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1. M.RODUCTICN.

The concept of transaction has been recognized, during the last few

years, to be use~a as an abstraction for structuring some applications

such as airline reservations, electronic fund transfers and car rentals.

In all of these applications the transactions are simple and they are

short lived, i.e., they are short duration transactions. There has been

considerable effort in industry to implement transaction processing sys-

tems. There has been also considerable theoretical dork done in

academia and in research establishments on concurrency control. This

work deals with the design, correctness, performance,

robustness/reliability and complexity of mechanisms which can support

the transaction concept [ESW76, BAD78, BAD79, BAD8O, BAD8Oa, BAD81,

278, EM79, BER81, ATT82, C R82, TH079, ALS76. STC79, ST078, =77,

X!T-6. 71179 R 8, MCL79, "QAr79, =78, GRA78, JMA8O, FIS32, im'82,

?AP32, =182, CH2].

it has been recognized that despite numerous papers on concurrency

control mechanisms there seem to be two [GRAB1] or three [3AD81 ] basic

classes of concurrency control mechanisms. Gray [GRA81] distinguishes

time-domain addressing and locking and logging. Badal [BAD81 ] besides

distinguishing similar classes, also considers an additional class

called the MBO class. (Badal's IME or rutual exclusion over a set is

the same as ray's locking and logging class. Similarly, Badal's S

class is analogous to Gray's time-domain addressing). The ', E class is

a hybrid class because in some respects it uses the same concepts as

both the time-domain addressing and locking and logging. in particular
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the MEO class shares with time-domain addressing a notion of unique

identifiers (or time stamps) and a notion of multiple (more than two)

versions of the same data object. On the other hand, the MO class

shares with the locking and logging approach the notion of logging. The

principal idea of the MEO class as proposed in [BAD81] is to use log-

ging, or more precisely the ordering or sequencing of transactions

actions in logs, (but not locking and locks or time stamps) for syn-

chronization as well as recovery of transactions having unique ID (or

sequence number or time stamp).

The fact that the MEO class concurrency control proposed in [BAD8i 3

uses a concept of multiple data versions seems to provide it with a

capability to cope with two difficult and unresolved issues in con-

currency control. The first issue is network partitioning and the

automatic reconciliation of partitions. The second issue is the support

of long-lived transactions such as travel agent, escrow or insurance

transactions. In this paper we address the second problem. As pointed

out in [GRA81 ] the present concept and model of transactions and pro-

posed concurrency control mechanisms based on time-domain addressing or

locking and logging can not readily, if at all, support long lived tran-

sactions which can take days or weeks.

The paper is organized as follows. In section two we discuss in

detail the traditional model of transactions and we suggest a new model.

In section three we discuss long-lived transactions and in section four

we discuss concurrency control for long-lived transactions.

2. TWO MODEM OF TRANSACTIONS.

i3



2efore describing two transaction models, we -ill briefly discuss

the concept of transaction. The transaction concept derives from con-

tract law. In making a contract, two or more parties negotiate the con-

tract. Once an agreement among the parties involved is reached, either

through direct negotiation or through the independent party, the con-

tract becomes legally binding. Of course, a contract is simply ar

agreement. Individuals can violate it if they are willing to break the

law. But legally, a contract (transaction) can only be annulled if -,

was illegal in the first place. Adjustment of a bad transaction is done

via compensating transactions (including legal redress). Thus, as indi-

cated in [GRA81] the transaction concept emerges with the following pro-

perties:

Consistency: the transaction must obey legal protocols.

Atomicity: it either happens or it does not; either all are bound

by the contract or none are.

Durability: once a transaction is committed, it cannot be abro-

gated.

2.1. OCE MODEL OF TANSACTIONS [GRA81].

Translating the transaction concept to the realm of computer sci-

ence, we observe that most of the transactions we see around us ',bank-

ing, car rental, or buying groceries) can be represented in a computer

as transformations of a system state.

A system state consists of records and devices with changeable

values. The system state includes assertions about the values of

records and about the allowed transformations of the values. These
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assertions are called the system consistency constraints.

T"he system provides actions which read and transform the values of

records and devices. A collection of actions which comprise a con-

sistent transformation of the state may be grouped to form a transac-

tion. Transactions preserve the system consistency constraints - they

obey the laws by transforming consistent states into new consistent

states.

Transactions must be atomic and durable: either all actions are

done and the transaction is said to commit, or none of the effects of

the transaction survive and the transaction is said to abort.

-These definitions need slight refinement to allow some actions toI be ignored and to account for others which cannot be undone. Actions on

entities are categorized as:

Unprotected: the action need not be undone or redone if the tran-

saction must be aborted or the entity value needs to be reconstructed.

Protected: the action can and must be undone or redone if the

transaction must be aborted or if the entity value needs to be recon-

structed. The result of protected action is usually not visible to the

outside world until a transaction commits.

RZeal: once done, the action cannot be undone.

Operations on temporary files and the transmission of intermediate

messages are examples of unprotected actions. Thnventional database and

-message operations are examples of protected actions. Transaction com-

mitment and overations on real devices 'cash disnensers and air-plane

wings) are examples of real actions.
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Each transaction is defined as having exactly one of two outcomes:

committed or aborted. All protected and real actions of committed tran-

sactions persist, even in the presence of failures. On the other 'hand,

none of the effects of protected and real actions of an aborted transac-

tion are ever visible to other transactions.

Once a transaction commits, its effects can only be altered by run-

ning further transactions. For example, if someone is underraid, the

corrective action is to run another transaction which pays an additional

sum. Such post facto transactions are called compensating transactions.

A simple transaction is a linear sequence of actions. A complex

transaction may have concurrency within a transaction; the initiation of

one action may depend on the outcome of a group of actions. Such tran-

sactions seem to have transactions nested within them, although the

effects of the nested transactions are only visible to other parts of

the transaction (see Figure 1).
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?im-ure 1. Two transactions. Ti is a simple sequence of actions. T2 is

a more complex transaction which demonstrates parallelism and nesting

within a transaction.
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2.:. Arl'2:-r MCDZ F?2A~c::s
Another way to model a transaction is to consider it as a set of

subtransactions, where each subtransaction is a unit of atomicity,

recovery and consistency. T-'he composition of subtransacticns, which is

the transaction, is a comoosition of units o v and

consistency. Thus, the transaction itself should exhibit atomicity,

consistency and recoverability. The subtransaction is defined to be a

sequence of read and undate actions.

A subtransaction can be a single update or read action. Each sub-

transaction can make only temporary changes to the database, i .e., each

subtransaction can generate only a new temporary version of any data

object (DO) that it updates. The temporary versions are visible to and

available for updates from other transactions. However, such temporar-

changes to the database have to be consistent, recoverable and atomic in

the sense that aIi temporary changes either occur or none occurs. -he

emporary cnanaes to the database become nermanent when a trnsacoicn

commits. A transaction is atomic in the sense that all temrorax

changes produced by the subtransactions of a given transaction become

either permanent or aborted.

omnarina this transaction model ith one in secion 2.1. -;e see

the following majcr differences:

1 this model requires that sub-ransaction is a unit Df -on-

sistency as oposed to the notion of the transaction being the single

unit of consistency

2) this model introduces two t.yTres or levels of atomicity. .ne

As.



level of atomicity deals with generation of temporary DO versions and

the other deals with cormitment of these versions.

3) this model introduces the notion of temporary DC versions and

therefore of temporary database states. The notion of temporary DO ver-

sion generation corresponds directly to the notion of protected action

in the previous transaction model. This means that the temporary. DC

versions can and must be undone or redone if the transaction is aborted.

We consider the notion of temporary data and database states a cru-

cial one in our transaction model. We have observed several real-life

applications, such as escrow and travel agent operations, and we have

come to the conclusion that there is a strong notion of temporary data.

For example in an escrow process there is a difference between granting

a loan to a buyer and executing that loan. The granting of a loan by a

bank is a temporary state. If all of the conditions of the escrow are

satisfied, then the loan is executed (committed); otherwise it is can-

-elled (aborted).

3. LCG-LV= TRAISACTIONS.

he transaction concept was adopted to ease the programing of cer-

tain applications. Tndeed, the transaction concept is very effective in

areas, such as airlines reservation, electronic funds transfer and oar

rentals, where each application consists of simple transactions of short

duration. It appears that the traditional concept of transaction, as

represented by the transaction model in section 2.1, has adopted a view

that transaction, by definition, is simple and short. This has occurred

because the first applications of transaction processing were simple and



short transactions. iHowever, the word "transaction" itself does not in

general imply any limitation on the duration of transactions. Thus,

there seem to be two unresolved problems. One is to anayize transac-

tions which are not simple and can last for hours, days or weeks. Gray

F.RAS1] calls them long-lived transactions. The second problem is how

to support the execution of such transactions, i.e., what kind of con-

currency control, if any, should be used for such transactions. Solu-

tions to these problems are needed in order to support applications of

long-lived transactions. Good examples of such applications are escrow,

travel, insurance, government, legal proceedings, electronic mail, etc.

In the remainder of this section we discuss the first problem,

i.e., we analyze two examples of long-lived transactions. We address

the second problem, i.e., how to support long lived transactions, in

section 4.

ocnsiier imnlementing a travel agent system as discussed in

PrAS11- A t ransaction in. such a system consists of:

1. 3ustomer calls the travel agent giving destination and travel

dates.

2. Agent negotiates with airlines for flights.

3. Agent negotiates with car rental companies for cars.

4. Agent negotiates with hotels for rooms.

. Aaent receives tickets and reservations.

v. Agent gives customer tickets and gets credit card number.

7. Agent bills credit card.

8. Customer uses tickets.
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'lot infrequently, the customer cancels the trip and the agent must undo

the transaction.

The transaction concept as described in section 2.1 crumbles under

this example. We quote from [,RA81]. "Each interaction with other

oranizations is a transaction with that organization. It is an atomic,

consistent, durable transformation. The agent cannot unilaterally abort

an interaction after it completes, rather the agent must run a compen-

sating transaction to reverse the previous transaction (e.g., cancel

reservation). The customer thinks of this whole scenario as single

transaction. The agent views the fine structure of the scenario, treat-

ing each step as an action. The airlines and hotels see only individual

actions but view them as transactions. This example makes it clear that

actions may be transactions at the next lower level of abstraction."

:et's recast this example in terms of our transaction model dis-

cussed in section 2.2. Consider the agent transaction as consisting of

subtransactions where each subtransaction represents an interaction with

airlines, hotels, etc. Such subtransactions are utilized to make reser-

vations with different organizations. However, the reservation itself

is a temporary state which has to be made permanent and legally binding

by laking a payment or it is aborted either by the travel agent or the

organization, if payment is not made within a certain time window. Such

time window can be a few weeks to a few hours before the reservation

date. As a matter of fact, in airline reservation systems, once a pay-

ment has been made then the reservation data is marked as ticketed and

this fact makes the airline legally bound to transport a passenger
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within a certain time interval from reservation date. Thus, the travel

agent transaction consists of subtransactions which generate temporary

data (reservations) which are either made permanent (or legally binding)

by an agent billing the customer's credit card (step 7 in the example)

or they are aborted. The important points we want to make are that

first, the reservation data is temporary and available to other transac-

tions before the travel agent commits the transaction. Second, the

reservation subtransactions seem to have t-o levels of atomicity. One

level deals with generation of all temporary data (making reservations)

and the second level deals with commitment or abortion of all temporary

data. The second level of atomicity depends on the first level, i.e.,

the second level can take place only after the first one has occurred.

In terms of our example the travel agent can commit the transaction,

S.e., collect the customer's cayment and thus make all temporary reser-

vations permanent, or legally binding, only after all reservations have

been made.

let's consider another example of long-lived transaction - an

escrow transaction. Such a transaction consists of:

1. BWer, seller and possibly real estate agent call title company

agent giving him a real estate contract. Such contract contains

numerous conditions to be fulfilled before the escrow can be closed.

The tyical conditions concern financing, price, pest control,

insurance, etc.

2. The escrow agent opens the escrow by collecting an initial

eposit.
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3. The escrow agent investigates public records.

4. The escrow agent investigates property tax records (Steps 3 and

4 are called preliminary title work and clearing the title in escrow

agent jargon).

5. Buyer and seller fulfill escrow conditions by obtaining financ-

ing, any corrective work, insurance, etc.

6. After escrow fulfillment, both buyer and seller sign escrow.

7. The escrow is closed by entering the transfer of ownership into

public records and by disbursing the money involved in the transaction.

We will analyze the escrow transaction. In particular we have

chosen step 5 which involves buyer and seller interactions with several

institutions. For example the seller has to obtain financing by apply-

ing for a loan to a local bank. Such application inevitably triggers a

nontrivial set of activities within the bank. We ignore them except the

fact that they result in loan being either granted or denied. If the

loan is granted then this constitutes one condition of escrow fulfill-

ment. However, from the bank's point of view the act of granting the

loan is not a permanent change because, before the loan can be executed,

all other escrow conditions must be fulfilled. Only after the escrow is

closed, i.e., the escrow transaction is committed, the loan becomes

effective and money can be transferred to the seller. At that point the

bank's temporary loan data becomes permanent. Obviously the temporary

loan data can be and is accessible to the bank. Thus, as in the previ-

ous example we can observe two levels of atomicity - one on subtransac-

tion level ( all temporary data actions have to occur) and the other one

13



on transaction level ( all temporary data either become permanent or

aborted). In this example we have also observed that the escrow data

during escrow transaction execution (which typically takes weeks) is

accessible to the outside world but in a restricted way, i.e., i; is

confidential. This raises the general question of the interrelation

among synchronization, recovery and security.

4. ON CONCU CY CONTROL FOR LONG LIVED TRANSACTIONS.

4.1. =OCK2=G AND LOGGING VS. LONG LlTM TPAIISACTICNS.
Locking and logging as presently used is quite unsuitable for

long-lived transactions because of the following reasons. First, it is

not feasible to lock a data object for weeks. This would occur if we

treated a lona-lived transaction as just another transaction. Second,

4f :¢e 2onsider long-li ved transactions as consisting of short transac-

-ions then there is a problem of committing such tra-nsactions cecause

short transactions commit immediately after their execution and return a

result to the long-term transaction. However, when the long-term tran-

saction commits it would recommit or abort its already committed short-

term transactions. Cbviously this violates the concept of transaction -

in particular this violates the notion of transaction durability and

atomicity.

In FGRAB 3 two approaches to handling long lived transactions by

locking and logging are described. They involve nested transactions and

a lower degree of consistency as follows.

One approach to the handling of long-lived transactions which seems

14



to offer some help, is to view a transaction as a collection of:

*actions on unprotected objects

o rotected actions which may be undone or redone

*real actions which may be deferred but not undone

*nested transactions which may be undone by invoking compensating

transactions.

Nested transactions differ from protected actions because their effects

are visible to the outside world prior to the commit of the parent tran-

saction.

When a nested transaction is run, it returns as a side effect the

name and parameters of the compensating transaction for the nested tran-

saction. This information is kept in a log of the parent transaction

and is invoked if the parent is undone. This log needs to be user-

visible (part of the database) so that the user and application can kniow

what has been done and what needs to be done or undone. In most appli-

cations, a transaction already has a compensating transaction, so gen-

erating the compensating transaction (either coding it or invoking it)

is not a major progamming burden. If all else fails, the compensating

transaction mighit just send a human the message "Help, '-can't haondle

this".

'his may not seem very satisfying, but it is better than the

entirely manual process which is in common use today. At least in this

proposal, the recovery system keeps track of what the transaction has

done and what -must be done to undo it.

15



At present, arplication programmers implement sucn applica:tions

using a technique called a "scratch-pad" (in LS) and a "transaction

work area" in CICS. The application programer keeps the transaction

state (his own log) as a record in the database. Zach time the transac-

tion becomes active, it reads its scratchpad. This re-establishes .he

transaction state. The transaction either advances and inserts the new

scratchpad in the database or aborts and uses the scratchpad as a log of

things to undo. In this instance, the application programmer is imple-

menting nested transactions. It is a general facility that should be

included in the host transaction management system.

Some argue that nested transactions are not transactions. They do

have some of the transaction properties:

Consistent transformation of the state

Either all actions commit or are undone by compensation

3nce committed, cannot be undone

They use the BB T7,, COMMIT and ABORT verbs. But they do not have 1he

property of atomicity. Others can see the uncommitted updates of nested

transactions. These updates may subsequently be undone by compensation.

The second approach to the handling of long-lived transaction by

locking is to accept a lower degree of 3onsistency [RA8O] so that )nly

"active" transactions (ones currently in the process of making changes

to the database) hold locks. "Sleeping" transactions (travel arrange-

ments not currently making any updates) will not hold any locks. This

-ll mean that the updates of uncommitted transactions are visible to

other transactions. This in turn means that the b7DO and ?MC

16



onerations of one transaction will have to commute with the DO oDera-

tions of others (i.e., if transaction TI updates entity E and then T2

updates entity E and then Ti aborts, the update of T2 should not be

undone). If some object is only manipulated with additions and subtrac-

tions, and if the log records the delta rather than the old and new

value, then UNDO and REDO may be made to commute with DO. IMS Fast Path

uses the fact that plus and minus commute to reduce lock contention. No

one knows how far this trick can be generalized [GRA1].

4.2. ANOTHE SOLUTION TO LONG LIVED TRANSACTION SMNCHRONIZATION.

The transaction model described in section 2.2. is used in a con-

currency control proposal described in [BAD81, BAD79, MCM2]. The prin-

cipal ideas of this proposal can be described as follows. -ach data

object (DO) in the database has a log associated with it. The data

object log contains a history of all actions on a given data object

(DO). Transactions are in three possible states - executing, committed

or aborted. Similarly, a transaction's entries into DO log are in

three possible states - temporary, committed (permanent) or aborted. DO

log entries are created after the transaction executes on a given DO.

When there are n updates on a given DO, then there are created n ver-

sions of that DO. The i-th version of DO is created by updating the

(i-I)-th version. All such versions are temporary and the i-th version

can commit, or become permanent only after the (i-I)-th version has com-

mitted. However, if the i-th version is aborted then all j versions,

j>i, must be aborted as well. In some sense this concurrency control

uses a look-ahead technique by allowing a precomputation of DO versions.
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A.ll D versions are available to all transactions at any time lurinz

transaction execution. This is an optimistic concurrency control in

that it assumes a low frequency of conflicts among transactions and it

recognizes the fact that not all conflicts result in an inconsistent

database state, i.e., in nonserializable execution. This concurrency

control mechanism uses a simple set of rules about the sequencing or

ordering of DO log entries to detect and resolve any nonserializable

execution of conflicting transactions. It might seem that this con-

currency control is subject to a so-called domino effect when one tran-

saction abort triggers the abort of all other transactions which either

read or updated its output. Yes, that it is true, but, since this con-

currency control is intended for applications with a low frequency of

conflicts then the domino effect (which is determined by a frequency of

cor_+licts) should not be significant. 2!oreover, the concurrency ccntrol

mechanism as proposed in [-°.D81 1 will decrease and probably eliminate

all conflicts among transactions because the detection of nonserializ-

able execution is based on the smallest possible granularity, i.e., on

accessed record field (as the DO log entry by a given transaction is

created after the transaction' read or update of DO has been executed).

This concurrency control uses multiple DO versions -which can either be

kept indefinitely or they can be deleted after the transaction has com-

mitted - that is a matter of choice and available storage technology.

If multiple versions of DO's are kept indefinitely and the transaction

D used is a time stamp then this mechanism can support lueries using

time reference as for example "what were the values of DO's at time t".
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de -ant to point out that since time stamps are not used for synchroni-

zation, this concurrency control -an use approximately synchronized real

time clocks for generation of time stamps - if one wishes to use time

stamps as transaction D's.

The long-lived transactions are treated in this concurrency control

mechanism in the same may as short-lived transactions. This means that

subtransactions of a (short or long lived) transaction generate tem-

porary versions of data which are accessible to other transactions.

When the transaction commits the temporary data versions become per-

manent or aborted. Since, in our opinion, long-lived transactions gen-

erate mostly temporary data, then we seem to be able to handle such

transactions in a very natural way. More details on the concurrency

control discussed in this section can be found in a forthcoming report

MCE2 j.

5. CONCLUSIONS.

In this paper we have discussed the problem of long-lived transac-

tions. The main contribution of this paper is in presenting another

point of view on, and hopefully some insights into, transaction models,

long- lived transactions and concurrency control for long-lived transac-

tions.
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