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Seeing What Your Programs Are Doing

Henry Lieberman

Abstract

An important skill in programming is being able to visualize the operation of
procedures, both for constructing programs and debugging them. Tinker is a
programming environment for Lisp that enables the programmer to "see what the
program is doing" while the program is being constructed, by displaying the result of
each step in the program on representative examples. To help the reader visualize the
operation of Tinker itself, an example is presented of how he or she might use Tinker to
construct an alpha-beta tree search program.
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Seeing What Your Programs Are Doing

Henry Lieberman

Artificial Intelligence Laboratory
and Laboratory for Computer Science
Massachusetts Institute of Technology

1. Tinker helps programmers visualize the operation of their programs

Visualization is a powerful tool in programming Designing a program requires being
able to visualize what the program should do. Debugging a program requires
localizing bugs to the piece of code responsible, which is often done by visualizing
the steps the program goes through and comparing the actual result to the intended
behavior. One reason people find programming so difficult is that it taxes their
ability to visualize procedures. The enormous amount of detail contained in
successive states that programs go through overwhelns most people's ability to keep
these details in their heads. Consequently, a programming environment oriented
toward helping a user visualize the operation of programs should be very successful in
making programming easier.

Tinker is an experimental system which helps a user write Lisp programs, and enables
the user to "see what the program is doing" while the program is being constructed.
Tinker lets the programmer put together a program step-by-step, and shows the
result of each operation as it is performed. Tinker makes programming easier by
explicitly displaying information about intermediate states of programs which the
programmer would otherwise have to keep in his or her head.

With each piece of code in a program, Tinker associates the value which resulted
from that code, to help the programmer in visualizing the effects of that code.
When each operation in the program is performed, Tinker displays the output, such
as text or graphics, to help the programmer visualize the progress of the program up
to that point.

(Wp
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2. Tinker uses specific examples to aid visualization of programs

Programming is the art of teaching procedures to a computer. But conventional
programming differs from the way in which people teach each other procedures in at
least one important respect: the use of examples. People are much more skillful at
learning procedures if a teacher presents specific examples than if the teacher
presents the abstract algorithm in its most general form. Why is this so?

As each step of the algorithm is presented, the student can follow along, noting the
effect of that particular step on the particular situation presented. The teacher points
out which features of the situation are important and which are accidental, and the
student abstracts the example to learn a procedure for the general case. When a
new situation is presented, the student can check each step against his understanding
of the example If no example is present, the student is forced to imagine what the

effects of each step will be on typical cases. This places a severe burden on the
* student's short-term memory. Examples help a student learn a procedure by giving

the student a tool for visualizing the operation of the procedure. Learning
procedures by examples also gives the student the opportunity to start by learning a
very simple version of the procedure, then extending the procedure incrementally by
considering more complex examples and special cases.

Since the power of examples in learning is so compelling, it seems strange that we
should not be able to use examples in teaching a procedure to a computer. Tinker
uses examples to make the programming process more natural, closer to the way in
which people communicate procedures to each other. With Tinker, a program is
written by presenting a specific example, and working out the steps of the procedure
on that example. Tinker shows the result of each step as it is given, remembers the
sequence of steps, and generalizes a program. More than one example may be
shown, and Tinker has the capability to combine several examples to produce a
procedure containing a conditional

A word of caution: the reader should be careful not to confuse Tinker with previous
research labelled programming by example This line of research attempted to infer a
procedure from the procedure's input-output history, a list of argument-value pairs.
The programmer would present example inputs and desired results, without any
indication of how the result should be obtained from the input For instance, the
programmer would tell the'system that (REVERSE NIL) is NIL and (REVERSE '(A a C))
should result in (C B A), and the system should synthesize the usual recursive
definition of REVERSE in terms of CONs. This approach met with some limited success
for simple examples, but quickly becomes intractable for larger examples. Imagine

Seeing What Your Programs Are Doing 2. Tinker uses specific oxantpole to aid visualization of pr ram
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showing a beginner the initial position for chess and checkmate positions, and
expecting the beginner to learn chess strategy!

One problem with creating programs from input-output histories is that any given
example is generalizable in . potentially infinite number of ways. The system must
have some criteria for choosing which generalization to make. Any particular criteria
tend to be applicable only in a limited domain, since people might want to take the
same example and generalize it in different ways.

Tinkers approach hopes to retain the naturalness of presenting procedures in terms
of examples, while using explicit knowledge about the procedure supplied by the
programmer to make example-based programming feasible for realistic problems.
Often, it is easier for the programmer to begin by working out steps of the
procedure, even if he is not sure exactly what steps are necessary, than by specifying
the exact form of the answer. The precise appearance of the answer often emerges
only after the procedure has been observed in typical situations. Tinkees value lies
in showing the programmer the results of all the intermediate steps on examples,
making it much easier to detect bugs and understand the program's performance.

3. Tinker lets you write programs and debug them simultaneously

"Seeing what the program is doing" is especially important for debugging. Sometimes,
of course, a program k wrong because the programmer has chosen an algorithm that
is completely wrong, and the programmer must change some misconceptions and
totally rewrite the program. But more often, the programmer's conception of the
program is for the most part correct, but some part of the program doesn't
implement what the programmer had in mind.

Finding a bug in a program is often a task of localization -- trying to find a specific
part of the program which is malfunctioning and is responsible for the whole
program's misbehavior. Localization of bugs is a matter of examining successive states
the program goes through, and deciding at each point whether the state of the
program conforms to the progranmer's expectations. When a state that doesn't meet
expectations is encountered, the operation which produced that state can be held
responsible for the bug. Most debugging tools (such as tracing and breakpoints) are
oriented tow:rds showing the user intermediate states of the program between the
start of the program, and its output

Seeing What Your Programs Are Doing 3. Tinker lets you write programs and debug them simultaneously
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Of course, prerenuing the introduction of bugs into a program is to be preferred to
remoting bugs once they have been introduced into a program. Tinker takes as
inspiration the debugging technique of observing intermediate states of a program,
and applies this technique to program construction. As a program is constructed
with Tinker, the user can confirm that each step satisfies expectations. If an
unwanted result is produced, the offending operation can be retracted immediately,
before its effects propagate to other parts of the program. This avoids burying the
erroneous operation beneath many other, possibly unrelated operations, only to have
to fish it out again when some larger program of which it is a part misbehaves.

Conventional programming separates writing a program and debugging a program into
two distinct activities. Since a long time passes between the time an operation is
written into a program and the time the programmer discovers that the operation is
the cause of a bug, it is easy to forget exactly why the operation was put there and
the relationship of the operation to the rest of the program. Instead, Tinker
interleaves the debugging process with the program writing process, making the
introduction of bugs into programs much less likely.

4. An analogy: Tinker provides a chessboard for Drogramming

To illustrate the importance of displaying intermediate states in visualizing
procedures, here is an analogy drawn from chess. Below are two representations of a
chess game.

White Black 71!

1 P-Q4 P-Q4

2 P-QB14 PXP

3 N-QB3 N-QB3

Seeing What Your Programs Are Doing 4. A, analogy: Tinker provides a chessboard for programming
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When a chess game is represented using a chessboard, it is easifTho keep., track of
what's going on in the game. The chess player looks at the current state 6f the
board, and uses the positions of the pieces to decide what the next move should be.
The player can use the current board position to think about the consequences of
each of the alternatives for the next move to be made.

When a chess game is represented only as a list of moves, it becomes so difficult to
keep track of what's happening in the game that only a few, exceptional blindfold
chess players are capable of playing in this fashion. The list of moves contains just
as much information as the chessboard, yet since the intermediate states are not
explicitly represented, the player must try to imagine what the board looks like after
a series of moves, a staggering task for any but the most expert.

Conventional programming is a little like playing blindfold chess. When the
4 programmer "makes a move" (writes the next function call or program statement), he

must imagine what the result of that move will be on the objects he is manipulating.
He must keep the current state in his head, and use the current state to decide what
the next operation in the program should be. A common source of bugs is to forget
or to misremember some important aspect of the current state of the program, and
specify some erroneous operation.

Tinker is like a "programmer's chessboard" in that after each programming operation
is specified, the result is shown immediately. Tinkers immediate, graphical feedback
makes it much easier to decide what the next operation in the program should be,
since it relies to a much lesser extent on the programmer's short term memory.
Programining with Tinker should be easier than traditional programming in the same
way that playing chess using a chessboard is easier than playing blindfold chess.

5. Examples are especially important for graphics programs

Although Tinker is independent of the subject matter of the program, the advantages
of Tinker's programming methodology come through especially clearly in graphics
programming. In graphics, the examples are pictures. The ability to "see what a
program is doing" is essential for graphics programming. It is important to be able
to watch pictures appear on the screen as the program is running to assess its
performance. The programmer must be able to associate pieces of code with parts of
the picture.

Seeing What Your Programs Are Doing 5. Examples are especially Important for graphics programs
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While specifications for programs which manipulate text can be given as symbolic
descriptions, specifications for graphics programs are pictures. The only way to tell
if a graphics program works correctly is to look at the pictures it produces and see if
they look right. Thus, formal methods can never completely supplant testing for
determining the correctness of graphics programs. Tinker provides an environment
for constructing graphics programs where pictures appear on the screen immediately
as each graphic operation is introduced into the program. The programmer can
immediately see whether the operation specified produced the intended picture.

6. Tinker uses graphics to improve the quality of the programming environment

A goal of Tinker has been to explore how new personal computers with high
resolution graphics displays can be used to radically improve the programming
process. Most programming environments commonly in use today were originally
designed in the days when computers were limited to character-only displays or
printing terminals. With high-resolution graphics displays, the screen can be divided
into windows, rectangular areas of the screen where text and graphics can be
displayed independently. Personal computers can have pointing devices like the
mouse. Our programming environments need to be restructured to take advantage of
these new facilities.

In Tinker, programming happens as much as possible by selecting from a menu,
where the system display a list of possible choices, and the user picks a choice by
pointing, instead of by typing commands. This is better, especially for beginners,
since the user doesn't have to remember what choices are available, or remember the
syntax of commands, or be proficient at typing.

7. An example problem: Alpha-beta tree search

The best way to visualize the ideas behind Tinker is to watch an example of Tinker
in action. Within the limitations of the paper-and-print medium, we will now try to
give the reader some feel for what it is like to use Tinker for everyday
programming.

The problem we have chosen to present is an alpha-beta tree search algorithm [51
This is a classic problem in Artificial Intelligence, first arising in chess-playing

Seeing What Your Programs Are Doing 7. An oxale probllom Apha-beta tree search
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programs. It has wide application in many problems involving two-person games,
planning of actions, and problems requiring search through a space of possible
situations The program must decide what actions to take by searching a tree of
possible situations. Each node of the tree represents a situation, each arc an action
that can be taken to transform one situation into another. In chess, the situations
are board positions, the actions chess moves.

The search proceeds by imagining the effect of each possible move and exploring its
consequences. When planning an action, you say "Suppose I make this move...", then
turn around and take the point of view of your opponent, imagining "Suppose he
then makes this response to my move..", and planning your next response
accordingly.

Situations at each node are described by a static evaluation, a numerical assessment of
the relative advantage for the player at that node. Situations better for you are

4 given higher numbers, those better for your opponent lower numbers. You always
choose your best move and your opponent is likely to choose the action best for
himself. The value of the top of the tree is determined by the maximum of the
values of the nodes immediately below it. The value of the each node at the next
level down is determined by maximizing the values of the nodes immediately below
it, and so on, alternating minimizing and maximizing steps at each level. This is
called the ininitnax search procedure.

Here is a picture of a tree of possible situations, with the leaf nodes of the tree
marked with numbers indicating their static evaluations, and nonterminal nodes
marked with their minimax values. We show a downward pointing arrow at a node
to indicate taking the minimum of the values of branches below that node, and an
upward pointing arrow to indicate taking the maximum of values below the node.

Seeing What Your Programs Are Doing 7. An example problem: Alpha-beta tree search
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3 

t41

4 3 1 2

-Graphica

Figure [1]

In certain situations, like the one illustrated above, its not always necessary to
explore the entire tree. The next picture shows the same tree, but captures the
process of exploring the tree at a time before every node has been explored.

SeIng What Your Programs Are Doing 7. An example problm: Alpha-beta tree search
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t3

4 3

4 3 1

Graphics

Figure [2]

*First we explore the left side, yielding 3, the minimum of 4 and 3. Now, imagine
* that we've explored the left side of the right branch, yielding 1, but have nct yet

explored the rightmost branch.

We can immediately conclude the value of the right side of the tree must be "at
most I", since if the number is any higher than 1, 1 would be the minimum of the
two. Since the maximum of 3 and "some number which is at most 1" is 3, there's
no need to explore the rightmost branch. Thus we can deduce the value of the entire
tree without knowledge of every terminal node. This is called the alpha-beta
heuristic, and it can save a lot of work in tree search problems,

By contrast, on the following ti e, the alpha-beta heuristic is not applicable.

Seeing What Your ?rograms Are Doing 7. An example problem: Alpha-beta tree search
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43 4

4 3 7 6

lGraPhio.

Figure [31

Since the value 7 of the third branch exceeds the value of the left side of the tree,
3, we are forced to explore the fourth branch. Indeed, the value of the fourth
branch, 6 turns out to be the value for the entire tree in this case.

To illustrate the essential ideas clearly, we will restrict ourselves to considering a
very simple variety of the alpha-beta search technique. Extensions to more complex
versions, such as pruning other branches of the tree, dealing with non-binary trees,
etc., can be readily imagined.

We are now going to use Tinker to develop a program to search trees using the

alpha-beta heuristic. Just as the two example trees are presented to explain the
alpha-beta algorithm to the reader, we will use the same two example trees to show
Tinker how to perform the alpha-beta search procedure.

8. A guided tour of the Tinker screen

Before embarking on our project of defining the alpha-beta search procedure, we will
take a few moments to explain the mechanics of writing programs with Tinker. This
picture shows a typical Tinker display.

Seeing What Your Programs Are Doing 8. A guided tow of the Tinker aeof!
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Figure [41

(See next page)

Seeing What Your Programs Are oing 8. A guided btu of the Tinker screen
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Each Tinker operation begins by choosing a menu operation from the Edit Menu in
the upper left hand corner. In this example, we move the mouse cursor to the
operation TYPEIN and EVAL, and press a button on the mouse. The TYPEIN and EVAL
operation lets us enter an ordinary piece of Lisp code and have it evaluated.

Tinker then prompts us in the Typing Window, at the bottom of the screen, askng
Type something to evaluate: and we reply by typing in some Lisp code. Whenever
Tinker needs to ask the user a question or print some information, it does so in this
window, and the user types all input to Tinker here. The code in this example calls
an already-defined function named DISPLAY-TREE-AND-LABEL which draws trees on the
screen, telling it to draw a tree stored in the variable named CUTOFF.

The title line of the Snapshot Window in the middle of the screen reads: Defining
(HISTORY). The code which appears in the snapshot window is always considered to
be code which defines the body of some Lisp function. In this case, there's a top
level function named HISTORY.

As a result of the TYPEIN and EVAL operation, the text Result: TREE-DISPLAYED,
Code: (DISPLAY-TREE-AND-LABEL CUTOFF) appears in the snapshot window. This
displays the code entered, along with the value, TREE-DISPLAYED, produced by that
piece of code. Whenever some code is evaluated to produce a value, Tinker always
remembers and displays the code that was responsible for producing that value.
When defining a new function, the Result: ... part of a line in the snapshot
window represents the result of performing the function's steps on some particular
example, while the Code: ... part represents the general case for the function. In
this way, Tinker can display to the user both particular examples and the code for
the general case simultaneously. The commands in Tinker's command menu are
mostly editing comnnands which edit the objects that appear in the snapshot window.

As a result of executing the code (DISPLAY-TREE-AD-LABEL CUTOFF), in the Graphics
Window at the top right hand corner of the screen, we see a picture of the tree.
The graphics window is used to display drawings which illustrate the behavior of the
program.

The Function Definition lWindow at the top center of the screen shows the textual
definition of Lisp functions generated by Tinker. Although Tinker has its own
representation for programs, it produces ordinary Lisp code, which can be compiled
for efficiency.

Seeing What Your Programs Are Doing 8. A guided tour of the Tinker screen
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9. Expressions can be constructed incrementally after viewing their parts

Once Tinker evaluates some code, displaying the code and its result in the snapshot
window, the programmer may use both the code and the result as part of some
larger expression. The programmer can enter another function call, and specify that
something displayed in the snapshot window is to be used as an argument to that
function. When the function call is finally evaluated, the specific value of the
argument is used to compute the value of the function, and the code which produced
the argument becomes part of the expression for the function calL In this way, the
programmer can examine the values of small pieces of code to make sure they are
correct, before making them part of some larger expression.

Here's a simple example of this. Were going to display another tree on the screen,
but this time we'd like to look at the printed representation of the tree before
constructing the expression to display it.

We use the TY'PEIN and EVAL operation, and type in the variable named EXPLORE-
FULLY which holds the tree. The snapshot window looks like this:

Defining (HISTORY):

Result: #,(A TREE ((4 3) (7 6))), Code: EXPLORE-FULLY

This shows us the printed representation of the value of the variable EXPLORE-FULLY
In this example, trees are defined to print out the numbers which label the leaf
nodes of the tree. The tree EXPLORE-FULLY has a right branch whose leaves are 4
and 3, a left branch with leaves 7 and 6.

Next, we choose the operation TYPEIN, but DON'T EVAL, which puts up a piece of
unevaluated code in the snapshot window.

Defining (HISTORY):

Result: #,(A TREE ((4 3) (7 6))), Code: EXPLORE-FULLY

Code: (DISPLAY-TREE-AND-LABEL)

The line in the snapshot window for the call to the function DISPLAY-TREE-AND-LABEL

only has a Code: part, since we haven't evaluated it yet. Now, we choose the

Seeing What Your Programs Are Doing 9. Expresslons can be constructed Incrementally after viewing their parts

.. . . . . . -. . .,



February 20, 1982 at 16:55 Page 15 Henry Liebeman

operation Fill in an ARGUMENT. Since DISPLAY-TREE-AND-LABEL is the only function
on the screen that needs an argument, and the tree is the only thing that could
possibly be the argument, Tinker immediately constructs the function call Tinker
has a policy of automatically selecting the "obvious" choice, when only one object on
the screen is plausible to choose as an argument to the current menu operation.

Defining (HISTORY):
Code: (DISPLAY-TREE-AND-LABEL (A TREE ((4 3) (7 6))))

Evaluating this piece of code with the operation EVALUATE something displays the tree
on the screen in the graphics window, and changes the snapshot window to:

-Defining (HISTORY):

Result: TREE-DISPLAYED, Code: (DISPLAY-TREE-AND-LABEL EXPLORE-FULLY)

Notice that the variable EXPLORE-FULLY which produced the tree becomes part of the
code for the function call, rather than just the tree itself (as a constant). Whenever
a value is used in further computation, Tinker carries along the code which produced
that value. This shows how Tinker can build up complicated expressions one step at
a time, while displaying to the programmer the result of each step.

10. We begin with a top-down implementation plan for alpha-beta search

When designing an algorithm, a programmer usually starts with very vague ideas
about the problem, and gradually works them out to be more and more specific. In
the early stages of working on a problem, it is common to have in mind some
examples of how the finished program should behave, without having very definite
ideas of what the code should look like. It is also typical to have a rough
implementation plan, which maps out a strategy for implementing the task, again
without committing the programmer to specific details of the code. An
implementation plan might involve proposing a few major subroutines and data
structures and the communication between them. Decisions made in the
implementation plan are often revised in the process of working on the
implementation.

Seeing What Your Programs Are Doing 10. We begin w.lh a top-down implementation plan for alpha-beta search
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In conventional programming, debugging and testing on the machine cannot proceed
until a proposed solution becomes specific enough to actually start writing complete
pieces of code. Tinker aims to involve the machine at an earlier stage, The
programmer should be able to begin working with Tinker as soon as he or she knows
some good examples for the problem, and has in mind an implementation plan which
is capable of performing the procedure on the examples.

We begin working on the alpha-beta problem with a rough implementation plmn.
Our plan should include provision for viewing graphically the progress of the alpha-
beta search as it explores the tree. Since the program is to be written by presenting
specific example trees, we will be able to see dynamically what the program is doing
by watching the search procedure move across the nodes of the tree

We can do this by first displaying the whole tree by drawing only its arcs on the
screen. As the search examines each node and decides on a value for that node, we
will have our program label the node with its value. This will enable us to see what
nodes are being looked at by the program, and in what order the nodes are
examined.

Like in most programming situations, we start with a set of already-defined
procedures and data structures, and these facilities are available for constructing new
programs. We will assume that certain support routines and data have been defined
before the start of our session, and we will not present the details of these, to avoid
distracting us from the alpha-beta algorithm itself.

First, we will assume that the data structure used to represent trees has already been
defined. A tree is either a LEAF node, or it has LEFT and RIGHT branches, each of
which is a tree. The functions LEFT-SIDE and RIGHT-SIDE extract the two branches
from the tree, and the predicate LEAF? asks whether a tree is a leaf node. Trees
may have LABELs at their nodes. We will assume that a set of example trees has
been prepared for this session, including the trees CUTOFF and EXPLORE-FULLY.

We will also assume primitive graphics procedures for displaying trees on the screen.
The procedure DISPLAY-TREE draws the arcs of the tree on the screen, and DISPLAY-
DOTTED-TREE draws them with dotted lines. LEFT-SIDE and RIGHT-SIDE of a tree
display the arcs as they traverse them. LABEL-NODE displays the label at a particular
node, and DISPLAY-TREE-AND-LABEL displays a tree and labels all its nodes. We could
define the tree data structure and display functions using Tinker if we wished.

We will adopt a top-down strategy for implementing the alpha-beta search. We will

Seeing What Your Programs Are Doing 10. We begin with a top-down Implementation plan for alpha-beta search
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start with a top-level function which we will call ALPHA-BETA, which will initialize the
display. This will then call a "workhorse" function AS which will compute the alpha-
beta value of each node, recursively walking down the tree until leaf nodes are
encountered. We will separate the work of AB into two subroutines, AB-LEFT and AB-
RIGHT which compute the alpha-beta of the left and right branches of a tree,
respectively. The crucial subroutine AB-PRUNE will make the decision whether or not
the alpha-beta heuristic is applicable, allowing us to "prune" some branches of the
tree.

The process of defining the alpha-beta search with Tinker will require three main
examples. We will start by presenting the tree CUTOFF which illustrates the
application of the alpha-beta heuristic. This tree will serve as the first example for
the alpha-beta function. The search will be defined recursively in terms of a walk
down the tree data structure until a leaf node is reached. Computing the alpha-beta

4 value of a leaf node will be the second example, showing how the recursive
procedure bottons out. Next, the tree named EXPLORE-FULLY will provide a
contrasting example, demonstrating that the alpha-beta heuristic is not applicable in
all cases.

11. The first example shows how to apply the alpha-beta heuristic

We are now ready to begin writing the code for the alpha-beta search. The way we
start defining a new function in Tinker is to present an example function call,
showing a typical case in which we will use the function. We work out the steps
corresponding to the procedure on the test case.

We construct a call to the ALPHA-BETA function, just as if we had already defined the
function. As an example tree, we supply a tree named CUTOFF, the tree we originally
used above to illustrate the alpha-beta heuristic. We use the TYPEIN, but DON'T EVAL
operation.

Defining (HISTORY):

Code: (ALPHA-BETA CUTOFF)

Now, instead of evaluating that form, we instead tell Tinker that this is a NEW
EXAMPLE for function, for the function ALPHA-BETA Tinker responds by changing

Seeing What Your Programs Are Doing Ii. The first example shows how to aly the alpa-beta hewisttc
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the snapshot window to tell us were defining an example for ALPHA-BETA, and creates
a variable to name the argument to ALPHA-BETA. We name the argument TREE using
the Give something a NAME operation.

Defining (ALPHA-BETA (A TREE ((4 3) (1 2)))):

Result: #.(A TREE ((4 3) (1 2))), Code: TREE

The first action taken by the program should be to iniiialize the display, drawing the
arcs of the tree, but without labelling any of its nodes. We use the function
DISPLAY-DOTTED-TREE to display the shape of the tree on the screen, using dotted
lines which will be filled in incrementally as the procedure traverses the tree.

Defining (ALPHA-BETA (A TREE ((4 3) (1 2)))):

Result: #,(A TREE ((4 3) (1 2))), Code: TREE
Result: TREE-DISPLAYED, Code: (DISPLAY-DOTTED-TREE TREE)

In the graphics window, a picture of the example tree appears.

A
I •

I I

I

I t

i t i t
# t I t.

-Gr OaN
Fi.ure [51

4 Now, we pass along the tree to the workhorse function AB.

Seeing What Your Programs Are Doing 11. The first example show& how to aply the al)ha-beta heuristic
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Defining (ALPHA-BETA (A TREE ((4 3) (1 2)))):

Result: #,(A TREE ((4 3) (1 2))), Code: TREE
Result: TREE-DISPLAYED, Code: (DISPLAY-DOTTED-TREE TREE)

Code: (AB (A TREE ((4 3) (1 2))))

We choose the command NEW EXAMPLE for function, which recurses, pushing from
defining the function ALPHA-BETA to defining the function AB. After we conclude the
definition of AB, Tinker will return us to defining ALPHA-BETA.

Defining (AB (A TREE ((4 3) (1 2)))):

Result: #,(A TREE ((4 3) (1 2))), Code: TREE

4

Tinker encourages a kind of top-down debugging. In traditional, boitom-up
debugging, subroutines must be defined before their callers can be tested. Tinker
allows programming a top-level routine first, then when the need for a subroutine is
felt, introducing an example for the subroutine.

Since we intend AB to recurse down the branches of the tree, the first action should
be to extract the left branch from the tree.

Defining (AB (A TREE ((4 3) (1 2)))):

Result: #,(A TREE ((4 3) (1 2))), Code: TREE

Result: #,(A TREE (4 3)), Code: (LEFT-SIDE TREE)

We introduce a new AB-LEFT function, and provide it with the left branch of the
tree as an example. We name this branch LEFT-TREE.

Defining (AB-LEFT (A TREE (4 3))):
Result: #,(A TREE (4 3)), Code: LEFT-TREE

The plan for the AB-LEFT function is to call AB recursively on each of its branches in
turn, then compute the minimum value of the branches, and use that value to label
the LEFT-TREE. This performs a "min" step of the "minimax" search.

Seeing What Your Programs Are Doing 11. The first example shows how to &ply the alpha-beta heurstic
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*: First, we extract the LEFT-SIDE of the tree, since we have to recurse down two levels
of the tree at a time.r'

Defining (AB-LEFT (A TREE (4 3))):
Result: #,(A TREE (4 3)), Code: LEFT-TREE
Result: #.(A LEAF (VALUE 4)), Code: (LEFT-SIDE LEFT-TREE)

This yields a leaf node in our example. We recursively call AB on the left branch.

12. The alpha-beta function bottoms out when it encounters a leaf node

Defining (AB-LEFT (A TREE (4 3))):
Result: #,(A TREE (4 3)), Code: LEFT-TREE
Code: (AB (A LEAF (VALUE 4)))

Taking the alpha-beta value of a leaf node is a fundamentally different example
from computing the alpha-beta of a tree, since we want the ALPHA-BETA function to
be recursive in the case of a tree, but to stop when it encounters a leaf node. So,
instead of evaluating the call to AB, we tell Tinker this is a NEW EXAMPLE for the
function AB.

What action should AB take when it reaches a terminal node of the tree? The AB
function should just return the value associated with that node as the alpha-beta
value of the node. In addition, it should display the node on the screen, using the
predefined function named LABEL-NODE.

Defining (AB (A LEAF (VALUE 4))):
Result: #,(A LEAF (VALUE 4)), Code: TREE
Result: 4, Code: (LABEL-NODE TREE)

In the graphics window, the value 4 appears at the node. This demonstrates to
Tinker that whenever the search procedure reaches a leaf node, it should label that

Seeing What Your Prop'ams Are Doing 12. The alpha-beta function bottoms out when It encounters a leaf node

;-.



February 20. 1982 at 16:55 Page 21 Henry Liberman

node with its value, so that we can see what the search is doing. As the search
progresses down the branches of the tree, it will replace the dotted lines for arcs of
the tree with solid lines.

%

1 1%

4 \ I,

, 44

" lGraphis
~Figure ['6]

This is all we want to do to complete the leaf node example for A% so we choose
RETURN a value, returning the value 4. Tinker writes the Lisp code for ABl and
displays it in the Function Definition window.

(DEFUN AB (TREE)
(LABEL-NODE TREE))

That definition may look silly, but it is correct for the examples weve shown it so
far. Tinker develops functions by a series of partial definitions As each example for
a particular function is completed, Tinker produces a definition which is sufficient to
make the procedure work as specified on the examples presented so far. When
additional examples for an already-existing function are presented, Tinker can
integrate the procedure for the old examples with the procedure for the new one.
When we complete the example for ABl Of a full-blown tree, the code for AB Will

Seeing What Your Programs Are Doing 12. The alpha-beta function bottom$ out when it encounters a leaf node
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become more sophisticated. Tinker has the ability to improve the definitions of
functions by adding more examples incrementally.

13. The search completes the left branch and proceeds to the right side

Tinker now knows how to perform the AB of a leaf node, so we can apply the
definition to the other leaf node on the left branch of the tree. This displays the
value 3 on that leaf node.

Defining (AB-LEFT (A TREE (4 3))):

S4 Result: #,(A TREE (4 3)), Code: LEFT-TREE
Result: 4, Code: (AB (LEFT-SIDE LEFT-TREE))
Result: 3, Code: (AB (RIGHT-SIDE LEFT-TREE))

%

/,'

4 3 I *"
I t

I 'a
I 'a

1 I

I 'a

4 3

Figure [71 Gra oa

The next step is to complete AB-LEFT by using the alpha-beta values of the leaves to
compute an alpha-beta value for the left side of the tree. The left branch of the
tree should be labelled 3 since it should carry the minimum of the two values 4 and
3 on its branches.

Seeing What Your Programs Are Doing 13. The search completes the left branch and proceeds to the right side
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Defining (AB-LEFT (A TREE (4 3))):

Result: #,(A TREE (4 3)), Code: LEFT-TREE

Result: 3, Code: (MIN (AB (LEFT-SIDE LEFT-TREE)) (AB (RIGHT-SIDE LEFT-TREE)))

Defining (AB-LEFT (A TREE (4 3))):

Result: #,(A TREE (4 3)), Code: LEFT-TREE

Result: 3, Code: (LABEL-NODE LEFT-TREE "u" (MIN (AB 22) (AB 22)))

(The double stars "*-" indicate places where Tinker elided some details of the code,
since the entire code was too large to fit on one line of the screen all at once.)

; 4

%

43 3

'9°

43 3

Graphics
Figure [81

Seeing that the left side of the tree has been fully labelled, we can be assured that
the definition for AB-LEFT has been completed. Tinkeres ability to provide visual
feedback incrementally during the construction of a program is helpful in '*keeping
our place" in the developing program. After choosing RETURN a value, Tinker
displays the code for AB-LEFT in the function definition window.

Seeing What Your Programs Are Doing 13. The search completes the left branch and Proceeds to the right side
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(DEFUN AB-LEFT (LEFT-TREE)
(LABEL-NODE LEFT-TREE

II 4, II

(M1IN (AB (LEFT-SIDE LEFT-TREE))
(AB (RIGHT-SIDE LEFT-TREE)))))

After having explored the left half of the tree, the next task is to define the
function AB-RIGHT to explore the right half. If we had been doing a standard
minimax search, the same subroutine would suffice for both sides of the tree. The
search we are going to define is asymmetrical, using the knowledge gleaned during
searching the left side of the tree to potentially save work exploring the right side.

The AB-RIGHT function needs to know the value of the leff side of the tree, which
well name LEFT-EXPLORED, as well as the right side of the tree, named RIGHT-TREE.

We present a NEW EXAIPLE for AB-RIGHT.

Defining (AB-RIGHT 3 (A TREE (1 2))):

Result: 3, Code: LEFT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE

The third branch, the left side of RIGHT-TREE is explored unconditionally whenever
we explore a RIGHT-TREE. This again makes use of the definition of AS on a leaf
node that we completed earlier.

Defining (AB-RIGHT 7 (A TREE (0 2))):
Result: 3. Code: LEFT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: 1, Code: (AB (LEFT-SIDE RIGHT-TREE))

Seeing What Your Programs Are Doing 13. The search completes the left branch end proceeds to the right side
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Fig~ure [91

And now the third of four leaf nodes is marked with its value on the screel. We
will introduce the subroutine AB-PRUNE which "prunes" branches of the tree which can
be ignored during the search procedure. AB-PRUNE needs the value of the third
branch, which we name RIGHT-EXPLORED.

Defining (AB-PRUNE 3 1 (A TREE (1 2))):

Result: 3, Code: LEFT-EXPLORED

Result: 1, Code: RIGHT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE

Now, in this case, without exploring the remaining unexplured branch, we can
immediately decide that RIGHT-TREE ought to be "at most 1", so well put a label on
the tree to indicate this.

Seeing What Vow Programs Are Doing 13. The search corwpleto the left branch and poceeds to the right eide
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Defining (AB-PRUNE 3 1 (A TREE (1 2))):

Result: 3, Code: LEFT-EXPLORED

Result: 1, Code: RIGHT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: 1, Code: (LABEL-NODE RIGHT-TREE "s" RIGHT-EXPLORED)

-~43S1S

(I

I

I

4 3 1

Figure 1I0]

At the top level of the tree, the maximum of 3 and "at most 1 is 3 regardless of
the exact value of the unexplored branch, so we can return 3 as the answer.
Completing this yields definitions for AB-PRUNE and AB-RiGHT.

Defining (AB-PRUNE 3 1 (A TREE (1 2))):
Result: 3, Code: LEFT-EXPLORED

Result: 1, Code: RIGHT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE

Result: 1, Code: (LABEL-NODE RIGHT-TREE "so RIGHT-EXPLORED)

Result: 3, Code: LEFT-EXPLORED

So.lng What Your Programs Are Doing 13. The search copletes the left brafch en otoWeds to the right side
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(DEFUN AB-PRUNE (LEFT-EXPLORED RIGHT-EXPLORED RIGHT-TREE)
(LABEL-NODE RIGHT-TREE 'S' RIGHT-EXPLORED)
LEFT-EXPLORED)

Defining (AB-RIGHT 3 (A TREE (1 2))):
Result: 3, Code: LEFT-EXPLORED

Result: #,(A TREE (1 2)), Code: RIGHT-TREE

Result: 3, Code: (AB-PRUJE LEFT-EXPLORED (AB ") ... )

(DEFUN AB-RIGHT (LEFT-EXPLORED RIGHT-TREE)

(AB-PRUME LEFT-EXPLORED

(AB (LEFT-SIDE RIGHT-TREE))
RIGHT-TREE))

S Returning to the definition of AB on the whole tree, we use the value returned by

AB-RIGHT to label the top node.

Defining (AB (A TREE ((4 3) (1 2)))):
Result: #,(A TREE ((4 3) (1 2))), Code: TREE

Result: 3, Code: (LABEL-NODE TREE "t" (AB-RIGHT (AB-LEFT ") 'i))

Seeing What Your Programs Are Doing 13. The search completes the left branch and proceeds to the right side
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We have completed the second example for the function AB, showing Tinker how to
take AB of a tree, in addition to AB of a leaf node. When Tinker sees two different
examples for the same function, it compares the code for the two examples. If the
examples differ, Tinker asks us to define a predicate which distinguishes between the
two cases. Tinker displays two snapshot windows, one showing the situation when
we were defining AB on a leaf, one showing the situation defining AB on a tree. We
write code that will appear simultaneously in both windows. The object is to define
code that will yield true in the top window, false in the bottom window. This
assures that our predicate correctly distinguishes between the two cases. This
imethod of defining conditionals is especially useful in avoiding infinite loop bugs,
caused by a predicate continually going down the same branch all the time.

In this case, to distinguish between a leaf node and a full tree, we write a predicate
which asks the node whether or not it is a leaf.

Figture r121

(See next page)

Seeing What Your Programs Are Doing 13. The search conpietes the left branch and proeed to the right side
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(In Lisp, NIL represents false and anything other than NIL represents true, so the
tree in the top snapshot window answered yes to the question, the bottom window
answered no.)

Tinker now generates a definition of the AB function containing a conditional.

(DEFUN AB (TREE)

(IF (LEAF? TREE)

(LABEL-NODE TREE)
(LABEL-NODE TREE

oft".

(AB-RIGHT (AB-LEFT (LEFT-SIDE TREE))
(RIGHT-SIDE TREE)))))

We could also present further examples for AB, and Tinker would create additional
conditional clauses separating one case from another. For example, we should
probably add to AB another case in which the argument is not any kind of a tree at
all, so we can demonstrate a negative example as well as a positive one. The action
in this case should consist of printing out some sort of error message. This is the
way type checking can be introduced in Tinker.

This completes also the top-level ALPHA-BETA function.

(DEFUN ALPHA-BETA (TREE)
(DISPLAY-DOTTED-TREE TREE)

(AB TREE))

14. Another example shows the alpha-beta heuristic doesn't always work

The program can now perform alpha-beta searches of trees -- but only for examples

Seeing What Your Programs Are Doing 14. Aotlw elxane show tho alpha-beta hetmistlo doesn't aiways work
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where we can apply the alpha-beta heuristic. At this point, Tinker has
overgeneralized the procedure to conclude that the alpha-beta heuristic works for all
trees. This is not always the case for our desired search procedure.

To correct this, we can show Tinker another example, this one representing the class
of trees for which it is necessary to explore the whole tree to compute an alpha-beta
value. The tree EXPLORE-FULLY has that property.

t6

-A4

43 46

4 3 7 6

iGraph/ca
Figure r131

The only subroutine involved in this change is AB-PRUNE, since AB-PRUNE alone is
responsible for exploring the rightmost branch of the tree. As you will recall, AB-
PRUNE takes three arguments, the alpha-beta value for the left side of the tree, the
value of the third branch and the as yet unexplored rightmost branch of the tree.
In the case of the tree EXPLORE-FULLY, LEFT-EXPLORED is 3, RIGHT-EXPLORED is 7, and
the RIGHT-TREE has leaves 7 and 6.

Defining (AB-PRUNE 3 7 (A TREE (7 6))):
Result: 3, Code: LEFT-EXPLORED
Result: 7, Code: RIGHT-EXPLORED
Result: #0,(A TREE (7 6)), Code: RIGHT-TREE

Seeing What Your Programs Are Doing 14. Another exarple shows the alpha-beta heuristic doesn't always work
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We must explore the rightmost branch of the tree, and label the right tree with the
minimum of the two leaves on the right side of the tree

Defining (AB-PRUNE 3 7 (A TREE (7 6))):
Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED

Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: 6, Code: (AB (RIGHT-SIDE RIGHT-TREE))

Defining (AB-PRUNE 3 7 (A TREE (7 6))):

Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED
Result: #,(A TREE (7 6)), Code: RIGHT-TREE

Result: 6, Code: (MIN RIGHT-EXPLORED (AB (RIGHT-SIDE RIGHT-TREE)))

4
Defining CAB-PRUNE 3 7 (A TREE (7 6))):
Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED
Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: 6, Code: (LABEL-NODE RIGHT-TREE "VI (MIN RIGHT-EXPLORED (AB ;s)))

The value for the top of the tree is the maximum of the values for the two
branches. Since the two branches of the trees have values 3 and 6, the maximum is
6.

Defining (AB-PRUNE 3 7 (A TREE (7 6))):

Result: 3, Code: LEFT-EXPLORED
Result: 7, Code: RIGHT-EXPLORED
Result: #,(A TREE (7 6)), Code: RIGHT-TREE

Result: 6, Code: (MAX LEFT-EXPLORED (LABEL-NODE RIGHT-TREE ...))

This comprises a second example for the function AB-PRUNL Tinker again creates two

Soolng What Your Programs Are Doing 14. Another example shows the alpha-beta huristlc doesn't always wo&
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snapshot windows, asking us to distinguish between the two cases, one in which the
alpha-beta heuristic is used, one where the tree is explored in its entirety.

The predicate which distinguishes between the two cases tests whether or not the
alpha-beta value for the left side of the tree, LEFT-EXPLORED, exceeds the third of the
four branches, RIGHT-EXPLORED. In both cases, the left branch evaluated to 3, but in
the first case, RIGHT-EXPLORED was 1, which is smaller than 3, but in the second case
it was 7, which is greater.

Predicate TRUE for: Result: 3, Code: (PROGN (LABEL-NODE *2) LEFT-EXPLORED)
Result: 3, Code: LEFT-EXPLORED
Result: 1. Code: RIGHT-EXPLORED
Result: #,(A TREE (1 2)), Code: RIGHT-TREE
Result: T, Code: (>LEFT-EXPLORED RIGHT-EXPLORED)

Predicate FALSE for: Result: 6, Code: (MAX LEFT-EXPLORED ")

Result: 3, Code: LEFT-EXPLORED

Result: 7, Code: RIGHT-EXPLORED

Result: #,(A TREE (7 6)), Code: RIGHT-TREE
Result: NIL, Code: (> LEFT-EXPLORED RIGHT-EXPLORED)

This yields the following code for AB-PRUNE:

(DEFUN AB-PRUNE (LEFT-EXPLORED RIGHT-EXPLORED RIGHT-TREE)
(IF (> LEFT-EXPLORED RIGHT-EXPLORED)

(THEN (LABEL-NODE RIGHT-TREE "" RIGHT-EXPLORED) LEFT-EXPLORED)
(MAX LEFT-EXPLORED

(LABEL-NODE RIGHT-TREE

(MIN RIGHT-EXPLORED (AB (RIGHT-SIDE RIGHT-TREE)))))))

Seeing What Your Programs Are Doing 14. Another example shows the alpha-beta heuristic doesn't always wo.
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15. Let's try alpha-beta search on a large tree

Our alpha-beta search procedure is now comple-e, To illustrate its behavior, we can
try it out on a large and complex example which will exercise all of the cases the
program knows about We will try it out on the following tree, called BIG-TREE.
Here are successive stages of the alpha-beta program at work.
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In this example, you can see two distinct alpha-beta cutoffs. The first two nodes
looked at were 8 and 7, so their common ancestor is labelled with the minimum, 7.
Since 5 for the next leaf node is less than 7, the program did not need to explore
the next node.

At the very top of the tree, 7 is computed for the value of the left side of the tree.
The left half of the right side yields 2 which is less than 7. This time the program
could cut off an entire section of the tree, rather than just the single-node cutoffs
we saw previously This saved almost a quarter of the work involved in examining
the entire tree!

We hope this example has successfully illustrated how Tinker uses an example-based
programming methodology, incremental program construction, and immediate
graphical feedback to make programming easier and more reliable.
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