

UPTAKE AND FATE OF TRI-N-BUTYLTIN CATION IN ESTUARINE BACTERIA

W. R. Blair¹, G. J. Olson², F. E. Brinckman, and W. P. Iverson Center for Materials Science, National Bureau of Standards Washington, DC 20234

Address all correspondence to:

W. R. Blair A-329 Materials Building National Bureau of Standards Washington, DC 20234

Submitted: April 2, 1982

0

2

5

က

-4

8

Suggested running head: Tri-n-butyltin and Estuarine Bacteria

¹Fellow, International Agricultural Centre, The Netherlands, May to November, 1981

²National Research Council--National Bureau of Standards Postdoctoral Research Associate, 1979 to 1981.

DISTRIBUTION STATEMENT A

Approved for public release;

Distribution Unlimited

٦

COPY

E

APR 13

12 82 04

Abstract. The uptake and possible metabolic transformation of tri-<u>n</u>butyltin cation by tin-resistant estuarine bacteria was studied. The bacterial isolates accumulated tributyltin to 3.7 to 7.7 mg tin per g dry weight of cells by a non-energy requiring process, probably by adsorption to the cell envelope. Chemical speciation of cell extracts and culture media by combined liquid chromatography-atomic absorption spectrophotometry and tin-selective purge and trap flame photometric gas chromatography for possible tributyltin degradation products revealed no significant biotransformations of tributyltin cation by the tributyltin-resistant isolates. Apparently the isolates accumulate, but do not metabolize, tributyltin.

ſ	Accession For
Ì	NTIS GRAAI
l	DTIC TAB
	Unannounced L
	Justification
	By
	Distribution/
	Avoilability Codes
	Avail aud/or
	Special COPETED
	Inter and a

- 2

Introduction

Although many studies have documented the uptake of heavy metals by microorganisms, relatively little is known regarding uptake and possible microbial transformations of organometallic compounds¹. Silverberg et al. [27] reported that Aeromonas apparently was accommodated to organoleads by binding lead in the cell envelope, however. the chemical form of lead bound in the envelope was not ascertained. Aeromonas also produces volatile tetramethyllead from trimethyllead salts [27], perhaps as a detoxification process. Others have studied organomercury biodegradation by mercury-resistant microorganisms. Methylmercury can be degraded to volatile elemental mercury and methane [19,29] and phenylmercuric acetate is degraded to volatile elemental mercury and benzene [23]. Fang [8] found that guppy, snail, elodea, and coontail took up radioactivity when incubated with ²⁰³Halabeled phenylmercuric acetate (PMA), but did he not speciate the bound radiolabeled mercury. Most of the PMA was converted to inorganic mercury. Guard et al. recently demonstrated microbial volatilization of tetramethyltin from trimethyltin, presumably by a biologicallycatalyzed methyl redistribution [11]. Hallas and Cooney [12] as well as Yamada and co-workers [31] found trialkyltins, especially tripropyltin (TPT) and tributyltin (TBT), had the highest antimicabial activity. Yamada et al. [31] found TPT inhibited membrane bound A... and DNA and RNA synthesis, but not respiration. TPT caused leakage of cell

١

¹Use of terms for organometallic derivatives such as tributyltin, methylmercury, or trimethyllead find increased use in biological literature as this field develops. Readers are cautioned that these represent commonly used but incomplete descriptions of full chemical names. We employ such terms as a space-saving convenience, but with the note that such terms modify descriptions of "species," "salts," "derivatives," or "compounds," and the like in all circumstances, and do not imply free radicals.

constitutents, and in some cases lysis with Escherichia coli and Bacillus subtilis, yet was rapidly bound (probably to membrane phospholipids) by <u>E. coli</u> by a temperature independent process. Barug and Vonk [3] reported that ¹⁴C-labeled tributyltin oxide was degraded to dibutyltin derivatives and CO_2 in soil incubated in the laboratory, though no direct tin-cell interactions were investigated. Recently, Barug showed [2] that pure cultures of certain bacteria and fungi convert added bis(tributyltin)oxide into mono- and dibutyltin derivatives after several days incubation.

Organotins are being used in increasing amounts as plastics stabilizers, catalysts, and biocides [33]. The U.S. Navy is investigating the use of organotins (especially tributyltin-containing polymers) as biocidal controlled-release agents in antifoulant paints for its fleet. The potential environmental fate of these toxic organotin compounds, which are slowly leached into the aquatic environment, requires attention. This work was undertaken to gain a better understanding of the interaction of tin-resistant estuarine microorganisms with such toxic organotin compounds. Specifically, estuarine bacteria resistant to tributyltin were studied to examine the mode of tributyltin uptake and possible degradation and/or detoxification processes.

Materials and Methods

Chemical and Speciation Procedures

All chemicals used were reagent or purified grade; organotins were obtained from commercial sources and used without further purification since their chromatographic and NMR purities were greater than 98 percent [18]. Stock solutions and freshly prepared dilutions for

experiments and calibrations employed spectrograde methanol and sterile deionized water (18 M Ω -cm resistivity, Millipore Corp.). Speciation of organotins in solutions or from cell extracts was accomplished with appropriate ion exchange columns in an automated dual-pump high performance liquid chromatograph (HPLC) coupled with a tin-specific graphite furnace atomic absorption spectrophotometer (GFAA). Full details of the HPLC-GFAA system and its operation are reported elsewhere [18]: generally, detection limits for tributyltin and dibutyltin (speciated as the cations) were 0.16 and 0.20 mg L^{-1} , respectively. In typical solution growth media (Nelson medium, [23]) less than 3 percent of dibutyltin was detectable relative to tributyltin present at the 10 mg L^{-1} concentration used for uptake experiments. In the ion exchange speciation method, only ionizable organotins are detected as discrete cations at characteristic retention times independent of the labile geganion (e.g., Cl); those involatile butyltins, for example, not reversibly ionized from dissolved or particulate materials in the growth medium required a different method for speciation using hydridization.

Both headspace gases above solution growth media and aliquots of these media were examined by column gas chromatography (GC) using a tin-specific flame photometric detector (FPD). Respirant atmospheres were injected directly (1 mL) into the GC-FPD system to detect possible volatile tin species. For the detection of possible non-volatile tributyltin degradation products samples (10 μ L) of growth solutions were pretreated with excess NaBH₄ in an automated purge-and-trap system (P/T) directly coupled with the GC-FPD and the sparged organotin hydrides formed were speciated. Details of these methods and their sensitivities towards a variety of potential organotin metabolites are reported elsewhere [17].

Total tin (i.e., not speciated) was analyzed by GFAA using 20 μ L sample aliquots which were dried (100 °C, 20 s) then atomized (2700 °C, 7 s). Generally a char cycle, sometimes required when analyzing highly carbonaceous samples [18], was not needed since samples were diluted (20 percent HNO₃) prior to analysis. Calibration mixtures of tri-<u>n</u>-butyltin chloride or SnCl₄·5H₂O in 20 percent HNO₃ were used in constructing standard curves for cell uptake experiments. Detection limits [25] of 2.4 ng for Sn(IV) and 17 ng for tributyltin chloride were readily achieved.

Organisms and Cultural Conditions

Eight tributyltin-resistant bacterial isolates were obtained by surface plating of sediment from three different sites in Baltimore Harbor, Chesapeake Bay on Nelson medium [23] contining 20 mg L⁻¹ tin (as tributyltin chloride). After incubation at 29 °C for one week, morphologically distinct colonies were restreaked on Nelson agar, and after incubation and a third streaking, were considered axenic. All isolates were gram negative rods. Three other tributyltin-resistant strains (<u>Pseudomonas fluorescens</u> strains B1 and B69, <u>Pseudomonas</u> strain 244) were obtained from Prof. R. R. Colwell of the University of Maryland. Cultures were grown in Nelson broth in 250 mL Erlenmeyer flasks on a rotary shaker operated at 200 rpm and held at 29 °C.

Preparation of Cell Suspensions

Cells were harvested (4600 xg, 15 min) during the exponential growth phase, washed twice in distilled water, and resuspended in 5.0 mM piperazine-N, N'-bis(2-ethanesulfonic acid) buffer (PIPES, [10], at pH 7.6) to a cell density of 2-4 mg (dry weight) mL^{-1} . The cell suspensions were further incubated for 6 to 10 h to deplete cellular energy reserves [24].

Tin Accumulation Studies

Starved cell suspensions were added (2.0 mL aliquots) to a series of 250 mL Erlenmever flasks containing 17.6 mL of 5.0 mM PIPES buffer. Distilled water or glucose (10 mM final concentration) was added 15 min before tributyltin chloride (10.0 mg L^{-1} final concentration). In some cases, sodium azide (to give 1 mM final concentration) or formaldehyde (to give 1 percent final concentration) was added 5 min before tributyltin chloride to flasks containing glucose and cells. The final volume in each flask was 20 mL. One flask contained glucose and boiled (10 min, 100 °C) cells. Samples were withdrawn periodically after tributyltin chloride addition and the cells were collected by centrifugation (12,000 xg, 3 min), followed by two washes in 5 mM PIPES buffer or filtration (25 mm diameter, 0.45 µm membrane Millipore filters), followed by a rinse with 5 mL of 5 mM PIPES buffer. Cells and filters were digested by 0.2 mL concentrated HNO₃ in 2 mL polypropylene centrifuge tubes for 30 min at 80 °C, the volume was brought to 1.0 mL with deionized water, and samples were analyzed for total tin using a Perkin Elmer Model 460 graphite furnace atomic absorption spectrophotometer (GFAA). In one experiment, cells which had been incubated 2 h in the presence of tributyltin (10 mg L^{-1}) were washed twice in deionized water, and broken by ultrasonic disruption (five 1.0-min bursts, microtip setting 6.5, Heat Systems Ultrasonics, Inc.). The cell wall-membrane component was separated from soluble material by centrifugation of the mixture at 20,000 xg for 30 min. Total tin in the resulting pellet (digested in concentrated HNO_3), and the supernatant, was also determined by GFAA.

Chemical Speciation of Cell Bound Tin

Cells were grown in Nelson broth containing 10 mg L^{-1} tin (as tributyltin chloride) for 2.5 hours. The cells were then centrifuged (12,000 xg,3 min), washed three times in deionized water, and extracted with 10 mL methanol. After an additional centrifugation, the methanol extract was analyzed directly for organotin species using the HPLC-GFAA system.

Tributyltin Chloride Metabolism Studies

Cultures of bacteria growing on Nelson agar plus 5 mg L⁻¹ tributyltin chloride were inoculated into 250 mL Erlenmeyer flasks or mininert (Supelco) capped bottles containing 100 mL Nelson broth plus 10 mg L⁻¹ tributyltin chloride and incubated overnight at 29 °C without shaking. The next day headspace gas from the capped bottles was analyzed for volatile tin species using GC-FPD equipped with tin-selective interference filters [17]. Aliquots (10 μ L) of the culture medium from Erlenmeyer flasks were analyzed by purge and trap GC-FPD [17], following NaBH₄ reduction to detect possible non-volatile tributyltin degradation products.

Results and Discussion

Previous studies [12,13,20,31] have shown that many microorganisms, including estuarine bacteria [11,12] are sensitive to low concentrations of organotin compounds. Hallas and Cooney found that only a small percentage of bacteria in sediment samples from Chesapeake Bay were resistant to 15 mg L⁻¹ dimethyltin dichloride in culture medium [13]. Tributyltin is one of the most toxic forms of tin; a few mg L⁻¹ is sufficient to completely inhibit the growth of many microorganisms [12,13,20,30,31].

Other triorganotins are also toxic in low concentrations to molluscs, insects, higher plants, and mammals depending on the number of carbon atoms in the organic substituents [20,28,30].

Our tin-resistant isolates (Table I) were obtained from Baltimore Harbor, an industrially polluted portion of the Chesapeake Bay, which contains organotin compounds in the water column [17], and appreciable quantities of inorganic tin in sediments [12]. The bacteria which grew on Nelson agar containing 20 mg L⁻¹ tin as tributyltin chloride were considered as tributyltin-resistant. All tributyltin-resistant isolates were also resistant to 100 mg L⁻¹ inorganic tin $(SnCl_4 \cdot 5H_20)$, a concentration that Hallas and Cooney found to inhibit the growth of a majority of bacteria in Chesapeake Bay sediments [13]. <u>Pseudomonas</u> strain 244 and <u>Pseudomonas fluorescens</u> strains B1 and B69, also isolated from the Chesapeake Bay, were resistant to tributyltin chloride (20 mg L⁻¹) and inorganic Sn(IV) (100 mg L⁻¹). Since <u>Pseudomonas</u> 244 produces a number of volatile tin compounds [17] from inorganic tin(II) and (IV) it was the most intensively examined organism in this study.

<u>Pseudomonas</u> 244 rapidly bound tin when placed in PIPES buffer containing 10 mg L⁻¹ tin as tributyltin chloride (Fig. 1). The cell bound tin was chemically speciated by HPLC-GFAA and showed an identical retention time with that of authentic tributyltin (Fig. 2). The binding appeared to be a chemical adsorption process rather than active transport since starved cells, starved cells plus glucose, and starved cells plus glucose and sodium azide (a metabolic inhibitor) accumulated similar amounts of tributyltin (Fig. 1). Yamada et al. [32] found <u>Escherichia coli</u> rapidly bound tripropyltin also by a nonmetabolic process. Cells killed by boiling or formaldehyde treatment

bound nearly twice as much tributyltin as live cells, a phenomenon observed by other investigators (using other organisms and metals) and attributed to increased cell envelope binding sites made available by these treatments [5,9,15,22]. <u>Pseudomonas</u> 244 and isolate Ac were also tested for the ability to bind inorganic tin (as $SnCl_4 \cdot 5H_20$). Inorganic tin(IV) was bound much more rapidly than tributyltin, within 2 to 3 minutes binding was complete and tin had accumulated to 1.5 to 2.0 percent of the cell dry weight (Fig. 3). These data also suggest a rapid surface binding of inorganic tin, rather than progressive metabolic uptake into the cell. Thus, methylation of Sn(IV) by <u>Pseudomonas</u> 244, previously demonstrated in this laboratory [16,17], may occur in the cell envelope rather than intracellularly.

Tributyltin was also bound by the other isolates (Table 2). As with <u>Pseudomonas</u> 244, binding was nearly complete after 1.5 hours. Again, no appreciable differences in the amcunt of tributyltin bound by starved cells and starved cells plus glucose was noted, indicating uptake was not a metabolically dependent process.

Dry weight concentration factors for tributyltin (Table 2) indicate that these organisms have the capacity to adsorb and concentrate substantial amounts of tributyltin from solution. In the natural aquatic environment tributyltin may occur largely associated with microorganisms and could, therefore, be accumulated in a food web as has been observed with mercury [4].

The majority of tributyltin bound by the tin-resistant isolates occurred in the cell envelope (Table 3). Cells of seven of the isolates from Baltimore Harbor and <u>Pseudomonas</u> 244 were incubated with tributyltin (10 mg L⁻¹) for 2 h, washed, and then broken by ultrasonic disruption

and centrifuged to pellet the cell wall-membrane complex and unbroken cells. Only a small amount of tin was detected in the supernatant fraction, 95 to > 99 percent was detected in the pellet. Since > 92 percent of the cells were broken (except <u>Pseudomonas</u> 244, 70 percent) by ultrasonic treatment (as determined by Petroff-Hausser direct count) the pellet consisted mainly of cell wall-membrane fragments. Thus, virtually all the tributyltin bound by these isolates was associated with the cell envelope. Yamada et al. [32] observed that the cell wall-membrane complex and protoplast membranes of Escherichia coli bound tripropyltin.

Cells that bound tributyltin were collected on membrane filters, and when rinsed with 5 mL EDTA (1 mM) instead of PIPES buffer, 50 to 70 percent of the bound tributyltin was removed, suggesting a weak mode of chelation of tributyltin [7,24]. Yamada et al. have suggested "EDTA does not react directly with trialkyltins" [31]. Perhaps, as Yamada et al. suggested for <u>E</u>. <u>coli</u> [31], EDTA treatment results in defects in membrane structure or stability. Such defects may have resulted in the release of membrane bound or intracellular tributyltin from cells on filters.

The identity of the tin species bound by <u>Pseudomonas</u> 244 and other isolates was confirmed by HPLC-GFAA analysis of methanol extracts of cells which had been incubated with tributyltin chloride. To our knowledge this is the first report in which chemical speciation of a cell-bound organometallic compound has been reported. These analyses also indicated no significant biotransformations of bound tributyltin to dibutyltin. After 2.5 hours of incubation only tributyltin cation was detected in methanol extracts from cells (Fig. 2); similar experiments performed after 8 days incubation showed no tributyltin transformations. Compared

١

to a methanol wash, very little tributyltin was released by the cells in a deionized water wash. No dibutyltin species, which has been a reported tributyltin breakdown product in rat liver microsomes and mammals [20] in unsterilized soils [3] and in some microorganisms [2], could be detected. Based on system sensitivity, biotransformation of 1 percent of tributyltin in solution or 3 percent of cell-bound tributyltin to dibutyltin would have been detected. The HPLC-GFAA method would not, however, detect volatile tin compounds nor the production of inorganic tin (by microbial C-Sn bond breaking). Therefore additional experiments were performed to determine if volatile degradation products or inorganic tin were produced by the action of the tin-resistant isolates on tributyltin, especially since <u>Pseudomonas</u> 244 produces volatile organotins from SnCl₄·5H₂0 [16,17] and estuarine microorganisms have been reported to produce volatile tetramethyltin from trimethyltin [11], or Sn(IV)[14].

Possible tributyltin degradation to volatile and non-volatile products was studied with a purge and trap flame photometric gas chromatograph (P/T-GC-FPD) using interference filters selective for tin emission [17]. Culture medium containing 10 mg/L tin as tributyltin chloride and inoculated with tin-resistant isolates was analyzed either by direct P/T-GC-FPD or by borohydride reduction P/T-GC-FPD. Non-volatile inorganic and organic tin compounds are converted to volatile tin hydrides by sodium borohydride [17] and were collected on a Tenax GC trap by purging the sample with nitrogen. The trapped sample was desorbed onto the GC column for separation and detection of tin species. Detection limits for organotins using this system are 13 to 52 ng L⁻¹ depending on the tin species examined [17]. In addition to these experiments, direct injection of the headspace gas in closed container experiments was also performed. All

۱

bacterial isolates were examined, and in no case were volatile tin containing degradation products detected. Thus, <u>Pseudomonas</u> 244, which methylates Sn(IV) to volatile tetramethyltin [17] and the other tributyltin-resistant bacteria we isolated, are apparently unable to metabolize or transform tin in the tributyl form, unlike certain microorganisms which apparently transform organometals as a detoxification process [23,26,29]. The tributyltin-resistant estuarine bacteria that we examined do not metabolize tributyltin in laboratory culture, although they accumulated tributyltin in the cell envelopes. This raises the question of both environmental persistence and bioaccumulation of tributyltin in food chains in the estuarine environment.

The exact mechanism of tributyltin resistance in the bacterial isolates is unclear but apparently does not involve metabolic degradation of the organometal. Results with Pseudomonas 244 indicated that accelerated efflux (as in tetracycline resistance in E. coli [1,21]) or metabolic exclusion probably does not account for tributyltin resistance since metabolically inhibited cells do not accumulate more tributyltin than metabolizing cells (Fig. 1). Tributyltin may be sequestered in some manner in the cell envelope, as suggested by Yamada, et al. [32] for E. coli and tripropyltin and Silverberg, et al. [27] for Aeromonas and organic lead, affording some degree of protection to the bacterial cells. Gram-negative bacteria in general are more resistant to many bacteriocidal compounds than are gram positive bacteria by virtue of their complex outer membrane structure [6,31]. Yamada et al. [31] reported gram-negative bacteria were more resistant to trialkyltins than gram-positive bacteria. Barug [2] recently reported that certain fungi and bacteria slowly degraded tributyltin to

mono- and dibutyltin, but suggested that the capacity to degrade tributyltin is not widespread among bacteria. Our results support that suggestion. Thus, a system of organotin detoxification analogous to the well-known organomercurial enzymatic detoxification mechanisms [23,26,29] apparently is not common among organotin-resistant bacteria.

Barug and Vonk [3] detected biodegradation of tributyltin to dibutyltin and CO₂ in soils. It is possible that under actual environmental conditions a similar process occurs in estuaries. From our results we know that tributyltin resistant bacteria do not seem to readily biodegrade tributyltin in laboratory culture, however, under actual environmental conditions other processes may occur. In an attempt to address this question we have undertaken some preliminary analyses of tributyltin spiked sediments from Baltimore Harbor. Initial short-term results have indicated no volatile tins are produced from tributyltin spiked sediments or waters however, in some cases, the analyses are difficult due to interferences from volatile organosulfur compounds in the sediments. New studies employing gas capillary GC-FPD tin speciation techniques should help in peak resolution and allow an assessment of the biological stability of tributyltin species in estuarine waters and sediments.

<u>Acknowledgments</u>. Portions of this work were presented at the Annual Meeting of the American Society for Microbiology, Dallas, TX, March 1-6, 1981. This work was supported in part by the Office of Naval Research. We gratefully acknowledge the Chesapeake Bay Institute and the Johns Hopkins University for making shiptime available on the R/V Ridgely Warfield. We are indebted to Prof. R. R. Colwell and her coworkers for assistance in field sampling and wish to acknowledge the

experimental assistance of Michelle Leff, Marianne Petrick, and Suzie Bradshaw. We also thank Dr. J. A. Jackson for technical advice and assistance with gas chromatographic work. Certain commercial equipment or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose. Contributions from the National Bureau of Standards are not subject to copyright.

ļ

Ł

References

- 1. Ball, P. R., S. W. Shales, and I. Chopra: Plasmid mediated tetracycline resistance in <u>Escherichia coli</u> involves increased efflux of the antibiotic. Biochem. Biophys. Res. Comm. 93, 74-81 (1980).
- 2. Barug, D: Microbial degradation of bis(tributyltin) oxide. Chemosphere 10, 1145-1154 (1981).
- 3. Barug, D. and J. W. Vonk: Studies on the degradation of bis(tributyltin)oxide in soil. Pestic. Sci. 11, 77-82 (1980).
- 4. Berk, S. G. and R. R. Colwell: Transfer of mercury through a marine microbial food web. J. Exp. Mar. Biol. Ecol. 52, 157-172 (1981).
- 5. Broda, E.: The uptake of heavy cationic trace elements by microorganisms. Ann. Micr. 22, 93-108 (1972).
- Costerton, J. W. and K. J. Cheng: The role of the bacterial cell envelope in antibiotic resistance. J. Antimicrobial Chemotherapy 1, 363-377 (1975).
- Failla, M. L., C. D. Benedict, and E. D. Weinberg: Accumulation and storage of Zn² by <u>Candida utilis</u>. J. Gen. Microbiol. 94, 23-36 (1976).
- Fang, S. C.: Uptake and biotransformation of phenylmercuric acetate by aquatic organisms. Arch. Environ. Contam. Toxicol. 1, 18-26 (1973).
- 9. Giesy, J. P., Jr. and D. Paine: Uptake of Americium-241 by algae and bacteria. Prog. Wat. Tech. 9, 845-857 (1977).
- Good, N. E., D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. M. Singh: Hydrogen ion buffers for biological research. Biochemistry 5, 467-477 (1966).
- Guard, H. E., A. B. Cobet, and W. M. Coleman, III: Methylation of trimethyltin compounds by estuarine sediments. Science 213, 770-771 (1981).
- Hallas, L. E. and J. J. Cooney: Effects of stannic chloride and organotin compounds on estuarine microorganisms. Dev. Ind. Microbiol. 22, 529-535 (1981).
- Hallas, L. E. and J. J. Cooney: Tin and tin-resistant microorganisms in Chesapeake Bay. Appl. Environ. Microbiol. 41, 446-471 (1981).
- 14. Hallas, L. E., J. C. Means, and J. J. Cooney: Methylation of tin by estuarine microorganisms. Science 215, 1505-1507 (1982).

- Horikoshi, T., A. Nakajima, and T. Sakaguchi: Uptake of uranium from sea water by <u>Synechococcus</u> <u>elongatus</u>. J. Ferment. Technol. 57, 191-194 (1979).
- 16. Huey, C., F. E. Brinckman, S. Grim, and W. P. Iverson. The role of tin in bacterial methylation of mercury. In: de Freitas, A. S. W., D. J. Kushner, and S. U. Qadri (Eds.): Proc. Internat. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems, pp. II-73 to II-78. National Research Council, Ottawa, Canada (1974).
- Jackson, J. A., W. R. Blair, F. E. Brinckman, and W. P. Iverson: Gas chromatographic speciation of methylstannanes in the Chesapeake Bay using purge and trap sampling with a tin-selective detector. Environ. Sci. Technol. 16, 110-119 (1982).
- Jewett, K. L. and F. E. Brinckman: Speciation of trace di- and triorganotins in water by ion exchange HPLC-GFAA. J. Chromatogr. Sci. 19, 583-593 (1981).
- 19. Kozak, S. and C. W. Forsberg: Transformation of mercuric chloride and methylmercury by the ruman microflora. Appl. Environ. Microbiol. 38, 626-636 (1979).
- Luijten, J. G. A.: Applications and biological effects of organotin compounds. In: A. K. Sawyer (Ed.): Organotin Compounds, vol. 3, pp. 931-974. Marcel Dekker, Inc. New York (1972).
- McMurry, L., R. E. Petrucci, Jr., and S. B. Levy: Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in <u>Escherichia</u> <u>coli</u>. Proc. Natl. Acad. Sci. USA 77, 3974-3977 (1980).
- 22. Nakajima, A., T. Horikoshi, and T. Sakaguchi: Studies on the accumulation of heavy metal elements in biological systems. XVII. Selective accumulation of heavy metal ions by <u>Chlorella</u> regularis. European J. Appl. Microbiol. Biotechnol. 12, 76-83 (1981).
- Nelson, J. D., W. Blair, F. E. Brinckman, R. R. Colwell, and
 W. P. Iverson: Biodegradation of phenylmercuric acetate by mercuryresistant bacteria. Appl. Microbiol. 26, 321-326 (1973).
- Norris, P. R. and D. P. Kelly: Accumulation of cadmium and cobalt by <u>Saccharomyces</u> <u>cerevisiae</u>. J. Gen. Microbiol. 99, 317-324 (1977).
- 25. Parris, G. E., W. R. Blair, and F. E. Brinckman: Chemical and physical considerations in the use of atomic absorption detectors coupled with a gas chromatograph for determination of trace organometallic gases. Anal. Chem. 49, 378-386 (1977).

1

١

- 26. Silver, S: Mechanisms of bacterial resistances to toxic heavy metals: arsenic, antimony, silver, cadmium, and mercury. In: F. E. Brinckman and R. H. Fish (Eds.): Environmental speciation and monitoring needs for trace metal-containing substances from energy-related processes. National Bureau of Standards Special Publication 618, U.S. Gov't Printing Office, Washington (1981).
- Silverberg, B. A., P. T. S. Wong, and Y. K. Chau: Ultrastructural examination of <u>Aeromonas</u> cultured in the presence of organic lead. Appl. Environ. Microbiol. 32, 723-725 (1976).
- 28. Smith, P. J., A. J. Crowe, V. G. Kumar Das, and J. Duncan: Structure-activity relationships for some organotin molluscicides. Pestic. Sci. 10, 419-422 (1979).
- 29. Spangler, W. J., J. L. Spigarelli, J. M. Rose, and H. M. Miller. Methylmercury: bacterial degradation in lake sediments. Science 180, 192-194 (1973).
- 30. Thayer, J. S.: Organometallic compounds and living organisms. J. Organometallic Chem. 76, 265-295 (1974).
- 31. Yamada, J., K. Tatsuguchi, and T. Watanabe: Effects of trialkyltin chlorides on microbial growth. Agric. Biol. Chem. 42, 1167-1172 (1978).
- 32. Yamada, J., K. Tatsuguchi, and T. Wantanabe: Uptake of tripropyltin chloride by <u>Escherichia coli</u>. Agric. Biol. Chem. 42, 1867-1870 (1978).
- 33. Zuckerman, J. J., R. R. Poisdorf, M. W. Ellis, III, and R. R. Wilkinson: Organotins in biology and the environment. In: F. E. Brinckman and J. M. Bellama (Eds.): Organometals and organometalloids, pp. 388-424. American Chemical Society, ACS Symposium Series 82, Washington (1978).

Table 1

The organotin resistant isolates obtained from sediments of Chesapeake Bay in (Jones Falls, Colgate Creek) and near the mouth of (Sparrows Point) Baltimore Harbor. The sediments were plated on Nelson agar containing 20 mg L^{-1} tin as tributyltin chloride and resistant colonies were picked and purified. Some mercury-resistant isolates from Chesapeake Bay were obtained from Prof. R. R. Colwell. These were also resistant to tributyltin.

Tin Resistant Isolate	Origin
Ce	Jones Falls ^a
Cf	Jones Falls
Cg	Jones Falls
Ab	Colgate Creek ^a
Ac	Colgate Creek
Bd	Colgate Creek
Dh	Sparrows Point ^a
Dj	Sparrows Point
<u>Pseudomonas</u> <u>fluorescens-B1</u>	Chesapeake Bay
<u>Pseudomonas</u> <u>fluorescens</u> -869	Chesapeake Bay
<u>Pseudomonas</u> -244	Chesapeake Bay

^aBaltimore Harbor sites

Ta	b1	e	2

Tributyltin cation uptake by tin-resistant bacteria from Chesapeake Bay. Washed cells were incubated 6 h at 22 °C in 5 mM PIPES buffer to deplete cellular energy reserves then were exposed to tributyltin cation for 1.5 h, with and without glucose (10 mM), trapped on membrane filters, rinsed with 5 mL PIPES buffer, digested in HNO_3 , and total tin was determined by GFAA.

	Tin Uptake ^a		Concentratio	Concentration Factor ^b	
Organism	No Glucose	Glucose	No Glucose	Glucose	
Ps-244	3.7	4.1	438	487	
Ac	7.7	9.2	855	1039	
Bd	3.0	3.2	356	381	
Oh	7.0	7.2	807	834	
Ab	3.9	4.0	464	471	
Dj	7.2	7.2	834	834	
Cf	4.9	5.0	579	588	
Ce	4.9	5.3	543	593	
Cg	4.4	4.6	524	544	

^aµg per mg dry weight of cells

b % TBT bound to cells/dry wt. of cells % TBT remaining in medium/wt. medium

Table 3

Adsorption of tributyltin to cell envelope fragments. Cells accumulated tributyltin for 2 h and then were washed and broken by ultrasonic disruption. After centrifugation (20,000 xg, 30 min) tin concentrations in the pellet and the supernatant were determined by GFAA.

Isolate	Pellet	Supernatant	% TBT in Pellet
Ac	204 ^a	8.2 ^a	96
Cf	180	7.9	96
Ce	302	4.9	98
Dh	365	9.6	97
Dj	166	5.3	97
Cg	155	7.0	95
Ab	156	3.5	98
244	280	0.4	99

I

1

a µg/mL

Figure Legends

Figure 1. Tributyltin uptake by <u>Pseudomonas</u> 244. Cells were harvested in exponential growth, washed, held in PIPES buffer (5 mM) for 6 h to deplete cellular energy reserves, then exposed to tributyltin chloride (B). Other cells received glucose (C, 10 mM, final concentration) or sodium azide (D, 1 mM final concentration). Some cells were boiled (A) or treated with formaldehyde (E, 1 percent final concentration) prior to tributyltin exposure. Cells were collected by centrifugation (12,000 xG, 3 min), washed twice, digested in concentrated HNO₃ and total tin was determined by GFAA.

Figure 2. Speciation of cell-bound organotin from microbial isolates Ps 244, Ac, Ce, Cg, Dj. Cells were grown in Nelson broth containing 10 mg L^{-1} tin as tributyltin chloride. After 2.5 h cells were harvested by centrifugation, washed three times in deionized water, then extracted with 10 mL methanol. The methanol extract after centrifugation was injected directly onto a liquid chromatograph-graphite furnace atomic absorption spectrophotometer system for speciation of cell-bound tin.

Figure 3. Inorganic Sn(IV) uptake by <u>Pseudomonas</u> 244 (•) and isolate Ac (o). Cells were harvested in exponential growth, washed twice in deionized water and resuspended in 5 mM PIPES buffer plus 10 mg L⁻¹ Sn (as SnCl₄·5H₂0). Cells were collected on membrane filters, rinsed, and digested in concentrated HNO₃ prior to analysis for total tin by GFAA.

.

REPORT NUMBER 2. GOVY ACCESSION NO. 1. RECIPIT TITLE (and Subulue) Uttake and Fate of Tri-N-Butyltin Cation in 1. RECIPIT Estuarine Bacteria 4. Forgo 56184 AUTNOR(s) 8. TYPE O Inter W. R. Blair, G. J. Olson, F. E. Brinckman, and NOOO' N. R. Blair, G. J. Olson, F. E. Brinckman, and NOOO' K. P. Iverson 1. REPORT Taterials Chemistry Division 1. REPORT laterials Chemistry Back ADDRESS(If different free Controlling Office) 1. REPORT CONTROLLING OFFICE NAME AND ADDRESS 1. REPORT MUNITORING AGENCY NAME & ADDRESS(If different free Controlling Office) 1. SECUR Uncla 1. SECUR 1. REPORT DISTRIBUTION STATEMENT (of the Report) 1. SECUR DISTRIBUTION STATEMENT (of the Secure and free Report) </th <th></th>	
TITLE (and Subinity) S. TYPE O Uptake and Fate of Tri-N-Butyltin Cation in Estuarine Bacteria Inter W. R. Blair, G. J. Olson, F. E. Brinckman, and W. P. Iverson NOOO NR OU PERFORMING ORGANIZATION NAME AND ADDRESS Themical and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS 10. PROFE Jan. CONTROLLING OFFICE NAME AND ADDRESS 12. REFORMUNG OUTPOINTS AND ADDRESS MONITORING AGENCY NAME AND ADDRESS 13. SECUR Uncla 13. NUMBE MONITORING AGENCY NAME & ADDRESS(If different free Controlling Office) 13. SECUR Uncla 13. SECUR Uncla 14. PROFE DISTRIBUTION STATEMENT (of the Append) 13. SECUR DISTRIBUTION STATEMENT (of the desided in Biock 20, If different free Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES 13. To be submitted to Microbial Ecology for publication REFY WORDS (Continue on reveaus atids if necessary and identify by flock number) Bioaccumulation; Siocides; Biodegradation; Cell membranes Environmet; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reveaus atids if necessary and identify by flock number)	NT'S CATALOG NUMBER
TYLE (and Submitted) S. TYPE O Uttake and Fate of Tri-N-Butyltin Cation in Estuarine Bacteria Inter Setuarine Bacteria AUTWOR(e) S. Dison, F. E. Brinckman, and N. P. Iverson NOOO NR OU PERFORMING ORGANIZATION NAME AND ADDRESS Themical and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 NOOO NR OU CONTROLLING OFFICE NAME AND ADDRESS 12. REPOR Jan. 13. NUMBER MONITORING AGENCY NAME AND ADDRESS 12. REPOR Jan. 13. NUMBER MONITORING AGENCY NAME AND ADDRESS 13. REPOR Jan. 13. NUMBER MONITORING AGENCY NAME AND ADDRESS 14. REPOR Jan. 13. NUMBER MONITORING AGENCY NAME AND ADDRESS(// different from Controlling Office) 15. SECUR Uncla 18. SECUR 18. SECUR OUSTRIBUTION STATEMENT (of the Report) 15. SECUR DISTRIBUTION STATEMENT (of the desirect missed in Block 20, If different from Report) 15. SECUR Distribution of this document is unlimited. 14. Security SUPPLEMENTARY NO ES To be submitted to Microbial Ecology for publication REY WORDS (Continue on reverse side If necessary and identify by Mack number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria was studied.	
Uptake and Fate of Tri-N-Butyltin Cation in Estuarine Bacteria Autmone W. R. Blair, G. J. Olson, F. E. Brinckman, and W. P. Iverson ERFORMING ORGANIZATION NAME AND ADDRESS Chemical and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS Controlling Office NAME AND ADDRESS United and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS United and Biodegradation Processes Jan. 13. NUMBE WONITORING AGENCY NAME AND ADDRESS Uncla Uncla Uncla Uncla Uncla Uncla Uncla Uncla Uncla Straibution STATEMENT (of the Report) Distribution of this document is unlimited. SuppleMENTARY NO ES To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse side II necesser of Identify by Sick Number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. Approcess, probably by adsorption to the cell envel ecitation of cell extracts and culture media by combined ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel ecitation of cell extracts and culture media by combined isources, probably by adsorption to the cell envel ecitation of cell extracts and culture media by combined mic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degradation; Cell envel ecitation of spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degradation; Cell envel ecitation of spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degradation; Cell extracts and culture media by combined otometric gas chromatography for possible tributyltin degradation; Cells	F REPORT & PERIOD COVERED
Estuarine Bacteria Inter Autwore, s. Pérroj Autwore, s. Common W. R. Blair, G. J. Olson, F. E. Brinckman, and NOOO W. P. Iverson NR O Perromaine concentration wake and address s. Common Chemical and Biodegradation Processes Group Imter Iaterials Chemistry Division Imter Iational Bureau of Standards, Washington, D.C.20234 Jan. Contracting office NAME and ADDREss Jan. Imonitoring office NAME and ADDREss Jan. MUNITORING AGENEY NAME AND ADDRESS Jan. <t< td=""><td></td></t<>	
AUTHOR(*) AUTHOR(*) W. R. Blair, G. J. Olson, F. E. Brinckman, and W. P. Iverson PERFORMING ORGANIZATION NAME AND ADDRESS Themical and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS II. REPOR Jan. II. NUMBE MONITORING AGENCY NAME A ADDRESS(// different from Controlling Office) II. SECUR Uncla II. SECUR II. SECUR Uncla II. SECUR II. SECUR	im Technical Report
AUTHOR(2) W. R. Blair, G. J. Olson, F. E. Brinckman, and W. P. Iverson PERFORMING ORGANIZATION NAME AND ADDRESS Themical and Biodegradation Processes Group faterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS II. PROF II. P	MING ORG. REPORT NUMBER
W. R. Blair, G. J. Olson, F. E. Brinckman, and N0000 W. P. Iverson NR ON PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROOF Chemical and Biodegradation Processes Group 14. PROOF Materials Chemistry Division 14. PROOF Iational Bureau of Standards, Washington, D.C.20234 12. REPOR CONTROLLING OFFICE NAME AND ADDRESS 13. NUMBE MONITORING AGENCY NAME AND ADDRESS 13. NUMBE MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) 15. SECUR DISTRIBUTION STATEMENT (of this Report) 15. SECUR	CT OR GRANT NUMBER(+)
W. P. Iverson PERFORMING ORGANIZATION NAME AND ADDRESS Themical and Biodegradation Processes Group Materials Chemistry Division Mational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROL STATEMENT (OF THE ADDRESS OF OFFICE NAME AND ADDRESS CONTROL STATEMENT (OF THE ADDRESS OF OFFICE NAME AND ADDRESS CONTROL STATEMENT (OF THE ADDRESS OF OFFICE NAME AND ADDRESS CONTROL STATEMENT (OF THE ADDRESS OF OFFICE NAME AND ADDRESS CONTRESS (CONTROL OFFICE NAME AND ADDRESS CONTROL STATEMEN	4-81-F-0013
PERFORMING ORGANIZATION NAME AND ADDRESS Chemical and Biodegradation Processes Group laterials Chemistry Division lational Bureau of Standards, Washington, D.C.20234 CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROLUCION STATEMENT (of the	3-471
PERFORMING CARANIZATION NAME AND ADDRESS Inc. AREA Chemical and Biodegradation Processes Group Inc. 20234 Materials Chemistry Division Inc. 20234 Internal Bureau of Standards, Washington, D.C.20234 Inc. 20234 CONTROLLING OFFICE NAME AND ADDRESS Inc. 20234 MONITORING AGENCY NAME A ADDRESS Inc. 20234 MONITORING AGENCY NAME A ADDRESS Inc. 20234 MONITORING AGENCY NAME A ADDRESS Inc. 20234 Marger Approved for Public Researcy and Identify of Marger Approved for Public Release with unlimited distribution. Report Distribution of this document is unlimited. Supplementation of this document is unlimited. Supplementation of this document is unlimited. Supplementation (Continue on reverse side if necessary and identify by Marger Bioaccumulation; Biocides; B	
Alterials Chemistry Division Materials Chemistry Division Materials Chemistry Division CONTROLLING OFFICE NAME AND ADDRESS MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) MONITORING TATEMENT (of the abstract entered in Block 20, II different from Report) DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microbial Ecology for publication KEY WORDS (Continue on reverse side II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins	AM ELEMENT, PROJECT, TASK WORK UNIT NUMBERS
Actional Bureau of Standards, Washington, D.C.2024 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT Jan. 13. NUMBER MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) Uncla 14. DECL DISTRIBUTION STATEMENT (of this Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United DISTRIBUTION STATEMENT (of the abstract entered in Black 30, If different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microbial Ecology for publication KEY WORDS (Continue on reverse side If necessary and identify by black number) Bioaccumulation; Biocides; Biodegradation; Cell membraness Environment; Estuarine bacteria; Organotins; Speciation; Tin -specific analysis; Tributyltin. ABSTRACT (Continue on reverse side if necessary and identify by black number) Bioaccumulation; Biocides; Biodegradation; Cell membraness Environment; Estuarine bacteria was studied. The bacteria ABSTRACT (Continue on reverse side if necessary and identify by black number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria (organotins; Speciation; <tr< td=""><td></td></tr<>	
CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTION CONTROLLING OFFICE NAME AND ADDRESS 13. NUMBE Jan. 13. NUMBE WONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECUR Uncla 13. NUMBE ONSTRIBUTION STATEMENT (of the Report) 14. Secure Approved for Public Release with unlimited distribution. 15. SECUR Reproduction is permitted for any purpose of the United 15. Secure DISTRIBUTION STATEMENT (of the observed in Block 30, II different from Report) 16. Supplement from Report) Distribution of this document is unlimited. 17. Secure Report) Bistribution of this document is unlimited. 17. Secure Report) Bioaccumulation; Biocides; Biodegradation; Cell membraness 11. Secure Report) Bioaccumulation; Biocides; Biodegradation; Cell membraness 11. Secure Report) Restract (Continue on reverse alds II necessary and identify by block number) 11. Secure Report) Bioaccumulation; Biocides; Biodegradation; Cell membraness 11. Secure Report) Restract (Continue on reverse alds II necessary and identify by block number) 11. Secure Report) Bioaccumulation; Biocides; Biodegradation; Cell membraness 11. Secure Report) Bioaccumulation; Biocides; Biodegradation; Cell mem	
Jan. UONITORING AGENCY NAGE & ADDRESS(II different from Controlling Office) 13. NUMBER UONITORING AGENCY NAGE & ADDRESS(II different from Controlling Office) 15. SECUR Uncla 16. DECL OSTRIBUTION STATEMENT (of the Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United DISTRIBUTION STATEMENT (of the destract inferred in Block 20, II different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse olde II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reverse olds II necessary and identify by block number) e uptake and possible metabolic transformation of trin-1 n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by combined lomic atsorption spectrophotometry and tin-selective purgg otometri	T DATE
13. NUMBE MONITORING AGENCY NAGE & ADDRESS(II different from Controlling Office) 13. SECUR Uncla Uncla Uncla SECUR ONSTRIBUTION STATEMENT (of this Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United DISTRIBUTION STATEMENT (of the observed entered in Block 30, II different from Report) Distribution of this document is unlimited. Supplementation of this docum	15, 1982
WONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECUR Uncla 184. DEEC OISTRIBUTION STATEMENT (of the Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United DISTRIBUTION STATEMENT (of the electric intered in Block 20, II different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microbial Ecology for publication KEY WORDS (Continue on reverse side II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine tacteria; Organotins; Speciation; Tin -specific analysis; Tributyltin. Approcess, probably by adsorption to the cell envel either and possible metabolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel ecition of cell extracts and culture media by combined lomic alsorption spectrophotometry and tin-selective purge	R OF PAGES
Uncla Un	TY CLASS. (of this report)
Uncla Uncla Uncla Uncla Uncla Uncla Uncla OSTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United OISTRIBUTION STATEMENT (of the second of any purpose of the United Second colspan="2">OISTRIBUTION STATEMENT (of the second of any purpose of the United Second colspan="2">OISTRIBUTION STATEMENT (of the second of any purpose of the United Second cond colspany	acified
Image: Constrained for any purpose of the United Distribution statement (of this Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United Distribution statement (of the electric intered in Block 20, If different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse elde if necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. Abstract (Continue on reverse elde if necessary and identify by block number) Restract (Continue on reverse elde if necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. Abstract (Continue on reverse elde if necessary and identify by block number) Ie uptake and possible metabolic transformation of tri-n-I n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by comtined of onic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degraderics <td>ssiried</td>	ssiried
DISTRIBUTION STATEMENT (of this Report) Approved for Public Release with unlimited distribution. Reproduction is permitted for any purpose of the United DISTRIBUTION STATEMENT (of the electroci milered in Block 20, If different from Report) Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse side if necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reverse side if necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-1 n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by comtined omic atsorption spectrophotometry and tin-selective purgo	ASSIFICATION/ DOWNGRADING
Distribution of this document is unlimited. SUPPLEMENTARY NO ES To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse side II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membraness Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reverse side II necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by combined 1 omic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	
SUPPLEMENTARY NO ES To be submitted to Microbial Ecology for publication KEY WORDS (Continue on reverse side II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membraness Environment; Estuarine bacteria; Organotins; Speciation; Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reverse side II necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by combined 1 omic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degradation.	
To be submitted to Microtial Ecology for publication KEY WORDS (Continue on reverse elde if necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membraness Environment; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tritutyltin. ABSTRACT (Continue on reverse elde if necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-l n-resistant estuarine tacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel leciation of cell extracts and culture media by combined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin degradation.	
KEY WORDS (Continue on reverse side if necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tritutyltin. ADSTRACT (Continue on reverse side if necessary and identify by block number) the uptake and possible metatolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells equiring process, protably by adsorption to the cell envel eciation of cell extracts and culture media by combined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tritutyltin deg	
KEY WORDS (Continue on reverse elde II necessary and identify by block number) Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tritutyltin. ABSTRACT (Continue on reverse elde II necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-l n-resistant estuarine tacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, protably by adsorption to the cell envel eciation of cell extracts and culture media by comtined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tritutyltin deg	
Bioaccumulation; Biocides; Biodegradation; Cell membranes Environment; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tritutyltin. ABSTRACT (Continue on revorce elde II necessary and identify by block number) The uptake and possible metatolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells equiring process, protably by adsorption to the cell envel leciation of cell extracts and culture media by combined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tritutyltin deg	
Environment; Estuarine tacteria; Organotins; Speciation; Tin-specific analysis; Tritutyltin. ABSTRACT (Continue on reverse elde II necessary and identify by block number) he uptake and possible metatolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells equiring process, probably by adsorption to the cell envel leciation of cell extracts and culture media by comtined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tritutyltin deg	; Chromatography
Tin-specific analysis; Tributyltin. ABSTRACT (Continue on reverse elde II necessary and identify by block number) The uptake and possible metabolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel leciation of cell extracts and culture media by combined 1 omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	Tin-resistance;
ABSTRACT (Continue on revorce elde II necessary and identify by block number) le uptake and possible metabolic transformation of tri-n-l n-resistant estuarine bacteria was studied. The bacteria itutyltin to 3.7 to 7.7 mg tin per g dry weight of cells quiring process, probably by adsorption to the cell envel leciation of cell extracts and culture media by combined 1 omic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	
ne uptake and possible metabolic transformation of tri-n- n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells equiring process, probably by adsorption to the cell envel leciation of cell extracts and culture media by combined l omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	٠
n-resistant estuarine bacteria was studied. The bacteria ibutyltin to 3.7 to 7.7 mg tin per g dry weight of cells equiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by combined l omic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	utyltin cation by
equiring process, probably by adsorption to the cell envel eciation of cell extracts and culture media by combined l omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	I isolates accumulat
eciation of cell extracts and culture media by combined l omic absorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	cy a non-energy
omic atsorption spectrophotometry and tin-selective purge otometric gas chromatography for possible tributyltin deg	iquid chromatorgaphy
otometric gas chromatography for possible tributyltin deg	and trap flame
	radation products
vealed no signifigant biotransformations of tributyltin	cation by the
FORM 1473 EDITION OF I NOV 65 IS OBSOLETE	

.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

tributyltin-resistant isolates. Apparently the isolates accumulate, but do not metabolize, tributyltin. Research into the persistance of tributyltin cation in natural esturine waters and sediments is needed.

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

