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SEA ICE DRAG LAWS AND SIMPLE
BOUNDARY LAYER CONCEPTS,
INCLUDING APPLICATION TO
RAPID MELTING

Miles G. McPhee

BACKGROUND

The drift of sea ice is determined by a balance
of forces including a flux of momentum from the
ice to the ocean, which is more often than not of
the same order of magnitude as the tangential stress
exerted on the ice by the wind. Its representation
is thus a major element in a mathematical formula-
tion of ice-drift dynamics, and it has received much
attention as a problem in planetary-boundary-layer
(PBL) theory, beginning with Ekman (1905). Most
ice modelers are reluctant to include complete sub-
models of the oceanic boundary fayer in their nu-
merical codes and seek instead to parameterize the
tangential stress between the ice and ocean as a
function of the ice velocity relative to the undis-
turbed ocean by using relatively simple expressions
which we shall call ocegnic drag laws. Several drag
laws have been proposed by various authors, and a
modeler perhaps not well-versed in PBL theory faces
the task of choosing a formulation suited to his
work. The primary intent of this report is to assist
in that choice by providing a framework in which
severa] drag laws may be compared, both in terms
of how well they describe pertinent data, and how
they fit within the guidelines of PBL theory.

Before the PBL equations could be routinely
solved numerically, drag laws for sea ice (and for the
atmosphere) were obtained by patching an Ekman-
i.ke solution, appropriate for the outer part of the
boundary layer, to the solution for a relatively thin
layer adjacent to the surface (e.g. Rossby and Mont-
gomery 1935). We shall adopt the same approach,
at the same time attempting to rationalize it with
recent measurements by progressively introducing
concepts from modern turbulence theory into a
series of boundary layer formulstions which provide
drag laws ranging from &near (i.c. where stress is
proportional to relative speed), through quadratic
{where stress is proportional to relative speed squared),
arriving finslly at a Rossbysimilarity law consistent

with one we proposed earlier on the basis of numer-
ical modeling (McPhee 1979). Most drag laws found
in the literature (Shuleikin 1938, Reed and Camp-
bell 1962, Rothrock 1975, McPhee 1975 and 1979,
etc.) fall into one of the categories treated.

In addition, the theory is extended to include
the effects of rapid meiting that might occur if sea
ice were advected into comparatively warm water.
The problem is addressed both for the practical
purpose of interpreting and predicting sea ice be-
havior near the ice margin and also as a novel appli-
cation of stable atmospheric boundary layer studies.

Despite the simplicity of the concepts and math-
ematical models developed here (nearly ali the cal-
culations were done with a hand-held calculator—
albeit one designed for easy manipulation of complex
numbers), the final resuit is remarkably consistent
with the knowledge we have of momentum transfer
in a neutral or stably stratified PBL. Thus a second
purpose of this report is to emphasize that the ice
drift problem can be turned around to reveal much
about how boundary layers work. We took this
approach, for example, in using ice drift, surface
stress, and current meter measurements to corrobor-
ate results from a numerical PBL model (McPhee
1979), and also to investigate time-dependent re-
sponse to rapidly changing winds (McPhee 1980a).
Here we bypass some of the more complicated features
explored numerically in the earlier works (e.g. inertial
waves and abrupt changes in density at the base of
the mixed layer) to examine what the stress/velocity
relationship for drifting sea ice implies about the
basic structure of PBL turbulence.

To start we establish some conventions, the first
being that horizontal (two-dimensional) vectors are
represented as complex numbers such that A =4, e,
+Ae, (where ¢, and e, are orthogonal unit vectors)
becomes A = A (cos & + i sin o) = Ae#®, where i = -1,
The real axis is aligned with e, the imaginary axis
withe,,a=tan™ (4,/4,)and A = UI. Note that
2 :ymgol with a caret indicates a complex (vector)

.
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quantity, while the same symbol without a caret
denotes only magnitude. With this convention, it
is meaningful to describe products or quotients of
vectors, which are also vectors, e.g. for B = Be/é

A/B = (A/B)eie$) |

Note also that rotation of a vector in the horizontal
plane through an angle 6 (positive counterclock-
wise) occurs if the vector is multiplied by the factor
€. Complex notation is introduced both to avoid
intricate geometrical constructions and as a compu-
tational aid.

The second convention is that, unless otherwise
noted, the velocity appropriate for a specific drag
law js the relative velocity between the ice and the
undisturbed ocean. This reiative velocity is the ice
velocity with respect to water below the maximum
penetration of the frictional PBL, which is also the
geostrophic flow due to sea surface tilt (provided
there are no horizontal density gradients in the
mixed layer). Usually, the ice drift is larger than
geostrophic flow and the momentum flux is down-
ward, but the flux direction is unimportant as long
as the drag law is expressed in terms of relative
velocity,

With complex notation in a frame of reference
fixed to earth, the balance of forces acting at a
point in a large, uniform slab of ice in steady drift is

m -,c""’=p.1.'. -pw1-'°+l-+§. )

where m = the ice mass per unit surface area
S = the Coriolis parameter
V; = the absolute ice velocity
p, and p_, = air and water densities
7, = the kinematic wind stress
To = the kinematic stress exerted by the
_ ice on the ocean
I'= the force due to a gradient of internal
. fce stress
§ = a gravitational force due to sea-surface
tilt (S = -mgX)
¢ = the elevation of the sea surface
g = the acceleration of gravity.
. By definition, geostrophic flow in the ocean
V, is given by

fV,ei*i = gt = Sim Q)
so that
mAV, - V.)e"ﬁ =imfV = p.1:, b Tot]

where ¥ is the relative velocity described above.

In McPhee (1979) we analyzed the relationship
between 7,, and V/, using wind stress and drift velocity
measured during the 1975 summer melt season at
four drifting stations of the AIDJEX Experiment
near the center of the Beaufort Gyre in the central
Arctic. The major difference between this and
earlier analyses (the most extensive being that of
Reed and Campbell 1962) is that we considered
only data from a 60-day period during which we
were reasonably confident that the internal ice force
I was small. During the remainder of the year-long
AIDJEX drift, / was often a significant part of the
force balance (McPhee 1980b), and affected the
long-term statistics of ice drift appreciably. During
the short time of the year when / is negligible,
measurements of Vg and the lp-m wind velocity,

Uy o, along with estimates of Vg»m, and the wind
drag coefficient,C, q, provide the interfacial stress
7, from the relation

Puts =P, CroUroUso - imfV. €))

Given a sufficient population of sample pairs, 7,
and ¥, an expression of the form

E
7, =al® e

can be derived statistically by a linear regression of
the equation

log7,=blog ¥V +loga.

Figure 1 from McPhee (1979) shows results of such
an analysis on summer AIDJEX data filtered to

30 T

STRESS (cm® s7%)
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Figure 1. Kinematic stress vs relative speed between
ice and ocean under free-drift conditions. Solid curve

i best-fit exponential, dashed curve is theoretical
prediction from McPhee (1979).

RSO L TP




R g o ettt G A v s wmw@-ftw“uﬁﬁf- o

remove inertial motion. In all, 254 samples were
obtained with relative speeds greater than 8 cm 5!

in order to minimize the effect of uncertainty in

'). Stress was calculated for each sample according

to eq 3 with C, o = 0.0027 and m = 250 g cm2. By
least-squares regression, the exponent b with a 90%
confidence interval, was found to be 1.78 + 0.12.
Thus the relationship was close to quadratic (5 = 2),

but statistically different at the 90% confidence level.

The calculated magnitudes of 4 and the deflection
angle § between 7, and V, are sensitive to C, 4 and
m, both of which have relatively large uncertainties.
However, we showed (McPhee 1979, Table 1) that
the exponent b is insensitive to variation in C, o
and m over a large range of plausible values. We
therefore concluded that, despite uncertainties in
stress magnitude and $, the shape of the 7, vs V'
curve as indicated by b was well-defined by the data,
and that a proper stress formulation should exhibit
similar shape. The dashed curve in Figure 1 results
from the numerical model of McPhee (1979): its
shape factor turned out to be b = 1.70 + (.00, which

was within the confidence interval found for the data.

It was more difficult to assign an experimental
value to . One measure was the angle between neg-
ative ice drift and current velocity measured at 0.2-m
depth. Over the entire year, the average for all
camps was about 24° (McPhee 1980b, Table 2) but
there was much scatter in the data. Precise current
measurements from the 1972 AIDJEX Pilot Study
also showed £ to be about 24°, so this value was
accepted for an average, but with much less certainty
than the value for b.

In the next section, we consider several drag laws,
each with a corresponding simple PBL model. Our
evaluation of each law depends primarily on how
well it satisfies the shape requirements implied by
the AIDJEX data.

HIERARCHY OF DRAG LAWS AND
SIMPLE MODELS

The drag law in complex notation

In order to simplify as much as possible a com-
parison among several drag formulations, it is useful
to express the drag law, as follows. First define the
friction velocity as

. A
Uy = ;’2.
7,1/

where 7 s the vector kinematic stress at the inter-
faces. Note that 4. is a vector {complex number)
in the direction of 7, with magnitude 7,/2.

Figure 2. Schematic of friction veloc-
ity[surface velocity relation in com-
plex plane,

From comments in the previous section, we ex-
pect realistic drag laws to fall closer to quadratic
(ie. 1, « V2) than linear (7, « V) and to exhibit a
turning angle of the order of 20° to 30°. Using com-
plex notation, we express the drag law as a ratio of
Vandu,:

Y ar=res. (€))
Ue

From Figure 2 we have
'; v (ay-a,)

=———-e

F=—
U, Ue

so that I' = V/u, is a dimensionless surface speed and
B = ay- @, is the rightward (f positive) deflection
angle of surface velocity with respect to interfacial
stress. Note that I and g are constant for quadratic
drag with constant turning angle; all other Jaws have
I" and § dependent on other parameters of the problem
(e-g.u.,f, etc.). Expressing the drag law as a com-
plex ratio greatly simplifies its algebraic representa-
tion and is computationally useful (e.g. given u.,
V is found by a scaling, I", and rotation, e#),

The momentum equation for the
planetary boundary layer

The harizontally homogeneous, steady-state PBL
equation of motion is given in complex notation by

U= ¥V + 3 (5)

where Uy is the velocity in a frame of reference fixed
to earth, 7 is the kinematic, turbulent Reynolds
stress, and we have expressed the pressure gradient
due to sea-surface tilt in terms of the geostrophic
velocity from eq 2. As with the ice momentum equa-
tion, we eliminate V_ by considering a reference
frame drifting with the geostrophic velocity; hence
for V= U, - ¥, eq S becomes

4
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To solve eq 6 an expression for 7 is required and
here we make the simplest closure assumption, i.e.
that stress is related to dU/9z by an eddy viscosity
coefficient:

bU

=K, = 32

Thus eq 6 becomes

ifl}=—g;(l<m g—z‘—’). )

In the remainder of this section we show how various
drag laws imply a variety of simple formulations for
the eddy viscosity.

Eddy viscosity

The essential tenets of the eddy viscosity concept
are that turbulent transfer (overturning associated
with instabilities in the flow field) is much more
efficient than molecular transfer, and that, in some
way, this turbulent transfer can be expressed in terms
of mean properties of the flow. Note the fundamental
distinction between properties of the flow and pro-
perties of the fluid, as emphasized, for example, by
Tennekes and Lumley (1972, Chapter 1).

Figure 3 depicts an overturning eddy in a fluid
characterized by a gradient of some property, €.
A conspicuous feature of turbulence (as opposed,
say, to organized waves) is its highly diffusive nature;
fluid parcels caught up in a turbulent eddy, as shown,
become involved in progressively smaller eddies and
readily transfer their properties to the surrounding
fluid. In Figure 3 parcel 1 distributes a deficit of €
to the flow above A, and parcel 2 distributes an
excess below A, so that a downward flux of € across
the surface z = h occurs. This flux apparently de-
pends on three quantities: first, the gradient of the
property de/dz, second, the overturning velocity
v, and finally the length scale £ of the most energetic
eddies found in that particular region of the flow.

4 —i;/_v_—‘— — —z:n

Figure 3. Diagram of turbulent flux
mechanism.

The last is not necessariiy obvious, because turbu-
lence comprises a broad spectrum of length scales.
The interpretation here is that £ is the scale of the
largest eddies with which smaller eddies can “keep
up,” i.e. diffuse the property to the surrounding
fluid. Note that for different properties in the same
flow, £ may have different values.

The simplest expression for the flux of € across
the horizontal surface is linear in each quantity, viz

d(

F,=-m8 e a7

By analogy with molecular diffusivity, we may define
an “eddy diffusivity” K, = v, with units L2T*!
such that

de
F =-K, — iz

If the property in question is momentum, then
the vertical momentum flux, which is minus the
horizontal part of the turbulent stress tensor and
therefore a vector, is given by

- 0
F,=-p1=-pK, alzj 8)

where U is the mean velocity vector and 7 = - (u w
+iv'w )1s the Reynolds stress.

Linear drag — constant eddy viscosity

The simplest solution to the PBL momentum
equation is obtained when K, has no depth depend-
ence (Ekman 1905). With the further stipulation
that K, is independent of other variables, the solu-
tion provides a linear drag law. Eauation 7 becomes

U=k, LY
oz
with solution

U= Aed* + Be-b

=(R§L)|/2 } (f/Km)”z Jinlh
m

= (12K )2 (14i)

As U is bounded at depth (z~ -=), B = 0; therefore

0(2) = f’[-: eé' = f’g e(ﬂzk“‘)'”l
1/2
x eI(J‘IRK.“) z

©®




where l;'E_is the surface Ekman velocity.

Since & is complex, the solution has both oscillatory —V- =(fKg)2 u,e® (n
and exponentially decaying components in z. pro- Us
viding the well-known Ekman spiral in which the where = 20° and K = 24 cm? s~} following the
drift current rotates and decreasgs with depth. Note value for eddy viscosity under sea ice reported by
that 8 is the inverse of an “‘e-folding” PBL deptii Hunkins (1966).
scale which varies as (K, [)'/2. To be consistent with Ekman theory, reducing
Our specific interest is the relation between surface the drift angle is tantamount to inserting a layer
stress and velocity, given by the boundary condition with constant stress between the ice and the Ekman

layer. If this layer is thin enough, the change in

To=us s =K g—g—j stress across it will be small, yet there will be a con-
z=0 siderable current shear in the direction of stress. The
] concept is sketched in Figure 4, and we shall analyze
= (K )V/? Vieinld the problem in some detail to establish a pattern for
subsequent refinements. )
The drag faw for the Ekman solution is thus V is the vector sum of 1y and V. the latter being
N the velocity of the surface with respect to the average
Ve ) velocity at the level z = -h. Integration of eq 8 for
;: = (K2 usemin/d (10) constant K, and stress yielas
. - ° .
ie. T =u (K, )/, p=45" 5_= “?ﬁ 12)
Ue m
If K, is constant with respect to all variables,
drawbacks are immediately apparent. First, drift where A is the depth of the constant stress layer.
data show that the drag law is not linear, and that Note that this complex ratio has no imaginary com-
Bis about half 45°. From the viewpoint of simple ponent: V_ is in the same direction as u,. The
turbulence theory, K being constant implies that stress acting at the top of the Ekman laver, z = -h,
the product of mixing length and turbulent velocity is assumed unchanged, so the drag law is obtained
is a property of the fluid. Instead, we intuitively by combiningeq 10and 11:
expect larger, more energetic eddies (£ and » both )
increasing) as the ice speed increases. r= ¥y _ QK. )y u,
Despite its shortcomings, the so-~called Ekman u, m
approach has often been used for ice modeling because
the stress is linear in V. Some authors have reduced o 11+ HAK M -] . (13)

the turning angle to values closer to those observed.
For example, Rothrock (1975) used a linear drag
law of the form

) X U
Constant {Stress :
l‘-h+ --------- i
‘r
i
~ .
ERman~ i
Spiral \<,,/ ~ U.h o
q V z 9 Iy H

s Km Un

} ;
z Km )

Figure 4. Two-layer system with constant eddy viscosity. Note
that shear in the surface layer is constant. The actual current
rotates clockwise with increasing depth in both layers.




Since B is specified, the relation

=Ml= 1/2 -1
ung= T nen@exa el g

determines k and (eq 13) may be rewritten as

=L =K, )1 csc fuses (19
Ue
Note that the eddy viscosity ;n the Ekman layer is
related to that specified ineq 11 by

K, = Kg csc2p)2

which for Rothrock'’s value (24 cm? s-!) provides a
“real” eddy viscosity about four times that reported
by Hunkins. Solving eq 14 for h with § = 20° yields
a thickness of about 10 m for the surface layer, which
is, of course, unrealistically large for the assumption
of constant stress. This exercise, in which the linear
drag law is interpreted in terms of an Ekman fayer
overlain by a constant-stress layer, demonstrates

that such laws have little basis in PBL theory, although
they are sometimes justified by Hunkins’ (1966)
eddy-viscosity estimate. It is worth noting in this
regard that Ekman (1905) treated eddy viscosity as
constant only in the sense of having no vertical varia-
tion. In fact, he postulated, with characteristic in-
sight, that in the open sea eddy viscosity should vary
as the square of the surface wind, a view corroborated
by the present results.

Linear eddy viscosity — the constant stress layer
Near a solid surface in a developed turbulent flow,

eddy momentum flux is comparatively well under-

stood. Much experimental evidence indicates that

the proper velocity and length scales in the eddy

viscosity expression are v = u, and € = kiz| where

k is von Karman’s constant, k = 0.4. Integration

: Copstant
2r-h 4= — Tlress

2!

Km

~
Ys

of eq 8 for constant stress between levels z = -h and
z = -z yields the familiar law of the wall:

. . . h\ -
¥, = Uiz,) - Uk) =1 In (Z) u . (16)

The surface roughness length z, represents a scale
at which protrusions on the ice underside are sensed
by the turbulent flow. For a surface with nonuniform
relief like an ice floe, it is hard to assign a precise
physical meaning to z; we take it to be the leve] at
which mean turbulent stress equals the overall inter-
facial stress, and above which these is no mean
shear in the water column, averaged spatially.

For fixed h, eq 16 is a quadratic drag with no
turning, but the constant stress approximation and
the required alignment of stress and relative current
clearly restrict its region of validity to values of &
that are small compared to the total PBL depth, so
that V, is never equal to V.

Two-layer eddy viscosity

Figure S depicts a boundary layer in which eddy
viscosity increases linearly until it reaches a maximum
at some level z = ~h, below which it is constant. If
the stress at z = -h is not much changed from the
surface value, the water column below A will form
an Ekman spiral as if driven by the interfacial stress.
Between the ice and z = -h there is a logarithmic
velocity profile in the direction of 12._. As before,
the surface velocity ¥ is the sum of ¥ and V, both
known functions of u..

Because there is no physical change in the fluid
at z = -h, we assume that the mixing length is con-
tinuous across the transition. This still allows con-
siderable freedom in prescribing the flow. For ex-
ample, we might again specify that K is independent
of all other variables, in which case h = K fu.. So
by combining eq 10 and 16, we have

—

v, a Oy h
\J 4 V‘.T"\i;

Figure 5. Two-layer system with linear eddy viscosity near surface.
Shear in the surface kiyer varies inversely as depth, causing logarithmic

current profile from z = -h to surface.
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A problem is immediately apparent here because as
u, increases, the constant stress layer becomes thinner.
The maximum size of eddies generated within the sur-
face layer (12| < h) thus decreases with increasing
stress, so that the drag law approaches the constant
Ekman solution at higher speeds. All of this is con-
trary to our physical reasoning.

Reed and Campbell (1962) developed a more
realistic approach by specifying a constant value for
h and then matching the magnitude of the eddy vis-
cosity in the Ekman layer to the surface-layer value
at z = -h. In effect they postulated a physical limi-
tation on the maximum effective eddy size (mixing
length) rather than on the eddy viscosity. Hence
K, = ku.h where h is an assigned constant and the
Reed-Campbell drag law (with the simplification
z,thah)is

x In (—-—) - (18)

T =u,'/? (2fkh)/2 csc §.

The Reed-Campbell formulation recognizes that eddy
viscosity in the outer layer depends on surface stress,
but there is still an important conceptual stumbling
block: why should 4 be the same for a flow with
low turbulence levels (small u, ) as for a flow having
high turbulence levels? We might instead expect the
maximum mixing length to depend on other flow
parameters as well.

PBL scaling

Rossby (1932) and Rossby and Montgomery
(1935) were apparently the first to explore the idea
that the maximum eddy viscosity for the rotational
PBL is proportional to a velocity scale times a
length scale which appears from dimensional analysis
of the momentum equation; namely, the velocity
scale divided by the Coriolis parameter f(they used
the geostrophic wind speed in the stmosphere,

analogous to ¥ here). Much subsequent work for
the atmospheric PBL has relied heavily on this idea
except that the commonly used scales are u, and
u,/f for velocity and length (there is a subtle differ-
ence because i, and V are not exactly proportional).
The basic idea is that turbulent boundary layers in
rotating flows are dynamically similar in regions
suitably far away from solid surfaces, provided
density is uniform and flow variables are scaled by
U2, u,., and u./f for kinematic stress, velocity,

and length respectively.

Although this framework has proved a powerful
tool for classifying and modeling the atmospheric
PBL, it has not been as widely accepted for oceanic
modeling (see, for example, Kraus 1977). Whatever
the reasons for this, the results from under-ice
studies of PBL mean flow and turbulence during the
AIDJEX experiments strongly support Rossby-type
scaling (McPhee and Smith 1976, McPhee 1979 and

1980a). Of special significance are measurements
of turbulent stress and turbulent energy spectra re-
ported by McPhee and Smith (1976). We found that
atmospheric models adequately described our tur-
bulence data when scaled as above. Furthermore,
we used peaks in the spectra of vertical velocity
fluctuations at several levels through the PBL to show
that a dimensionless eddy viscosity distribution
(K, /us?) increased more or less linearly with dis-
tance from the surface until it reached a maximum
at a depth some fraction of the total PBL depth,
beyond which it decreased slowly. While this is not
the simple two-layer system discussed here, we found
(McPhee 1979) that there was little difference between
numerical solutions of the PBL equations using an
exponentially attenuated linear eddy viscosity (similar
to the observed regime) and a linear-constant two-
layer system (compare Fig. 1 and 2 of McPhee 1979).
This observation, in fact, prompted the present work.
Why turbulent eddies should be limited in size
by rotational effects (i.e. that the maximum mixing
length should be proportional to u./f) is addressed
in some detail by Stern (1975, Chapter 8). From a
stability analysis of the PBL equation, he shows that
energy is spontaneously radiated downward in in-
ertial waves if the scale of turbulent fluctuations
exceeds a length proportional to u,/f. He concludes
that this provides an effective “brake” on surface-
driven turbulence which tends to keep the scale of
the largest disturbances near this instability-governed
limit,

A dimensionless two-layer system
The ideas above can be easily incorporated into
the two-layer model as sketched in Figure 6. All
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Figure 6. Two-layer system nondimensionalized by Rossby-similarity
scales. Note that actual eddy viscosity in Ekman layer is proportional

to ud/f.

quantities are nondimensionalized and we assume
that there is a “‘universal” maximum nondimensional
mixing length §y. The outer layer eddy viscosity

is then

K, =kEnul2/f

and the Ekman solution (eq 10) is
V_E - (ng)-llz e-in/4
Ue

which is clearly a quadratic drag law. The surface
layer solution is

where §, =z /u. is the “nondimensional roughness
length.” The drag law for the combined system is

l.‘:f:(z“n)"“ ;l {z%m
| l"(gi) "f (19
e

I= (k)2 esc§. @

Equation 19 reduces 1o a pure quadratic drag law
if §, is constant. This stipulation is questionable,

because unlike the turbulence scales in the outer
layer, z,, is a physical property of the surface itself,
and there is no a priori reason to assume it scales
with u./f. In formulating the drag law for the
AIDJEX Model (McPhee 1975), we assumed that
over the limited range of u, /f encountered during
meaningful simulations, the effect of variations in

the “‘surface-friction Rossby number” (Ro., = u./fz,
= 1/t,) would be minor and that a quadratic drag

law would suffice. This was in part due to uncertainty
about a suitable value for z,,, since it represents an
aggregate roughness over perhaps several large floes.
The success of subsequent simulation of summer
drift using the quadratic drag (McPhee 1980b) tended
to reinforce this view.

On the other hand, analysis of drift statistics
described previously indicated that the drag law is
slightly different from quadratic, 5o we might rather
treat z,, as constant, which gives both g and I slight
dependence on u./f through the term In (¢ /¢,)
in eq 20. The two-layer system of eq 19 with z,,
constant includes most of the features required for
a conceptual model in which the size of momentum
exchanging eddies increases as the distance from the
interface, but is limited to some fraction of u+/f by
an instability mechanism which rapidly propagates
energy away from the boundary layer once the size
limit is exceeded. All such flows, when scaled as
above, are similar except in a thin region right next
to the interface in which the other physical length
scale z, asserts itself.

As an historical note, Ekman (1905) assumed that
the depth of frictional influence [D = #(2K,,/N'/?]
in the open ocean varied as W/(sin ¢)!/2 where W
is the surface wind velocity and ¢ is latitude. We
see that, if the dependence were rather D « W/sin ¢
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(proportional to u,/f), this would provide an eddy
viscosity such that /K, /u.?3 is constant (rather than
K,,), resulting in a quadratic drag. If the minor
variation of fat high latitudes is ignored, faithful
application of Ekman'’s ideas does result in a quad-
ratic drag, and the turning angle becomes realistic
when a surface layer such as that of Shuleikin (1938)
is provided.

While the modeling results of McPhee (1979)
showed that the particular shape of the nondimensional
eddy viscosity distribution in the outer layer is not
overly important, there remains an obvious question
about the two-layer approach: specifically, how
valid is the assumption of constant stress in the sur-
face layer? Here the numerical results are less en-
couraging: they show that .t the level £ = ~§y, the
nondimensional stress has decreased in magnitude
by about 20% and rotated clockwise perhaps 20°
from its surface value (see Fig. 2 of McPhee 1979).
This suggests a final modification to the two-layer
system.

A dimensionless twolayer system with modified stress
Equation 6, nondimensionalized, has the form
= 3% (22)
where £ = fz/u.,u= Ulu., and T = 7/usu.. The non-
dimensional stress at ¢ is thus

- - Lo
TQ=7,-1f  udt @3)
t

where the subscript o denotes the surface values. To
find Tg = T(-ky ), we first note that T is aligned at
the surface with the real axis (i.c. T, = 1), and then

£ k€,

assume that within the surface layer (lf1 < £y) shear
in the lateral (imaginary) component of velocity is
negligible. Since the real part of the surface-layer
velocity varies logarithmically, integration of eq 23,
evaluated with the approximation &y + £, = &y,
yields

Te=1-i(vg +1/k) Ex (24)
where vy = u(-£y) is the nondimensional Ekman
velocity forced by the attenuated and rotated surface

stress T. Using this as the upper boundary condi-
tion in the nondimensional Ekman solution we have

B _
VpEg— = (kg2 T e-in/4 (25)
and substituting into eq 24
Tg = (1 - iEp/k)/[1 + En/26)1/2 (1 + D))
=1-(§n/2012 (1 +1) . 6)
For the value £y = 0.045, derived in the next sub-
section, we have T = 0.80, 0 = -17.3°, which agrees -
well with the numerical result of McPhee (1979).
Solving for v from eq 24, we have
vg = (2kEN)2 (1= 1)- 1/k
P= 2L = ke 2 {1+ Qa2 g
x [In(in/E,) - 1) - i} 27 B

and the system is sketched in Figure 7.

Figure 7. Two-layer system in which stress is allowed to vary
through & logarithmic awface layer. The direction and relative
megnitude of the friction velocity at the top of the Ekman igyer
s indicated by u.y. Numbers beside current vectors demote
nondimensional depth units, -fz/u..
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Figure 8. Nondimensional stress and velocity in the planetary
boundary layer according ro two-layer model with modified
stress (solid curves) and atmospheric PBL model of Businger
and Arya (1974) (dashed curves). Velocity provile in the sur-
face layer ( |k, | < 0.045) depends on z,,

In addition to the drag law, this approach allows
a complete specification of velocity and stress
throughout the boundary layer. The Ekman solution
for the outer layer is

W) =vg e "IN gl (28)

where n=u.b/f= (2k§N)"1/2 (1 +i). For the surface
layer,

a(E) = vg + i In Gin/1ED),
fo<< Bl <ty 29)

The nondimensional stress, T= ;/u.\;.. is, for the
outer layer,

T@E)=Tg "IN, £ o (30)

and for the surface layer the stress is well approxi-
mated by

T@)=1+i(vg + 1k,
b, << |E) < &y - @3n

Equations 28-31 constitute a closed PBL model for

the neutral boundary layer unaffected by a pycnocline.

Solutions for § < -, (= 0.045) are drawn in Figure
8 along with results for the neutrally stable atmos-
pheric PBL from the numerical model of Businger
and Arya (1974). The agreement is remarkable con-

10

sidering that the only adjustable parameter in the
analytic solution, £y, was chosen by comparing the
drift of sea ice with the stress exerted upon it by the
wind.

Evaluating the drag laws
From the concept of a surface layer separating
the ice-ocean interface from a pure Ekman layer,
we have constructed a sequence of six drag laws,
each one hopefully including a slightly more sophis-
ticated view of the boundary-layer structure than
the one before it. Most expressions for water stress
used in ice modeling fit into one of these categories:
1. Constant eddy viscosity, reduced turning
angle (eq 13).

2. Logarithmic, constant-stress surface layer,
constant eddy viscosity (eq 17).

3. Reed-Campbell approach, & constant (eq 18).

4. Nondimensional eddy viscosity, constant 8
(eq 19, §,, constant).

S. Rossby similarity scaling, constant.stress

surface layer (eq 19, z,, constant.

6. Rossby similarity scaling, logarithmic surface

layer with modified stress (eq 27).

In order to compare the drag laws among them-
selves and with the AIDJEX free-drift data, values
for the pertinent parameters in each expression
were chosen so that when u.isequal to 1 cms-1,
I'= 13 and g = 24°. The value for I' comes from
the fitted 7 vs ¥ curve (Fig. 1) evaluated at u, = 1
cm s-!, which was close to the average condition
encountered during the 1975 melt season. Ex.
pressions for § and I" are summarized in Table 1
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Table 1. Summary of drag laws.

Drag law* B r Parameters Stress-speed equation
! W° QK2 cscpue Ky, =128em?s’ 7=0077V
(¥K,)' 3 K
2 cot™ {1+ ku-c In ku:., (2K )12 csc fue K, =128cm? s £=0.023/11.4610.02)
Zo = 23cm
~1 2M\2 .k
3 cot ": + oy In T (2fkh) 112 cscuet/? h=319cm +=0.0177V(1.57£0.00)
o
z,= 23cm
4 pl o 13 7=0.0059¥*
N l12 Nu.
5 cot 1+ % In 7 kEN)12 csc B £y =0.045 r=0.0128¥(1.70£0.00)
o

6 cot™ 1+(-2§1‘-) 1 [ln(if-z"—u—') -l] (2kEN)1? csc B &y =0.045

2,=23cm

7=0.0128y1(1.7010.00)

z, =85m

for each model. Note that no attempt was made
to choose “physically realistic™ parameters garnered
from the literature. Our reasoning was that the
laws were best compared by having them all agree
at one point within the range of acceptable data.
Curves coinciding with the chosen parameters
are plotted in Figure 9 along with the envelope of
the experimentally determined exponent, b= 1,78
+ 0.12. In addition, these curves were fitted to the
stress relation

r=alb?

with a least-squares analysis of the 29 points used
to generate each curve . Values of b with 90% con-
fidence brackets are tabulated for each of the drag
laws in the last column of Table 1. Only laws §
and 6 fall within the 90% error bounds of the ob-
served data. The stress-speed relationship is thus

best described by the Rossby-similarity laws, which
include the most extensive treatment of the prin-
ciples governing turbulent flow. Note that, although
the drag results are very similar for both Rossby-
similarity approaches, the effective surface rough-
ness is smaller in the reduced stress model (eq 27),
falling close to the value (10 cm) determined in
McPhee (1979). As we have shown, the twodayer
model with reduced stress is a close approximation

of the numerical results of Businger and Ayra (1974)
and McPhee (1979) for determining stress and velocity
at all levels in the boundary layer. In flows where

a shallow pycnocline occurs, flow profiles are
affected at lower levels and drag characteristics

are apparently changed slightly as discussed in McPhee
(1979). We reiterate that when the ice pack is weak
enough to admit inertial oscillation, the drag laws
here are appropriate only for motion averaged for
time scales of the same order or longer than the
inertial period (~ 12 hours),
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Figure 9. Comparison of six drag law formations with data from
1975 AIDJEX Experiment. Shaded portion shows the limits of
the empirical fit included in the 90% confidence interval.

Rossby similarity parameters and buoyancy effects

The usual approach to parameterizing surface
drag on the atmospheric free stream using Rossby-
similarity scaling is somewhat different from that
developed in the previous section. Blackadar and
Tennekes (1968) summarize the technique, which
matches the mean shear in an overlap region where
the widely different scales z,, and u./f both affect
the flow. Since the nondimensional shear is the
same by either scaling, a logarithmic velocity pro-
file ensues, which is matched to the empirical surface-
layer profile. The result is usually expressed in terms
of the nondimensional velocity components parallel
and perpendicular to the surface stress, i.e.

Re () = Re (.}K) . i— (nRo.-4) (32

im ()=-2 ©3)
where Ro, = 1/§, =u./fz,,, as before, and 4 and B
are found empirically. The last two drag laws (eq
19 and 27) give the same result as the Blackardar-
Tennekes approach: e.g. foreq27

Re ()= (ki )'/2 + H(n by - 1)

+ 'kl" InRo,

Im ()= (2kEp)1/2 .

Hence
B=(k[2k\)/?
A=-(B+In§y -1).

For &y = 0.045, the parameters are (for neutral
stability) 4 = 1.99, B=2.11. Conversely, the drag
parameters I' and f may be expressed in terms of
A and B by

§=tan-! {B/(In Ro. - 4)} 34)
r=% (B2 +(in Ro. - AR]1/2 . 35)

In naturally occurring boundary layers, buoyancy
forces associated with turbulent fluctuations in a
nonuniform density field often play an important
role in flow dynamics. Generally speaking, in a
horizontally homogeneous flow, two new length
scales (in addition to z,, and u./f) become important
when buoyancy effects are considered. They are
the depth of the mixed layer and the Obukhov length
(see Arya and Sundararajan 1976, for a discussion
of the atmospheric analogs). While the former is
certainly important when it is small compared to
ue/f, it does not fit easily into the simple theory
here. Our previous modeling results (McPhee 1979)
suggest that the effect of the pycnocline on mean
surface drag is not large under commonly encountered
conditions.
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The second length scale, L (the Obukhov length),
is used to quantify the effect of surface buoyancy
flux due to ice growth or ablation. L is obtained
(see, for example, Tennekes and Lumley 1972,
Chapter 3) by nondimensionalizing the surface-layer
turbulent kinetic energy equation such that the non-
dimensional production rate of turbulent kinetic
energy by buoyancy at a particular level 2 is given
by z/L where

L =p,ud/(gk pW) (36)

withp'w’ being the turbulent flux of density fluc-
tuations. When L is positive, turbulence levels are
reduced because the eddies must work against
gravity; when L is negative turbulence is enhanced.
The magnitude of L indicates the scale at which
buoyancy is important: e.g.,if | L| is very large
(pw small) buoyancy has little effect on flow
scaling. On the other hand, if |L| is much less than
the scale that turbulence would have in the absence
of density flux, then the turbulent structure may
be completely dominated by buoyancy.

Without examining the complex details of buoy-
ancy-dominated flows, we shall make some general-
izations relating to freezing rates based on scaling
and show how a simple extension of the theory in
the last section has application to conditions of
rapid melting.

The equation of state for sea water is approxi-
mately

p-p,

= a0 - 05)+ B(S - S,)

where p is a reference density at temperature 8,
and salinity S, ; hence,

w —tTar
2‘;_ =g wh +Bw§
(]

where w0’ and w'S are turbulent fluxes of temper-
ature and salinity. When sea water freezes, only a
small portion of the dissolved solids (typically about
1/6) are retsined in the sea ice matrix, so thata
salinity flux occurs as given by

ol L"%&%%&"A-‘

where d is the ice growth rate and S, ~ S;, is the
salinity difference in per mille. Whtnwengorgiu
(d>0), heat exchangs is entirely lstent and w8 = 0.

When ice melts (d<0) due to contact with warm ]
water, the interfacial heat flux is p,c,Ad where A '
is the kinematic latent heat of fusion. Thus

wo |o =-Ad [d<0]. (37

) R

The nondimensional Obukhov length, L, = fL/u,, is

2
Lo=Lo o vanyt o G®)

For temperatures less than 0°C, the thermal expan- ]
sion coefficient a is negligibly small (but always
positive for § > 24900); for water at § = 1°C, 3
S =30900, @ = 5x10-5 K-! (Neumann and Pierson :
1966).

Using typical values (=08, 0, ./p, =09,
S, -Sice = 25%00, A= 65K, f=14x 10~ 571)
in eq 38, for 8, < 0°C

L.=(-20x 10-5 cm-1s) - ulld . (39)

For 8,, ~ 1°C, the magnitude of L. is increased by
about 20% by the thermal expansion term.

From the scaling considerations discussed above,
we expect L. to have an impact on the turbulent
regime when its magnitude is of the same order or
smaller than the neutral nondimensional PBL depth,
often taken to be about 0.5. For growth rates such
that

K] > (4 x 10-5 em~! s) ud

buoyancy, therefore, may affect surface drag. For g
typical conditions (u. ~ 1 cm s~1) this effect is P
about 4 cm per day. But freezing rates this high K
occur only at low temperatures in comparatively .
thin ice. Under normal circumstances, the drag ' i
laws discussed here apply to pack ice that is fairly ‘
thick (at least 1 m) and compact (say 80% cover),

30 an order-of-magnitude estimate suggests that in-

stability associated with surface freezing will rarely

have much effect on the average ice drag. Similarly,

melting rates encountered in the perennial pack of

the central Arctic, where oceanic heat flux is small,

cannot be consistently as large as 4 cm day-!, or

most of the ice would disappear over a 60-day melt

sesson,

On the other hand, there are conditions under

which very rapid melting might have a decided sta-

bilizing effect on the PBL. An exampie is advection

by wind of pack ice acrom frontal zones at the ice

margin where mixed-layer temperature may change
by = much a8 2 to 3 K within several kilometers.
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Figure 10. The Rossby-similurity parameters A and B as
functions of u. = 1/L.. Dara points with error bars are from
Clarke and Hess (1974); open circles are from model of
Businger and Arya (1974); curves are from present theory
With (Ry) gy = 0.2 (s0lid) and (Rp),, 4 = 0.15 (dashed).

: There is some indication at the Bering Sea ice margin (7 =u.u,), the flux Richardson number (i.e. the
i that melting rates at least an order of magnitude ratio of buoyant production to stress production of
’ ; greater than 4 cm day~! occur when ice moves turbulent kinetic energy — see Tennekes and Lumley
E across such fronts®. If, for example, we were inter- 1972, p. 98) is given by
E ested in estimating the distance that thick floes
3 might migrate into warm water before melting, then R, = £ oWl {u2 auY _ l_(f_K_) 1
buoyancy would have to be considered in calculating Po 0z J k\u,y L.

drag. The remainder of this section addresses this . . L .

problem as an extension of the mixing length approach The nondunefxsnonal eddy viscosity, (K/u.?) in the

developed above. surface layer is k£, so we have E = R¢L.. Observations
The nondimensional, two-layer theory for a show that R, has an upper limit of about 0.2. For

stably stratified flow follows from the idea that the L. small, eq 40 approaches

maximum nondimensional mixing length ic £y when E wL ' ]

L. is infinite (neutral stability), but is proportional m *

to L, under very stable conditions (L. small). The

simplest expression possessing these limits is

indicating that A = (R;) =0.2.

max
A comparison of the present theory for two dif-

- \ ferent values of A with other results is shown in .

Em = En (1 En/ALLY (40) Figure 10, where the Rossby similarity parameters, ;
where A is a constant yet to be determined. Given ” defined by eg 32 and_33, are plotted as func- ,
L,, we sutstitute £ for §y in eq 26 and 27 to uons' °t,- the vanab!e Mo =1/L.. Also shown are {
determine the stress attenuation and to solve for predictions of Busx.nger ?nd Arya (19.74)'.Wh°“ %
the drag parameters I" and 8, from which the velocity model uses a nondimensional eddy viscosity based 1
may be obtained. on the log-linear wind profile determined from the ‘
To evaluate A, we follow the reasoning of Zilitin- Kansas surface-layer experiment (Businger et al. E
kevich (1975). With the surface-layer approximation 1971). 4
The data points with error bars in Figure 10 are ;

from an analysis by Clarke and Hess (1974) of wind f

;. ) *Personal communication with C. Pease, NOAA Pacific .
_ Marine Environmental Laboratory, 1981 profiles throughout the entire PBL under stable
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Figure 11. Data from Clarke and Hess (1974} after
adjusting u, by a constant factor to make neutral
wlues for B agree, compared with present theory with

(Re)max = 0-2.

conditions caused by radiative cooling during the
Wangara experiment in the Australian desert.

By applying the same arguments used to deduce
the neutral boundary-layer model to a regime in
which the maximum mixing length is given by eq
40, it can be shown that the curves in Figure 10 are
given exactly by

B=(k(26)' 12 (1 + yu,)'/? 1)
A=1-Inky - (k/25)12 (1 +yu) /2
+In (1 +yu.) 42)

where g = 1/L, and v = 5 (R imax -
For £y = 0.045 and (R¢) o« = 0.2, they are

B=2.11(14022pu,)1/2 (43)
A=410-211(1+0.22pu.)'2

+1n(1 +0.22 a). 44)
Although at first glance, results for B shown in
Figure 10 might indicate that (R¢)y,,, = 0.2 is too
large, such an interpretation must be approached
with caution. Clarke and Hess (1974) point out
that their data derive from scaling by «. as de-
termined at a very smooth site, and one may infer
that the u, to which the entire PBL responds is
larger. This point is illustrated in Figure 11, where
we have adjusted their data values by applying a
constant correction factor to u. such that their
neutral value (B = 4.3) agrees with ours (B = 2.1).
We have assumed that geostrophic wind and surface
heat flux measurements are representative, so that
ordinate and abicissa values are divided by about 2

15

and 4, respectively. Apparently, the data are too

scattered for one to determine appropriate values

for (R¢)n4x» but they do exhibit the same general
form as eq 41 and 42.

To recap, given interfacial stress and ice growth
rate, we can determine L, from eq 38 and use the
similarity expressions eq 43 and 44 to find fand I'
from eq 34 and 35. For a concrete example, let u.
=lcms-!,d=50cmday-!,z =9 cm,and f=1.23
x 10-4 s=! (latitude 58°N); then L. = 0.037,B=5.6,
A=045,T=21.2,and §=41°. Compared with the
neutral case, the ice travels more than half again as
far under similar stress conditions because of the
rapid melting.

There is a final ad hoc addition to the theory for
which there is at present little experimental justifica-
tion, but which may be helpful in interpreting data
on drift and melt rates near the margins of ice packs.
It is useful to consider the physical scales implied in
the specific problem above. Regardless of how the PBL
depth is defined, similarity of profiles in the outer
(Ekman) portion requires that it be proportional to
(kEp)' /2. (Incidentally, this implies that the PBL
depth is proportional to u.=1/2 for small L, which
is again consistent with Businger and Arya (1974)
and Zilitinkevich (1975]). In the example above,
if the neutral PBL depth is 0.5 u+/f =41 m, then
the stratified PBL depth is

D, =(§‘:‘) e Dy = (+EA-';._.)-|I2 Dy

=154m

so that the thickness of the boundary layer is much
reduced. We may ignore the surface logarithmic
layer, since &, u+/fis only about 40 cm (it varies
as ue-! for large u.).

o
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There is no steady-state thermal boundary layer
formulation that corresponds with that of the tur-
bulent momentum flux in the outer layer; neverthe-
less, the maximum mixing length for temperature
fluctuations should be of the same order as for
momentum, and we have

iat “‘zksm 290

wl « - ——'f—h 5;‘ .
If we assume further that the temperature gradient
is proportional to A8/D, where A is the difference
between the ice melting temperature and the temper-
ature at depth D,, we obtain an explicit relationship
between Af and melting rate, i.c.

wo' ki, (.2 A8
d=-=p =~ axp

2 kéy Y12
*—a \ta) w&

where we have used

D -(‘ﬂ)'“ ©Sulf) .

s En

The constant ¢, is unknown, but ought to be of
order unity, in which case

_ A En 12 g _
M-Z_mé"’ﬂ.—) ‘;‘:, [(,"-l].

For the example above, Af = -2.8 K, which is not
unreasonable for conditions sometimes found near
the ice edge. Note that the depth of a pre-existing
mixed layer is irrelevant unless it happens to be
less than D,, assuming that the ice advects directly
into a mixed layer of uniform temperature above
the melting point.

Within the theoretical framework, the constant
¢, could be evaluated experimentally by observing
sea surface temperature A, surface wind stress
(u+) and ablation rates of large floes drifting across
the ice edge front. Whether conditions steady or
horizontally homogeneous enough to provide suit-
able measurements can actually be found is un-
certain; but if ¢, were known, knowledge of wind
conditions and temperature change across the front—
both of which might be sensed remotely —would be
enough to make a quantitative estimate of how long
floes would survive, how far they would drift, and
to what extent they would cool the ocean.

An evaluation of several sea-ice drag formulations
shows that only those conforming in some way with

Rossby-similarity scaling are consistent with the
averaged stress magnitude vs relative ice speed rela-
tionship determined from the summer AIDJEX data.
When such scaling is applied to the classical two-layer
approach to the PBL problem, with the added feature
that stress is allowed to vary realistically through the
inner (surface) layer, an analytic solution is found
that reproduces closely the numerical results of
McPhee (1979) and of Businger and Arya (1974).
The eddy viscosity in the outer (Ekman) layer is
given by K, = kkyu.2/f with £y, the maximum
dimensionless mixing length, being about 0.045.
With this value, the drag law we propose is

) =;'_f =25InRo, -498)-527i  (45)
where Ros = fz_/u.. The effective z, inferred from
the AIDJEX results is about 9 cm, but may vary de-
pending on ice characteristics such as ridging intensity
or previous mel“ing.

When drifting ice is also melting rapidly, buoyancy
affects the drag. This tendency is modeled by a
simple extension of the two-layer theory in which
the maximum mixing length is reduced from its
neutral value as stability increases, eventually becoming
proportional to the Obukhov length. With the pro-
portionality constant equal to (R),,,, = 0.2, the
results are similar to those of Businger and Arya
(1974) and are supported by measurements of geo-
strophic similarity parameters (A and B) in the
stable atmospheric PBL reported by Clarke and Hess
(1974). Our suggested treatment of the stable PBL,
given the growth rate d, is

Le =(0.17 cm~! 52) (fu.2/d)
B=2.11(1+0.22/L)/?
A=410-2.11(1 +2.22/L,)/?

+In(1+0.22/L,)

r=f = HanRo. - 4)- 18} . i
The results of a specific example, 3, which showed
that rapid melting might increase the ice speed by
half its neutral value under similar stress conditions,
allows us to speculate on the origin of an interesting
phenomenon observed near the ice margin in the
Bering Sea. According to C. Pease and R. Bourke®*
it is not uncommon to encounter a continuous band
of jumbled, compact floes parallel to the edge of the

*Personal communication with C. Pease, NOAA PMEL, 1981
and R. Bourke, Naval Postgraduste School, 1980,




main pack, but separated from it by several kilo-
meters of open water. Satellite imagery also shows
such features occasionally (e.g., see Fig. 3 of Muench
and Charnell 1977). Results given in the previous
section suggest the following scenario for the for-
mation of such features. Prior to the onset of an
off-ice wind event, the ice at the margin of the pack
is consolidated and ridged, apparently by wave action
and other edge effects. As the wind begins blowing
toward open water, the entire pack moves, but the
leading floes, drifting into warmer water, accelerate
away from the main pack, cooling the water behind
them. Thus the leading edge, which was thicker to
begin with, experiences less drag at all times, and
separates from the main pack more or less intact.
As the wind dies, heat flux (which depends on u,)
and melting decrease, so that the band may then
persist for some time as a stationary feature.

Whether or not such a situation occurs, the
framework presented here, which has a solid basis
in PBL theory, at least provides a departure point
for interpreting the extremely complex changes in
momentum, heat, and salt fluxes that occur across
the marginal ice zone.
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