dispersions and sediments
in electrolytic solutions.

3. Promotion of chemical and electrochemical effects by

ultrasonic waves.,

In Appendix A the 1i;§ of publications produced under the contract re-
search is given and references cited in the following text refer to this list.
In Appendix B the 1ist of technical reports prepared under the task numbers
NR. 051-162 and NR. 384-305 is given. Finally, in Appendix C, a 1ist of the
accomplishments of the work sponsored by these two task numbers and the sig-

nificance of these results to the Navy and Physical Acoustics are given,

II. The use of ultrasonic waves as a tool in the study of electrolytic

- P solutions, hydrated fonic melts and electrochemical interfaces 1

When acoustical waves are propagated through an electrolyte solution,

small a.c. poltentials are generated between points separated by a phase dis-

tance other than a multiple of one half the wavelength., These a.c. potentfals
were predicted on theoretical grounds by Peter Debye in 1933 but not experi-
mentally found until 1948 in work at this universityz'4 (Technical Report No. 2).
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The effect occurs principally because of differences in the dynamic reaction
of the cations and anions to the sound field (inertial and presSure gradient
effects). Subsequent theoretical work as part of the ONR research has shown
that the effect provides a measure of the partial molal volumes of the indi-
vidual ions and hence ion solvent interactions.

This effect (originally called the Debye effect but more recently ionic
vibration potential) was originally detected using inert electrodes in the
electrolyte and a standing wave technique to differentiate between the true
effect and cross talk (electromagnetic coupling). In the 1960's much further

work was done on the effect using pulse modulated ultrasonic waves and the

~ much sTower propagation time of the sound waves compared to the speed of

light to differentiate between the true effect and crosstalk. The pulse tech-
nique facilitated quite quantitative measurements of the small potentials
[vuV per unit velocity amplitude (1 cm/s)] and yielded the most reliable
value for the individual partial molal volumes now available [see Technical
Report No. 45]. The measurement of the effect has been carried out not only
in a large number of electrolytes but also in polyelectrolytes and micelle
systems, Its usefulness has proved far greater than ever invisioned by
Debye.

The first systematic and quantitative studies of fonic vibration poten-
tial were performed only in 1966, The use of a double probe assembly parti-

ally immersed in the solution under investigat10n32’36

provided the experi-
mental verification of several predictions of the most thorough theoretical
treatment of the fonic vibration potential, given in 1947.1 On the other
hand, a closer examination of the physical meaning of the apparent molar
masses of the solvated ions which appear in this treatment indicated that
the fonic vibration potential is closely related to a weighted difference

between the partial molal volumes of the fons present in the system.32'36
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It thus became possible by combining the value of the ionic vibration poten-
tial for a given electrolyte in a given solvent, and the partial molal volume
at infinite dilution for the same electrolyte in the same solvent to obtain
the values of the partial molal volumes of the individual ions constituting

this electrolyte. This was done between 1966 and 1968 for a series of elec~
36,39,40,42

trolytes of widely differing nature in aqueous solutions.
In addition to ionic vibration potential, the first detection and pre-

liminary measurements of polyelectrolyte vibration potential were made in

this laboratory in 1962.?'6 With the development of the sophisticated apparatus

made for fonic vibration potential measurements, quantitative measurements

of polyelectrolyte vibration potential with accuracies of + 5% are reported in

Technical Report No. 30 from this study. The following conclusfons were
reached:

1. Polyelectrolyte vibration potentials depend on the nature, concen-
tration, and percent neutralization of the polyelectrolyte as well
as on the nature of the gegenion and on the nature and concentra-
tion of any added salt.

2. The experimental results are in quantitative agreement with theory

based on the ionic vibration potential mechanism and the polymer
bead model,

3. The polyelectrolyte vibration potential can be used to determine
the partial molal volume of a monomer unit in the polymer bead
model. (The value is 45.6 cm3/mo1e for unneutralized poly-

acrylic acid.)
In Technical Report No. 31, the results were given for the ultrasonic
vibration potential measurements in tetra alkylammonium halides at 220 kHz.
The experimental and theoretically predicted values were in good agreement

at Tow <:¢m<:v.'ntr‘at1oms.39 The concentration dependence can be explafned in




terms of cation-cation pairs and ion triplets provided the volumes of these
aggregates are much less than the sum of the volumes of the separate ions.
A.C. potential components can also be generated at electrode-solution inter-
faces, particularly in dilute electrolytes.

12 has been studied for the first

An interesting electrokinetic effect
time in our laboratory with pulse modulated ultrasonic waves (see Technical
Report No. 5). If a wire with a fiber covering is placed in a dilute solu-
tion of an electrolyte and exposed to ultrasonic waves, a.c. potential dif-
ferences are developed between the wire and the bulk of the surrounding solu-
tion. The dependence of this effecf on solution parameters as well as the
type of porous covering clearly indicates that the effect is associated with
the diffuse layer of ions surrounding the fibers, and hence, is electrokinetic
in nature. Quantitative measurements have been made at 200 kHz and the elec-
tro-acoustic response of the cotton covered copper wire in 1 x 10'4M NaCl

-8 volts per dyne an~2. The frequency dependence of this

solution is 5 x 10
effect was also studied and it was found that at 1 MHz, there was a decrease
of approximately 10 dB in the electro-acoustic response. Besides its possible
use as 2 velocity sensitive acoustical probe, it can be used to study electro-
kinetic effects {nvolving fibers and porous coatings.

In addition to these electrokinetic effect studfes, a.c. and d.c. stream-
ing potential measurements were made with porous packings consisting of fon
exchange resins, pyrex glass wool, nylon and surgical cotton in a large number
of aqueous solutfons. In contrast to d.c. streaming potential measurements,
when the velocity of the 1iquid flow through the porous packing is sinusoidal,
a.c. streaming potentials are produced between the opposite sides of the pack-
fng. Special apparatus was developed for the a.c. streaming potential meas-
urements at frequencies up to 30 Hz. No frequency dependence was found over

the 1imited frequency range involved in the present work. The dependence of

.
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the streaming potential on type and concentration of electrolyte solution is
the same as would be predicted on the basis of established theories for con-
ventional d.c. methods. The experimental results obtained by a.c. and d.c.
streaming potential measurements are in complete agreement (see Technical
Report No. 21).

If sound waves impinge on an electrode at which a gas is being 1iber-
ated by electrolysis an alternating potential is produced on the electrode
relative to the bulk of the surrounding solution. The amplitude of the so-
called "alternating components in electrode potential” is dependent on the
acoustical amplitude, the polarizing current density and the conductance of
the solution, but is essentially independent of the base metal upon which
the hydrogen gas is evolved. The acousto-electrochemical effect has been
explained at ultrasonic frequencies in terms of the modulation of the i-r
drop in the solution in the immediate vicinity of the electrode through
periodic variations in the size of the gas bubbles found at the electrode

4,5 (See Technical Reports Nos. 3, 8, Q) It has been suggested

surface,
that the "alternating components in the electrode potential” effect might
be used in the form of an extremely small probe for the determination of
phase and amplitude at qltrasonic frequencies, particularly above 100 kHz.
As we mentioned before, when ultrasonic wa?e impinge on an electrode
{mmersed in electrolyte, various a.c. effects are produced. The converse
of such effects is produced when an a.c. potential is applied to an elec-
trochemical interface relative to the bulk electrolyte. Periodic volume
changes are produced at the solution side of a metal-electrolyte interface.
This in turn gives rise to the generation of sound waves of the same fre-
quency in the solution phase. The Technical Report No. 44 describes the
first detection of these sound waves using a gold electrode in an acid

electrolyte, Preliminary measurements were reported as a function of d.c.




Y i

S A L L

s

].55.56

(bias) electrode potentia It was also found that the effect was par-
ticularly sensitive to adsorbed species such as organics. This is not sur-
prising since such species adsorb strongly on the electrode at various poten-
tials and can also undergo faradiac processes yielding various oxidation and
reduction products. This effect was found to be too small to be a practical
source for sound generation. It 1s possible, however, to enhance the effect
by stacking a number of very thin electrodes with very small electrolyte gaps.
The main use of this effect, however, is the study of adsorbed species and
anodic film formation on metal surfaces in electrolytes.

Ultrasonic absorption measurements provide a means for studying the
kinetic parameters of processes which occur too rapidly to be studied by con-
ventional techniques.29 Specific processes such as unimolecular and dissoc-
iation reactions, proton-transfer reactions (e.g. hydrolysis or acid-base
dissociation) can be studied by ultrasonic absorption and several other re-
laxation techniques. Investigations of relaxation times shorter than 10'6 S,
are suitable for ultrasonic absorption measurements. During the contract
research various apparatus were built to cover the range 0.03 to 550 MHz.

A survey of some of the salient features-of these are given in Table I. De-
tails are given in Technical Report Nos. 32 and 35. The spherical resonator
apparatus has more recently been updated to incorperate computer control
allowing much more detailed measurements without undue expenditure of the
experimenters time (see Technical Report No. 48).

A review of ultrasonic relaxation in electrolytic solutions is given
in Technical Report No. 25. Ultrasonic relaxation was re-examined in MgS0,

31,43 Two

solutions in order to resolve discrepencies in published data.
relaxation frequencies were found adequate to describe the data 1f the non-

relaxation absorption is treated as an adjustable parameter, in contrast to

the 3 or 4 relaxation frequencies reported earlier by other groups (Technical

kit




Report Nos. 35 and 37). Further work done on some other 2:2 electrolytes
(copper sulfate and cobalt sulfate) indicated that the high frequency absorp-
tion peak could be attributed to the diffusion controlled second order process
leading to the formation of an encounter complex (see Technical Report No. 32).
In Technical Report No. 26 a study of the kinetics of the hydrolysis
of the cyanide ion is described, using ultrasonic absorption measurements28
over the frequency range 30 kHz to 25 MHz, A single relaxation frequency was
observed which depends on concentration in a manner expected theoretically
for the hydrolysis reaction. Similarly, a single relaxation was f'ound44 in
acetic acid, agreeing with the calculations on the equilibrium and kinetic
parameters for the ionization of acetic acid determined by other techniques.

The data yielded values for kdissoc’ k and AV, The measurements of re-

assoc
laxation times for chemical processes sluvwer than 10'5 s cannot be determined
with accuracy by ultrasonic measurements. The lowest frequency obtainable
by the 100-1iter titanium spherical resonotor in use in our laboratory is
20 kHz.

Apparatus for pressure step and shock wave measurements were first

il

develope as part of the ONR research (Technical Report No. 27) and used

to measure the relaxation times extending from '|0°7

to the half life of a
graduate student in this university for varitous chemical processes involving
ionic equilibria, The pressure step method involves the sudden release of

an applied static pressure on an electrolytic solution. After the pressure
release the re-establishment of equilibrium between free hydrated ions and
associated species is followed by means of conductance measurements. Relax-
ation times Tonger than 50 us can be measured with this apparatus. This

method was applied to the study of complex formation between polyvalent cations

and vartous 1igands (Technical Report No. 35).




Many of the more interesting association-dissociation processes involv-
ing transition metal complexes have relaxation times shorter than 50 us and
hence cannot be studied with the above techniques. A much faster pressure
rise can be accomplished by utilizing the non-linear properties of the trans-
mitting liquid to sharpen up a shock front. The velocity of sound in a liquid
increases with pressure and consequently the leading edge of a pressure pulse
will steepen as the pulse is propagated through the liquid. In contrast, a
dilitation pulse, such as is produced in the pressure step technique, will
flatten out. The pressure-shock technique was demonstrated to be a relatively
simple means for measurement of relaxation times for chemical processes in

6 t0 1073

the range 10~ . Details are given in Technical Report No. 33.

The low frequency relaxation in sea water, indicated by a Tong range
sound propagation, was investigated using temperature-jump measurements48 in
which a hydrogen ion sensitive color indicator was added to permit optical
readout. The measurements indicated a single relaxation at 1.5 x 10'4 s at
9.7°C originating form boron with the B(OH)3 - B(OH)4 as the likely relax-
ation process. This was the first time that equilibrium involving borate-
boric acid exhibited a relaxation frequency at ~1 kHz and was responsible for
the corresponding relaxation sea waters,

Acoustic measurements are difficult above 550 MHz. In order to gain
insight into relaxation phenomena above this range, it is necessary to employ
optical techniques. Brillouin scattering studies on a number of electrolytes,
including halides, nitrates and sulfates, yielded hypersonic velocity data
from the frequency shift of the Brillouin components, and hypersonic absorption
coefficients from the line widths. The results compare favorably with those
from ultrasonic velocity and absorption data at lower frequencies. The ratio

of the 1ight intensity of the Rayleigh component to that of the Brillouin line

50,52
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was compared with theory, and agreement was found for solutions of alkali
halides and alkali earth halides and nitrates, confirming simple concentra-
tion fluctua*ion theory. However, solutions of 2:2 sulfates gave intensity
ratios significantly higher than theory. Brillouin scattering and ultra-
sonic measurements were both utilized to investigate the high frequency

(5 MHz to 12 GHz) relaxations of zinc nitrate and calcium nitrate hydrate
melts. A distribution of relaxation times was observed. These high frequency

studies are given in Technical Report No. 40, 41 and 43.

ITI. Ultrasonic study of colloidal dispersions and sediments in electrolytic

solutions

When sound waves are propagated through a colleidal suspension in an
electrolyte, much larger a.c. potentials are generated than just in an electro-
lyte. This effect also occurs because of differences between the displacement
of the colloidal particle and the ions of the system. Each charged colloidal
particle is surrounded by an ijonic atmosphere or diffuse ionic cloud which is
normally symmetrical. In the presence of the sound waves this ionic atmosphere
is oeriodically distorted, giving rise to periodic oscillating dipoles. This
in turn results in "colloidal vibration potential". This much larger effect
was first detected by A.J. Rutgers in 1938. Quantitative studies of the

effect have also been carried out as part of the ONR research. The effect

is a powerful tool for checking the theoretical models for charge distribu-

tion about colloidal particles. This is intrinsic to the electrolyte and

colloid-electrolyte media through which the sound waves are propagated.
Measurements on colloidal vibration potential were made in colloidal

silica suspensions at frequencies from 200 kHz to 1.2 MHz as a function of
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particle size, colloidal concentration and ionic strength. In this work, cor-
rections have been made for the electrical loading effects of the measuring
equipment for suspensions of very lTow conductances. Quantitative colloidal
vibration potentials in silica suspensions were measured in 1960 an the
results were presented in Technical Report No. 23. The experimental values for
the colloidal vibration potential are in reasonably good agreement with values f
calculated from the treatment of this effect by Enderby, particularly for
suspensions of relatively high specific conductance.

Ultrasonic vibration potential measurements were also made in solutions
of salts exhibiting micelle formation. Experimental data indicated that in

dilute solutions of sodium lauryl sulfate at concentrations far below the

critical micelle concentration, the vibration potentials agree well with the %

; theoretical values. The concentration dependence of the vibration potential

in various micelle solutions show that at concentrations below the critical

--i:; micelle concentration there is strong evidence for the formation of charged
aggregates which were representing the neuclei for micelles. Ultrasonic
vibration potential can be used to determine the critical micelle conentra-
tion.

The propagation of sound in concentrated colloidal dispersions and marine
sediments was theoretically and experimentally studied with particular atten-
tion to the influence of interfacial phenomena. The following model colloid
systems were chosen: kaoline, montmorillonite, polystyrene latex particles
and PVA (polyvinylacetate-polyvinylalcohol block co-polymer). For the first

] time, the effect of hetero-deflocculation of two dissimilar mineral grains
on the velocity of sound was established in concentrated dispersions in the

of kaoline and montmorrilonite mixtures (see Technical Report No. 46).

o, .y ‘
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It had been shown in earlier work on polystyrene latex dispersions by
M.A. Barrett Gultepe, D.H. Everett and M.E. Gultepe that acoustic absorption
in the dispersions is strongly influenced by the nature of the electrolyte-
particle interface, and that an adsorbed layer of PVA considerably alters
the acoustic absorption properties. Sound velocity measurements made in
this laboratory on a similar system as a function of temperature yielded
compressibility values for the PVA covered latex that differed from that
expected from the simple additivity effect of the two components. At low tem-
peratures the low compressibility found may be due to the hydrophobic interac-
tion between acetate groups and the polymer backbone (Technical Report in
preparation).

Ultrasonic waves have also proved useful in producing emu1s1’on.34 This
phenomena was studied in our laboratory using electron microscopy to examine
the particle size distribution with freeze type techniques. A surprising
result is that the particle distribution has certain narrow ranges of size
completely missing. These size droplets are apparently unstable in the sound
field and depend on the frequency. Attempts to predict such instabilities
on the basis of surface wave models, however, were not fully successful.

Furthermore, some of the missing sizes corresponded to subharmonics.34

IV. Promotion of chemical and electrochemical effects by ultrasonic waves

Electrodeposition of copper experiments in the presence of ultrasonic

waves at 200 kHz and 1 MHz at 1 watt cm™2

were made in our laboratory (see
Technical Report No. 10). The schlierer technique was used to examine the
concentration gradients at the cathode and anode during the electrodeposition

of copper. The ultrasonic waves seem to remove completely these concentration




gradients at reasonable current densities. The deposition of copper, as

involved in the above study, however, is characterized by low activation
polarization and negligible simu1taneou§ hydrogen evolution. In Technical
Report No. 15 the effects of ultrasonic waves on the structure of the electro-
deposited nickel during the hydrogen evolution were reported. X-ray diffrac-
tion studies of the deposits indicate that the ultrasonic waves decrease

the tendency for the 110 planes of the face centered cubic system to be
oriented parallel to the electrode surface at high current densities and
increase the tendency for the 100 planes to be oriented parallel to the surface
at Tow current densities.

A11 the contract research done on the subject of the effects of ultra-
sonic waves on the electrodeposition of metals lead to the conclusion that
the ultrasonic effects are generally an extension of what is encountered with
increased agitation of a more conventional nature. Ultrasonically produced
cavitation is therefore one of the most effective ways of promoting mass trans-
port to and from solid-liquid interfaces.

When high intensity sound waves propagate through liquids, chemical
reactions often occur within the liquid. Without exception, these chemical
changes are the result of either acoustically produced cavitation or the pro-
gressive heating of the 1iquid through the absorption of the acoustical energy
within the 1iquid. In Technical Report No. 17 an attempt was made to obtain
information concerning the mechanism for sonochemical formation of hydrogen
peroxide in oxygen saturated solutions by an isotopic tracer technique involv-

ing 018. The experimental results indicated that in oxygenm sathrated solu-
tions the 0-0 bond of the oxygen molecule is not formally broken during cavi-

tation even at intensities of 100 watts/cmz. In water saturated with oxygen

at atmospheric pressure, approximately one-third of the peroxide oxygen is
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derived from oxygen gas and the remainder from the water. In 30% methanol-
water solutions saturated with oxygen gas, all of the peroxide oxygen orig-
inates with the molecular oxygen and none from the water or methanol.

In contrast to sound wave induced chemical reactions in solutions, the
degradation of polymers by ultrasonic waves can be explained by mechanical
effects rather than thermal or chemical effects. In Technical Report No. 18
the rate of degradation of polystyrene in organic solvents by ultrasonic
waves has been studied. It was concluded that degradation does not occur in
the absence of cavitation even at acoustical intensities as high as 1000 watts/

2

cm”. The extreme rates of shear in the liquid adjacent to a resonating cavi-

tation bubble are believed to be responsible for the mechanical degradation

of the polymers and represent an interesting means for studying the extreme

mechanical effects associated with cavitation.

V. Advances in acoustic instrumentation

The most recent development in our laboratory has been the introduction
of computers for controlling the acoustic measurements. A microcomputer con-
trolled velocity and absorption measurements system was developed for cylindrical
and spherical resonators. The microcomputer initiates predetermined frequency
steps with the aid of a programmable synthesizer, with the output amplified and
applied to the driving crystal. The received signal is fed into a programmable
tuned amplifier and demodulated. When the computer finds a long decaying

resonance mode, decay rate measurements were made and stored in a floppy disk

for later analysis. The system allows for very detailed mode mapping of the

; ' resonator by accumulating frequency-amplitude data, along with a recod of the

| temperature. The amplitude decay can be followed through 70 dB with reproduci-
bility within 0.2 dB s'l. With this instrumentation a better defined relaxation

1 . . R = - - - e
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was obtained for 0.0041 M MgSO4 (Technical Report No. 48).

In order to obtain better results below 50 kHz, a 100 Titer titanium
sphere, on loan from Woodshole Oceanographic Institute, is interfaced to the
computerized instruments. Q values as high as a million were observed around
20 kHz when the sphere was filled with distilled water.

The spherical resonators are not suitable for concentrated dispersions
due to the fact that their narrow openings for introducing and removing material
causes some difficulties in handling the dispersions. For this reason cylindri-
cal resonators were built of polycarbonate. Using the lower radial modes of
one of the resonators, a Q value of 1500 was obtained around 18 kHz, compared
to Q = 900 for similar resonators described in the literature. The better

Q obtained in this work is probably due to the greater compliance of the poly-

carbonate material.

© o ——
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