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ABSTRACT OF THE DISSERTATION

Anti-Jam Analysis of Frequency Hopping M-ary Frequency

Shift Keying Communication Systems In High Frequency

Rayleigh Fading Channels

by

Dan Avidor

Doctor of Philosophy in Engineering

University of California, Los Angeles, 1981

Professor Jim K. Omura, Chairman

A certain type of M-ary Frequency Shift Keying [MFSK] communica-

tion systems, which use Frequency Hopping (FH] to combat jamming is

studied in this work. In particular, the performance of such systems

over High Frequency [HFl sky-wave channels, when subjected to inten-

tional jamming, is the main topic of this study. The channels conside-

red are characterized by Rayleigh fading and additive Gaussian noise.

To combat jamming the communication system hops over the total spread

spectrum bandwidth, which is many times larger than the instantaneous*

bandwidth occupied by the MFSK signal. Located within the HF band and

using sky-wave as the dominant propagation mode, the spread spectrum

bandwidth is typically nonuniform, time dependent, and congested by many

other users of the electromagnetic spectrum. In such an environment,

Frequency Hopping JFH) MFSK systems seem to be more practical than

dDirect SequenceO spectrum spreading techniques. A FH/MFSK system can

xi



be easily programmed to use a noncontiguous band, thereby avoiding

strong interfering signals (which are usually narrow-band signals) or

friendly signals that should not be interfered with.

To make the best possible use of the available bandwidth, the

HF/MFSK system requires channel related information and information re-

larted to the jammer. The receiver may probe the slowly varying parame-

ters of the channel and jammer signal, and based upon this information,

possibly supplemented by apriory knowledge of the jamming equipment,

establish an "optimal hopping strategy". On a short term basis, the

receiver may detect when a particular transmitted symbol is jammed or

not, and use this information in the decoding process. In this work we

study and compare the performance of anti-jam communication systems

using this kind of information to that of similar systems that do not

use -such information.

Since coding and/or diversity is usually crucial in a fading

environment, this study deals primarily with coded systems. A ganeral

upper-bound on the coded-bit error probability is used as a basis for

evaluating the performance of all anti-jam communication systems consi-

dered. This bound, which can be expressed as a function of the sys-

* tem's cutoff rate R , is independent of the specific coding employed,

and therefore serves to decouple the coding aspects of the system from

the remaining part of the communication system. It thus facilitates

system analysis by allowing seperate treatment of each problem. This

bound is used for optimizing various parameters of the systems under

study. To compare alternative anti-jam systems, two common jamming

techniques namely, noise Jamming and multi-tone jamming, were selected

xii



and the options open before the communication system and the jammer

defined.

All the receivers that we consider in this study are conventional

FH/MFSK noncoherent orthogonal receivers, a choice which seems justified

by the robustness of noncoherent receivers compared to coherent systems.

The receivers differ, though, by the type of processing conducted on the

energy detector outputs, by the metrics used, and by the amount of auxi-

liary information related to jammer activity, which is available to

them. In particular, we study the performance of Hard Decision recei-

vers, Limiter and Quantizer-Limiter receivers. For each system we

derive the corresponding upper bound as a function of p, where p is

either the duty cycle of a pulsed jammer, or the fraction of the total

spread spectrum bandwidth which is being jammed. We then find the value

of p which maximizes the bound and finally compare the performance of

the systems under study using the "worst case p" for each system. It is

shown that the "worst case p" depends on the receiver being used by the

"target communication system". For two specific cases we explicitly

show its dependence on certain receiver parameters.
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CHAPTER I

INTRODUCTION

1.1 The High Frequency Band

Throughout the most part of the wireless communication short

history the High Frequency [HFI band namely, 3-30 MHz was the first

line medium for long distance communication. Only recently have exten-

sive development and construction of satellite Communication Systems

ICS] overshadowed the crucial contribution of this medium to modern

society. The HF band is no longer unique in some of its most important

capabilities and yet it seems that it is not going to lose its dominant

role in many civilian and military fields of activity. Moreover, re-

search and technological achievements pertinent to HF commnunication

technology promise enhanced use of this frequency band for reliable

around the clock communication over large distances.

The HF band is relatively a complex communication medium. Some of

the features characterising this medium are

0Several propagation modes, notably ground-wave and sky-wave

involving possibly several atmospheric reflecting layers giving

rise to multipath propagation problems.

0The channel characteristics are usually time dependent.

0Generally, the channel has highly nonuniform spectral characteri-

stics.

0The signals transmitted through a sky-wave path are subject to



fading and can in most cases be adequately described as having

Rayleigh distributed envelope.

The HF band is typically congested by high power transmitters and.

other types of man made emitters and is only loosly controlled by

international regulatory authorities.

High frequency CS can easily be interfered with, since the

interfering transmitter does not have to be in the vicinity of the

receiving site, in order to cause effective interference. It is there-

fore generally accepted that Anti-Jam [Ail capabilities are particula-

rly important at the HF band. The existing interest in AJ capabilities

of HF communication systems is further supported by the fact that long

range HF links frequently serve as back-up systems to satellite relays,

which are highly vulnerable to intelligent jamming.

*1.2 Anti-Jam Capability

The basic key to combatting intentional jamming can be stated as

follows

"Choose signal coordinates such that the jarmmer cannot achieve

large jammner to signal power ratio in these coordinates".

If there are many signal coordinates available and only a small subset

of them, not known to the jarmmer, is beeing used at any given time,

then, the jammer is forced to jam all coordinates with little power in

each or jam only few coordinates and leave the rest free. The signal

coordinates to be used at any given instant are selected by a pseudo

random [PN] sequence, known to the transmitter and intended receiver,

2



* but not to the jammner.

Clearly, the more signal coordinates are available,* the better

t he protection against jamming can be. Confined to a bandwidth W and

duration T there are

2WT coherent orthogonal waveforms

WT noncoherent orthogonal waveforms

For given W and T there are many possible ways to choose a set of coor-

dinates, but MLSt commonly it is done by one of the following two basic

methods 110, 111

a. Direct Sequence spreading [DS]

b. Frequency Hopping IFHJ

Hence the term "spread Spectrum" signals. Many hybrids of these two

spreading techniques have also been devised, but their performance as

an AJ protection tool, does not significantly differ from the basic

ones.

The DS method is usually favored at high frequency bands (VHF

and up) where wide bandwidths and line of sight propagation generally

result in less spectrum crowding. At the HF band, however, it is diff-

icult to maintain signal coherence over wide bandwidths, particularly

when the dominant propagation mode is sky-wave. Several techniques

.J have been proposed, which potentially can solve this problem, but some

degradation in performance and considerable additional complexity is

unavoidable. Moreover, a large number of conventional (narrow-band)

signals may (and typically do) occupy the same band and interfere with V
the reception of the broad-band signal. In contrast, frequency Hopping

system can use channels with relatively narrow coherence bandwidths.

3



They also have the following "practical" advantages:

o easier synchronization.

o wider spread bandwidths.

0 do not require a contiguous band.

* are more compatible with other users of the same frequency

band which usually transmit narrow band signals.

FH is therefore the most commonly used AJ'techniques in the HF band.

1.3 AJ Design and Channel Probing

In a Rayleigh fading environment the error probability of an

uncoded CS is roughly inversely proportional to the mean signal to

noise ratio [SNR]. This is in sharp contrast to non-fading channels, in

which the error probability decays exponentially when the SNR is

increased. Consequently, even when no intentional jamminq exists, it

is extremely difficult and expensive to achieve a low error probability,

say 10-6, over a fading channel. When jamming exists the channel may

be totally useless for the intended operation unless some form of co-

ding is implemented (MFSK, M > 2 and diversity are in fact a simple

form of coding). Therefore, this investigation is primarily concerned

with overall performance of coded CSs under jamming.

It is widely recognized that modulation, receiver structure and

coding techniques, that are well designed for an unjammed environment,

do not 1ecessarily perform well under jamming. Basic characteristics

like signal wave-forms, demodulation techniques, coding, interleaving

schemes etc., may be profoundly effected when requirements for anti-jam

capability are introduced. Hence, the topic of AJ capability should

4



be considered in the design phase, rather than serve as one criterion of

merit when comparing fixed parameter designs.

An efficient jamming operation usually requires measurements and

,analysis of various parameters of the target signal and the channel.

Based on these measurements the optimal jamming strategy is determined.

The jammer then monitors the target under jamming to assess its response

if any, to his efforts. Likewise, it is intuitively clear that an

improved AJ performance can be achieved by continuous probing / measur-

ing the channel and jammer emission. This is the case in particular for

HF sky-wave channels which are highly nonuniform, complex, time-varying

and heavily congested by "innocent" users. There are many topics related

to channel and jammer probing that should be considered. These include

the following

* What data should be collected?

* How should it be measured?

* How reliable are these measurements?

° How should the data be exploited?

In this study we analyse and compare the performance of several receiver

structures which make use of "channel and jammer state knowledge" with

that of receivers that do not use such information. For situations in

which jammers state information is not available, we introduce and study

several different receiver structures intended to reduce the resulting

degredation in performance. Throughout this study we assume that the

receiver has "channel state information". For such cases we introduce

optimal hopping strategy which takes advantage of the available data.

5



1.4 Outline of the Dissertation

In Chapter II we introduce all the main topics discussed in this

dissertation. In particular, we introduce the channel model, define

the "Slotted Channel", and discuss the concepts of CSI and JSI. The

jamming modes studied in this work and the options open to the jammer

are defined, as well as some basic assumptions related to the informa-.

tion that the jammer and the CS's operator have with respect to the

capabilities of the other. These assumptions serve to define the "rules

of the game". We then proceed to describe the'various receiver struc-

tures to be studied and compared. The basic transmitter / receiver

common to all systems studied in this work is presented. In section 5.2

we introduce additional definitions required in the sequel.

In chapter III we describe the basic analysis technique used

throughout this work. We present the Chernoff bound for a qeneral met-

ric and show that when the ML metric is used, the Bhattacharyya bound

Tesults. The general bound parameter D and the cutoff rate R are

defined and R is derived for the special case of M-ary symmetric

channel.

The performance of six different MFSK receivers over a neali-

gible background noise uniform channel is analyzed in chaoter IV.

For each receiver we derive the bound parameter D and the worst case

duty cycle p. R0 is computed under the worst jamming conditions for

M = 2,4,8,16,32. These results are shown in figures 9a - 9e.

In chapter V we analyze the performance of four receivers

operating over a nonuniform channel. For the Soft Decision receiver the

6



optimal metric weighing is derived and for all receivers the correspon-

ding error bounds and the worst p is established.

In chapter VI we present several simple applications of the

results derived in previous chapters. Using the union bound we derive

simple bounds on the symbol and bit error ptobabilities Ps, and Pb of

MFSK and m diversity MFSK. In order to show a typical application

of the bound parameter D, we also introduce an m diversity orthogonal

convolutional code and a numerical example. Several figures contained

in this chapter compare the exact bit error probability to the corres-

ponding bounds for several special cases.

The "Optimum Hopping Strategy" for the noise jamming case is

derived in chapter VII. It is followed by a proof that the minimax

solution, as derived for an uncoded system, is valid also for coded CS

using Soft or Hard Decision receiver.

Chapter VIII deals with multi-tone jamming. It contains a

general introduction to the subject, and a performance analysis of two

receiver types under multi-tone jamming. Section 8.3 presents simple

applications of results derived in chpater VIII. In section 8.4 we

derive the "Optimal Hopping Streategy" for the multi-tone jamming case

which yields results similar to those obtained in chapter VII for the

noise jamming. Chapter IX contains some concluding remarks.

For easy reference two appendices were included. Appendix I

contains the derivation of the symbol error probability of a noncohe-

rent MFSK receiver in Rayleigh fading channel. Appendix II contains

7



the derivation of the symbol error probability of a noncoherent BFSK

receiver in Rayleigh fading channel when hit by a multi-tone jam.
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CHAPTER iI

THE ANTI-JAM COMMUNICATION SYSTEM

2.1 Channel Characteristic and Probing

In this study we concentrate on the following problem: A certain

segment of the High Frequency 6F] band (3-30 MHz) of bandwidth W

supports an MFSK anti-jam [AJ] communication system. The signals trans-

mitted are subject to Rayleigh fading and additive white Gaussian

noise [AWGN]. The receiver is a noncoherent detection receiver, which

uses Frequency Hopping [FHI to combat jamming.

Typically, a wide band HF channel (say, W,1 MHz) is highly non-

uniform. In this study we consider several channel models characterized

by the following parameters:

• Average received signal power distribution across the bandwidth

W.

jammer propagation loss distribution across the bandwidth W.

• Noise power and interfering signals distribution across the

bandwidth W.

We divide the bandwidth W into L fixed sub-bands each of which

supports one sub-channel. Each sub-band contains M tone positions and

occupies a bandwidth of roughly M/Tc , where Tc is the "chip" duration.

Hence:

L W (2.1)

C

9



where W is the total spread spectrum bandwidth. We assume that the

fading is slow compared to Tc and uniform We also assume that each

sub-channel fades independently and that each chip is independently

hopped among many M tone sub-channels~and therefore, that any sequence

of MFSK chips experiences independent fading and jamming noise in each

chip.

As stated above, an improved AJ performance can be achieved by

continuously probing/measuring the channel and the jammner emission.

These measurements could be classified to long term and short.term

observations. Long term observations will be counted upon to supply the

information related to background noise level and average signal power

across the band, interfering signals, jammer power etc. We also consi-

der two kinds of short term observations. The first depends on the abi-

lity of the receiver to detect the presence or absence of the jammner

signal during each chip time interval, and modify the metric used by

the decoder accordingly. The second kind is, in a sense, a second best

alternative to the first and involves nmeasurment of p, which is the

duty cycle of a pulse jammer to be discussed below. Presumably, p can

sometimes be measured even when the presence or absence of the janmmer

signal cannot be determined reliably enough for each chip signal indi-

vidually. Receivers having channel parameter information will be refe-

:4 red to as having "Channel State Information" ICSI), whereas receivers

*By "uniform" we mean: Practically nonselective over a band which is

at least as large as that occupied by a chip signal.

10



having CSI and also capable of detecting the presence of the jammer for

each chip signal, will be referred to as having "Jammer State Informa-

tion" IJSI].

For receivers / transmitters having CSI, we introduce the

option of using non-uniform frequency hopping among M sub-bands. Coded

CS are discussed, which use this information for establishing the opti-

mal hopping strategy and also in the decoding process.

The simplest special case that we study is the uniform channel,

for which the received average signal'power, the noise power density

and the jamer propaqation loss are all uniform across the band W.

Another, more- general situation, is the "Slotted Channel" shown below:

E N Cj iij

E2

N 2

1 2 3 L f MHz

Figure I The Slotted Channel

: 11



For each sub-channel we have a different noise level, average sigznal

power and jammer propagation loss. Interferinq signals, which "innocent-

ly occupy any of the sub-bands, are treated as an elevated level of

background noise covering uniformly that specific sub-band. This can be

justified by the fact that interfering tonhes experiencing Rayleigh fa-

ding appear as Gaussian noise at the-receiver.

2.2 Jamming Techni~ues

Two basic jammning techniques are examined:

a. Noise jamming.

b. Multi-tone jamming.

We assume that the jammer has the option of distributing his total power

J in any way across the bandwidth W. When considering a uniform channel,

* we assume partial-band jamming. In this case we denote by W. the band

"covered" by jammuing noise, and define

p - - (2.2)

where p is the jammed fraction of the total spread spectrum bandwidth W.

Alternatively, we could regard p as being the duty cycle of a pulsed

jammer. Performance-wise these two methods are equivalent due to the

ideal interleaving that we assume. For nonuniform channels p can only be

viewed as the duty cycle of a pulsed jammer.

* - For each receiver considered, we carry out the analysis for arbi-

trary p. and finally find the performance under the "worst case p".

12



2.3 Receivers Studied

Out of many possible receiver structures, that may seem approp-

riate, we have chosen to examine the following

a. Hard decision with JSI.

b. Hard decision with no JSt.

c. Soft decision with no JSI.

d. Soft decision with JSI.

e. Quantizer-limiter receiver with no JSI.

f. Soft-decision-limiter receiver with no JSI.

The basic transmitter/receiver structure, common to all the systems

considered in this study is the conventional noncoherent orthogonal

FH/MFSK system. During each hop of duration Tc the modulator generates

one out of M tones according to the K = loq 2M bits currently in the

modulator register., The modulator output i5 shifted to the transmission

frequency by the FH carrier generator, which is controlled by the PN

* sequence.

All the receivers that we consider contain the following

1. A frequency dehopper.

2. A bank of M energy detectors.

3. M samplers.

**1 4. A processing circuit or computing device to compute metrics.

The basic receiver is shown in figure 2 and a typical energy detector

in figure 3. Assuming that the ith tone was sent during the n
th

, chip time interval: (n-1)T c < t < nT , we have at the dehopper out-

put

Hi: r(t) Ancos(it+ @n ) + n(t) , (n-)T c  t < nTc

13
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T=

2

t=T

rh (t)

tetotT

h (t) = Icosw (T-t)

Figure 3 An Energy Detector
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where T is the chip duration. Since a noncoherent Rayleigh fading

channel is assumed, the probability density function of An and en is:

P (a) a e---exp -A n 2 202

pe(a) = Z 0 B 2
n 0 elsewhere

where Yn depends, in general, on the transmission frequency used

during the nth chip time.

2.4 Basic Rules

* Our basic assumption is that the jammer knows everything there

is to know about the channel, propagation loss, the equipment used by

the "target CS", coding and interleaving techniques, with the exception

only of the random PN sequence used to Hop/Dehop across the band. The

CS's operator either knows all relevant parameters of the jammer,inclu-

ding the jamer's total power, or supplements his information with

"pessimistic but reasonable" assumptions. This formulation establishes

a lower bound on the performance of the CS under jamming. The problem
L.j. is therefore a minimax problem: The CS operator chooses that set of

,1 parameters which achieves the best performance when the jammer excerci-

ses his jamming ability in the best possible way.

2.5 Definitions

We now introduce some additional definitions that will be re-

quired in the sequel.

16
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When considering uniform and negligible noise channels, we denote the

received jammer power by J, and define NJ as:

N =

where W is the total spread spectrum bandwidth. When a uniform noisy

channel is considered the single-sided spectral density of the additive

white Gaussian noise is denoted No and the total spectral density of

the received noise is:

Nt = No + NJ/p

in the jammed part of the band and:

Nt = N0

in the unjammed part of the band.

Next consider conventional MFSK signaling over a Rayleigh fading channel

with additive white Gaussian noise of single-sided spectral density N0.

Let H. be the hypothesis that the ith tone is sent and assume that the

average signal energy at the receiver is c . The square roots of the

M energy detector outputs (see figures 2, 3):

iY1'Y2""..'YM

are independent random variables with probability density functions:

P(yj/Hj) 2y x j

N 0o+Fc NO+4C

171: ___



and 2

P(yi/Hj) - exp - t j.N

We now introduce a set of parameters indexed by the L sub-bands. The

received dignal at the jth sub-band is

A cos(ci. ) ; j1. ,L ; i= t8,M

where A. is a Rayleigh distributed random variable:

PA (a) = --.- exp 2 ; j=,...,L

3 2a,

which implies:

E {A 2 2 2

and

0 ; elsewhere i=l,...,M

Hence, the average received energy per chip when the jth sub-band isi
used is;

E 2T

when Tc is the chip duration. The noise distribution is given by:

= (N1,N2,... ,NL)

where Nk is the single-sided spectral density for the kth sub-band.

18



The jammer distributes total power J over the L sub-bands with distri-

bution:
=(JIJ2,...,1L)

where

1;Jj J.
JIj=1

and J denotes in this case the total jammer transmission pow -r.

The jammer's propagation loss, y also depends on j. Hence, the cont-

ribution of the jammer to the noise power demsity of the jth sub-band,

denoted Ndj is

NJj = J cj .

Whether pulsed or partial-band jammer is assumed, some received chips

will be hit by the jammer and some will not.

The binary sequence:

Z= (ZI,...,Zm)

where
w0 the ith chip is not hit

Zi =

1 , the ith chip is hit by jammer

specifies the jammed chips.

When hopping across the band, the hopping pattern will be defined by

the vector L:

L =(jlJ2,...,jm)

where

ik E{1, 2 ... ,L k=l,...,m

i.e., 3k specifies the sub-band used for the kth chip. Note that for

19



* any transmitted sequence x, consisting of mn MFSK chips, and denoted:

x=(x (1) ,,X(2) ,,Xin)

there will be mn sets of energy detector outputs:

Y_=(-(1).Y(2), 9_ (mn)

where

Y_(n) = Y (n)'y (n),..Mn)n1 .

(n) ihtand yi is the thdetector output at the end of the nt chip

time.

20
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CHAPTER III

METHOD OF ANALYSIS AND PERFORMANCE EVALUATION

3. For uncoded CS we use the bit error probability as a performance

criterion. For coded CS, however, exact bit error probability expre-

-ssions are typically difficult to obtain and upper bounds are used to

evaluate performance.

3.1 A General Error Bound for the AJ Communication System

The coded AJ communication systems that we consider in this study

are represented by the general model shown in figure 4 . We consider

the sub-system shown inside the dotted lines as an equivalent memoryless

channel available for sending coded data. The memoryless property is

justified by the ideal interleaving that we assume. We then compute the

catoff rate [3] Ro0 of the equivalent channel, which represent the prac-

tically achievable reliable data rate-per channel use. For any specific

code we can then derive a bound on the coded bit error probability of

the form

P < B(Ro) (3.1)

which is a function of the cutoff rate only. Since the function B(R0 )
is unique for each code, and Ro is independent of the code used, we are

able to decouple the coding from the rest of the CS. Thus, to evaluate

various anti-jam CS we can simply compare the cutoff rates of these

systems. By way of maximizing the cutoff rate, we also optimize certain

parameters of the CS under study.

21
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Memoryl ess

x C x Channel yC Y

P(y/X)

Metric m(y;x)

Figure 5 . Equivalent Memoryless Channel
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The equivalent channel of figure 5 has input symbols which belong to

the alphabet X and output symbols from the alphabet Y. The receiver uses

the metric m(y;x) to make decisions. Consider two sequences x & ' EXm

and the pairwise error probability of the receiver choosing x when x is

transmitted, assuming that x & Tare the only possible transmitted seq-

uences. We denote this probability by P(x X_).

Hence

(m m
n=1 n n=1 kn

Px x _ =r my ;x) x ~y;~

SPrl nl m m(yn;'n) - m(yn;X n)] O/xI
n=1=

We now use the Chernoff bound [3] with parameter X>O:

_ .n = 1  n

E [exp X[m(Y;n x -m(yn;Xn)] ]
n=l

Defining

D(x,'X;) E [exp X(m(y;) - m(y;x)]}/xI (32)

We obtain the Chernoff bound

mP~x N ') < [ O(X n n;X) (3.3)

n=1

Where

D(xx;X) 1 all XEX .(3.4)

24
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.1

3.2 Evaluation of R and the Bhattacharyya Bound

Suppose that all the components of the sequences x and x are

independently chosen according to some probability distribution

q(x) , xeX. The cutoff rate is then defined as:

Ro = max max R0 (q;) (3.5)
o<X q

where Ro(&;X) is given by the relation

2Ro (.q;)
2 0 E [D(x~x;,X)J

= q(x)q(^X)D(x'k;X),

since, for MFSK the channel is symmetric and the input Alphabet size is

IXi = M, we have

q(x) , x~X

and

D(X)x

D(x, ;x) = (3.6)

Therefore:

-Ro0 (q;x) I+M-1)D(X )2
M

and:
Ro = g2M " log 2 11+(M'1)D) (3.7)

where

D = min D(A) (3.8)
>o
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Equation 3.3 can then be written

P(x <.

When W(x,') is the Hamming distance between x and 2. To obtain the

tightest bound we minimize this bound over X > 0 to obtain

P(x ) <D

When using a specific code with many code-words it is then possible to

evaluate the bit error probability of the code by union bounding all the

pairwise error probabilities for each code-word and then averaging over

all the code-words. This results in a bit error probability bound of the

form
Pb < G(D) (3.9)

where G(D) depends on the code being used. Since D can be expressed in

terms of R0, we also have the alternative form

Pb < B(Ro)

Throughout this study we use the Chernoff bound to evaluate the

performance of coded CS. For reasons which later become apparent, we

consider receivers which employ several different metrics. If the metric

happens to be the ML metric, which has the form

m(y;x) = ainP(y/x) + b , a > 0

we obtain:
D(x,x;X) = E[exp{X[m(y;R) - m(y;x)]} /x]

= X exp().arinP(y/i) - EnP(y/x)])P(y/x)

y

y

26
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The minimizing X is usuallv Xa

Hence:

min D(x,';X) F p(y/x)P(Y/') (3.10)
0<X, Y

which is the Bhattacharyya bound [3].

it

I

I. 27

* -



CHAPTER IV

UNIFORM CHANNELS WITH NEGLIGIBLE BACKGROUND NOISE

41 Soft Decision Receiver With JSl

Our basic assumption is that the receiver is capable of detec-

ting Z and is using it in the decoding Drocess. In the uniform channel

case we denote the total received jammner power by J and define:

NJ= J/W (4.1)

The conditional density function of W given x and Z is then:

PM(yj/,Z) = fl pM (y(n)/x~n,~
n=1 1

and

) = 1(

where

(())21
2k -x k (n)x

()()N J/P+E c NJfP+Ec

(n (n)2

exp - ~ ~ ;x

and2
(n) (n),

2y exp Y x-n =

P(yk fI/X f)Zln0) 4~

4-I
k t

Next define:

i2

m N /P M 2y(n) r (n)2

Gl(y.Z) I CnAPk exp k

n=1 NRJ/P+r W k=1
n:Z nz1

28



in

m c (n) 2
A(y;xZ) 1: - Y (n)-- n=1 (N J/P+EC)N J/p x

n:Z n= I

z ' (n)2
=n=1 n a x~n

where:

a C

(Nj/P+Fc)Nj/P

Also let 2(n) 2(n)2

m 2Yx(n) Yx(n) Cy (n)
F(y;x,Z) I exp -1- k=1

n:Zn=O kfx(n)

Then
PmM(y/x,Z) = G(y,Z) exp[A(y;x,Z)}F(y;x,Z)

The maximum likelihood [ML] receiver uses the total metric:

m(y;x/Z) = ZnPmM(Y/x,Z)

= n G(y,Z) + A(y:x,Z) + in F(y;x,Z)

But G(y,Z) does not depend on x. Furthermore, for all x such that

xn ~x : r 2y~n (n2
-(n) Y -(n)

in . n exp 6(yn))J .-
Ec  Ec  (n

Hence, it suffices to compute:
(Z;x/Z) = - ,(n) 2  n( (n)__ Znyx(n) + I i 16y

n=1 n=1 k=1
n:Zn=O kx(n)4.2)
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for every sequence x C to determine the maximal likelihood sequence.

To find the performance of the receiver, we start with the

Chernoff bound:

P(x? x_) E[expX n1 [m(yn /i) x /Zn) Ix]

<n ;(n)/Zn) - m(y(n);x(n) -  /i(n)1

=11 D~xp n),nn))]
n=1

n= 1
Where

SD( x(n),x(n) ;X) I,

SE[exp myn; )nm(n) ^(n) ( n )/Zn))/x(n))

Since the ML receiver uses the metric:

m(y(n);x(n)/z n) =n PM(y (n) /x (n),Z n)

we obtain :
,{~ D(xn x n;X)=

= E exp{X[tn P M(y(n)/7(n),Zn) - n P4(y(n)/X (n) ,Zn)]}/x(n)I

= Et[M(n)(n),Zn] /xen

SiLflPM( ./X dx j (n)z

E (n) x

(.OO /x

30
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The value of X which minimizes this bound is X= 1

Hence: in (I n) ,x(n);,) D( (n),x(n); })

o<X

E /(n)l4n) ,Z)P(Y(n) (n) dy(n). n) /x(n)1

= P Y /x i) dy (

0 
0n

(4.3)

Which is the Bhattacharyya bound.

But since

p k=1
PZ (k) 1 1-p k=O

this can be further reduced to:

(n) (n) 1
D((n)'x(n) 1 = (n),q(n)

Where:

(nI-n) (n) (n,) d (n) d(n)+
( ,-p) fn.. f V) A O)P(y(n (n) l .. *dm

0 0

+ p f f p( (n)/(n),1)P(y(n)/x(n),1) dy(n)..dy n)

o0

Substituting the conditional probabilities that we have in this case,

We obtain:

0=(-p) x F2--- x - E - x

0 0 c C C
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kx *x (n)

Go C 4y(nn) { (n)2 2 2yx(n) ,Y (n) Y,(n)M 2y,' )n) 2

+ N J / 2 x , xkex p 
k

- F/ k1 NJ/P

+ P 1  ' T V - ~~~(E +N  / p) 2 x  " E +N P ki<= - v- °x ,t x ,
c J c J U T'I'

(n) 
(n)2

m y . .* d (n)  dY(n)
Ljx exp - 3d ... d

.The first integral is 
clearly zero. The second 

can be integrated over

n(n)

and finally reduces to:

fNj/p( c+NjP) exp f 2j1 + J dy 2
0 fNJ/+E

C  Ni/p

" 4Nj/p(Nj/p+E c)  
4(1 + ptc/Nj)

(2Nj/o+Ed )2  p 2

Therefore
[ ' 

P x ) , Dw ( x ; x
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4p(1 + PEc/Nj) W(x;x)

(2 + pE/Nj)
2

c J) (4.4)

It is easily verified that p = I maximizes this bound, i.e., contin-

uous jamming (broadband-jamming) is the worst case jamming for this

receiver.

Or 4(1 + Ec/Nj)

Dwc= max D = (42
o<p<l (2 + Ec/NJ)2  (4.5)

4.2 Soft Decision Receiver with No JSI

Since we have just seen that continuous Jamming is the "worst

case jamming" for the receiver analyzed in 4.1, and since the receiver

we presently consider does not have JSI, we are tempted to try the

simple metric:
n ()2

m(y;x) = Y (n)
n=1 (4.6)

which is just an equal weight summation of the energy detector outputs,

which correspond to a sequence x.

Hence

l (n)(n) ")J(n)
n=1 [exX) 4 E e) Y -(n) Y(n

.'. Dlx(n), (n);) = E exp ) Y(n ) /x(n

33



• x~) ar stais(iall

(1-p)E exp[ 1  (n)' _,(n'/x (n)Z n= ] +

(n)fr (n) (n)&-n(n)

(n)D(An),(n) () (n

But given x ,x ~x a nd Z n 9 .(n) &y(n) are statistically
x x

independent.

p(n) (n)Hence, for x x

D((n) ,(n );)

-1p) E exp1X3{(n)I21/x (n) 'zn!0 E [exp I y - (n) 21 /(n) tnO

+ P~eP (n -/(n) zn=Eex 1iI/(n) Z n-i ]

We now use the fact that for a Gaussian random variable xvN(O,y ):x

2 1 1

E[exp[_x2-] <
2 2;X  (4.7)

2 1 1
E[expf-xx >J= 2

F2X!2a> (4.8)
x

Since
2 2 2

Y(n )
2  = r k(n) + r (n)
kck sk

and since, given x)and Z (n) & r(n) are Gaussian and statisti-
n rck sk

cally independent (see figure 3), we obtain:

3
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[exp [ n) 21] E exp,(() +r (2]

exp1Xr)ck E[exp Xr 1

• D~x(n) -(n)
D (x. ,(;) =

1-p + p =()
(I+X c) (I'XNj/p)[ I+A(Nj/p+Ec) ] t4.9)

,0 < A~ < a..Nj

Now we want to find the worst case D by taking the maximum over p,

0 < p < I and the minimum over X: 0 < X < P

i.e.,

Dwc max min D(A)WC o< p<, I o< <p/Nj

Note, however, that the condition:

implies that for any allowable value of A, the first term, namely:

approaches 1 as p -0 0, and therefore,

min D(A) P 0 1

o<X<plN

35

. .



We expect that in general, the Soft Decision receiver using this metric,

has poor performance under a low duty cycle jammer.

Although the receiver now considered does not have JSI, it may

still know p. In such a case the receiver can use the ML metric. We

want now to find this metric and to analyze the performance of a Soft

Decision receiver using the ML metric. The conditional probability of

y given the transmitted sequence x is:

PmM~~ (A 1pM(Y (n)/X (n)
Pmj(j/x) = (n)) =

n=1

1,[1 MYn(n) ,kP (k)
n=1 k=° (4.10)

m [pM( (n)* (n) O) ( _) +p (n)/x (n),,)p] |

n=1
(4.11)

But 2

cc k=1
k~x

and

pM(Y (n) /X(n),l)=

(n)n 2 2yn

(n) (n)
2y (n) (n M 2y (n) y (n)2

X( M ( ) k
E N P N /p+E k=1 en Pj /

k~x (n)

Hence:
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22
m y (n) (n2

ep ex (y expn)

LetM(n) 
22

The (n)(n

exp ~ ~~~ k1 *k1-W x N/

Then(n) 2

+ N/P -Y"(n) 2 c

Now we take:

m~yx) in P mm(-/x

2

+ NJ!~(()

+ +N G(y-'n) exoj x

C J1 ~(E +Nj/p)Njp (.2
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i~e., the receiver uses the ML metric. Therefore, as we have seen

above, the Chernoff bound reduces to the Bhattacharyya bound:

P~(x - x^) < DW ; ) ; where

Substituting M(y(n) A (n) ) & M(n)) we obtai n

n N/p x(n) (n)
., pJ Nj/o+E G(y(n))exp i ).-dn (n)

o I (n) ( /(n)
integratin) ove ydn ,=, .. d

i~( n )  io- ( n )

Carrying out the

We obtain the double integral:

D = p[ 2 (Nj P )N /p e 2p + c d 2

or - (q/P+Ec)2N /P

0 (NJ/P+ c )N J/p(No+ )2/p y

- 00f 2yj/ 4 ) N e x p y 2 ( N + ~ 2 N J / P d y l 20f f NJ ( +EcNJ /
4 ] + E-C -p

4( N N/P)

EC12 (4.13)

This is exactly the value of D obtained above for the Soft Decision

receiver having JSI. We conclude that a Soft Decision receiver with no
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JSI, but knowing p, performs exactly as well as a Soft Decision receiver

having JSI, provided the background noise is negligible.

As before, the worst case p is p=1, in which case:

max 0 o(2 + c (4.14)
O<pxD

4.3 Hard Decision receiver with JSI

The input and output alphabets of the channel are:

i X - Y C- {1,2,...,M}

and the conditional probability

1 ; y=x , Z=O

P(y/xZ) = 0 ; yOx , Z=O
I- ; y=x , 7=I

C

; ytx , Z=I (4.15)

Where

C(P) 1 1 ( k+1 ____________

Sk=1 ( P!c)

';*1 Since the channel is memoryless

D,|I m
SPm(Y/XZ) = J[ P(ynx nZ n)

n=n

We choose the metric

m(yn ;xn/Zn) = in P(Yn/xnZ n)

which is the ML metric.
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Hence, the Chernoff bound reduces to the Bhattacharvya bound:

P(x - X^) < DW ; )

Where

D E /P(yn/X nZ n)P(Yn/X nZn) /Xn

(1-p) p(Yn /x n,O)P(yn/ n,O + P V P(Yn/Xn,l)P(yn/n,±l)
y y.-

n Yn

But, for xn Xn

P(y n/x n,O) 0 = P(y n/,O) = 0

Therefore:

D = p i qP(yn/xn"l)P(yn/n"1)
Yn

= 42 ¥ l-1 + 4 (4.16)

It is easy to verify that p=1 maximizes this bound, i.e., continuous

jamming (broadband janning) is the worst case jamming for this receiver

.. also. Substituting p=1 in the bound 4.16, we obtain:

Dwc = 2 -F + M2 -(4.17)

where £ denotes c(1).

.40



4.4 Hard Decision Receiver With No JSI

The input and output alphabets are:

X = Y E. 1,2,...,M}

but the conditional probability function is now:

1
P(y/x) Z P(y/x.z)Pz(z)=

z=o

- (iL-p)P(y/X,O) + pP(y/x,1)
But:

P(y/x,O) = x y

P(y/X,1) = 1cr) ; x

Where

C( = M ( k1 -1 -1 1

k=1 ~1+k(1 + Ec/J

Hence:

P(Y/X) PE=

;p-(P y x (4.18)

In this case we use the simple metric

m(yn ;x) d W(Yn 'x d

This is, in fact, the ML metric, since it can be written in Che form

m(yn ;xn) =ainP(y n/An ) +b; a>O0

Hence, we can use the Bhattacharyya bound:

P ( )(DW(I;t)
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where

D = ZyIP(y/xn)P(y/n) = Xn
y

- 2 PE (P11-(P)] +p EM~- (4.19)

It is easily verified that p = I maximizes D for this receiver also

i.e.,

DWC max D 2) £CkT CMM-1 To<p~l (4.20)

where
E

Clearly, the results of the receivers discussed in section 4.3 and in

this section should coincide for p=1, and indeed we see that the cor-

responding bounds are also the same.

4.5 The Ouantizer-Limiter Receiver with No JSI

This section contains two parts. In sub-section 4.5.1 we analyze

the performance of the Quantizer-Limiter receiver under broadband jam-

ming (p=1), and find the optimal quantization-step size T, which is a

function of both c and Nj. In this derivation N could equally well

represent the spectral density of the noise introduced by a noisy

-* channel, or the combined density of channel noise and jammer generated
A
* ,noise. In section 4.5.2 we analyze the performance of the Ouantizer-

. Limiter receiver under partial band jamming, assuming that the receiver

,not knowing p, uses the optimal T for the broadband jamming case.

4.5.1 Uniform Channel and Broadband Jammer

The basic receiver structure is that shown in figure 2 , but
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the output of each energy detector is ouantized into one of four output

levels. The discrete output of M such enrgy detectors feed the compu-

ting circuit, which computes the metric for each code word and finally

makes a decision.

T

t-nT
0

COSW ~ ~ (n t- n OPt

sin o.it TT
rr

I I
ttn

Figure 6 The Quantizer-Limiter Receiver

The input alphabet is x4 {1,2,...,M! and the output alphabet is:

SY = [YlI'Y2""YM]

- i •where:
Sw :0,1,2,3) ; i=!,...,M

The conditional probability of y given x is

, lP~ (n)/x (n))

= PrMY/x(n)(4.21)
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where:

-~ (nj 1 A 1

(Y )-j) *pj] k'1 J0 0

3n (n)

o~ r{TZ /x Zk ;yn k1...
3 (n) _j k=1 ,..k.

and:

p {jT-<Z ;(+)/ j=0,1,2 ; k4l,...,

To fin P {3T 4Z~n)/t1) k) ~ ,.,

1 k

cular: 2Z n n

P(~n x n= 2k~~ exp k __

NJc NJ [c'

(Z k /x24") ex N

Hence:

0N
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= exp I - exp (2T 21

POIN N

P exp exp N +(3T) +0P23= e-ep N (3T,2 (4.23)

ii~~ 
Nj+ c N

Whereas: P =  exp T2

ex1 = NJpJT2 exp (2T

~exp[ 2), exp (3TJ

P 3= exp 1_ (3T)2

, Nj+l c  (4.24)

Hence:

3 (n)

- =P J G(y)
Pny/x 3 ()

-j=o X (n ) 0 (4.25)

where:
m M 3 •r~) n i z6y jPo(.6

= k= l k (4.26)

Therefore, the ML receiver computes:
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3

.M x(n).( v X ) : L n n 3 0 Y x " <

-I (y( (n) _ Op 0(4.27)

for every sequence x to determine the most likely sequence.

Since we are using the ML metric, the Chernoff bound reduces to the

Bhattacharyya bound, and we obtain:

(n jJ=

(n) ^(n)

/[ 3 jpn 3 ()•

30 2 (4.28)

Now let:
and . c

(4.29)

then: 2 and - -

Nj+c Nj(I+Ec/Nj)

Substituting the above in equation 4.28 we finally obtain:
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+ expl 31) (1+

I+

Hence: (4.29)

D min D(T)

o<T

The minimizing value of T depends on ', and therefore, T = NJ

depends on both NJ and c . Figure 7 shows the optimal value of T

as a function of T and the value of R obtained with the minimizing

T under broadband jamming.

4.5.2 The Quantizier-Limiter Receiver Under Partial Band Noise Jamming

We assume negligible background noise. When jammed the power

spectral density of the noise is N J/p where:
J =

The receiver, not knowing p assumes continuous/ broadband jamming and

therefore uses the same metric and the same T as for the p = 1 case:

+(n) = jPo (4.30)
,=o x(I 0

but now this is no longer the ML metric , hence:

P(x 4 ) E[exp(A[m(y;_)- m(Y;x)])/x] =
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I 3 y '(n) P nE6 4 n I (n) .p 1

E --- A (Y - 1

For brevity let:
3
> (Y-j)Pj

G(y) *-o

- ' 6(Y-j)Pl (4.31)
" j=o 0J.1

-- "hev for Z.(n) t x(n):
G( (n)

D(x~n) (n ;X) = E[exp n G /(n)  / ]

( ) I

= G( (n)

G V(n ) E G(_) x n
G E ll/Xn) + (1-p)E( Z 0

L x(n) (n.

Now we must define two sets of probabilities: one describiog y(n) when

the jammer is present and the other when the jammer is absent.

Let:

P(i) t P {Y (n)=j/x(n) k, Zn i
o r k ni)

J=0,1,2,3 ; k=l,...,M

i=0,1, n=1,...,m
Pi() # P p(yn)=j/x(n)=k, Z

1 r k ==,

49



"Igo

Then: (1O

Pj (0)

PJ(O) = expl. I- exp1 (+)]2 j=0,1,2

p 3(0) = exp{ (3T)2

PJ(l) = exp1- sin! I- expj .L(i±~lj ;' j=0,1,2

p (1) = exp Xij 
(4.32)

and: N ex1 N/P+E~ - exp N NJP+E S ; j=,1,2

P 3(1) = expj- IJP!

Hence : .n)(3)
~x ;A

Y(n) X n

y n

(n)-p xJ Gjy=O x
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= I-P) l P o0) 0~ + Ipjx 31 ,5 ( 1
>j= "1 I o

j=O,1 j=O 1 II j=0 0  P01

=D (X) (4.34)

Where
D = min D(A)

o<x

and:
Dwc= min max D(A) (435)

o<X o<p<l(

This bound is valid for any value of Ni, Fc and T, or ,using the

normalized variables, for any value of ' and T. It is of special

interest , though, to evaluate the performance of the Quantizer-Limi-

ter receiver when, for each value of T, the receiver,not knowing p,

selects that value of T which optimizes its performance under broad-

band jamming. That value of T is shown in figure 7 . Choosinq ? accor-

ding to this figure, we have calculated the "worst case p" and the

bound 4.35as a function of T. pwc is shown in figure 8 and the bound

4.35 was used to compute Ro, as shown in figure 9 .Note that the per-

formance of the Quantizer-Limiter receiver, as shown by the bound 4.35,

is (up to T=34 DB) better than that of the Hard Decision receiver.It

could clearly be further enhanced,if the "truly" optimal T were used.

a 4.6 The Limiter Receiver With No JSI

This receiver has the same basic structure as the Soft Decision

receiver discussed above. The only difference is that the output of

each energy detector is clipped at Yi = T, i=l,...,M.

The outputs of the M clippers feed the computing circuit, which com-
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putes the metric for each code word and firally makes a decision.

T

2
T in

ii .sinwj

r T OP

0

I

Figure 10 the Limiter receiver

4.6.1 Uniform Channel and Broadband Jamming

The input alphabet is x = {1,2,...,M} and the output

alphabet is: Y- = {YY2,.--,YM]  where: Yi E [0,T]

The conditional probability of y given x is:

., m/1 (n) A(n)
ii ~~~~T PrMYX) = ?PM (Y x

n=1 (4.36)
Where:

k~x(n) (4.37)
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Here:

Q1(y) = 6(y-T)P1 + [l-u(y-T)]
2y  exp - h

Nj+Fc + N +F c

where: 
(4.38)

P :~ fT Z(n)/x(n)
1l )r n /n=k), k=1,...M; n=l,..,m

=exp i T2

N +Fc  (4.39)

and u(x) is the unit step function.

Similarly:

Q (y) 6(y-T)P + 11-u(y-T)1?Z exp{- ;yo

where: 
(4.40)

PrP{T,Zk )/x nk k=1 ... M n=1,..,m

(4.41)

.. PMCn)/x ) 1 = l %(n~)
Q O(~n) k=1Q ((n)

0 i Q° '(n (4.42)

where:

(n) M (n
.-i~ (yn )  rl] Qo(Ykn )

k=1 (4.43)

The ML receiver computes the total metric:
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II

m(y;x) = n n)/(n))
n=1

for each iequence x to find the most likely sequence. But, since

G(y(n)) does not depend on x , it suffices to compute the metric:

Q,.(n).
ii (- (n;x~nl In x(nl)

Q(n)) = Qny)) (4.44)

Since we are using the ML metric, the Chernoff bound reduces to the

Bhattacharyya bound, and we obtain:

D(T) Q (n)

(n) n Q1(yx(n) ( Xx(n) lx(n) Ux(n) Sx(n Sx(n)
Y (n) Y.(n

xL J

S (y-T)PI+[1-u(y-T)] 2y exp Y]
0 f1 7 Nj+[c NJ +Ec

S NJNJ+

But: T22y. exp - 4 afdy 1[ - exp- 41]
0
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Hence:

D(T) +L~ 2Nj (Nj+) 1- r x T 2 2N J Ffl
+ 2N +I1 exp 2 Nj(NjEc) CJ

Now let: (4.45)
~T

N C

Then: 2 2

1 2+ [I- 2(4.46)

Note, that when T -* -, the bound reduces to:

D=4(1+;)2O=(2+T)2

which is the result we had before for the Soft Decision receiver

without clipping under broadband jamming.

To improve his performance the receiver should choose T so as to mini-

mize D(T). Hence:

D = min D(T) (4.47)
o<T

4.6,.2 Uniform Channel and Pulsed / Partial Band Noise Jamming

We assume negligible channel noise. When jammed the power

spectral density of the noise is N /p where:J

N J
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The receiver, not knowing p, assumes continuous /broadband jamming

and therefore uses the same metric as for the p=1 case:

Q 1&n))
m(n). ;x(n)) = in

x (n))

but now this is no longer the ML metric. Hence:

P(x -) X) < E[exp [;km(y;") m(y~)JJ/ ]
=E[expl x~ [Zn x in Yr~J x]

x x ()

Then, for T$n) 0 x (n):

Ix ~ E~exPIX 01(Y(n )0Qo(n?)) (
D ( X ~ ~ ~ ~~ n )n (.n ; X _) )__ _ _

-~ ;) E Ap /i In) 1 .1

-pE QO64?n))Ql&yn))) ~

+ (~~E{(n (n()

x .9



We must now define two probability distributions, one describing y(n)

when the jammer is present and the other when the jammer is absent.

Let:

P1(0) = Pr{T(Z n)/x(n) =k, -n=O)

P f~~rZ(n)/x(n)=k l'.M

P1(1) = PrfT(Zk/x =k, Zn=k

P (1)= P r (n) ,k, Zn= 1)

P (0) = Pr{T(4n)/x (n)  Zn=0) = 6(T) (4.48)

Hence:

P1(O) ; exp [ -- expf-T

C

T2__ T2

P1(1) exp = exp{-

() eT2)1 2

Po(1) = exp - --7 expf-p }

P0 (0) = S(T) (4.49)

Therefore: 1 Q(o ( ))Qo(Y(n))) ) }On(Y ) Q°I (n j] // (n),

pE (y(n) Q (y(n) / n

1 Qf~fl ~n)y)l)
.., ° (".x ' x,) ~

(n) X (x

2 (n) ,. (n)2
P16( ( 1)_~p )+[1-U(y'~ )-T)] 2yp (n)____ dy(n)

NJ p+[c  NJ/p+Jc

63



4 Ix

2) .(n~% ~ 2 i) __(n) _

= [(fP1() +J( n +n (nJ/) ]J C y

_ 1-

+ J 2y+)~ 21 X ex1y

p i f N PepNFI-

Y(lf OM0) JcX yNi+

x +
641/ +)+~



2y 2 (n) (n

_,Yn)-T)P,(o) + fl~u(Y(?T ) -T)J ~(n) ---41

F~~r x e xp-c1

MY (n))

y~)Q (n') ~ 2 ~ 1 (+,1X __

D(Tn)p x

t(-P (o+' .' +l Q N'~ - 4-lp +1+ X '1 (' ' l/2+

p 2 2__ _ _Z. _ _ _

O-# 0[e+x1ex -T-~(1'' (1+XV + +

=, (1-P)[x (IT) x Ix 2+ JxX

D(T;Xp) mm (TAp

and ex D2 X ( 1) T l- max)I~ m+ D(1)L
( 1 +10 O~lp) 1o

(451
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To improve his performance the receiver should choose T so as to mini-

mize the bound. The effective bound is then:

Dwc= min max min D(1;X,p)Dw=o<T o<p<,l o<x (4.52)-

Figure 11 shows D (1) as a function of 'V fot several values of T.

Figures 9a and 9b show the cutoff rate R of this receiver for M=2,4

in comparison to R of other receivers. Figure Ila shows pwc for three

values of T.

.'I6
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1 , Figure 11. FH/MFSK Dw for the Limiter Receiver
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Figure 1lla F4H/tIFSK. The Limiter Receiver
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CHAPTER V

NON-UNIFORM CHANNELS

5. In this chapter we assume the following: The jammer uses

pulsed noise (duty cycle p) and nonuniform distribution over the

"Slotted Channel". At the jth sub-band we have backqround noise of one-

sided spectral density Ni. and in addition, jammer qenerated noise

denoted NJi/P when the jammer is "on" . As defined earlier, the hopping

sequence is: L = (j1,j2 , .... ,jm). where jn is the index of the sub-

band used in the nth chip time, j nE{1,2,...,N}. We assume that the

random variables jn' n=1,...,m are statistically independent discrete

random variables having the common probability P(j).

5.1 Soft Decision Receiver with JSI

The conditional density function of y, given x, L and Z is:

P mM(/x,L,_Z )  1 PM(y n/x n "  )

P Ln=1 (5.1)

where (n)/(n) = (n) (n)PMY /x ijn'Z)= 11Py /x ,j inZn)
n k=1nn

But

2y(n) ( (n)2

k exD k x (n)k
N. +E. N 4N. +N /p/P;

( n) (n) 1 n 3n 3n n 3n n
P /x J I) = 2

n n (n) (n)

Nin +Nn/PN inNJJn/P
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and

Y P(Y n )/x (n ) JZ=O)= N in + in n+En

2yk~n Y(n)2)
-ff- N11 in(

Next defining:

lb m N.i +N i. /P N 2y~) (n) 2
G___nnk 

___
-- n~ N 'in + t N. +N /p exp N. +N1 ./p

n=1 JN.j +E. +N A) / k=1in j n' in:Zn=l 'n 'N nn n

AI(Y;x,L,Z 'in (n)2

I 2
n:Zn=1 i , J n

( ~n=
m Za (n)2
2 z= n aj Y n

Where

= OJn

amn (Nin+NJjn/P)(Njn+ in+N . n/p) (5.2)
Also let

In=1 N. 4t. k=1 j'i
n:Zn 'ii'nn

and

Ao(.;xL,Z) = in/N'n , (n)2

n=1 N + x(n)

n:Z n=o n n+n

70

..........................



m (n2
(lZ )bn yx~n

n=1 n n (n)

where:

b n Nin n (5.3)

Then

PmM (/x, ,Z) = G(y,,L,Z)expfA 1 (;xL ,Z))F(y, L, Z)expfA0 (y;x,L,Z))

The ML receiver uses the total metric:

m(y;x/L,Z) = -En PmM(Y/x,L,Z)

= in G(y,L,Z) + AI(y;x,L,Z) + Zn F(y,L,Z) + Ao(Z,x,L,Z)

But, since G(y,L,Z) and F(y,L,Z) do not depend on x, it suffices to

compute c(y;x/L,Z) = I (y;x,L,Z) + Ao(ly_;x,L,Z)

Z az +(. )b , ly(n)'
n=11 n i n n x() (5.4)

for each sequence x E C to determine the maximum likelihood sequence.

Again we use the Bhattacharyya bound to compute the performance of this

receiver.
P(x_ Z) < DW(xX)

where

(n) (n'n) A~(nl).() d( n

D = E ff P( A gin 'n p~yL /x gin 'zn) dy 1 .d

=(I-p)E{ . P((n)/x (n)nO)P(y (n) /x(n 0,'dY(n ) . - .dy (n
7

(n ) +
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( n) (n) n) (n) n) (n)/
+ pE f f . ,(_ /,n),x, , /,542 )( , , 1 ... , , Y x(,)

0 o0

-Substituting the corresponding conditional probabilities and integra-

ting over y' n) i=I...,M ; x(n) ,

we are left with

(1p)E{[f 2y_ , exp + 1 dy] /("
D=(I0) f VNin (N jn+rjn) -2 Ni in+r n/

pE 2y dy exp 21 +

11ETCOV( n Pn)(Nj njnNJjn/P i p nnP

+N. +Ei +N i p12.~~

~(P) Njin(Njin +Ejn +p(Nj n+Njjn/p)(N in+E . jin/j']x(fli

S Njn+Jn/2) ( 2Njn+N

!N

" { 4 1+ E 4 1+ J-Nlj

= P(j) (1-) .
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r2
N 4(1+ F./N.) 4F Nij(2Nj +E+NJj/p)

>t; P~j 0 .L.i+ 2.+ ~j
j=1 (2 + F /Nj) (2Nd + Ej) 2 (2Nj + E + 2NJ/p)

N f (+i12( 2N j L,)
( 2+ .)2 + P 2N~=1+(N + )3( P + 2N +.

N i 2Ni + E(5.5)

It can be easily shown that p=1 maximizes this bound over the interval

0 < p < 1. Hence, continuous jamming is the worst case jamming in

this case also.

max D N 4(1 + N +N J
max D = Z P(J)"

O<p<,l j=1 2 + E )
N +Nj j2 (5.6)

5.2 Soft Decision Receiver With No JSI

The jammer uses pulsed noise (duty cycle p) and nonuniform

distribution over the Slotted Channel.

We have shown before that when the background noise is negli-

gible and the channel is uniform, a receiver using the simple total

metric: m 2
i: i~1 my )= x(n )  (5.7)
: . (n = 1

results in an unacceptable performance under low duty cycle jamming.

'Having the choice between this receiver and the Hard Decision receiver,

the latter should of course be preferred. This is also the case when
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the channel is not uniform and the backgroune noise not negligible.

Still, as discussed above for the special case, the receiver, not being

able to detect the presence of the jammer for each chip time, may still

be able to make a reasonable measurement of p. In this case the ML

metric can be used. We follow this idea below.

The conditional probability of the channel is now

m P~n)

__ n= 1

where
pM(,y(n/x nn PM(,y(n) n 1 n,=Z)P z(Z)

z=O n

= PM(,y (n)/x0(n), n .zn=O )(1-p) + PM(y.(n)/x (n ), jnZn=)p

and
2y (n) ex (Nn )J 2

PM(y(n)/x(n) ,jZn=O) N i exp N + } i

2yn) expt xnI

Nin  ijn

(n) n2__Yk__ _"p j Y~n) 1 n
2k exp- ;x(n)=k

Nn+E+N. /  N +E N +Nn/p

PM(Ykn)/x (n )  Znl) n n n in /i ,

2y (n) ey () (n)

Nj n+N j n/P e N n+N jn/P

Hence

l(1-P)PM(Y(n) A (n) n= (n)(n ) ](5.
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"m 2y (n y n nn) 2
(n) M 2y2

x-p) xexp - " n exp- +
n=I  N.. +.. - k=1 NL Njn

Nn in n i+Ein kfx(n)
kjx

(n) 
(n) 2

+ p exp - •

N1 +[ +Nd. /p n n n+ n/p

M 2yny(n.)22• Ik3_ exp k
k=l N +N .n /Pjn+N n/P
W x( n )

= ][ (1-p)exp " x (n )  iJn GI (y(n)) +
n=T N n(Ne+p Nn

fl in inn 'in

(n)2
() JG (y(n)

+ p exp +N/P)(N++N jp) in

in i n in in i n (5.9(5.9)
i1 Where

S" (n)2
N M 2y(n) y(

G (y(n)) = = n n+- exD k

in in nn

andN.n N.n4. k=1
N()) = '+Nj /P M 2Y(n) exp ( n) 2

' n)tin n_ _ k____
n N(Y+E +N /p k=l N. +Nj.n/ N. +N jn/P

n n n n n 'n

To use the ML metric we take:

m(y;x/L) = in PmM(Y/x,L) =
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m - (n)2

IZt n (1-p)G0(Y(n))exp  Xn) in +

n=1 , in Jin

2
(n) *

+ pG (Y-(n))exp..... (n) inU
n L(Njn+in+NjnlP )(Nj +Njjn/p)1J (5.10)

Obviously, this can hardly be considered a practical metric for a

receiver. Nevertheless we proceed, trying to find P(x _).

Since the receiver uses a ML metric, we can use the

Bhattacharyya bound:

C00
D=E ff PM(Y (n) /x(n~j)P (n)/2(n~jn)dyln)..dy(n) /x(n)J

N f pr(S p(J) " PM(y(n)/x(nj)PM((n)l (n),J) dy(n)...dYln)

j=1 00(5.11)

and
Dwc = max D

O<P l

It is difficult to proceed analytically to compute D, but, it can be

easily verified that

N (I + E /Nj)lim D(p) =  P(j)2
p-*o j=1 (1 + E /2Nj) '

which is exactly what we have with no jammer, i.e. ,the jammer has no

effect at all. For p=1, we obtain
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N 3j

D(I) P ~ (j) E-* 2

j1

N= I + [J2(N + N jTI

Which is what we obtained before for the receiver having JSI. This is

what we would expect, since when p=1 both receivers are the same.

However, for intermediate values of p, i.e., O<p<l, the performance

differs.

Note that for the same receiver over a uniform channel, with

no background noise, we have found that p=1 generates the worst case

jamming. The same result seems to hold in the general case also.

5.3 Hard Decision Receiver with JSI

The jammer uses pulsed noise (duty cycle p) and nonuniform

distribution over the Slotted Channel. The input and output alphabets

of the channel are:

X = Y 4E {1,2,...,M)

and the conditional probability, when using the Jth sub-band

- j = l ....,N :

r r I i  : y = x , Z = O
1-c

. ; yx , Z=O

(5.12)
' I-Cij ; Yx , Z=1

J ; yfx , Z=1

Where
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< (_ .. ."' -- _________I1__ I_-__

~ (~J (1 k+1
,j (P(

k=1 '
1+ k I +

(5.13)
M-1 1Hj =1-i (.- ) k+1 1

k=1 k (5.14)

The conditional probability of the channel is

m

Pm(Y/xLZ) = ]l P(yn/xnjn,Zn)

n=1

Using the ML metric

m(yn ;xn nZ n) = t n P(yn/xn ,n Zn)

We obtain the Bhattacharyya bound
SP(x (X;X)

where

x z x)' x
'nfx

N 1
"" P(j) Pz (z) 1: ,PYXn z)P(Y/Xn,,],z)Sj=1 z=o y

Y, P(j) (1-p) 2 + C +
j=o

78

L



.4

Jr

+ P Jj -ij + M-2 (.5M-1 + (5.15)

Here also p =I maximizes D

N __

=c max D= PM 2 -1 + P-j(• "Dc o<p< 1 j=1 P1 )

(5.16)

5.4 Hard Decision Receiver with No JSI

The jammer uses pulsed noise (duty cycle p) and nonuniform dist-

ribution over the "Slotted Channel".

The input and output alphabets are

x =,,Y E {1,25,...,Mh

The conditional probability function, when using the jth subchannel,

j = 1,...,N, is:

P(y/x,j) = - (1.p)c Jj .ylEj(l-p)+Cjip-Yo (5.17)

y-1; x

where

M- 1 ) =-1)k+1 _ __

k=1 1+k(1 + E j/Nj

l+k + ;

ti 1 ) k+1 1
41 

1 j P =1 k ( I+k(1 +4
N i+N JJ/p

The metric we use is again the ML metric
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(m(yj;x/L) £n P(y/x?,L)

Hence, we have the Bhattacharyya bound

P( "'I W(x;x^)

Where

0=EIYiP(yn /X ni )p(y/Axni~ x /xt n

N P(j) x
J=1 y pyxjpI /n

j=1 M

M-it (5.18)

But m x f 1 p +-j ) l j , P + j p p 1

It is therefore clear that £~l

N [2~j E(ieji)+
DW max D E P(j)[ _ E

WC O<p<,l j=1 1M1Ji

where 
(.9

Note, that if the receiver had no Channel State Information then

1p £ P(j)E1-ce.(1-p)-Cjp ; y=x

e4lp+ P(/XZi [U + ; yOX

(5.20)
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and using the ML metric, we would have obtained

D = M-2 p (5.21)

when the bar is used to discriminate between the two receivers. Since

D(P) is convex Ai it is clear that D > D.

18

*1

*1
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CHAPTER VI

SIMPLE APPLICATIONS OF THE GENERAL BOUND

6. As shown in Chapter III , the cutoff rate for a coded bit in

the worst case jamminq environment is given by

Ro = log2[1+(M-1)Dwcl bits/channel use (6.1)

It is now a trivial matter to derive R for all the situations analyzed

above. In particular, we have derived Dwc for the Soft Decision receiver

with JS1 over a uniform channel. Since p = I is the worst case

jamming, we now let N0 represent the total uniform noise spectral den-

sity, which includes the background noise and the effect of the jamming.

Dwc is in this case given by

4 [1 + 5i
wc 2+

0 I(6.2)

Using eauations 6.1, 6.2,we have computed Ro for M = 2,4,8,16,32 as a

function of tb/No. These results are shown in figure 9.

Since the Soft Decision receiver having knowledge of p only,

achieves the same performance for p = 1, as the receiver having JSI.

The same figure shows also the cutoff rate of the two Hard Decision

receivers considered above. For both receivers over the uniform channel

DWc is given by

D c 1=T2 1 (6.3)

82



where: Mi

Ck1 (6.4)

In general, Dwc is a function of c , J, N & P, but,for a uniform

channel DWc can be writter as a function of Ec/No only. To emphasize

this fact we write
[c

and: R Io !CI
R =R°1 N- (6.5)

6.1 MFSK

Convventional MFSK modulation has the symbol error probability

bound <1
PS <  (M-I)D (6.6)

and bit error bound
: ~ - -M/2 pS

b-i S (6.7)

Now, since for MFSK

C b 
(6.8)

where

°:. K = 1og 2M
(6.9)

we have for the uniform channel

()K
b < 2 '2DI K b

0) (6.10)

Hence, the bound of the Soft Decision receiver is in this case
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.1 )

S(2+Ktb/No 
2

= 2K (I+Krb/No)

(2+K b/N0  (6.11)

whereas the exact bit error probability is

P M/2 P

2K-1 21(2Kli, 1
K  k+l 1

1k=1 1+k(1+KEb/No)

(6.12)
Both curves are shown in figure 12 for K=1

6.2 m Diversity MFSK

For m diversity MFSK we have the symbol error bound

Rm

!S 2s N- (.i (6.13)

where K

c m b (6.14)

Hence

P M/2 P5

SO (6.16)

For the Soft Decision receiver we then obtain
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IM

:4 + Kb
M ~mo

b KE 2

j (6.17)

We can compare this result with the exact bit error probability obta-

ined by a ML receiver, which for M=2 is known to be [41

P b i- (+, -1)(1P~i(6.18)j=o
where

2 + b (6.19)

inN0

Figure 12 shows both curves for several values of m. Given b /N we

can find the optimal value of m and the resultant Pb bound from equa-

tion 6.17 .Figure 13 shows the Pb bound as a function of Eb/No using

optimal diversity for M=2,4,8,16,32. The fiqure shows also the value

of the optimal m used to derive each calculated point. Since m can

only assume integer values, the smooth curves shown are only approxi-

mations to the actual results. As well known !41, for M=2 the opti-

mal diversity is given by

mopt = 3 N0

For the same value of Lb/N but higher M, m°oDt Is also higher.

Even when moderate values of signal-to-noise-ratio ( say

Lb/No 20 dB ) are expected, the optimum value of m may well be

unrealistically high. A variety of "practical" reasons may preclude

8
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the use of high m values. If, for instance, the information rate is

such that the "instantaneous" bandwidth of the transmitted chip is

nearly equal to the "coherence bandwidth" of the HF channel -a substan-

tial degradation in performance, not accounted for in our analysis, may

appear, when the bit time interval is chopped to shorter chips. More-

over, changing the chip rate so as to follow changes in Eb/No is

usually undesirable in practice. In such cases it seems reasonable to

choose low values of m, so that optimal performance will be achieved

when the signal is weak. Figure 13d may be of interest in such a situa-

tion. In this Figure we compare the performance of systems using

M=2,4,8,16,32, for m=K, i.e., the chip time Tc is equal to Tb for all

curves. It can be seen that under such a constraint, high M systems

have a profound advantage.

6.3 Orthogonal Convolutional Codes

Conventional MFSK with m diversity is merely a block code con-

Saining M code words of blocklength m. We can consider more general

codes using M-ary alphabets. An orthogonal convolutional code, for

instance, generates one 2K=M-ary symbols per bit. When used with m

diversity, each symbol is "chopped" into m chips and the bit error bound
"I

is [3]: • b K

- 2 D(6.20)

6.4 Example

Consider a Soft Decision receiver with JSI and a uniform channel.

:4 The information rates are
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a. RH = 2400 bits/sec..

b. RL = 75 bits/sec.

and suppose that at the higher information rate Ib/No -- 1dB.

a. For a binary receiver with no diversity, i.e., M=2, K=m=1, we

obtain from equations 6.2 and 6.6

D 3. = 0.934 10-1(2+39.8)T

and Pb I D = 0.46710-1

The convolutional code from 6.3 yields in this case:

Pb < 0.706 10
1

Recalling that diversity may help, we see in figure 13 that for this

binary receiver at Fb/No 
= 16 dB optimum diversity is m=13. Using

this value we obtain:

<M m
Pb< - D

4(1+39.8/13)]13 0.134-4 1(2+39.8/1 3)2 1 =o141 .

The chip rate is then

Rc =RHm = 2400 x 13 = 31,200 chips/second.

If 2400 chips/sec. is the highest permissible chip rate, we can try to

use a higher M. For M=2K=8 and m=K=3, the chip rate remains

1 Rc=2400 chips/sec. and c=b .

ccb*itHence: Pb M (Eb Im  38
Hec:< D = 0.09343 = 0.162 10-2

Which is almost as good as optimal diversity for M=2.
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The orthogonal convolutional code with M=8, m=3 yields in this case:

4(1+39.8/3) =024
= 0.2448

mN 0 (2+39.8/3)2

P 0.168 10-

b. For the low data rate, RL- 75 bits/sec.

S00 ( H = 32 x 38.9 1.244 103

Hence, for the binary receiver with no diversity we obtain from equa-

tions 6.2& 6.10 D = 3.208 10-3

and P b 0.1604 10-3

There is no need to use high m in this case. Suppose we take m=4.

Then: < 0.1317 10-8ib
and the chip rate:

Rc mRL = 4 x 75 =300 chips/sec.

I
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CHAPTER VII

OPTIMAL HOPPING STRATEGY OVER A NONUNIFORM CHANNEL

7.1 9ptimal Hopping Strategy For an Uncoded'Comunication"System

We now derive the optimum hopping strategy for an uncoded CS

threatened by a noise jammer. We assume a *Slotted Channel" as shown in

figure 1. The noise density N. is assumed equal for all sub-

channels: Nj=N ; j=1,...,L The mean received energy per chio of the

MFSK signal is defined by the vector

19= [ 2, E L_

where
= !T ; j=1,...,L (7.1)
j jb

Here Tb is the chip duration and o is the mean received power at
th3

the jth sub-channel. The jammer divides his power among the L sub-

channels according to

J = [J1 9 J 2 ....,J ]

where J. is the jammer power allocated to the jth sub-channel.

And L

j=1

The contribution of the jammer to the noise power density at the ith

sub-band, denoted N j, is

N jJ~ = (7.2)

We also assume that:
1 > r 2 > .... '""  L

To combat jamming the CS operator is free to "hop" among the sub-

channels. When hopping P(j) is the probability that the 21th sub-
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channel will be used (or the fraction of time sub-channel j is used).

The jammer observes P , but don't know the "hopping" plan" -a random

sequence which is adjusted for the desired P. Based on the. information

available to him, the jammer chooses J , subject to:

L

j=l

so as to maximize the probability of error of the CS.

For an MFSK noncoherent receiver over a Rayleigh fading

channel, the probability of error is given by (See App.!)

t-1 (M-k+1 1

I + k 1 +(7.3)

Suppose now that the jammer is very weak, so that even if the jammer

uses all it's power to jam subchannel 1, it would still have lower

probability of error than sub-channel 2,...,L. Clearly, in this case

the CS operator chooses:

P = [1,0,0,...,0].

i.e., no hopping. Only sub-channel 1 is used.

Now let J be defined by

N0tit
N 0o+Cl1 tl NO0

Or N

ti c
i_~~ tl -C 2 (7.4)

Then, Jtl is the jamming power that, when used to jam sub-channel 1,

makes it exactly as bad as sub-channel 2 (unjanued).

It is intuitively clear that for J > Jtl the CS operator-should hoo
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between sub-channel 1 and other sub-channels.

We now give a formal definition of the problem Let

P = [P(1).PJ2), ....,PJL)]

and . . .
- [J1 ,J2 , .... J

be the minimax solution, i.e.:
J maximizes P *b_ j) over all possible J subject to

LI J J

j=1
where L

Pb(P* = I P(j)c.j=I

L Pl 1 1; : p )  -I M ik +

o+kj j il(7.5)

f *

and P_ is the probability vector which minimizes the maximum Pb(PJ)

that the jammer can achieve knowing P.

Or, formally

J = max- P P

and

P min max Pb(Pi) (7.7)
- p i 3_ -

We want to find P and J

Using the Lagrange multiplier XI for the constraint

L
32 P(j) 1
j=1

Let9
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L

-- j=1 k=1 1+ 1+ 1

N0 +336

Then, the minimax ooint (P,J) must satisfy the conditions ( [3),

- Appendix 3B.1 - KUHN - TUCKER conditions)

a- P(j) = 0 ; all J such that PTj)>O

2: P(j) I

j=1 (7.7)

Also let

F2(P.J.A2 ) = P(j) 1 Xj=l k=  j'' 2 Lj=1 

+k1+ No+(7.8)

Then, the minimax point should also satisfy the conditions:

aF2(P ,- X)

( =0 ;all j such that P(j)>O@Jj ~ JJ

, ,

J. - 0 ; all j such that P(j)=0

L *

j=1

From condition I we obtain: (7.9)

M (11 = --0 ; all j such that Pj>Ok=1 +
l +k(I+ E.+)

N+c J
This implies that

; all j such that P'J)-O-
N0+c J
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This implies that at the minimax solution the probability of error Pbj

of all the active sub-channels must be equal. It also implies that the

number of active sub-channels depends on the jammer Power J: It was men-

tioned above that for Ji>Jt more than a single sub-chann is used,

while for JO t1 only sub-channel I is used. Similarly we define J tn

n<L to be the highest jammer power for which only n sub-channels are

used for hopping. Also,let J i be the jammer power allocated to sub-tn

channel i when J= Jtn

Hence:

tn = tr 3

Where

-1 2  .n n+1

No+cIJ n N0+c2J n No+CnJ n No

Then N

tn = co 'I i=1,2,...,n

Hence

I Z No - ; n<L
= F i=1 i 1=1 1i

tn n+1

I ; n L (7.10)

Therefore, knowing the Jaier power, the number N of sub-channels, the

CS should use for Hopping, is to be found from:
) 2 t,N-1 <  0 t (7.11)

We have seen that the minimax solution corresponds to
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~i1 E.
= ej=l ....

Nfl ~J.

0 33

3 Ec3  ,j1..

NN

j=1Oj'F1 k
Or:

Nj~ c.

+

i=1 ji

Hence:

=jj) 1 N C j

0.~ 1

Le

0 ii

Hence:.. ;
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Where

dx. c.Fr

(No + cJ1) 2

Hence, condition II implies:

P(j)c. 2 M-1 '-'+
S (1) k+1- k + X2 0 J=1...,N

k =1 [1 + k(l+E)] '

Or

P(j)c.

E j

But N .

7, P(j) =1
j=1

Hence N l

' j=1 cj

N~ E.-_ ; j l , : ..,

PTj) I CN
j=1 c

0 ;J>N (7.13)

7.2 Extension to Coded Systems

Our aim now is to show that the solution to the original minimax

problem, which delt with the probability of error of a channel. used

with no coding, remains a valid minimax solution for D(P),-which is

the Hard Decision bound parameter:
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.4
N ,(1-c- C .M-2j

j D(P) = P(j) [2 -Ii + K2]'. - J=1 .

-Where E. is the bit error probability of the jth sub-channel. Recall

7 i -

from 7.1 that if P is the minimax solution for Pb' where

N
P= P(j)c-(Jj)

.j=1

* ; * *,
and * = (el,C,...,C is the associated probability of error of the

channel, which correspond to the worst case jamming power distribution:

J = ( J2"'"JN)

then:

P = [P(1), P(2), ...,P(N)]

is the solution of the following system of N + 1 equations:

P(j) - + x , =0

N j P = I

J=1

and J is chosen such that

C (4 2(J* )  En (Jn
. *4° l(1 =€ = ...... = n

.. Similarly, since
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D(P,J) =  P 0 2 RM_ 1T+
J=1

is a convex (0 function of J, the minimax solution fore" D(P,J) is

to be found from:
qI

S-- + f- ]+ x . = 0 ;J=I,..,N

N --
IP(j) = 1
j=1

where J is the unique vector such that

mL

a n d 
( J.) 2 ( )(J* 4N )  c

N

j=l

tbut

d - 2

a-+ -1 .

j~~J FF Jl =

-I L V~ ~~ ._ o: , ,
1 - - M -2 © c d .

TCj
j
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4 I
N QE) J=J

U i j '3i

-where

"Q(d) + d+ M-S
U~j -1 -1 j E

Hence, the equations that we must solve have the form:

Q ej d - , + = 0 ; j=l,...,N

N. (j) i

j=1

or:

J+ 0 jJ ,...N

N -
Y P(j) = 1
j=1 (7.14)

Comparing equation 7.14 to equation 7.9 , it is clear that both

have the same solution, i.e., P(j) = P(j) (and only the value of X is

different - which is of no consequence).

It can be similarly shown that the minimax solution, found above,

- applies also to the Soft Decision bound:
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CHAPTER VIII

MULTI TONE JAMMING

8.1 Introductory Discussion and Definitions'

In this chapter we consider FH / BFSK signalling in Rayleigh

fading channels which are subject to multi-tone jamming. This kind of

jamming differs from noise jamming in several important characteristics

some of which we discuss briefly below.

It is intuitively clear that a multi-tone jammer is most

effective when it hits no more than one tone in each M tone sub-band.

In a way, hitting two tones in the same sub-band constitutes a waste of

jamming power. Consequently, given the total spread spectrum bandwidth

W, the available number of M tone sub-bands, and the total number of

tones the jammer must use in order to "cover" a certain fraction of

these sub-bandsis inversely proportional to M . Hence, the power of

each tone the jammer transmits is proportional to M, i.e. larger M

implies increased jammer effectivity. Therefore, FH / BFSK yields

better performance under multi-tone jamming than FH / MFSK signalling

j for M-. 2. In view of this fact the following analysis deals with the

binary case only.

- In the noise jamming case we assumed that under favorable

conditions the receiver may be able to detect the presence or absence

of the jammer's emission in the currently used sub-band for each chip

time interval. Under multi-tone Jamming, however, both the friendly
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transmitter and the jammer may hit the same tone position, and theref-

ore, the receiver cannot always (or nearly so) detect the presence of

the jammer. The concept of JSI is therefore unrealistic when-multi -

tone jammer is considered. In spite of the above, when N-:the number

of active sub-bands, is moderately large, the receiver may still be

able to measure p and therefore, a receiver having knowledge of p is

included in the following study.

Recall that in the noise jamming case we have used the random

variable Zn , n=1,. .. ,m , to specify whether the nth chip signal was

jammed or not. In the following, Zn is still used in the same manner,

but in addition we introduce the binary random variable jn defined as

follows:
0 O , the jammer hits w during the n chip time

i , the jammer hits w1 during the nth chip time

n=I .... m

we also assume that:

P.(O) = P.(1) = 1/2 ; n=1,...,m
n n

and that the receiver knows this fact.

In this work we assume that both, the signal and the multi -

jammer are subject to Rayleigh fading. Assuming that the Znth sub-tone

band was used during the nth chip time, the received jammer signal

(following the dehopper) is of the form:

Btcos(wit + n )  ic[o,1j n=l,...,m

where: b b 2
PB (b) = -exp -2a 2

n 0.it n 2ctJ2n
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and

P p(a) = OO<21r n=l,...m
n 0 , elsewhere

This implies that E B 2a

where a - the mean received jammer power at the jth sub-band isJi
given by:

a2 =Jaj

Jj J (8.1)

For convenience we also define:

C72TJi jJjc

- Jici (8.2)

We now turn our attention to specific receivers.

8.2 Performance Analysis Of Specific Receivers

8.2.1 Hard decision FH /BFSK receiver under pulsed/partial band

multi-tone jamming,

We begin with the uniform channel. The input and output alph-

abets are:
X =YE [o,i]

The conditional probability of y given x is:

m
-j P,(Y/x) = P(Yn/xn)

I n=1

But when no jammer is present:

1
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P(yn/xn,Zn =0)2n 
n

yn~xn(8.3)

Where:

2 = 2+ 'CN

while under jammiing

0I ' yflxn~jfl(84

Where

p1

2+ -.. +
4No NOP

E.

0 0E -
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(See appendix II for the derivation of p1  & po )

Pictorially:

1-P2  1-p-0 0 p 0  0 0

7 x y x y x y

P2  P1

1 1-p2  1 1 0  1 1 1-p 1 1

z =0 j=0 J=1n

Hence:
P(yn/Xn) = (1-p)P(ynxn Z0n=O) + PP(Yn/Xn ,Zn=1)

= (1-P)P(yn/xn Zn=O)+P[P(Yn/XnZn=l in=O)/2 +P(yn/Xn,Zn=1in=)/2]

and:

(1-p)(1-P 2) + p(1- -2--- ) y=x
P(Yn/X n) =

p o+p 1

(1-p)p 2 + p-PO-) y( X
, (8.5)

where:

2 +p 2 +

2 + 'N$ 0 0 o

-Without JSI the receiver uses the metric

m(yn ;Xn) = -W(yn ;xn)

(8.6)

which is a ML metric (can 
be written in the form .

m(yn;xn) anP(yn/xn) +b )
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Note that the receiver does not need to know p in order to use this

metric. Hence, the performance is bounded by the Bhattacharyya bound:

mm ~xnXn~ 4X P(Y/ )P(Yn/Xn)" "- min D(x Xnn)) 7 ' Yln: nX n
_-o<X n iYn- n

qn

I+ ?+Ej /NoP p 24 /NoP
-2 C-p) - N +P -Np" + J

2 N+ E c co2+ ! + NOP 2+ !- 2 + +

FN N N P 0 0 No p

1+ No 2N+N- 10 /2N+p

=2 0+ Do

wc= max D -- 2

24 op /N 0 c jc E Ed

2 + + - (8.7)

This can be written in a concise form by letting:
1+ L-+Ii- 1

Dwc~~~~ ' = a= 02
O<~l2 c !J

2+ c +
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.ip

Then:

wc= 2E(I-EM)

and W(x; )
P ~x;x -i7- p lx 1 wc_

Since cM dependsonly on the ratio c /N0  and IN 0 it is convenient

to define:

Tc cI o

and

Then:

1 + Vcg/2YM(y c~q) = 2 + IF q) 2 + (8.8)

When clN 0>>1 and jIN0 >>1 , cM('c, ) reduces to:

CM (1V (8.9)

A trivial extension of this derivation yields a similar bound

for the Slotted Channel:

N

Dc >P(j)2 V/Mj(I'rj)"Dc j=l "

where: (8.10)

I + E/N.2

£Mj - £

2 + -+

- (8.11)

8.2.2 Soft Decision receiver having knowledge of p over a neglig-

ible noise Slotted Channel under pulsed / partial band multi.-tone
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( jarmmer.

The input alphabet is x E (0,11

The output alphabet is:

(n (n)(n

-Where y~)is the kt detector output at the nt'chip time.

The conditional probability of y given x and the particular hopping

sequence L is:

where:

(n) , (n) =(n),, (n)

kno n

=P ( (n)fx(n) A (0)PZ(0) +

n n

=(IP)P2(Y (n)/x (n)t n.,0) + PP2(y (n)/(n),t n,I)

()(n) .~0

+ P2y~n/x () tn~l~n~xn))+ P 2(Y.(n)/x (n),,, n~l jn fx(nb]

But: P Y(n)/x(n ),i 0) =-~ n)Xn, OpYn)Xn
P2( / n - (nY x nO)P (n)/X nO)

2 y(n) y(n)

Where

~1~1 x =1
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and:

(n (n,,n (n) ,(n), nlJ (n)  -

i . " ~y (n), n n

2y(n) ) (n)
x(n) x (n) (n)

exp - 6(Y(n))

Whereas:

-, (n) Ax(n) n1,jn=(n))
Ti fln n

"vY(n)1 'n

2y(n) (n) 2  (n) (n)2

x (n) Jx(n)I 2Y i(n) (n)
-exp exp

n E n it np En

To use the ML metric we take:

(n). (n) (n) (n)
; 9x /t) n tri' 2 (Y /x 9 t n

in n(-Pp P((n) /x (n) O )+

(n) (n) (n)(n (n),, n n
Y ln,jn= , + P 2 (Y A j),jn )

(8.12)

The Bhattacharyya bound parameter D is then given by:
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D= E_ _ _ _ _ _ _/x (n) _I _) _ (n )_/ _(n) _ _ ( n ) ( n ) ( n )

-n) -n)n), )nn)

N r(n )dy (n)71PO) f2(y-(n)/oJIP2(y-ln)/IJ) dyln y2n

j=)

y(n)

Substituting P2(y(n)/o,j) and P2( (n)/l,j) ,the last expression

reduces to:

2
N (n),

= Pj) ffoi exp 2 + 1 /
j=l oo 0 2 (n)

o p+1___ ( )dy (n)

P(j) iF y exP-

J=l jj/p 2 Ej j/P

N 2M!

J= • (8.13)
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I iHence:

D,= max D D(1)= [P(j)
o<I j=1 (E + rji)_"

N 2[ ./1j

(8.14)

The worst case jamming is in this case also p=1. For the uniform

channel D reduces to:

(1 J/EC (8.15)

The last relation is shown graphically in figure 14. It shows the

apparently "strange" fact that when the background noise is very low,

a ML receiver performs better when the jammer is stronger than the

signal ,than when the two are equal.In fact, the worst case jamming is

obtained when E = 1.

JcDwci)

c

.1 .3 .5 1 2 3 4 10 EJ/1 c

Figure 14. Dwc For the Soft Decision Receiver

Under Multi-Tone Jamming
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8.2.3 Soft Decision receiver having knowledge of p over the

uniform channel under pulsed / partial band multi-tone jamming.

The input alphabet is: xE {

- The output alphabet is: Y(n) = (n) (n,)) n=l,...,mj

The conditional probability of y given x is:
m

P 2m(-l!)= mL P2( (n)/x(n))
n=1

where: /x n)(n) = (l(p)p2( /(nn),z=O) + pp2( (n)/x(n),zn=l )

But: (n) Zn=O )p2 n/x z0 =

12y n) y(n) 2 y(n) ,  (n) 2
x( ) (n ) x i(n)

-exp - ~()exp

No + Ec No +c N0  No

and:
P2e,(n) /x(n, ) =

I p2Y_ (n) /IX(n),lJn x(n)) + P2( (n)/ x(n),lI,Jn -- (n))

N
2y (n y (n) 2 y(n~) y. (n)2

S (n )  x Y n) in)
- exp exp -

2y ,(n) Y (ni) 1 Yi.(v) Y~(n)

+ x- exp - x t exp-
2No0 + Ec No+ c N0+ lp  No0 + EJP
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( iTo use the ML metric we take:
(n) (n)) = nP2 (n)x (n)

I ;x 2 t 2(Y /nn =

=tIP /x z =0) + 7

2 nY_. [ ( p( )/(n) n. ,1n__.())+ ( ) /x (), z__1,j -= n)

The Bhattacharyya bound parameter D is then qiven 
by: (8.16)

=( (fl -.() n (n) . ;x) f)x~n
D= P (y (n) (n))P2 (:(n)/ x(n))' y (n) ;

fn )2 y")OP2 y-)1 dynd 2

Y-(n)

Where:
P(n O) = (n)P ( - / ) P 2(Yo 'Yl "/ "--

2y()y() yn n) 2
- (1-p)---- exp 0- 1- exp I +

0c0 C N0  0

(n)o (n)2 (n) (n)

exp - -exp
N 0N+Ec+[oP NO+Ec+Ej/P NO NO

I2
- 1 2(n) 1 (n)) (yn) ex(n)___

1y 
0

an +F INo+E +r /P N +E /

'J').:., - 0 c 0o 0o ,o1 , ot
~~~and (n)()") " " (n) l) ) - " (n)4 °) (n
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This is as far as we can go analytically. It is easy to show, however,

that
4(1+t /N 0)

tim D = C 0
Po (24 clNo )2_:'

which is what we obtain-when there is no jamming. Again it seems that

p=1 is the worst case jamming.

Since the ML metric for this receiver requires knowledge of

p, and is difficult to implement even when p is known, we try another

approach. It follows from our result on noise jamming, that when no

jammer is present, the total ML metric of aSoft Decision receiver is:
2

m(y;x) = Y •(n) (8.17)
n=1l

which is jast a sum of squares of the energy detector outputs corres-

ponding to the sequence x . We want now to find the performance of a

receiver using this metric under pulsed / partial band jamming. Usinq

the Chernoff bound we obtain:

__ Ee n1 x(n) 2"()
P(X-*') '< E [exp1 E X(y (n) Y y(n)) A~~.]

Eep x(n)- x(n)) /x(n)]

n=1l

m
~ II D(x(n),-(n);)
n=1

where: (n ,(nn)2  (n2 ) 1
D(x ,x n);) = E exp 1(Yxn)- ( xnn) )/x (
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C=E[E[expI( Y(?) 2- (n~))1 /x() n l n)] j

(n n) Y()"

E[exp ( ) /x (n.) 1 s j n 1 Xy n ) n z (n

n) " 1 zip jin nn

1. zQ z~)~x n

-et (n)2 (n)

(n 1/~~~]1 z1l jx

Henc, fo ~.() ~ ~ (n, D(~n~j(fl)~)

12

(n)U ~ J/,(1,j 1- - 1 * -



+ _-P p/2 +

+ p/2

T 0 J/< P,

S0 +Ej/p (8.18)

= D(X)

Note that for any allowable value of X,the first term, namely:

1-p

(1-XN0 )[l+X(No+Ec)]

approaches I as p o0, and therefore:

min D(X) p-*, - I

O<X-C 1
No0+F J/P

We conclude that the bound of the Soft Decision receiver using this

metric is worthless. We expect that in general the receiver using this

metric has poor performance under a low duty cycle jammer.Recall that

the same result was derived above for the noise jamming case.

8.3 Ro Evaluation and Simple Applications

Having derived the parameter D for the multi-tone jamming case

- we can now compute R from the equation:

Ro '-°g2 l+Dwc('g) (8.19)
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8.3.1 BFSK:As for the noise jamming case, the bound on Pb - the bit

error probability is:,

2 P '{b

where: b
b N

For the special case of a Soft Decision receiver over a negligible

noise uniform channel, the bound takes the form:

IJ/Eb

b (1+J/b)

= 2

(1+g)2  (8.21)

We want to compare this bound to the exact performance of a ML receiver

using the same channel. In this case the operation of the ML receiver

can be given a very simple interpretation.

Only two events may occur with nonzero probability

a. One detector output is zero and the other is nonzero.

b. Both detector outputs are nonzero and one is larger than the

other.

When a occurs the ML receiver chooses the nonzero output. When

b occurs and Ec > [1 , the receiver chooses the largest output,

otherwise the receiver chooses the smaller output. The exact error

probability of this receiver is therefore (See Appendix II ):
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1+ , -q>g1

8.3.2 En Dierit BFSK

When raio diversit-xt is used:

_2g E~

InIq

8.3.2~~ (8.23)it BS

UsnWhen HaivrdiDeisio reevesudoera uiomcanl

~~0 b (8.22)

~~.. 
I

2 m~(+g/ (8.25)

Fsigre 15r shosctisiond aseie bofunto ofe a unform eveanl:le oh

p~rmeer ~wenforeah oin te otiumvale f wa ued
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p b Figure 15. - FH/BFSK. Optimal Diversity

i - iard Decision Receiver. Multi-Tone Jarmnnq -

-- - - .. .. ..

4t27

10-

10-3i
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8.4 OptimumHoppi n9Strategy over a Nonuniform Channel

We now derive the optimum hopping strategy for an uncoded CS

- threatened by a multi-tone jammer. As in the noise jamming case, we

- assume a Slotted Channel as shown in figure 1 . The noise density N.

is equal for all sub-channels: N =N j=l,... ,L. The mean received

jammer energy per chip of/the BFSK signal is defined by the vector

= (Jll'J21 ...... FJL)

where Ejj . ,T ,j=1,. .. ,L

Here at is the mean received jammer power at the ith sub-channel. The

jammer divides his power among the L sub-channels according to:

J_= (JiJ 2 ... .. . ,JL)

Where J.i is the jammer power allocated to the j th sub-channel and:
L

II

The jammer's propagation loss is defined by:

c = (cl,C 2 ... . . ,cL)
where, [JJ -a ojTb

. = c.J.

The mean received energy of the BFSK signal is defined as before by:

E ( ',2 , .... ,r L )

where we assume that

E I 1 E2 > E3 .... ) EL"

In Appendix II we show that the probability of errbr of a
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BFSK noncoherent receiver over a Rayleigh fading A3IGN channel, when a

tone jammer is present is:

when the signal and jammer hit

oN +E ; opposite tones

Pb

0o when the signal and jammer hit

2No+Ec+rJ the same tone

Assuming that the jammer and the signal hit the same tone with probabi-

lity 1/2 and opposite tones with probability 1/2

N 0 _ +E_ I N0
b-22No+Ec+EJ 2 0N+rc+F

N 0 J/2

2N +Fc+E J

N +cJ/2
2N 0+r c+CJ (8.27)

(In the following we write Pb instead of P.)

From this point the derivation follows closely the one given in Chapter

7 for the noise jamming case.

Suppose that the jammner is very weak, so that even if the

jammer uses all its power to jam sub-channel 1, it would still have a

lower probability of error than sub-channels 2,..,L. Clearly, in this

-case the CS operator chooses:

*P = (1,0,0 ,...,0)

i.e. no hopping, only sub-channel 1 is used.

Now let J tI be defined by:
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No+CIJtl/2 No

2No+F +c Jt 2No+

Or:

- tl = i cI -2

F Then, Jt is the jammer power that when used to jam sub-channel 1,makes

it exactly as bad as sub-channel 2 (unjammed). It is intuitively clear,

that for J > Jtl, the CS's operator should hop between sub-channel I

and other sub-channels. We now give a formal definition of the problem:

Let
P eP*(1),P*(2) ...... P *(L)]

and * **
3- = 2 ....... 'LJ

be the minimax solution, i.e., J maximizes PbP over all possible

J subject to:

j=J J

where * L P*

b (' - ) = bjJ=

p*(j) (8.28)

j=1 2No 0 4 _c +

and P is the probability vector which minimizes the maximum Pb(PJ)

that the jammer can achieve knowing P. Or:

-* 1 * 1
J = max Pb(P ,J) ; : J2 3

j=1 -
and:.-

p = min-imax Pb(P-)
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We want to find P and J

Using the Lagrange multiplier X] for the constraint:

I L
.: P(j) =I,•

j=1
-Let

L N +c.J.12 L
FIpJ I P(j) N j 2 + I.N(- _E

- "= 2N04+c Jj  j=1

Then, the minimax point (p*,J) mast satisfy the conditions ([3]

Appendix 3B.1 - KUHN TUCKER Conditions)

-F-(Pj 1 = 0, all j such that Ptj)>o

L

I P(j) 1
~j=1

Also let: L LL. No +c j j j /2L
F2(P,J,X 2) = 2 P(j) - + 2( 'Z j-

(j=l 2No0+E i+cji i j=l

Then, the minimax point should also satisfy the conditions:

FV 0, all j such that Ptj)>o

Jj = 0 , all j such that Ptj)=o

- L

J=1

From condition I we obtain:
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- = 0 ,all j such that Ptj) >0

2N +[.+c.J_

This implies that at the minimax solution the probability of error Pbj

of all the active subchannels must be equal. It also implies that the

number of active subt hannels depend on the jammer power J.

It was mentioned above that forJ > rmore than a single

sub-channel is used, while for J < J t only sub-channel I is used.

Similarly we define Jtn 'n < L to be the highest jammer power for

which only n sub-channels are used for hopping. also let J t be the
tn

jammer power allocated to sub-channel i when J =tn. Hence:

n
= j

tn i=1 tn

And by condition I

No+C1J n12  No+Cn Jn/2 NO

2No+1 +C J 1  2No+En+CnJ n 2No+Eo 1 1ltn 0 n n tn 0 n+1

From which we obtain:

J 2"° l i  'IJtn-- 1~(~ ; iP1,2,. ..,n

and 2o E

C N n n
-" E -I - 2N n < L

Jt 1n+1 i1Ci 0 i=1 c,

- ; n I L

Therefore, knowing the jammer power, the number N of sub-channels, the

CS should use for hopping, is to be found from:

129



We have seen that the minimax solution corresponds to:

N +C.J/

2N +F +C.J.

3. 0 ;j>N

Hence: x 1 F j- N 0 (1-2A 1

Surmufing over all j:. N E

1 X, LI - 2N 0 2

J+2N 1
1O 1oj c

x1  2 N E

j=1 j F1 cj

and: J2N N

2 N C:2
oJlc .

j=1 Ci (8.30)

0 ;j>N

-To find P we use condition 11

.3 JJ
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(2N 4 +x 2 =O

Or: ./
P(3) *2 + x =2 0 ; =9..9

(2N 0+A!i+c iJ )

Substituting J. from equation 8.30:

F' J + 2N 0
Ptj) = -2X 2 cJ I+ N E j

Summing over j: J+2 N 1 2

N 0 j~ N 0  i N.

E: Pb?)= = 2 + - I C
j ~ ~ j= N jj

N 2 -1

I J + 2N 0 11 N I.
* 2  N1 2 }lc i2 Nl +~ j

Hence:

itPli) =N

131



Equation 8.31 and its parallel for the noise jamminq case, equation

7.13 have exactly the same form. Note however, that the set of con-

stants ch, j=I,...,L was differently defined, reflecting the fact

that in the multi-tone case the jammer too is subject to facring. In

contrast, equation 8.30 and 7.12 are not identical and therefore, result

in a different jammer power distribution.

We must still show that this procedure leads to the required

minimax point, i.e., that:

J= max- P_(P , j)
J b 7

and that * -

P i m 1 ax Pb(PJ)
- P J

Let us show first that the extremum point of Pb (P,J) at J = is

a maximum and that Pb(P J) exceeds any other value of Pb(P ,J).

(p*J) c *c/2

aiJ10 (2N o +E +c 3J J)2

b2 J) R .(j)

b = P j) '- -3 < 0 ; for all O<J.
"J. (2N0+E.+c.J)

3

To show that m
P = min max P b(PO)O

P ,J

recall that when J = J , all the active sub-channels have the same

-error probability whereas the non active sub-channels either exceed or

equal that level. Hence:

p r for every probability vector P
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Clearly:

P b (P,_*), max Pb(PJ)
J

S b( ) max P _P )

" But, by definition:

Pb( ,01 9!1 max P b(P ,J)J

Hence

max Pb(P ,J) < max P b for every
J J

probability vector P.

rin max Pb(psi)
P J

The last result can be applied equally well to the coded

systems discussed above. The proof is very much the same as that qiven

for noise jamming, and was therefore ommited.

13
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CHAPTER IX

CONCLUDING REMARKS

The performance of'FH/MFSK noncoherent CSs over an HF Rayleiqh

fading channel, which is subject to jamming, has been studied. A general

error bound was used to evaluate and compare the performance of several

coded CSs under noise and multi-tone jamming. The same bound was used

also to optimize certain receiver parameters. The receivers studied are

basically conventional noncoherent FH/MFSK receivers, which for every

chip time-interval generate M matched filter output signals. The

receivers differ, though, in the type of processing these M signals

undergo and the metric used by the decoder.

For each receiver the "worst case jamming" was found in terms of

,Pwc which is either the jammed fraction of the total spread spectrum

bandwidth, in case of partial-band jamming, or the duty cycle of a

pulsed jammer. The cutoff rate R0 was then derived for each receiver

under its worst case jamming condition. Pwc depends,in general, on the

receiver being used. For a Hard Decision receiver, pwc is one, whether

JSI is available or not. Soft Decision receivers may exhibit worst per-

formance at low values of p. It has been shown that the simple squared

matched filter output metric, which is optimal for broadband / contin-

uous Jamming (and, of course, for non-jammed uniform channels) results

in a poor performance when p is small. Under this kind of jamming, the

Hard Decision receiver Is a better choice. A similar situatfon may arise

when a Soft Decision receiver, having no CSI, hops over a nonuniform
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channel. A Soft Decision receiver using the squared matched filter

output metric performs better than the Hard Decision receiver, provided

that, JSI is available, or when p can be measured and the ML-metric

implemented. Both techniques may add considerably to the overall comp-

lexity of the CS. Another approach has been demonstrated by introducinq

the Quantizer-Limiter and the Limiter receivers. These easy to imple-

ment receivers seem to outperform the Hard Decision receiver provided

that a certain receiver parameter is tuned to its optimal value, which

depends on the noise spectral density and the mean signal power. It has

been shown, though, that the performance is relatively insensitive to

changes in the value of this parameter.

As well known [4,5] diversitywhich in effect transmits each

coded bit over many frequency sub-bands, which fade independently, may

be extremely beneficial over fading channels. This is also the case

when combatting jammer is the issue. The full impact of optimal diver-

sity for the Soft Decision FH/MFSK receiver under noise jamming can be

seen when comparing figures 12 and 13a. Typically though, in prac-

tical situations there is a constraint imposed on the minimal chip

duration, limiting the maximal order of diversity. In extreme cases

the minimal T is equall to Tb , i.e., for M=2 no diversity (or

coding) is possible. In such a situation high M systems have an

impressive advantage over binary systems. On the other hand, binary

systems may perform better than high M systems under multi-tone

Jamming. Such jammers, however, require more jamming equiDment and

more information about the target CS. A system in which M can be

field selected according to the kind of threat and variable-field con-
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ditions seems very attractive.
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APPENDIX I

- Derivation of the Symbol Error Probability of a Norcoherent

- Orhogonal MFSK System Over a Rayleigh Fading AWGN Channel.

The situation is represented schematically by the folowing model

1 1

Y
p/M-1

M- M

The input and output alphabets are X Y4{1,...,M}.Assuming that x=1

was sent, the probability of symbol error is

I P = P fyl < yi for some i~l/x=1}
r1 i

Where Yk is the output of the receiver's kth energy detector. Hence:

P = 1 - Pr{Yi y1  for all i~l/x=11

S- P(yi < for all ipl/x=1)P (a/x=1)da

= 1 - [I-P(y i ) a/x=l)] M-1 P (a/x=l)da'
f Y

0

But, Yj is a Rayleigh random variable having the probability dlstri-
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bution [4]:

P(Y/x=1) =iY-exp No

1 0 O) Y>O

-Where N is the one-sided spectral density of the received noise.

-Also
P (yyx=l) = 2y' exp - y>O
Yi No0+[ c No0+E c

Where Ec is the mean received energy per synmbol.

Hence, for il:

P {Yi> a/x=1} = exp - a: r N~o

* ~i1M-1
[1 -P(y. > cz/x=1)) -i = [i-exp N]

= -1 M (M-1)(=i)k+lexpj= k2

k=1

Therefore: O-

M-1 Mk) (.)k+ I  exp 2d
P k= - - 2 expk=1 o4 No0+1 c No+ 4c

M-1 (M-1) "1) k+i 1

k'1 \/ +k(l+4cIN o)

For M=2 this reduces to:

~= 1

2 + Ec/N
o1
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APPENDIX II

Derivation of the Symbol Error Probability of a ,oncoherent

.Orthogonal BFSK System over a Rayleigh Fading AWGN Channel Hit by a

Multi-Tone Jammer.

We assume that during each chip time-interval the jammer hits

either w or w, when wo and w, are the two designated tone posi-

tions of the BFSK receiver. Let the random variable j be defined as:

(I 1 the jammer hits w,

0 the jammer hits w0

Then, assuming hypothesis Ho is true, rco and rso (see figure 2

are independent zero mean Gaussian random variables having the common

varians :

N 0 +  c ; j=1

E{ro2 1 E r o =
Co so

N0 + c + rJ ; i=o

Likewise, rcl and rsl are independent zero mean Gaussian random varia-

A bles having the common varians:

NO+J j=1

_Efr 2 1} Efr 2}

- N r; j=o

Defining:

./Vr2o + r 2

Zo c so
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We have:

P (z/1)= 2 exp
Z /j NIE +c

P (z/O) = 2z exp z2

z / N0rc + J NOoo+j

p (z/1) 2z exp z

z 1/fj 0 +riNo'EJ

P (Z/O) L 2 exp

Hence:

P(error/H0 ,j=1) =P(Zj >. Z0/H0 ,j=l)

P( >, Z /H ,j=l,Zo=z)P (z/H ,j=l)dz
Jl1 0 0 0 Z 0

00

= P(Zi z/H 0 ,j=l)Z z(z)dz
0 f0

But:

N(Z> Z) p =M0jld

z

2z z2___
- -ep -dz
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i

I exp I- N-K

;' P(error/H°J= ) = eexp No No

N 0 +

2N 04 +[

Similarly,

P(error/Hoj=O) = P(Z1 > Zo/Hbj=O)

OD= f1 I)1Z /H ,j=O,Z=Z)Pz (z/H ,j=l)dz

0 0

N0

2N +F 4

Hence:
P(error/H )  PNerror/Ho,=1) P(1) + P(error/H o,J=O)P (0)

N + N
Pj(1) + P.(O)

2No+[c+J 2No+4c+E

By symmetry:

Pierror H1) P.(O) + P(1) NI

2No04c4 2No04c+ri

Assuming now that w and 7l are the apriori probabilities of H o and H1,

we obtain:

Ps = P(error/H1 )11 + P(error/Ho)IIo

141

i __________________M_



NO +[ NO

0
2No+Ec[ 2No4+[+[

0 C J 0 c J

Assuming also that H= 2 = we obtain:

N + [ /2

PS 0
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