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DRIFT RESISTIVE INTERCHANGE AND TEARING MODES IN CYLINDRICAL GEOMETRY

I. Introduction

In a plasma with unfavorable average curvature along each field line, it has

long been appreciated I- 3 that finite conductivity weakens the shear stabilization

criterion of ideal interchange modes (the Suydam criterion 4 or its toroidal

generalization, the Mercier criterion).5'6  In a sheared slab with density

gradient and with gravity simulating curvature, and with incompressible

displacements, the plasma is unstable to an infinite number of such resistive

interchange (or resistive g) modes localized near each mode rational surface

(at which k • B 0 0, where k is the wave vector).

In a cylindrical model with curvature and pressure gradient these results

are strongly modified by plasma compression.3  In a plasma with very low pressure

(but finite pressure gradient) the results are formally identical to those in the

slab model. Finite plasma pressure introduces the stabilizing effect of plasma

compression which, if large enough, stabilizes all but one mode for each mode

rational surface. This mode, whose magnetic perturbation is not totally

localized to the mode rational surface, and which couples to the exterior

(magnetohydrodynamic) region, is in fact the tearing mode. For unfavorable

curvature and stabilizing tearing forces from the outer region (A < 0, defined

in Sec. III), it is driven unstable by curvature in the same manner as the

localized resistive interchanges. It has recently been pointed out 7 that for

large 1A 1 or small D, the tearing-like coupling to the exterior region has a

strong stabilizing influence that reduces the growth rate from the

conventional D2/ 3 scaling (D is the Suydam parameter, defined in Sec. III) to

4/A scaling. This transition has also been observed in numerical

simulations 8

It has been suggested that resistive interchange modes are responsible for

transport in reversed field pinches, 9 which have unfavorable average curvature

Manuscript submitted February 8, 1982.
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because their safety factor q (defined in Sec. II) is less than unity. It is

also possible that fluctuations1 0 which are seen late in the discharge in the Los

Alamos experiment (ZT-40) and which are predominately m - 0 (m is the poloidal

2/3
mode number), are resistive interchange modes. The transition from D behavior

4 /4
to D /A behavior in reversed field pinch geometry occurs at 7 % for

3 6magnetic Reynolds number R ff- 10 but at - 1 % for R = 106 , so that presentm

day devices (with 0 _ 10%) should be in the larger growth rate (i.e.

D ) regime. We shall discuss this point further in Sec. IV.

In addition, compact torus devices such as the spheromak, which have q < 1,

and which therefore have unfavorable average curvature, should be subject to such

instabilities. It has been recently found that spheromaks are optimally stable

to ideal magnetohydrodynamic tilt and shift modes if their flux surfaces near the

magretic axis are nearly circular. I '1 2 Also, transport studies indicate that

the toroidal current and temperature become quite peaked near the magnetic axis,

as in a tokamak.'3 Therefore, in spite of the small toroidal aspect ratio of

spheromaks, which may cause resistive instabilities to have some ballooning like

structure (i.e. to be sensitive to local as well as average curvature), the

variation of the field line curvature along field lines in the region of large

pressure gradient may be small.

The purpose of the present paper is to investigate the drift, or Hall

effects, on these instabilities. These terms become important in the component

of Ohm's law parallel to the magnetic field when Iwi < w *eI (W*e is the electron

diamagnetic frequency kcT e/eBL n, and L is the density gradient scale length) ande n n

represents the fact that a parallel component of the electric field may be

balanced by parallel electron pressure gradient as well as collisions. The

inclusion of these terms in the perpendicular component of Ohm's law Is

equivalent to the Inclusion of the ion polarization drift. As we shall see, the

2m



effect of the inclusion of the Hall terms on these modes is to impart a real part

to their frequency wr < w*e and, if these effects are strong enough, to stabilize

the modes altogether. The m - 0 fluctuations in ZT-40 have a frequency which is

10
of order w*e 

"

The model we use has cylindrical geometry, and thus has field line curvature

rather than a fictitious gravity. The only toroidal effect is that the axial

wave number is quantized k = k = - n/R, where R is the major radius. We includez

finite plasma compressibility (with electrons isothermal along field lines and

adiabatic ions) and perpendicular resistivity, which is neglected in tokamak

ordering.

In Sec. 11 we explain the physical model in more detail and derive the basic

+ equations.

In Sec. III we derive analytic results in several limiting cases, including

the incompressible "slab" limit (p + 0, dp/dr * 0) where plasma compression and

perpendicular resistivity are ignored. We recover the dispersion relation for

the drift tearing mode 14 '15 from a more general dispersion relation for drift-

tearing-resistive interchange modes. This more general result shows that slab-

like resistive interchange modes remain unstable for arbitrarily large *e/QT,

where Qr is a nominal resistive instability growth rate (defined in Sec. II) but

- 1/2
with a growth rate that scales as we . We also derive a dispersion relation

with perpendicular resistivity and plasma compression for localized modes

with w*e large; this result shows that for large w*e no such mode is unstable.

In the Appendix we generalize this to less localized modes which couple to the

outer region through outward propagating drift waves and show that no instability

exists for large Wde/Qr unless A (defined in Sec. I1) is above a critical value

which is positive. It is possible that the fluctuations seen in reversed field

pinches are resistive interchange modes which become unstable when the mode

3
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rational surface is near the edge of the plasma, where compressional

stabilization is at a minimum.

In Sec. IV we show numerical results which are consistent with the analytic

results of Sec. III in showing that no instability exists for large enough

w~e/Qr , when the coupling to outward propagating drift waves is strong. We find

the critical values for W*e for the localized and nonlocalized (tearing) mode and

find these values below but very near typical values for reversed field pinch

parameters.
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I1. The Equations and Scalings

In this section we review the derivation of the equations for resistive

interchange modes including the additional effect of the Hall term in Ohm's

law. As we will see, these terms allow for the coupling of resistive interchange

modes to drift modes. Since it is now known that drift waves are stable in slab

geometry in a sheared field, 16 this coupling is a stabilizing effect.

We adopt the scaling as assumed in Coppi, Greene and Johnson3 and our

previous work. 7  Outside a small distance Lr away from the rational surface, the

ideal MHD equations hold, but within this distance Lr, finite resistivity,

perpendicular inertia, and Hall effects (electron pressure gradient and

polarization drift) are important. We will assume that L /a e c, where a is the
r

radius of the mode rational surface and a is also assumed to be roughly equal to

the scale of variation of the eigenfunction in the other direction perpendicular

to B. Since the plasma is assumed to be stable to localized ideal

magnetohydrodynamic modes (Suydam stable), the growth rate also scales as C. In

1/3
this, the so-called slow interchange ordering of Ref. 3, e also scales as nI

In cylindrical geometry, the eigenfunction has the form f(r) exp

(yt + ime + ikz) where, in a large aspect ratio torus, k - -n/R. A

superscript - denotes a perturbed quantity. The mode rational surface is

determined by

m , nq, (1)

where q - rBz/RB . The operator B V ! operating on a scalar is given by

zn 8

B * V - (r -a) + O(r - a)2  (2)
- - a

where r - a is the location of the mode rational surface; within the singular

region the right hand side of (2) is of order c. (We use this form rather than

• - an lu l . . .. .. . . ... - . . .. .., h . .. " -- • - '5



that of Ref. 3 since it applies also to m 0 modes, which have their rational

surface where B = 0.)z

Since the resistive interchange mode is characterized by nonzero resistivity

allowing the fluid to slip through the sheared field near the rational surface,

the mode is mostly fluid flow with only a small magnetic perturbation.

Thus B - c t where t is the linearized fluid displacement. Since the growth

rate is assumed to be slow compared to the magnetosonic speed, we have

B + 0. (3)

where p is the perturbed total (electron plus ion) pressure. However, for Ohm's

law, we use the full ion momentum equation

M av
E + v x B - nJ - + MV p /pe, (4)t. .. . . . e t -

where pi is the ion pressure, p is the density and M is the Ion mass. We assume

that the ions obey an adiabatic equation of state, i.e. the perturbed ion

pressure, P is given by

p - Pi Vr - r piC! • ), (5)

where r is the specific heat ratio and is the fluid displacement. Since both

terms on the right hand side of Eq. (5) contribute roughly equally to the

perturbed ion pressure, V * C is of order s.

The electrons, on the other hand, are assumed to be isothermal along a field

line, or

B. VT + B V T -0,

- - . -
6



which gives

a Br T e (6)
inBeq x

where henceforth x = r - a and the perturbed electron pressure is pe

(p e+ T e)/M. Note that if Br has even symmetry about the field line, Te is

singular. This singularity can be removed by accounting for finite electron

thermal conduction along a field line. However if B has odd symmetry, or-r

if T e 0 at r - a, there is no singularity. If we define a local coordinate| e

system I i and I i x i where i and i are unit vectors in the direction
-1, T -

of r and B, then

" F;i ,
r -r + + ;

Bi +~ ir-r

0 2
where 1 ~ co Fr B -c and B .£ . Then the condition that V • ; 0 tor, 1,1 r_

lowest order, V • B = 0, pressure balance and the continuity equation gives the

following four equations

+ eB dr O, (7)

iRBe 3Br
r 0, (8)

I nB dr

BBI = Pi r + rp1(V " - - PTe/1- r Te (9)
inBeq xM

S= r -(V(0)



Two other equations, which are the same as in Ref. 3, come from operating on the

total momentum equation with B • and with either V * (B-2 B x) or B * V x are

inBq Bx
Py2B - - (pe + p1) B --- (11)

2 2-
2 d2r 2n2B inBq Bx dB

py 2 B a r (12)
dr2  R2a a dr2

Equation (12) is called the annihilated momentum equation, since the operator

annihilates information about propagation along the lines of force and also

information about V(B * B + p). In order to neglect collisional and

collisionless ion viscosity in Eq. (12), we require Ti < T . The next two~e

equations are the radial and parallel components of Ohm's law. It is these two

equations that contain the effects of the additional Hall terms. They are

r dY 2  a &r- e Y R Bti (13)
dB

d2i -nB B q x 21

dr 2  a r - B r

+-Z I- + M eRinB Pl - --p 7  (14)

p e

As In Ref. 3 the eight equations, (7) - (14), can be reduced to three second

order differential equations for the three variables Br , B I and r" We introduce

the variables used in Ref. 3: Q /Qr' r X- x/L r , and

RBBq ,L r
o

-2Ba

T r2 '2 2 BB

R qBdp
8



D - 2p a
2 2 2

2

= 2p(a)/B2

S =4/R2q'
2

(/ )l6
2 22 1/6

22

as well as two new variables g (to measure the strength of the Hall effect)

R 1/3 Inq'al 1/3  VA
= m A (-( -a(15)

g - W

JRq 
I

where wci is the ion cyclotron frequency using B6 , R is the magnetic Reynolds
aVA Br

number, R = , V A is the Alfven speed using BV and K - (1 - FPiP

Pi O(Pi )/ In terms of these variables the three coupled second order

equations reduce to

22 2 2d2 I d~Y I

dX Q dX Q

d2T Q(T + X ) + iQ. T + (17)

dX
2

9



SX2 T+Q (S-D - 2D D + 2
2 Q(1+ +- ) T-- ) 9+ XY iQ, 2 ic(T-D{)_2iQ g 2'

dX2  Q c c c dX2"

where Q, - 2gD/S.

In deriving Eqs. (16) - (18), we have further assumed that VT e 0 so that

subtleties concerning singular behavior of electron temperature are avoided.

The r in Eq. (18) is then a combined specific heat ratio which accounts for the
c

fact that the electrons are isothermal but the ions are adiabatic,

PT /M + rp
r e + Pi * (19)c Pe + P

If the ion temperature is zero, r - 1.c

The terms in Eqs. (17) and (18) which contain the g factor are the effects

of the Hall terms. Since they are all purely imaginary, they provide a real part

of the frequency. Notice that the terms in Eq. (18) proportional to K are zero

for a "baroclynic" ion pressure profile, that is

I ~ d dp 1
p- (20)
p dx rPi dx

r

or p, - p " In our numerical computations, we generally make this assumption.

Also, we have neglected collisionless and collisional ion viscosity and thermal

conduction. For reversed field pinch parameters, this can only be justified

if Te >> T . Finally, to make contact with conventional drift waves and drift

ordering, let us note that the drift wave frequency, mcTep /eBap is given by

W*e Q*Qr (21)

10



As we will see in the next section, tombinations like Q + iQ, (proportional

to w - w e) frequently appear in the analysis of Eqs. (16) - (18) and it is

through these terms that resistive interchange 
and tearing modes couple to stable

drift waves.

11



III. Approximate Analytic Solutions

There are at least three limits in -which one can get analytic solutions to

Eqs. (16) - (18). The first is g = 0 and these have been discussed fully in

Refs. 1 - 3, 7. The second is the unphysical, yet illuminating, limit rc + 0 and

the third is the limit Ti = 0, g3a >> I.

We begin by discussing the limit r + o. In this limit, plasma compressionc

makes no contribution to perturbed pressure. In this sense, it L3 rather like

the incompressible theory of resistive interchange modes in a slab, where the

curvature - pressure gradient term in Eq. (12) (proportional to "h ) is replaced

by a gravity - perturbed density term. As we shall see, the results of this

limiting case are similar to the simple slab mode without Hall terms, in the

sense that an unstable mode exists for arbitrarily large shear and g.

If r = 0, then Eq. (18) shows that T = D , so that Eqs. (17) and (16) become,; c

respectively

d2
d T= (Q + iQ.) ( + X) (22)

dX
2

d2 X2
2 2 (Q + IQ*) _ D +2 (Q + IQ*) f (23)

dX 2  Q 2  Q* 2R2

where we have used Eq. (22) to eliminate the d 2/dX2 term in Eq. (16). To solve

Eqs. (22) and (23) we first make the constant T approximation. If t is even in

X, T is odd, so that with this approximation T - 0. In this case the lowest

order eigenfunction C is given by - exp(- a X2 ), where

1

2 2 (24)
2 Q2

and the eigenvalue (i.e. dispersion relation) by
14

12



2
Q(Q + i Q)2 . D. (25)

The eigenfunction is only valid if it approaches zero as X + + -. Using Eq.

(25) and making use of the fact that D is positive real, we find that the

eigenfunction is well behaved for X + + - (Re(o) > 01 as long as

2 2
Re(Q) > IM(Q)

If g 0 0, Eq. (25) is the standard dispersion relation for resistive

interchange modes. As g increases, the real part of Q decreases while the

imaginary part increases. In the limit of g +

1
Q w D(iQ,)

so that the condition for validity of the eigenfunction becomes marginally

satisfied for g + -; note also that Q + 0 in this limit. Thus if r = 0, thec

theory predicts that the Hall effect reduces the growth rate of a resistive

interchange mode, but does not stabilize the system for finite g. These results

are summarized in Fig. 1.

It is just as easily shown that the higher order elgenfunctions have

eigenfunction C = H(z)e-z 2 /2 for even 1, where z - [(Q + iQ) 1/4/Q1/2  X, and Hl

are Hermite polynomials. The eigenvalues for these modes satisfy

Q(Q + iQ,) 1/2 = D/(21 + 1).

The remaining thing to check is the validity of the constant T

approximation. As we will see, it is valid if D << 1, which holds for a

low 8 plasma. According to Eq. (24), the length scale of the eigenmode

13
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0 =Arg (y)

-0 4 810 1214 1618 2022 24 262830 3234 3638 40

(DiilYri

Fig. I - Complex growth rate Q for the drift-resistive interchange mode

with r B - 0, given by Eq. (25). The growth rate is scaled to the
2/

pure resistive interchange value for -* 0, i.e. Q -D 2 3  and

F_ w */y i - *

14
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- 1/4
is I(Q + IQ,) /Q2] . Using this, we find that the Y terms on the left and

right hand side of Eq. (22) are related as I : (Q + IQ*) I/2 Q. Thus the left

hand side of (23) dominates for D << 1, ving (to lowest order) d2Y/dX = 0.

Thus if r' = 0, it is possible to derive the dispersion relation and

eigenfunction for all resistive interchange modes in a cylindrical plasma. For

the case of g = 0, they are identical to resistive interchange modes in a slab,

when an artificial gravity is used in place of curvature. As g increases, the

frequency behaves as in Fig. 1 (for all even £ modes.) Stability is not achieved
- 1/2

for any finite g, but the growth rate behaves as g as g * -, with

- lIm/QI/IReQ approaching unity as g + -. The latter observation implies

that Re(a) approaches zero as g + - so that the outgoing drift waves are not

spatially damped for g +

We now consider modes with odd & and even T which couple to the outer MHD

region. The problem now is to solve Eq. (23) in which V is regarded as a

constant. Since we are looking for modes which do not satisfy the homogeneous

equation for g (these are the resistive interchange modes we have just

discussed), we are interested in the particular solution. This can be found most

kXeasily by Fourier transforming the equation. Multiplying by e and integrating

over X, we find

Q + IQ* d 2  2^ D AQ 
+ IQ*

Q2 d k2 + - =2 i 2 - ° 6 (k) (26)

where we have used the notation (k) - f *dX E(X)e1 kX Thus we want to solve

Eq. (26) subject to the boundary condition that Z is well behaved as k + + -.

Since the inhomogeneity is the derivative of a delta function, we simply solve

15



the homogeneous equation for lXi > 0 and calculate the discontinuity

across X 0 0. For k > 0, Eq. (26) is the equation for parabolic cylinder

function. For positive k we find

E(k) - A U(a,K) k > 0 (27)

where K V2I k, (28)

1 D Q 2

a = 2 " (29)

and A is a coefficient to be determined shortly. The function U(a,K) is the

parabolic cylinder function (in the notation of Ref. 17) which approaches zero

as K approaches infinity along the real axis. For a conventional tearing

mode, Q, - 0 and Q is real, so Z does have the proper behavior. If the Q* terms

are included, the situation, as we will see, is somewhat more complex. We mist

check, a-posteriori , that the elgenfuction derived by the dispersion

relation, U(a,K) has the proper behavior as K + .

Equation (27) is the functional form of &(k) for positive k. Since the

source term on the right hand side of Eq. (26) has odd symmetry in k, E(k) must

also be an odd function for the particular solution. Thus we find

j(k) - - A U(a,- K) k < 0 (30)

The value of A can be determined by integrating Eq. (26) across the derivative of

the delta function at k - 0. The result is

16



WTo

A - U(a,o) (31)

To summarize, the solution to the inhomogeneous equation for E(k), Eq. (26), is

given by Eqs. (27) - (31).

To get the dispersion relation, we assume, as usual, that the outer ideal

magnetohydrodynamic region specifies a value of A , the discontinuity

in (dB r/dr)/B r, across the singular layer. Matching with its counterpart from

the inner region, we obtain, from Eq. (23)

LA fJdX(Q + iQ,)(Y + X) (32)
--4

To do the integrals over X note that &(X) - f()e -ikXdk while ' (assumed

constant) is T0 f:&o(k)e-ikXdk. Note that in doing the C integral over X, one

will ultimately have a derivative of a delta function in the k integral.

Inserting these forms into Eq. (32) we see that both the T and E contributions

have a delta function component at k = 0, but these two divergent contributions

cancel. This cancellation is of course the analog of the separate integrals in X

space of 7 and X & diverging for X + -, while the integral of T + X & converges.

The remaining part of the k integral comes from the derivative of the

parabolic cylinder function at k - 0. The final result is

3 a 3 1

L A 2 v (Q + 2 (33)
r r( + Q

If D and Q, are both equal to zero, this is the standard dispersion relation for

the tearing mode. To get the growth rate with Q* * 0, the procedure is to solve

Eq. (33) and remain on the branch which gives the tearing mode as Q* 0 0. For

D - a - 0, this gives the standard drift tearing dispersion relation14,15

17
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(Q + iQ,)3/4 Q1/2 = Q5/ 4 , where t is the pure (Q - 0) tearing mode growth

rate. However we must also check that this branch is well behaved as

X or k + -. This requires that the real part of o [c.f. Eq. (24)] remains

positive. Inserting for Q + iQ, from the dispersion relation, with D - 0, we

find that this means

> 3w (34)

where tan( ) = Re(Q)/im(Q). As shown in Fig. 2, the dispersion relation does

approach this point while the mode is unstable 15, so that at this point, the

instability abruptly disappears, or possibly shifts to another branch of the

dispersion relation. However, we also show in the next section that if

the d 2T/dX 2 terms are included, the growth rate can be brought to zero by

increasing Q, while the eigenfunction remains well behaved.

For D > 0, the dispersion relation to Eq. (33) gives other solutions of a

more interchange - like nature. For example, for A + - we obtain roots

associated with poles of the r function in the numerator, Q(Q + iQ*)
1/ 2 

-

D/(20 + 1), where X is now odd. For A' + 0 we obtain Q(Q + iQ*)" 2 
-

D/(2X - 1), again only for odd 1.

We now continue with our examination of analytic solutions of Eqs. (16) -

(18). We first make the constant T approximation, and begin by looking at

homogeneous solutions to Eqs. (16) and (18) [i.e. with Y - 0] in the limit of

large X. Keeping only second derivatives and terms proportional to X2 we find

that the equations reduce to

2 2
dX2 - X + l X2T (35)

dX SQ2

18
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0

9=Arg (Y)
-1

-2

-3-

-41IIII
0 0.5 1.0 1.5 2.0 2.5 3.0

E = We/Vt

Fig. 2 - Complex growth rate for the drift-tearing mode with r1' 0, from (33)

with D - 0. Again, Q and Q*are normalized by the pure tearing mode

growth rate Q - (L rA-/2.12) 4/5
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=d -2 2 iQ2g 21 (36)2 Q

In the limit of large X, we assume that spatial variations are as exp (- aX2).

Using this spatial dependence and taking X + -, Eqs. (35) and (36) reduce to

4a2 o = L- + 2 L&T (37)
Q SQ2  o

T4 a 2 T'-- 8 Q2 ga2 (38)0 0Q

so that we obtain four solutions

21- + + )2 1(39)

2
The two expressions for a are quite different in magnitude as long as - >>

S

In the limit of large g, we expect the frequency to be roughly a drift wave

frequency IQ I- Q* - Og, so that the roots are well separated if S I and

g3 0 1 (40)

We will assume Eq. (40) is satisfied, and also that Q - Og and S - 1 and

examine analytic solutions of Eqs. (16) - (18) which do not couple to the outer

MED region, i.e. for even E, T and odd T. Taking the negative sign inside the

bracket in Eq. (39), we find

I

S (41)
4gQ

Notice that if Q is purely imaginary, as it nearly is for a drift wave, to lowest

20



order the exponential does not decay in space, but oscillates more and more

rapidly. However on keeping next order terms in the expansion of
2 1/2

( I- +i ) , one can easily show that a has a real part even if Q is purely
S Q

imaginary. Thus it is possible to have spatially localized shear damped drift

waves (i.e. real part of a > 0 and R (Q) < 0.) In the next section we show thate

this is indeed the case.

To continue, we will assume lengths are scaled by the a given in Eq. (41)

1/2 1/2 d -1 - 1/2 Thcoprnte
with Q - gB so that X - (gQ) - go and x / a Then, comparing the

terms in Eqs. (16) and (17) and using /g 3B as a small parameter, we find that

(16) and (17) reduce to

QX C + L X T= 0, (42)
S

a simple algebraic relation between and T. Using this, and using the same

ordering on Eq. (18) we find that it reduces to a Weber equation

2 2- D -- iR )] T -0 (43)
4AAT KT + fN+(S- ) ( )

S dX 2  Q To To S

2

where we have asumed Ti = 0, and also assumed L >> 1. If S were equal to zero,

the term in the square brackets would be proportional to the drift wave

dispersion relation Q + iQ,= 0 where Q* - 2gD The effect of the S term is to
S

lower the drift wave frequency for D > 0 (that is for "bad" curvature). With
the d2T/dX 2 and X2T terms included, Eq. (43) gives the dispersion relation for

shear stabilized drift waves. Assuming Q - -iw =  Q,+ irog in the

d 2T/dX 2 and X2 T terms and outgoing wave boundary conditions, we find the

dispersion relation is
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+ (S !- (2R 2g(21 + 1)/S 2  (44)

ia r7 ca ii...

L-1 2

for £ even. If the shear length is taken as L Iaq /Rq21 and
s

= = I L:',r = I for isothermal electrons,
p P n c

) -L B2

Re(Q) . ____ -Ln z (2x + 1) (45)

Q, 'IwJe L B2

s

For a slab plasma in which B f B, the damping rate is the classical result forz

shear damping of a fluid drift wave in slab geometry. 18 Thus in the limit of
3

g >> 1, one of the even &, T, odd T modes is the shear stabilized (damped)

drift wave.

The condition for the validity of the constant T approximation for this

ordering, i.e. the condition for the dominance of the left hand side of Eq. (17),

3 2
Is easily seen to be g 8 << 1.

We will continue by considering the other choice for spatial scale length in

Eq. (39),

S= L(46)V'S

which corresponds to a much more spatially localized mode than the shear
1/2 1/4 1/4/g1/2

stabilized drift wave. Assuming d/dX - g /s X - S

Q - Og and g 3 >> 1, we once again examine Eqs. (16) and (18) (assuming

again Y 0; in this ordering the constant T approximation requires 8 << 1) and

pick out the dominant terms. They are

d 2 . 2jtX2 T -LT(47)
dX2  SQ2  Q 2
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d2T 2-T 2 d2  (48)

dX2  rca dX2

Combining these to form a single equation for T, we again arrive at a Weber

equation

2 2
d2T 4 2 T + (-q- + 21g) T 0, (49)
d 2 S c

the eigenvalues of which are

1

Q = - irsg - r c8g1 (2t + 1)/s 2  (50)

for even X. Again the result is a damped mode with a real frequency of order the

drift frequency.

Thus as the plasma becomes more and more collisionless (that is as

g + -) all localized (i.e. even E, T, odd T) unstable modes disappear. Hence a

localized resistive interchange mode which is unstable for g = 0 must be damped

as g +P- if it remains a localized mode. This is an interesting and useful

result which is not so for the simplest case of r = 0. In that case, as wec

showed earlier in this section, the unstable resistive interchange mode persists

as g + -. Thus it is not only the Hall effect, but also plasma compressibility

which needed to stabilize localized resistive interchange modes in a cylindrical

plasma.

In the next section we show by a numerical study of Eqs. (16) - (18) that

localized resistive interchange modes are indeed stabilized as g + *. However

this conclusion seems to be even more general. We find that both tearing modes

with positive A and resistive interchange modes which couple to the outer ideal

magnetohydrodynamic region (but have A < 0) are all stabilized by increasing g.

23



Furthermore, as shown in the Append'x, odd T,1, even TV modes can be stabilized

for positive A if g is large enough.
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IV. Numerical Results

In this section we describe results obtained by integrating Eqs. (16) - (18)

numerically. We integrate the full sixth order set, because the conditions for

the validity of the constant - T approximation cannot be assured to hold for all

3 2values of g. Indeed, in the drift wave region this criterion, g a << 1, holds

only marginally for values of interest. Nevertheless, we integrate only the

singular layer equations, using a higher order version of the A method usually

used in conjunction with the constant - V approximation. Specifically, we obtain

from (16) - (18) the first two terms in the asymptotic series relating and T

to V at large X:

+ - [1 + (D/Q + 2igQ)/X 2 V/X, (51)

2 2
T +- I - SQ /DX ] DT/X. (52)

Using these expressions in the annihilated equation of motion, we compute the

symmetric and antisymmetric components of T, which for large positive X are given

by

V+ T I + D~nX + D2£nX

2 2 2 2
+ D (InX) /2] + (S-2) Y Q /6X

2

V . X E I - DnX - D 2nXa 0

+ D 2(LnX) /21 + ST Q 2/2X. (53)

The first terms in T and T are, respectively, the expansion for small D of the5 a
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exterior Suydam solutions (for D < 1) T Xq l and T' Xq2 where q

[I F (1-4D) 1/2]/2. We match T' / to the outer (ideal magnetohydrodynamic) region

by means of two parameters 6r,X = bT0 /aY° (6r for X + + - and 6 for X + - a.),

where T is assumed to be given by T = aT a + bY a The advantage of taking thes a

higher order terms in the asymptotic expansion in (53) is that we can then

perform the numerical integrations over a relatively small interval in X.

We first discuss numerical solutions which correspond to the analytic

solutions of Refs. 3, 7 (g = 0) and Sec. III ( r = 0).c

Figure 3 shows the results obtained by this code for the odd F tearing

resistive interchange with g - 0 and A < 0. For very small D, we see that

the Q = (2.12wD/4Lr A )4 scaling of Ref. 7 holds, showing a much smaller growth
S42/3

rate than the conventional (A =0 ) value Q = (tD/4) For larger D the

assumption 2D/rB << i, in which compressional stabilization is a dominant effect,

breaks down and the growLh rates found by the code are larger than those found in

Ref. 7. Nevertheless, for reasonable values of the Suydam parameter D, the

growth rate is still considerably smaller than the conventional value (wD/4)21 3 .

By increasing D while keeping all other parameters fixed, we pass through five

distinct regions, the (D/A') 4 regime of Ref. 7, a transition regime due to the

diminished stabilizing effect of plasma compression, the classical D2/ 3 regime, a

regime where the constant T approximation breaks down and finally D + 1/4, where

the mode becomes unstable in ideal magnetohydrodynamics. For realistic

parameters (e.g. for a reversed field pinch) these regimes overlap so strongly

that the individual regimes cannot be unequivocally recognized in the numerical

results.

We have also used the code with Lr6 r - .02, Lr6 - - .02 (Lr A + .04), ro

- 10- 5 , D - 10- 3 and S - 0.1 to investigate the low beta drift tearing mode

discussed in Sec. III. We find excellent agreement in growth rate and in real
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D
Fig. 3 - Growth rate of even 7, odd ~,T resistive interchange mode, as a function

of the Suydam parameter D, with L rA --. 06, s - .1, r C 0 .
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part of frequency up to the point c w*/Yt 1.89 (Yt is the g = 0 tearing mode

growth rate) or g - 4.21, where there is no spatial damping as X + -, i.e. a [of

eq. (24)] is pure imaginary. These results are shown in Fig. 2.

We have also studied a low ra, A = 0, even & resistive interchange and

found that the numerical results were in excellent agreement with (25), which

shows that the unstable resistive interchange approaches marginal stability

as g + - C + -), and that Re(a) [of Eq. (24)] approaches zero, i.e.,

0 Arg y approaches -w/4, as g + -. These results are summarized in Fig. 1.

We now turn to a study of drift resistive interchange and drift tearing

modes in a cylindrical plasma with parameters relevant to current reversed field

pinch experiments. Nominal values of density, temperature, and magnetic field

of nffi x 114cm-3
ofn2x c , Te Ti = 100 eV, and B - 4 kg are used. We fix ra i

0.167 in the code, consistent with the above parameters. We have observed, as

first noted by Greene,1 9 that for fairly high beta (more than a few percent) and

fixed D, the stability results are relatively insensitive to $ (and therefore

insensitive to the difference between an isothermal and an adiabatic equation of

state). Assuming Bessel function profiles Be = J1 (or), Bz M Jo (or), with

2.4 < owr < 3.1 (r w is the radius of the conducting wall), we find q R =

- us - - 2.4, is again the radius of the mode rational surface. We have assumed

that a is at the field null, as is appropriate for m - 0 modes. We obtain

S - 0.7. For stability to all localized resistive interchanges with g - 0, we

pick S - 2D/rB - - 1, or D - 0.14. As discussed in Ref. 7, this condition gives

reasonable pressure profiles with a finite but very small pressure at the wall.

A typical value for Rm, the magnetic Reynolds' number, for radial scale lengths

5 - 10 cm, is R - 10 , and for 2.4 < orw < 3.1, A rw - -5 for m = 0
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and m I modes (the latter with their mode rational surface inside the field

null). We find L r - .06, and g - 5.r

In Fig. 4 we show the complex growth rate Q as a function of g, for the

odd &, T, even T mode, with all the other parameters given in the previous

paragraph. We also show the line w - w, or Q - - iQ,. We see that

W/W, = 1/2 throughout the unstable range and that this mode is stabilized

for g > 2.35, well below the nominal value of this parameter for reversed field

pinches. The mode structure for various values of g is shown in Figs. 5-8.

For g - 0.5, as seen in Fig. 5, &, T, and T have real parts resembling g = 0

resistive interchanges, but also have imaginary parts. For g - 2.0, 2.25, 2.40

(Figs. 6-8), one can see evidence of the localized behavior in T due to

perpendicular resistivity and also evidence of outgoing propagating drift

waves. (It is easily seen in Figs. 6-8 that the radial phase velocity is inward,

and we know from the local dispersion for drift waves in a sheared geometry18

that the radial group velocity is in the opposite direction, corresponding to an

outgoing wave boundary condition.)

We have also studied the even C resistive interchange with smallest radial

mode number it - 0 (i.e. no nodes for w, - 0). We pick all parameters the same as

for the odd t mode, except ro n 0.0512, so that with g = 0 the two modes have the

same growth rate. (By decreasing FO without changing D we decrease the

stabilizing influence of plasma compression.) This mode is then stabilized for g

- 4.0, as shown in Fig. 9. This larger value is required presumably because this

more localized mode is more weakly coupled to outgoing drift waves. For small g

we observe w r a w,/3. The mode structure at marginal stability is shown in Fig.r

10. Again evidence for localized behavior due to perpendicular resistivity and

drift wave behavior at larger X is present, and the apparent radial phase

velocity is negative, indicating an outward propagation of energy.
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We have also investigated cases in which K * 0, i.e. when the ion

temperature gradient is smaller (K < 0) or larger (K > 0) than that of the

r -1
baroclynic profile T p . We find that increasing ion temperature gradient

is a stabilizing influence. However, these results do not necessarily have

immediate implications for devices with T - T because we have neglected the
i e

collisionless ion viscosity and thermal conduction terms, which are of the same

order of magnitude.

We have also investigated the odd t mode of Figs. 4-8 for A > 0, where it

goes over to a tearing mode. As seen in Fig. 11 the value of g required for

stability increases very slowly with A ' These results are in qualitative

agreement with the results shown in the Appendix, which show that this mode can

be stable for positive A
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Fig. 4 - Complex growth rate for odd resistive interchange (tearing) mode as a

function of g, with L rA --. 06, S =0.7, r c - 0.167, D -0.14.
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38



V. Conclusions

We have analyzed the stability of tearing and resistive interchange modes in

cylindrical geometry for parameters relevant to current reversed field pinch

experiments. Our principal conclusions are that these modes are strongly

stabilized by the inclusion of the Hall terms in Ohm's law, the retention of

plasma compression, and exact treatment of field line curvature. The same

results are not obtained from a slab model which includes Hall terms but models

field line curvature with a fictitious gravity.

In the derivation of the governing equations we made two approximations

which if relaxed may modify our results. The first of these was the neglect of

the equilibrium electron temperature gradient and electron thermal

conductivity. Analysis of tearing modes in slab geometry has indicated a strong

stabilizing effect associated with the equilibrium temperature gradient.
2 1'22

The second approximation was Ti << Te, which allowed us to neglect gyro-

viscosity, and the gyro-heat flux. In addition we often assumed K - 0. These

approximations have the effect of eliminating from considerations localized drift

modes which are driven by the ion temperature gradient 2 3 and drift modes which

are driven unstable by unfavorable ion curvature drifts.

Nevertheless, we have seen that the modes which evolve from the interchange

and tearing modes of a collisional plasma become stable as the collisionality is

decreased and the Hall terms become important.
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APPENDIX

In this appendix we examine the approximate analytic solution of Eqs. (16) -

(18) for modes that couple to the outer region for the case in which

g3 >> 1. The modes that we consider have even T and odd t and T. We recall that

modes with the opposite parity were treated in Sec. III, where it was found that

the constant V approximation is valid provided g3 2 << 1. We will assume again

that the constant T approximation is valid, and thus, our results are restricted

to low values of 0.

In the inner region T consists of a constant V plus a correction V * We

integrate the second derivative of the correction given by Eq. (16) over the

-~ inner region and match to the outer solution V -T V(1 + 1/2 IXIL A ) obtaining,
0 r

fIo*dX d2Y1 /dX
2  LA- = f- dX 22 2 (Al)

2-- (Q2 d2/dX + T). (A

Eliminating d 2/dX2 in Eqs. (16) and (17), replacing V by its constant value, and

dropping terms which are small in the limit D 0<< 1, Eqs. (16) - (18) become

2 2 *2
XV+QQ*(i .X 2 

-I1T] (A2)
421 - -L [(Q + IQ,) xy + Qx2C + (iT X - )](2

dX2  Q2 0

and

2 2
dT ( 2 Z) (2DL_ + D Xd-X 2

dX 2 Q 2 c c o

+ -- (T - ) - 21Q 2
C 

dX 
2

The mode growth rate Q is determined by solving the Inhomogeneous equations

(A2) and (A3) for T and &, and inserting the solutions in Eq. (Al).
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93

To solve Eqs. (A2) and (A3) we assume g38 >> 1 and recall the results of

Sec. III. It was found that in the limit g3 >> I two types of localized mode

were found for the homogeneous system. The first type of mode was the drift wave

which had the scalings

X - go 1/2, Q - Q, - go, DE - T.

Assuming these scalings in Eqs. (A2) and (A3) the dominant terms are

2 - 2

and

: 2  r ora

Qc
Co K(T - DE) - 2Qg d2/dX

2 =O (A5)

From Eqs. (A4) and (A5) we see - g-8 1/2w . Thus, we can estimate the0

contribution from the drift wave solution to the integral in Eq. (Al) to be of
61/2 - 1

order1 g -

The second type of mode that was found in Sec. III was a highly localized
1/--Q o g 3 2 E.

density perturbation which had the scaling X - g Q/2

The dominant terms in Eqs. (A2) and (A3) for this mode are

2 2 (A6)2
dX2 2 [(Q i%) XY° + --

and
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r2

dT - 2 (Q + iKQ*) T - 2iQ 2  2 (A7)

dX2 rc $d 
2  (A )

From Eqs. (A6) and (A) we can estimate T - g /2B$ O. Consequently, the

contribution to the integral in Eq. (Al) will be of order g B/2YO .

On the basis of the previous estimates we conclude that in the

limit g3B >> the integral in Eq. (Al) is dominated by the contributions coming

from those values of X corresponding to the highly localized mode, i.e.

1/2 1/2
X g . If one assumes LrA  g then the dispersion relation is obtained

by solving Eqs. (A6) and (A7) for T and , and inserting the solutions in the

integral in Eq. (Al).

Defining the normalized variables *,Y, and a1  where

i(Q + iQ,)S 3/4

S1/21/24g9

1 1/4- 1/2,

a I 2g r +- + ig).

Equations (A6) and (A7) can be cast in the form of an inhomogeneous Weber

equation,

d
2

The integral In Eq. (Al) then becomes

1 1 S/4- 1/2(Qf.d(LrA S (Q + IQ*) -dy( Yom). (A9)
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Equation (A8) may be solved using the Fourier transform methods discussed in Sec.

III. The resulting dispersion relation obtained form Eq. (A9) is

S 21/2 Vs 1/ 4  r(+ + _a,)(
r 1/2 (Q+iQ) (AO)i121

Equation (AO) possesses an infinite number of solutions for the growth rate

Q which are associated with the poles of the gamma functions. These solutions

are the odd counterparts of the localized solutions discussed in Sec. III and

have a dispersion relation similar to Eq. (50). An additional solution of Eq.

(A10) is present due to the factor (Q + iQ,). If A L is small we find Q -
r

-iQ + 6Q where

= 1~/2 +i

6Q i/24L ir(3 + v)-2(coshwv1 + i sinhwv)-, (All)1/4 r 4 11

and

S11  2D
V =-2 + 2 (K 1)).

c

Equation (All) indicates that this mode will be unstable if A > 0, with marginal

stability achieved at A 0.

The proceeding analysis suggests that the tearinb mode will be unstable for
. ,. g1/2e

any A > 0. However, in deriving Eq. (AIO) we have assumed L A ~g 1 andr

disregarded the contribution to the integral in Eq. (Al) from the drift wave
region X - go 2  This contribution was estimated to be of order 0/2 and

1/2g-1thus, Eq. (All) breaks down for L rA g . In this case we assumer

Q - iQ, + 6Q where 6Q /2g- / 2 << Q, and the contribution from the highly

localized region scales as 1/g To calculate the contribution from the drift
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wave region we insert Q - iQ. in Eqs. (A4) and (A5) and solve for and T.

Defining the normalized variables Y, *, and a2, where

X = (Qg)1/2 S- 1/4Y,

iD g1/2 y

2 Q3/2 1/ ,

and

i 1/2
a 2 =- S

Equations (A4) and (A5) can be rewritten,

2
d (1~ Y2 + a2  =-

dY 2 4 2

The contribution to the integral in Eq. (Al) becomes

L A' 1 D(QgS1 2)- 1/2 odY(- I
r - 2 - (

which may be evaluated in a manner analogous to Eq. (A9)

3 1
L 21/2wD r(4 + i a2)

r Q 1/2 g 1/2 1/4 r( i (A2)

Combining the contributions from the drift wave and localized regions we obtain

the dispersion relation,
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" 21/2 s"4 r(3+ 2 a,) D + a2)
LrA' 2 I S j4Q D 4 214 )22 3

r g / r( + a )  S 1/ -iQ *)1/ r d + -1 a 2) A 3

(A 13)

To assess the importance of the drift wave region we consider for simplicity the

case K = 1, S << 1 and consequently a - a2 - 0. The expression for the growth

rate 6Q reduces to

1/2 rDl/,.3 D g r( ,)
IDI 1/7 ep'F-r.6Q - exp (i----L + L A (A14)
(2g) /-- 4 , r 21/2 W S 1/4 r (3)

Equation (A14) indicates that a threshold value of A exists below which the mode

- is stable, and demonstrates the stabilizing effect on the tearing mode of

coupling to the drift wave. 20'2 1  If we examine the definitions of g and L we

see that the threshold is independent ot n as n + 0.
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