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Abstract

We present parallel algorithms to compute the deter-
minant and characteristic polynomial of nxn-matrices and the
gcd of polynomials of degree sn. The algorithms use parallel
time 0(log2n) and a polynomial number of processors. We also
give a fast barallel Monte Carlo algorithm for the rank of

matrices. All algorithms work over arbitrary fields.
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1.

Introduction

_Today's technology has motivated recent activity
Aconcerning parallel programs. Much of this activity has focus-
sed on combinatorial questions (sorting, graph theoretic
algorithms etc.) and on questions relating to the parallel
architecture itself (routing, queuing ;etc.). Clearly it is

o also of recognized importance to investigate algebraic ques-

3 %é tions, and to this end we present algorithms for some basic
‘ gz problems such as computing the determinant and the rank of
gf | matrices or the gcd of polynomials.
: There are two basically different approaches to what

3 constitutes a '"fast parallel algorithm'". One is to start
from a good sequential algorithm and try to parallelize it
with a near-optimal speed-up, i.e. try to achieve parallel time

close to (sequential time)/# processors. The second approach

is to attempt to make the parallel time as small as possible,
allowing an almost arbitrary (e.g. polynomially bounded)
number of processors. While the first approach seems to be
appropriate for the present technology where in effect only
a rather limited amount of parallelism is available, it is
not unreasoﬁable to expect that some time in the future tae
"asymptotically fast algorithms" of ;he second approach

will play an important role. The situation is not unlike the

dual approach to sequential algorithms, where one is
interested in both constant speed-up of known algorithms i

(say, by programming optimization) and the construction of




asymptotically fast algorithms (even though the hidden constants
for the computing time may be large). Perhaps the reader has
guessed by now that here we pursue the second approach to parallel
programming.

In this paper we discuss two basic problems: solving
linear equations and simplifying rational expressions. Both have
nice sequential solutions - Gaussian elimination and Euclid's
algorithm - and it is an intriguing question if there also exist
fast parallel methods. While Csanky [76] has given a fast deter-
minant algorithm over fields of characteristic zero, applications
such as factoring polynomials require an algorithm that works over
arbitrary fields, in particular finite fields. We present such

an algorithm below, based on the general parallelization result

by Valiant-Skyum-Berkowitz-Rackoff [81].

As direct corollaries we get fast methods for inverting
matrices and solving nonsingular systems of linear equations.
Further applications are the characteristic polynomial of a matrix
and the gcd of polynomials.

Some interesting combinatorial problems - maximal matchings,
maximal flow - translate into the problem of computing the rank
of matrices. That seems to be a slightly more difficult question.
We present a fast parallel-Monte Carlo method that either returns
the rank of the input matrix or reports that it’failed; the latter
with small probability. Applications include finding a basis for
the nullspace of a matrix, finding a maximal linearly indépendent
subset of a given set of vectors, and the solution of a general

(possibly singular) system of lincar equations, all this again

over arbitrary fields.
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2. The model

The algorithmé described in this paper can be implemented

on a synchronous shared-memory model of computation such as the

PRAM (Fortune-Wyllie [78]), with arithmetic and tests in F as
basic operations. The algorithms all use 0(log2n) parallel

0(1) processors when n is the number of inputs.

time and n
In particular, it follows that the determinant and gcd problems
are in the appropriate analogue of uniform NC (Pippenger [79]),
and the rank problem is in the Monte Carlo or non-uniform
analogue of NC. .

When the ground field F is Q or a finite field, one can
represent the inputs as strings over a finite alphabet and ask
for a (say) PRAM with bit instructions solving the problem.

Our algorithms show that the determinant and gcd problems are in
the corresponding Boolean class NC, and the rank problem is in

the Monte Carlo or non-uniform Boolean version of NC (in fact,

for F=Q in NC). The essential point for this is that (for F=Q)

according to Edmonds [67] (see also Bareiss [68]) the intermediate

values in Gaussian elimination are reasonably small,

The most appropriate model for our -algorithms seems to be

a parallel version of algebraic computation trees (Strassen [81]).

Thus at each node a number of operations/tests can be performed;

the maximal such number is the number of processors of the parallel

algebraic computation tree. If the input space is F" and the
computation is defined at all inputs, we get a partition

S = (Sl""’sk) of FM by forming for each output leaf the set
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consisting of the inputs for which the computation terminates
at that leaf. On each Si’ a sequence fi = (fil""’fiz) of
rational functions is computed. Such an object (£f,S) with
f=(f1,...,fk) is called a collection; see Strassen [81].

The fast parallel algorithms that we seek should have
three properties: small parallel time, small number of processors,

small size. More precisely, the parallel time should be poly-

nomial in logn, the number of processors and the number of

Qb iadac o a0 ity

nodes of the tree should be polynomial in n where n is the
number of inputs. The algorithms that we present have these

properties, in particular time 0(log2n).

The basic steppingstone for the whole theory is the

result by Valiant-Skyum-Berkowitz-Rackoff [81]. It says that

any sequential program computing a polynomial of degree <n

with t steps can be converted to a parallel program with parallel

time O{logn(logn+logt)) using 0(t3n6) processors.




3. Determinant and gcd

In this section we discuss the following problems:
DETERMINANT (n) (= computing the determinant of an nxn-matrix),
CHARACTERISTIC POLYNOMIAL(n), NONSINGULAR EQUATIONS(n)

= computing the solution of a nonsingular nxn-system of linear
equations), INVERSION(n) (= computing the inverse of an nxn-
matrix, if it is nonsingular), GCD(n) (= computing the monic
ged(£f,g), where f,g ¢ F{x] have degree < n).
The collection for INVERSION(n) consists of the sets

2

n _ n‘, _ _ g
Sl’SZ < F , where S1 = {(aij)eF : det(aij)—o} and S2 F \Sl’

and the output functions are f£=0 on S1 (signalling that the
input matrix is not invertible) and f = (fll,...,fnn) with
fij € F(xll,...
matrix (Xij)' The collections for the first three problems are

’xnn) the (i,j)-entry of the inverse of the nxn-

similarly obvious,and one for GCD can be found in Strassen [81].
We write, e.g. INVERSION for the sequence (INVERSION(n)) .

The following result was proved by Csanky [76], but
only for fields of characteristic zero.
Theorem 1 For any field F, DETERMINANT, INVERSION, NONSINGULAR
EQUATIONS, CHARACTERISTIC POLYNOMIAL can be computed in p;rallel
time 0(10g2n) using a polynomially bounded number of processors.
Branching does not occur, and for DETERMINANT and CHARACTERISTIC
POLYNOMIAL no divisions are necessary.
Proof We consider ordinary Gaussian elimination performed on an
nxn-matrix X = (xij) of indeterminates, with pivots chosen on the

diagonal. This yields a (sequential) computation of det X in
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time O(ns) (Coppersmith-Winograd [81]: O(n

)). When we
execute this algorithm on the nxn-identity matrix, the only

divisions that occur are by 1. According to Strassen [73] we

can shift the indeterminates xij by 61j and obtain an algorithm
for det X without division using time O(n5). We can now apply
the parallelization method of Valiant-Skyum-Berkowitz-Rackoff
[81] to obtain a parallel algorithm for the determinant using
O(logzn) time and a polynomial number of processors. Neither
division nor branching occurs. |

Obviously INVERSION and NONSINGULAR EQUATIONS are not harder
than DETERMINANT, but they require a division step at the end of
the computation. For the characteristic polynomial, we execute
the sequential division-free determinant algorithm on X-tI.
Each step computes a polynomial in t, and we split the step into
s(n+1)2 operations in F[xll,xlz,...,xnn] by computing the co-

0 .1

efficients of t ,t ,...,tn separately. Parallelization applies

again to yield the result. a

Remark. The above process of getting rid of divisions and
converting to a parallel computation of cost O(logn(logn+logt))
applies in principle tu any sequential computation that computes
a polynomial of degree <n in time <t. In avoiding divisicns,

one has to shift the indeterminates so that only divisions by
non-zero field elements occur if the indeterminates arc¢ set to
zero., Since it might not always be clear how to pick the
constants required for this shift, the conversion may become non-
uniform. This is particularly evident over finite fields, where

onc might have to make a (finite algebraic) field extension.




‘ Theorem 2 For any field F, GCD can be computed in parallel

time 0(log2n).

Proof Let f,g € F[x] be non-zero, deg f = ms<n = deg g. If ,

. f is not a constant multiple of g, then

| deg gcd(f,gj = min{ieN:ds,teF[x], deg s<n-i and
deg(sf+tg)=i}.

The latter condition translates into the following

(n+m-2i)x(n+m-2i)-system S; of linear equations:

i -
fm &n Sn-i-1 0
m-1 "m . ¢ | :
. ¢ s
. . . 0
. fm ‘ e . = ¢ .
g m-i-1
£ . n o
0 . g L3 .
[ . 0 ] .
. ! * . ) A . 0
. . PR - ) 4o d - t 1
| : L £ %5 80'8il [0 | ha

So for f,g as above, the following algorithm computes gcd(f,g)

in parallel time O(logzn):'

1. Compute ir parallel a,,...,a_, where a. = det A. and A.
0 m; 1 1 1

is the coefficieht matrix of Si’

2. Set d = min{i: ai#O}.

i 3. Compute a solution (s,t) of Sd. (Note that Sd is a non-
singular system.) .

4, Compute gecd(f,g) = sf+tg. 0

Pre e
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It would be important to have a similar rcsult for the gcd of

two integers, and we ask the

OPEN QUESTION 1: Is INTEGER GCD ¢ NC?

4. Rank of matrices

For algorithms computing the rank of matrices, i.e. the
maximal size of nonsingular ,submatrices, we can restrict atten-
tion to square matrices (by padding with zeroes if necessary).
The rank cannot in general be considered as an element of the
ground field, and we have to make some output convention such as
the following: we require the algorithm to compute
f

...,fn e F(x ,xnn) such that for any A e Mn(F)

1° 11° %127

rank(A) = min{i: fi(A)#O}.
We remark that this convention is inadequate over €, since then
the n equations fl(A) = .., = fn(A) = 0 in n2 variables should
have only A=0 as solution. If n>l, then this is impossible over
any algebraically closed field. See the end of this section for

a collection for RANK.

If c(A) = det(A-tI) = } ci(A)tl ¢ F[t] is the
' O<is<n
characteristic polynomial of A ¢ Mn(F), let us call
rankalg(A) = max{i: cn_i(A)fO}

the algebraic rank of A. The relation with rank(A) is described by

rank(A) = n-dim(nullspace of A)
= n-dim(eigenspéﬁe of A for eigenvalue 0);

(A)

n-order of c(A)

rankalg

n-multiplicity of eigenvaluc 0 in c(A).
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We thus have rankalg(A) < rank(A) for any matrix A.

01, . _ ] ;
A= (0 0) is an cxample where rankalg(A) < rank(A).

This is, however, an "exceptional case'": within the set
U, of matrices A € Mn(F) with rank(A) < r, the subset V. of matrices
with rankalg(A) < r is described by the nontrivial polynoﬁial
condition "Cn—r(A) = 0". Thus, "most" A in Ur will not be 1in Vr.
E.g. 1f F is algebraically closed, then Vr has dimension strictly
less than the irreducible variety Ur'

Now it follows from Theorem 1 that rankalg(A) can be
computed fast in parallel, and hence also rank(A) provided
rank(A) = rankalg(A). In the sequel we look for ways of obtain-
ing the latter condition.

Ibarra-Moran-Rosier [80] have the following result:
If F is a subfield of R, then rank(A) = rank(AtA) = rankalg(AtA).
Hence RANK can be computed in parallel time O(logzn) for such a
field. They also show that this is true if F is a subfield of €
and one is allowed to use complex conjugation in the algorithm.

The rank question has some nice applications in combina-

. - N —_———— ———————— s - -

torial complexity. Consider a bipartite graph G on 2n nodes.

We associate to it an nxn-matrix X over Q(xll,xlz,...,xnn} )
which has xij in the (i,j)-position if node i 1is connected to
node j, and zero otherwise. Then the maximal size of a matching

in G is equal to rank(X) (Edmonds{67]). By substituting randomly

chosen integers (from a fixed finite range, see Lemma 1 below )

for the indetcrminates and computing the rank of such matrices




over @, we gect a Monte Carlo algorithm to determine the maximal
size of matchings in G, and hence a (non-uniform) algorithm for
this problem whose parallel time is 0(1og2n). It would be
interesting to have an algorithm of this type that actually

constructs a maximal matching.

]
{

Next consider a directed graph with each edge being as- ;

signed an integer capacity that is polynomially bounded by the number
of nodes of the graph. Feather [81] reduces the problem of finding
the maximum flow in such a graph to the above maximal matching
problem, and thus obtains an O(logzn) algorithm.

It is interesting to note that without the restriction
on the capacities the problem is log space complete for P
(Goldschlager-Shaw-Staples [81]), and hence we do not expect it
to have a solution in parallel time O(logkn) for some k.

The rank algorithm by Ibarra-Moran-Rosier provides a
nice solution for fields like Q and R. For the general case, in
particular for finite fields, we have the following result.
Theorem 3 For any field F, one cén compute the rank of nxn-
matrices over F with a Monte Carlo algorithm with error
probability < 3/4 using parallel time O(logzn) and a polynomially

bounded total number of processors. Neither division nor branch-

ing occur.

Proof Let F be a field, n ¢ N and A ¢ Mn(F). We assume some

finite subset P £ F of cardinality p such that either p 2 %n

or P = F, Furthermore, we assume a '"random element generator"

for P that produces in one step of a processor a randomly chosen

element from P with respect to the uniform distribution on P,

(Thus if #F 2 in, we can take any large cnough subsct

3
for P; the proof will be slightly easicr in this case. Otherwise,
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we can either take P=F, or compute in parallel time O(logn)
a large enough finite algebraic.extension field of F to reduce
to the first case.)
We perform the following algorithm to compute rank A:

1. Choose a random B ¢ Mn(P).

2. Compute s = rankalg(AB).
It is clear from Theorem 1 that this algorithm uses parallel time
O(logzn), a polynomially bounded number of processors, and
neither division nor branching. Also s < rank(A). The remainder

of this proof is devoted to establishing the estimate

4 Prob({s=rank(A)}) = 1/4,.

Let N = {1,...,n}, reN, m = (:) and (z) = {IcN: #I=r}.

- For any nxn-matrix M and I,J € (f) we write My g for the determinant
of the IxJ-minor of M,

The idea of the proof is the following. Rank(A) 2 r

iff the mxm-array of all minors A, ., has a nonzero entry. Of

1J
course it is too expensive to compute this whole array, but a
piece of information, namely the sum of the diagonal entries,
is easy to compute. Introducing a randomly chosen matrix, it
turns out that one has a good chance that this piece of
information is sufficient.

A convenient tool for representing the array is the
exterior power Ar(Fn) (for definitions, see e.g. Greub [78])

which is an m-dimensional vector space over F with a basis indexed

by (?). We have a natural mapping

e

Mm(F)

AT: M_(F) > End(AT(FM))
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which maps a matrix B to the mxm-array of its rxr-minors,

. r - N r
i.e. (A (B))IJ BIJ for 1,J ¢ (r)’ A

is multiplicative
(Lagrange's identity, see Greub [78]), and obviously Ar(id) = id.
For any B «¢ Mn(F) the coefficients of the characteristic poly-

nomial can be expressed as

Cpr() = CGDMT T Byy = (D Ter(aT(8)),
e )
T

where tr denotes the trace (Greub [78], Prop.7.5.1), and thus

tr (AT (AB)) = tr(AT(A)AT(B))

) v orPrye

1,Je ()

(-1)" Fe, _ (AB)

[}

where AeMn(F)is our given matrix. Now let r = rank(Ad),and

consider the polynomial

ha= 1 AjpYygeFDygysYyae-ees¥pp]
1,5¢()

wvhere Y is the nxn-matrix whose (i,j)-entry is the indeterminate

Yij-

nonzero. For any BsMn(F) we have

Since some AJI is nonzero and no cancellation occurs, hA'is

hy(B) # 0 => c___(AB) # 0

=> 1t < rank_, (AB) < rank(AB) < rank(A) =r

alg
=> rankalg(AB) =r,

and it is sufficient to show that
- 2

#{BeM_ (P):h, (B)=0} < %p“ .

Ry Sy
R 0
- Ty -

o b mra o . L




N N P g VA L b L T i s mg oAty e f e /

—— e -

P R R N T ST O

- 13 -

In the case p 2 %n, it follows from Lemma 1 below that
i
n2 3 . n

#{BeMn(P): hA(B)=0} < =p I

n
P

Now assume that F is finite and P=F. Let

1 0

D = ‘1 £ Mn(F)

0.
0 0

with rank(D) = r. Then hy =Ygy oy 01 1)
Lemma 2(ii) below {
3 n2

#{BeM (F): hp(B)=0} < 3

and by the

Now there exist U,VeGLn(F) such that A = UDV. For any B e Mn(F)

we have |
h, (B)
hp (B)

tr (AT(AB)) = tr(AY (UDVB)),

[}
1]

tr (AT AT oB)AT W)

tr (AT (DB))

tr (AT uDBU ")),
We get the desired estimate, which completes the proof of
Theorem 3:
#{BeM_(F): h,(B)=0)
= #{BeM_(F): tr (AT (UDVB))=0}
= #{BeM_(F): tr(a"(ubBu™1))=0)

- @ . - 3“11
= #{BeM (F): hp(B)=0} s 7
The second equality follows from the fact that B » V'IBU-

bijection from M (F) to M_(F). 0

1

is a
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For the two lemmas that establish the probabilistic
estimates, we assume the following set-up which is slightly
more general than required: A field F, PcF finite with p22 elcments,
d,neN, indcterminates X112X120 09Xy, OVET F, and an nxn-matrix
G = (gij) of univariate polynomials gijeF[xi;] of degrece ¢d.
In Lemma 1, we estimate the probability that a linear combina-
tion of minors of G is zero when the entries are randomly chosen ‘
from P.
Lemma 1 Let f = ZCIJGIJ £ 0, where cijeF and the sum is over

all 1,J ¢ {1,...,n} with #I

#J. Then the probability that f

vanishes is <nd/p.

2
Proof Llet q = p © #{AeM_(P): £(A)=0} be the probability that f

vanishes., We show that q < nd/p by induction on n. The case n=1
being obvious, we can assume that n22, f is non-constant, and that
b S occurs in f. Thus

nn

f = gnnh + a,

h= Y ¢ . .G # 0,
(1,3 I1J7I\{n},J\{n}
nelnd

gIm € F[Xnn]\F,

and X n does not occur in a. Then h satisfies the hypothesis
for Lemma 1 with n replaced by n-1, and ‘
#{AeMn(P): f(A)=0}
< #{AcMn(P): h(A)=0}* #{AeMn(P):
h(A) # 0 and g (A) = -a(A)h(A) 1)

n2.1 2 2

< (n-1)d p + dapt -1 n--1

= ndp »

hence q s nd/p. 8]
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A similar inductive argument shows that for an arbitrary poly-
nomial f in m indetcrminates and of degree sd in cach in-
determinate the probability of vanishing is smd/p. Applying
this general obscrvation to the above situation would yield the
estimate q < nzd/p.

Lemma 2 givcs.a sharp estimate of the probability that a )
matrix of polynomials is singular. We introduce the function
u(t,n) = 1- I (1-ti) for 0<t<l and neN. u is monotonely

1<iz<n
increasing in both arguments.
Lemma 2 In the set-up described before Lemma 1, assume that
no gij is constant, and let q be the probability that det(G)
is zero. Then
(i) q =< u(d/p,n).
(ii) if d=1, then q < 3/4.
(iii) if d=1 and P is a field, then q = u(l/p,n).
Proof Let t = d/p.
(i) We have to show that
q = p'nzﬂ{AeMn(P): det(g(A))=0} < u(t,n),
where g(A) is the matrix with (i,j)-entry gij(Aij). For 1l<r<n,
let Tr be the set of all rxn-matrices with entries from P,

! . and §_ = {AeT : rank(g(A))=r}. Now let AeS_ , and I ¢ {1,...,n}

-1
‘;} such that #I = r-1 and A{1 r-1}.1 # 0. A vector y « 2 which
i 3. .3 »
! is linecarly dependcnt on the row vectors of g(A) is determined by

its entries y; for iel. Hence there are at most pr-ldn-r+1

vectors zeT1 such that g(z) is linearly dependent on the rows of

g(A). Thus




P
é>h
3 {\0¢.
P2
<
&
3/4 +
E
3
| 1/2 1
!
N
= .
1/4 |
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N

Figure. The upper bound u(t,n) on the probability that an

nXn-matrix is singular. The entries of the matrix are non-
‘ constant polynomials of degree ¢d over an arbitrary field F
| whose arguments arc randomly chosen from a subset of F with

P elements, and t=d/p. The values n=1,2,3,4 are shown, and

n=o shows an upper bound for any neN.
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n_,.r-1,n-r+l
#s. 2 (p7-p ~d ) #S. 4

n-r+l

= pt(1-t ) #S

r-1’
and by induction on r wc get

rn n (-th).

#S_ 2 p
r n-r<isn -

Thus , )
- n
q=p" -(p -#S.)

<1- I (l—ti) = u(t,n).
1<i<n

(ii) For 0<t<l, let

v(t) = 1lim u(t,n) = 1- I (l-tl).
n-a>o : 1<i :

The product in v is uniformly convergent on every interval [0,al
with a<l (see Henrici [77], §8.2 for a discussion and the relation
6f v with combinatorial questions), and v is a monofonely
increasing function. In particular, for 0st<1/2 and neN we have

0 < u(t,n) < v(t) s v(1/2) = 0.7112...<3/4.
This proves (ii), since then t = 1/p < 1/2.

(iii) Under the hypotheses of (iii), one can replace

r-1 ., n-r+1,,

“"at most p ~d by "exactly pr-l" in the argument for (i),

and
#s_=p" 1 (1-t)
n-r<isn -

follows. This implies q = u(t,n). 8}

Statement (iii) shows that the estimate in (i) is sharp.
The Figurc shows the increasing functions u(t,n) for 1sns4, and
their limiting curve v(t) = u(t,»). We remark that the cstimate
of (i) also holds when the determinant is replaced by the permanent;

the proof is slightly different.

S
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When interpreted as the decision problem "is A in
Ur = {BeMn(F): rank (B)sr}?", the.above Monte Carlo algorithm
always answers correctly if AeUr, and correctly with probability

3 2 1/4 if AdUr. We can improve this bchaviour to get an algorithm

that always answers cbrrcctly and with high probability has a

low parallel running time.

Cobe el bl

e =
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Theorem 4. For any field F, there exists a Monte Carlo

algorithm for the rank of nxn-matrices that uses parallel time

0(log2n), no divisions and a polynomial number of processors and brawds

and that either returns the rank of the input matrix (and a -
maximal nonsingular ' minor) or reports that it failed. The

probability of the second case is <27 ™.

Proof. Let AsMn(F). For 1l<isn let AieMn(F)
consist of the first i rows of A and zero rows otherwise, and
r, = rank(Ai). Apply the algorithm of Theorem 3 indepenrndently
6n times in parallel to each Ai’ and let S5 be the maximum of
the numbers computed for Ai. Thus S;<T., and for each i

Prob({s;<r.}) = (3/4)%1, .

Let I = {i: l<i<n and si-1<si} (with 50=0), and A'eMn(F) be the
matrix whose i-th row is the i-th row of A if ic¢l and zero other-
wise. Perform the computation that was done above for the rows
of A now for the columns of A' to obtain a set J ¢ {1,...,n}.

The parallel time for all this is O(logzn), and

Prob({the IxJ-minor of A is not a maximal (square)

. . 3 -n
nonsingular minor}) < Zn(-i—)6n <2,

If #1 # #3 then report failure. Else apply thz determinant
algorithm of Theorem 1 to compute AIJ and each AKL with I¢K,

JeL, #K = L = §I+1 in parallel time O(log’n). If either Apy=0 or
some such Ayp is nonzero, then report failure. Otherwise return

S, = rank(A) and the IxJ-minor as a maximal nonsingular minor. O
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It is now clear what is an appropriate collection (£,S) for

RANK(n). For 0<¢r<¢n, we have

nZ
S, = {AeF" : rank(A)=r}

2
and f: Sr » FT maps A to its '"top left" nonsingular rxr-minor

which is defined along the lines of the above proof (identifying

2

™ and Mn(F) in a natural way).

F
Thus the condition is that A;y # 0, for any k<icl the
rows with index (I\{i})u{k} of A have rank <r, and for any k<jeJ
the columns with index (J\{j})u{k} of thc I-rows of A have
rank <r. If one wants f to consist of rational functions on
each set of the partition, one has to further split up Sr
according to the value of (I,J).
The rank algorithm over R of Ibarra-Moran-Rosier can
be interpreted as avoiding the Monte Carlo aspect by notingbthat
for B=At

h,(B) = § A% #o.
A I,Je(';f) 1J

Using their algorithm and the above construction, we get a
deterministic algorithm that uses parallel time O(logzn) and
computes a maximal nonsingular minor.

Can we have a similar improvement for artitrary fields? Of
course our Monte Carlo algorithm yields non-uniform algorithms
using parallel time 0(log2n). It would be particularly interest-
ing to have an answer to the following

OPEN QUESTION 2: Can RANK be computed in parallel time 0(logzn)

over finite fields, using a uniform family of deterministic

algorithms?




S. Reductions

We have considered a number of algebraic problems
whosc parallel complexity is now known to be 0(log2n). Whether
or not thc parallel complexity for any of these (and some closely
related) problems can be reduccd to O(log n) remains a funda- ”
mental challenge for all of complexity theory (sec for example
Borodin [82] and Valiant [82]). It is natural then to study
the relative complexity of these problems.

Valiant [82] introduced the notion of algcbraic projections
as a strong type of reducibility between polynomials. For
collections P = (P(n)) and P' = (P'(n)), we write P < P' to
informally denote the fact that P can be reduced to P' essentially
by multiple use of projections and possibly some simple (i.e.

of O(log n) parallel complexity) arithmetic transformations.

A precise definition for < will not be developed here.
Given any reasonable definition of reducibility P < P', and
certainly for the specific reductions given in this section, it
follows that T(P) and T(P') satisfy T(P) = O(T(P')), using
the fact that for all interesting collections P, log n = O(T(P(n))).
We write P ® P' to denote P £ P' and P' < P, and we write P S P' + P"
to denote that both P' and P" are used in the reduction.
Csanky [761 has the following reductions:
a) Over any field,

INVERSION = NONSINGULAR EQUATIONS
< DETERMINANT < CHARACTERISTIC POLYNOMIAL.

Ty Y ARG PPET R .




b) The characteristic polynomial can be computed by
evaluating it at scvcral points (using a determinant
algorithm)} and interpolating. If the field contains
the necessary roots of unity to support a Fast Fourier
Transform, then the interpolation can be performed in
O(log n), using the roots of unity as interpolation
points. We then have
CHARACTERISTIC POLYNOMIAL < DETERMINANT.

This holds non-uniformly over arbitrary fields, by

extending the field by the necessary roots of unity.

c¢) If the field has characteristic zero, then

DETERMINANT < NONSINGULAR EQUATIONS.

Thus, over € all four problcms are equivalent.

Next, we consider the problems BASIS (= computing a
maximal linearly independent subset of a given set of vectors),
EQUATIONS (= deciding whether a (possibly singular) system of
linear equations has a solution, and in the affirmative case,
computing one solution) and NULLSPACE (= computing a basis for
the nullspace of a matrix).

For any field, we have thc following reductions:

a) BASIS = RANK s NULLSPACE < RANK + INVERSION,

b) EQUATIONS < RANK + INVERSION.

Proof a) Wenote that the rank is implied directly by BASIS or

NULLSPACE. The reduction BASIS X RANK is obtained by including

vy in the basis iff rank(vl,...,vi_l) <.rank(v1,...,vi).

N

© e
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For the remaining reduction, we can compute a maximal nonsingular
minor M for an input matrix A, by applying BASIS (say) first

to the columns of A and then to the rows of the selected

columns. Without loss of gencrality let M be the upper rxr-
submatrix of A. For each i satisfying r+l<isn, we can solve the
nonsingular systcms Mxi =Y when Yy denotes the first r rows

of the ith column of A. A basis for the nullspace of A then

Xj

consists of the vectors ? ,» Ir<isn, that is, Xy is extended by
"
0/

0's except for a -1 in the ith position.

b) For EQUATIONS, we again compute a maximal nonsingular
minor M of the input matrix, solve the corresponding nonsingular
system of linear cquations, sct all indecterminates not corres-
ponding to columns of M equal to zero, and check whether this
constitutes a solution. If it does not, then the input system

has no solution at all. 0

Allowing non-uniform reductions, and allowing the concept

of reducibility to use linear transformations, it follows (by

Theorem 3 and Csanky's reductions) that RANK < CHARACTERISTIC

~

POLYNOMIAL < DETERMINANT énd hence EQUATIONS < DETERMINANT.

~ ~

We also know (from Theorem 2) that GCD < DETERMINANT.
We are left with a number of potential reductions which
arc eithcer completely unresolved or hold only in the non-

uniform case. In particular, we ask the following:
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Open Question 3: a) Are any of the above problems < GCD?
b) Is DETERMINANT < NONSINGULAR EQUATIONS
for arbitrary fields?
The latter question is also open in the sequential setting (sce

Baur-Strassen [821). -

6. Conclusion

We have laid the foundation for what might be called a
"theoretical package for parallel symbolic manipulation'.

The problems investigated include gcd of polynomials, solution
of linear cquations, determinant and rank of matrices. They
all can be solved in parallel time O(logz(input size)); for
rank a Monte Carlo mecthod is used.

Further important routines for this '"theoretical package
include factoring polynomials over finite fields (which provided
the original motivation for this paper; consider the critical
role of the GCD and NULLSPACE in Berlekamp's [70] factoring
algorithm), continued fraction and partial fraction expansion
of rational functions, Padé approximation of power series, and
interpolation. They will be discussed in a forthcoming paper
(von zur TGathen [82]).

Finally, as in sequential computation, we remark that
integer problems are often more difficult to understand than the
corresponding polynomial problem. For example, it remains an
open problem as to whether or not a fast (e.g. O(logzn)) parallel
algorithm exists for the gcd of two n-bit numbcers. An even more

challenging open problem concerns the parallel complexity of

.determining primality,.
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