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SEA ICE DRAG LAWS AND SIMPLE
BOUNDARY LAYER CONCEPTS,
INCLUDING APPLICATION TO
RAPID MELTING

Miles G. McPhee

BACKGROUND with one we proposed earlier on the basis of numer-
ical modeling (McPhee 1979). Most drag laws found

The drift of sea ice is determined by a balance in the literature (Shuleikin 1938, Reed and Camp.
of forces including a flux of momentum from the bell 1962, Rothrock 1975, McPhee 1975 and 1979,
ice to the ocean, which is more often than not of etc.) fall into one of the categories treated.
the same order of magnitude as the tangential stress In addition, the theory is extended to include
exerted on the ice by the wind. Its representation the effects of rapid melting that might occur if sea
is thus a major element in a mathematical formula- ice were advected into comparatively warm water.
tion of ice-drift dynamics, and it has received much The problem is addressed both for the practical
attention as a problem in planetary-boundary-layer purpose of interpreting and predicting sea ice be-
(PBL) theory, beginning with Ekman (1905). Most havior near the ice margin and also as a novel appli-
ice modelers are reluctant to include complete sub- cation of stable atmospheric boundary layer studies.
models of the oceanic boundary layer in their nu- Despite the simplicity of the concepts and math-
merical codes and seek instead to parameterize the ematical models developed here (nearly all the cal-
tangential stress between the ice and ocean as a culations were done with a hand-held calculator-
function of the ice velocity relative to the undis- albeit one designed for easy manipulation of complex
turbed ocean by using relatively simple expressions numbers), the final result is remarkably consistent
which we shall call oceank dagIgws. Several drag with the knowledge we have of momentum transfer
laws have been proposed by various authors, and a in a neutral or stably stratified PBL. Thus a second
modeler perhaps not well-versed in PBL theory faces purpose of this report is to emphasize that the ice
the task of choosing a formulation suited to his drift problem can be turned around to reveal much
work. The primary intent of this report is to assist about how boundary layers work. We took this
in that choice by providing a framework in which approach, for example, in using ice drift, surface
several drag laws may be compared, both in terms stress, and current meter measurements to corrobor-
of how well they describe pertinent data, and how ate results from a numerical PBL model (McPhee
they fit within the guidelines of PBL theory. 1979), and also to investigate time-dependent re-

Before the PBL equations could be routinely sponse to rapidly changing winds (McPhee 1980.).
solved numerically, drag laws for sea ice (and for the Here we bypass some of the more complicated features
atmosphere) were obtained by patching an Ekman- explored numerically in the earlier works (e.g. inertial
Uke solution, appropriate for the outer part of the waves and abrupt changes in density at the base of
boundary layer, to the solution for a relatively thin the mixed layer) to examine what the stress/velocity
layer adjacent to the surface (e.g. Rossby and Mont- relationship for drifting sea ice implies about the
gomery 1935). We shall adopt the same approach, basic structure of PBL turbulence.
at the same time attempting to rationalize it with To start we establish some conventions, the first
recent measurements by progressively introducing being that horizontal (two-dimensional) vectors are
concepts from modem turbulence theory into a represented as complex numbers such that A a AXe X
saeri of boundary layer formulations which provide +A ey (where e, and ey are orthogonal unit vectors)
drag laws ranging from Hbi, (ie. where stress is becomesA a A (cos a + I &in a) - Ae0 , where/P - -1.
proportional to relative speed), through qwudiw The real axis Is allned with e., the inmaginary axis
(where stress is proportional to relative speed squared), with ,a a tan' (A/A.) and A • L41. Note that
ansivtng finally at a Rosaby4imtlarity law consistent a sym ol with a caret indicates a complex (vector)
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quantity, while the same symbol without a caret In McPhee (1979) we analyzed the relationship
denotes only magnitude. With this convention, it between iw and V, using wind stress and drift velocity
is meaningful to describe products or quotients of measured during the 1975 summer melt season at
vectors, which are also vectors, e.g. for = BeN, four drifting stations of the AIDJEX Experiment

near the center of the Beaufort Gyre in the central
,IB = (AIB)e'(8-). Arctic. The major difference between this and

earlier analyses (the most extensive being that of
Note also that rotation of a vector in the horizontal Reed and Campbell 1962) is that we considered
plane through an angle 0 (positive counterclock- only data from a 60-day period during which we
wise) occurs if the vector is multiplied by the factor were reasonably confident that the internal ice force
e 4 . Complex notation is introduced both to avoid I was small. During the remainder of the year-long
intricate geometrical constructions and as a compu- AIDJEX drift, lwas often a significant part of the
tational aid. force balance (McPhee 1 980b), and affected the

The second convention is that, unless otherwise long-term statistics of ice drift appreciably. During
noted, the velocity appropriate for a specific drag the short time of the year when I is negligible,
law is the relative velocity between the ice and the measurements of Vf and the 10-m wind velocity.
undisturbed ocean. This relative velocity is the ice U, o, along with estimates of V 5. , m, and the wind
velocity with respect to water below the maximum drag coefficient, C1 0, provide the interfacial stress
penetration of the frictional PBL, which is also the To from the relation
geostrophic flow due to sea surface tilt (provided
there are no horizontal density gradients in the Pw 70 = psC 0 o U, 0 U o - OnfV. (3)
mixed layer). Usually, the ice drift is larger than
geostrophic flow and the momentum flux is down- Given a sufficient population of sample pairs, -r
ward, but the flux direction is unimportant as long and V. an expression of the form
as the drag law is expressed in terms of relative
velocity. ro  a Vb

With complex notation in a frame of reference
fixed to earth, the balance of forces acting at a can be derived statistically by a linear regression of
point in a large, uniform slab of ice in steady drift is the equation

M~ex2=PT O+ I+ S. (1) logT o =b log V+loga,

where m = the ice mass per unit surface area Figure I from McPhee (1979) shows results of such
f= the Coriolis parameter an analysis on summer AIDJEX data filtered to

Vt = the absolute ice velocity
pandPw airandwaterdensities 3.

the kinematic wind stress
ro = the kinematic stress exerted by the 2.5

ice on the ocean
Ja the force due to a gradient of internal *,2.0 -

-ice stress
S a gravitational force due to sea-surface .1 . :

tilt (S= -nW )
the elevation of the sea surface 1.0-

g the acceleration of gravity. . .

By definition, geostrophic flow in the ocean o42
Vs is given by .-',

f ef/ , jM(2) 08 IO ,2 14 16 18 20 2
2  

ICE SPEEO (cm I" }

so that F Lgure . KiemImtk s&eM Ps reflat peed between
ice and ocan underfe-drft conditing oiSl curve

- V)CW(2 nffu - + ii best-fit exponentkl, dased cwe jr e towtklpediction ffom McPhee (19 79).
where I'is the relative velocity described above.
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remove inertial motion. In all, 254 samples were
obtained with relative speeds greater than 8cm sr
us order to minimize the effect of uncertainty in 4,"u1e.
fs). Stress was calculated for each sample according V,- "-VefGt
to eq 3 with C 0 -. 027 and m = 250 g cm -2 . By a
least-squares regression, the exponent b with a 90% ImI6 (Z2 .
confidence interval, was found to be 1.78 t 0.1 2. Re
Thus the relationship was close to quadratic (b = 2),
but statistically different at the 90% confidence level. Fy.re 2. Schewic of friction veloc-

The calculated magnitudes of a and the deflection ity/Wrface velocity relation in com-
angle 0 between rT. and V, are sensitive to C, 0 and pler plane.
m, both of which have relatively large uncertainties.
However, we showed (McPhee 1979, Table 1) that
the exponent b is insensitive to variation in C1 0  From comments in the previous section, we ex-
and m over a large range of plausible values. We vect realistic drag laws to fall closer to quadratic
therefore concluded that, despite uncertainties in (i.e. -r. . V2) than /AMer (r. -V) and to exhibit a
stress magnitude and 0, the shape of the r, vs V turning angle of the order of 200 to 300. Using com-
curve as indicated by b was well-defined by the data, plex notation, we express the drag law as a ratio of
and that a proper stress formulation should exhibit V and u,:
similar shape. The dashed curve in Figure 1 results
from the numerical model of McPhee (1979): its V

-7- r= reio .(4)shape factor turned out to be b = 1.70 10.00, which u*
was within the confidence interval found for the data.

It was more difficult to assign an experimental From Figure 2 we have
value to 15. One measure was the angle between neg- - (.v
ative ice drift and current velocity measured at 0.2-m i =  =- e
depth. Over the entire year, the average for all U uo

camps was about 24* (McPhee 1980b, Table 2) but so that r - V/u. is a dimensionless surface speed and
there was much scatter in the data. Precise current 5= a 2 - a, is the rightward (f positive) deflection
measurements from the 1972 AIDJEX Pilot Study angle of surface velocity with respect to interfacial
also showed 1 to be about 240, 6o this value was stress. Note that r and 1 are constant for quadratic
accepted for an average, but with much less certainty drag with constant turning angle; all other laws have
than the value for b. r and 15 dependent on other parameters of the problem

In the next section, we consider several drag laws, (e.g. u.,f, etc.). Expressing the drag law as a com-
each with a corresponding simple PBL model. Our p!ex ratio greatly simplifies its algebraic representa.
evaluation of each law depends primarily on how tion and is computationally useful (e.g. given u.,
well it satisfies the shape requirements implied by v is found by a scaling, i', and rotation, -).
the AIDJEX data.

The momentum equation for the
planetary bounday layer

HIERARCHY OF DRAG LAWS AND The horizontally homogeneous, steady-state PBL
SIMPLE MODELS equation of motion is given in complex notation by

The dag law in complex notation if f +
In order to simplify as much as possible a com- f- V3 +

parison among several drag formulations, it is useful
to express theilrag law, as follows. First define the where U( is the velocity in a frame of reference fixed
friction velocity as to earth, i is the kinematic, turbulent Reynolds

stress, and we have expressed the pressure gradient
- odue to sea-surface tilt in terms of the geostrophic

u.-1 . velocity from eq 2. As with the ice momentum equa-
TO2 tion, we eliminate V by considering a reference

frame drifting with the geostrophic velocity; hencewhere 7 is the vector kinematic stress at the inter-..

faces. Note that u. isa vector (complex number) for V = U - V., eq 5 becomes

in the direction of i. with magnitude 7 1 /2.

3



a" The last is not necessarily obvious, because turbu-
if V -az" (6) lence comprises a broad spectrum of length scales.

The interpretation here is that 2 is the scale of the

To solve eq 6 an expression for i is required and largest eddies with which smaller eddies can "keep

here we make the simplest closure assumption, i.e. up," i.e. diffuse the property to the surrounding

that stress is related to au/az by an eddy viscosity fluid. Note that for different properties in the same

coefficient: flow, 9 may have different values.
The simplest expression for the flux of e across

-=K the horizontal surface is linear in each quantity, vz
Maz dt

Thus eq 6 becomes F, = -vP z

or U (Km aq (7) By analogy with molecular diffusivity, we may define
an "eddy diffusivity" K, = vQ, with units L 2 7"

In the remainder of this section we show how various such that

drag laws imply a variety of simple formulations forthe eddy viscosity. Fe =-Ke z"

Eddy viscosity If the property in question is momentum, then
The essential tenets of the eddy viscosity concept the vertical momentum flux, which is minus the

are that turbulent transfer (overturning associated horizontal part of the turbulent stress tensor and
with instabilities in the flow field) is much more therefore a vector, is given by
efficient than molecular transfer, and that, in some
way, this turbulent transfer can be expressed in terms af = -P m u (8)
of mean properties of the flow. Note the fundamental m K z
distinction between properties of the flow and pro-
perties of the fluid, as emphasized, for example, by where U is the mean velocity vector and r = - (uw

Tennekes and Lumley (1972, Chapter I). 4 /v ) is the Reynolds stress.

Figure 3 depicts an overturning eddy in a fluid
characterized by a gradient of some property, e. Linear drag - conetant eddy viscosity

A conspicuous feature of turbulence (as opposed, The simplest solution to the PBL momentum

say, to organized waves) is its highly diffusive nature; equation is obtained when Km has no depth depend-

fluid parcels caught up in a turbulent eddy, as shown, ence (Ekman 1905). With the further stipulation

become involved in progressively smaller eddies and that Km is independent of other variables, the solu.

readily transfer their properties to the surrounding tion provides a linear drag law. Eouation 7 becomes

fluid. In Figure 3 parcel I distributes a deficit of IfU= Km 2U

to the flow above h, and parcel 2 distributes an aZ2
excess below h, so that a downward flux of e across
the surface z = h occurs. This flux apparently de- with solution
pends on three quantities: first, the gradient of the -

property de/dz, second, the overturning velocity U = Ae z + b6 z

v, and finally the length scale f of the most energetic
eddies found in that particular region of the flow. 1 ( tI2 1/2i= = 0f1Kin) e "/'4

toe= (f/2Km)' 2 (+)

As Uis bounded at depth (z-. -. ,), B = 0; therefore

6 11 L~z = E e v (ff2Km) 1/2 Z

Figure 3. Diem of turbulent flux x e 1W' 2K )X 12  (9)
nwehantirLt

4
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where VEis the surface Eknwt velocity. -

Since & is complex, the solution has both oscillatory -- (fKR) " / 2 u.e- (II
and exponentially decaying components in z. pro- u,
viding the well-known Ekman spiral in which the where a = 200 and KR = 24 cm2 s- 1, following the
drift current rotates and decreass with depth. Note value for eddy viscosity under sea ice reported by
that 6 is the inverse of an "e-folding" PBL depth lunkins (1966).
scale which varies as (Km/f)l/ 2 . To be consistent with Ekman theory, reducing

Our specific interest is the relation between surface the drift angle is tantamount to inserting a layer
stress and velocity, given by the boundary condition with constant stress between the ice and the Ekman

layer. If this layer is thin enough, the change in
1o= u.=Km T stress across it will be small, yet there will be a con-

o .0 siderable current shear in the direction of stress. The
concept is sketched in Figure 4, and we shall analyze

=(f[K,)2Ee n/4"bqenthe problem in some detail to establish a pattern for
subsequent refinements.

The drag law for the Ekman solution is thus V is the vector sum of VE and V., the latter being
the velocity of the surface with respect to the average

_E velocity at the level z = -ht. Integration of eq 8 for
U- (tfKm)-i / 2 u.e-iwI 4  (10) constant Km and stress yielus

i.e. r = u./qKm)t2, =450. V. u.h1
U= K(2

If Km is constant with respect to all variables,
drawbacks are immediately apparent. First, drift where h is the depth of the constant stress layer.
data show that the drag law is not linear, and that Note that this complex ratio has no imaginary com-
0 is about half 45' . From the viewpoint of simple ponent: V, is in the same direction as u.. The
turbulence theory, KM being constant implies that stress acting at the top of the Ekman layer, z = -h.
the product of mixing length and turbulent velocity is assumed unchanged, so the drag law is obtained
is a property of the fluid. Instead, we intuitively by combining eq 10 and I I:
expect larger, more energetic eddies (R and v both
increasing) as the ice speed increases. r (2fKm)- u.

Despite its shortcomings, the so-called Ekman r (.

approach has often been used for ice modeling because
the stress is linear in V. Some authors have reduced
the turning angle to values closer to those observed. × [I + h(2fIKm)tI2  i] . (13)
For example, Rothrock (1975) used a linear drag
law of the form

Constant Stress I

Spiral N'7/4 ueh

Km,
Kt

Ftgure 4. Two -yer system with constant eddy Wscosity. Note
that shear In the surface layer is constant. The actual curnwt
rotates dockwise with Ltweasing depth n both layers.
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Since 0 is specified, the relation of eq 8 for constant stress between levels z - -h and
z = -z, yields the familiar law of the wall:

tanl# Ur = I[I + h (W.1K~m)1/21 1 (14) 1 h -_h

ReW) Y, = U(-zo) - 0(-h) In u. (16)

determines h and (eq 13) may be rewritten as The surface roughness length z. represents a scale

" V at which protrusions on the ice underside are sensed
!' = -- = (2i~m)-tI/ csc Ou.e- 3  (15) by the turbulent flow. For a surface with nonuniform

u. relief like an ice floe, it is hard to assign a precise
Note that the eddy viscosity ,n the Ekman layer is physical meaning to z.; we take it to be the level at
related to that specified in eq II by which mean turbulent stress equals the overall inter-

facial stress, and above which there is no mean
K. = KR csc 2 #12 shear in the water column, averaged spatially.

For fixed h, eq 16 is a quadratic drag with no
which for Rothrock's value (24 cm 2 s- I ) provides a turning, but the constant stress approximation and
"real" eddy viscosity about four times that reported the required alignment of stress and relative current
by Hunkins. Solving eq 14 for h with 0 = 200 yields clearly restrict its region of validity to values of h
a thickness of about 10 m for the surface layer, which that are small compared to the total PBL depth, so
is, of course, unrealistically large for the assumption that V, is never equal to V.
of constapt stress. This exercise, in which the linear
drag law is interpreted in terms of an Ekman layer Two-layer eddy viscosity
overlain by a constant-stress layer, demonstrates Figure 5 depicts a boundary layer in which eddy
that such laws have little basis In PBL theory, although viscosity increases linearly until it reaches a maximum
they are sometimes justified by Hunkins' (1966) at some level z = -h, below which it is constant. If
eddy-viscosity estimate. It is worth noting in this the stress at z = -h is not much changed from the
regard that Ekman (1905) treated eddy viscosity as surface value, the water column below h will form
constant only in the sense of having no vertical varia- an Ekman spiral as if driven by the interfacial stress.
tion. In fact, he postulated, with characteristic in- Between the ice and z = -h there is a logarithmic
sight, that in the open sea eddy viscosity should vary velocity profile in the direction of u.. As before,
as the square of the surface wind, a view corroborated the surface velocity V is the sum of VE and Vs, both
by the present results. known functions of u..

Because there is no physical change in the fluid
Unear eddy vcosity - the constant stress layer at z = -h, we assume that the mixing length is con-

Near a solid surface in a developed turbulent flow, tinuous across the transition. This still allows con-
eddy momentum flux is comparatively well under siderable freedom in prescribing the flow. For ex-
stood. Much experimental evidence indicates that ample, we might again specify that Km is independent
the proper velocity and length scales in the eddy of all other variables, in which case h Km lu.. So
viscosity expression are v = u. and R = k z i where by combining eq 10 and 16, we have
k is von Karman's constant, k = 0.4. Integration

K

Co stant

Fure 5. TW-yer system with iwer eddy vicosity new wajce.
Shor in the suface aby swries Invasely as depth, catufg kprthmk
cuwent profie from z - h to aufece.
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analogous to V here). Much subsequent work for
V = the atmospheric PBL has relied heavily on this idea
Uu ku. except that the corpmonly used scales are u. and

u.1f for velocity and length (there is a subtle differ-
K_ _ (17) ence because u. and V are not exactly proportional).xIn -) (17) The basic idea is that turbulent boundary layers in

rotating flows are dynamically similar in regions

A problem is immdiately apparent here because as suitably far away from solid surfaces, provided
u. increases, the constant stress layer becomes thinner. density is uniform and flow variables are scaled by
The maximum size of eddies generated within the sur- u. 2, u., and u.If for kinematic stress, velocity,
face layer (1:l < h) thus decreases with increasing and length respectively.
stress, so that the drag law approaches the constant Although this framework has proved a powerful
Ekman solution at higher speeds. All of this is con- tool for classifying and modeling the atmospheric
trary to our physical reasoning. PBL, it has not been as widely accepted for oceanic

Reed and Campbell (1 962) developed a more modeling (see, for example, Kraus 1977). Whatever
realistic approach by specifying a constant value for the reasons for this, the results from under-ice
h and then matching the magnitude of the eddy vis. studies of PBL mean flow and turbulence during the
cosity in the Ekman layer to the surface-layer value AIDJEX experiments strongly support Rossby-type
at z = -h. In effect they postulated a physical limi- scaling (McPhee and Smith 1976, McPhee 1979 and
tation on the maximum effective eddy size (mixing 1980a). Of special significance are measurements
length) rather than on the eddy viscosity. Hence of turbulent stress and turbulent energy spectra re-

~Kin = ku.h where h is an assigned constant and the
ported by McPhee and Smith (1976). We found that

Reed-Campbell drag law (with the simplification atmospheric models adequately described our tur-
Zo + h a h) is bulence data when scaled as above. Furthermore,

V 1 /2 we used peaks in the spectra of vertical velocity
= fluctuations at several levels through the PBL to show

Ih\ that a dimensionless eddy viscosity distribution
X In (18) (fK,/u.2 ) increased more or less linearly with dis-\Zo tance from the surface until it reached a maximum

so that at a depth some fraction of the total PBL depth,
beyond which it decreased slowly. While this is not

P= cot. +'12 Int. _ the simple two-layer system discussed here, we found
)1 = kot. (McPhee 1979) that there was little difference betweennumerical solutions of the PBL equations using an

r' = u. 1l2 (2jfh)-t/2 csc p. exponentially attenuated linear eddy viscosity (similar
to the observed regime) and a linear-constant two-

The Reed-Camphel formulation recognizes that eddy layer system (compare Fig. I and 2 of McPhee 1979).
viscosity in the outer layer depends on surface stress, This observation, in fact, prompted the present work.
but there is still an important conceptual stumbling Why turbulent eddies should be limited in size
block: why should h be the same for a flow with by rotational effects (i.e. that the maximum mixing
low turbulence levels (small u.) as for a flow having length should be proportional to u./) is addressed
high turbulence levels? We might instead expect the in some detail by Stern (1975, Chapter 8). From a
maximum mixing length to depend on other flow stability analysis of the PBL equation, he shows that
parameters as well. energy is spontaneously radiated downward in in-

ertial waves if the scale of turbulent fluctuations
P3L scalin exceeds a length proportional to u.If. He concludes

Rossby (1932) and Rossby and Montgomery that this provides an effective "brake" on surface-
(1935) were apparently the first to explore the idea driven turbulence which tends to keep the scale of
that the maximum eddy viscosity for the rotational the largest disturbances near this instability-governed
PBL is proportional to a velocity scale times a limit.
length scale which appears from dimensional analysis
of the momentum equation; namely. the velocity A dmsimialess two-layer system
scale divided by the Coriolls parameter f(they used The ideas above can be easily incorporated into
the geostrophic wind speed in the atmosphere, the two-layer model as sketched in Figure 6. All
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Figure 6. Two-layer system nondimensionalized by Rossby-simllarity
scales. Note that actual eddy viscosity in Ekman layer is proportional
to us/f.

quantities are nondimensionalized and we assume because unlike the turbulence scales in the outer
that there is a "universal" maximum nondimensional layer, z. is a physical property of the surface itself,
mixing length eN" The outer layer eddy viscosity and there is no a priori reason to assume it scales
is then with u./f. In formulating the drag law for the

AIDJEX Model (McPhee 1975), we assumed that
Km = kNu.2 /f over the limited range of u./f encountered during

meaningful simulations, the effect of variations in
and the Ekman solution (eq 10) is the "surface-friction Rossby number" (Ro. = u./fzo

= I /) would be minor and that a quadratic drag
VE (kjN)-t /2 e-w/4 law would suffice. This was in part due to uncertainty

about a suitable value for zo, since it represents an

aggrepate roughness over perhaps several large floes.
which is clearly a quadratic drag law. The surface The success of subsequent simulation of summer
layer solution is drift using the quadratic drag (McPhee 1980b) tended

to reinforce this view.
V5  1 . N On the other hand, analysis of drift statistics( In described previously indicated that the drag law is

slightly different from quadratic, so we might rather

where 1, =fzo/u. is the "nondimensional roughness treat zo as constant, which gives both /3 and r' slight
length." ,The drag law for the combined system is dependence on u.lfthrough the term In (N/)in eq 20. The two-layer system of eq 19 with z.

V 2 constant includes mout of the features required forr = - = (2 ktw)'1 2  1 + a conceptual model in which the size of momentum
exchanging eddies increases as the distance from the

nANN) 1 interface, but is limited to some fraction of u./fby
In l N .i- (19) an instability mechanism which rapidly propagates

energy away from the boundary layer once the size
and limit is exceeded. All such flows, when scaled as

1/ N. above, are similar except in a thin region right next
on cot-  I In#-El (20) to the interface in which the other physical length

scale z. asserts itself.

i a (2ktN)t csc p. (21) As an historical note, Ekman (1905) assumed that
the depth of frictional influence [D a w(2K*l,') /21

Equation 19 reduces to a pure quadratic drag law in the open ocean varied as W/(sna #)1/2 where W
if 4o is constant. This stpulon Is questiona We, is the surface wind velocity and # is latitude. Weie that, if the dependence were rather D W/sin 0
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(proportional to u./f), this would provide an eddy assume that within the surface layer (itI < t.) shear
viscosity such that fKm/U. 2 is constant (rather than in the lateral (imaginary) component of velocity is
Km), resulting in a quadratic drag. If the minor negligible. Since the real part of the surface-layer
variation off at high latitudes is ignored, faithful velocity varies loprithmicaily. integration of eq 23,
application of Ekman's ideas does result in a quad- evaluated with the approximation ZN + to a tN,
mtic drag, and the turning angle becomes realistic yields
when a surface layer such as that of Shuleikin (1938)
is provided. ,E 1 - (0, + lk) tr (24)

While the modeling results of McPhee (1979)
showed that the particular shape of the nondimensional where VE = u('N) is the nondimensional Ekman
eddy viscosity distribution in the outer layer is not velocity forced by the attenuated and rotated surface
overly important, there remains an obvious question stress TE. Using this as the upper boundary conCi-
about the two-layer approach: specifically, how tion in the nondimensional Ekman solution we have
valid is the assumption of constant stress in the sur-
face layer? Here the numerical results are less en- E  V =
couraging: they show that 0t the level = " N, the m(
nondimensional stress has decreased in magnitude
by about 20% and rotated clockwise perhaps 20 and substituting into eq 24
from its surface value (see Fig. 2 of McPhee 1979).
This suggests a final modification to the two-layer E 0 -4101[1 + (N / 20) 0 ( 0)
system. 1 - (N/2) /2 (1 + i). (26)

A dimmultoleu two-layer system with modfed strew
Equation 6, nondimensionalized, has the form For the value EN = 0.045, derived in the next sub-section, we have TE = 0.80, 0 = -17.30, which agrees

- aT( well with the numerical result of McPhee (1979).
1u = - (22) Solving for YE from eq 24, we have

where t z/u,u /u.and ;=u.u.. The non- .(2k) 1 /2 (1 -i)-I/k
dimensional stress at t is thus VE

S to (= = (240) 2  1 + (2ENlk)'I 2

i7) = . -if 0udt (23) U
t X lln(QN/W o - 11 -Ai (27)

where the subscript o denotes the surface values. To
find T 1  (-t-), we first note that Tis aligned at and the system is sketched in Figure 7.

the surface with the real axis (i.e. T, l), and then

0 K*
Log Layer 0. 'I

V01

O.046 : C,~ v,,a .r

Ftmwe 7. Tmsysytm in wkh stress Is aowed to mory
tiosq a v*hmn, uwfce i-yv. 7he dtttm ad reke e

NW ~ltd Of the ft Io ebelt at the t" Of the hbuma kyo
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Figure 8. Nondimensional stress and velocity in the planetary
boundary layer according to two-layer model with modified
stress (solid curves) and atmospheric PBL model of Businger

and Arya (1974) (dahed curves). Velocity provile in the sur-

face kyer (I INI < O.5) depends on zo.

In addition to the drag law, this approach allows sidering that the only adjustable parameter in the
a complete specification of velocity and stress analytic solution, EN, was chosen by comparing the
throughout the boundary layer. The Ekman solution drift of sea ice with the stress exerted upon it by the
for the outer layer is wind.

&A)= 'E e + tN )
, t < 4N (28) Evaluating the drag laws

From the concept of a surface layer separating

where 17 = u.8/f = (2ktN)-1/ 2 (i + i). For the surface the ice-ocean interface from a pure Ekman layer,

layer, we have constructed a sequence of six drag laws,
each one hopefully including a slightly more sophis-

u) = E + /- In QN/l t 1), ticated view of the boundary-layer structure than
k the one before it. Most expressions for water stress

< l< Ifl < tN " (29) used in ice modeling fit into one of these categories:
S1. Constant eddy viscosity, reduced turning

The nondimensional stress, T = ?/u.u., is, for the angle (eq 13).

outer layer, 2. Logarithmic, constant-stress surface layer,
constant eddy viscosity (eq 17).

3. Reed-Campbell approach, h constant (eq 18).
T TE ell" + 1N), t < -IN (30) 4. Nondimensional eddy viscosity, constant

(eq 19, t. constant).
and for the surface layer the stress is well approxi- S. Rossby similarity scaling, constant-stress
mated by surface layer (eq 19, z, constant.

6. Rossby similarity scaling, logarithmic surface
T )= I + i (vE + 1/k)t, layer with modified stress (eq 27).

In order to compare the drag laws among them-
«o " It I < tN (31) selves and with the AIDJEX free-drift data, values

for the pertinent parameters in each expression
Equations 28-31 constitute a closed PBL model for were chosen so that when u. is equal to 1 cm s-1,
the neutral boundary layer unaffected by a pycnocline. r - 13 and 0 = 24 ° . The value for r comes from

Solutions for I < -IN (- 0.045) are drawn in Figure the fitted r vs V curve (Fig. 1) evaluated at u. = I
8 along with results for the neutrally stable atmos- cm r , which was close to the average condition
pheric PBL from the numerical model of Busingpr encountered during the 1975 melt season. Ex.
and Arya (1974). The agreement is remarkable con. preions for 0 and r are summarized in Table I

1O



Table I. Summary of drag laws.

Dwz hgw* p 1r Parwmeters Stena. equation

240 (2fKm)-'1 2 csc U* Km = 128 cm2 s2 0 =0.077 V

2 cot l  + , in K, (2fKm)-I/2 csc , gi m = 128 cm 2 s r=0.023141.46±o.02)

zo = 23 cm

3 cot 1j (1 in (2Jh)-'12 cs/C us 1 /2  h =319cm 7 =f0.0 1 7 7 (I.7±0.O0)

zo= 23cm

4 24" 13 7 = 0.0059V2

5 coft 1 in+ / (21N)-tN 2 csCfl P N =0.045 r0.0128(1.7 0±
0.0 0)

V 

= 
_1 

23 cm

12N 1 / [ .( o j U (2k40)/2 'SO t N =0.045 0.0128I1. 70±o-oo)
fz

o =8.5m

*-V =re-io 
:

for each model. Note that no attempt was made best described by the Rossby-similarity laws, which
to choose "physically realistic" parameters garnered include the most extensive treatment of the prin.
from the literature. Our reasoning was that the ciples governing turbulent flow. Note that, although
laws were best compared by having them all agree the drag results are very similar for both Rossby-
at one point within the range of acceptable data. similarity approaches, the effective surface rough-

Curves coinciding with the chosen parameters ness is smaller in the reduced stress model (eq 27),
are plotted in Figure 9 along with the envelope of falling close to the value (10 cm) determined in
the experimentally determined exponent, b = 1.78 McPhee (1979). As we have shown, the two4ayer
t 0.12. In addition, these curves were fitted to the model with reduced stress is a close approximation
stress relation of the numerical results of Businger and Ayra (1974)

and McPhee (1979) for determining stress and velocity
r - aVb at all levels in the boundary layer. In flows where

a shallow pycnodine occurs, flow profiles are
with a least-squares analysis of the 29 points used affected at lower levels and drag characteristics
to generate each curve. Values of b with 90% con. are apparently changed slightly as discussed in McPhee
fidence brackets are tabulated for each of the drag (1979). We reiterate that when the ice pack is weak
laws in the last column of Table 1. Only laws S enough to admit Inertial oscillation, the drag laws
and 6 fall within the 90% error bounds of the ob- here are appropriate only for motion averaged for
served data. The sthess4peed relationship is thus time scales of the same order or longer than the

Inertial period (~ 12 hours).

-- mm ' -- ,- o - - -- n *
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Figure 9. Comparison of six drag kw formations with data from
1975 AIDJEX Experiment. Shaded portion shows the limits of
the empirical fit included in the 90% confidence interval.

Rossby similhity pmmhete and buoyancy effects Hence
The usual approach to parameterizing surface

drag on the atmospheric free stream using Rossby- B = (k/ 2 N)'1/2
similarity scaling is somewhat different from that
developed in the previous section. Blackadar and A = - (B + In IN - 1).
Tennekes (1968) summarize the technique, which
matches the mean shear in an overlap region where For IN = 0.045, the parameters are (for neutral
the widely different scales zo and u.If both affect stability) A = 1.99, B = 2.11. Conversely, the drag
the flow. Since the nondimensional shear is the parameters r' and 0 may be expressed in terms of
same by either scaling, a logarithmic velocity pro- A and B by
file ensues, which is matched to the empirical surface-
layer profile. The result is usually expressed in terms A= tan- 1 JBI(In Ro. -A)4 (34)
of the nondimensional velocity components parallel
and perpendicular to the surface stress, i.e. r=k = B2 +(inRo. -A) 2 ]112 . (35)

iIRe (1') Re U's i" (In Ro. - A) (32) In naturally occurring boundary layers, buoyancyV-) forces associated with turbulent fluctuations in a

im (Fr) -'- (33) nonuniform density field often play an important
role in flow dynamics. Generally speaking, in a

where Ro. - I = u.fz o , as before, and A and B horizontally homogeneous flow, two new length
are found empirically. The last two drag laws (eq scales (in addition to zo and u,//) become important
19 and 27) give the same result as the Blackardar- when buoyancy effects are considered. They are
Tennekes approach: e.g. for eq 27 the depth of the mixed layer and the Obukhov length

(see Arya and Sundararajan 1976, for a discussion
Re (r) a (2 N)/ 2 + -L (In IN ) of the atmospheric analop). While the former is

certainly important when It is small compared to
+i InRo, u,/f, it does not fit easily into the simple theory
k here. Our previous modeling results (McPhee 1979)

m (') (2kN)-' /I suggest that the effect of the pynochine on mean
/2 surface drag is not large under commonly encountered

conditions.
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The second length scale, L (the Obukhov length), When ice melts (d<O) due to contact with warm
is used to quantify the effect of surface buoyancy water, the interfacial heat flux is pocpAd where A
flux due to ice growth or ablation. L is obtained is the kinematic latent heat of fusion. Thus
(see, for example, Tennekes and Lumley 1972,
Chapter 3) by nondimensionalizing the surface-layer w 1o = -Ad [d<01. (37)
turbulent kinetic energy equation such that the non-
dimensional production rate of turbulent kinetic The nondimensional Obukhov length, L. = fLlu., is
energy by buoyancy at a particular level z is given
by z/L where L. L (--A, + Ayj (38)

L. = Au, / gk 7wr (36) g
For temperatures less than 00 C, the thermal expan-

wh r-b e sion coefficient a is negligibly small (but alwayswitosiiv fo S ben t4°he tubuen wfter of dest fluc-

tuations. When L is positive, turbulence levels are s f 3 > 240/ fo (Neu an Io n

reduced because the eddies must work against 1906).

gravity; when L is negative turbulence is enhanced. 1966). 0.8 PjCePo = 0.9,

The magnitude of L indicates the scale at which U t v D0/

buoncy is important: e.g., if I L I Is very large Sw Sice = 250oo, A = 65 K, f = .4 x 10- 4 s- 1)

small) buoyancy has little effect on flow in eq 38, for 0 w < 00C

scaling. On the other hand, if ILI is much less than
the scale that turbulence would have in the absence L, =(-2.0 x 10- s cm s). u./d. (39)
of density flux, then the turbulent structure may For Ow - I C the magnitude of L. is increased by
be completely dominated by buoyancy. about 20% by the thermal expansion term.

Without examining the complex details of buoy. From the scaling considerations discussed above,
ancy-dominated flows, we shall make some general- we expect L. to have an impact on the turbulent
izations relating to freezing rates based on scaling regime when its magnitude is of the same order or
and show how a simple extension of the theory in smaller than the neutral nondimensional PBL depth.
the last section has application to conditions of often taken to be about 0.5. For growth rates such
rapid melting. that

The equation of state for sea water is approxi-
mately dj >(4 x 10-5 cm-' s) u 2

- 0o) + O(S - So) buoyancy, therefore, may affect surface drag. For
typical conditions (u. - 1 cm s- 1) this effect is

where p, is a reference density at temperature 0o  about 4 cm per day. But freezing rates this high

and salinity So; hence, occur only at low temperatures in comparatively
thin ice. Under normal circumstances, the drag

•--, laws discussed here apply to pack ice that is fairly
pw =-a 'r'+ +# thick (at least I m) and compact (say 80% cover),
Po so an ofder-of-magnitude estimate suggests that in-

stability associated with surface freezing will rarely
where w and ' rthave much effect on the average ice drag. Similarly,
Sature and salinity. When sea water freezes, only a melting rates encountered in the perennial pack of
small portion of the dissolved solids (typically about the central Arctic, where oceanic heat flux is small,
1/6) are retained in the sa ice matrix, so thata cmotbeconsstentlyalargeas4cmday.or

salinity flux occurs as given by most of the ice would disappear over a 60-day melt

S..(S - S.)d seam.
o O=.1,0d On the other hand, there are conditions under

which very rapid melting might have a decided stas-
whee d is the egro rt $ " is th biing effect on the PSL An example is advection
wheny d ifferee grwth ateri a S,-I is the by wind of pack ice acmw frontal zones at the ice
sanity hit ex i pera -. maro where mixed4yer temperature may change
(d ho)b wV7mm * a 2 to 3 K within sev l klomete.
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Figure 10. The Rossby-simi~rity parameters A and B as

functions ofy. = i/L,. Data points with error bars are from
Carke and Hess (19 74); open circles are from model of
Businger and Arya (19 74); curves are from present theory
with (Rt)max - 0.2 (solid) and (Rf)max = 0.15 (dashed).

There is some indication at the Bering Sea ice margin = u.u.), the flux Richardson number (i.e. the
that melting rates at least an order of magnitude ratio of buoyant production to stress production of
greater than 4 cm day - ' occur when ice moves turbulent kinetic energy - see Tennekes and Lumley
across such fronts*. If, for example, we were inter- 1972, p. 98) is given by
ested in estimating the distance that thick floes
might migrate into warm water before melting, then Rr=( A p (U.2 =(fK L
buoyancy would have to be considered in calculating o
drag. The remainder of this section addresses thisproblem as an extension of the mixing length approach The nondimensional eddy viscosity, (ftC/u. 2) in the
developed aabove, surface layer is kt, so we have t = RfL.. Observations

The o en show that Rf has an upper limit of about 0.2. ForThe nondimenional, two-layer theory for a L m le 0 a p o c e
stably stratified flow follows from the idea that L. small, eq 40 approaches
maximum nondimensional mixing length is tN when
L. is infinite (neutral stability), but is proportional
to L. under very stable conditions (L. small). The indicating that X! (Rf)ax = 02.
simplest expression possessing these iits is A comparison of the present theory for two dif-

ferent values of X with other results is shown in
m = ;N (I + N/X.) -s  (40) Figure 10, where the Rossby similarity parameters,

where X is a constant yet to be determined. Given as defined by eq 32 and 33, are plotted as func-

L., we sutstitute t, for tN in eq 26 and 27 to tions of the variable 1A. = 1L.. Also shown are

determine the stress attenuation and to solve for predictions of Businger and Arya (1974), whose

the drag parameters r and 0, from which the velocity model uses a nondimensional eddy viscosity based

may be obtained, on the log-linear wind profile determined from the

To evaluate A, we follow the reasoning of Zilitin- Kansas surface-layer experiment (Businger et al.

kevich (1975). With the surface-layer approximation 1971).
The data points with error bars in Figure 10 are

from an analysis by Clarke and Hess (1974) of wind
M.arinnal Eommuentalon with C 111. NOAA PUCIfic profiles throughout the entire PBL under stable
Maine Envkonmental Laboratory, 391.
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Figure 11. Data from Clarke and Hess t]974) after
adjusting u, by a constant factor to make neutral
values for B agree, compared with present theory with
(Rf)ma = 0.2.

conditions caused by radiative cooling during the and 4, respectively. Apparently, the data are too
Wangara experiment in the Australian desert. scattered for one to determine appropriate values

By applying the same arguments used to deduce for (Rf)m ax, but they do exhibit the same general
the neutral boundary-layer model to a regime in form as eq 41 and 42.
which the maximum mixing length is given by eq To recap, given interfacial stress and ice growth
40, it can be shown that the curves in Figure 10 are rate, we can determine L. from eq 38 and use the
given exactly by similarity expressions eq 43 and 44 to find P and r

from eq 34 and 35. For a concrete example, let u.
B = (k/2tN)12 ( + 3g.)112 (41) = I cm s', d = 50 cm day - 1, zo 

= 9 cm, and f= 1.23
x 10-4 s- 1 (latitude 580N); then L. = 0.037,B = 5.6,

A = 1 -In tN - (k/2N)1 / 2 (1 +y1u.)1/ 2  A = 0.45, r = 21.2, and 0 = 41*. Compared with the
neutral case, the ice travels more than half again as

+ In (1 + v,.) (42) far under similar stress conditions because of the
rapid melting.

where u =I lL. and _f = tN/(Rf)max. There is a final ad hoc addition to the theory for
For ; = 0.045 and (Rf)max = 0.2, they are which there is at present little experimental justifica-

tion, but which may be helpful in interpreting data
B 2.11 (1 + 0.22 p.)I /2 (43) on drift and melt rates near the margins of ice packs.

It is useful to consider the physical scales implied in
A =4.10 - 2.11 (1 + 0.22 u.)"/ 2  the specific problem above. Regardless of how the PBL

depth is defined, similarity of profiles in the outer
+ in (1 + 0.22 I*). (44) (Ekman) portion requires that it be proportional to

(km)' /2. (Incidentally, this implies that the PBL
Although at first glance, resu)ts for B shown in depth is proportional top .-1/2 for small L., which

Figure 10 might indicate that (Rf)max a 0.2 is too is again consistent with Businger and Arya (1974)
large, such an interpretation must be approached and Zilitinkevich (19751). In the example above,
with caution. Clarke and Hess (1974) point out if the neutral PBL depth is 0.5 u.If 41 m, then
that their data derive from scaling by u. as do- the stratified PBL depth is
termined at a very s.ooth site, and one may infer (t
that the u. to which the entire PBL responds is D/2DN + t"'I
larger. This point is illustrated in Figure I1, where
we have adjusted their data values by applying. = 15.4 m
constant correction factor to u. such that their
neutral value (B a 4.3) agrees with ours (B a 2.1). so that the thickness of the boundary layer is much
We have assumed that geostrophic wind and surface reduced. We may ignore the surface logarithmic
heat flux measurements are representative, to that layer, since t, u.If is only about 40cm (it varies
ordinate and abscissa values are divided by about 2 * u.-' for large p.).
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There is no steady-state thermal boundary layer Rossby-similarity scaling are consistent with the
formulation that corresponds with that of the tur- averaged stress magnitude vs relative ice speed rela.
bulent momentum flux in the outer layer; neverthe. tionship determined from the summer AIDJEX data.
less, the maximum mixing length for temperature When such scaling is applied to the classical two-layer
fluctuations should be of the same order as for approach to the PBL problem, with the added feature
momentum, and we have that stress is allowed to vary realistically through the

*inner (surface) layer, an analytic solution is found
W- -U

2kom 3 that reproduces closely the numerical results of
w' f i "McPhee (1979) and of Businger and Arya (1974).

If we assume further that the temperature gradient The eddy viscosity in the outer (Ekman) layer is
is proportional to A/I 3D where AO is the difference given by Km= ktNU. 2 /f with tN' the maximum
between the ice melting temperature and the temper- dimensionless mixing length, being about 0.045.
ature at depth D., we obtain an explicit relationship With this value, the drag law we propose is
between A and melting rate, i.e.

l'= _ 2.SIn Ro. -4.98) -5.27 i (45)
W F-'-, k (m(U .2 If ) A A u .

A AD, where Ro. = fzo/u.. The effective zo inferred from
the AIDJEX results is about 9 cm, but may vary de-

2 clktN N -1/2 pending on ice characteristics such as ridging intensity

A +  -' u or previous meIng.
When drifting ice is also melting rapidly, buoyancy

where we have used affects the drag. This tendency is modeled by a

Sm /2 simple extension of the two-layer theory in which
D m k (0.5 u.I). the maximum mixing length is reduced from its

neutral value as stability increases, eventually becoming
The constant cn is unknown, but ought to be of proportional to the Obukhov length. With the pro-
order unity, in which case portionality constant equal to (Rf)m.x = 0.2, the

results are similar to those of Businger and Arya
A [ (+ t )1/2 d [c (1974) and are supported by measurements of geo-

A0 = NN + - u * = 1.strophic similarity parameters (A and B) in the
stable atmospheric PBL reported by Clarke and HessFor the example above, AO = -2.8 K, which is not (1974). Our suggested treatment of the stable PBL,

unreasonable for conditions sometimes found near given the growth rate d, is
the ice edge. Note that the depth of a pre-existing
mixed layer is irrelevant unless it happens to be L. = (-0.17 cm -1 s2) (fU. 2/d)
less than Ds, assuming that the ice advects directly
into a mixed layer of uniform temperature above B = 2.11 (1 + 0.22/L.)'1/2
the melting point.

Within the theoretical framework, the constant A = 4.10 - 2.11 (1 + 3.22/L.)l/2
cn could be evaluated experimentally by observing
sea surface temperature A0, surface wind stress + In (I + 0.22/L.)
(us) and ablation rates of large floes drifting across
the ice edge front. Whether conditions steady or != = I (In Ro. - A) - iB.
horizontally homogeneous enough to provide suit- U. k

able measurements can actually be found is un- The results of a specific example, 3, which showed
certain; but if c, were known, knowledge of wind that rapid melting might increase the ice speed by
conditions and temperature change across the front- ta ai etn ih nraeteiesedbbonitos whc tmhte ene r ot-w e frhalf its neutral value under similar stress conditions,
both of which might be sensed remotely-would be allows us to speculate on the origin of an interesting
enough to make a quantitative estimate of how long phenomenon observed near the ice margin in the
floes would survive, how far they would drift, and Bering Sea. According to C. Pease and R. Bourke*
to what extent they would cool the ocean. it Is not uncommon to encounter a continuous band

DISCUUSSN of jumbled. compact floes parallel to the edge of the

An evaluation of several sea4ce drag formulations Peronmai commanicaio wih C. Pe.e, NOAA PmEL. i9si

dsows dita only thou oeformng In some way with and R. Souke. Nam Pfetesdat. School. I 9O.
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main peck, but separated from it by several kilo- Kraus, E. (1977) Modein and Prediction of the
meters of open water. Satellite imagery also shows Upper Layers of the Ocean. Oxford: Pergamon
such features occasionally (e.g., see Fig. 3 of Muench Press.
and Charneli 1977). Results given in the previous Mcee, M.G. (1975) Ice-ocean momentum transfer
section suggest the following scenario for the for- for the AIDJEX model. AIDJEX Bulletin 29, p. 93-
mation of such features. Prior to the onset of an I1l.
off-ice wind event, the ice at the margin of the pack Mcihee, M.G. (1979) The effect of the oceanic
is consolidated and ridged, apparently by wave action boundary layer on the mean drift of pack ice:
and other edge effects. As the wind begins blowing Application of a simple model. Journal of Physical
toward 6pen water, the entire pack moves, but the Oceanography. vol. 9, p. 388400.
leading floes, drifting into warmer water, accelerate McPhee, M.G. (1980a) A study of oceanic boundary-
away from the main pack, cooling the water behind layer processes including inertial oscillation at three
them. Thus the leading edge, which was thicker to drifting stations in the Arctic Ocean. Journalof
begin with, experiences less drag at all times, and Physical Oceanography, vol. 10, p. 870.884.
separates from the main pack more or less intact. McPhee, M.G. (1980b) An analysis of pack ice drift
As the wind dies, heat flux (which depends on u.) in summer. Sea Ice Processes and Models (R.S.
and melting decrease, so that the band may then Pritchard, ed.). Seattle: University of Washington
persist for some time as a stationary feature. Press, p. 62-75.

Whether or not such a situation occurs, the Mcihee, M.G., and J.D. Smith (1976) Measurement
framework presented here, which has a solid basis of the turbulent boundary layer under pack ice.
in PBL theory, at least provides a departure point Journal of Physical Oceanography, vol. 6, p. 696.711.
for interpreting the extremely complex changes in Muench, R.D., and R.L. Chamell (1977) Observations
momentum, heat, and salt fluxes that occur across of medium-scale features along the seasonal ice edge
the marginal ice zone. in the Bering Sea. Journal of Physical Oceanography,
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