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" FOREWORD

This report was prepared by George S. Springer, Department of Mech-
anical Engineering and Applied Mechanics, The University of Michigan for
the Mechanics and Surface Interactions Branch (AFWAL/MLEM), Nonretallic
Materials Division, Materials Laboratory, Air Force Wright Aeronautical
Laboratories, Wright-Pattersorn AFB, Chio. The work was performed under a
e Subcontract with the Universal Technology Corporation, Contract Number

F 33615-79-C-5082, Project nurber M-332-68.

" E This report cowvers work accomplished during the period October, 1981-
E December 1981.
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I. INTRODUCTION

Owing to their favorable performance characteristics, light weight compo-
site materials have been gaining wide applications in commercial, space, and mil-
itary applications. For example, the use of fiber reinforced plastics (FEP), in
automobiles increasel considerably during the past decade. To date, FRP materials
have been used mestly in appilications where the material is not subjected to
heavy loads. In orxrder to take full advantage of FRP materials, they should be
used also as load bearing mewbers. Such applications require a comprehensive
data base. For this reason, in recent years several investigators have measured

the properties of glass fiber reinforced sheet molding compounds (SMC). In this

report 3 gummary is given of the engineering properties of SMC materials and
of the effects of service environment on these properties. Continuous fiber
composites (e.g. graphite-epoxy composites) are not included in this survey.

In presenting the results emphasis 1s placed ou the main features and char-
acteristics of the data. Readers interested in details of the material behavior

are referred to the appropriate references quoted in the text, figure captions,

and table headings.
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IT. MATERIALS AND PROCESSING

Sheet molding compounds consist of polyester ( or, less frequently vinyl-
ester or epoxy) resins reinforced with zlass fibers., A given materi-1 may con-
tain randomly oriented chopped fibers (designated as SMC-R), continuous fibers
(SMC-C and XMC) or a combination of chopped and centinuous fibers (SMC~C/R and
XMC-3), as illustrated in Fig. 2. Numbers added after the letters R and C
indicate the weight percent of chopped and continuous fibers, res ectively. XMC
contains 75% glass fibers by weight. The continuous fibers provide added strength
and stiffness in the direction of maximum load. The random fibers provide strength
and stiffness in the direction perpendicular to the fibers. The formulations and
densities of different types of materials are given in Tables 1 and 2.

SMC materials are processed on machines i1llustrated in Figs. 3~5. The mater-
ials are compounded on machines shown in Fig. 3 (used for all types of SMC mater-
ials czcept XMC~3) and in Fig. 4 (used for XMC-3). The comﬁounded material is
allowed to set at room temperature for five to ten days. The required part is then
manufactured by compression molding in metal dies (Fig. 5). The die temperature
may range from 130 to 165C and the die pressure from 3 to 14 MPa. The process
time may vary from one to three minutes. The exact conditions depend upon the
material, the thickness. and the shape of the parct.

The material formulation as well as the control of the compoundine and mold-
ing processes affect significantly the properties of the finished product. Care
must be exercised, therefore, during the manufacturing process to avoid undesirable

and unacceptable variations in material properties.

R St ST R
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III. STATIC PROPERTIES

In this sectioa the tensile, compression, shear and flexural properties of

SMC materials are reviewed.

1. Tensile Strength snd Modulus

The room temperature tensile streungth, tensile modulus, tensile strain at
failure, and Peisson's ratio are summarjized in Table 3. Materials which contain
continuous fibers (XMC-3 and SMC-~C20/R30) have different properties in the direc~
tions along and perpendicular to the fibers (Fig. 6). Thereforas, properties for
these materials ave liasted separately for the longitudinal and transverse direc-
tions. For materials containing both continuous and chopped fibers, the amount
of chopped fibers also affects the tensile propertieér as shown in Fig. 7.

Both the ultimate tensile strength and the tensile modulus depend on the
material formulation. In addition, the environment has a marked effect on these

properties. Generally, both the ultimate tensile atrength and the tensile modulus

decrease at elevated temperatures (Fig. 8) and during exposure to fluids commonly

encountered in automotive applications (Tables 4,5). The decrease in properties
depends on the temperature, the type of fluld, and the length of exposure. 7*. .
est..gly, under some conditions there is a slight (~10%) increase in both the ten-
sile strength and the tensile modulus. The increase is probably due to plastici-

zation of the material.

2. Compression Strength and Moduius

The room temperature compression strength, compression modulus, and the strain
at fallure of different types of materials are listed in Table 6. Both the strength

and the modulus depend on the material composition, on the fiber orientation, and
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on the temperature (Fig. 9). As rxpected, the strength and the modulus are
highest along the fiber direction of composites containing continuous fibers

(XMC-3 and SMC-C20/R30).

3. Shear Strength and Shear Modulus

Room temperature values of in-plane shéar strength, in-plaue shear mndulus,
short beam shear strength, and short beam shear nodulus are given in Table 7. 1In
most cases there is a significant decrease in strength and in modulus at elevated
temperature (Table 8) and during exposure to humid air and to different types of
liquids (Tables 9,10). As in the case of tensile properties, shear properties
also increase slightly under some conditions. Again; this increase is caused by

plasticization of the material.

4. Flexural Strength aund Modulus

The flexural strengths and flexural moduli of different types of SMC mater-
ials are preéented in Table 11, These properties are highest in the longitudinal
directions of XMC-3 and SMC~C2/R30 composites, and are about five times higher in
the longitudinal than in the transverse direction. The strength and the modulus
declease,with increasing temperature (Fig. 10). For XMC-3 composites the strength

and the modulus also depend on the weight percent of chopped fiters (Fig. 11).

5. Notch Sensitivity

The notch sensitivities of cthree types of SMC materials were investigated
by Riegner and Sanders [3]. The reduction in tensile strength (due to ~ircular
holes or "notches') of XMC~3, SMC-C20/R30 and SMC-R65 materials are shown in Fig.

12. The solid lines in this figure represent results obtained by matching the

three parameter model of Pipes et. al. [3,6] to the data.
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Riegner and Sanders also measured the notchk strength of SMC-R25 materials.

Y
[P VUSSR U WSS

This material did not fail through the circular holes. Apparently, the weakening

effects of the holes were less than the strongth of the material itself.
' IV. TFATIGUE

2 %:T Most of the data available on the fatigue behavior of SMC materials are for

tests performed in tensinn-tension mod2., A typical tect record is shown in Fig.

. 17 In this figure the measured loads and deformations have been converted to
stresses and strains, respectively.

Fatigue life (S-N) data for tension-tension fatigue are presented in Figs.
4l~f 14-16. In general, the fatigue strengths follow the same trends as the static {

strengtha. The material that has the highest static strength has also the high-

; est fatigue strength. A good indicator of the relative fatigue performance of

”'\ different types of materials is the maximum stress the materials can sustain

—

kel . it

without failure for ome million cycles. These data are presented in Table 12.
As c#n be seen, the maximum stress depends not only on the material but also on

the temperature.

| The effect of temperature or: fatigue life is further illustrated in Figs. 15 ?
i and 16. For chopped fiber composites (SMC~R25 and SMC-R65) an increase in temper- 1
i E ature from 23C to 93C results in about a twofold decrease in the fatigue strength i
j i of the material (Fig. 16). The fatigue strengths of materials containing continu- {
f1§ ous fibers (XMC-3 and SMC-C20/Rk30) seem to be affected less by changes in tempera- j
: c ture (Fig. 15) than by the orlentation of the fibers (Fig. 16).
1’ A limited amount of Jata is available for compression-tension fatigue (Fig.
3 .:? 17). Data generated with SMC-~R25 composites indicate that most of the damage is

done during the tension portion of the cycle [2], The cowmpression portion of the

?
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cycle seems to contribute less to the damage.

Results for flexural fatigue are presented in Fig. 18. For SMC~R25, SMC-R57,
and SMC-R65 composites at one million cycles the stress levels are about 0.4,
0.35, and 0.25 times the static flexural stress [2]. These values are about twice
those reported by Maaghul and Potkanowicz [10] for SMC-R25 and SMC-R65 composites.

Room temperature creep during fatizue tests is shown in Fig. 19. As expected
the creep increases with Increasing load. Furthermore, for SHMC~C20/R50 composites
the amount of creep is about itwice as large in rhe direction of che fibers than in
the transverse direction.

In those applications where stiffness of a part is an important factor chan-
ges in modulus during fatigue must be taken into consideration. Shaet molding com-
pounds may decrease in modulus during fatigue cycling (Figs. 20,21). At room tem-
perature the modulus decay is small (less than~20%) except in the transverse dir-
ection of SMC-C20/R30 composites. Hence, in most automotive applications the decay
in modulus would not play an important role.

Heimbuch and Sanders [2] evaluated the effects of test frequency on fatigue
behavior. TFor SMC-R25 and SMC-R57 composites test frequencies from 5 to 20 Hz did
not change markedly the fatigue life. .

Heimbuch and Sand::rs [2] also examined the effects of notches on the fatigue
characteristics of SMC-R25 and SMC-R65 composites by driliing 0.6 mmn diameter holes
into the samples. These holes did not have a pronounced effect on the fatigue be-

havior, suggesting that these materials are not notch sensitive in fatigue.
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V. CREEP

The results of static creep tests are presented in Figs. 22-28. The curves
are average values. There is considerable scatter in the actual data. An arrow
at the end of a curve indicates that the specimen did not fail at the end of the
test, while a cross indicates specimen failure.

As expected, the strain increases with load, temperature, relative humidity,
and time. The increase in strain with time is not uniform. Step "jumps" occur
- i in strain at random times. Because of these unpredictalle jumps, the strain

cannot be described by simple viscoelastic models.

Heimbuch and Sanders [2] also investigated the stress rupture of SMC-R25,

i\

i

SMC-R57 and SMC-R65 composites in air at 23, 60, and 90C and at 50% and 100%

4

relative humidities. Owing to the large scaiter in the data, the effect of the

P

environment on stress rupture cannot be ascertained from the results of these

by

U A S

%
!

tests.

VI. ADHESIVE BONDED SINGLE LAP JOINTS

In this section, the behavior of adhesive bonded single lap joints exposed to

automotive related fluids is discussed. The results presented were obtained

with adherends bonded with a two part urethane adhesive, characterized in de-

tail in ref. [11].

L3

I 1) Moisture Absorption Characterisgtics

Typical moisture absorption data obtained with XMC-3 to SMC-R50 joints are

givenr in Fig. 29. Data for SMC-R50 to SMC-R50 joints exhibit similar trends.

~——




At 23C botb XMC-3 to SMC-R50 and SMC-R50 to SMC-R50 joilnts seem to approach
asympototically the same maximum moisture content (Mu) when immersed in the same
fluid. During a two month test period Mm is reached only in air. In water and
in 5% NaCl-water mixture the maximum moisture contents are not attained. The
Mm values can be estimated by extrapolating the data, giving 0.18, 1.5 and 2.0
percent for air, salt water, and water, respectively.

A 93C (immersion in water) the maximum moisture level is not approached
asynptotically. Here the weight increases for about the first 100 hours and
then decreases at a rapid rate. This indicates that the material deteriorates
during axposure. At 93C both bonded and unbonded test specimens behave simil-
arly, suggesting that degradation is mostly in the composite and not in the
adhesive.

Joints loaded up to 30 percent of their strength did not show appreciable

change in their moisture absorption characteristics.

2) Lap Shear Strength

Lap shear strengths of adhesive bonded single lap joints are given in Table
13. Changes in baseline strength and modulus during eavirommental exposure are
illustrated in Table 14. Neither the strengths nor the moduli change significant-
ly when the joints are exposed to room temperature fluids. - In some cases the
strength improves slightly (10-15%) during envirommental conditioning. The bene-
ficial effects of fluid and temperature are likely due to »lasticization. The
strength of joints immersed in hot (93C) water and salt water for 30 daye decrease
by a factor of two. Loading (up to 30 percent of the baseline strength) during

exposure does not seem to affzct the strength.

The joints may fail by delamination of the cowmposite or by separation of
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the adherent. In these tests, most fallures occurred by delamination of the

adherent. Separation of the adhesive was predominant only at higher (93C)

temperatures.

3) Fatigue

o Wang et al [11] conducted fatigue life tests on SMC-R25 to SMC-R25 and
- * SMC~R50 to SMC-R50 single lap joints. During the tests the stress levels were

' 30, 50, 70 and 90 percent of the static shear strength. Priorx to the fatigue
tests the specimens were soaked for 30 days at room temperature in the following

|
|
: i liquids: 50% by weight salt water, motor oil, transmission fluld, and gasoline.
-

The ranges of data are shown in Flg., 30. The data are not shown separately for

.3""'

specimens {umersed in the different fluids because the fluids did not have a

L

significant effect on the fatigue life.

o The residual strengths and moduli were also measured for th~se specimens
* surviving for one million cycies [11]. Cyeclic stressing at 30 percent of ulti-

mate strength does not degrade appreciably either the strength or the modulus:

in general, both the strength and the modulus retained zt least 80 percent of

their initial values.

I

|

|

‘ 4)  Creep
i : Creep deformations of adhesive bonded aingle lap joints under static and
é?;, ‘:; ; cyclic loadings are shown in Figs. 31 and 32, These figures illustrate the
!; effects of material, fluid, temperature,and applied load on creep behavior.
The type of material used in forming the joints has smaller effect on creep

than does the type of fluid, the temperature,and the applied load. The creep

is lowest in alr, and is higher in water, in salt watev, and in hydrocarbons.
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The creep also increases with temperature and with applied load. For example,
at 23C none of the XMC-3 to SMC-~R50 or SMC~R50 to SMC~R50 joints falled during
static creep. In air at 93C only one of the joints failed, this occurring

at 30 percent load level. During wéter immersion (at 93C) all buf 3 coupons
falled before the end of the 715 hours test. During cyclic creep, only joints
with 30 percent load survived for one million cycles. At higher loads none of

the joints survived for ome million cycles (Fig. 32).

VII. VIBRATION DAMPING

Materials used in commercial applications should damp out noise and vibra-
tions. It is important, therefore, to know the vibratién damping properties
of SMC materials. These properties may be characterized by two parameters, the
loss factor and the storage modulus. These parameters are obtained by exciting
the material with forced sinusoidal oscillations and by measuring the input
stress and output strain {3]. The loss factor is the tangent of the phase angle
between the stress and the strain, and is equal to the ratio between the energy
diusipated and the energy stored in the material., The storage modulus is the
in-phase component of the ratio of input stress to output strain.

Room temperature values of loss factors and storage moduli are listed in
Table 16. The loss factor 1s insensitlve to the exciting frequency in the range
of 0.1 to 10 Hz. For the SMC materilals tested the loss factors are an order of
magnitude higher than for steel. Thus, SMC wmaterials would damp out vibrations
more effectively than steel.

The effects of temperature and soaking in different types of 1liquids are

illustrated in Tables 15 and 16. An increase in temperature (from 23C to 120C)

10
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increases the damping and reduces the stiffness. Soaking in liquidg has similar
effects. Soaking for 1000 hours considerably increased the damping of chopped
fiber composites (SMC-R25 and SMC-R60), while their stiffness decreased slight'y.
The damping characteristics of continuous fiber composites (XMC-3 and SMC~C20/
R30) change little in the fiber directidn. Itis noteworthy that both temperature
and moisture-induced chaunges in the vibrarion properties appear to be reversible

[12].

VIITI. DYNAMIC IMPACT.

Fiber reinforced compositas ueced in automotive applicatious should be able
to resist impact damage. Unfortunately, glass fiber reinforced polyester coﬁpo-
gites absorb less energy during impact than metals. This is illustrated in Fig.
33, where a comparison is made between the energies absorbed by different types

of materials during impact against a fixed barrier. At a given deformatiom,

metals absorb about twice as much energy as the composite.

Impact resistances of composites may he evaluated using the Rheometrics
High Rate Impact Tester [3,5]. In tests with this device a hydraulic ram impacts
a clamped plate of material and the load versus displacement is reccrded, as
shown in Fig. 34. From the data several pafameters can be calculated, including
yield and ultimatre load, apparent impact modulua, yield and ultimate displacement,
yileld and ultimate energy absorbed. Typical values of some of these parameters
are given in Table 17. The data in :his table are a summary of the results of
Riegner and Sanders [3], who reported data for different iwpact velocities (from
0.5 te 10 m/s) and for different temperatures (23 and —350). The data do not show
clear trends. In general, neither changes in impact velocity nor changes in tem~

perature had a significant effect on the load, modulus, displacement, and energy

11
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values given in Table 17.

IX. MOISTURE ABSORPTION

Glass fiber reinforced organic matrix composites absorb moisture when N
'uau4 exposed to humid air or to liquids. The weight changes of different types of

SMC composites exposed to typical automotive service eavironments ave presented

in Figs. 35-37, The weight change (M) ie defined as

wet welght - dry weight

x 100 percent

d M=
: dry weight

4 ,i The data show that, in general, when the dry material is submerged in the fluid

the weight at first increases then levels off for some length of time. Both the
initial rate of weight increase and the value at which the weights level off
depend on a) the material, D) the temperature, and c) the environment (rela-
tive humidity of air or the type of liquid used). The dota also show that in
some instances the weight does not remain constant after it reaches a level value
but keeps either increasing or decreasing. This suggests that under some condi-
tions the moisture transport is by a non-Fickian process. One reason for the
non-Fickain behavior may be that moisture transfer through the resin does not
proceed by a process that can be described by Fick's law. Another plausible
explanation of the observed non~Fickian absorption process is as follows. Owing
to the moist, high temperature environment, microcracks develop oa the surface
and inside the material. Moisture rapidly enters the material, causing an increase
in welght, As the cracks grow larger, material, most likely in the form of resin
particles, is actually lost. 1In fact, such material loss is frequently observed

after a few hours of exposure to the molst environment. as long as the moisture




galn is greater than the material loss, the weight of the specimen increases.
Once the weight of the lost material exceeds the weight of the absorbed wmois~
ture, the weight of the specimen decreases. Of course, when the material is
lost, the measured welight change no longer corresponds to the meisture content
of the material.

The foregoing results were all obtained with unstressed specimens. How-
ever, as was indicated in Section VI.1, the moisture absorption characteristics

of stressed and unstressed SMC materials do not differ appreciably.

X. THERMAL EXPANSION

The dimensional changes of the material during temperature cycles must be
taken into account in the design process. The thermal expansion coefficient
values reported by Heimbuch and Sanders [2] and by Riegner and Sanders [3] are
reproduced in Table 18, As expected, the thermal expansion cuvefficients are
lowest along the fiber direction of composites containing continuous fibers
(XMC-3 and SMC-C2n/R30). The coefficient is high In the transverse direction
of these materials and also for SMC~R25 composites. More comprehensive data on
the variation of the thermal expansion coefficient with temperature are not vet

avajlable.

13
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XI. CONCLUDING REMARKS

As this survey indicates, the numerous studies made in recent years provide
much of the needed information on the mechanical and thermal properties of glass
fiber reinforced SMC composites. For many materials we now have the extensive
data bases required for the design of practical engineering systems. There are
still areas in need of further exploration. In particular, information isneeded
on problems in which the viscoelastic behavior of the material predominates.
Hopefully, the continuing efforts in this area will soon provide information

which will lead to an understanding of these problems.

14
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‘ . 4\ Table 1. Material formulations and densities of SMC materials.
- t
- l (PPG-PPG Industries, OFC-Owens Corning Fiberglas) (refs. 2,3)
- ;
Material Ingredient Type Weight | Density
% kg/md
. MC-3 Continuous Glass Fibers- PPG XMC Strand 50
. : +7.5°, X~Pattern Type 1064
- : 2.54 cm Chopped Glass BEG XMC Strand 25
: Fibers Type 1064
£ i Resin PPG Selectyon RS$S-50335 21.5 1970
L g Isophthalic Polyester
¥ Monomer Styrene 2.4
‘ Thickener PPG Selectron RS-5988 0.8
Catalyst TRPB : 0.2
e Mold Release Zinc Stearate 0.1
¥ SMC-C20/R30 | Continuous Glass OCF 433AB Roving 20
Fibers - Aligned
2.54 cm Chopped Glass OCF 433AB Roving 30
o Fibers
*4 ; Resin OCF-E980 Polyester 32.3
B _,4‘_..’_" Filler Calcium Carbonate 16.1 1810
fg - Mold Release Zinc Stearate 0.8
- Thickener Magnesium Oxide 0.5
é: 3 Catalvst TBP 0.3
- - Inhibitor Benzoquinone Trace
SMC~R25 2.54 cm Chopped Glass Fibers E-Glass (OCF 951 AB) 25
o N Resin Polyester (OCF E-920-1) 29.4
e - Filler Calcium Carbonate 41.8
& Internal Release Zinc Stearate 1.1
¥ Catalyst Tertiary Butyl
L Perbenzoate 0.3 1830
i Thickener Magnesium Hydroxide 1.5
-;ié Pigment Mapico Black 0.8
r SMC-R50 2.54 cm Chopped Glass OCF 433AB 50
. Fibers
[ b Resin OCF-E980 Polyester 32.3
Filler Calcium Carbonate 16.1
| e |! Mold Release Zinc Stearate 0.8 1870
[~ Thickener Magnesium Oxide 0.5
- Catalyst TBP 0.3
: Inhibitor Benzoquinone Trace
uﬂ" : ‘I ¥ SMC-R57 Formulated Epoxy Resin Epoxy Sheet Molding
W pos Compound (Gulf 1057) 43
S o, 1.27 cm Chopped Glass Fibers E~Glass (QCF-~495) 57 1740
N i SMO-RE5 3.54 cm Cnopped Glass Fibers | L-Glass (PPG 518) %5
| = : Rigid Resin Polyester (PPG 50271) 16
T Flexible Resin Polyester (PPG 50161) 16 1820
. Thickener, etc. 3
1 EA~SMC-R30 2.54 cm Chopped Glass Fibers E~Glass (OCF 956) 28
Resin Polyester 19.9
-, ) Filler Calcium Carbonate 41 1830
. . Thickener Balance 11.1
i ' 17
S




Table 2. VE-SMC-R30 paste formulation

T kel

Component Parts

A~SIDE

XD-9013.03 10

TBPB 1

Camelwite 92

Zinc Stearate 3
B-SIDE

Derakane* 470-45 100

Maglite D 50

Camelwite 100

Pump 10-14/1 by weight A/B
Max viscosity = 6000 cps
(90F, RVT, # 4 Spindle, 20 rpm)

*Registered Trademark of Dow Chemical Company
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i E Table 3. Room temperature ultimate tensile strength (St)’ tensile modulus
(Et), tensile fallure strain (at), and Poisscn's ratio G't)
(L - longitudinal, T - transverse direction) (refs, 2-6)
Material 5, (MPa) E (GPa ) e (%) Ve
R X1C-3(L) 561 35.7 1.66 0.31
( XMC-3(T) 70 12.3 1.54 0.116
L SMC-C20/R30(L) 289 21.4 1.73 0.3
; 1 SMC-C20/K30(T) 84 12.4 1.58 0.18
i SMC~R25 82 13.3 1.34 0.25
oA SMC-R50 164 15.8 1.73 0.31
SMC-R57 160 16.5 - -
SMC-R65 227 14.7 1.67 0.26
EA SMC-R3U 30 8.7 1.43 0.30
VE-SMC~-R50 165 7.0 - -
VE-SMC~C40/R10(L) 426 - - -
VE-SMC~C40/R10(T) 57 - - -
VE-XMC-3(L) 648 - - -
VE~XMC-3(T) 14 - - -
L
i
[
[
!
|
:. : 19
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Table 6.

Room temperature compression strength (Sc)’
compression modulus (Eo) and compression
failure strain (Ec) (L - longitudinal,

T - traasverse direction) (xefs. 2, 3

Material SC(MPA) EC(GPa) EC(Z)
™C-3(L) 480 37 1.36
KMC-3(T) 160 14.5 1.38
SMC~C20/R30(L) 306 20.4 2.50
SMC-C20/R30(T) 166 12.2 1.74
SMC-R25 183 11.7 2.16
SMC-R50 225 15.9 -
SMC~R65 241 17.9 1.81
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Table 7. Room temperature in plane shear strength (SLT), in plane
shear modulus (ELT), short beam shear strength (SS), and
short beam shear modulus (Gs) (refs. 3, 4, 8)
5 E: G
. Material SLT(MPa) LLT(GPA) SS(MPa) s(GPa)
|
s XMC-3 91.2 4.47 55 -
SMC~C20/R30 85.4 4.09 41 -
e {‘ SMC-R25 79 4.48 30 5.0
O SMC-R50 62 5.94 25 7.0
o i SMG-R6Y 128 5.38 45 -
, -J',._,j VE-SMC~R50 - - 35 4.0
| |
-
[ |
|
.
. z :
s .|
, I
- I
B i .
|-
- 23
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Table 8. Losses in in-plane shear strength (SLT)’ shear modulus (ELT)‘
and ultimate shear strain (CLT) when the temperature is raised
from 23C to 93C (ref. 3)

LOSS (Percent)

LT Eor LT
XMC-3 38 48 13
SMC-G20/R30 40 44 0.7
SMC-R50 - 22 -
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Table 1l.. Room temperature flexural strength (Sf) and
flexural modulus (Ef) (L -~ longitudinal,
T - transverse direction) (ref. 3)
Material ¢ (MPa) Eg (GPa)
XMC~3(L) 973 34.1
XMC-3(T) 139 6.8
SMC-C20/R30(L) 645 25.7
SMC-C20/R50(1) 165 5.9
SMC-R25 220 4.8
SMC~R50 314 14.0
SMC-R65 403 5.7
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Table 12. Fatigue stress for survival to one million
cycles (L - longitudinal, T - transverse direction)
(refs. 2, 3)
Haterial Percent Static Ultimate Tensile Stress
23C 90C
XMC~3(L) 23 18
XMC~-3(T) 27 26
SMC-C20/R3C(L) 45 44
SMC~C20/R30(T) 52 43
SMC-R25 49 55
SMC--R50 38 41
SMC~R57 42 -
SMC-R65 3l 28
EA-SMC-R30 44 -




Table 13. Baseline ("as received") lap shear strengths of

: adhesive bonded single lap joints

e bl AR bttt Mt o il O . A

-~ Strength (MPa)
23¢C 93¢
. XMC to SMC-RSO 6.55 3.89
“ l SMC-R50 to SMC~R50 6.11 2.12 :
| L]
.} SMC-R25 to SMC-R25 3.83 - ?
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[ ::! "
) ;
o ?
.- {' ;
ll :
!
1
| |
| -
i \
. i
1" i
]
S |
i | . i
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Table 14, Changes in lap shear strength (S/SB) and modulus (E/EB) of adhesive

bonded single lap jointe ufter 30 days of environmental expusure at

23C (B -~ baseline value) (ref. 11)

Fluid SMC-R25 to SMGC~R25 SMC-R50 to SMC-R50

S/SB E/EB S/SB E/EB
Alr 1.00 1.Q00 1.00 1.00
Motor 0il 0.89 1.05 0.85 0.92
Transmission Fluid v.92 1.01 0.%1 0.91
Gasoline 0.95 0.80 1.20 0.77
Salt Water 0.97 0.72 0.98 0.78
Brake Fluid 0.95 0.87 0.96 0.85
Antifreeze 0.96 1.15 0.81 0.81
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Table 16. Maximum changes in dynamic properties
during 1000 hours of soak (L. - longitudinal,
T - transverse direction) (ref. 192

Maximum Change (percent)

Fluid Material Loss Factor Storage Modulus
Distilled XMC-3(L) + 53 0
Water 22C SMC-C20/R30(L) + 38 0

SMC-R25 4193 ~20
SMC-R65 +180 -7
Distilled XMC-3(L) + 88 0
Water 50C SMC-~C20/R30(L) +112 0
SMC-R25 +210 -10
SMC~R65 +247 -12
Salt XMC=-3(L) + 55 0
Water 213C SMC-C20/R30(L) + 50 0
SMC-R25 +117 -4
SMC~R65 +178 - 7
Motor MC-3(L) 0 0
01l 23cC SMC-C20/R30(L) 0 0
SHMC-R25 + 25 0
SMC-R65 + 24 0
Antifreeze MC-3(L) 0 0 -
SMC-C20/R30 (L) 0 0
SMC-R25 + 29 0
SMC-R65 + 22 0
Gasoline 22C MC~3(L) -0 0
SMC-C20/R30(L) Q 0
SMC~R25 178 -15
SMC~R65 30 0
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Table 18. Thermal expansion coefficient a at room temperature
. (L ~ longitudinal, T - iransverse direction) (refs. 2, 3)
7 Material a(um/m°C)

. XMC-3(L)

KMC-3(T)

| SMC-C20/R30(L)

g
. SMC-C20/R30(T)
N SMC-R25
L
| - SMC-R50
- <
SMC-R65
4
e
“{ -
S
i
R
!
|
|
:
.
|
)
1
[
’\
i
t
|
i
| T e

e o - Satbr—— 17 e oy

8.7
28.6
11.3
24.6
23.2
14;8

13.7

b -t S -miy
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The effect of fiber orientation on the tensile
strength and tensile modulus of XMC-3 and SM(C=
C20/R30 composites (ref. 3)
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4 XMC -3 (L)
2 AMC- 3(T)
S -3 SMC - C20/R30(L)
0 4 SMC - C20/R30(T)
21200 5 SMC - R50
I
51000
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E 800 3
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| g 400~ f\\
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R L @) | | 1 l
- -50 O 50 100 150
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i Flgure ]0: The effect of temperature on the flexural strength and flexural
i modulus. (L -longitude, T -transverse direction) (ref, 3)
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Figure 13 Tension-tension fatrigue resulis.
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R = 0.05 (ref. 3)
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Figure 19: Crecp strain (ey~€,) during tension-tension fatigue tests as
functions of load (percent of ultimate tensile strength).
R = 0.05 (refs. 2, 3)
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"’ : Figure 24: Creep of SMC-RZ5 under different loads (percent of static ultimate
- tensile strength (ref. 2) 58
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Figure 25: Creep of SMC-R50 and VE-SMC~R50 under different loads
(percent of static ultimate tensile strength) (refs. 5, 6)
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Fiéure 27: Creep of SMC-R57 under different loadg (percent of static

ultimate tensile strength) (ref, 2)
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Figure 32t Creep of adhesive bonded single lap joints (SMC-R50 to SMC-R50 and
SMC-R25 to SMC-E25) during tension-tension fatigue under different
-==~50% UTS, ---70% UTS) (ref. 11)
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Figure 34: 'Typical output of dmpact test using Rheometrics impact tester
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