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Stress Analysis for Kinematic Hardening in
Finite-Deformation Plasticity

E. H. Lee and R. L. Mallett, Rensselaer Polytechnic

Institute and Stanford University, and

T. B. Wertheimer, MARC Analysis Research Corp. and Stanford University

Abstract

Kinematic hardening represents the anisotropic component of strain hardening

by a shift, a , of the center of the yield surface in stress space. The currently

adopted approach in stress analysis at finite deformation (in which time derivatives

of a and of stress appear respectively in the evolution equation for a and in

the flow type constitutive equation) accounts for the effect of rotation by using

Jaumann derivatives based on the spin (the skew-synimetric part of the velocity

gradient). This guarantees objectivity under superimposed time-dependent rigid-

body rotations. However the analysis generates the unexpected result that oscil-

latory shear stress is predicted for monotonically increasing simple shear strain.

The simple shear strain growing at constant rate y = k yields a spin in

the plane of shearing having the constant magnitude k/2 . The effect of this on

the evolution equation for the shift tensor a cause- the latter to rotate con-

tinuously. In contrast, the kinematics of simple shear prescribe that no material

directions rotate by more than n radians. Together these two features seem

inconsistant since the shift tensor or back stress has its origin embedded in the

material, for example as rows of dislocations piled up against grain boundaries

or inclusions.

By defining a modified Jaumann derivative based on the angular velocity of

certain directions embedded in the body which characterize the effective resul-

tant orientation of the micro-mechanisms responsible for the anisotropic hardening,

a method of stress analysis is implemented which eliminates the inconsistency and

yields a monotonically increasing shear stress. Features which support the validity

of this approach are presented.
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1. Intoduction l",

In an intriguing paper [lJ]*, Nagtegaal and de Jong evaluated the r

stresses generated by simple shear to large deformation in elastic-plastic

and rigid-plastic materials which exhibit anisotropic hardening. In con-

formuity with current practice for finite deformation in the case of kine-

matic hardening, they used an evolution equation for the back stress or

shift tensor (the current center of the yield surface) which relates the

Jaumann derivative of a to the plastic strain rate. This incorporates

effects of finite rotation and ensures objectivity of the evolution equa-

tion under rigid-body rotations. They obtained the unexpected result, for

a material which strain hardens monotonically in tension, that the shear

traction grows to a maximum value at a shear strain y of the order unity and

then oscillates with increasing strain with a period of about six. Similar

behavior was exhibited by the normal traction on the shearing planes which

was initially compressive, Of course such a variation would not occur in

practice because of the onset of instability, but large shear strains have

occurred in experiments without instability. Other anisotropic hardening

models, such as that due to Mroz, did not generate oscillations in the shear

traction.

A study of the analytical structure of the kinematic hardening law

shows that, in the case of simple shear, the use of the convent -umann

i I derivative based on the spin causes the shift tensor to rotate cont.Lnuously

ir

and this generates oscillations in the stress field. In the present paper

it is also shown that this analytical structure, which is currently adopted

ambers in brackets denote references collected at the end of the paper.
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2.

in finite-deformation elastic-plastic codes involving kinematic hardening,

is not in accord with the effects of the physical micromechanisms which

produce plastic flow. A modified theory consonant with these yields a mono-

tonically increasing shear traction for the problem under discussion.

2. The Kinematics of Simple Shear

Using rectangular Cartesian coordinates for the configuration at the

time t, we consider simple shear in the x 1-direction as depicted in Fig.i,

defined by the displacements

ulMktx2 ) u2  = 0 . (2.1)

This corresponds to the steady-state velocity field

Vl akx 2 , v 2 :v 3 0 (2.2)

and the velocity gradient tensor

0 k0
L -av 0 0 (2.3)

axo 
o

with the rate of deformation D and the spin W given by the symmetric and

skew-symmetric parts, respectively:

k/2 0 k/2
D - 2 0 o ; W- -k/2 0 (2.4)

The velocity field is thus steady with constant rate of shear strain W k

and constant spin W with angular speed k/2.

Figure 2 illustrates the superposition of the deformation rate and

spin components of the velocity field, the arrows expressing the

I
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angular velocities of lines of material points currently parallel to the x1

and x2 axes, respectively. It is seen that those parallel to the x2 -axis

rotate with angular velocity k while those parallel to the x-axis do not

rotate.

Figure 1 shows the deformation at times t1 and t of an initially unit

square block, with sides initially on the x and x2 axes. Because of the

linear velocity field, straight lines defined by material points remain

straight and the square block is deformed into a sequence of parallelograms.

The line of material particles 0%Y initially on the x2-axis, deforms to Oh

and (A at times t1 and t, respectively. Clearly it will only approach the

xl-axis as time approaches infinity, so that the maximum angular rotation

for this line of material points is i,/2.

Because the velocity field is steady and the velocity gradient is

uniform or homogeneous over the body, the angular velocity of a line of

particles in the (xxl 2 ) plane of shear depends only on its orientation.

Thus, the description in the previous paragraph of the motion of the side OA0

of the unit square can be applied to every line of material points. Thus

the inclination of a line of material points to the x -axis [6(t) in Fig.1

for OR] can be used to express the angular velocity 8 of the line.

From Fig.l the length of OA is 1/sin 8, the point 0 is at rest and the

component of the velocity of A normal to OA is k sin 8 in the direction of 8

decreasing. Hence its angular velocity 9 is given by

-- k sin2  (2.5)

which, as explained in the previous paragraph, is applicable to all lines of

material points in the xl, x2 plane. Integration of (2.5), or observing in

Fig.1 that the projection of OR onto the x1 axis is cot 8 and that A moves

. .U
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with velocity k along the line x2  1, gives the following expression for the

varying inclination e of a line of material points corresponding to e0 at

time t
0

cot 9-cot 0 +k(t- t) (2.6)

This again applies to all lines with inclination 8 at time t irrespective0 0

of their position.

Thus the total possible rotation of lines of material particles is

limited since, unless they are parallel to the x1 axis, in which case they

do not rotate, all lines rotate with negative 6 towards the x axis (8- 0).

The largest rotation is of lines which initially have the inclination 9-n T- C,

e small and positive. They initially have a small negative 6 which increases

in magnitude to k as they become parallel to the x2 axis and then falls in

magnitude monotonically towards zero as the lines approach the x axis. The

total angle of rotation approaches n -c.

Note that the angular velocity of the lines 9-En/4, which coincide

with the principal directions of the deformation rate tensor D, is k/2, equal

to the spin as it should be. This is also the average of the angular veloci-

ties over all directions in the current configuration.

3. The Currently Aopted Analysis for Finite Deformation

The back-stress r which prescribes the position of the center of the

yield surface in stress space provides the anisotropy in the yield function

needed to incorporate such effects as the Bauschinger effect. Since the

source of this property is embedded in the material, the tensor a is consid-

ered to rotate with the material so that the conventional Jaumann derivative

(rate of change of a components based on axes spinning with the material)

has cononly been used in the evolution equation for (. Thus changes in o
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due to material spin are eliminated leaving only changes associated with the

history of plastic strain. This ensures spin-invariance or objectivity

under superimposed rigid-body rotation. A commonly used evolution relation

for Z is that given by Mroz, Shrivastava and Dubey [2] for combined isotropic-

kinematic hardening, modified for finite-deformation applications, as already

mentioned, by introducing the Jaumann derivative

C l( ) (-CO(3.1)

where s is the stress deviator,

t

0

is the generalized plastic strain invariant and the superscript o signifies

the Jaumann derivative. Because of normality for the plastic strain rate

Dp - (s- ) (3.3)

and thus (3.1) can be expressed in the form

- C2 (iP, strain history) D9  (3.4)

This is moe convenient for the discussion in this paper since the deformation

is prescribed. Moreover the aspect of the analysis which we wish to discuss

can be adequately studied on the basis of rigid-plastic theory since the

elastic strains are negligible compared with the large plastic strains.

Hence we can replace DP in (3.4) by D. For simplicity of explanation, we

shall limit our consideration to kinematic hardening although the approach

applies equally well to combined kinematic-isotropic hardening.
with

In order to examine how Y changes/respect to the axes (xl, x2) fixed in

space, we need the material derivative of the shift tensor, , and this is

deducible from the expression for the Jaumann derivative

.S
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N

0
a - 0-w1+C1W (3.5)

Using (3.4) this gives

C*D +Wa'-a'W (3.6)
- 2- -- --

The last two terms express the contribution to the change in a due to the

spin W, which in the case of simple shear has the constant value given in

(2.4). The corresponding angular velocity in the (x 1 ,x 2 ) plane is k/2,

so that the angle turned through by & due to W in a time increment At is

kt/2, and this must be combined with the contribution of the first term on

the right-hand side of (3.6). For rigid-plastic theory of simple shear the

latter term adds increments to a which have the same principal directions

as the deformation rate D, corresponding to @ = .-/4 and 3n/4.

The continuing rotation of a in the (x1, x2) plane is in marked contrast

with the rotation of lines of material points in the body for which the total

rotation varies with the initial orientation but can never exceed TT. Since

the hardening mechanisms are embedded in the material it seems, on physical

grounds, implausible that the macroscopic hardening parameter 0 could continue

to rotate through an unlimited angle while no elements of the material do.

Moreover the oscillations in stress obtained by using the current theory

appear to be associated with the continuing rotation of a. The period of

the stress oscillations with respect to the shear strain y- kt is approxi-

mately equal to 2ir. With this strain increment, the rotation (k/2)t will

change by r. But a tensor rotated by r about a principal eigenvecto; x3 in

the present case,will be unchanged. Thus this simple assessment is in con-

formity with the calculated stress variation. The assessment is approximate

since it does not take into account the strain rate term in (3.6).
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The spin W is the average of the angular velocities exhibited by all

material lines passing through a point. Spin would thus seem to be an

appropriate variable to include in a formulation for isotropic hardening for

which no specific directions have special influence. But kinematic hardening

is an anisotropic phenomenon for which specific material directions play a

significant role. Moreover the micromechanisms which generate anisotropic

hardening, such as pile-up of dislocations against grain boundaries or in-

clusions, are associated with specific directions embedded in the material

and the rotation of these particular directions or an average over such active

directions should play a special role in formulating the macroscopic consti-

tutive relation. A law based on this concept is suggested in the following

section.

4. A Modified Constitutive Relation

In view of the discussion in the previous section, it is necessary to

determine a direction embedded in the material which characterizes the aniso-

tropy induced by previous plastic flow. As a simple example which may be

appropriate for simple shear, we select the direction associated with the

maximum eigenvalue of the shift tensor O. Justification for this choice is

discussed later in this section. In expressing the influence of current

plastic flow on the evolution of q we must eliminate the change in a caused

by the rotation of micromechanisms responsible for the current hardening.

Thus we define a modified Jaumann type derivative which eliminates the

effect of rotation of the material elements lined up in the direction of the

eigenvector of a associated with the maximum eigenvalue. This rotation

defines a spin W* corresponding to the angular velocity given by (2.5) with

the appropriate value of e. We retain the influence of current plastic flow

*1I
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due to Mr6z et al. (2] and obtain the evolution equation analogous to (3.4)

- c 2 Dp  (4.1)

where the superscript * denotes the modified Jaumann derivative associated

with the spin w*
a a~~ (4.2)

Thus &, the material time derivative of a with respect to fixed axes (xl, 2

is given by

C DP W4*-W* (4.3)

When shearing comences the eigenvector of o under consideration first

grows in the direction 9 = r/4 but the motion of the material continually tends

to reduce this angle due to the rotation effect of the last two terms in (4.3).

As the angle e decreases the spin term W* decreases according to (2.5)

but 9 will remain positive. It is to be expected that such behavior will

eliminate the oscillations in the shear traction obtained by using the

evolution equation (3.6) based on the conventional Jaumann derivative.

Note that the new evolution equation (4.1) is objective under rigid-

body rotation since the spin W* is determined from the tensor a without

reference to the axes adopted and is additive with respect to superposed

rigid body spin*

Ix. selecting the effective direction of action of the anisotropic

hardening mechanisms which are embedded in the material, one must bear in

mind that we are concerned with polycrystalline materials so that no specific

global slip planes exist as are determined by the lattice structure in the

case of single crystals. The direction must thus be an effectiv Vaverage

over the response of the individual crystallites. Thus simple shear is not

likely to occur only by slip over planes adjacent to the x -axis as depicted

see the Appendix.
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in Fig.l, since the complementary shear stress will be acting parallel to the

x2 -axis, and this will cause shear strain in some crystal lites, which, combined

with rotation, will contribute to global simple shear. Thus in selecting the

evolution law (4.1) we envisaged shears associated with both planes yielding an

effective anisotropic contribution. This is in conformity with the evolution

equation due to Mroz et al. (2]. These contributions were then sumned,

allowing for rotation of the earlier contributions, by integrating (4.3) to

yield a which determines the resultant anisotropic hardening.

Because of the lack of influence of hydrostatic pressure on plastic

flow, the yield condition is a stress deviator relation and thus a is a stress

deviator so that, in the case of simple shear with no deformation in the x 3 -

direction, the D3 3 component is zero and hence the two nonzero eigenvalues

of a have the same absolute magnitude. We chose the tensile strain-rate

orientation to express the effective anisotropic hardening mechanism direction.

The associated line-up of material elements in the tensile direction rotate

more slowly (initial angular velocity k/2 and decreasing) than in the com-

pressive strain-rate direction (initial angular velocity k/2 and increasing)

and hence the former will yield a greater corresponding eigenvalue of the

resulting tensor a and so comprise the dominant back-stress direction. The

elements lined up in the compression direction will rotate towards the

orientation which has the angular velocity k, and adding increments with more

rapidly varying orientation will inhibit the increase in the associated

eigenvalue.

We suggest that the recipe for the spin W* can be extended to general

three-dimensional deformation by taking W* to be determined by the eigenvector

associated with the maximum absolute value of the eigenvalues of 2. The spin

is determined by the rotation of the line of material elements instantaneously

.
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coinciding with that eigenvector. Rotation around this direction could be

determined by the motion of material points on the eigenvector corresponding

to the next largest eigenvalue. This selection of specific eigenvectors

could lead to nonsmooth response analogous to the Tresca yield condition, but

this could perhaps be avoided by taking an average over possible hardening

mechanisms which would result in a smoother response.

This approach to anisotropic hardening exhibits the property, necessary

for application, that measurement of the yield surface (assumed to be con-

sistent with combined isotropic-kinematic hardening) supplies the information

needed to formulate the constitutive relation for the analysis of subsequent

deformation. The shift tensor a and the square of the radius of the yield

surface given by the trace of the tensor product

22
(s-a):(s-a) =- a (4.4)

,~ % -,~ 3 o

comprise all that is needed concerning the previous history of plastic

deformation.

5. Stress Analysis

The theory for combined isotropic-kinematic hardening for infinitesimal

deformation presented by Mr~z et al. (2] is adapted for finite deformation

applications by using the appropriate Jaumann type derivative of stress just

as the modified Jaumann derivative was developed for use in the evolution

equation for the back-stress a.

Since we are investigating a large deformation problem, rigid-plastic

theory is applied in order to obtain a relatively simple analysis although

an elastic-plastic solution is also presented for comparison with the rigid-

plastic case. Since we are considering a problem involving homogeneous

4Ii . . .'' , It" .. i. . i -- .. . L .E~ a



deformation, plastic flow is occurring throughou* the body, and in this case

stress analysis on the basis of rigid-plastic theory is not restricted by

the existence of extensive rigid regions as coxmmonly arises in metal-forming

problems (3]. The velocity boundary conditions for simple shear (Fig.l)

prescribe an incompressible motion and since the rigid-plastic constitutive

relation is incompressible, the stress can only be determined to within an

arbitrary hydrostatic pressure. Thus stress deviators are evaluated.

The yield condition for combined kinematic-isotropic hardening is

given by (4.4) with

a W (Zp) (5.1)

where lp is the generalized plastic strain invariant (3.2) and o is the back-

stress given by the evolution equation (4.1).

The tensor o and hence the yield surface will in general be rotating

so that care must be exercised in expressing the stress rate to be used in

the equation for the strain rate associated with strain hardening. The rota-

tion of 0 is determined by integration of the evolution equation (4.3).

The corresponding spin, V? , of the orthogonal eigen-vector triad differs

from W because of the Dp  term in (4.3).The Jaumann stress rate associ-

ated with the angular velocity a gives the rate of increase of stress when

the change due to this spin has been subtracted off. If this Jaumann stress

rate were zero, then due to spin there would be no change in stress relative

to the-yield surface. Thus this modified Jamuann derivative of the stress

is the quantity which expresses the strain-hardening rate. Thus utilizing

the normality requirement for the plastic strain rate (3.3) and the component

of the stress rate in that direction

(s-O/I s--, - 7 s (-ao/ 3. s.k F",A(52



12.

using (4.4) and writing s for the new modified Jaumann rate associated

with spin W4 , the plastic strain rate is given by

p 3D(-D = (S-Z) US-a):51 (5.3)2h2

0

where h is a strain hardening modulus. This is Eq. (11) of [2] suitably
/

modified for finite deformation. Note that the trace of the tensor product

is expressed by

(s-o) :S (S. - a. .)s . (s - CO )s (5.4)ij ij) ji - -(

where the last form is the scalar product of the tensors expressed as vectors

in nine-dimensional stress space. Note that the operator L in (5.3)

(Dr = Lijkl skl) embodies the symmetries in (i,j), (k,l) and (ij,kl).

In the usual finite-element computer-code procedure for elastic-plastic.

analysis, the equivalent of (5.3) with D containing elastic terms in stress

rate, would be solved for g and the evolution equation (4.1) for a. Thus s

and a can be updated to proceed with the next step. However, in the present

case s only appears in the scalar quantity in square brackets in (5.3), so

that these equations are severely underdetermined for evaluating s. But

since (s-a) satisfies (4.4) with (5.1) and (3.2), D=D P with (3.3) [also

implied by (5.3)] permits (s-a) to be updated and combining this with the

evolution equation (4.1) for a permits s and a to be updated. This procedure

was carried out for the simple shear problem.

An elastic-plastic solution was also computed with the MARC program by

modifying the spin term in the Jaumann derivative from W to W , and replacing

the Jaumann derivative s by s since the spin of material elements instantaneously

coincident with the eigen-vectors of a is likely to be close to the spin of the

eigenvectors themselves.

6. Comparison of Solutions

A solution was evaluated using the rigid-plastic model with the initial tensile

yield stress Y - 207 MPa(30 ksi) and linear tensile work hardening with modulus
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310 MPa(45 ksi). These values are appropriate to model an aluminum alloy. The con-

stant strain-hardening modulus in tension implies that C2 is a constant in (4.1).

Figure 3 shows the variation of the component of the spin associated

with the material motion related to the back-stress tensor L. For the cur-

rently accepted approach this remains constant at (-k/2). When the rotation

of a locus of material particles which carry the back-stress determines the

evolution of a as suggested in this paper, the magnitude of the spin commences

at k/2 and decreases rapidly. Strain steps of &y- 0.1 were used in the calc-

ulation in view of the range of strain up to -y- 10 and, without iteration,

two steps were completed before deviation from the initial value (-X/2) was

predicted. In view of the stress results it did not seem necessary to refine

the strain increment size to improve the spin W. Figure 4 shows the inclina-

tion to the x1 -axis of the controlling eigenvector of a. On reaching -900,

the plotting routine jumps automatically to +900. The continuing rotation

associated with spin W is in clear contrast to the limited rotation towards

the x -axis with We,

Figure 5 shows the deduced shear stress versus shear strain curves.

The use of the conventional Jaumann derivative gives the oscillations pre-

sented in t1]. The modified theory is seen to yield a curve which agrees

closely with the currently utilized approach up to a shear strain v of unity,

but thereafter the stress increases monotonically with a continuously de-

creasing modulus. The straight line relation shown is deduced from the tensile

behavior on the basis of isotropic hardening with Mises yield condition.

Figure 6 shows the variation of the stress-deviator component in the

direction of the X1 -axis. Appreciable deviation of the two solutions occurs

earlier than for shear stress, at a strain of about O.5. Otherwise the

contrast between the two solutions is similar to the shear results. However,

isotropic hardening predicts no normal stress deviators l and s22

---
MR
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Figures 7 and 8 show the stress-shear strain variations deduced using

the MARC elastic-plastic code suitably modified, as already mentioned, assuming

a Young's modulus of 6.90 x 10 4mPa (10 x 10 6psi) and a Poisson's ratio of 0.3.

Because of the strain steps of magnitude 0.1, the initial elastic response is

not accurately predicted and for the longitudinal deviator component an initial

slight instability occurs which quickly dies down. Because the elastic-plastic

constitutive equation permits dilatation, stresses (not simply stress deviators)

can be predicted. Since plastic flow is considered to be incompressible, and

the velocity boundary conditions are consistent with the total deformation being

incompressible, and moreover since the plastic flow is homogeneous, the

elastic dilatation should be zero and hence also the average hydrostatic

tension. The direct stresses in the shearing plane 011 and a22 were found to

be almost equal in magnitude to within 0.1% but opposite in sign which is con-

sistent with a zero hydrostatic stress value and zero a33 *

All solutions are presented on the same plots in Figs. 9 and 10. Closer

agreement between the rigid-plastic and elastic-plastic solutions is obtained

with the new theory. This is to be expected since the much smoother behavior

will yield greater numerical accuracy and a discrepancy due to the inclusion

of elasticity is likely to be negligible at such large strains. Thus the re-

sults are compatible with the loss of numerical accuracy associated with strain

O*steps of magnitude Ay = 0.1, with perhaps some minor effect of replacing $ by s

in the elastic plastic calculation. The close agreement of the elastic-plastic

finite-element solution may seem surprising in view of the severe element distor-

tion at shear strains y - 10. However , it must be borne in mind that the velo-

city variation is linear which can be modeled exactly by the finite elements

even when distorted.

7. Discussion

In addition to the two kinematic hardening stress-strain curves depicted in

Fig.5, a linear relation is also shown corresponding to isotropic hardening
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according to the Mises yield condition and the linear work-hardening tensile

relation. The latter is also the basis for the other curves. Kinematic har-

dening, according to the theory presented in this paper, initially gives the

same shear stress and hardening modulus but the latter decreases monotonically

with increasing strain so that at large strains the kinematic hardening curve

is well below the isotropic hardening curve. The reason for the falling off

of the tangent modulus at large strains in shear is that, due to the material

rotation, the principal back-stress direction approaches the x -axis, which

would correspond to maximum stress for tensile strain in that direction. The

shear-stress component in that direction is therefore not so enhanced. This

predicted softening tendency in shear compared with isotropic hardening could

have significant implications in instability and localization phenomena. As

already mentioned, isotropic hardening produces no normal stress s11 and s22

Although oscillations have been observed in the shear stress in torsion

experiments, they appear to be unrelated to the oscillations predicted by the

application of the conventional Jaumann derivative in the kinematic-hardening

analysis. Robbins, Wagenaar, Shepard and Sherby (4] encountered oscillations

when loading at high strain rates. Although the strain scale was omitted

from Fig. 12 of that paper, Professor Sherby assures us that the period was

much less than 6. Moreover the measurements made at two values of strain

rate indicate that the oscillation was associated with mechanical vibration

caused by rapid loading. At lower strain rate the period in terms of strain

was reduced, roughly in proportion to the strain rate, indicating a fixed

period in time rather than strain. Aernoudt and Sevillano [5] observed in-

stability in the torque which they ascribed to adiabatic heating.

Comparison of the analyses with the conventional and the modified

Jaumann derivatives indicates that up to strains near 0.5 the difference in

the solutions is small. For strains near 2 the difference reaches about 40%

and grows rapidly with increasing strain.

i.

4 . . . " 111 " " '- .. . . - -
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When deformation commences in a virgin isotropic material, the shift

tensor is 0 and according to (4.1) grows initially in proportion to the

deformation rate D, hence its principal directions coincide with those of D.

Since the shear-rate components in these directions are zero, these directions

rotate according to the spin tensor W which is thus equal to the spin rate

of these material elements W*. Thus initially the evolution equations (3.4)

and (4.1) coincide and will approximate each other until the deformations

become appreciable. Thus, as was pointed out in the previous paragraph in

connection with the results shown in Figs. 5 and 6 for the simple shear case

the formulation in current use can approximate the approach suggested in this

paper for moderate finite strains. One might therefore delineate two cate-

gories of finite strain termed moderate finite strain and large finite strain.

The approach in current use would be adequate in most cases of generalized

plastic strain below, say, 0.5 with the new analysis in general needed for

larger strains.

It seems to us that the difficulty considered in this paper arises

because of an over-simplified interpretation of the significance of the term

"spin." A glance at Fig.2 indicates the marked effect of deformation on the

angular velocity of lines of material elements in a body. In the case of

simple shear this leads to the, on the face of it, surprisin§ result that a

constant spin for all time leaves a material line which does not rotate.

In the case of anisotropic hardening this variation in rotation of material

elements can have a major influence on macroscopic stress distributions.

We have suggested a generally applicable formulation of anisotropic

hardening theory, but have only considered a simple example and have chosen

a simple hypothesis for the macroscopic influence of the micromechanisms

which generate anisotropic hardening. Clearly a thorough study of this
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aspect of the theory is called for. This requires an analysis of the micro-

mechanics of polycrystalline material which may involve continuum mechanics

type investigations of the interaction between the crystallites. As an example,

the backstress may be considered as due to pile-up of dislocations at crystallite

boundaries or alternatively as residual stresses generated in the structure

of ouisotropic crystallite components. With large deformation the changes

in crystallite stress and configuration or alternatively speaking, of the

orientation of micromechanisms, can greatly influence the plastic anisotropy.

Such investigations to assess the validity of the macroscopic law suggested

in this paper are needed, since anisotropic hardening theory incorporates

more intricate details of the physical phenomenon than does the simpler

isotropic theory.

While the hardening modulus selected is appropriate for an aluminum alloy

at moderate strains, hardening would tend to saturate at the large strains con-

sidered and so the effect of hardening is no doubt exaggerated in the evaluations

presented. Moreover, since kinematic hardening only was assumed, rather than

combined kinematic-isotropic hardening, the anisotropic effects are emphasized.

These characteristics were not only selected for simplicity of presentation and

evaluation, but also to contrast clearly the influence of anisotropic hardening.

As a final comment, the study of localization of plastic flow and the

consequent generation of shear bands involves large shear strains so that

analysis of the type discussed in this paper will be needed for materials

exhibiting anisotropic hardening. Moreover, as mentioned earlier, even with

linear strain hardening in tension, the convex upward stress-strain rela-

tionship in shear, evident in Fig.5, will increase the tendency for insta-

bilities to be generated.
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Appendix: Objectivity

Since Jaumann type derivatives based on several spins are considered

in this development, it is perhaps worthwhile to write down explicitly the

justification for the objectivity of the analysis. This involves investi-

gating the superposition on a solution of a time-dependent rigid-body rota-

tion expressed by the proper orthogonal matrix Q(t)

For the deformation gradient F - axi/aX j , where xi are the deformed

coordinates and X. the undeformed reference ones, rotation Q(t) of the
1~

deformed configuration gives the transformation

F - Q F (a.1)

Thus the derivative of F at fixed undeformed coordinate (therefore a

material or convected derivative) obeys the transformation

F-QF + QF(a.2)

Thus F F- , the velocity gradient in the deformed configuration gives

F-l QT + Q F -1 QT (a.3)

Writing the symmetric part, the rate of deformation, D - (F F-1 )

and the anti-symmetric part, the spin, W * (F yields

D - Q D OT (a.4)

W - QT + QWQT (a.5)

The latter transformation expresses the obvious interpretation of adding

the spin, T O , associated with the rotation Q(t) to the original
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spin W transformed by the superposed rotation at that time, Q(t)

A transformation of this form clearly applies to the spin of any direction

embedded in the material such as a locus of material points. The appro-

priate spin must of course be substituted for W

The Jaumann derivative of, for example, the shift tensor or back stress

a , based on any of these spins, which we will term Q then takes the form

ci- c + ai (a. 6)

Under superposed rotation Q(t) the stress type tensor a transforms as

Q Q T (a.7)

Transformation of the type (a.5) for 9 combined with (a.7) for a gives

- Oc + maf QQT + * T + *a T

ST + T) QMQT (a.8)

+ QT *QT + T

Since QT is skew-symmetric

T ,T QcQT *Ta.9)
Q OSQ QQ Q L9Q Q(a9

the right hand side of (a.8) becomes

Q(a - +)ci a)QT (a.10)

Thus the Jaumann derivative is objective for the various spins used:

W , W* or W This analysis is given for illustration. The properties of

a in fact follow from the evolution equation (4.1) and the flow law (5.3).

It is perhaps worth observing that simple shear involves no volume change

so th'at Cauchy stress and Kirchhoff stress are identical and the consideration

__ _ __ _
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concerning the distinction between the use of these in finite-deformation

plasticity theory does not arise. The constitutive equation for more general

deformation briqfly referred to could be taken to be in the context of

rigid-plastic theory which is incompressible and exhibits the same simpli-

fication. The more general case will be addressed in a later paper.
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Fig. 1. Simple shear in the x1 Virection.
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Fig. 2. Deformation rate and spin components of the velocity fieldf.
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