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Abstract

Stress Analysis for Kinematic Hardening in
Finite-Deformation Plasticity

E. H. Lee and R. L. Mallett, Rensselaer Polytechnic
Institute and Stanford University, and

T. B. Wertheimer, MARC Analysis Research Corp. and Stanford University

Kinematic hardening represents the anisotropic component of strain hardening
by a shift, a , of the center of the yield surface in stress space. The currently
adopted approach in stress analysis at finite deformation (in which time derivatives
of a and of stress appear respectively in the evolution equation for g and in

the flow type constitutive equation) accounts for the effect of rotation by using

Jaumann derivatives based on the spin (the skew-symmetric part of the velocity
gradient). This guarantees objectivity under superimposed time-dependent rigid-
body rotations. However the analysis generates the unexpected result that oscil-
latory shear stress is predicted for monotonically increasing simple shear strain.
The simple shear strain growing at constant rate ; = k yields a spin in
the plane of shearing having the constant magnitude k/2 . The effect of this on
the evolution equation for the shift tensor o cause. the latter to rotate comn-
tinuously. In contrast, the kinematics of simple shear prescribe that no material
directions rotate by more than 1w radians. Together these two features seem
inconsistant since the shift tensor or back stress has its origin embedded in the
material, for example as rows of dislocations piled up against grain boundaries
or inclusionms.
By defining a modified Jaumann derivative based on the angular velocity of
certain directions embedded in the body which characterize the effective resul-
tant orientation of the micro-mechanisms responsible for the anisotropic hardening,

a method of stress analysis is implemented which eliminates the inconsistency and

yvields a monotonically increasing shear stress. Features which support the validity

of this approach are presented.
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l. Introduction

In an intriguing paper [1]*, Nagtegaal and de Jong evaluated the
stresses generated by simple shear to large deformation in elastic-plastic
and rigid-plastic materials which exhibit anisotropic hardening. 1In con-
formity with current practice for finite deformation in the case of kine-
matic hardening, they used an evolution equation for the back stress or
shift tensor Q (the current center of the yield surface) which relates the
Jaumann derivative of g to the plastic strain rate. This incorporates
effects of finite rotation and ensures objectivity of the evolution equa-
tion under rigid-body rotations. They obtained the unexpected result, for
a material which strain hardens monotonically in tension, that the shear
traction grows to a maximum value at a shear strain y of the order unity and
then oscillates with increasing strain with a period of about six, Similar
behavior was exhibited by the normal traction on the shearing planes which
was initially compressive, Of course such a variation would not occur in
practice because of the onset of instability, but large shear strains have
occurred in experimentsg without ingtability. Other anisotropic hardening
models, such as that due to Mroz, did not generate oscillations in the shear
traction.

A study of the analytical structure of the kinematic hardeninc law
shows that, in the case of simple shear, the use of the convent. ‘*umann
derivative based on the spin causes the shift tensor g to rotate cont.auously
and this generates oscillations in the sgtress field. In tha present paper

it ig also shown that this analytical structure, which is currently adopted

*
Numbers in brackets denote references collected at the end of the paper.
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2.

in finite-deformation elastic-plastic codes involving kinematic hardening,
is not in accord with the effects of the physical micromechanisms which
produce plastic flow. A modified theory consonant with these yields a mono-

tonically increasing shear traction for the problem under discussion,

2, The Kinematics of Simple Shear

Using rectangular Cartesian coordinates for the configuration at the

time t, we consider simple shear in the x, ~direction, as depicted in Fig.l,

1
defined by the displacements

ul-kbcz, u2=u3=0. (2.1)

This corresponds to the steady-state velocity field

vy=kx,, v,=v,=0 (2.2)

and the velocity gradient tensor

0 k O
v,
L ..a-f-a 0 0 O (2.3)
3
0 00

with the rate of deformation 2 and the spin E given by the symmetric and

skew-symmetric parts, respectively:

0 k/2 0 0 k2 0
D=|k/2 0 O : W= |-k/2 0 0 (2.4)
o o 0 o o o

The velocity field is thus steady with constant rate of shear strain v =k
and constant spin w with angular speed k/2,

Figure 2 illugtrates the superposition of the deformation rate and

spin components of the velcocity field, the arrows expressing the




angular velocities of lines of material points currently parallel to the x1

and Xy axes, respectively. It is seen that those parallel to the xz-axis

rotate with angular velocity k while those parallel to the xl-axis do not
rotate.
Figure 1 shows the deformation at times t1 and t of an initially unit

square block, with sides initially on the x, and x, axes, Because of the

1
linear velocity field, straight lines defined by material points remain
straight and the square block is deformed into a sequence of parallelograms.

The line of material particles OAO, initially on the x,-axis, deforms to OA

2 1
and QA at times tl and t, respectively. Clearly it will only approach the
x,-axis as time approaches infinity, so that the maximum angular rotation

1

for this line of material points is n/2.

Because the velocity field is steady and the velocity gradient is
uniform or homogeneous over the body, the angular velocity of a line of
particles in the (xl,xz) plane of shear depends only on its orientation.
Thus, the description in the previous paragraph of the motion of the side OAO
of the unit square can be applied to every line of material points, Thus

the inclination of a line of material points to the x ~axis [8(t) in Fig.l

1
for OA] can be used to express the angular velocity é of the line,

From Fig.l the length of OA is 1l/sin 8§, the point O is at rest and the
component of the velocity of A normal to OA is k sin 8 in the direction of 8

decreasing, Hence its angular velocity é is given by
. 2
6 =~k sin ¢ (2.5)

which, as explained in the previous paragraph, is applicable to all lines of

material points in the x_, x, plane. Integration of (2.5), or observing in

1
Fig.l that the projection of QA onto the X axis is cot § and that A moves
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with velocity k along the line x_=1, gives the following expression for the

2
varying inclination 6 of a line of material points corresponding to 90 at
time toz
cot §=cot B _+k(t-t)). (2.6)
This again applies to all lines with inclination ao at time to irrespective
of their position.
Thus the total possible rotation of lines of material particles is

limited since, unless they are parallel to the x, axis, in which case they

1

do not rotate, all lines rotate with negative § towards the x, axis (8 =0).

1
The largest rotation is of lines which initially have the inclination 8=m-¢,
¢ small and positive. They initially have a small negative § which increases

in magnitude to k as they become parallel to the x, axis and then falls in

2
magnitude monotonically towards zero as the lines approach the Xy axis. The
total angle of rotation approaches m-~¢.

Note that the angular velocity of the lines 9 =xm/4, which coincide '
with the principal directions of the deformation rate tensor D, is k/2, equal

to the spin asg it should be, This is also the average of the angular veloci-

ties over all directions in the current configuration,

4 3, The Currently Adopted Analysis for Finite Deformation

The back-stress o which prescribes the position of the center of the
yield surface in stress space provides the anisotropy in the yield function
needed to incorporate such effects as the Bauschinger effect. Since the
source of this property is embedded in the material, the tensor -3 is consid-
ered to rotate with the material so that the conventional Jaumann derivative
(rate of change of @ components based on axes spinning with the material)

hag commonly been used in the evolution equation for Q- Thus changes in Q
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due to material spin are eliminated leaving only changes associated with the
history of plastic strain. This ensures spin-invariance or objectivity

under superimposed rigid-body rotation. A commonly used evolution relation
for Q is that given by Mréz, Shrivastava and Dubey [2] for combined isotropic-
kinematic hardening, modified for finite-deformation applications, as already

mentioned, by introducing the Jaumann derivative
g =c @) ig-a) (3.1)

where s is the stress deviator,
t
P . J./zn?.n?./a at (3.2)
13 13
o

is the generalized plastic strain invariant and the superscript o signifies
the Jaumann derivative, Because of normality for the plastic strain rate
P

E ~ S-g) (3.3)

~

and thus (3.1) can be expressed in the form

% = C2(Ep, strain history)DF (3.4)

This is mowe convenient for the discussion in this paper since the deformation
is prescribed. Moreover the aspect of the analysis which we wish to discuss
can be adequately studied on the basis of rigid-plastic theory since the
elastic strains are negligible compared with the large plastic strains.

Hence we can replace BP

in (3.4) by D. For simplicity of explanation, we
shall limit our consideration to kinematic hardening although the approach
applies equally well to combined kinemagf:;isotropic hardening.

In order to examine how gy chanqe:ﬁ:espect to the axes (xl,xz) fixed in
space, we need the material derivative of the shift tensor, é,and this is

deducible from the expression for the Jaumann derivative
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Using (3,4) thisg gives

@ = C.D +Wg-gW (3.6)

The last two terms express the contribution to the change in g due to the
spin w, which in the case of simple shear has the constant value given in
(2.4). The corresponding angular velocity in the (xl,xz) plane is k/2,

so that the angle turned through by g due to w in a time increment At is
kAt/2, and this must be combined with the contribution of the first term on
the right-hand side of (3.6). For rigid-plastic theory of simple shear the
latter term adds increments to @ which have the same principal directions
as the deformation rate D, corresponding to 8§=7/4 and 3n/4.

The continuing rotation of a in the (xl,xz) plane is in marked contrast
with the rotation of lines of material points in the body for which the total
rotation varies with the initial orientation but can never exceed . Since
the hardening mechanisms are embedded in the material it seems, on physical
grounds, implausible that the macroscopic hardening parameter o4 could continue
to rotate through an unlimited angle while no elements of the material do.
Moreover the oscillations in stress obtained by using the current theory
appear to be associated with the continuing rotation of a. The period of
the stress oscillations with respect to the shear strain vy =kt is approxi-
mately equal to 27, With this strain increment, the rotation (k/2)t will
change by 7. But a tensor rotated by = about a principal eigenvector X4 in
the present case,will be unchanged. Thus this simple assessment is in con-

formity with the calculated stress variation. The assessment is approximate

since it does not take into account the strain rate term in (3.6).
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The spin w is the average of the angular velocities exhibited by all
material lines passing through a point. Spin would thus seem to be an
appropriate variable to include in a formulation for isotropic hardening for
which no specific directions have special influence, But kinematic hardening
is an anisotropic phenomenon for which specific material directions play a
significant role. Moreover the micromechanisms which generate anisotropic
hardening, such as pile-up of dislocations against grain boundaries or in-
clusions, are associated with specific directions embedded in the material
and the rotation of these particular directions or an average over such active
directions should play a special role in formulating the macroscopic consti-
tutive relation. A law based on this concept is suggested in the following

section.

4, A Modified Constitutive Relation

In view of the discussion in the previous section, it is necessary to
determine a direction embedded in the material which characterizes the aniso-
tropy induced by previous plastic flow. As a simple example which may be
appropriate for simple shear, we select the direction associated with the
maximum eigenvalue of the shift tensor Q. Justification for this choice is
discussed later in this section. In expressing the influence of current
plastic flow on the evolution of g we must eliminate the change in a caused
by the rotation of micromechanisms responsible for the current hardening,
Thus we define a modified Jaumann type derivative which eliminates the
effect of rotation of the material elements lined up in the direction of the
eigenvector of o asgociated with the maximum eigenvalue. This rotation

defines a spin W* corresponding to the angular velocity given by (2.5) with

~

the appropriate value of 8. We retain the influence of current plastic flow
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due to Mrdz et al., [2] and obtain the evolution equation analogous to (3.4)

*
g =c,0° (4.1)

where the superscript * denotes the modified Jaumann derivative associated
with the spin W*

*
g-g-n*g_+aW* (4.2)

~

2

Thus @, the material time derivative of @ with respect to fixed axes (xl,xz),
is given by

= C, 2 +Ne-ew 4.3)

1 Qe

when shearing commences the eigenvector of ¢ under consideration first
grows in the direction 6 =17/4 but the motion of the material continually tends
to reduce this angle due to the rotation effect of the last two terms in (4.3).
As the angle § decreases the spin term E* decreases according to (2.5)
but 6 will remain positive. It is to be expected that such behavior will
eliminate the oscillations in the shear tractior obtained by using the
evolution equation (3.6) based on the conventional Jaumann derivative,

Note that the new evolution equation (4.1l) is objective under rigid-
body rotation since the spin g* is determined from the tensor @ without
reference to the axes adopted and is additive with respect to superposed
rigid body spinX*

I selecting the effective direction of action of the anisotropic
hardening mechanisms which are embedded in the material, one must bear in
mind that we are concerned with polycrystalline materials so that no specific
global slip planes exist as are determined by the lattice structure in the
case of single crystals, The direction must thus be an effectiv,, average
over the response of the individual crystallites. Thus simple shear is not

likely to occur only by slip over planes adjacent to the xl-axis as depicted

*
see the Appendix.
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in Fig.l, since the complementary shear stress will be acting parallel to the
xz-axis,andthis will cause shear strain in some crystallites, which, combined
with rotation, will contribute to global simple shear. Thus in selecting the

evolution law (4.1) we envisaged shears associated with both planes yielding an

effective anigotropic contribution. This is in conformity with the evolution

equation due to Mroz et al. [2]. These contributions were then summed,
allowing for rotation of the earlier contributions, by integrating (4.3) to
yield a which determines the resultant anisotropic hardening,

Because of the lack of influence of hydrostatic pressure on plastic
flow, the yield condition is a stress deviator relation and thus g is a stress
deviator so that,in the case of simple shear with no deformation in the x_-

3

direction,the D component is zero and hence the two nonzero eigenvalues

33
of o have the same absolute magnitude. We chose the tensile strain-rate
orientation to express the effective anisotropic hardening mechanism direction.
The associated line~up of material elements in the tensile direction rotate
more slowly (initial angular velocity k/2 and decreasing) than in the com-
pressive strain-rate direction (initial angular velocity k/2 and increasing)
and hence the former will yield a greater corresponding eigenvalue of the
resulting tensor o and so comprise the dominant back-stress direction. The
elements lined up in the compression direction will rotate towards the
orientation which has the angular velocity k, and adding increments with more
rapidly varying orientation will inhibit the increase in the associated
eigenvalue.

We suggest that the recipe for the spin E* can be extended to general
three-dimensional deformation by taking Ef to be determined by the eigenvector

associated with the maximum absolute value of the eigenvalues of g. The spin

is determined by the rotation of the line of material elements instantaneously
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10.

coinciding with that eigenvector, Rotation around this direction could be
determined by the motion of material points on the eigenvector corresponding
to the next largest eigenvalue. This selection of specific eigenvectors
could lead to nonsmooth response analogous to the Tresca yield condition, but
this could perhaps be avoided by taking an average over possible hardening
mechanisms which would result in a smoother response.

This approach to anisotropic hardening exhibits the property, necessary
for application, that measurement of the yield surface (assumed to be con-
sistent with combined isotropic-kinematic hardening) supplies the information
4 needed to formulate the constitutive relation for the analysis of subsequent
3 deformation, The shift tensor g and the square of the radius of the yield

surface given by the trace of the tensor product

2
o

win

(s-a):{s-ao) =30 (4.4)

comprige all that is needed concerning the previous history of plastic

1 deformation,

S. Stress Analysis

The theory for combined isotropic-kinematic hardening for infinitesimal

deformation presented by Mrdz et al. [2] is adapted for finite deformation
applications by using the appropriate Jaumann type derivative of stress just
as the modified Jaumann derivative was developed for use in the evolution
equation for the back-stress o.

Since we are investigating a large deformation problem, rigid-plastic
theory is applied in order to cbtain a relatively simple analysis although
an elastic-plastic solution is also presented for comparison with the rigigd-

plastic case. Since we are considering a problem involving homogeneous
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deformation, plastic flow is occurring throughout the body, and in this case
stress analysis on the basis of rigid-plastic theory is not restricted by
the existence of extensive rigid regions as commonly arises in metal-forming
problems {3]. The velocity boundary conditions for simple shear (Fig,l)
prescribe an incompressible motion and since the rigid-plastic constitutive
relation is incompressible, the stress can only be determined to within an
arbitrary hydrostatic pressure. Thus stress deviators are evaluated.

The yield condition for combined kinematic-isotropic hardening is
given by (4.4) with

= =P
o, co(e ) (5.1)

where &F

is the generalized plastic strain invariant (3.2) and o4 is the back=-
stress given by the evolution equation (4.,1).

The tensor Q and hence the yield surface will in general be rotating
so that care must be exercised in expressing the stress rate to be used in
the equation for the strain rate associated with strain hardening. The rota-
tion of o is determined by integration of the evolution equation (4.3).
The corresponding spin, ?ﬂ , of the orthogonal eigen-vector triad differs

*
from W because of the ol term in (4.3).The Jaumann stress rate associ-

ated with the angular velocity © gives the rate of increase of stress when

the change due to this spin has been subtracted off. If this Jaumann stress
rate were zero, then due to spin there would be no change in stress relative
to the-yield surface. Thus this modified Jaumann derivative of the stress

is the quantity which expresses the strain-hardening rate. Thus utilizing
the normality requirement for the plastic strain rate (3.3) and the component

of the stress rate in that direction

[(s-a)/ls-al]:g-r(s-a)/ﬁc]:% (5.2)
~ ~ ~ ~ ~ L ~ ~ 3 e} ~
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using (4.4) and writing % for the new modified Jaumann rate associated
with spin W . the plastic strain rate is given by

p 3 a
D(=D") = 5 (s-2)[(s-92):s] . (5.3)
2ho

[«]

where h is a strain hardening modulus, This is Eq. (11) of [2] suitably

7

modified for finite deformation. Note that the trace of the tensor product

is expressed by

2

[+ o 3
(s-g):3=(sij—aij)sji=(§-g)-§ (5.4)

where the last form is the scalar product of the tensors expressed as vectors
in nine-dimensional stress space. Note that the operator L in (5.3)

a
(P53 = g S

In the usual finite-element computer-code procedure for elastic-plastic .

) embodies the symmetries in (i,j), (kx,1) and (ij,kl).

analysis, the equivalent of (5.3) with D containing elastic terms in stress
rate, would be solved for g and the evolution equation (4.1) for ;. Thus s
and o can be updated to proceed with the next step. However, in the present
case % only appears in the scalar quantity in square brackets in (5.3), so
that these equations are severely underdetermined for evaluating g. But

since (s-g) satisfies (4.4) with (5.1) and (3.2), D=D°

~

with (3.3) [(also
implied by (5.3)] permits (5-g) to be updated and combining this with the

+*
evolution equation (4.1) for‘g permits S and g to be updated. This procedure

was carried out for the simple shear problem.

An elastic-plastic solution was also computed with the MARC program by
modifying the spin term in the Jaumann derivative from W to w', and replacing
the Jaumann derivative % by ; since the spin of material elements instantaneously
coincident with the eigen-vectors of a is likely to be close to the spin of the

eigenvectors themselves. i

6. Comparison of Solutions

A solution was evaluated using the rigid-plastic model with the initial tensaile

yield stress Y = 207 MPa(30 ksi) and linear tensile work hardening with modulus
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310 MPa(45 ksi). These values are appropriate to model an aluminum alloy. The con-
stant strain-hardening modulus in tension implies that C2 is a constant in (4.l).

Figure 3 shows the variation of the component of the spin associated
with the material motion related to the back-stress tensor g. For the cur-
rently accepted approach this remains constant at (-k/2). When the rotation
of a locus of material particles which carry the back-stress determines the
evolution of ¢ as suggested in this paper, the magnitude of the spin commences
at k/2 and decreases rapidly, Strain steps of Ay =0.1 were used in the calc-
ulation in view of the range of strain up to y = 10 and, without itexation,
two steps were completed before deviation from the initial value (-k/2) was
predicted. 1In view of the stress results it did not seem necessary to refine
the strain increment size to improve the spin g*. Figure 4 shows the inclina-
tion to the xl-axis of the controlling eigenvector of Q. On reaching —90°,
the plotting routine jumps automatically to +90°. The continuing rotation
associated with spin W is in clear contrast to the limited rotation towards
the xl-axis with E*,

Figure 5 shows the deduced shear stress versus shear strain curves.
The use of the conventional Jaumann derivative gives the coscillations pre-
sented in [1]. The modified theory is seen to yield a curve which agrees
closely with the currently utilized approach up to a shear strain v of unity,
but thereafter the stress increases monotonically with a continuously de-
creasing modulus, The straight line relation shown is deduced from the tensile
behavior on the bagis of isotropic hardening with Mises yield condition.

Figure 6 shows the variation of the stress-deviator component in the
direction of the xl-axis. Appreciable deviation of the two solutions occurs
earlier than for shear stress, at a strain of about 0.5. Otherwise the

contrast between the two solutions is similar to the shear results. However,

isotropic hardening predicts no normal stress deviators S and $y7 -
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Figures 7 and 8 show the stress-shear strain variations deduced using
the MARC elastic-plastic code suitably modified, as already mentioned, assuming
a Young's modulus of 6.90 x 104mPa (10 x 106psi) and a Poisson's ratio of 0.3.
Because of the strain steps of magnitude 0.1, the initial elastic response is
not accurately predicted and for the longitudinal deviator component an initial
slight instability occurs which quickly dies down. Because the elastic-plastic
constitutive equation permits dilatation, stresses (not simply stress deviators)
can be predicted. Since plastic flow is considered to be incompressible, and

the velocity boundary conditions are consistent with the total deformation being

incompressible, and moreover since the plastic flow is homogeneocus, the
elastic dilatation should be zero and hence also the average hydrostatic
tension, The direct stresses in the shearing plane clland<322 were found to
be almost equal in magnitude to within 0.1% but opposite in sign which is con-

sistent with a zero hydrostatic stress value and zero 033 N

All solutions are presented on the same plots in Figs. 9 and 10. Closer
agreement between the rigid-plastic and elastic-plastic solutions is obtained
with the new theory. This is to be expected since the much smoother behavior
will yield greater numerical accuracy and a discrepancy due to the inclusion
of elasticity is likely to be negligible at such large strains. Thus the re-
sults are compatible with the loss of numerical accuracy associated with strain
steps of magnitude Ay = 0.1, with perhaps some minor effect of replacing % by ;
in the elastic plastic calculation. The close agreement of the elastic-plastic
finite-element solution may seem surprising in view of the severe element distor-
tion at shear strains y = 10. However , it must be borne in mind that the velo-
city variation is linear which can be modeled exactly by the finite elements

even when distorted.
7. Discussion

In addition to the two kinematic hardening stress-strain curves depicted in

Fig.5, a linear relation is also shown corresponding to isotropic hardening




i : T S o : o i ik e el RO
- e —————— . vm o = - —F

15.
according to the Mises yield condition and the linear work-hardening tensile

relation. The latter is also the basis for the other curves. Kinematic har-

dening, according to the theory presented in this paper, initially gives the

same shear stress and hardening modulus but the latter decreases monotonically

b e i L e o o e i e et A et

with increasing strain so that at large strains the kinematic hardening curve %
is well below the isotropic hardening curve. The reason for the falling off

of the tangent modulus at large strains in shear is that, due to the material

rotation, the principal back-stress direction approaches the xl-axis, which

would correspond to maximum stress for tensile strain in that direction. The
shear-stress component in that direction is therefore not so enhanced. This

predicted softening tendency in shear compared with isotropic hardening could

have significant implications in instability and localization phenomena. As

1 already mentioned, isotropic hardening produces no normal stress s11 and 522 .

Although oscillations have been observed in the shear stress in torsion
experiments, they appear to be unrelated to the oscillations predicted by the
application of the conventional Jaumann derivative in the kinematic-hardening
1 analysis, Robbins, Wagenaar, Shepard and Sherby (4] encountered oscillations

when loading at high strain rates. Although the strain scale was omitted

from Fig,1l2 of that paper, Professor Sherby assures us that the period was

much less than 6, Moreover the measurements made at two values of strain

rate indicate that the oscillation was associated with mechanical vibration
caused by rapid loading., At lower strain rate the periocd in terms of strain
was reduced, roughly in proportion to the strain rate, indicating a fixed

period in time rather than strain. Aernoudt and Sevillano [5] observed in-

stability in the torgue which they ascribed to adiabatic heating,
Comparison of the analyses with the conventional and the modified
Jaumann derivatives indicates that up to strains near 0.5 the difference in

the solutions is small., For straing near 2 the difference reaches about 40%

and grows rapidly with increasing strain.
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When deformation commences in a virgin isotropic material, the shift
tensor is 0 and according to (4.1) grows initially in proportion to the
deformation rate D, hence its principal directions coincide with those of D.
Since the shear-rate components in these directions are zero, these directions
rotate according to the spin tensor W which is thus equal to the spin rate
of these material elements g*. Thus initially the evolution equations (3.4)
and (4.1) coincide and will approximate each other until the deformations
become appreciable. Thus, as was pointed out in the previous paragraph in
connection with the results shown in Figs.5 and 6 for the simple shear case,
the formulation in current use can approximate the approach suggested in this
paper for moderate finite gtrains. One might therefore delineate two cate-
gories of finite strain termed moderate finite strain and large finite strain.
The approach in current use would be adequate in most cases of generalized
plastic strain below, say, 0.5 with the new analysis in general needed for
larger strains,

It seems to us that the difficulty considered in this paper arises
because of an over-simplified interpretation of the significance of the term
"spin." A glance at Fig.2 indicates the marked effect of deformation on the
angular velocity of lines of material elements in a body. 1In the case of
simple shear this leads to the, on the face of it, surprising result that a
constant spin for all time leaves a material line which does not rotate.

In the case of anisotropic hardening this variation in rotation of material
elements can have a major influence on macroscopic stress distributions.

We have suggested a generally applicable formulation of anisotropic
hardening theory, but have only considered a simple example and have chosen

a simple hypothesis for the macroscopic influence of the micromechanisms

which generate anigotropic hardening, Clearly a thorough study of this
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aspect of the theory is called for. This requires an analysis of the micro-
mechanics of polycrystalline material which may involve continuum mechanics
type investigations of the interaction between the crystallites. As an example,
the backstress may be considered as due to pile-up of dislocatioms at crystallite
boundaries or alternatively as residual stresses generated in the structure

of anisotropic crystallite components. With large deformation the changes

in crystallite stress and configuration, or alternatively speaking, of the
orientation of micromechanisms, can greatly influence the plastic anisotropy.
Such investigations to assess the validity of the macroscopic law suggested

in this paper are needed, since anisotropic hardening theory incorporates

more intricate details of the physical phenomenon than does the simpler
isotropic theory.

While the hardening modulus selected is appropriate for an aluminum alloy
at moderate strains, hardening would tend to saturate at the large strains con-
sidered and so the effect of hardening is no doubt exaggerated in the evaluations
presented. Moreover, since kinematic hardening only was assumed, rather than
combined kinematic-isotropic hardening, the anisotropic effects are emphasized. i
These characteristics were not only selected for simplicity of presentation and

evaluation, but also to contrast clearly the influence of anisotropic hardening.

As a final comment, the study of localization of plastic flow and the

consequent generation of shear bands involves large shear strains so that
analysis of the type discussed in this paper will be needed for materials

exhibiting anisotropic hardening. Moreover, as mentioned earlier, even with

linear strain hardening in tension, the convex upward stress-strain rela-
tionsghip in shear, evident in Fig.5, will increase the tendency for insta-

bilities to be generated.
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Appendix:Objectivity

Since Jaumann type derivatives based on several spins are considered
in this development, it is perhaps worthwhile to write down explicitly the
justification for the objectivity of the analysis. This involves investi-
gating the superposition on a solution of a time-dependent rigid-body rota-
tion expressed by the proper orthogonal matrix Q(t) .

For the deformation gradient f = axi/axj , where x, are the deformed
coordinates and X, the undeformed reference ones, rotation 9(t) of the

deformed configuration gives the transformation
F - OF (a.l)

Thus the derivative of E at fixed undeformed coordinate (therefore a

material or convected derivative) obeys the transformation

(a.2)

1 e
+
IO

F + 9

1 e

Thus F F-l , the velocity gradient in the deformed configquration gives

P

1 1. T

FF =~ =+ é QT + 0 FF Q (a.3)
Writing the symmetric part, the rate of deformation, D = (F F-l)s
and the anti-symmetric part, the spin, W = (% F-l)h yields
D =+ QDQT (2.4)
Wos 00 + qwg (a.5)

The latter transformation expresses the obvious interpretation of adding

the spin, é QT , associated with the rotation Q(t) to the original

P T
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spin W transformed by the superposed rotation at that time, Q(t) .
A transformation of this form clearly applies to the spin of any direction
embedded in the material such as a locus of material points. The appro-

priate spin must of course be substituted for W .

The Jaumann derivative of, for example, the shift tensor or back stress

a , based on any of these spins, which we will term Q then takes the form

- -

1 Qe

- Qa +a (a.6)
Under superposed rotation Q(t) the stress type tensor a transforms as

a * Qaqa QT (a.?)

Transformation of the type {(a.5) for Q combined with (a.7) for a gives

-~ -

& - a + a@ - a0t + QT + Qi

" + o0" o’ (a.8)

-~ -~

+oa0” (2" + Q"

-~ -

Since 6 QT is skew-symmetric

Q3 QQ =- QaQ Q" (2.9)
the right hand side of (a.8) becomes
Qa ~ Qa + af)Q” (a.10)

Thus the Jaumann derivative is cbjective for the various spins used:

t®

a
y W or W - This analysis is given for illustration. The properties of

-

in fact follow from the evolution equation (4.1) and the flow law (5.3).

tQ

It is perhaps worth observing that simple shear involves no volume change

8o that Cauchy stress and Kirchhoff stress are identical and the consideration
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T

concerning the distinction between the use of these in finite-deformation
plasticity theory does not arise. The constitutive equation for more general
deformation briefly referred to could be taken to be in the context of

1 rigid-plastic theory which is incompressible and exhibits the same simpli-

fication. The more general case will be addressed in a later paper.




Fig. 1. Simple shear in the X gireccion,
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