AD=A113 581 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/0 9/2
LONGLIVED TRANSACTIONS ~ ARE THEY A PROBLEM OR NOT. (U}

MAR 82 0 Z BADAL .

UNCLASSIFIED NPS52~82-003 N

END

Date
FiLweD

S~ga

nTIc

53 g R PR il e

AD A113'581

DTIC FILE COPY

NPS52-82-003

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

DTIC

ELECTE g
APR 16 1982 :

D

LONG-LIVED TRANSACTION - ARE THEY A PROBLEM OR NOT?

Dushan Z. Badal

March 1982

Approved for public release; distribution unlimited
Prepared for:

Naval Postgraduate School
Monterey, California 93940

82 04 16 049

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Rear Admiral J. J. Ekelund

David A. Schrady
Superintendent

Acting Provost

The work reported herein was supported in part by the Foundation Research

Program of the Naval Postgraduate School with funds provided by the Chief of
Naval Research.

g

Reproduction of all or part of this report is authorized.

This report was prepared by:

e =
DUSHAN Z. BADAL

Assistant Professor of
Computer Science

Reviewed by: Released by:

WILLI . L
Dean of Research

D it

.
R e A ———

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Phen Date Entered)

o REPORT DOCUMENTATION PAGE oEr EAD NSTRUCTIONS
T REPGRT NUMBER 2. GOVT AGCCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
NPS52-82-003 N Al grr
4. TITLE ‘and Subdtitle) S. TYRE OF REFORT & PERIOD COVERED
: LONG-LIVED TRANSACTIONS - ARE THEY A PROBLEM Technical Report)
? 3
OR NOT? 5. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACY OR GRANT NUMBER(®) | |
Dushan Z. Badal
] % -n—loaumc ORGANIZATION NAME AND ADDRESS 10. "2“".‘:05"‘“5WW
Naval Postgraduate School 61152N; RROBO '6"'1_10
Monterey, CA 93940 NOOO 1482AF00001
i 11, CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE
] Naval Postgraduate School March 1982
Monterey, CA 93940 . nuuunzo; PAGES
& TS MONITORING AGENCY NAME & ADORESS(If different from Cantrolling Office) | 15. SECURITY CLASS. (of this report)
J UNCLASSIFIED
TSa. DECLASSIFICATION/ GCOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

» o
i o —

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This report has been submitted for publication. It has been issued as a
Research Report for early dissemination of its contents.

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

; Transaction, Transaction model, Database systems, Synchronization,
! Concurrency control, Transaction processing, Distributed Computing

A

20. A TRACT rContinue on reverse eside If necessary and identily by block number)

Th1s paper discusses three topics. First, we propose a new model of
transactions. Second, we discuss long-lived transactions which can last for
days or weeks. We describe two real-1ife examples of such transactions.
Third, we discuss concurrency control for such long lived transactions.

N

Do ':2:"7: 1473 eoimion of 1 NOV &8 1S OBsOLETE

3 N 0102- LF-014- 6601 sSECUmITY cussmcn'rEuon OF Til PAGE (Whon Date Bnteved)

LONG-LTVED TRANSACTIONS - ARE THEY A PROBLEM CR lCT?

Naval Postgraduate School
Computer Science Department
Monterey, California 93940

Abstract

; This paper discusses three topics. First, we propose a new model
of +transactions. Second, we discuss long-lived transactions which can
last for days or weeks. We describe two real-life examples of such

transactions. Third, we discuss concurrency control for such long lived

transactions.

Accession Tor
}_

o FTIS GRAMI . |

; DTIC TAB O
Unannounced O
Justificatio VDTIC

coryY
INSPECTED

2

By.
| Distribution/
Ayanabluty Codes :
Avail and/or j
Dist Special

Al |

1. INTRCDUCTICN.

The concept of transaction has been recognized, during the last few
years, to be useful as an abstraction for structuring some applications
such as airline reservations, electronic fund transfers and car rentals.
In 211 of +these applicaticns the transactions are simple and they are
short lived, i.e., they are short duration transactions. There has been
considerable effort in industry to implement transaction processing sys-
tems. There has been also considerable theoretical work done in
academia and in research establishments on concurrency control. This
work deals with the design, correciness, verformance,
robustness/reliability and complexity of mechanisms which can sugport
the transaction concept [ESW76, BAD7S, BAD79, BADSO, BADSCa, BADS1,
3=R78, 3ERT79, 3BERS81, ATT®2, CER82, THOT9, ALST76. STC79, 37078, ZLIT7,

LATTR, XUMT79 REETR, MCL79, XA79, LELT8, GRAT8, JRASC, TFISB2, ez,
2a5%, Rove2, cuEsel.

It has teen recognized that despite numerous vapers on concurrency
control mechanisms +there seem to be two [GRAS1] or three [3AD81] bvasic
classes of concurrency control mechanisms. Gray [GRA8!] distinguishes
time-domain addressing and locking and logging. BPadal [BAD81] besides
distinguishing similar classes, 2lso considers an additional class

~alled the MEQ class. (Badal's MES or Mutual exclusion over a set is

the same as 3ray's locking and logging class. Similarly, 3adal's 3
i class is analogous to Gray's time-domain addressing). The MEO class is
2 hybrid class because in some respects it uses the same concepts as

toth *he %ime-~domain addressing and locking and logging. In particular

the MEO class shares with time-domain addressing a notion of unique
identifiers (or time stamps) and a notion of multiple (more than two)
versions of the same data object. On the other hand, the MEC class
shares with the locking and logging approach the notion of logging. The
principal idee of the MEO class as proposed in [BAD81] is to use log-
ging, or more precisely the ordering or sequencing of transactions
actions in logs, (but not locking and locks or time stamps) for syn-
chronization as well as recovery of transactions having unique ID (or
sequence number or time stamp).

The fact that the MEO class concurrency control proposed in [BAD81)
uses a concept of multiple data versions seems Yo provide it with a
capability to cope with two difficult and unresolved issues in con-
currency control. The first issue is network partitioning and the
automatic reconciliation of partitions. The second issue is the support
of 1long-lived transactions such as travel agent, escrow or insurance
transactions. In this paper we address the second problem. As pointed
out in [GRAS1] the present concept and model of transactions and pro-
posed concurrency contrcl mechanisms based on time-domain addressing or
locking and logging can not readily, if at all, support long lived tran-
sactions which can take days or weeks.

The paper is organized ag follows. In section two we discuss in
detail the traditional model of transactions and we suggest a new model.
In section three we discuss long-lived transactions and in section Zfour

we discuss concurrency control for long-lived transactions.

2. TWO MODELS OF TRANSACTIONS.

RRp=—r—

2efore Jescribing two transaction models, we will briefly discuss
the concept of transaction. The transaction concept derives from con-
tract law. In making a contract, two or more parties negotiate the con-
tract. Once an agreement among the parties involved is reached, either
through direct negotiation or through the independent party, the con-
tract becomes Jlegaelly binding. Of course, a contract is simply ar
agreement. Individuals can violate it if they are willing to break *he
law. But legally, a contract (transaction) can only be annulled if i<
was illegal in the first place. Adjustment of =2 bad transaction is done
via compensating transactions (including legal redress). Thus, as indi-
cated in [GRAS!] the transaction concept emerges with the following pro-
verties:

Consistencr: the transaction must obey legal protocols.

Atomicity: it either happens or it does not; either all are hound
=y the contract or none are.

curability: once 2 transaction is committed, it cannot be akro-

gated.

2.1. CNE MODEL OF TRANSACTIONS [GRAS?].

Translating the transaction concept to the realm of computer sci-
ence, we observe that most of the transactions we see around us [bank-
ing, car rental, or buying groceries) can be represented in a computer
as transformations of a system state.

A gystem state consists of records and devices with changeable
values. The system state includes assertions about the values cf

records and about the allowed +transformations of +the values. These

q

b i

Y T S

T VW S

assertions are called the system consistency consiraints.

The system provides actions which read and transform the values of
records and devices. A collection of actions which comprise a con-
sistent transformation of the state may be grouped to form a transac-
tion. Transactions preserve the system consistency constraints - they
obey the laws by transforming consistent states into new consistent
gtates.

Transactions must be atomic and durable: either all actions are
done and the transaction is said to commit, or none of the effects of
the transaction survive and the transaction is said %o abort.

™hese definitions need slight refinement to allow some actions to
be ignored and to account for others which cannot be undone. Actions on
entities are categorized as:

Unprotected: the action need not be undone or redone if the tran-
saction must be aborted or the entity value needs to be reconstructed.

Protected: the action can and must be undone or redone if the
transaction must be aborted or if the entity value needs to be recon-
structed. The result of protected action is usually not visible to the
outside world until 2 transaction commits.

Real: once done, the action cannot be undone.

Cperations on temporary files and the transmission of intermediate
messages are examples of unprotected actions. Conventicnal database and
message operations are examples of protected actions. Transaction com-
mitment and operations on real devices {cash dispensers and airplane

w#ings) are examples of real actions.

Tach %ransaction is defined as having exactly one of two outcomes:
committed or aborted. All protected and real actions of committed tran-
sactions persist, even in the presence of failures. On the other nand,
none of the effects of protected and real actions of an aborted transac-
tion are ever visible to other transactions.

Once a transaction commits, its effects can only be altered by run-
ning further transactions. TFor example, if someone is underpaid, the
corrective action is to run another transaction which pays an additional
sum. Such post facto transactions are called compensating transactions.

A simple transaction is a linear sequence of actions. A complex
transaction may have concurrency within a transaction; the initiation of
one action may depend on the outcome of a group of actions. Such tran-
sactions seem to have transactions nested within them, although the
effects of the nested transactions are only visible to other parts of

the transaction (see Figure 1).

Pigure 1. Two transactions. T1 is a simple sequence of actions. 72 is

a more complex transaction w#which demonstrates parallelism and nesting

within a transaction.

ff; QST M3G oemT CREDIT POST PUT MSQ T

e e

e

roamANL T Y Ak e B S

2.2. AMCTHER MCDIL IF TRAISACTICIS.

)

Another way to model a transaction is to consider it as a set of
subtransactions, where each subtransaction 1s a unit of atomicity,
recovery and consistency. The composition of subtransacticns, which Iis
tne “ransaction, 1is a composition oFf units o7 atomicity, recovery and
consistency. Thus, the transaction itself should exhibit atomicity,
consistency and recoverability. The subtransaction is defined %0 te 2
zequence of read and update actions.

A subtransaction can be a single update or read action. Zach 3ud-
transaction can make only temporary changes %o the database, i.e., each
subtransaction can generate only a new temporary version of any data
object (DO) that it updates. The temporary versions are visible to and
available for updates from other transactions. However, such temporary

changes t0 the latatase have to %e consistent, recoverable and atomic In
“he sense that 21l <emporary changes 2i<her dccur or ncne cccurs. The
semporary changes *o the database beccme vermanent when a sransacsicn
comnits. A transaction is atomic in the sense that all <emporary
changes produced by the subtransactions of a given transaction vecome
either permanent or aborted.

Comparing *his “ransaction model with cne in section 2.
the following majior jifferences:

1) <his model requires that substransaction is a unit 27 on-
3istency as ovposed %o the notion of the transaction being the 3ingle

unit of consistency

2) *“his meodel introduces 4wo tyves or lavels of atomicity. -ne

lavel of atomicity deals with zeneration of temporary 20 versicns and
the other deals with cormmitment of these versions.

%) this model introduces the notion of temporary JC versions and
therefore of temporary database states. The notion of temporary DC ver-
sion generation corresponds directly to the notion of oprotected action
in +the previous transaction model. This means that the temporary DC
versions can and must be undone or redone if the transaction is aborted.

We consider the notion of temporary data and database states a cru-—
cial one 1in our transaction model. We nave observed several real-life
applications, such as escrow and travel agent operations, and we have
come to the conclusion that there is a strong notion of temporary data.
For example in an escrow process there is a difference between granting
a loan to a buyer and executing that loan. The granting of a loan by a
bank is a temporary state. If 2all of the conditions of the escrow are
satisfied, then the loan is executed {committed); otherwise it is can-

celled (aborted).

3. LCNG-LIVED TRANSACTIONS.

The ‘transaction concept was adopted to ease the programing of zer-
tain applications. Indeed, the transaction concept is very effective in
areas, such as airlines reservation, electronic funds transfer and car
rentals, where each application consists of simple transactions of shor%
duration. It appears that the *raditional concept of transaction, as
represented by the transaction model in section 2.1, has adopted a view
that transaction, by definition, is simple and short. This has occurred

tecause the first applications of *ransaction processing were simple and

AR5 VO Rl ATt Sl 33 A2 0 S R Mt P

S

short transactions. However, the word "“ransaction" itsell dces not in
general imply any limitation on the duration of transactions. Thus,
there seem to be two unresolved oroblems. One is to anaylze ftransac-
tions which are not simple and can last for hours, days or weeks. Gray
F3RAS1] ~alls them long-lived %ransactions. The second oroblem is how
to support the execution of such transactions, i.e., what kind of con-
currency control, if any, should be used for such transactions. Solu~
tions to +these problems are needed in order to support aprlications »f
long-lived transactions. Good examples of such applications are escrow,
travel, insurance, government, legal proceedings, electronic mail, etc.
In the remainder of this section we discuss the first problem,
i i.e., we analyze two examples of long-lived transactions. We address
| “he second vroblem, i.e., how o support long 1lived +ransactions, in
secticn 1.

Ccnsijer izplementing 2 ‘travel agent system as discussed in

\ 732481 1. A <ransacticn in such 2 3ystem consists of:
1. Justomer calls tne travel agent giving destinaticn and <*ravel |
dates.
2. Agent negotiates with airlines for flights.
3. Agent negotiates with car rental companies for cars.

4. Agent negotiates with hotels for rooms.

(911
.

Agent receives tickets and reservations.
5. Agent gives customer tickets and gets credit card number. i
7. Agent bills credit card.

2. fLustomer uses “ickets.

A o el 2SI IY 60w AN g <0 TR s

Jlot infrequently, the customer cancels the trip and the agent mus® unde
the transaction.

The transacticon concept as described in section 2.1 crumbles under
this example. We quote from [GRA81]. "Each interaction with other
organizations is a transaction with that organization. It is an atomic,
consistent, durable transformation. The agent cannot unilaterally abort
an interaction after it completes, rather the agent must run 2 compen~
sating transaction to reverse the previous transaction (e.z., cancel
reservation). The customer thinks of this whole scenario as single
transaction. The agent views the fine structure of the scenario, treat—
ing each step as an action. The airlines and hotels see only individual
actions but view them as transactions. This example makes it clear that
actions may be transactions at the next lower level of abstraction."

Let's recast this example in terms of our transaction model dis~
cussed in section 2.2. Consider the agent transaction as consisting of
subtransactions where each subtransaction represents an interaction with
airlines, hotels, etc. Such subtransactions are utilized to make reser-
vations with different organizations. However, the reservation itself
is a temporary state which has to be made permanent and legally binding
by laking a payment or it is aborted either by the travel agent or the
organization, if payment is nct made within a certain time window. Such
time window can be a few weeks to a few hours before the reservation
date. As a metter of fact, in airline reservation systems, once a vay-
ment has been made then the reservation data is marked as ticketed and

this fact makes the airline legally bound to “ransport a passenger

11

\ / '
" s a P AN
1

within a certain time interval from reservation date. Thus, the travel
agent transaction consists of subtransactions which generate temporary
data (reservations) which are either made permanent (or legally binding)
by an agent billing the customer's credit card [step 7 in the example)
or they are aborted. The important points we want to make are that
first, the reservation data is temporary and available to other transac-
“ions before the travel agent commits the transaction. Second, the)
reservation subtransactions seem to have two levels of atomicity. Cne
level deals with generation of all temporary data (making reservations)
and the second level deals with commitment or abortion of all temporary }
data. The second level of atomicity depends on the first level, i.e.,

the second 1level can take vlace only after the first one has occurred.

In terms of our example the travel agent can commit +he +ransaction,

i.e., ccllect “he customer's zayment and *thus make all temporary reser-

vations vermenent, or legally bdinding, only after all reservations have
been nade.

Let's consider another example of 1long~lived <ransaction - =an

escrow transaction. Such a transaction consists of:
1. 3Buyer, seller and possibly real estate agent call title company
3 agent gziving him a real estate contract. Such contract contains
A‘? numerous conditions %0 be fulfilled vefore the escrow can be closed.
The +ypical conditions concern financing, price, vest control,
insurance, stc.

2. The escrow agent ovens the escrow by collecting an initial

ieposist.

12

a5 o S AP Am L

3. The escrow agent investigates public records.

4. The escrow agent investigates property tax records (Steps ? and
4 are called vreliminary title work and clearing the title in escrow
agent jargon).

5. 3Buyer and seller fulfill escrow conditions by obtaining financ-
ing, any corrective work, insurance, etc.

6. After escrow fulfillment, both buyer and seller sign escrow.

7. The escrow is closed by entering the transfer of ownership into
public records and by disbursing the money involved in the transaction.

We will analyze the escrow transaction. In particular we have
chosen step 5 which involves buyer and seller interactions with several
institutions. For example the seller has to obtain financing by apply-
ing for a loan to a local bank. Such application inevitably triggers a
nontrivial set of activities within the bank. We ignore them except the
fact that they result in loan being either granted or denied. If *he
loan is granted then this constitutes one condition of escrow <fulfill-
ment. However, from the bank's point of view the act of granting the
loan is not a permanent change because, before the loan can be executed,
all other escrow conditions must be fulfilled. Only after the escrow is
closed, i.e., the escrow transaction is committed, <the loan becomes
effective and money can be transferred to the seller. At that point “he
bank's temporary loan data becomes permanent. Obviously the <%emporary
loan data can ve and is accessible to the bank. Thus, as in the previ-
ous example we can observe two levels of atomicity - one on subtransac-

tion level (all temporary data actions have to occur) and “he other one

13

i_d

R . = TR anay ¥ RN e -k Eo IR T

on transaction level (all temporary data either become permanent or
aborted). In this example we have also observed that the escrow data
during escrow transaction execution (which typically takes weeks) is
accessible +o the outside world tut in a restricted way, i.e., it iz
confidential. This raises the general question of the interrelation

among synchronization, recovery and security.
4. ON CONCURRENCY CONTROL FOR LONG LIVED TRANSACTIONS.

4.1. ICCKING AND LOGGING VS. LONG LIVED TRANSACTICHNS.

Locking and logging as presently used is quite unsuitable for
long-lived transactions because of the following reasons. First, it is
not feasible to lock a data object for weeks. This would occur if we
treated a long-lived transaction as just another transaction. Second,
if we 2onsider long-lived transactions as consisting of short <ransac-
tions <*hen there 15 a oroblam of committing sucnh “ransactions tecause
shor% transactions commi* irmediately after their sxecution and return a
result to the long-*erm transaction. However, when the long-term tran-
saction commits it would recommit or abort its already committed short-
term transactions. Obviously this violates the concept of transaction -

in particular this violates the notion of transaction durability and

o B
s ——

atomicity.

j In [GRAS!1] two approaches to handling long lived +transactions T4y

locking and logging are described. They involve nested transactions and
2 lower degree of consistency as follows.

One approach to the handling of long-lived $ransactions which seems

14

L

to offer some help, is to view a transaction as a collection of:

. actions on unprotected objects

. protected actions which may be undone or redone

. real actions which may be deferred but not undone

. nested transactions which may be undone by invoking compensating

transactions.

Nested transactions differ from protected actions because their effects
are visible to the outside world prior to the commit of the parent tran-
saction.

‘“hen a nested transaction is run, it returns as a side effect +the
neme and parameters of the compensating transaction for the nested tran-
saction. This information is kept in a log of the parent transaction
and is invoked if +the parent is undone. This log needs to be user-
visible (part of the database) so that the user and application can know
#hat has been done and what needs to be done or undone. In most appli-
cations, a transaction already has a compensating transaction, so gen~
erating the compensating transaction (either coding it or invoking it)
is not a major programming burden. If all else fails, the compensating
transaction might just send a human the message "Help, I can't handle
this".

This may not seem very satisfying, but it is Dbetter than +the
entirely manual process which is in common use today. At least in this

vroposal, the recovery system keeps track of what the +transaction has

done and what must be done to undo it.

-

At present, arplication programmers implement =sucn applications
using a technique called a "scratch-pad" (in IMS) and a2 "transaction
work area" in CICS. The application programmer ixeeps +the <transaction
state (his own log) as a record in ‘the database. Zach “ime the “ransac-
tion becomes active, it reads its scratchpad. This re-establishes <the
transaction state. The transaction either advances and inserts the new
scratchpad in the database or aborts and uses the scratchpad as a log of
things to undo. In this instance, the application programmer is Imple-
zenting nested transactions. It is a general facility that should bve
included in the host transaction management system.

Some argue that nested transactions are not transactions. They do
have some of the transaction properties:

Jonsistent transformation of the state

Zither 2l actions commit or are undone by compensation

Cnce committad, cannot bte undone

They use *he ZEGIT, COMMIT and ABCRT verbs. But they do not have zhe
vroperty of atomicity. Others can see the uncommitted updates of nested
transactions. These updates may subsequently be undone by compensation.

The second approach 4o the handling of long-lived +transaction %ty
locking 1is %o accept a lower degree of consistency [JRAS0] so that only
"active" transactions (ones currently in the process of making changes
“o the database) hold locks. "Sleeping" transactions (travel arrange-
ments not currently making any updates) will not hold any locks. This
will mean +that +the updates of uncommitted transactions are visible to

ather +ransactions. This in turn means that the TIIDC and REDC

16

e s

N R, A

Fem TR e L

overations of one transaction will have to commute with the DC opera-
tions of others (i.e., if transaction ™ updates entity = and then 72
updates entity T and then T1 aborts, the update of T2 should not be
undone). If some object is only manipulated with additions and subtrac-
tions, and if the 1log records the delta rather than the 0ld and new
value, then UNDC and REPO may be made to commute with DO. IMS Fast Path
uses the fact that plus and minus commute to reduce lock contention. Yo

one nows how far this trick can be generalized [GRAS1].

4.2. ANOTHER SOLUTION TO LONG LIVED TRANSACTICN SYNCHRONIZATION.

The transaction model described in section 2.2. is used in a con-
currency control proposal described in [BAD81, BAD79, MCE82]. The prin-
cipal ideas of this proposal can be described as follows. Zach data
object (DO) in the database has a log associated with it. The data
object log contains a history of all actions on a given data object
(DO). Transactions are in three possible states - executing, committed
or aborted. Similarly, a transaction's entries into DC logs are in
three possible states - temporary, cormitted (permanent) or aborted. DC
log entries are created after the transaction executes on a given DC.
When there are n updates on a given DO, then there are created n ver-
sions of that DO. The i-th version of DO is created by updating the
(i~1)=th version. All such versions are temporary and the i-th version
can commit, or become permanent only after the (i-1)-th version has com-
nitted. However, if the i-th version is aborted then all j versions,
j>i, must be aborted as well. In some sense this concurrency control

uses a look-ahead technique by allowing a precomputation of 20 versions.

17

All 2C versions are available to all *ransactions 2t any =ime during

transaction execution. This is an optimistic concurrency control in
that it assumes a low frequency of conflicts among transactions and it
recognizes the fact +that not all conflicts result in an inconsistent
database state, i.e., in nonserializable execution. This concurrency
control mechanism uses a simple set of rules about the sequencing or
ordering of DO log entries to detect and resolve any nonserializable
execution of conflicting transactions. It might seem that this con-
currency control is subject to a so-called domino effect when one tran-
saction abort triggers the abort of all other transactions which either
read or updated its output. Yes, that it is %rue, but, since this con-
currency control is intended for applications with a low frequency of
conflicts then the domino effect (which is determined by a frequency of
conflicts) should not te significant. Moreover, the concurrency control
mechanism as provosed in [2AD81] will decrease and probably eliminate
2ll conflicts among transactions vecause %he detection of nonserializ-
able execution is based on the smallest possible granularity, i.e., on
accessed record field (as +the DO log entry by a given transaction is
created after the transaction' read or update of DO has been executed).
This concurrency control uses multiple DO versions which can either be
kept indefinitely or they can be deleted after <he transaction has com-
mitted -~ that is a matter of choice and available storage technology.
If multiple versions of DC's are kept indefinitely and +the transaction

ID used is a time stamp then this mechanism can support jueries using

time reference as for example "what were the values of D0's at time 3%".

We want to point out that since time stamps are not used for synchroni-

zation, this concurrency control can use approximately synchronized real
time clocks for generation of time stamps - if one wishes to use time
Stamps as transaction ID's.

The long-lived transactions are treated in this concurrency control
mechanism in the same may as short-lived transactions. This means that
subtransactions of a (short or long lived) transaction generate tem—
porary versions of data which are accessible to other transactions.
When the transaction commits the temporary data versions become per-
manent or aborted. Since, in our opinion, long-lived transactions gen-
erate mostly temporary data, then we seem to be able %o handle such
transactions in a very natural way. More details on the concurrency
control discussed in this section can be found in a forthcoming report

(MCEs2].

5. CONCLUSIONS.

In this paper we have discussed the problem of long-lived transac-
tions. The main contribution of this paper is in presenting another
point of view on, and hopefully some insights into, transaction models,
long- lived transactions and concurrency control for long-lived transac-

tions.

6. ACKIOWLEDGEMENTS.
The author wishes to express his appreciation to Bill McElyea for
discussing with him many ideas in this paper and for contributions %o

the presentation.

19

B e e

T W TR ey T

[,

REFTRENCES

[ALS76] Alsberg, P. et al. "Multi~Copy Resileincy Techniques," Center
for Advanced Computation, Report CA 5202, University of Illinois,
Urbana~Champaign, May 1975.

rarmg2] Attar, R., Bernstein, P. A., and Joodman, H., "Site Initializa-
tion, Recovery, and 2ack-Up in a Distributed Database System," Proc. of
the 6th Berkeley Workshop on Distributed Data Management Computer (ieT-
Works, Asilomar, rebruary 16-19,

7 .

[(BAD78] Badal, D. Z., and Popek, G. J. "A Proposal for Distributed Con-
currency Control for Partially Replicated Distributed Databases," Proc.
of the 3rd Berkeley Conference on Distributed Data Management and Com—
puter Networks, August 1975.

(RAD79] Badal, D. Z., "Correctness of Concurrency Control and Implica-
tions in Distributed Databases," Proc. of CCMPSAC 79, Chicago, Tovember
1a70.

[BADSO] Badal, D. Z., "On the Degree of Concurrency Provided by Con-
currency Control Mechanisms for Distributed Databases," Proc. of the
Inter. Symposium on Distributed Databases, Paris, France, March 1980.

f3AD80a] 2adal, D. 2., "The Analysis of the Zffects of Zoncurrency lon-
#rol on UDistributed Databvase System Prerformance,” 2roc. of the oth

Intern. Conference on Jery large “ata Zases, lontreal, Zcioter 152C.

f2AD81] 2adal, 2. Z., "Concurrency Jontrol Jverhead or Clcser Icok at
Blocking vs. llonblocking Concurrency Jontrol fechanisms," Iroc. 3£ the
Sth Berkeley Conference on Distributed lata Management and Ccmputer .iet-
WOTKS, San francisco, rebruary 1991. -

[BER78] Bernstein, P. A., et al., "The Concurrency Control Mechanism of
SDD-1: A System for Distributed Databases," IEEE Transactions on
Software Engineering 4, 3 (May 1978).

[czrRe2] ceri, Stefano and Cwicki, Susan "Cn the Use of Optimistic
Methods for Concurrency Control in Distributed Databases,”" Zroe. of the
6th Berkeley “Workshoo on Distrituted Data Management and Computer .iet-
WOTKS, ASiiomar, -ebruary 16-19, 1982.

[CHES2] Cheng, Wing fai and Belford, Jeneva G., "The Resiliency of
Fully Replicated Distributed Databases. Proc of +the 6th 3erkeley
Workshop on Distributed Data Management and Computer sefworks, asilomar,
February T6-13, 1982.

(mZ77] =lis, C., "A Robust Algorithm <or Undating Duplicate Data-
bases,” Proc. of the 2nd Zerkeley Jorkshop on CDistributed Data

o
(9]

i el 5 G e A A8 b s RS e = - L h e =

Management and .Jetworks, May 1977.

fEw76] Zswaran, K. P., et al., "The lotions of Consistency and >redi-
cate Locks in a Database System," CACYM 19, 11 (llovember 1976).

[FAIS1] Faissol, 3., "Operation of Distributed Database 3Systems Under
Jetwork Partitions," Ph.D. dissertation, UCLA Dept. of Computer Science,

July 1981.

(FIs82] FPischer, M. J. and Michael, A., "Sacrificing Serializability %o
Attain High Availability of Data in an Unreliable lNetwork", Proc. of ACHM
Sym?sium on Principles of Database Systems, los Angeles, MYarch 20-37,

[GEL79] Gelenbe, E. and Seveik, X., "Analysis of Update Synchronization
for Multiple Copy Data Bases," [ZEE Transactions on Computers 28, 10
(October 1979).

(GRA7T8] Gray, J., "iotes on Database Operating Systems," IBM Research
Report RJ 2188, February 1978.

(GrRaSO] Gray, J., "A Transaction Model," in Automata, Iﬁvﬂ%g and
Programming, Lecture Notes in Computer Science 85, Springer-verlag,

[GRAB1] Gray, J., "The Transaction Concept: Virtues and ILimitations,"
TANDEM TR 81.3, June 1981.

[4AM78] Hommer, M. and Shipman, D., "An Overview of Reliability Mechan-
isms for a Distributed Data Base System," Spring Compcon 78, February 28
- 3 March, San Francisco, pp. 63-65.

[HER79] Herman, D., et al., "An Algorithm for Maintaining the Con-
sistency of Multiple Copies," ibid KUNT9.

(Kun79] KXung, 4. T. and Robinson, J. T., "On Cptimistic Metheds for
Concurrency Control," Proc. of VLDB Conference, Rio De Janeiro, Zrazil,
Cetober 1379.

[LAM'?S] Lgmport, L., "Time, Clocks, and the Ordering of Zvents in a
Distributed System," CACM 21, 7 (Jsuly 1978). March 1975.

[LEL78] ILelann, G., "Algorithms for Distributed Data-Sharing Systems
‘Ahich Use Tickets," ibid EAD7S.

fLID79] Lindsay, 3. B., et al., "Notes on Distributed Databases," I
Research Report RJ 2571, July 1979.

[LIN79] Lin, W. K., "Concurrency Control in a Multiple Covy Distributed
Database System," ibid BAD78.

21

R S iiecith o b autlinadi

mre] Iynen, ., "MMitilevel Atomicity," Zroc. of ACHY 3Symposium on
Principles or Database Systems, los Angeles, Jfarch 29-31, 1922.

7CE82] MeElyea, W. P., "The onblocking loncurrency Control for Disz-
tributed Databases", Computer =IZcience Devartment, haval Postgraduate

N - : To 4
2cnool, V.3, Thesis, June 1982.

m [

TITR) Mincura, 7., "Maximally Concurrent Transaction Processing,
ibid BADTS8.

(MOL79] Garcia-Molina, H., "Performance of Update Algorithms for Repli-
cated Data in a Distributed Database," Ph.D. dissertation, Dept. oFf
Computer Science, Stanford University, June 1979.

[2AP79] Papadimisriou, C. M., "Serializability of Concurrent Ia%abase
Tpdates," JACM 26, 4 (Cctober 1979).

[2ARS?] Parker, D. S., Popek, G. P., Rudisin, 3., et al., "Detection of
Mutual Inconsistency in Distributed Cystems," Proc. 35th Serkele;
Workshop on Distributed Data Management and Computer Networks, February

[PARS2] Parker, D. Scott and Ramos, Raimundo A., "A Distributed File
System Architecture Supporting High Availability," »2Proc. of the 5th
Berkeley Workshop on Distributed Data Management and Computer ..etwor<s,
Asilcmar, reoruary 16-19, 1012. -

fR;SZB] Reed, 0. P., "laming and Synenrcnization in Decentralized Tome
outer Systems," MIT/LCS/TR-2C5, MIT, Laboratery Sor Jomputer Scisnce,
Sertember 1073,

[REUS2] Reuter, A., "Concurrency on High-Traffic Data Zlements," >rcc.
of ACM Symposium on Principles of Database Systems, Los Angeles, Jarch
29-31, 19827

[RIE79] Ries, D. R., "The Effects of concurrency Control on Database
Management System Performance,” Ph.D. dissertation, Computer 3cience
Jept., University of California, Zerkeley, April 1979.

(30s723] Rosenkrantz, D. J., st al., "System Level Concurrency Jontrol
for 2istributed Database 3ystems," ACYM 2CDS 3, 2 /June 1978),

\

[S7078] GStonebraker, M., "Concurrency Control of ‘ultiple Copies of
Data in Distributed INGRES," ibid 3AD7S.

[37079] Stonebraker, M., "Concurrency Control of Multiple Copies of
Sata in Distributed INGRES," IEEE Trans. on Software Ingineering, Jol.
SE-5, %, 188194 May 1979).

-, 7] : ~ -
[T072] Thomas, 2., "A Solution %3 the soncurrency Control Problam for

e
-

y

Cory Da*tabases,™ ACM TCDS 4, 2

23

/
|

\

June

Q9
-3
O

G 2 e e e oo e a a ol 0 g

INITIAL DISTRIBUTION

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration

Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

D. Z. Badal, Code 52Zd
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Robert B. Grafton

Office of Naval Research
Code 437

800 N. Quincy Street
Arlington, VA 22217

David W. Mizell

Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

24

40

