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COMPUTATIONAL ASPECTS OF CONSTRAINED ESTIMATION

INTRODUCTION

The representation of physical systems by lo-ical-mathematical models and

the subsequent realization of these models as computational programs dominates

engineering and scientific activities. Generally, a model characterizes a

cause-effect relationship as a mapping of a set C into a set E kTf:C * E).

Problems concerned with such mappings are variously classified depending upon

the information available and the information sought. The direct (normal or

analysis) problem seeks to generate the set of effects from a set of causes,

while those problems concerned with reversing the cause-effect relationship

are termed inverse or indirect problems. Synthesis (identification) problems

require the determination of the laws or mappings that govern cause-effect

relationships. 2 A fundamental concern is the awareness of conditions for

which solutions to such problems are revealed.

A problem is said to be "well-posed" in the sense of Hadamard* if a unique

solution exists and arbitrary small changes in model parameters lead to

correspondingly small variations in the solution. 3 ' 4 This latter condition

of stability is significant considering that it is quite standard to assure

the existence and uniqueness of solutions and yet accommodate the possibility

of results having little physical relevance. The viewpoint is maintained that

physical systems that lead to problem statements having potentially unstable

solutions are not unusual and that methods for the appraisal and resolution of

the problem exist and add little to the computational burden of the problem.

*A further characterization of Hadamard's conditions is given by

Rutman 2 7 where for A, a linear map in Banach space, b e ImA (existence) and

kerA . 0 (uniqueness) imply an algebraic well-posedness, and ImA = [mA

*(continuous dependence of the solution) implies a topological well-posedness.
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Inverse problems comprise the majority of those problems that may be

considered ill-posed, viz., unique solutions that are unstable. Usually, the

analysis of direct problems of quadrature and problems of synthesis are easily

reformulated as inverse problems. Examination of the causes of ill-posedness

suggests the following classifications: problems that are shown to be

ill-posed as stated (e.g., by arguments of the Riemann-Lebesque lemma3);

problems having parameters contaminated by noise; and problems for which

computational solutions are sought and thus vitiated by errors of truncation.

Most often, ill-posedness results from combinations of these factors, which in

some cases provide illusions of reliable analysis, but in all cases compound

initial difficulties.
6

Instances of ill-posed problems are frequently encountered in applied

situations, numerous examples of which can be found. 1 ' 3 ' 4 ' 7 - 1 0 Often,
these applications require solving systems of simultaneous linear and

non-linear equations, ordinary and partial differential equations, and

integral equations. Of contemporary interest are industrial applications

that include inverse scattering problems, 11- 14 ocean acoustic

tomography,1 5 seismology, 16 inverse wave propagation,17-23 image

restoration (typically in problems requiring restoration beyond the
diffraction limit),2 mathematical optimization, 2  data query, 2 an d

optimal control.25,2730 A common subproblem of continuing mathematical

interest is the solution of the general linear problem, which is seen to be a

finite-dimensional representation of the Fredholm integral equation of the

first kind. In the case of non-linear problems, linearization techniques31

or other innovations 32 are often successful in reducing the problem to a

linear equivalent. A main consideration is the investigation of computational

methods appropriate for the solution of linear ill-posed problems and the

application of methods of constrained estimation.

2
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GENERAL LINEAR PROBLEM

Problems for the solution of Fredholm integral equations of the first kind,

that is,

n2 K(t,s)f(s)ds = g(t)(& I i t < &2) (1)

occur frequently whenever input data f(s) are to be determined from

measurements g(t) obtained from the output of a device or instrument; the

4 kernel function K(t,s) categorizes the measurement process. As a practical

example, consider the problem of estimating the acoustic field N(9), from beam

measurements M(y) of a line array consisting of k equally spaced elements.
33

This problem results in the expression

2w _M(y) = , sin2 fk Ir~tcos(e - *) - cos(.v)]I N(e)de,

f ksin 2 fwC/T[cos(e - i) - Cos(y)]l
0

where e is the azimuth measurement, y corresponds to the beam steering direc-

tion, 0 is the array heading, T is the wavelength of the input, and is the

array element spacing. For continuous kernels, this problem is ill-posed.
10

Algebraization of (1) proceeds by application of an appropriate rule of

quadrature w which results in the approximation

m

wjK(tis )f(sJ) - g(ti) (i = 1,2,...,n)

A typical selection of abscissae s1 is given by sj = a + h(j - 1), where

the displacement h = (n2 - nl)(m - 1). For a Simpson's rule ofi quadrature,

3



h13 (for j = 1 or m)
wj

[3 + (-1)J]h/3 (otherwise)

and m is odd. There then remains the selection of the quantitization

parameters n and m, which are chosen to be small enough to reduce the degree

of numerical truncation, but large enough to assure adequate resolutien and

representation of the physical process. In Hunt 3 4 this dilemma, encountered

in the naive solution of equation (1), is demonstrated and further

characterizes the ill-posedness- of such problems.

A compact representation of a finite-dimensional linear system is provided

by a matrix expression, which for (1) results in

Ax = b. (2)

Conditions for the existence of solutions to (1) follow by Picard's

criteria. 35 Alternatively, equation (2) admits a solution if and only if

the coefficient matrix [A] and the augmented matrix [A:b] are of equal rank;

i.e., the vector b is a linear combination of the columns of A, in which case

the linear system is consistent. If, in addition, the matrix A is square and

of full rank, then the solution to (2) is unique and can be generated by I
application of Cramer's rule (or the inversion of A). For an overdetermined

linear system, unique "solutions" are provided by transforming equation (2)

into a system of normal equations

A'Ax = A'b , (3)

which is seen to be mathematically equivalent to the linear least-squares

problem.

But Cramer's rule is applicable only if the determinant det(A) of the

square coefficient matrix A, in (2), is non-zero. In situations where the

determinant is zero, the matrix is said to be non-regular or singular. In

linear systems having small determinants, A- 1 contains elements of large

amplitude that amplify small variations in the measurement vector b. 3 6
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This deterioration in the conditioning of the linear system (ill-conditioning)

is seen as the numerical manifestation of ill-posedness and is manifested by

increasing interdependence among the rows of the coefficient matrix or

smoothness of the kernel in equation (1). Symmetrization only exacerbates

this condition since, for A (a square matrix), det(A'A) = det(A)2 6

Adequate appraisal of conditioning is then seen as prerequisite to the

generation of solutions to linear systems.

A useful method of gaging the sensitivity of a linear system is provided

by the relative condition number K where

K = Al 11A-1I (4)

Typically, the norm of the real square matrix A corresponds to the maximum of

the sums of the moduli in the rows of A. The matrix A represents a linear

mapping, or transformation, of an arbitrary vector x into the vector Ax.

The norm of A is then a measure of the distortion under the linear

transformation. 3 7 By a simple perturbation analysis of equation (2),

116xll < K 116bll
. llxll

by which for large K it is seen that small relative variations in A and b are

magnified in x, a restatement of the condition of ill-posedness. However,

determining equation (4) is complicated by the uncertainty in the estimate of

1A II1 when K is large.

Alternatively, the condition number can be determined by the square root

of the ratio of the largest eigenvalue of AA' to its smallest eigenvalue. 38I It is then apparent that ill-conditioning is associated with eigenvalues close

to zero. A dominant eigenvalue Xm of D = AA', where D is similar to a

diagonal matrix, can be determined from the sequence

wm = Dwm_l/xm

where wo is an arbitrary vector and xm is the maximum element of Dwm_.

S..5



Similarly, the sequence

un = (D - x mI)un-1l/xn

provides an estimate of the minimal eigenvalue x. For non-diagonal type

matrices, deflation procedures may be appropriate for determining the minimal

eigenvalue.
39
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GENERALIZED INVERSE SOLUTION

Often, the occurrence of ill-posed problems in practice motivates the

application of multiple precision computations generating costly failures

and a skepticism in the promise of computing machinery. Alternative remedies

(e.g., preconditioning via scaling 40), the use of orthogonal (or nearly

orthogonal) base functions, 4 1 large number arithmetic, interval

arithmetic,4 2- 4 5 direct search methods,46,47 and forwardlbackward error

analysis4 8- 50 may provide some insight into the characteristics of the

solution, but usually at excessive cost. Even problems of moderate

dimensionality can rapidly exhaust available memory capacities as machine

truncation errors are compounded. Invariably, information is lost as real

numbers (viz., irrational numbers) are mapped onto the sieve-like range space

that persists in the computational environment. Similar effects result as

measurements become contaminated by noise. Attempts to ameliorate the effects

of lost information are frustrated unless additional information is furnished.

Although existence of a solution to equation (3) is assured for an

arbitrary coefficient matrix, uniqueness is provided if and only if the

coefficient matrix is of full rank. Since the set of all least-squares

solutions forms a closed convex set,3 a unique element can be selected that

solves equation (3). An appropriate selection is given by the least-squares

solution of equation (2), which is of minimum norm variously denoted by the

generalized inverse or pseudo-inverse solution.
51

For an arbitrary m x n matrix A, the generalized inverse is defined by the

unique n x m matrix A , which satisfies Penrose's lemmas:

AAA=A

AAA A

(AA' AA

(AA)' A A

7
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Computationally advantageous is the representation of A in terms of the

singular-value decomposition of A, that is,

A = UL11 2V' (5)

The matrices U and V1 result from columns formed by the eigenvectors of AA'

and A'A and L is a m x n matrix composed of a k x k (k = rank (A)) diagonal

matrix of the corresponding eigenvalues with the remainder zero-filled. 1 2

The generalized inverse is then given by

A + = 71 2U' . (6)

By Lagrange minimization, the least-squares solution of (2) having minimum

norm results in the expression

A + = (A'A + v,2 1)-A' . (7)

Substituting (5) into (7), and noting that U and V are unitary, results in

A+P = V'L1/2[L + P2ITlu '

which is equivalent to equation (6) as p approaches zero.

Equation (7) corresponds to the ridge inverse (compare the Levenberg-

Marquardt procedure52 and damped least-squares 5 3 ) as applied in ridge

regression, or the constrained estimate of the solution of (2) and is seen

to be equivalent to an approximate generalized inverse.55  The ridge

estimate may be seen to be a type of weighted average between the input data

and supplemental information. 56  This idea can be further extended to

include varied qualities of information that conform to the anticipated nature

of the solution.
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GENERALIZED CONSTRAINED ESTIMATION

The application of supplemental information to the solution of ill-posed

problems is quite common. For example, Wiener theory requires statistics con-

cerning the signal and noise processes. 57 Such quantitative inputs

(a priori information), when available, may not be sufficient for the solution

of ill-posed problems; additional information will often be required.

Generally, all relevant factors characterizing the nature of the solution

may be described as exogenous information. 27 Because of the variety of

information that may influence the problem, generalized solution methods are

rare. An early approach by Kreisel 58 seeks smooth solutions to equation (1)

utilizing exponential weighting functions that effectively neutralize the

severe oscillations prevalent in ill-posed solutions. Moreover, smooth

solutions are readily justified as representative of most physical processes.

Similar constraints motivated the development by Philips
59 and Twomey60

for equation (1) in the form

min IllAx - bl + a 2(x) , (8)

where 2(x) corresponds to (side) conditions imposed on the least-squares

solution, and > 0 is the degree to which such conditions should influence

the solution. For smoothness constraints, W(x) =1rDJxI2 , where 0 corre-

sponds to a second-difference approximation to the solution and is of the form

-1 -2 1

1 -2 1

(9)

1 -2 1
0 0 0

0 0 00

9
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A general solution to (8) is given by

x = (A'A + )-1 (A'b + cc)

where c corresponds to a known (absolute) bias and Q = V'i. The potential of

using alternative constraints was also suggested by Twomey (e.g., (x,2x) is

equivalent to the variance of the solution where

(n-1)/n, i = j

-1/n, i j (i,j = 1,2,....n)

and where n is the number of measurements. Constraints in terms of entropy

functions can be found in Smith. 6 1

REGULARIZATION

The approach indicated in (8) was also independently investigated

by Tikhonov63 and resulted in his formalizing the method of

regularization.* By regularization is meant an adjustment of the initial

problem that admits proper solutions. Justification of the method is given

in various sources7 ,10'64 - 66 where a general form of the smoothing

functional in (8) is given by

1 p . 2

2 (x) = j aj( ) de <

0 - 0 dcJ

Thus, for ao = 0, a1 - 0, a2 = 1, and p = 2, there results the smoothing

functional corresponding to (9) and in a similar manner the estimation of

equation (7) is defined for ao = Po 0.

*Also called the Tikhonov-Miller method. 62'65

10



The method of regularization is given a number of statistical

interpretations 2,67- 7 7 in which the Tikhonov method is supplemented by a

Wiener technique or a Bayesian strategy. An estimate for the problem of

equation (9) can be given by

x = (A'WA + aH- 1A'Wb , (10)

where W is a weighting coefficient matrix generated from known statistics

concerning the measurements b. In Edenhofer2 3 and Varah78 H corresponds

to the assumed known covariance matrix of the data x, and W corresponds to the

covariance matrix of the measurements (a particular form of the weighting

matrix).

A problem that remains is the selection of the regularization parameter in

(8). This formulation is seen to correspond to the Lagrange minimization for

the problem:

min(x.): IAx- b11 2 = lel 2  , (11)

x

where the vector e represents the measurement error. A suitable a is then

chosen so that the equality in (11) is satisfied. Iterative procedures for

determining a then require an estimate of e. 5 7 ' 7 4 ' 75 To facilitate such

iterations, the estimates of equation (10) may be obtained by

1 1
x = [I + aH(A'WA)-]-lxo , (12)

which may be of computational advantage.

Varah78 suggests an interactive graphics approach for the solution of

the basic problem of equation (1). Graphical display of a problem may be

successful because it motivates the analyst to employ perceptual abilities

that the alphanumeric display precludes. This approach can be extended to

provide a subjective method for approximating a, as well as applying

additional regularization criteria.

11



Direct methods for estimating a are often desirable; but without
adequate noise estimates they are less accurate. Labianca 1 2 provides an

empirical approach where a is selected as a fraction of the maximum

singular-value of A'A, the fraction 0.0136 being a suitable choice.

QUADRATIC OPTIMIZATION METHODS

For many physical problems a non-negative solution (e.g., probability

distributions, signal spectra) is required. An n-step method for selecting a
regularized solution given non-negativity constraints is offered by

75 80
Turchin. This basic approach is further exploited by Rutman to
include additional qualities of constraints in a selective manner if required.

Solution of the general linear problem (2) with non-negativity constraints

is equivalent to the problem

minjZ(x) = 1/2(x,Dx) - (q,x):x > O* ,X (13)

where D = A'A and q = A'b. A regularized solution requires that D = A'WA + aH

and q = A'Wb. For the situation where the solution x to the unconstrained

problem is negative, a proximal non-negative solution xm to x° exists**

and is determined by the following algorithm:

*Equivalently, Z(x) 1 l/2(Dx - 2q,x).

**A solution at the origin is always possible.

12
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Algorithm I

Step 0: Given D and x°  then q Dx°, S = li:x i > 0 and

x?= max[O,x°], vi.

Step 1: Set x= Tz, where T [d..] and z = [qi], ij E S.
r3

Step 2: If xi > 0, vi, then go to Step 4.

Step 3: Set S = S\Il:r- min[xP/(xP - x)], x? = x? + (x7 -xP)r
1 1 i j'

and go to Step 1.

rStep 4: If ei(Tx - z) > 0, vi, then go to Step 6.

Step 5: Set S = SUjl:rjTmin[ei(Tx - z)], and go to Step 1.
1

Step 6: Set xm = x r

The vector ei with ith element unity and all others zero is called the unit

column matrix.

Additional constraints can be accommodated for equation (13) by intro-

ducing the transformation Ri = x, where R is non-singular. Equation (13) then

becomes

minjZ( ) = 1/2(X,6i) - ( >,i):i 0
x

which is essentially reduced to the constraints of the type of equation (13).

The utility of the transformation is demonstrated by examining several trans-
formation constraint matrix pairs R and R -I

': 13



Monotonicity constraints often occur in physical problems (e.g.,

polynomials with positive coefficients and cumulative probability

distributions). A monotonically increasing function x(c) has the property

that dx(c)/de > 0. Choosing

R -1 1
-1 1

R-1=

• -1 1

corresponds to imposing the constraint that the first differences of the

restored function x be non-negative. The matrix

"-1 -1 -1 . . -1 1

-1 -1 . . -1 1

-1 1
1

performs the incremental summations of the restored differences.

A similar development leads to unimodality constraints given by the

matrices

-1 1

-1
R-l= . 1 .

1 -1

1 -1

and

14



-1 -1 . 1

-1 . 1

R1

1 . . -1

1 . . -1 -1

where n is odd and the row consisting of the unitary element corresponds to

the mode position.

Convexity constraints are imposed by requiring the second derivative of

the restored function to be non-negative. This leads to the matrices

-2 1

1 -2 1
R-l=

1 -2 1

and

R = [rij] - [rji] = [-i(n - j + 1)/(n + 1)], i > j

Concavity constraints are developed in a similar manner.

Non-negativitylnon-positivity constraints are simply developed by matrices

of the type R = diag 1 1 Further selectivity is imposed by

limiting the set of active constraints to the intersection of the set of

selected coordinates and the set of positive constraints S in Algorithm I.

After determining xm, a new value of the regularization parameter a* is

recomputed to account for the adjustment in the estimate x0 due to non-

negativity and additional constraints. In Turchin6 1 the method for

recomputing the regularization parameter is given by

15



a* e(n*ln)3

where n* is the number of elements in the estimate xm that differ from zero.

This new value of the regularization parameter is then used to compute an

adjusted estimate xm using, for example, equation (12).

It is sometimes observed that, although a finite algorithm is designed to

terminate with a solution, in practice convergence to a solution does not

occur. Such is the case with Algorithm I. The property is exhibited that a

problem may be mathematically well-posed and remain numerically ill-

conditioned. Algorithm I will require inversion of matrices of the order up

to n-1 for which truncation errors are prevalent. Because this pathology is

unavoidable, it is always desirable to minimize its effects.

The following iterative algorithm is intended to solve the problem of

equation (13) while avoiding matrix inversion:

Algorithm II

Step 0: Given D and x0, then q =Dx°. Set 1 0 and

0xi = 0, Vi . 1,2,...,n

Step 1: Set k = j:qj/djj = max[qildii], j .
11

Step 2: If qkIdkk < 0, then go to Step 4.

%4

Step 3: Set x = k; set x? = xo + qk/dkk;

set qi qi - qkd Vi ; and go to Step 1.

Step 4: Set xm .x
° .

16



Since the iterative solution begins at the origin, a gradient search (Step 1)

selects a coordinate providing a feasible solution. A corresponding

translation of the coordinate system (Step 3) adjusts the feasible solution to

coincide with the origin. All such displacements that do not result in a

non-feasible solution are then accumulated to form the optimum solution.

RECURSIVE ESTIMATES

In many applications, computational considerations of memory size or

processing time require alternative formalizations of the processing

algorithms in order to realize practical solutions to problems. Recursive

estimates often provide such efficiencies with little increase in algorithmic
complexity. For classical least-squares and the generalized inverse, the

recursive procedure will, with minor modification, provide for the deletion of

particular data points without recomputation of all data. In control

settings, the Kalman filter-a recursive counterpart to the Wiener filter-is

often used. Recursive interpretations for the methods of regularization are
similarly desirable.

On-line techniques of regularization appropriate for identification and

input signal recovery have been previously observed27'67 and found to

require a redefinition of the method of regularization. A simple approach

corresponding to the recursive approximate generalized inverse is developed

and is applicable to problems of the type found in Radhakrishna.51

An alternative representation for the solution to the problem of (8) is

given by the least-squares solution of

[A' IG']'[xO' - [bO]',

17
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assuming no bias. An additional measurement bn 1 requires a corresponding

addition A(n~l) = [an+l l...an+1,n] to the coefficient matrix. The

recursive estimate X(n+1) is then given by

X~n~l) X(~)
X(n+P ) - x(n) + P (n )A'(n+l)(b(n+l)-A(n+l)x(n))

P(n+1) = P(n) - P(n)A ' (n+1)

P(n) = (Qjn) I(n)
)-1

where Q in)

11

'1

1; 18



SUMMARY

Methods of regularization are shown to be extensions of deterministic

least-squares estimation. Conventional approaches are limited by the

availability of additional information that must be introduced into the

problem to produce a solution. Similar limitations hold for methods of

regularization; however, these methods have the advantage of utilizing

qualitative inputs and relaxing quantitative information requirements.

More notably, these methods provide a resource for resolving problems that

are mathematically ill-posed and consequently inappropriate for solution by

conventional methods.

Other methods comparable with methods of regularization (e.g., the

augmented Galerkin method and the singular value decomposition with truncation

or damping8 ' 82 ) are either less effective or prove to be computationally

burdensome. Algorithm II and the transformation methods in Rutman 8 0 provide

an indication of the utility of the Philips-Tikhonov-Turchin approach avail-

able at minimal expense. Although industrial application of regularization

has been generally limited to image restoration, additional developments will

broaden the application to include control settings and the solution of non-

linear problems.

19
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