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Abstract

We present parallel algorithms to compute the deter-

minant and characteristic polynomial of nxn-matrices and the

gcd of polynomials of degree 5n. The algorithms use parallel

time O(log n) and a polynomial number of processors. We also

give a fast parallel Monte Carlo algorithm for the rank of

matrices. All algorithms work over arbitrary fields.
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1. Introduction

Today's technology has motivated recent activity

concerning parallel programs. Much of this activity has focus-

sed on combinatorial questions (sorting, graph theoretic

algorithms etc.) and on questions relating to the parallel

also of recognized importance to investigate algebraic ques-

tions, and to this end we present algorithms for some basic
problems such as computing the determinant and the rank of

matrices or the gcd of polynomials.

There are two basically different approaches to what

constitutes a "fast parallel algorithm". One is to start

from a good sequential algorithm and try to parallelize it

with a near-optimal speed-up, i.e. try to achieve parallel time

close to (sequential time)/# processors. The second approach

is to attempt to make the parallel time as small as possible,

allowing an almost arbitrary (e.g. polynomially bounded)

number of processors. While the first approach seems to be

appropriate for the present technology where in effect only

a rather limited amount of parallelism is available, it is

not unreasonable to expect that some time in the future the

"asymptotically fast algorithms" of the second approach

will play an important role. The situation is not unlike the

dual approach to sequential algorithms, where one is

interested in both constant speed-up of known algorithms

(say, by programming optimization) and the construction of

I .*
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asymptotically fast algorithms (even though the hidden constants

for the computing time may be large). Perhaps the reader has

guessed by now that here we pursue the second approach to parallel

programming.

In this paper we discuss two basic problems: solving

linear equations and simplifying rational expressions. Both have

nice sequential solutions - Gaussian elimination and Euclid's

algorithm - and it is an intriguing question if there also exist

fast parallel methods. While Csanky [76] has given a fast deter-

minant algorithm over fields of characteristic zero, applications

such as factoring polynomials require an algorithm that works over

arbitrary fields, in particular finite fields. We present such

an algorithm below, based on the general parallelization result

by Valiant-Skyum-Berkowitz-Rackoff [81].

As direct corollaries we get fast methods for inverting

matrices and solving nonsingular systems of linear equations.

Further applications are the characteristic polynomial of a matrix

and the gcd of polynomials.

Some interesting combinatorial problems - maximal matchings,

maximal flow - translate into the problem of computing the rank

of matrices. That seems to be a slightly more difficult question.

We present a fast parallel Monte Carlo method that either returns

the rank of the input matrix or reports that it failed; the latter

with small probability. Applications include finding a basis for

the nullspace of a matrix, finding a maximal linearly independent

subset of a given set of vectors, and the solution of a general

(possibly singular) system of linear equations, all this again

over arbitrary fields.



1*
-3-

2. The model

The algorithms described in this paper can be implemented

on a synchronous shared-memory model of computation such as the

PRAM (Fortune-lVyllie [78]), with arithmetic and tests in F as

basic operations. The algorithms all use O(log 2n) parallel

time and nO (1) processors when n is the number of inputs.

In particular, it follows that the determinant and gcd problems

are in the appropriate analogue of uniform NC (Pippenger [79]),

and the rank problem is in the Monte Carlo or non-uniform

analogue of NC.

When the ground field F is Q or a finite field, one can

represent the inputs as strings over a finite alphabet and ask

for a (say) PRAM with bit instructions solving the problem.

Our algorithms show that the determinant and gcd problems are in

the corresponding Boolean class NC, and the rank problem is in

the Monte Carlo or non-uniform Boolean version of NC (in fact,

for F=Q in NC). The essential point for this is that (for F=Q)

according to Edmonds [67] (see also Bareiss [68]) the intermediate

values in Gaussian elimination are reasonably small.

The most appropriate model for our algori~hms seems t. be

a parallel version of algebraic computation trees (Strassen [81]).

Thus at each node a number of operations/tests can be performed;

the maximal such number is the number of processors of the parallel

algebraic computation tree. If the input space is Fn and the

computation is defined at all inputs, we get a partition

S = (Sl,...,Sk) of Fn by forming for each output leaf the set
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consisting of the inputs for which the computation terminates

at that leaf. On each Si . a sequence f. = (fil''"fi,) of

rational functions is computed. Such an object (f,S) with

f=(f1 ,.... fk) is called a collection; see Strassen [81].

The fast parallel algorithms that we seek should have

three properties: small parallel time, small number of processors,

small size. More precisely, the parallel time should be poly-

nomial in logn, the number of processors and the number of

nodes of the tree should be polynomial in n where n is the

number of inputs. The algorithms that we present have these

properties, in particular time O(log 2n).

The basic steppingstone for the whole theory is the

result by Valiant-Skyum-Berkowitz-Rackoff [81]. It says that

any sequential program computing a polynomial of degree 5n

with t steps can be converted to a parallel program with parallel

time O(logn(logn+logt)) using O(t 3n6) processors.



3. Determinant and gcd

In this section we discuss the following problems:

DETERMINANT(n) (- computing the determinant of an nxn-matrix),

CHARACTERISTIC POLYNOMIAL(n), NONSINGULAR EQUATIONS(n)

(=.computing the solution of a nonsingular nxn-system of linear

equations), INVERSION(n) (= computing the inverse of an nxn-

matrix, if it is nonsingular), GCD(n) (= computing the monic

gcd(fg), where f,g E F[x] have degree s n).

The collection for INVERSION(n) consists of. the setsn2 En 2  " n2

SI,S 2 c where S = aij )F : det(a ij)=O) and S2 = F \SI,

and the output functions are f=O on S1 (signalling that the

input matrix is not invertible) and f = (fll,...,fnn) with

f.- - F( x ) the (i,j)-entry of the inverse of the nxn-
3ij 11 'Inn

matrix (xij). The collections for the first three problems are

similarly obviousand one for GCD can be found in Strassen [81].

We write, e.g. INVERSION for the sequence (INVERSION(n))

The following result was proved by Csanky [76], but

only for fields of characteristic zero.

Theorem 1 For any field F, DETERMINANT, INVERSION, NONSINGULAR

EQUATIONS, CHARACTERISTIC POLYNOMIAL can be computed in parallel

time O(log2 n) using a polynomially bounded number of processors.

Branching does not occur, and for DETERMINANT and CHARACTERISTIC

POLYNOMIAL no divisions are necessary.

Proof We consider ordinary Gaussian elimination performed on an

nxn-matrix X = (xij) of indeterminates, with pivots chosen on the

diagonal. This yields a (sequential) computation of det X in
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tmOn 3  2.496
time (n) (Coppersmith-Winograd [811: 0(n2 )). When we

execute this algorithm on the nxn-identity matrix, the only

divisions that occur are by 1. According to Strassen (73] we

can shift the indeterminates x by 6.. and obtain an algorithmij :L3

for det X without division using time O(ns). We can now apply

the parallelization method of Valiant-Skyum-Berkowitz-Rackoff

[81] to obtain a parallel algorithm for the determinant using

O(log 2n) time and a polynomial number of processors. Neither

division nor branching occurs.

Obviously INVERSION and NONSINGULAR EQUATIONS are not harder

than DETERMINANTbut they require a division step at the end of

the computation. For the characteristic polynomial, we execute

the sequential division-free determinant algorithm on X-tI.

Each step computes a polynomial in t, and we split the step into

5(n+l) 2 operations in F[xllx 1 2,...,x nn] by computing the co-

0 1 n
efficients of t ,t ,...,t separately. Parallelization applies

again to yield the result. 0

Remark. The above process of getting rid of divisions and

converting to a parallel computation of cost O(logn(logn+logt))

applies in principle to any sequential computation that computes

a polynomial of degree 5n in time 5t. In avoiding divisions,

one has to shift the indeterminates so that only divisions by

non-zero field elements occur if the indeterminates arc set to

zero. Since it might not always be clear how to pick the

constants required for this shift, the conversion may become non-

uniform. This is particularly evident over finite fields, where

one might have to make a (finite algebraic) field extension.
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Theorem 2 For any field F, GCD can be computed in parallel

time O(log2 n).

Proof Let f,g c F[x] be non-zero, deg f = m-n = deg g. If

f is not a constant multiple of g, then

deg gcd(f,g) = min{icN:3s,tEF[xj, deg s<n-i and

deg(sf+tg)=i}.

The latter condition translates into the following

(n+m-2i)x(nm-2i)-system Si of linear equations:

f g .n - i I ' 0

f 0

r n£0 "

* I0
f f t I

f o"i g0 ...g1  tO 

So for f,g as above, the following algorithm computes gcd(f,g)
d2

in parallel time O(log2 n):1

1. Compute in. parallel a0,...,am, where a. det A. and A.

is the coefficient matrix of S.

2. Set d = minti: aiiO}.

3. Coimpute a solution (s,t) of Sd' (Note that Sd is a non-

singular system.)

4. Compute gcd(f,g) sf+tg. 0

I;..~~ ~ , .
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It would be important to have a similar result for the gcd of

two integers, and we ask the

OPEN QUESTION 1: Is INTEGER GCD c NC?

4. Rank of matrices

For algorithms computing the rank of matrices, i.e. the

maximal size of nonsingular Isubmatrices, we can restrict atten-

tion to square matrices (by padding with zeroes if necessary).

The rank cannot in general be considered as an element of the

ground field, and we have to make some output convention such as

the following: we require the algorithm to compute
fl,.. f c () such that for any A c M (F)

n FlX1 , 12,.*'xnnn
rank(A) = min{i: fi(A)/O}.

We remark that this convention is inadequate over C, since then
2

the n equations fl(A) = ... = f (A) = 0 in n variables should
I n

have only A=O as solution. If n>l, then this is impossible over

any algebraically closed field. See the end of this section for

a collection for RANK.

If c(A) = det(A-tI) = c.(A)t' Fit] is the
0_gi<n

characteristic polynomial of A c Mn (F), let us call

rankalg(A) = max{i: cn-i(A)/0}

the algebraic rank of A. The relation with rank(A) is described by

rank(A) = n-dim(nullspace of A)

= n-dim(eigenspace of A for eigenvalue 0);

ranka l g(A) = n-order of c(A)

= n-multiplicity of eigenvaluc 0 in c(A).
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We thus have rankalg(A) - rank(A) for any matrix A.

0 1
A= (0 ) is an example where rank (A) < rank(A).

This is, however, an "exceptional case": within the set

Ur of matrices A E M n(F) with rank(A) -< r, the subset Vr of matrices

with rankalg(A) < r is described by the nontrivial polynomial

condition "c (A) = 0". Thus, "most" A in U will not be in V rnrr r

E.g. if F is algebraically closed, then Vr has dimension strictly

less than the irreducible variety Ur*

Now it follows from Theorem 1 that rank alg(A) can be

computed fast in parallel, and hence also rank(A) provided

rank(A) = rankalg(A). In the sequel we look for ways of obtain-

ing the latter condition.

Ibarra-Moran-Rosier [801 have the following result:

If F is a subfield of IR, then rank(A) = rank(At A) = rankalg (AtA).

Hence RANK can be computed in parallel time O(log 2n) for such a

field. They also show that this is true if F is a subfield of C

and one is allowed to use complex conjugation in the algorithm.

The rank question has some nice applications in combina-

torial complexity. Consider a bipartite graph G on 2n nodes.

We associate to it an nxn-matrix X over (Xlxl2 ,...X

which has x.. in the (ij)-position if node i is connected to

node j, and zero otherwise. Then the maximal size of a matching

in G is equal to rank(X) (Edmonds[67]). By substituting randomly

chosen integers (from a fixed finite range, see Lemma 1 below )

for the indeterminates and computing the rank of such matrices
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over Q, we get a Monte Carlo algorithm to determine the maximal

size of matchings in G, and hence a (non-uniform) algorithm for

this problem whose parallel time is O(log 2n). It would be

interesting to have an algorithm of this type that actually

constructs a maximal matching.

Next consider a directed graph with each edge being as- I

signed an integer capacity that is poiynomially bounded by the number

of nodes of the graph. Feather [81] reduces the problem of finding

the maximum flow in such a graph to the above maximal matching

problem, and thus obtains an O(log 2n) algorithm.

It is interesting to note that without the restriction

on the capacities the problem is log space complete for P

(Goldschlager-Shaw-Staples [81]), and hence we do not expect it

to have a solution in parallel time O(log kn) for some k.

The rank algorithm by Ibarra-Moran-Rosier provides a

nice solution for fields like Q and R. For the general case, in

particular for finite fields, we have the following result.

Theorem 3 For any field F, one can compute the rank of nxn-

matrices over F with a Monte Carlo algorithm with error

probability -< 3/4 using parallel time O(log 2n) and a polynomially

bounded total number of processors. Neither division nor branch-

ing occur.

Proof Let F be a field, n c L\1 and A E M n(F). We assume some
4

finite subset P s F of cardinality p such that either p > 5n

or P = F. Furthermore, we assume a "random element generator"

for P that produces in one step of a processor a randomly chosen

element from P with respect to the uniform distribution on P.

(Thus if #F >-n we cin take any large enough subset

for P1; the proof will he slightly easier in this case. Otherwise,
(Tu if # -> n ecntk n ag nuhsbe
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we can either take P=F, or compute in parallel time O(logn)

a large enough finite algebraic extension field of F to reduce

to the first case.)

We perform the following algorithm to compute rank A:

1. Choose a random B E M (P).n

2. Compute s = rankalg(AB).

It is clear from Theorem 1 that this algorithm uses parallel time

O(log 2n), a polynomially bounded number of processors, and

neither division nor branching. Also s !< rank(A). The remainder

of this proof is devoted to establishing the estimate

Prob({s=rank(A)}) > 1/4.

n N
Let N = {l,...,n}, rcN, m = (r) and ) IcN: #I=r}.

~ N
For any nxn-matrix M and I,J C (r) we write M for the determinant

of the IxJ-minor of M.

The idea of the proof is the following. Rank(A) -> r

iff the mxm-array of all minors A has a nonzero entry. Of

course it is too expensive to compute this whole array, but a

piece of information, namely the sum of the diagonal entries,

is easy to compute. Introducing a randomly chosen matrix, it

turns out that one has a good chance that this piece of

information is sufficient.

A convenient tool for representing the array is the

exterior power A r(F n ) (for definitions, see e.g. Greub [78])

which is an m-dimensional vector space over F with a basis indexed

by (N). We have a natural mapping

Ar: Mn(F) - End(Ar (Fn)) MM(F)

... . n . . in'j ' -l na . . .. .. .
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which maps a matrix B to the mxm-array of its rxr-minors,

i.e. (Ar (B)) B1 j for I,J E (N). Ar is multiplicative
rr

(Lagrange's identity, see Greub [78]), and obviously A r(id) id.

For any B M n (F) the coefficients of the characteristic poly-n

nomial can be expressed as

C nr(B) j (trA (B)),
()

where tr denotes the trace (Greub [78], Prop.7.5.1), and thus
n-r c rr

(-1) nr (AB) tr(Ar(AB)) = tr(A r(A)r (B))
= AIB~j

(N A IB 
ilJE(N)

where AcM (F)is our given matrix. Now let r = rank(A),and
n

consider the polynomial

hA = I AjIY IiF[yYlll.,--Ynn]

I,Jc(N)
r

where Y is the nxn-matrix whose (ij)-entry is the indeterminate

Yij" Since some A I is nonzero and no cancellation occurs, hA is

nonzero. For any B01 n(F) we have

hA(B) 0=>Cnr(AB) 0

=> r : rankalg(AB) rank(AB) s rank(A) r

'> rankalg(AB) = r,

and it is sufficient to show that

#(BeMn (P):hA(B)=O} 
n
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In the case p > -in, it follows from Lemma 1 below that

#{BEMn(P): hA(B)=O} 5-' pn 2  3 n 2
n A _p 4

Now assume that F is finite and P=F. Let

D - NI n(F)D 0 100

with rank(D) = r. Then h = Y and by theLemma 2(ii) below a

Lemma 2()beo
#{B-M n(F): hD(B)=0} s -

Now there exist U,VeGLn (F) such that A = UDV. For any B M n (F)
n

we have

hA(B) = tr(A r (AB)) = tr(A (UDVB)),

hD(B) = tr(Ar(DB)) = tr(Ar (U)Ar (DB)Ar(U)-l)

= tr(Ar (UDBU- 1)).

We get the desired estimate, which completes the proof of

Theorem 3:

#{BcM (F): hA(B)=O)

= #{BcM (F): tr(Ar (UDVB))= 0}
#{BcMn(F): tr(A rUD-1=O

n_ 2

#{Bn (F): hD(B)=O) 3 4- "

The second equality follows from the fact that B i V- BU"  is a

bijection from M n(F) to Mn (F). 0
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For the two lemmas that establish the probabilistic

estimates, we assume the following set-up which is slightly

more general than required: A field F, PcF finite with p2!2 elements,

d,ncN, indoterminates x11 ,x1 2 ...,xnn over F, and an nxn-matrix

G (gi.) of univariate polynomials gijcF[xijx of degree !_d.

In Lemma 1, we estimate the probability that a linear combina-

tion of minors of G is zero when the entries are randomly chosen

from P.

Lemma 1 Let f = JcijGij * 0, where c ijeF and the sum is over

all I,J S {1,...,n) with #I = #J. Then the probability that f

vanishes is <nd/p.
2

Proof Let q = pn #{AEM (P): f(A)=0} be the probability that f
n

vanishes. We show that q -< nd/p by induction on n. The case n=1

being obvious, we can assume that n->2, f is non-constant, and that

x occurs in f. Thusnn

f gnh + a,

h I c ijG I\{n),J\{n) 0,

(I,J)
ncInJ

gnn E F[x nnJ\F,

and Xnn does not occur in a. Then h satisfies the hypothesis

for Lemma 1 with n replaced by n-l, and

#{AcM (P): f(A)=0)
n

S#{A A (P): h(A)=01) #{AcM (P):
*n n

h(A) j 0 and gnn(A) -a(A)h(A)-I

n 2 -1 p2- 2

(n--)d p +dpn ndpnl,

hence q 5 nd/p. 0
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A similar inductive argument shows that for an arbitrary poly-

nomial f in m indeterminates and of degree sd in each in-

determinate the probability of vanishing is 5md/p. Applying

this general observation to the above situation would yield the

estimate q 5 n2d/p.

Lemma 2 gives a sharp estimate of the probability that a

matrix of polynomials is singular. We introduce the function

u(t,n) 1- II (1-ti) for 05tl and nEN. u is monotonely
1_i-<n

increasing in both arguments.

Lemma 2 In the set-up described before Lemma 1, assume that

no gij is constant, and let q be the probability that det(G)

is zero. Then

(i) q < u(d/p,n).

(ii) if d=l, then q < 3/4.

(iii) if d=l and P is a field, then q u(l/p,n).

Proof Let t = d/p.

(i) We have to show that
2

q = p- #{AEM n(P): det(g(A))=0 } 5 u(t,n),

where g(A) is the matrix with (i,j)-entry gij(Aij). For lr!n,

let Tr be the set of all rxn-matrices with entries from P,

and Sr {AcTr: rank(g(A))=r}. Now let A c S and I s {1,...,nlrr r 1

such that I = r-l and r-}I 0. A vector y E F which

is linearly dependent on the row vectors of g(A) is determined by

its entries yi for icI. Hence there are at most prl dn-r+l

vectors zcT 1 such that g(z) is linearly dependent on the rows of

g(A). Thus
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u~t ,n)

3/4

1/2

1/4

0 1/4 1/2 3/4

Figure. The upper bound nut,n) on the probability that an

nXn-matrix is singular. The entries of the matrix are non-

constant polynomials of degree 4d over an arbitrary field F

whose arguments arc randoinly chosen from a subset of F with

p elements, and t~d/p. The values n=1,2,3,4 are shown, and

n=voshows an upper bound for any ncN.
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#S (Pn~Prldn-r+l) #Sr r-l
nl- n-r+l )#

and by induction on r we get

OS p n 1 (1-t')
r n-r<is5n

Thus

q p n2.(p 2-#S)d

5 1L 11i (l-t ) = u(t,n) .
1 ! i 5n

(ii) For 0:5t~l, let

v(t) = lrn u(t,n) 1- ni (l-t )

The product in v is uniformly convergent on every interval [0,a)

with adl (see Henrici [77), §8.2 for a discussion and the relation

of v with combinatorial questions), and v is a monotonely

increasing function. In particular, for 05t~l/2 and ndlN we have

0 5 u(t,n) < v(t) :5 v(1/2) = 0.7112... <c3/4.

This proves (ii), since then t = 1/p 5 1/2.

(iii) Under the hypotheses of (iii), one can replace

r-1 n-r+l r ,"~at most p d "1 by "exactly p in the argument for (i),

and

4 rn i l- 1

r n-r<isn

follows. This implies q =u(t,n). 0

Statement (iii) shows that the estimate in (i) is sharp.

The Figure shows the increasing functions u(t,n) for 15ns4, and

their limiting curve v(t) = u(t,-). We remark that the estimate

of (i) also holds when the determinant is replaced by the permanent;

the proof is slightly different.
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When interpreted as the decision proble.m "is A in

Ur  fBcM n(F): rank(B)<r)?", the above Monte Carlo algorithm

always answers correctly if AcU and correctly with probability
rr1/4 if A4Ur . Wqe can improve this bchaviour to get an algorithm

that always answers correctly and with high probability has a

low parallel running time.

I'

.1
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Theorem 4. For any field F, there exists a Monte Carlo

algorithm for the rank of nxn-matrices that uses parallel time

O(log n), no divisions and a polynomial number of processors 16.1 04 '

and that either returns the rank of the input matrix (and a

maximal nonsingular. minor) or reports that it failed. The

probability of the second case is 52-n .

Proof. Let AM n(F). For l-i-n let AiM n(F)

consist of the first i rows of A and zero rows otherwise, and

ri = rank(Ai). Apply the algorithm of Theorem 3 independently

6n times in parallel to each Ai. and let s. be the maximum of1

the numbers computed for Ai. Thus si !ri and for. each i

Prob({si<ri1) _5 (3 / 4 )6 n .

Let I = i: l-:i_<n and si-l<Si 1 (with s0=0), and A'cM n(F) be the

matrix whose i-th row is the i-th row of A if icl and zero other-

wise. Perform the computation that was done above for the rows

of A now for the columns of A' to obtain a set J s {l,...,n).

The parallel time for all this is O(log n), and

Prob({the IxJ-minor of A is not a maximal (square)

nonsingular minor)) - 2 6n 2 - n "

If #1 / #3 then report failure. Else apply the determinant

algorithm of Theorem 1 to compute AIi and each AKL with IscK,

J~cL, 4K = 4L = #I+1 in parallel time O(log2n). If either A13 =O or

some such AKL is nonzero, then report failure. Otherwise return

sn = rank(A) and the IxJ-minor as a maximal nonsingular minor. [0
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It is now clear what is an appropriate collection (f,S) for

RANK(n). For 0-rsn, we have

S = fAEFn2: rank(A)=r)

2

and f: Sr F Fr maps A to its "top left" nonsingular rxr-minor

which is defined along the lines of the above proof (identifying
2

Fn and M n(F) in a natural way).

Thus the condition is that A1 j / 0, for any k<icI the

rows with index (I\{i})ufk} of A have rank <r, and for any k<jEJ

the columns with index (J\{j})u{k} of thc I-rows of A have

rank <r. If one wants f to consist of rational functions on

each set of the partitin, one has to further split up Sr

according to the value of (I,J).

The rank algorithm over R of Ibarra-Moran-Rosier can

be interpreted as avoiding the Monte Carlo aspect by noting that

for B=At

hA(B) = A I /0.
I,Jc( r)

Using their algorithm and the above construction, we get a

deterministic algorithm that uses parallel time O(log 2n) and

computes a maximal nonsingular minor.

Can we have a similar improvement for ari-itrary fields? Of

course our Monte Carlo algorithm yields non-uniform algorithms

using parallel time O(log 2n). It would be particularly interest-

ing to have an answer to the following

OPEN QUESTION 2: Can RANK be computed in parallel time O(log 2n)

over finite fields, using a uniform family of deterministic

algorithms?
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S. Reductions

We have considered a number of algebraic problems

whose parallel complexity is now known to be O(log 2n). Whether

or not the parallel complexity for any of these (and some closely

related) problems can be reduced to O(log n) remains a funda-

mental challenge for all of complexity theory (see for example

Borodin [82) and Valiant [82]). It is natural then to study

the relative complexity of these problems.

Valiant [82] introduced the notion of algebraic projections

as a strong type of reducibility between polynomials. For

collections P = (P(n)) and P' = (P'(n)), we write P :S P' to

informally denote the fact that P can be reduced to P' essentially

by multiple use of projections and possibly some simple (i.e.

of O(log n) parallel complexity) arithmetic transformations.

A precise definition for < will not be developed here.

Given any reasonable definition of reducibility P < P', and

certainly for the specific reductions given in this section, it

follows that T(P) and T(P') satisfy T(P) = O(T(P')), using

the fact that for all interesting collections P, log n = O(T(P(n))).

We write P z P' to denote P < P' and P' .< P, and we write P S P' + P"

to denote that both P' and P" are used in the reduction.

Csanky [76] has the following reductions:

a) Over any field,

INVERSION - NONSINGULAR EQUATIONS

s DETERMINANT _< CHARACTERISTIC POLYNOMIAL.
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b) The characteristic polynomial can be computed by

evaluating it at sevcral points (using a determinant

algorithm) and interpolating. If the field contains

the necessary roots of unity to support a Fast Fourier

Transform, then the interpolation can be performed in

O(log n), using the roots of unity as interpolation

points. We then have
CHARACTERISTIC POLYNOMIAL DETERMINANT.

This holds non-uniformly over arbitrary fields, by

extending the field by the necessary roots of unity.

c) If the field has characteristic zero, then

DETERMINANT < NONSINGULAR EQUATIONS.

Thus, over C all four problems are equivalent.

Next, we consider the problems BASIS (= computing a

maximal linearly independent subset of a given set of vectors),

EQUATIONS (= deciding whether a (possibly singular) system of

linear equations has a solution, and in the affirmative case,

computing one solution) and NULLSPACE (= computing a basis for

the nullspace of a matrix).

For any field, we have the following reductions:

a) BASIS z RANK ; NULLSPACE . RANK - INVERSION,

b) EQUATIONS :S RANK + INVERSION.

Proof a) We note that the rank is implied directly by BASIS or

NULLSPACE. Tile reduction BASIS RANK is obtained by including

v i in the basis iff rank(vl,...,vi. 1 ) < rank(v 1 ,...,vi).
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For the remaining reduction, we can compute a maximal nonsingular

minor M for an input matrix A, by applying BASIS (say) first

to the columns of A and then to the rows of the selected

columns. Without loss of generality let M be the upper rxr-

submatrix of A. For each i satisfying r+l_!i_<n, we can solve the
nonsingular systems MXi = Yi, when yi denotes the first r rows

of the i-th column of A. A basis for the nullspace of A then

consists of the vectors (j) r<in, that is, xi is extended by

0's except for a -1 in the i-th position.

b) For EQUATIONS, we again compute a maximal nonsingular

minor M of the input matrix, solve the corresponding nonsingular

system of linear equations, set all indeterminates not corres-

ponding to columns of M equal to zero, and check whether this

constitutes a solution. If it does not, then the input system

has no solution at all. 0

Allowing non-uniform reductions, and allowing the concept

of reducibility to use linear transformations, it follows (by

Theorem 3 and Csanky's reductions) that IMNK < CHARA CTERISTIC

POLYNOMIAL ;< DETERMINANT and hence EQUATIONS < DETERMINANT.

We also know (from Theorem 2) that GCD DETERMINANT.

We are left with a number of potential reductions which

arc either completely unresolved or hold only in the non-

uniform case. In particular, we ask the following:
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Open Question 3: a) Are an) of the above problems :S GCD?

b) Is DETERMINANT < NONSINGULAR EQUATIONS

for arbitrary fields?

The latter question is also open in the sequential setting (see

Baur-Strassen [823).

6. Conclusion

We have laid the foundation for what might be called a

"theoretical package for parallel symbolic manipulation".

The problems investigated include gcd of polynomials, solution

of linear equations, determinant and rank of matrices. They
2

all can be solved in parallel time O(log (input size)); for

rank a Monte Carlo method is used.

Further important routines for this "theoretical package"

include factoring polynomials over finite fields (which provided

the original motivation for this paper; consider the critical

role of the GCD and NULLSPACE in Berlekamp's [70] factoring

algorithm), continued fraction and partial fraction expansion

of rational functions, Pad6 approximation of power series, and

interpolation. They will be discussed in a forthcoming paper

(von zur 1athen [82]).

Finally, as in sequential computation, we remark that

integer problems are often more difficult to understand than the

corresponding polynomial problem. For example, it remains an

open problem as to whether or not a fast (e.g. O(log 2n)) parallel

algorithm exists for the gcd of two n-bit numbers. An even more

challenging open problem concerns the parallel complexity of

.determining primality.
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