
AD-A113 45A ARMY COMPUTER SYSTEMS COMMAND FORT BELVOIR VA F/ 9/2
PROGRAMING PROCEDURES MANUAL PPM).(U)

UNCLASSIFIED NL6flllflllllll

EIIEEEIIIIEEEE
IIIIIIIIIIIIIl
llllE~hlllEEEI
IEEIIIIEEEEEEE
lEElllhllEElhE

Ehhh~hEEhhE



U--

IIJI 2 111111'.6
-I.II.8

A MICROCOPY RLSOLU11ON 11S1 ('HARI

N.N P '

t, 4



15 DECEMBER 1981 USACSC MANUAL 18-1-1

Ni

UNITED STATES ARMY

COMPUTER SYSTEMS COMMAND

4

PROGRAMING PROCEDURES MANUAL (PPM)

... t

82 04 12 185
S ......... FNT NLIg III A 2N



15 DEC 81 CSCM 18-1-1

PROGRAMING PROCEDURES MANUAL

This manual prescribes the procedures to be used by US Army Computer Systems
Command (USACSC) programers in developing and maintaining multicommand and
Command-unique ADP systems.

In view of the emphasis by General Services Administration (GSA) that Federal
agencies comply with Federal standards (FIPS/FED-STDS) in the procurement proc-
ess, effective 1 January 1979, all COBOL compilers offered will be validated on
a scheduled annual basis by the Federal Compiler Testing Center (FCTC). Also,
all new acquisition of COBOL compilers by USACSC will be in accordance with the
American National Standard Programing Language COBOL Standard, ANSI X3.23-1974
or subsequent to that release.

ACKNOWLEDGMENT. The following is an extract from the COBOL Journal of
Development, a product of the CODASYL COBOL Programing Language Committee.

COBOL is an industry language and is not the property
of any company or group of companies, or of any organi-
zation or group of organizations.

No warranty, expressed or implied, is made by any con-
tributor or by the CODASYL Programing Language Committee
as to the accuracy and functioning of the programing
system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material in whole or in part, in the
'OBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programing manuals or similar publications.

FLOW-MATIC (trademark of the Sperry Rand Corporation),
Proqraming for the UNIVAC (R) I and I. Data Auto-
mation Systems copyrighted 1958, 1959 by Sperry Rand
Corporation; IBM Commercial Translator Form No. F
28-8013, copyrighted 1959 by IBM: FACT, DSI 27A5260-
2760, copyrighted 1960 by Minneapolis-Honeywell.
MetaCO30L Facility copyrighted 1979 by Applied Dat
Research, Inc. A 1P

VA1 04
e 9

Supersedes CSCM 18-1-1, 1 Feb 79, and all changes. b

Dxat tV!
(copwlclu



CSCM 18-1-1 15 Dec 81

CONTENTS

Paragraph Page

Chapter 1 - USACSC Prograniinq Procedures
General 1.11-
Introduction 1.2 -

Chapter 1 1.2.11-
Chapter 2 1.2.21-
Chapter 3 1.2.3 1-2
Chapter 4 1.2.4 1-2

Objectives 1.3 1-2
SPEC 1.4 1-2

SPEC Procedures 1.4.1 1-2

Exception to Use of SPEC 1.4.2 1-2
Exception to Use of ANSI COBOL 1.4.3 1-3
Authority to Grant an Exception 1.4.4 1-3

FORTRAN 1.5 1-3
FORTRAN Procedure 1.5.1 1-3
Exception to the Use of FORTRAN 1.5.2 1-3
Authority to Grant an Exception 1.5.3 1-4

Changes to Manual 1.6 1-4
USACSC Programing Concepts 1.7 1-4

The Simplistic Approach 1.7.1 1-4
Self-documenting Programs 1.7.1.1 1-5
Machine Independence 1.7.1.2 1-5
Maintainability 1.7.1.3 1-5
Productivity 1.7.1.4 1-5
Logical Flow 1.7.1.5 1-5
Standard Construct 1.7.1.6 1-5
Efficiency 1.7.1.7 1-5 1

Program Design Criteria 1.8 1-6
Program Identification 1.9 1-6
Multiple Program Outputs 1.10 1-b
File Organization 1.11 1-

Sequential File Organization 1.11.2 -
Indexed File Organization 1.121-7
Random File Organization 1.11.3 1-8
Elements of File Design 1.11.4 1-8
File Design Considerations 1.11.5 1-8

Interactive Factors 1.11.5.1 1-8
Hit Ratio 1.11.5.2 1-9
Misleading Rules of File Design 1.11.5.3 1-9

Input Media 1.11.6 1-10
Console 1.11.6.1 1-10



15 DEC 81 CSCM 18-1-1

Paragraph Page
Chapter 1 - 'SACSC Programing Procedures

(Continued)
Tape 1.11.6.2 1-10
Card 1.11.6.3 1-10
Direct Access Storage Devices 1.11.6.4 1-10

Output Media 1.11.7 1-10
Printer 1.11.7.1 1-11
Punch 1.11.7.2 1-12
Tapes and Direct Access Storage

Devices 1.11.7.3 1-12
Program to Operator Messages 1.11.8 1-12

Format 1.11.8.1 1-13
Program-ID 1.11.8.2 1-13
Message Number 1.11.8.3 1-13
Type of Message 1.11.8.4 1-13
Halts 1.11.8.5 1-13

Recovery Guidance 1.11.9 1-14
Error Condition Options 1.11.10 1-14
Console, Switches 1.11.11 1-14
Utility Programs and Subroutines 1.11.12 1-14

Chapter 2 - USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

ANSI COBOL 2.1 2-1
Introduction 2.2 2-1

Purpose of USACSC Standard Portable Expanded
COBOL, ANSI COBOL Subset Specifications 2.2.1 2-1

Language Conventions 2.3 2-2
Glossary 2.3.1 2-2
Language Structure 2.3.2 2-2

Separators 2.3.2.1 2-2
Punctuation Characters 2.3.2.2 2-2
Quotation Marks 2.3.2.3 2-2
Character-String 2.3.2.4 2-2IDelimiters 2.3.2.5 2-2

Words 2.3.3 2-2
Definition of a Word 2.3.3.1 2-2
iypes of Words 2.3.3.2 2-2

Concepts of Data Reference 2.3.4 2-6
Logical Recor'd and File Concept 2.3.4.1 2-6
Concept of COBOL Levels 2.3.4.2 2-6
Level -Numbers 2.3.4.3 2-7
Concepts of Classes of Data 2.3.4.4 2-7
Algebraic Signs 2.3.4.5 2-8

Ill



CSCM 18-1-1 15 Dec 81

Paragraph Page

Chapter 2 - USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

.r (Continued)
Qualification of Name 2.3.4.6 2-8
Subscripting 2.3.4.7 2-9
Indexing 2.3.4.8 2-9

USACSC COBOL Reference Format 2.3.5 2-10
General Description of Reference

Format 2.3.5.1 2-10
Reference Format Representation 2.3.5.2 2-10
Data Division Entries 2.3.5.3 2-12
Continuation 2.3.5.4 2-13
Blank Lines 2.3.5.5 2-14
Comment Lines 2.3.5.6 2-14

USACSC Standard Coding Conventions 2.3.6 2-14
Coding 2.3.6.1 2-14

USACSC COBOL Specifications 2.4 2-16
Format Rules and Notes 2.4.1 2-16

Language Element 2.4.1.1 2-16
Function 2.4.1.2 2-16
Format 2.4.1.3 2-16
Syntax Rules 2.4.1.4 2-16
General Rules 2.4.1.5 2-16
USACSC Guidelines 2.4.1.6 2-16

Format Punctuation 2.4.2 2-16
General Description 2.4.2.1 2-16
Elements 2.4.2.2 2-17

Symbols and Notations Used in This
Manual 2.4.3 2-17
General 2.4.3.1 2-17
Format Presentation 2.4.3.2 2-17
Default Option 2.4.3.3 2-18
Ellipsis 2.4.3.4 2-19

COBOL Program Structure 2.4.4 2-20
Divisions 2.4.4.1 2-20
Formats 2.4.4.2 2-20
Structure of the COBOL Program 2.4.4.3 2-21

IDENTIFICATION DIVISION 2.4.5 2-23
ELEMENTS 2.4.5.1 2-23
PROGRAM-ID PARAGRAPH 2.4.5.2 2-24
AUTHOR PARAGRAPH 2.4.5.3 2-24
INSTALLATION PARAGRAPH 2.4.5.4 2-25

iv

A



15 DEC 81 CSCM 18-1-1

Paragraph Page

Chapter 2 - USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

(Continued)
DATE-WRITTEN PARAGRAPH 2.4.5.5 2-25
DATE-COMPILED PARAGRAPH 2.4.5.6 2-26
SECURITY PARAGRfPH 2.4.5.7 2-26
REMARKS PARAGRAPH 2.4.5.8 2-27

ENVIRONMENT DIVISION 2.4.6 2-27
ELEMENTS 2.4.6.1 2-27
CONFIGURATION SECTION 2.4.6.2 2-28
SOURCE-COMPUTER PARAGRAPH 2.4.6.3 2-28
OBJECT-COMPUTER PARAGRAPH 2.4.6.4 2-29
SPECIAL-NAMES PARAGRAPH 2.4.6.5 2-30
INPUT-OUTPUT SECTION 2.4.6.6 2-32
FILE-CONTROL PARAGRAPH 2.4.6.7 2-33
SELECT CLAUSE 2.4.6.8 2-34
ASSIGN CLAUSE 2.4.6.9 2-35
RESERVE CLAUSE 2.4.6.10 2-47
ACCESS CLAUSE 2.4.6.11 2-47
RELATIVE KEY CLAUSE 2.4.6.12 2-48
RECORD KEY CLAUSE 2.4.6.13 2-50
ALTERNATE RECORD KEY CLAUSE 2.4.6.14 2-51
FILE STATUS CLAUSE 2.4.6.15 2-51
I-0-CONTROL PARAGRAPH 2.4.6.16 2-52
RERUN CLAUSE 2.4.6.17 2-55
SAME CLAUSE 2.4.6.18 2-56
MULTIPLE FILE TAPE CLAUSE 2.4.6.19 2-57

DATA DIVISION 2.4.7 2-58
ELEMENTS 2.4.7.1 2-58
FILE SECTION 2.4.7.2 2-60
WORKING-z.ORAGE SECTION 2.4.7.3 2-62
LINKAGE SECTION 2.4.7.4 2-66
FILE DESCRIPTION (FD) AND SORT-FILE

(SD) DESCRIPTION ENTRIES 2.4.7.5 2-68
LABEL RECORDS CLAUSE 2.4.7.6 2-69
RECORD CONTAINS CLAUSE 2.4.7.7 2-70
V4LUE OF CLAUSE 2.4.7.8 2-70
BLOCK CONTAINS CLAUSE 2.4.7.9 2-71
CODE-SET CLAUSE 2.4.7.10 2-73
DATA RECORD CLAUSE 2.4.7.11 2-74
RECORD DESCRIPTION CLAUSE 2.4.7.12 2-74
DATA DESCRIPTION CLAUSE 2.4.7.13 2-75
DATA-NAME OR FILLER CLAUSE 2.4.7.14 2-77
REDEFINES CLAUSE 2.4.7.15 2-78
SIGN CLAUSE 2.4.7.16 2-79
OCCURS CLAUSE 2.4.7.17 2-81
PICTURE CLAUSE 2.4.7.18 2-85
USAGE CLAUSE 2.4.7.19 2-92
VALUE CLAUSE 2.4.7.20 2-93
JUSTIFIED CLAUSE 2.4.7.21 2-95
SYNCHRONIZED CLAUSE 2.4.7.22 2-96
BLANK WHEN ZERO CLAUSE 2.4.7.23 2-98

L..



CSCM 18-1-1 15 Dec 81

Paragraph Page

Chapter 2 - USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

(Continued)
Procedure Division 2.4.8 2-99

General Description 2.4.8.1 2-99
Structure 2.4.8.2 2-99
General Rules 2.4.8.3 2-100

STATEMENTS 2.4.9 2-121
ACCEPT STATEMENT 2.4.9.1 2-121
ADD STATEMENT 2.4.9.2 2-123
ALTER STATEMENT 2.4.9.3 2-126
CALL STATEMENT 2.4.9.4 2-127
CANCEL STATEMENT 2.4.9.5 2-129
CASE STATEMENT 2.4.9.6 2-130
CLOSE STATEMENT 2.4.9.7 2-131
COMPUTE STATEMENT 2.4.9.8 2-138
COPY STATEMENT 2.4.9.9 2-142

* USE FOR DEBUGGING STATEMENT 2.4.9.10 2-145
DEBUG-ITEM Special Register 2.4.9.11 2-147
DELETE STATEMENT 2.4.9.12 2-149
DISPLAY STATEMENT 2.4.9.13 2-150
DIVIDE STATEMENT 2.4.9.14 2-152
DO STATEMENT 2.4.9.15 2-155
DO UNTIL STATEMENT 2.4.9.16 2-156
DO WHILE STATEMENT 2.4.9.17 2-157
ENTER STATEMENT 2.4.9.18 2-158
EXIT STATEMENT 2.4.9.19 2-159
GO TO STATEMENT 2.4.9.20 2-160
IF STATEMENT 2.4.9.21 2-161
INSPECT STATEMENT 2.4.9.22 2-166
MOVE STATEMENT 2.4.9.23 2-174
MULTIPLY STATEMENT 2.4.9.24 2-179
OPEN STATEMENT 2.4.9.25 2-181
PERFORM STATEMENT 2.4.9.26 2-185
READ STATEMENT 2.4.9.27 2-195
RELEASE STATEMENT 2.4.9.28 2-198
RETURN STATEMENT 2.4.9.29 2-199
REWRITE STATEMENT 2.4.9.30 2-200
SEARCH STATEMENT 2.4.9.31 2-202
SET STATEMENT 2.4.9.32 2-203
SORT STATEMENT 2.4.9.33 2-204
START STATEMENT 2.4.9.34 2-213
STOP STATEMENT 2.4.9.35 2-214
SUBTRACT STATEMENT 2.4.9.36 2-216
USE STATEMENT 2.4.9.37 2-219
WRITE STATEMENT 2.4.9.38 2-221

Special Features 2.5 2-226
Structured Programing Statements -

MetaCOBOL Macro Facility 2.5.1 2-226
00 STATEMENT 2.5.1.1 2-227
DO WHILE STATEMENT 2.5.1.2 2-228

vi



15 DEC 81 CSCM 18-1-1

Paragraph Page

Chapter 2 -USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

(Continued)
IF STATEMENT 2.5.1.3 2-230
DO UNTIL STATEMENT 2.5.1.4 2-232
CASE STATEMENT 2.5.1.5 2-233

COBOL Segmentation Facility 2.5.2 2-235
Organization of Segmentation Facility 2.5.2.1 2-235
Segment Classification 2.5.2.2 2-236
Segmentation Control 2.5.2.3 2-236
Structure of Program Segments 2.5.2.4 2-236
Restrictions on PERFORM Statement 2.5.2.5 2-237
Example of Segmentation 2.5.2.6 2-238
USACSC Guidelines for Segmentation 2.5.2.7 2-239

Sort Feature 2.5.3 2-240
Introduction 2.5.3.1 2-240
Environment Division Sort Feature 2.5.3.2 2-241
Data Division Sort Feature 2.5.3.3 2-241
Procedure Division Sort Feature 2.5.3.4 2-242

Table Handling Feature 2.5.4 2-242
Introduction 2.5.4.1 2-242
Subscripting 2.5.4.2 2-243
OCCURS STATEMENT 2.5.4.3 2-247
Indexing 2.5.4.4 2-249
Procedure Division Considerations

for Table Handling 2.5.4.5 2-251
Source Program Library Facility 2.5.5 2-261

Introduction to Copy Library Facility 2.5.5.1 2-261
COPY STATEMENT 2.5.5.2 2-262

Debugging Aids 2.5.6 2-269
Introduction to Debugging Aids 2.5.6.1 2-269
DOS COBOL Program Debugging Aids 2.5.6.2 2-271
Common Causes of Errors 2.5.6.3 2-272
Link Edit Map 2.5.6.4 2-273
Object Storage Layout 2.5.6.5 2-274
System Action Under Cancel 2.5.6.6 2-285
Wait States 2.5.6.7 2-296
Commonly Encountered t1ser Errors 2.5.6.8 2-297
DOS Core Dump Tracing 2.5.6.9 2-299
Interpreting OutPUt 2.5.6.10 2-309
OS COBOL Program Debugging Aids 2.5.6.11 2-326
COMPLETION CODE - 001 2.5.6.12 2-326
COMPLETION CODE - 013 2.5.6.13 2-328
COMPLETION CODE - 031 2.5.6.14 2-328
COMPLETION CODE - 03B 2.5.6.15 2-330
COMPLETION CODE - 03D 2.5.6.16 2-331
OCx COMPLETION CODE NOTE 2.5.6.17 2-331

vii1



CSCM 18-1-1 15 Dec 81

Paragraph Page

Chapter 2 - USACSC Standard Portable Expanded COBOL,
- ANSI COBOL Subset

(Continued)
COMPLETION CODE - OCI 2.5.6.18 2-331

COMPLETION CODE - 0C5 2.5.6.19 2-332

COMPLETION CODE - 0C7 2.5.6.20 2-333

COMPLETION CODE - 237 2.5.6.21 2-334

COMPLETION CODE - 637 2.5.6.22 2-336

COMPIETION CODE - 804 2.5.6.23 2-338

COMPLETION CODE - 806 2.5.6.24 2-338

COMPLETION CODE - 813 2.5.6.29 2-339

COMPLETION CODE - D37 2.5.6.26 2-340

COMPLETION CODE - E37 2.5.6.27 2-341

Control Block Pointers 2.5.6.28 2-342

OS/MVT Core Dump 2.5.6.29 2-348

OS Data Exceptions, Recognition 2.5.6.30 2-356

and Error Recovery
Register and Save Area 2.5.6.31 2-357

0C7 (Data Check) Debugging Exercise 2.5.6.32 2-358

Debugging of COBOL Segmented 2.5.6.33 2-368

Programs Under OS/MFT
USACSC COBOL Program Design Techniques 2.6 2-372

Procedure Division Design 2.6.1 2-372

Standard Logic Constructs 2.6.2 2-373

COBOL Program Structure Techniques 2.7 2-381

Data Format Considerations 2.7.1 2-383

Data Item Cnnsiderations 2.7.2 2-386
Drocedure Division Techniques 2.7.3 2-396

Paragraph Naming 2.7.3.1 2-396

File Processing 2.7.3.2 2-396

Conditional Statements 2.7.3.3 2-397

Arithmetic Operations 2.7.3.4 2-402

Branching Statements 2.7.3.5 2-405

Data Manipulation 2.7.3.6 2-408

Table Handling Techniques 2.7.4 2-408

Table Construction and Referencing 2.7.4.1 2-408

Transfer of Control 2.7.5 2-414

Overlay Structures 2.7.5.1 2-414

Subprogram Linkage 2.7.5.2 2-415

Subprogram Technique 2.7.5.3 2-416

Source Language System (SLS)/Program 2.7.6 2-418

Language Update Service (PLUS)
Source Library Maintenance 2.7.6.1 2-418

Catalogued Programs 2.7.6.2 2-418

Single Source Library System 2.8 2-418

Objective 2.8.1 2-418

Procedures 2.8.2 2-419

Coding 2.8.3 2-419

Single Source System 2.8.4 2-419

Implementing Instructions 2.8.5 2-419

viii



15 DEC 81 CSCM 18-1-1

Paragraph Page

Chapter 2 - USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset

(Continued)
OS/DOS Compatibility 2.9 2-420

Program Techniques 2.9.1 2-420
Input/Storage Areas 2.9.2 2-420

Input Buffers 2.9.2.1 2-420
Address Pointer 2.9.2.2 2-420

STOP RUN STATEMENT 2.9.3 2-420
Data formats 2.9.4 2-421
Record Identifier 2.9.5 2-421
Program Switches 2.9.6 2-421
PICTURE CLAUSE 2.9.7 2-422
APPLY CLAUSE 2.9.8 2-422
Invalid Key Option 2.9.9 2-422
Syntax Errors 2.9.10 2-422

Chapter 3 - USACSC Structured Programing Technology
Introduction 3.1 3-1
General 3.1.1 3-.1
Purpose 3.1.2 3-1
Definitions 3.1.3 3-1

Backup Programer 3.1.3.1 3-1
Chief Programer 3.1.3.2 3-2
Data Flow Graph 3.1.3.3 3-2
IPO (Input, Process, Output) Chart 3.1.3.4 3-2
Librarian 3.1.3.5 3-2
Program Design Language (PDL) or

PSEUDO-CODE 3.1.3.6 3-2
Programing Support Library (PSL) 3.1.3.7 3-2
Structure Chart 3.1.3.8 3-2
Structured Program 3.1.3.9 3-3
Structured Programing (SP) or

Structured Coding (SC) 3.1.3.10 3-3
Structured Source Code Listing 3.1.3.11 3-3
Structured Testing 3.1.3.12 3-4
Structured Walkthrough 3.1.3.13 3-4
Stub 3.1.3.14 3-4
Team Operation or Chief Programer 3.1.3.15 3-4

Team
Top Down Development 3.1.3.16 3-4
Top Down Program (TDP) 3.1.3.17 3-5
Top Down Structured Programing (TDSP) 3.1.3.18 3-5

Concepts of Top Down Structured Pro- 3.1.4 3-5
graming (TDSP)
General 3.1.4.1 3-5
Figures 3.1.4.2 3-6
Program Design Language (PDL) or 3.1.4.3 3-6

PSEUDO-CODE
Programing Support Library (PS.) 3.1.4.4 3-11
Structured Walkthrc jhs 3.1.4.5 3-13
Chief Programer Ta. '"T) 3.1.4.6 3-14
Nine Step Module Mane-- ent rrocess 3.1.4.7 3-15

~ -- -. -r



CSCM 18-1-1 15 Dec 81

Paragraph Page

Chapter 3 - USACSC Structured Programing Technology
(Continued)
General Standards and Guidelines 3.1.5 3-16

Standards 3.1.5.1 3-16
Guidelines 3.1.5.2 3-17

USACSC SPEC COBOL Language Standards 3.1.6 3-17
and Guidelines

Include Capability 3.1.7 3-17
Additional Recormmended Coding 3.1.7.1 3-18

Conventions

Chapter 4 - FORTRAN Programing Procedures
Introduction 4.1 4-1
Design Considerations 4.2 4-1
Modularity 4.2.1 4-1
Library Functions 4.2.2 4-1
Input/Output Functions 4.2.3 4-1
Real And Integer Data 4.2.4 4-1

Program Structure 4.3 4-1
Source Card Coding 4.3.1 4-1

Commient Cards 4.3.1.1 4-2
Sequence Numbers 4.3.1.2 4-2
Statement Labeling 4.3.1.3 4-2
Statement Ordering 4.3.1.4 4-3
Symbolic Names 4.3.1.5 4-3

FORTRAN Character Set 4.3.2 4-3
Operators Used in FORTRAN Programs 4.3.3 4-4
Arithmetic Expressions 4.3.3.1 4-4
Relation Operators 4.3.3.2 4-4
Logical Operators .4.3.3.3 4-4
Additional Information 4.3.3.4 4-5

Arrays 4.4 4-5
Variable Names 4.5 4-5
Program Comments 4.6 4-5
Meaningful Commients 4.6.1 4-5
Identification of Program in a Corrnent 4.6.2 4-5
Program Modification 4.6.3 4-6
Program Conmments for Subroutines 4.6.4 4-6
Distribute Commuent 4.6.5 4-6
Descriptive Commnrts 4.6.6 4-6
Conspicuous Printing Style for Commvent 4.6.7 4-6
Recovery Procedures In Conmments 4.6.8 4-6

Check And Desk Checking 4.7 4-7
Checkout Method 4.7.1 4-7
Desk Checking 4.7.2 4-7
Program Logic Checklist 4.7.3 4-7
Statement Number 4.7.3.1 4-7
Verify Statement Number 4.7.3.2 4-7
Assure Parentheses Balance 4.7.3.3 4-7
Subscripted Variables 4.7.3.4 4-7
Check For DO-loop 4.7.3.5 4-7

x



15 DEC 81 CSCM 18-1 -1

Paragraph Page

Assure Statements Are Present 4.7.3.6 4-7

Check All Hollerith Fields 4.7.3.7 4-7

CALL Statement 4.7.3.8 4-7

Arguments 4.8 4-7

Grouping of Arguments 4.8.1 4-8

Error Code 4.8.2 4-8

Non-integer Variable 4.9 4-8

Array Naming Convention 4.9.1 4-8

Arguments In Call Statements 4.9.2 4-8

Data Variable Assignment 4.9.3 4-8

Whole Numbers 4944-8

Input/Output Devices 4.9.5 4-8

Constant Count Indices 4.9.6 4-8

xi



CSCM 18-1-1 15 Dec 81

PAGE
ATTACHMENTS

ATTACHMENT 1 -GLOSSARY A-1
ATTACHMENT 2 - RESERVED WORDS B-1

INDEX Index-1

FIGURES
1-1 1-8
1-2 1-12
1-3 1-13
1-4 1-13
2-1 2-4
2-2 2-8
2-3 2-15
2-4 2-21
2-5 2-44
2-6 2-45
2-7 2-63
2-8 2-89
2-9 2-89
2-10 2-90
2-_11 2-91
2-12 2-91
2-13 2-101
2-14 2-103
2-15 2-104
2-16 2-105
2-17 2-108
2-1.3 2-111
2-19 2-114
2-20 2-117
2-21 2-118
2-22 2-120
2-23 2-132
2-24 2-148
2-25 2-165
2-26 2-177
2-27 2-189
2-28 2-191
2-29 2-192
2-30 2-209
2-31 2-238
2-32 2-245
2-33 2-255
2-34 2-258
2-35 2-262
2-36 2-265
2-37 2-275
2-38 2-279
2-39 2-281
2-40 2-282
2-_41 2-294
2-42 2-295
2-43 2-295

xli



15 DEC 81 CSCM 18-1-1

FIGURES PAGE

2-44 2-302

2-45 2-312

2-46 2-315

2-47 2-319

2-48 2-319

2-49 2-321

2-50 2-325
S2-51 2-3532-52 

2-362
2-53 

2-363
2-54 2-364
2-55 2-365
2-56 2-366

2-57 2-367

2-58 2-370
2-59 2-3712-60 2-374
2-61 

2-375
2-62 2-378
2-63 

2-379

2-64 2-381

2-65 2-414

2-66 
2-416

3-1 3-8

3-2 
3-9

3-3 3-9

xiii



15 DEC 81 CSCM 18-1-1

CHAPTER I

USACSC PROGRAMING PROCEDURES

1.1 GENERAL. This manual prescribes procedures to be used by programers in
developing and maintaining multicommand or Command-unique US Army Computer
Systems Command (USACSC) managed systems. It will be used as the primary source
of information for USACSC programers.

1.2 INTRODUCTION.

1.2.1 CHAPTER 1. This chapter is general in scope and is not related to a
specific language. The material contained in Chapter 1 is considered mandatory.

1.2.2 CHAPTER 2. This chapter deals with the Standard Portable Expanded COBOL
(SPEC) specifications and procedures and is considered mandatory with the
following specific guidance:

e SPEC is a portable dialect of American National Standards Institute
(ANSI) 1974 COBOL.

* If an element of ANSI COBOL has not been described in the Programing
Procedures Manual, it will not be used.

* All new programs will follow the standards set forth in this chapter.

* Existing programs or systems will normally be changed to conform to
these standards only when other changes are being made to the programs or
systems, where the standards changes may be made in conjunction. Under proper
conditions, standards changes may be made alone, without accompanying logic
changes, but under no conditions will any changes be made in any programs or
systems without formal submission of a Systems Change Request (SCR) through the
normal procedures as spelled out in AR 18-1, and USACSC Regulations 18-1 and
18-21.

* The subsections on COBOL Program Design Techniques and USACSC COBOL
Programing Techniques in this chapter are not mandatory. They represent the
preferred approaches and are to be used unless clearly not applicable to the
problem at hand.

1-1



CSCM 18-1-1 15 Dec 81

1.2.2 CHAPTER 2. (Cont.)

e Throughout the discussion of the SPEC language elements, USACSC guide-
lines are given. When the operatives "should", "ideally", "it is recommended",
etc., are employed, the guidelines identify "the preferred method approach"
rather than mandatory rules.

e If a prohibited feature is needed due to systems requirements, a waiver
for that specific contravention of command standards must be sought through the
procedures as outlined in TB 18-115, Army Information Processing Standards
(AIPS) Program.

1.2.3 CHAPTER 3. This chapter addresses STRUCTURED PROGRAMING.

1.2.4 CHAPTER 4. This chapter addresses FORTRAN PROGRAMING PROCEDURES.
Subsequent sections will deal with other languages as required.

1.3 OBJECTIVES. Standard programing languages and uniform software conventions
are adopted to achieve the following:

e Centralized preparation of programs.

* Capability of transferring programs from one operating system to another
or from one hardware manufacturer to another with the minimum amount of
programer effort.

* Simplification in programing by use of a language oriented to subject

matter terms.

e Greater sharing of computer programs.

1.4 SPEC. ANSI COBOL is the DA standard computer language for use in
business--Type information and data systems. SPEC is a USACSC defined portable
dialect of ANSI COBOL.

1.4.1 SPEC PROCEDURES. Developers responsible for business-type systems design

and/or programing -wT insure that the following procedures are followed:

* Program all new systems in SPEC, except as noted below.

e Program major revisions to existing systems in SPEC when the use of
SPEC will not adversely affect system capability.

* Reprogram existing non-SPEC programs to SPEC as time and funds permit.

1.4.2 EXCEPTION TO USE OF SPEC. An exception to the use of SPEC does not
necessarily imply that an exception to the use of COBOL will be granted. An
exception to the use of SPEC may be authorized under the following conditions:

1-?

I1



rL DEC 81 CSCM 18-1-1

1.4.2 EXCEPTION TO USE OF SPEC. (Cont.)

, A SPEC compiler/translator does not exist for the target hardware.

a A SPEC compiler/translator exists but the target hardware configuration
cannot adequately accommodate the application if written in SPEC.

1.4.3 EXCEPTION TO USE OF ANSI COBOL. An exception to the use of ANSI COBOL may
be authorized under the following conditions:

9 A COBOL compiler does not exist for the target hardware.

e A COBOL compiler exists but the configuration in use cannot adequately
accommodate the compiler because of memory or equipment limitations.

e A COBOL compiler exists but certain required processing conditions cannot
be handled, examples being random access processing, translation of an ASC II
encoded tape, etc., such problems being solvable by called ALC subroutines. The
requirements for such modules should be addressed to the Executive Software
Division of the Executive Software Systems Directorate for consideration for
inclusion in Command executive software before a waiver is requested for a
system-unique ALC module.

a The cost of compiling ANSI COBOL programs has been properly documented
and determined to be prohibitive.

1.4.4 AUTHORITY TO GRANT AN EXCEPTION. The Commander, US Army Computer Systems
Command is authorized to grant an exception to the use of ANSI COBOL on all
multicommand or Command-unique systems that operate on ADPE acquired by the
Department of the Army to support standard USACSC-managed multicommand systems.
The request will be submitted in accordance with the provisions of TB 18-115,
Army Information Processing Standards (AIPS) Program.

1.5 FORTRAN. American National Standard FORTRAN (ANSI X3.9-1966) and basic
FORTRAN (ANSI X3.10-1966) are designated the Army Standard Programing Language
(ASPL) for scientific and engineering applications. Use of language elements
provided in individual FORTRAN compilers but not defined in the FORTRAN stan-
dards above must be approved by HQDA.

1.5.1 FORTRAN PROCEDURE. Developers responsible for scientific and engineering
type systems design and/or programing will program new systems and major revi-
sions to existing systems in FORTRAN.

1.5.2 EXCEPTION TO THE USE OF FORTRAN. An exception to the use of FORTRAN in
programs may be authorized under the following circumstances:

9 A FORTRAN compiler does not exist for the model of computer.

e A FORTRAN compiler exists for the configuration but lacks the power and
flexibility necessary to operate efficiently in a given system.

1-3



CSCM 18-1-1 15 Dec 81

1.5.2 EXCEPTION TO THE USE OF FORTRAN. (Cont.)

# A FORTRAN compiler exists for the configuration but lacks required capa-
bilities (i.e., floating point) and does not permit exit to another language.

1.5.3 AUTHORITY TO GRANT AN EXCEPTION. The Commander, US Army Computer Systems
Command is authorized to grant an exception to the use of FORTRAN on all multi-
command or Command-unique systems that operate on ADPE acquired by the
Department of the Army to support standard USACSC-managed multicommand systems.
The request will be submitted in accordance with the provisions of TB 18-115,
Army Information Processing Standards (AIPS) Program.

1.6 CHANGES TO MANUAL. Recommended changes to the manual are to be forwarded
to Conmander, US Army Computer Systems Command, ATTN: ACSC-TES, Fort Belvoir,
VA 22060. Recommendations will be submitted on DA Form 2028. Incomplete DA
Forms 2028 will be returned to the sender for further clarification before any
action is taken.

1.7 USACSC PROGRAMING CONCEPTS. The following are general USACSC programing
concepts:

s Easily transferable programs and programers that are machine independent
and programs that are easily transferable or require a minimum translation and
management effort to be fully operational on a variety of hardware.

e Easily maintained programs that are self-documenting with meaningful user
defined words, concise and descriptive comments, and a clear "meaningful" struc-
ture of sentences and paragraphs.

* Easily debugged programs through modular, building block structure and
avoidance of overly complex language elements.

* Efficient use of programing language to reduce processing time, simplify
the operator's job, and make more effective use of peripheral devices and main
storage.

1.7.1 THE SIMPLISTIC APPROACH. The best programing technique is the simplest
one. The program which is kept simple is easier to understand and follow. The
command programing objectives below are supported by the simplistic approach:

* Self-documenting Programs

e Machine Independence

e Maintainability

* Productivity

1-4



15 DEC 81 CSCM 18-1-1

1.7.1 THE SIMPLISTIC APPROACH. (Cont.)

e Standard Construct

e Logical Flow

* Efficiency

1.7.1.1 Self-documenting Programs. These aid in developing, maintaining and
reusing programs. The meaning and usage of data items is the most important,
but most neglected, program documentation. Reasons for redefining data items as
alphanumeric or numeric and class selection can be easily identified by provid-
ing a brief comment to the data item description. Other recommendations for
developing self-documenting programs are covered in this manual. Suggestions
include meaningful labels, data and logic organization.

1.7.1.2 Machine Independence. Independence from machine implies trans-
ferabilityand por ability. Transferability is the ability to move a system
from one vendor to another. Portability is the ability to move a system from
one location to another in a business sense. Thus a payroll system may be used
by more than one office or division on dissimilar equipment.

1.7.1.3 Maintainability. This implies a quick, accurate understanding of a
program's functions and logic by the maintenance programer who may not be
familiar with the program being maintained. This manual offers guidelines on
location coding for labels, prefixing of data names, meaningful data, and
program layout as well as simple, well-organized program logic. All of these
will help a programer write a more readable, maintainable program.

1.7.1.4 Productivity. This is the accurate measure of a program's success -
the long-range goal which all these other operational goals are designed to
achieve. Meeting these goals will result in a successful, productive program.

1.7.1.5 Logical Flow. This increases the simplicity of the code. Subtle
complexity is often introduced into the branching structure of a program.
If a programer gets into difficulty, the temptation is very great to patch
around a problem area. Many of the guidelines and standard constructs will
help the programer to avoid these pitfalls.

1.7.1.6 Standard Construct. This is a standardized grouping of various
language facilities desianed to perform a particular function. Some of the
constructs covered in this manual include the loop-controlling and flag use.
Other techniques covered which improve logical flow include mainline, subrou-
tines, and proper use of program control structures.

1.7.1.7 Efficiency. This is the aspect which programers are first concerned
about. Core-usage and run-time are still important, but not the only objectives
of the programer. They must be considered in conjunction with the previously
mentioned objectives. In this manner the techniques section offers suggestions
for efficient use of core and machine time.

1-5

V



CSCM 18-1 -1 15 Dec 81

1.8 PROGRAM DESIGN CRITERIA. This paragraph cannot cover all the decisions the
programer must face. It does, however, cover general procedures applicable to
any programing language.

e As the programer is designing his program, he can ask himself several
questions which match the effects of each potential usage of a language element
against the programing objectives of the commnand.

IS the element INEFFECTIVE or a repetitious, unnecessary alternative?

IS the coding AMBIGUOUS to the programer, if not to the compiler?

DOES it produce INEFFICIENT OBJECT CODE?

IS the element unnecessarily COMPLEX causing debugging and maintenance
problems?

DO IMPLEMENTATIONS of the element VARY from machine to machine signifi-
cantly, thus reducing chances of transferability?

IS the coding TOO GENERAL at the cost of inexplicit documnentation?

IS the coding FREQUENTLY MISINTERPRETED by programers?

IS the coding convenient at the cost of INEFFECTIVE OPERATIONS?

DOES the procedure result in a program with POOR ORGANIZATION?

DOES the procedure cause future program MAINTENANCE PROBLEMS?

e One must recognize that some of the objectives reflected by the above
questions are mutually exclusive. The compliance to one of the objectives may
force lack of co mpliance to other objectives. However, the techniques suggested
in this chapter are those which are designed to meet the objectives in the best
manner.

1.9 PROGRAM IDENTIFICATION. The program identification will be assigned as
outlined in TB 18-103, Software Design and Development.

1.10 MULTIPLE PROGRAM OUTPUTS. Parameter or control cards will be used to
control production of mnore tha one product by a single program. For example, a
program can be written which produces several reports from a single source of
input. The parameter or control card will contain an indicator representing
which report is required. Under no circumistances will the console operator be
required to make such a determination. Programs which produce variable or
optional reports will provide suitable methods for programatically selecting or
cancelling a particular report without requiring the console operator to make
such a determination.

1-6



.5 DEC 81 CSCM 18-1-1

1.11 FILE ORGANIZATION.

1.11.1 SEQUENTIAL FILE ORGANIZATION.

*A sequentially organized file has records arranged in a specified order,
according to a key or entry sequence. Access is serial. Sequential file organ-
ization can he used with either serial or direct access storage devices. How-
ever, all records must be serially passed in file sequence until the desired
one is located. Fast access to individual records is not possible. As a
result, transactions to update files are batched and arranged in the same order
as the master file. The master file is updazCed as discussed below.

* When sequentially organized files stored on magnetic tape are updated, a
new tape is created and the old tape provides the backup. Sequentially organ-
ized files on disks can be updated by developing and storing the new file in a
separate section of disk storage, or by writing the new records in the original
locations. But this latter procedure creates a backup problem. One solution is
to read the old file onto magnetic tape prior to the updating operation.

s If a large number of records within a file are normally accessed at a
given time, the sequential access method can permit faster and more efficient
processing than the direct access method while providing reasonably fast access
to stored data when only a few records are to be accessed.

* 1.11.2 INDEXED FILE ORGANIZATION.

* A file whose organization is indexed is a mass storage file in which data
records may be accessed by the value of a key. A record description may include
one or more key data items, each of which is associated with an index. Each index
provides a logical path to the data records according to the contents of a data

* * item within each record which is the record key for that index.

* The data item named in the RECORD KEY clause of the file control entry
for a file is the prime record rkey for that file. For purposes of inserting,
updating and deleting records in a file, each record is identified solely by the
value of its prime record key. This value must, therefore, be unique and must
not be changed when updating the record.

* A data item named in the ALTERNATE RECORD KE7Y clause of the file control
entry for a file is an alternate record key for that file. The value of an
alternate record key may be non-unique if the DUPLICATES phrase is specified for it.
These keys provide alternate access paths for retrieval of records from the file.

e In the sequential access mode, the sequence in which records are accessed is
the iscending order of the record key values. The order of retrieval of records
within a set of records having duplicate record key values is the order in which the
records were written into the set.

e In the random access mode, the sequence in which records are accessed is
controlled by the programer. The desired record is accessed by placing the
valuc of its record key in a record key data item.

*In the dynamic access mode, the programer may change at will from sequential
access to random access using appropriate forms of input-output statements.

1-7

W



CSCM 18-1 -1 15 Dec 81

1.11.3 RANDOM FILE ORGANIZATION.

9 When files are organized on a random basis, successive records are not
stored in sequential order nor even necessarily in adjacent storage. Each
record is located at an address which is computed by a randomizing process.

* Rewriting an entire file when additions or deletions are made is not neces-
sary. Transaction data need not be batched or presorted prior to processing.

e Random file organization is usually best suited for situations in which
large files are to be handled, the number of transactions per time period is not
large and very fast processing is desirable.

1.11.4 ELEMENTS OF FILE DESIGN. FIGURE 1-1 summnarizes the discussion of
file organization.

SPACE ACCESS
ACTIVITY VOLATILITY UTILIZATION TIME

SEQUENTIAL __ HIGH LOW HIGH SLOW

INDEX SEQ. SEQ DIRECT
HIGH LOW MED LOW FAST

RANDOM LOW HIGH LOW FAST

FIGURE 1-1

1.11.5 FILE DESIGN CONSIDERATIONS.

1.11.5.1 Interacting Factors. A number of interacting factors must be considered
in designing a file. Thes-e file design considerations, which are listed below, are
closely related and no decision should be made in isolation. The first four con-
siderations are program independent. The considerations are listed in the order they
might logically occur, not in order of significance. For example, a block size might
be crucial on a small configuration, but trivial on a large one.

* DATA CONTENT Which data items make up a record; which
records make up a file.

* SEQUENCE Random or sequential; if sequential, what
seluence.

* FORMAT Fixed or variable length records; location
of data items within the record.

* PROCESSING MODE Sequential, indexed or random.

* SECURITY

* RESTART POINTS

* DEVICES AVAILABLE

1-8



15 DEC 81 CSCM 18-1-1

1.11.5.1 Interacting Factors. (Cont.)

* BUFFERING

* BLOCK SIZE

1.11.5.2 Hit Ratio. The hit ratio, which is a mathematical function used to
describe file activity, is widely used to determine file organization.

number of records accessed
e Hit Ratio = numfr-5 records on file

@ Just as the file design factors listed before are not independent of each
other, hit ratio cannot be considered by itself. For example, time and type of
activity can both influence hit ratio. Does the input activity have a peak or
heavy activity? Is there a season or cycle? Perhaps on a given day only 5% of
customers on a file place an order but 60% of the customers may be billed. The
user has two hit ratios to consider.

* There are other factors at work which can be mentioned in passing such as
track hit ratio, I/O message ratio, file volatility and overflow characteristics.

e Therefore, the hit ratio is not a simple construct which stands alone.

The file designer must consider many other factors that are interactive.

1.11.5.3 Misleading Rules of File Design.

a If hit ratio is low, update the file randomly, otherwise sequentially.

THE CHOICE here is apparently between randomly updating hit records in
position and updating the entire file. But there are other factors to take into
consideration. For example, random processing infers the entire file to be on-
line to the CPU; further if fast restart recovery procedures are required, the
dumping of the original file records demands further secondary storage. All of
this required storage space may not be available.

ANOTHER SOLUTION to the sequential versus random dilemma may be to split
the file into hit and non-hit (or infrequently hit) sections. In this case,
processing sequentially the infrequentiy referenced data at less frequent nter-
vals might be justifiable.

CONVERSELY, RANDOM PROCESSING might be used in a high hit ratio situation
For example, if data cause a high degree of interaction among separate files, then
one-shot processing might be desirable whereby the data updates one file sequen-
tially and the remaining files randomly.

e If hit ratio is low, use indexed-sequential; else use sequential processing

IF THE FILE is highly volatile or has severe overflow characteristics, what-
ever the hit ratio, another organization would probably be chosen.

1-9



CSCM 18-1-1 15 Dec 81

1.11.5.3 Misleading Rules of File Design. (Cont.)

a If the hit ratio is low, use disk; otherwise, magnetic tape.

THIS AXIOM is the most general of all and embodies confusion between
file organization methods, processing methods and devices. File organization
and processing were discussed above and therefore it remains to compare disk and
tape for sequential processing.

DISKS are faster than most tapes when sequentially processing; thus
a tight time requirement might favor disks. Additionally, sequentially proc-
essing disk might require fewer devices than a similar tape system.

EVEN SEQUENTIAL DISK FILES can have characteristics of direct access
when required, if only by the "binary search" technique; this facility might
save passes of the file. For example, amendments to record keys can require
that the file be resequenced in the current run; a tape file will require an
extra pass whereas the direct access facility can be used to avoid this for the
disk version.

THESE AND OTHER ARGUMENTS favor disk sequential processing; but on the
other hand, tape sequential processing is often more economical.

1.11.6 INPUT MEDIA.

1.11.6.1 Console. The console typewriter will not be used as an input medium
by application programs except where necessary for runtime conditions such as
intervention on peripherals. Only conditions which cannot be determined prior
to the job being read into the computer can be entered on the console
typewriter. Approval must be obtained from Technical Evaluation & Standards
Directorate (TESD) prior to the console being used as an input device.

1.11.6.2 Tape. All tape data files created by USACSC standard systems must
employ standard labels as described in the appropriate vendor's reference
manual.

1.11.6.3 Card. Card records will be defined as 80 character records.
ASD's will-F-loy card-to-tape or card-to-disk utilities for all large volume
card inputs.

1.11.6.4 Direct Access Storage Devices. Direct access devices provide
retrieval facilities for sequential, indexed, and direct file organization
structures.

1.11.7 OUTPUT MEDIA.

1-10



15 DEC 81 CSCM 18-1-1

1.11.7.1 Printer. Output data destined for orinting will not be assigned by a
program to a systems printer. Such a technique causes the program to run at the
speed of the printer (a relatively slow unit record device) and makes program
execution dependent upon the availability of the printer. The printer output
will be assigned to the appropriate synbolic device depending on the target
operating system. When the target operating system does not have device inde-
pendence nor an automatic spool intercept capability, the printer output must be
assigned to tape or disk depending on the hardware configuration (refer to
USACSCM 18-2 series Executive Software Manual for Standardized SPOOL Utility
interface specifications). The file descriptions must be designed to be cor-

4- patible across these operating systems. Each report or listing not printed on
preprinted special forms will be programed to provide the information requested
be 1ow.

1.11.7.1.1 Security Classification. If the printed report is classified, the
level of classification (CONFIDENTIAL, SECRET, etc.) will be centered at the top
and bottom of each page. No other information will be on the classification
lines. When programs which produce classified printed output are in a test status
using other than live data, the classification will be replaced with UNCLASSIFIED
which occupies the same number of positions as the actual classification. The
downgrading of the classification will be programmatically controlled during the
test phase. The marking and downgrading instructions contained in AR 380-5 will
be used for production work.

1.11.7.1.2 First Header Line. The first header line of each page will contain,
as the first entry at the extreme left of the line, the word "PREPARED" followed
by the current date in the form of two numeric character day, three to nine
alphabetic character month, two numeric character year. The title of the report
will be centered on this line. The Report Control System (RCS) and the Product
Control Number (PCN) will print following the title or at the extreme right of
the line. The literal "PCN" and/or "RCS" will precede its associative data
elements by one space (i.e., PCN AAA-AOI, or RCS MAA-AO). If an as-of-date is
required, it should appear following the RCS and/or PCN. As-of-date is cate-
gorized as constant data which varies by reporting cycle.

1.11.7.1.3 Remaining Header Lines. Remaining header lines will describe all
columns of data that are contained in the report. The descriptions will be
short words and/or meaningful abbreviations. Common descriptions within a
system will be used.

1.11.7.1.4 Detail Lines. The actual report lines contained in the body of
each page will be formatted according to the report specifications. When total
lines are required within a report, the total lire(s) should not be split across
pages.

1.11.7.1.5 Page Line. The last line of each page or, in the case of classified
reports, the next to the last line of each page, will contain the word PAGE to
the right of the page followed by the page number. The final page of the report
will contain the word END preceding the PAGE.

1-11



CSC(IM 18-1-1 15 Dec 81

1.11.7.1.6 Spacing. The standard vertical spacing for all printed output
will be six or eight lines per inch and the standard carriage control tape

- will be used for all printing. The use of non-standard carriage tapes (for
use with forms other than standard 1413 or 11 inch deep paper) is not
authorized. Special form spacing will be under program control.

1.11.7.1.7 Skipp ing. See FIGURE 1-2.

CHANNEL 6 PRINT LINES PER INCH 8 PRINT LINES PER INCH

1 5 and 71 (The first 7th line (The first
line of print of a line of print of a
page.) page.)

9 61 and 127 (Bottom 81 (Bottom of page
of page print line print line for page
for page number or number or next to
next to last line last line of print
of print if security if security classi-
classification is fication is required.)
required.)

12 Restricted for Remote Job Entry (RJE) terminal use.

FIGURE 1-2

1.11.7.2 Punch. Output data destined for punching will not be assigned by
a program To-a systems punch. Such a technique causes the program to run
at the speed of the punch (a very slow unit record devicc) and makes
program execution dependent upon the availability of the punch. The guide-
lines for the device assignrant of punch output is the same as for the
printer.

1.11.7.3 Tapes and Direct Access Storage Devices. Reference applicable
subparagraphs under paragraph 1.11.6, Input Media.

1.11.8 PROGRAM TO OPERATOR MESSAGES. Program messages will be displayed
upon either SYSLST or the console as follows.

1-12



15 DEC 81 CSCM 18-1-1

1.11.8.1 Format. See FIGURE 1-3.

XXXXXXXX 16XX 6X 16 X ---- X ---- X

S S S
Program- P Message P Type P Text up to 50

ID A Number A Message A positions
C C C
E E E

FIGURE 1-3

1.11.8.2 Program-ID. Will be the program name in accordance with Chapter 2
of TB 18-103, Software Design and Development.

1.11.8.3 Message Number. Messages will be numbered in sequence within each
program. Messages numbered 1 through 9 will be preceded by a zero.

1.11.8.4 Type of Message. A one position code indicating the type of message.
See FIGURE 1-4.

CODE MEANING

I Information data as in run statistics. Print
on printer only. IBM OS prints on SYSOUT; IBM
DOS prints on SYSLIST.

D Operator intervention required.

R Error recovery message.

H Progripmed halt unrecoverable.

FIGURE 1-4

1.11.8.5 Halts. Halts will not be used by the programer except for conditions
which prohibit'continuation of a run (i.e., out of sequence files). Halt
messages when used, shall be short and concise. All halts must be fully docu-
mented with stated recovery procedures for the system coordinator.

e The console operating instructions will specify the corrective processing
actions requir.d for each programed computer run halt. Following are examples
of halt conditions:

1-13



CSCM 18-1-1 15 Dec 81

1.11.8.5 Halts. (Cont.)

SEQUENCE ERROR HALTS

DATA CONSTANT CONTROL CARD HALTS

END-OF-JOB HALTS

OPERATING SYSTEM HALTS

OTHER PROGRAMED HALTS

UNPROGRAMED HALTS

1. 11.9 RECOVERY GUIDANCE. Every program must have documented procedures
describing the recovery operations re'cuired when a program is abnormally ter-
minated. Program Check Point/Recovery standards and procedures are described in
Chapter 2 of TB 18-103, Software Design ind Development.

1.11.10 ERROR CONDITION OPTIONS. Error conditions disclosed as a result of
auxiliary checking, i.e., cycle sequence validation on header labels, balancing,
etc., must be programed to pause and wait for the operator's response to a
programed message which allows for termination (error) or acceptance (continue
computer run).

1.11.11 CONSOLE SWITCHES. Console switches will not be used since their use
restricts the transferability of programs across vendor lines. Control/
Parameter cards should be used when program operation is to be externally
varied.

1.11.12 UTILITY PROGRAMS AND SUBROUTINES.

1 For utility program usage and availability, reference the appropriate
USACSGM 18-2 Executive Software Manual and/or the appropriate Vendors Utility
Manual.

* For subroutine availability and usage, reference the appropriate USACSCM
18-2 Executive Software Manual.

1-14



15 PEC 81 CSCM 18-1-1

CHAPTER 2

USACSC STANDARD PORTABLE EXPANDED COBOL

ANSI COBOL SUBSET

2.1 ANSI COBOL. The American National Standard Common Business Oriented
Language (ANSI COBOL) is the DA standard computer language for use in business-
type information and data systems. USACSC represents the Department of the Army
on the CODASYL COBOL Committee (formerly the Conference on Data Systems
Languages Committee). Suggestions, additions or deletions concerning the Common
Business Oriented Language (COBOL) should be addressed to:

DA CODASYL Representative
ACSC-TES

2.2 INTRODUCTION. In the past, program development has, to a large extent,
been characterized by what can be called AUTONOMOUS growth. That is each
system, at best, developed their own language concepts and standards, usually
independent of any other system. In a Uniform Automated Data Processing
environment this type of development leads to redundant effort, inconsistent
guidelines and tends to compound the problems of programer training and program
maintenance. A further ingredient that is missing, which is essential to a
Standard Army Multicommand Management Information System (STAMMIS) environment,
is the concept of central control. These standards have been developed in order
to achieve the following objectives:

* Program Maintainability.

e Program Portability and Transferability.

* Programer Training and Understanding.

e Central Control (STAMTIS).

* Management Flexibility.

2.2.1 PURPOSE OF USACSC STANDARD PORTABLE EXPANDED COBOL, ANSI COBOL SUBSET
SPECIFICATIONS. Chapter 2 is constructed to De a stand-alone document within
the total presentation of the General Programing Standards. This recognizes
that some readers of this manua' are mainly concerned with the COBOL concepts.
Therefore, the USACSC COBOL specifications contained in this chapter are
intended to provide USACSC personnel, who are involved in STAMMIS developmert,
with the rules of the language described in a source program environment. It is
also the intent to provide, as much as possible, independence from hardware con-
siderations. Therefore, this section provides the user with a convenient source
for determining the syntax and behavior rules for the elements of COBOL.

2-1

. \ -.



CSCM 18-1-1 15 Dec 81
2.3 LANGUAGE CONVENTIONS.

2.3.1 GLOSSARY. The definitions of the COBOL terms in the Glossary are pro-
vided merey as reference material or introductory material. The definitions
are therefore brief and do not give any detail of syntactical rules. Most of

- the terms are further discussed in other areas of this manual. Refer to
Attachment 1 for Glossary definitions.

2.3.2 LANGUAGE STRUCTURE. The individual characters of the language are con-
catenated to form chiara-cter-strings and separators. A separator may be
concatenated with another separator or with a character-string. A character-
string may only be concatenated with a separator. The concatenation of
character- strings and separators forms the text of a source program.

2.3.2.1 Separators. The space and punctuation characters, when not used as
literals, are separators. More than one space may be used as a separator. The
space may be used with other separators as defined as follows.

2.3.2.2 Punctuation Characters. In order for the punctuation characters
period, comma and semioon to be used as separators, a space must immediately
fol low.

2.3.2.3 Quotation Marks. When using quotation marks, a separator other than a
quotation mark is required immediately to the left of an opening quotation mark
and immediately to the right of a closing quotation mark.

2.3.2.4 Character-String. A character-string is a sequence of contiguous
characters used to form a literal, a word, a PICTURE character-string, or a
comment character-string.

2.3.2.5 Delimiters. A character-string is delimited by the separators: space,
period, right parenthesis, coma and semicolon. A space must follow the period,
comma or semicolon. A space must not immediately follow a left parenthesis nor
immediately precede a right parenthesis. When using a PICTURE character-string,
the separators used as delimiters are the space, period or semicolon. A space
must not appear within the PICTURE character- string.

2.3.3 WORDS.

2.3.3.1 Definition of a Word. A word is made up of a combination of not more
than 30 characters selected from the character set for words. The first or the
last character cannot be a hyphen. The space is not an allowable character within
a word; the space is a word separator.

2.3.3.2 Types of Words. There are two basic types of words: Reserved words
and user-etindwords. User-defined words must be distinct from all reserved
words. For USACSC systems user-defined words must begin with an alphabetic
character, must be unique and must not be qualified.

2-2



15 DEC 81 CSCM 18-1-1

2.3.3.2.1 Reserved Words. Refer to Attachment 2 for a list of Reserved Words.

e A KEY WORD is a word that is required when the format in which it
appears is used in a source program. In this manual, key words are upper-case
and underlined.

a An OPTIONAL WORD is a word that is included in a format only to improve
the readability. The presence or absence of an optional word does not alter the
semantics of the format. These words appear in this manual as upper-case words
that are not underlined.

a There are three types of CONNECTIVES: Qualifier connectives, series con-
nectives and logical connectives.

The qualifier CONNECTIVES are used to associate a data-name or paragraph-
name with its qualifier. The qualifier connectives are OF and IN.

The series CONNECTIVE is used to link two or more operands. The series
connective is the commna.

The logical CONNECTIVES are used in compound conditions. The logical
connectives are AND, OR, AND NOT and OR NOT.

e All SPECIAL REGISTERS are compiler-generated storage areas that are
primarily used to store information produced with the use of specific COBOL
features.

9 All FIGURATIVE CONSTANTS are constants to which fixed data-names have
been assigned. These data-names must not be inclosed in quotation marks whenl
used as figurative constants. The singular and plural forms of figurative
constants are equivalent and may be used interchangeably. Whenever a literal
appears in a format, a figurative constant may be used in its place. There is
one exception: If the literal is restricted to numeric characters, only the
figurative constant ZERO (ZEROS, ZEROES) is allowed.

*The fixed DATA-NAMES and their meanings are as listed in FIGURE 2-1.

2-3



CSCM 18-1-1 15 Dec 81

2.3.3.2.1 Reserved Words. (Cont.)

ZERO Represents one or more of the character of 0 depend-
7EMS ing on context.

=E~S

SPACE Represents one or more blanks or spaces.

HIGH-VALUE Represents one or more of the characters which are of
TTFVAFLtS the highest value in a computer's collating sequence.

LOW-VALUE Represents one or more of the characters which are of
LFWVALUES the lowest value in a computer's collating sequence.

QUOTE Represents one or more of the character ". The word
=~TS QUOTE (QUOTES) cannot be used in place of a quotation

mark in a source program to inclose a non-numeric
literal.

ALL literal Represents one or more of the string of characters
comprising the literal. The literal must be either a
non-numeric literal or a figurative constant other than
the ALL literal. When? a figurative constant is used,
the word ALL is redundant and is used for readability
only.

FIGURE 2-1

9 When a FIGURATIVE CONSTANT is used to represent a string of one or more
characters, the length of the string is determined by the compiler from context
according to the following rules:

When the FIGURATIVE CONSTANT is associated with another data name, as
when the figurative constant is moved to or compared with another data item, the
string of characters specified by the figurative constant is repeated character
by character on the right until the size of the resultant string is equal to the
size of the associated data item.

When the FIGURATIVE CONSTANT is not asscciated with another data item,
such as when the figurative constant appears ir a DISPLAY, the length of the
string is one character. 'The figuirative constant ALL literal may not be used
with DISPLAY.

2-4



15 DEC 81 CSCM 18-1-1

2.3.3.2.2 User-Defined Words.

e A LITERAL is a string of characters whose value is determined by the
ordered set of characters of which the literal is composed. There are two
types of literals, numeric and non-numeric.

A NUMERIC LITERAL is a string of characters selected from the digits
0 through 9, the plus sign, the minus sign and the decimal point. Numeric
literals may be up to 18 characters in length. The rules for the formation
of numeric literals are as follows:

A NUMERIC LITERAL must not contain more than one sign character. If
a sign is used, it must appear as the leftmost character. If the literal
is unsigned, it is assumed positive.

A NUMERIC LITERAL must not contain more than one decimal point. The
decimal point is treated as an assumed decimal point, and may appear
anywhere within the literal except as the rightmost character. If the
literal does not contain a decimal point, it is considered to be an
integer. The value of a numeric literal is the algebraic quantity repre-
sented by the characters in the numeric literal. Every numeric literal is
category numeric. If the literal conforms to the rules for the formation
of numeric literals, but is also inclosed in quotation marks, it is then
considered to be a non-numeric literal by the compiler.

A NON-NUMERIC LITERAL is a string of allowable characters belonging
to the USACSC character set, excluding the character quotation marks, bound by

- quotation marks. A non-numeric literal may be made up from 1 to 120 charac-
ters inclosed in quotation marks. Although IBM allows the apostrophe
(single quote) to be used in lieu of quotation marks (double quotes), only
the ANSI standard quotation marks ("1) will be used. Any spaces that are
inclosed in the quotation marks are considered a part of the non-numeric
literal, and therefore part of the value. Every non-numeric literal is
placed in the category alphanumeric.

* A DATA-NAME is a word that contains at least one alphabetic
character and does not begin with a hyphen and names an entry in the DATA
DIVISION.

* A CONDITION-NAME is a word which is assigned to a specific value,
set of values, or range of values within the complete set of values that a
data-item may assume. The CONDITION-NAME is called a conditional variable.

* The CONDITION-NAME is used in conditions as an abbreviation for the
relation condition. The relation condition assumes that the associated con-
ditional variable is equal to one of the set of values to which that
CONDITION-NAME is assigned.

2-5



CSCM 18-1 -1 15 Dec 81

2.3.3.2.2 User-Defined Words. (Cont.)

*A PROCEDURE-NAMwE is a word used to name a paragraph or a section
- which is used in the PROCEDURE DIVISION. A procedure-name may be composed

solely of numerics, but is equivalent to another procedure-name only if
they are both composed of the same number of digits and have the same
numerical value.

9 A MNEMONIC-NAt'E is used to assign a user-defined word to an
impignentor-name and must contain at least one alphabetic character. These
associations are established in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. This association allows the user to substitute the
mnemonic-name for the impleiientor-defined name in any format where a
substitution is valid.

2.3.4 CONCEPTS OF DATA REFERENCE.

2.3.4.1 Logical Record and File Concept. The approach of distinguishing
between the physical aspectfs-ofite file and the conceptual characteristics
of the data contained within the file is taken in defining file
i nf orm at ion.

The physical aspects of a file describe the data as it appears on
the input or output media, such as mode in which the data file is recorded
on the external medium, grouping of logical records within the physical
limitations of the file medium, and a means by which a file can be
identified.

The conceptual characteristics of a file are the definition of each
logical entity within the file itself. The LOGICAL RECORD is a group of
related information, uniquely identifiable and treated as a unit. The
input and output statements pertain to one logical record.

A physical unit of information whose size and recording mode is
convenient to a particular computer for the storage of data on an input or
output device defines a PHYSICAL RECORD. The size of a PHYSICAL RECORD is
dependent on the hardware and has no relationship with the size of the file
of information contained on a device.

A physical unit may consist of one or more logical records. Also,
in the case of mass storage files, a LOGICAL RECORD may require more than
one physical unit to contain it. In this manual references to records
refer to logical records, unless otherwise specified as physical records.

2.3.4.2 Concept of COBOL Levels. In structuring a LOGICAL RECORD, a level
concept is inherent. ThIs -concept is necessary in order to specify sub-
divisions of a record. These subdivisions may be used for the purpose of
data reference. Once a subdivision has been specified, it may be further
subdivided in order to permit more detailed data reference.

2-6



15 DEC 81 CSCM 18-1-1

2.3.4.2 Concept of COBOL Levels. (Cont.)

The elemientary items are the most basic subdivisions. They cannot
be further subdivided. A record consists of a sequence of elemientary items
or the record itself may be an ELEMENTARY ITEM.

A set of elementary items can be combined into a group. Each group
is made up of a sequence of one or more elementary items. Groups may be
combined together into other groups. Therefore, an ELEMENTARY ITEM may
belong to more than one group.

2.3.4.3 Level-Numb~ers. A LEVEL-NUMvBER is used to show the organization of
an elementary item an a group item. All level-numbers for records start at
01, and less inclusive data items are assigned higher level-numbers not
greater than 49.

A group includes all group and elementary items following it until
a level-number less than, or equal to, the level-number of that group is
encounte ed. All items which are immediately subordinate to a given group
item must ave level-numbers greater than the level-number of that given
group item.

There are special LEVEL-NUMBERS 66, 77, and 88 which are exceptions
to the above rules. There is no true concept of level for this entry.

The LEVEL-NUMBER 66 is used for entries whiich describe items by
means of a RENAMES clause. This level-number is used for the purpose of
regrouping data items. However, level-number 66 is not a part of USACSC COBOL. '

The LEVEL-NUMBER 77 is used for entries that specify noncontiguous
data items. These data items are not subdivisions of other items, nor are
they themselves subdivided.

The LEVEL-NUMBER 88 is used for entries that specify
condition-names. These entries are to be associated with particular values
of a conditional variable.

2.3.4.4 Concept of Classes of Data. All data items are grouped into three
classes: -Alphabetic, numeric and alphanumeric.

For alphabetic and numeric, the class and the category of the data
item are synonymnous.

The class of alphanumeric includes the categories numeric-edited,
alphanumeric-edited and alphanumeric (without editing).

Group level items are treated at object time as alphanumeric regardless
of the class of the elementary items subordinate to that group item.

2-7



CSCM 18-1-1 15 Dec 81
FIGURE 2-2 below shows the relationship of the class and categories of

data items.

Level of Item Cl ass Category

Alphabetic Alphabetic

Numeric Numeric

Elementary

Numeri c-Edi ted

Alphanumeric Alphanumeri c-Edi ted

Alphanumeric

Alphabetic

Non-elementary Alphanumeric Numeric(Group)
Numeri c-Edi ted

A lphanumeri c-Edi ted

Alphanumeric

FIGURE 2-2

2.3.4.5 Algebraic Signs. There are two purposes for algebraic signs. They are
used to sw whether the value of an item involved in an operation is positive
or negative and also used to identify an item for an edited report as being
positive or negative.

The signs used with the item for an edited report are not operational
signs, but are used only to display the sign of an item.

The editing signs are inserted into a data item through the use of the
sign control synbols of the PICTURE clause.

The SIG clause is used to state explicitly the location of the opera-
tional sign in a DISPLAY item. If the clause 4s not used, the operational sign
is represented as defined by the implementor.

2.3.4.6 Qualification of Name. Every name in a COBOL source program must be
unique. It must be made unique by making sure that no other name has the iden-
tical spelling ind hyphenation. Qualification as a means of making a name unique
is allowed only in conjunction with COPY libraries.

2-8

L ... I. . . ..



15 DEC 81 CSCM 18-1-1

2.3.4.7 Subscripting. When there is a need to make reference to an individual
element within a list or table of like elements that have not been assigned
individual data-names, subscripting can be "sed.

An INTEGER or a DATA ITEM whose description is that of an integer may be
used to represent a subscript. No subscript can itself be subscripted. The
lowest possible value for a subscript is one (1). This is the first element in
a table. The values 2, 3, etc. are used for the next sequential elements of
that table. The highest permissible subscript value for any particular table is
the maximum number of occurrences of the item that is specified in the OCCURS
clause.

Parentheses are used to inclose the subscript or set of subscripts which
follow the table element data-name which it identifies. When a table element
data-name is appended by a subscript, it is called a subscripted data-name or an
identifier. When more than one subscript is needed, the subscripts are written
in the order of successively less inclusive dimensions of the data organization.
A comma must be used to separate subscripts in a series.

The general format for subscripting is:

Cdat a-name
~coditon-ame (subscript-i C,subscript-21 ... )

2.3.4.8 Indexing. References to individual elements within a table of like
elements can also be made by specifying indexing. This is done by using an
INDEXED BY clause in the definition of a table. The name will be used to index
the table and is referred to as an index data-name. This index data-name must
be initialized by either a SET, SEARCH ALL or PERFORM statement before it can be
used to reference the table.

There are two kinds of indexing: direct indexing and relative indexing.
Direct indexing is in the form of subscripting. Relative indexing is specified
when an index data name is 4ellowed by a space, followed by one of the operators
+ or -, followed by another space, followed by an unsigned numeric literal, all
inclosed within parentheses after the index data-name. When more than one index
data-ame is required, they are written in the order of successively less inclu-
sive dimensions of the data crganization. A coma may be used to separate indi-
ces in a series.

The general format for direct indexing is:

Sdata-name-___ ____

(index-name-1 [,index-name-2...)

cond i tion-name)

2-9



CSCM 18-1-1 15 Dec 81
2.3.4.8 Indexing. (Cont.)

The general format for relative indexing is:

data- name r
t j index-name-1 + literal-I

condi tion-name

[ , index-name-2 [+} literal-2 ]] .. )

For a further discussion of subscripting and indexing, see paragraph 2.5.4,

Table Handling Feature.

2.3.5 USACSC COBOL REFERENCE FORMAT.

2.3.5.1 General Description of Reference Format. The reference format is used
to provid-d standard method for describing COBL source programs. The reference
format is described in terms of character positions in a line on an input-output
medium. The format consists of a standard 80-column punched card or 80-column
line of which each of the 80 columns represents a character position. The COBOL
compiler accepts source programs written in reference format and produces an
output listing of the source program input in reference format.

2.3.5.1.1 Rules. The rules for spacing discussed in the reference format take
precedence over all other rules for spacing.

2.3.5.1.2 Divisions. The divisions of a source program must be in the following
order: the-Tr=TFTCATION DIVISION, the ENVIRONMENT DIVISION, the DATA DIVISION,

then the PROCEDURE DIVISION. Each division must be written according to the
rules for reference format.

2.3.5.2 Reference Format Representation. The reference format for a line is
represented as follows:

Margin Margin Margin Margin Margin Margin
L C A 11B7 R Ej
1 ... 6 7 8 11 l 12 ... 72 73 .. 801

Sequence Number Area A Area B
Area

Indicator
Column

2-10



15 DEC 81 CSCM 18-1-1

2.3.5.2 Reference Format Representation. (Cant.)

Margin ILI is immediately left of the leftmost character position of a
line.

Margin 'C' is between the 6th and 7th character positions of a line.

Margin 'A' is between the 7th and 8th character positions of a line.

Margin 'B' is between the 11th and 12th character positions of a line.

Margin 'R' is between the 72nd and 73rd character positions of a line.

Margin 'E' is immediately right of the rightmost character position of a
line.

The sequence number area occupies the first six (1-6) character posi-
tions of a line and is between Margin 'L' and Margin CI.

The indicator column is the 7th character position of a line. If there
is no hyphen, it is assumted that the last character in the preceding line is
followed by a space.

Area 'A' occupies character positions 8, 9, 10, and 11 beginning at
Margin 'A' and ending at Margin 'B'.

Area 'B' occupies character positions 12 through 72 beginning at Margin
'B' and ending at Margin 'R' .

A program identification is placed in your source listing by the source
library system in character positions 73 through 80 beginning at Margin 'R' and
eniding at Margin 'E', glen extracting a source program from a Source Library
System (SLS).

2.3.5.2.1 Sequence Numbers. A sequence number, consisting of six digits in the
sequence number area, is used to numerically label each card image in a source
program to be compiled by the COBOL compi ler. The use of coded sequence numbers
is optional since the USACSC SLS will automatically assign sequence numbers when
extracting a source program. However, it is recommended that sequence numbers
be assigned when coding. Sequence numbers shoild be incremented by 10.

2.3.5.2.2 Division Header. The first line in each division must be the divi-
sion header. The division header starts at the left boundary of Area 'A'
(character position 8). The division header consists of the division-name,
followed by a space, the word DIVISION, and tilen a period. No other text miy
appear on the same line as the division header. However, if the program is to
be called by another program, a space and a USING clause may follow the words
PROCEDURE DIVISION.

2-11



CSCM 1 -1- 15 Dec 81

2.3.5.2.3 Section Header. The section header must start at the left boundary
of Area 'A'(character position 8). The section header consists of a section-
name followed by a space, the word SECTION, and a period. If program segmen-
tation is used, a space and a priority number followed by a period (.), may
follow the word SECTION. No other text may appear on the same line as the sec-
tion header, with the exception of the COPY sentences.

Sections appear in the ENVIRONMENT and PROCEDURE DIVISIONS and as
DATA DIVISION entries in the DATA DIVISION.

2.3.5.2.4 Paragraph-Name and Paragraph

* A PARAGRAPH-NAME starts at the left boundary of Area 'A' (character posi-
tion 8) of any line following the first line of a division or a section. A
paragraph-name is followed by a period and a space.

* A PARAGRAPH consists of a paragraph-name followed by one or more sen-
tences. The first sentence or entry in a paragraph begins on the next line
following the paragraph-name at the left boundary of Area 'B' (character posi-
tion 12); except in the IDENTIFICATION DIVISION and ENVIRONMENT DIVISION where
the entry must be on the same line as the paragraph-name or in using the COPY
statement which may also be on the same line as the paragraph-name. Each suc-
cessive sentence in a paragraph must begin at the left boundary of Area 'B'
(character position 12). When a sentence or entries of a paragraph require more
than one line, they may be continued as described in paragraph 2.3.5.4.1,
Continuation of Lines.

2.3.5.3 Data Division Entries. Each DATA DIVISION entry begins with a level
indicator or a level-number, followed by a space, followed by a user-defined
data-name or the reserved word FILLER, followed by a sequence of independent
clauses describing the data item. The last clause is always terminated by a
period followed by a space. There are two types of entries in the DATA
DIVISION: those entries that begin with a level indicator and those entries
that begin with a level-number.

2.3.5.3.1 Level Indicators. A LEVEL INDICATOR is either an FD (file
description) or an SD (sort description). The level indicator begins at the
left boundary of Area 'A', followed by the associated descriptive clauses.
Those DATA DIVISION entries that begin with level-numbers are referred to as
data description entries.

2.3.5.3.2 Data Description Entries. In a DATA DESCRIPTION ENTRY that begins
with a level 01, the level-number begins at the left boundary of
Area 'A' (character position 8), followed by two spaces, followed by the asso-
ciated record-name or item-name, and then followed by its appropriate descrip-
tive clauses. Level-numbers may be initially :aken from a set of values 01
through 49 in increments of 2 (in order to allow for future insertions (i.e.,
01, 03, 05, 07, etc.)) and the values 77 and 88.

2-12



15 DEC 81 CSCM 18-1-1

2.3.5.3.3 Level-Numbers P1 through 49. These level-numbers are used to desig-
nate grouped data items that form records. Second level and successively
increasing level-numbers begin in column 12 and must be indented four spaces
over from the preceding level-number; except no level-numbers will go beyond
column 24. The associated record-name follows the level-number by two spaces.

When a level-number of lower value than the preceding level-number is
reached, a new group of data description entries is encountered. The levels for
this new group of data description entries must then follow the above rules for
successively increasing level-numbers.

2.3.5.3.4 Level-Number 77. This level-number is used for entries that describe
independent data items. Level 77 entries must precede all other entries in the
WORKING-STORAGE SECTION and LINKAGE SECTION and must begin at the left boundary
of Area 'A' (character position 8), followed by the associated record-name or
item-name in character position 12, and then followed by its appropriate descrip-
tive clauses.

2.3.5.3.5 Level-Number 88. This level-number is used for entries that assign
names to specific values fhat data items may assume. The level-number 88 must
be coded in character positions 8 and 9, followed by its associated record-
name or item-name in character position 12, and then followed by its approoriate
descriptive clauses.

2.3.5.3.6 Clause. No more than one clause may be coded on any given card, with
the exception of-the first clause which may be coded on the first card with
data-name or FILLER.

2.3.5.3.7 First Clause. The first clause, coded in a data description entry
followinn the data-naie or CILLER, may be coded no further to the left than
character position 48 at the same (first) card. That clause may start to the
right of column 48 if required in order to leave at least one space after data-
name or FILLER. However, no clause may be placed on the first card if it cannot
be completed on that card. if it cannot be completed or that first card, it
must be placed on the second card and must follow the rules for the secord and
succeeding clauses as explained in the next paragraph.

2.3.5.3.8 ^lauses. All clauses, coded on the second and followinC cards, must
be coded beginning in character position 38, with continuation of litera's
beginning in character oosit on 20. !See naragraph 2.3.5.4.2, Continuation of
Non-numeric Literals and pa-iagraph 2.3.5.4.3, Continuation of Numeric Literals.)

2.3.5.4 Continuation.

2.3.5.4.1 Continuation of Lines. Any sentence or entry that requires more than
one line is continued onTotne next line and is started in character position
16. The subsequent lines are called the continuation line(s). The line being

2-13



CSCM 18-1-1 15 Dec 81

2.3.5.4.1 Continuation of Lines. (Cont.)

continued is called the continued line. (This rule does not apply for DATA
DIVISION entries.)

2.3.5.4.2 Continuation of Non-numeric Literals. A hyphen (-), placed in the
indicator column (character position 7) of the continuation line, is used to
indicate the continuation of a non-numeric literal. Prior to the continuation
line, the last character of the non-numeric literal occurs in column 72. A
quotation mark must be placed in character position 24 of the continuation line,
followed by the continuation of the non-numeric literal. The non-numeric
literal must be inclosed within quotation marks.

2.3.5.4.3 Continuation of Numeric Literals. A hyphen (-), placed in the indi-
cator column (character position 7) of the continuation line, is also used to
indicate the continuation of numeric literals. The numeric literal must begin
on the continuation line in character position 20. The first non-blank character,
starting at character position 20 of the continuation line, is to follow the
last non-blank character of the continued line.

2.3.5.5 Blank Lines. A line is considered blank, if it contains nothing but
spaces from the lef boundary of Margin 'C' (character position 7) through the
right boundary of Margin 'R' (character position 72). A blank line can appear
anywhere within a source program, except immediately preceding a continuation
line.

2.3.5.6 Comment Lines. An asterisk (*), placed in the indicator column
(character position 7) of any line, is used to specify that that line is a corn-
ment. Any combination of characters may be used on a comment line. The
asterisk and those characters will be printed on a source listing, but the com-
ment line will not be used for any other purpose. In the Identification

.= Division, comment lines are used to record a chronological history of program
revisions. Each entry will include the revision number, revision date, and a
brief narrative, in functional terms, of the program changes. Other comment
entries are optional and may include program specifications, input specifica-
tions, and output specifications, name of the revisor and organization if dif-
ferent than the entries in AUTHOR and INSTALLATION.

On IBM equipment, Column 7 is also used a! an indicator position in accordance
with the multi-line coding concept. (Example: A=OS, B=DOS, etc.) See paragraph
2.8, SINGLE SOURCE LIBRARY SYSTEM.

2.3.6 USACSC STANDARD CODING CONVENTIONS. USACSC COBOL Coding Form 26 will he
used when coding COBOL programs.

2.3.6.1 Coding. USACSC has developed several coding conventions which will Ie
used to be e-renhance the COBOL language in the areas of readability. The
following rules have been applied:

2-14



15 DEC 81 CSCM 18-1-1

2.3.6.1.1 Symols/Words. The symbols ), (, and = must not be used as rela-
tional operators. The words GREATER THAN, LESS THAN, and EQUAL, respectively,
should instead be coded.

2.3.6.1.2 Verbs. Only one verb will be coded on each line.

2.3.6.1.3 Working-Storage Section. In organizing the WORKING-STORAGE area, the
0 level items should be placed in descending order according to frequency of use
(i.e., the item with the highest frequency of use will be placed first, the item
with the next highest frequency of use be placed second, etc.).

2.3.6.1.4 Paragraph/Section Names. All paragraph or section names will be on a
separate line.

2.3.6.1.5 Coding Paragraph/Section Names. Paragraph and section names must be
alphanumeric starting with four numeric characters followed by a hyphen, and
they should also be descriptive of the statements contained under them.

2.3.6.1.6 Coding Data Description Entries. In the data description entries,
when the following clauses are being used, they should be coded in this specific
order as shown in FIGURE 2-3.

f data-name
level -number FILLER J
REDEFINES clause
OCCURS clause
PICTURE clause
USAGE clause
VALLE clause
JUSTIFIED clause
SYNCHRONIZED clause
BLANK WHEN ZERO clause

FIGURE 2-3

2.3.6.1.7 Clause. Each clause that follows an FD must begin in character posi-
tion 12 of thenext line. Each successive clause will begin on a new line.

2.3.6.1.8 Readability. In order to enhance readability, numeric literals
should not be split. If the literal is too large, the whole VALUE clause should
be placed on the next line. A special effort should be made to place a literal
entirely on one line.

2-15

w



CSCM 18-1-1 15 Dec 81

2.4 USACSC COBOL SPECIFICATIONS.

2.4.1 FORMAT RULES AND NOTES. The USACSC COBOL specifications will be pre-
sented in the following format:

2.4.1.1 Language Element. Identifies by name the particular COBOL language
element specifications being dealt with. Only ANSI language element specifica-
tions will be used.

2.4.1.2 Function. This is a brief, general narrative description of the
language element and its use.

2.4.1.3 Format. A general format defines the specific arrangement of the ele-
ments of a clause or statement. Formats are shown adjacent to information
defining the clause or statement. When more than one specific arrangement is
permitted, the general format is separated into numbered formats. Clauses must
be written in the sequence given in the general formats. The format is graphi-
cal ly represented.

2.4.1.4 Syntax Rules. Syntax rules are those rules that define or clarify the
order in wich words or elements are arranged to form larger elements such as
phrases, clauses or statements. Syntax rules also impose restrictions on indi-
vidual words or elements. These rules are used to define or clarify how the
statement must be written (i.e., the order of the elements of the statement and
restrictions on what each element may represent).

2.4.1.5 General Rules. A general rule is a rule that defines or clarifies the
meaning or relationship of meanings of an element or set of elements. It is
used to define or clarify the semantics of the statement and the effect on
either execution or compilation.

2.4.1.6 USACSC Guidelines. This will contain any additional guidance on usage

by USACSC personnel.

2.4.2 FORMAT PUNCTUATION.

2.4.2.1 General Description. Punctuation characters comma and semicolon are
shown in some formats. A semicolon, however, must not appear immediately pre-
ceding the first clause of an entry or paragraph. The use of these punctuation
characters for each of the four divisions is noted as follows.

2.4.2.1.1 Identification Division. The comma and semicolon may be used within
the comment-entries. The paragraph itself, however, must terminate with a
period followed by a space.

2.4.2.1.2 Environment Division. Where either a comma or semicolon is shown 'n
the formats, it is optional and may be included or omitted by the user. The
entry itself must terminate with a period followed by a space.

2-16



15 DEC 81 CSCM 18-1-1

2.4.2.1.3 Data Division. Where either a comma or semicolon is shown In the
formats, it-is optional and may be included or omitted by the user. The entry
itself must terminate with a period followed by a space.

2.4.2.1.4 Procedure Division. When a comma or semicolon is shown in the for-
mats, it is optional and may be included or omitted by the user. If desired, a
semicolon may be used between statements within a paragraph or section.

2.4.2.2 Elements. Elements which make up clauses or statements consist of
upper-case words, lower-case words, level-numbers, brackets, braces, connectives
and special characters.

2.4.3 SYMBOLS AND NOTATIONS USED IN THIS MANUAL.

2.4.3.1 General. The various language elements that comprise a COBOL program
must be writte-nin formats that adhere to fixed and precise rules of presen-
tation. It is necessary to understand the various synbols, rules and notations
in describing the individual formats. Each format statement will indicate the
following information:

The order of presentation.

Those words that are required for the proper functioning of the state-
ment.

Those words that are optional and included at the user's discretion.

That information that must be supplied by the user.

Those elements in the statement that involve a choice by the user.

Those functions of a particular statement that are optional.

2.4.3.2 Format Presentation.

2.4.3.2.1 Words. All words inherent or built into COBOL are specified as upper-
case.

2.4.3.2.2 Upper-Case Words (Underlined). All upper-case words which are
underlined are required as key words. Those upper-case words not underlined
are optional and may be used at the user's discretion.

2.4.3.2.3 Upper-Case Words (Underlined/Not Underlined). All upper-case words,
whether under'ined or not, are Fart of the COBOL language, and must be spelled
exactly as indicated.

2.4.3.2.4 Lower-Case Words. All lower-case words are generic terms and must be
supplied by the user.

2-17



CSCM 18-1-1 15 Dec 81

2.4.3.2.5 Element Braces. Elements of a statement involving a required choice
are surrounded by braces.

Example:

2.4.3.2.6 Function Brackets. Optional functions which may be included or
omitted at the user's discretion are surrounded by brackets.

Example: £

Example:

jidentifi er-i
MULTIPLY BY identifier-2 tROUNOEO3

Uiteral-i I

C ; ON SIZE ERROR imperative statementl

2.4.3.3 Default Option. In some instances the choice can be made by
default.

Example:

rRECORDS
BLOCK CONTAINS C integer-I 3 TO integer-2

CHARACTERS

The programer must choose either RECORDS or CHARACTERS. If RECORDS is
chosen, the word RECORDS must be written because it is a key word (underlined).
However, if CHARACTERS is the choice, CHARACTERS is not a key word and the
programer need not write it. If the word CHARACTER is omitted, the COBOL com-
piler assumes that the word CHARACTER was chosen and generates machine code
based on this assumption.

2-18



15 DEC 81 CSCM 18-1-1

2.4.3.,4 Ellipsis. In some statements, certain portions may be used as many
times as needed by the programer. This repetition is indicated by the ellipsis
(...). Brackets or braces are used as delimiters to indicate the portion of the
statement which is repeatable.

2.4.3.4.1 Rules. The following rule applies to ellipsis:

Given an ellipsis (...) in a statement scan the statement from right to
left beginning at the bracket or brace immediately to the left of the ... until
the logically matching bracket or brace is found. The ... applies to the words
within the logically matched brackets or braces.

2.4.3.4.2 Example 1:

identifier-iir, identifier-2 1

ADD I iteral-1 fL, literal-2 ... TO identifier-m ROUNDED1

Cidentifier-n EROUNDED33
C; ON SIZE ERROR imperative-statement]

Scanning from right to left, starting at the bracket immediately to the
left of the last ellipsis, it can be seen that the logically matching bracket is
the one preceding identifier-n. Thus the entire second line of the statement
can be written as many times as the programer chooses. Those brackets
surrounding ROUNDED in both the first and second lines of the statement perform
their normal function, i.e., they indicate which portion of the statement is
optional.

2.4.3.4.3 Example 2:

_ fidentifier-i
MOVE literal 5 TO identifier-2 C, identifier-33 ...

Starting at the bracket immediately to the left of the ellipsis, the
logically matching bracket is the bracket immediately preceding identifier-3.
The programer may write as many different identifiers following the word TO

2-19



CSCM 18-1-1 15 Dec 81

2.4.3.4.3 ExampIe 2. (Cont.)

as he chooses. The braces in the statement perform their normal function; the
programer must choose either identifier-i or literal.

2.4.3.4.4 Usage. The preceding examples illustrate the usage of various ele-
ments of a statement. Certain language elements used in the examples
(data-name, literal, identifier, imperative statement) are discussed in later
sections.

2.4.4 COBOL PROGRAM STRUCTURE.

2.4.4.1 Divisions. Every COBOL source program is divided into four divisions.
Each division must be placed in its proper sequence, and each must begin with a
division header.

The four divisions, listed in sequence, and their functions are:

2.4.4.1.1 IDENTIFICATION DIVISION. This division names the program.

2.4.4.1.2 ENVIRONMENT DIVISION. This division indicates the machine equipment
and equipment features to be used in the program.

2.4.4.1.3 DATA DIVISION. This division defines the nature and charactersitics
of data to be processed.

2.4.4.1.4 PROCEDURE DIVISION. This division consists of statements directing
the processing of data in a specified manner at execution time.

2.4.4.2 Formats. In all formats within this publication, the required clauses
and optionaT cuses (when written) must appear in the sequence given in the
format, unless the associated rules explicitly state otherwise.

2-20



5 DEC 81 CSCM 18-1-1

2.4.4.3 Structure of the COBOL Program. Refer to FIGURE 2-4.

IDENTIFICATION DIVISION. (Reference: paragraph 2.4.5)

PROGRAM-ID. program-name.

AUTHOR. comment-entry.

INSTALLATION. comment-entry.

DATE-WRITTEN. comment-entry.

DATE-COMPILED. comment-entry.

SECURITY. comment-entry.

ENVIRONMENT DIVISION. (Reference: paragraph 2.4.6)

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry.

OBJECT-COMPUTER. object-computer-entry.

(SPECIAL-NAMES. speci al-names-entry.)

(INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control-entry

I-O-CONTROL. I-O-control-entrA...

FIGURE 2-4

2-21

L. .



CSCM 18-1-1 15 Dec 81

-. 2.4.4.3 Structure of the COBOL Program. (Cont.)

DATA DIVISION. (Reference: paragraph 2.4.7)

FILE SECTION.

F0-file-description-entryL record-description-entry .

[so -so ta-description-entryY]
rord-description-entry ..

Ldata-description-entryl .

[WORKING-STORAGE SECTION.1

77lvldsrito-nr ... J
~LINKAGE SECTION.1
Fl.77-level-description-entry3 J.
record-description-entryLCOMMUNICATION SECTION.

[ommunication-description-entry record-description-entr]. 1.
PROCEDURE DIVISION. (Reference: paragraph 2.4.8)

DECLARATIVES.

fLsection-name SECTION. USE Sentenc
paragraph-nae. Lsentencel..~

END DECLARATIVES.

[Section-name SECTIONf~riority.]

jEaragraph-name. Lsentence].. .]. ...

FIGURE 2-4 (Cont.)

2-22

_-A



15 DEC 81 CSCM 18-1-1

2.4.5 IDENTIFICATION DIVISION.

2.4.5.1 ELEMENTS.

FUNCTION. The IDENTIFICATION DIVISION identifies the source program and the
resultant output listing. In addition, other documentation information may be
supplied by the user in the pertinent paragraphs of this division.

FORMAT.

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

AUTHOR. comment-entry.

INSTALLATION. comment-entry.

DATE-WRITTEN. comment-entry.

DATE-COMPILED. comment-entry.

SECURITY. comment-entry.

- -- SYNTAX RULES.

9 This division is always required.

* This division must start in the leftmost portion of Margin 'A'
with the reserved words IDENTIFICATION DIVISION followed by a period and
a space.

@ All paragraph names are on a separate line and begin in the leftmost
portion of Margin A'.

* The comment-entry may be any combination of characters from the
computer's character set. The continuation of the comment-entry by the use of
the hyphen in the indicator column is not permitted; however, the comment-entry
may be contained on one or more lines.

GENERAL RULES. None.

VENDORS' GUIDELINES. IBM allows ID abbreviation.

USACSC GUIDELINES. The USACSC translator will permit the abbreviation
ID for Identificatron Division.

2-23



CSCM 18-1-1 15 Dec 81

2.4.5.2 PROGRAM-ID PARAGRAPH.

FUNCTION. The PROGRAM-ID paragraph gives the name by which a program
is identifl ed.

FORMAT.

PROGRAM-ID. program-name.

SYNTAX RULES. None.

GENERAL RULES.

9 The PROGRAM-ID paragraph must contain the name of the program and must be
present in every program.

e The program-name identifies the source program and all listings per-
taining to a particular program.

VENDORS'GUIDELINES. The program-name must conform to the rules for forma-
tion of a system-name.

USACSC GUIDELINES. Program-names must be formatted as outlined in TB
18-103, Software Design and Development.

2.4.5.3 AUTHOR PARAGRAPH.

FUNCTION. The AUTHOR paragraph identifies the author or responsible
programer.

FORMAT.

AUTHOR. comment-entry. I
SYNTAX RULES.

e Begin in Margin 'A' and end with a period.

9 The comment-entry may be any combination of characters from the compute-'s
character set. The continuation of the comment-entry by the use of the hyphen
in the indicator column is not permitted; however, the comment-entry may be con-
tained on one or more lines.

GENERAL RULES. None.

USACSC GUIDELINES. Enter the programer name and/or office symbol within
installation responsible for program; e.g., ACSC-TES-S.

2-24



15 DEC 81 CSCM 18-1-1

2.4.5.4 INSTALLATION PARAGRAPH.

FUNCTION. The INSTALLATION paragraph identifies the responsible organization.

FORMAT.

q I- INSTALLATION. comment-entry.

SYNTAX RULES.

9 Begin at Margin 'A' and end with period.

* The coment-entry may be any combination of characters from the computer's
character set. The continuation of the comment-entry by the use of the hyphen
in the indicator column is not permitted; however, the comment-entry may be con-
tained on one or more lines.

GENERAL RULES. None.

USACSC GUIDELINES. Code the organization symbol of the organization respon-
sible for the maintenance of the program, i.e., ACSC-TES-S.

2.4.5.5 DATE-WRITTEN PARAGRAPH.

FUNCTION. The DATE-WRITTEN paragraph identifies when the program was written.

FORMAT.

DATE-WRITTEN. comment-entry.

SYNTAX RULES.

* Begin in Margin 'A', and end with a period.

* The comment-entry may be any combination of characters from the computer's
character set. The continuation of the comment-entry by the use of the hyphen
in the indicator column is not permitted; however, the comment-entry may be con-
tained on one or more lines.

GENERAL RULES. None.

2-25



CSCM 18-1-1 15 Dec 81
2.4.5.5 DATE-WRITTEN PARAGRAPH. (Cont.)

i

USACSC GUIDELINES. Code the date on which the IDENTIFICATION DIVISION of
the first version of the program is written.

" Enter date format XX YYYYYYYYY ZZ

XX = two numeric characters, current day.

YYYYYYYYY = three to nine alpha characters for month.

ZZ = two numeric characters, current year.

2.4.5.6 DATE-COMPILED PARAGRAPH.

FUNCTION. The DATE-COMPILED paragraph provides the compilation date in the
IDENTrT'r=TON DIVISION source program listing.

FORMAT.

DATE-COMPILED. comment-entry.

SYNTAX RULES.

* Begin in Margin 'A', and end with a period.

* The comment-entry may be any combination of characters from the computer's
character set. The continuation of the comment-entry by the use of the hyphen
in the indicator column is not permitted; however, the comment-entry may be con-
tained on one or more lines.

GENERAL RULES. The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a DATE-COMPILED paragraph is present,
it is replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

USACSC GUIDELINES. Insert any comment entry; however, it will be replaced
during compilation with the current date.

2.4.5.7 SECURITY PARAGRAPH.

FUNCTION. The SECURITY paragraph identifies the security classification of
the source listing.

FORMAT.

ISECURITY. ca Ient-entry.

2-26



15 DEC 81 CSCM 18-1-1

2.4.5.7 SECURITY PARAGRAPH. (Cont.)

SYNTAX RULES.

* Begin in Margin 'A', and end with a period.

e The classification comment-entry is a non-edited field that must end
with a period. It should contain one of the Army-approved security
classifications, i.e., unclassified, confidental, etc.

GENERAL RULES. None.

USACSC GUIDELINES. Enter the appropriate security classification.

2.4.5.8 REMARKS PARAGRAPH.

FUNCTION. The REMARKS paragraph is no longer supported in ANSI 74 COBOL. In
order to facilitate conversion, an asterisk (*) is required in column 7. See
paragraph 2.3.5.6, Comment lines.

2.4.6 ENVIRONMENT DIVISION.

2.4.6.1 ELEMENTS.

FUNCTION. Provides a standard way of expressing the computer dependent
information needed to process a COBOL program.

FORMAT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry.

OBJECT-COMPUTER. object-computer-entry.

(SPECIAL-NAMES. special -names-entry.]

(INPUT-OUTPUT SECTION.

FILE-CONTROL.file-control-entry... (Reference: Paragraph 2.4.6.7)

EI-0-CONTROL. 1-0-control-entry... (Reference: Paragraph 2.4.6.14)

SYNTAX RULES. The Environment Division must begin in Area 'A' with the

heading ENVIROWNT DIVISION followed by a period.

2-27



CSCM 18-1-1 15 Dec 81

2.4.6.1 ELEMENTS. (Cont.)

GENERAL RULES. The Environment Division is divided into two sections: the
Configuration Section and the Input-Output Section. The sections and
paragraphs, when written, must appear in the sequence shown in the above format.

USACSC GUIDELINES. This division is required for all USACSC programs. The

USACSC translator will permit the abbreviation ED for ENVIRONMENT DIVISION.

2.4.6.2 CONFIGURATION SECTION.

FUNCTION. This section deals with the overall specifications of the computer.

FORMAT.

CONFIGURATION SECTION.
SOURCL-COMP UTER. source-computer-entry.
OBJECt-COMPUTER. object-computer-entry.

SYNTAX RULES. Section-names must begin at Margin 'A'.

GENERAL RULES. None.

USACSC GUIDELINES. The CONFIGURATION SECTION entry is required for all USACSC
programs.

2.4.6.3 SOURCE-COMPUTER PARAGRAPH.

FUNCTION. The SOURCE-COMPUTER paragraph serves as documentation and describes
the computer upon which the source program is compiled.

FORMAT.

SOURCE-COMPUTER. source-computer-entry [WITH DEBUGGING MODEJ.

SYNTAX RULES. This paragraph begins in the A-margin.

GENERAL RULES.

a Computer-names are assigned by individual vendors.

2-28



15 DEC 81 CSCM 18-1-1

2.4.6.3 SOURCE-COMPUTER PARAGRAPH. (Cont.)

* The WITH DEBUGGING MODE clause serves as a compile-time switch for the
debugging statements written in the source program.

e When WITH DEBUGGING MODE is specified, all debugging sections and
debuqging lines are compiled.

1. * When WITH DEBUGGING MODE is omitted, all debugging sections and debugging
lines are treated as documentation.

o The object-time switch dynamically activates the debugging code generated
when WITH DEBUGGING MODE is specified.

* When debugging mode is specified, through the object-time switch, all the
debugging sections and debugging lines compiled into the object program are
activated.

* Recompilation of the source program is not required to activate or deac-
tivate the object-time switch.

e When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER
paragraph, the object-time switch has no effect on execution of the object
program.

* When debugging mode is suppressed, through the object-time switch, any
USE FOR DEBUGGING declaration procedures are inhibited. However, all debugging
lines remain in effect.

VENDORS' GUIDELINES. IBM requires the computer-name to be specified as either
IBM-370-(model number) or IBM-360-(model number). For the 370, the model number
is the form NNN, as 145, 155, etc. - for example, IBM-370-155. For the 360. the
model number is in the form NN or ANN, where the NN is the numeric model designa-
tion, as 30, 40, etc., and the A is the memory-size designator, as G, H, I, etc.
- examples, IBM-360-G40 or IBM-360-40. As shown, if the memory-size is not
known, it need not be included in the model number.

USACSC GUIDELINES. This paragraph is required in all USACSC COBOL source

proarams.

2.e.6.4 OBJECT-COMPUTER PARAGRAPH.

FUNCTION. The OBJECT-COMPUTER paragraph describes the computer on which the
program is-o be executed.

2-29



CSCM 18-1-1 15 Dec 81

2.4.6.4 OBJECT-COMPUTER PARAGRAPH. (Cont.)

FORMAT.

rWORDS
OBJECT-COMPUTER. ojc-mptrery MEMORY SIZE integer MWRCTERS

C, PROGRAM COLLATING SEQUENCE IS alphabet-name]
E, SEGMENT-LIMIT IS segment-number].

SYNTAX RULES. This paragraph begins at Margin 'A'.

GENERAL RULES.

* Computer-names are assigned by individual vendors.

* SEGMENT-LIMIT is used with the Segmentation facility. This option
designates the highest segment-number for fixed permanent segments.

* The PROGRAM COLLATING SEQUENCE clause specifies that the collating
sequence associated with alphabet-name is used in non-numeric comparisons.

USACSC GUIDELINES

* The object computer paragraph header is required ii, all USACSC source
programs. The USACSC translator will provide the entry which will specify the
lowest model machine on which program will be run.

2.4.6.5 SPECIAL-NAMES PARAGRAPH.

FUNCTION. The SPECIAL-NAMES paragraph provides a means of relating user-
specified mnemonic-names to specific hardware devices or functions defined by
each vendor.

2-30



15 DEC 81 CSCM 18-1-1

2.4.6.5 SPECIAL-NAMES PARAGRAPH. (Cont.)

FORMAT.

SPECIAL-NAMES. C, impl ementor-name

IS mnemonic-nameF, ON STATUS IS condition-name-iF, OFF STATUS IS l[ - Lcon-Ttion-nrii .j

IS mnemonic-name [, OFF STATUS IS condition-name-2 [,ON STATUS ISl]

OSTU c- Scn 7Ttin-namJ 

ON STATUS IS condition-name-1 [,OFF STATUS IS condition-name-23

LOF_F STATUS IS condition-name-2 [,ON STATUS IS condition-name-1]

[ alphabet-name IS 1 - inent° r "

C, CURRENCY SIGN IS literal-9g

, DECIMAL-POINT IS COMMA].

SYNTAX RULES. A period must appear after the SPECIAL-NAMES paragraph title and
after the last entry in the paragraph. Entries may be separated by spaces, comias,
semicolons, but not periods.

GENERAL RULES.

9 Implementor-name refers to specific features or devices defined by each vendor.

e Use of ON STATUS and OFF STATUS is vendor dependent.

* The alphabet-name clause provides a means for relating a name to a specified
character code set and/or collating sequence. When alphabet-name is referenced
in the PROGRAM COLLATING SEQUENCE clause or the COLLATING SEQUENCE phrase of a
SORT or MERGE statement, the alphabet-name clause specifies a collating sequence.

* If the STANDARD-1 phrase is specified, the character code set or collating
sequence identified is that defined in American National Standard Code for Informa-
tion Interchange, X3.4-1968.

2-31



CSCM 18-1-1 15 Dec 81

2.4.6.5 SPECIAL-NAMES PARAGRAPH. (Cont.)

e The CURRENCY SIGN IS clause specifies the literal that is used in the
PICTURE clause to represent the currency symbol. The literal is limited to a
single character and must not be one of the following:

digits 0 thru 9
alphabetic characters A, B, C, D, L, P, R, S, V, X, Z or the space
special characters p*o, +', '-,' ', , ., l;, '(', ')', '"', '/'

a=I

If the CURRENCY SIGN clause is not present only the $ can be used as the currency
symbol ($) in the PICTURE clause.

e The clause DECIMAL-POINT IS COMMA means that the function of comma and period

are exchanged in the character-string of the PICTURE clause and in numeric literals.

USACSC GUIDELINES.

* IBM.

a The following IBM carriage control characters which may he referred to by
a mnemonic-name in the WRITE BEFORE/AFTER ADVANCING are:

C01 IS TOP-OF-PAGE
C09 IS BOTTOM-OF-PAGE
C12 is restricted to Remote Job Entry (RJE) terminal use.

(See FIGURE 1-2.)

s The USACSC translator will provide the vendor defined implementor-name
for the target hardware.

* The following mnemonic names are USACSC standard carriage control names.

FUNC -O XNAME ACTIONTAKEN

CSP Sup spacing
C01 through C09 Skip . ;hannel 1 through 9 respectively
C1 through C11 Skip to channel 10 and 11 respectively
C12 Reserved for RJE use

2.4.6.6 INPUT-OUTPUT SECTION.

FUNCTION. Identifies each file and Its external storage media, assigns
input/output devices and supplies inforriation needed for transmitting between
external media and the object program.

2-32



15 DEC 81 CSCM 18-1-1

2.4.6.6 INPUT-OUTPUT SECTION. (Cont.)

FORMAT.[ INPUT-OUTPUT SECTION.1

FILE-CONTROL.{file-control-entry)

EI-O-CONTROL. input-output-entry...

SYNTAX RULES. This paragraph begins at Margin 'A'.

GENERAL RULES. The INPUT-OUTPUT section is required if files are used, otherwise

it is optional.

USACSC GUIDELINES. None.

2.4.6.7 FILE-CONTROL PARAGRAPH.

FUNCTION. The FILE-CONTROL paragraph names the file, identifies directly or indi-
rectlyThe fi1e medium and provides direct or indirect hardware device assignment.

FORMAT.

-: -FILE-CONTROL.

SELECT COPTIONAL] file-name

ASSIGN TO implementor-name-I Cimplementor-name-2] ...

FRESERVE integer-i AREA 1
I [AREASJJ

;ORGANIZATION IS FSEQUENTIAL
IT=

ACCESS MODE IS rSEQUENTIAL C, RELATIVE KEY IS data-name-1111

,RELATV KEY IS data-name-i

RECORD KEY IS data-name-i

ALTERNATE RECORD KEY IS data-name-2 CITH OUPLICATESI]...

FILE STATUS IS data-name-3].

2-33



CSCM 18-1-1 15 Dec 81

2.4.6.7 FILE-CONTROL PARAGRAPH. (Cont.)

SYNTAX RULES.

a The FILE-CONTROL paragraph is required when the INPUT-OUTPUT SECTION
header is specified.

@ The FILE-CONTROL paragraph header begins at Margin 'A', the clauses in
Margin 'B'.

GENERAL RULES. None.

USACSC GUIDELINES. None.

2.4.6.8 SELECT CLAUSE.

FUNCTION. The SELECT clause is used to name each file in a
program.

FORMAT.

SELECT [OPTIONAL] file-name

ASSIGN TO implementor-name-1 C, implementor-name-2] ...

; RESERVE integer-1 rAREA i]
I [AREAS I

;ORGANIZATION IS rSEQUENTIAL

~TTVE

.;ACCESS MODE IS SEUENTI AL I~ RELATIVE KEY IS dt-ae11
REO ICORDKEY IS data-name-i

RECORD KEY IS data-name-i

ALTERNATE RECORD KEY IS data-name-2 CWITH DUPLICATES3]...

FILE STATUS IS data-name-3].

SYNTAX RULES.

e Each file named in the SELECT clause must have a file description entry
(FD) or a sort description entry (SD) in the Data Division.

9 Each file described in the Data Division must be named once and only once
as a file name following the key word SELECT.

2-34



15 DEC 81 CSCM 18-1-1

2.4.6.8 SELECT CLAUSE. (Cont.)

@ When ACCESS and ORGANIZATION are not specified, SEQUENTIAL is implied.

GENERAL RULES. None.

VENDORS' GUIDELINES.
,-

0 IBM OS.

The file-name specified in the SELECT clause relates to the DD-name in
the JCL entry for that file under OS.

Example: //ddname DD DSN=data set ...

OPTIONAL entry is taken as comments since this is a JCL function in OS.

e IBM DOS. The file-name specified in the SELECT statement relates to the
file-name inT-LBL or DLBL card of the DOS Job Control Language.

Example: //TLBL file-name ...

//DLBL file-name ...

USACSC GUIDELINES. None.

2.4.6.9 ASSIGN CLAUSE.

FUNCTION. Used to assign a file to an external medium.

FORMAT.

ASSIGN TO implementor-name-1 r,implementor-name-2 .

SYNTAX RULES. The structure of the ASSIGN clause is dependent on each
vendor's specifications.

GENERAL RULES. The ASSIGN clause is used to assign a file to an external
medium. Each file used in the program must be referenced immediately after the
SELECT statement and further referenced as a FD or SD entry in the DATA DIVISION.

VENDORS' GUIDELINES.

e IBM-CS. The ASSIGN clause is used to assign a file to an external
medium.

2-35



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.)

OS FORMAT

ASSIGN TO [integer-1 system-name-1

(system-name-2] ...

Integer-1 indicates the number of input/output units of a given medium
assigned tofile-name. However, since the number of units is automatically
determined by the operating system, the integer-1 option need not be specified.
When specified, it is treated as comments (see IBM System/360 Operation Syste..:
Job Control Language, Form GC28-6539).

System-name specifies a device class, a particular input/output device, the
organization of data upon this device, and the external-name of the file. All
files used in a program must be assigned to an input/output medium. Any
system-name beyond the first for a file will be treated as comments.

System-name has the following structure:

class -device -organization-name

Class is a 2-character field that specifies the device class:

DA (mass storage)
UT (utility)
UR (unit-record)

Files assigned to UT or UR must have standard sequential organization and
can be accessed only sequentially. Files assigned to DA may have standard
sequential or direct organization. When org'nization is direct, access may be
either sequential or random.

Device is used to specify a particular device within a device class. It can
be a-TT 6-character field. If device independence for a file is desired, the
device class must be UT; no device number may be specified. At execution tine,
such a file may be assigned to any device class (including unit-record).

The allowable system devices for any given class are as follows:

Mass storage (DA) 2301, 2302, 2303, 2311, 2314, 2321.
Utility (UT) 2301, 2302, 2311, 2314, 2321, 2400.
Unit-record (UR) 1403, 1404, (for continuous forms only),
1442R, 1442P, 1443, 1445, 2501, 2520R, 2520P, 2540R, 2540P.
(R indicates reader; P indicates punch.)

2-36



15 DEC 81 CSCM 18-1-1

2.4.6.9 ASSIGN CLAUSE. (Cont.)

NOTE: Sort input, output, or work files may be assigned to any utility

device except a 2321.

Program Product Information Version 3-OS.

For Version 3 only, the following additional system devices are allowable:

Mass Storage (DA) 2305-1, 2305-2, 2319, 3330.
Utility (UT) 2305-1, 2305-2, 2319, 3330.
Unit Record (UR) 3211.

NOTE: For the Version I and Version 2 Compilers, these devices (2305-1,
2305--7,2319, 3330, or 3211) can be used, if the device field in system-name is
omitted. At execution time, any of these devices can be specified through the
UNIT subparameter of the file's DD statement. Note, however, that except for
files containing spanned records the device field is treated as comments. For
files containing spanned records, theBTS length for the file is checked
against the maximum block length allowed for the device specified, and the
smaller of the two becomes the block .ize that is used.

Program Product Information Version 4-OS.

The device field in system-name is treated as comments by the Version 4
CompilerTWrexecution time, any valid device can be specified through the UNIT
subparameter of the file's DO statement. The following considerations apply:

If an invalid device number is specified, no error diagnostic is pro-
duced.

For an ASCII file, if 2400 (or other compatible tape device) is not
specified in the device field, no error diagnostic is produced.

For a direct file with spanned records, the Version 4 Compiler always
calcul,-tes buffer size from the COBOL record description.

Organization is a 1-character field that indicates the file organization.
The following characters must be used:

S for files with standard sequential organization.
0 for files with direct organization.

FIGURE 2-5 can be used to determine the correct choice for the organiza-
tional field in system-narne.

2-37



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.)

Name is a 1 to 8-character field specifying the external-name by which
the file is-known to the system. It is the name that appears in the name field
of the DD card for the file.

. IBM-DOS. The ASSIGN clause is used to assign a file to an external
medium.

DOS FORMAT

ASSIGN TO (integer] system-name-i [system-name-21 ...

Integer indicates the number of input/output units for a given medium
assigF-e-to file-name. Since the number of units is determined at program exe-
cution time (see IBM System/360 Disk Operatin System; System Control and System
Service Programs, Form C24-5036), the standard definition given above is not the
action taken by this compiler. The above does not apply to sort work files
which must be specified.

When specified for files with standard labels or for unlabeled output tape
files, the integer option is treated as comments. When integer is specified as
greater than one or unlabeled input tape files, then at the end of every reel a
message is issued to the operator asking whether or not end-of-file has been
reached. It is the user's responsibility to provide the operator with correct
information as to the number of reels in the file.

For multivolume input files with nonstandard labels, the integer option
is required. For such files, the compiler is unable to distingusish fbetween end-
of-volume and end-of-file and, therefore, cannot determine the number of reels
in the file.

Therefore, for input files with nonstandard labels, the integer option is
used to determine the number of reels in the file. If integer is not specified,
the system assumes that the file is contained on one reel.

All files used in a proqram must be assigned to an external medium. Systm-
name specifies a device class, a particular device, the organization of ata
po n this device, and the external name of the file. Any system-names beyond

the first are treated as comments.

System-name has the following structure:

SYSnnn-class-device-organization-name

2-38



15 DEC 81 CSCM 18-1-1

2.4.6.9 ASSIGN CLAUSE. (Cont.)

Where:

nnn is a 3-digit number between 000 and 221. This field represents
tTe symbolic unit to which the file is assigned.

class is a 2-digit field that represents the device class. The
aV~wable combinations of characters are:

DA (mass storage)
UT (utility)
UR (unit record)

Files assigned to DA devices may have standard sequential or direct organi-
zation. When organization is direct, access may be either sequential or random.

Files assigned to UT or UR devices must have standard sequential organiza-
tion.

device is a 4 or 5-digit field that represents a device number. Device

umber is used to specify a particular device within a device class.

The allowable devices for any given device class are as follows:

Mass storage (DA) 2311, 2314, 2321.
Utility (UT) 2400, 2311, 2314, 2321.
Unit record (UR) 1442R, 1442P, 1403, 1404.
(continuous forms only), 1443, 2501, 2520R, 2520P, 2540R, 2540P.
(R indicates reader, P indicates punch)

NOTE: Sort input, output, or work files may be assigned to any utility
device except a 2321.

Organization is a 1-character field that specifies file organization.
The letters that may be specified for each type of file are as follows:

S for standard sequential files.
A for direct files -- actual track addressing.
D for direct files -- relative track addressing.

FIGURE 2-6 can be used to determine the correct choice of the organization
field 4n system-names.

name is a 1 to 7-character field specifying the external-name by which
T-e-file is known to the system. If specified, it is the name that

2-39



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.)

appears in the file-name field of the VOL, DLAB, TPLAB, DLBL, or TLBL job
control statement. If name is not specified, the symbolic unit (SYSnnn) is used
as the external name. The field must be specified if more than one file is
assigned to the same synbolic unit.

Program Product Information -- Version 3 DOS.

For Version 3, the following additional system devices are allowable:

Mass Storage (DA) 2319, 3330.
Utility (UT) 2319, 3330, 3410, 3420.
Unit Record (UR) 3211, 3505, 3525P, 3525R, 3525W, 3525M.

For the Version 3 DA and UT devices (2319, 3330, 3410, 3420), as well
as for the UR 150-character printer (3211), these numbers can be specified
in the device field of system-name. For these devices, the valid entries
for theTher fields in system-name are unchanged. For the 3505 card
reader, system-name has the following format:

SYSnnn-UR-3505- C -name
0

The SYSnnn and name fields have the same valid entries as other devices.

For the organization field, the follcling considerations apply:

S R specifies standard sequential card reading. The optional R field
specifies RCE (Read Column Eliminate) card reading. When R is
specified, the user can indicate by program control that some card
columns are to be ignored when reading data for a particular job.
(See the section "RCE and OMR Format Descriptor" for a more
complete discussion). When the R field is omitted, RCE card reading
may not be specified.

0 specifies Optical Mark Reading (OMR). When 0 is specified, then if
at object time the device reads a card with a marginal mark, a wear

2-40



15 DEC 81 CSCM 18-1-1

2.4.6.9 ASSIGN CLAUSE. (Cont.)

mark, or a poor erasure, the substitution character (hexadecimal
"3F") is placed in the defective column and in column 8J (an
80-character buffer is always provided). (Also, see the section
"RCE and OMR Format Descriptor" for a further discussion.)

For the 3525 card punch with special features, a system-name has the
following format:

S R
P V R
R X R

SYSnn-UR-3525 - [-name]
W I
MT

NOTE: The optional R code in the organization field is valid only when
the device is-specified as 3525R

The name field has the same valid entries as for other devices.

The SYSnnn field, for 3525 files that do not utilize combined function
processiinThFs the same valid entries as other devices.

The SYSnnn field has special considerations when combined function card
processing-'s-used. For each associated logical file within the combined func-
tion structure there must be a separate SELECT sentence; each such associated
logical file must be specified with the same SYSnnn field.

For the device field, the following entries are valid:

3525R for a card read file.
3525P for a card punch.
3525W for a 2-line card print file.
3525M for a multiline card print file.

For the organization field, depending on the device field, the following
entries are vali d:

3525R S R for sequential card read files.
(reader) V R for read/print associated files.

X R for read/punch/print associated files.
Y R for read/punch associated files.

2-41



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.,)

Note: the optional R field specifies RCE (Read Column
Eliinate) card reaaing. (See "RCE and OMR Format
Descriptor" for further discussion.)

3525P S for sequential card punch files.
(punch) T for punch-and-interpret files (see Note).

X for read/punch/print associated files.
Y for read/punch associated files.
Z for punch/print associated files.

NOTE: The T field denotes a normal punched output file for which
= -graphi-lly printable punched characters are also printed on

print lines I and 3 of the card. Line I contains the first 64
characters, left justified; line 3 contains the last 16 characters,
right justified.

3525W S for sequential 2-line print files.
(2-line V for read/print associated files.
print) X for read/punch/print associated files.

Z for punch/print associated files.
3525M S for sequential multiline print files.
(multi- V for read/print associated files.
line X for read/punch/print associated files.
print) Z for punch/print associated files.

* RCE AND OMR FORMAT DESCRIPTOR.

When the user specifies 0 (for Optical Mark Read) or R (for Read Column
Eliminate) in the organization field of ;ystem-name, then at object time he must
provide a format descriptor as the first caraks) in his data deck. If the for-
mat descriptor is missing for such files, a message is issued to the operator,
and the job is terminated.

The format descriptor must be the first card(s) in the data deck. Column
I of the first card must be blank. The keyword FORMAT must be punched in
columns 2 through 7. Column 8 must be blank. Columns 9 through 71 can contail
the parameters that specify which columns of the data cards are to be read in
OMR or RCE mode. Continuation cards are valid. A continuation code must be
placed in column 72 of the preceding card. Parameters may then be continued,
beginning in column 16 of the continuation card. Comments, if used, must follow
the last operand on each card by at least one blank space, and continuation card
restrictions must be observed.

2-42



15 DEC 81 CSCM 18-1-1

2.4.6.9 ASSIGN CLAUSE. (Cont.)

The format of the format descriptor is as follows:

Col.

12 .... 7.9 .............

11 ii

11 11

11 1i

VV V V

FORMAT (Ni, N2) ,(N3, N4) ...

N1, N2, N3, and N4 may be any decimal integers from 1 through 80.
However, N2 must be greater than or equal to NI. N4 must be greater than or
equal to N3. In addition, for OMR processing, Ni and N2 must be both even or
both odd, N3 and N4 must be both even or both odd, and N3 - N2 must be greater
than or equal to 2.

In OMR mode, the user establishes which columns are to be read in OMR
mode. For example, if the user wishes to read columns 1, 3, 5, 7, 9 and 70, 72,
74, 76, 78, 80 in OM4R mode, the following format descriptor is valid:

~FORMAT (1,9), (70,89)

In RCE mode, the user -pecifies those columns which are not to be
read. For example, if the user chooses to eliminate columns 7"7,rough 30,
an-dcolumns 52 through 73, the following format descriptor is valid:

FORMAT (20 ,3V), (52,73)

2-43



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.)

FIGURE 2-5 below identifies the values of organization field for
file organization for version 4-OS

Device File Track Organization Field
Type ACCESS Organization Addressing in System-name

tape, SEQUENTIAL standard -- S
punch, sequential
reader,
printer

mass SEQUENTIAL standard -- S
storage sequential
device

mass SEQUENTIAL direct relative D
storage
device

mass RANDOM direct relative D
storage
device

mass RANDOM direct relative W
storage (REWRITE)
device

mass SEQUENTIAL indexed -

storage
device

FIGURE 2-5

2-44



15 DEC 81 CSCM 18-1-1

2.4.6.9 ASSIGN CLAUSE. (Cont.)

FIGURE 2-6 below identifies the values of organization field for
Version 3 DOS.

File Organization
Device Type ACCESS Organization Field

UR and UT SEQUENTIAL standard S
(except 3505, 3525) sequenti al

UR 3505, 3525R SEQUENTIAL standard S
(without OMR or RCE) sequential

UR 3505 (with OMR) SEQUENTIAL standard 0
sequential

UR 3505, 3525R SEQUENTIAL standard SR
(with RCE) sequential

UR 3525R, 3525P, SEQUENTIAL standard S
3525W, 3525M sequential

UR 3525P SEQUENTIAL standard T
punch-interpret file sequential

UR 3525R, 3525W SEQUENTIAL standard V
3525M read/print sequenti al
associated file

UR 3525R (with RCE) SEQUENTIAL standard VR
read/print se qu enti al
associated file

UR 3525R, 3525P, SEQUENTIAL standard X
3525W, 3525M sequenti al
read/punch/print
associated file

UR 3525R (with RCE) SEQUENTIAL standard XR
read/punch/print se quenti al
associated file

FIGURE 2-6

2-45



CSCM 18-1-1 15 Dec 81

2.4.6.9 ASSIGN CLAUSE. (Cont.)

File Organization
Device Type ACCESS Organization Field

UR 3525R, 3525P SEQUENTIAL standard Y
read/punch se quenti al
associated file

UR 3525R (with RCE) SEQUENTIAL standard YR
read/punch sequenti al
associated file

UR 3525P, 3525W SEQUENTIAL standard Z
3525M punch/print sequential
associated file

DA (mass storage) Entries valid for Version 2
devices are valid for Version ,3

FIGURE 2-6 (Cont.)

USACSC GUIDELINES. For use on current USACSC IBM equipment, the proce-
dure is to use a single source coding with an OS baseline. To create a
particular DOS or OS object module an extract is made from the source
library system comparin,, column 7 for an appropriate DOS or OS code. See
Single Source Librar) System procedures at paragraph 2.8.

2-46



5 C81 CSCM 18-1 -1

2.4.6.10 RESERVE CLAUSE.

FUNCTION. The RESERVE clause allows the user to modify the number of input/

outpuT areas (buffers) allocated by the computer.

FORMAT.

F 
rAREA 11RESERVE Integer-i AREAS

SYNTAX RULES. The value of integer-1 must not exceed 254.

GENERAL RULES.

e If the RESERVE clause is not specified, the number of input/output areas

allocated is specified by the implementor.

VENDORS' GUIDELINES.

* IBM OS.

If RESERVE and SAME AREA clause are omitted, the number of buffers

assigned are taken from the DD card. If RESERVE and SAME AREA clause are

omitted and no buffers are specified in the DD card, two areas are 
reserved.

* IBM DOS.

A minimum of one buffer is required for a file. If this clause is

omitted or if one is specified, one additional buffer is assumed.

If the RESERVE clause is not specified, no additional buffer areas are

reserved aside from the minimum of one.

This clause may be specified only for a file whose organization 
is stan-

dard sequential.

USACSC GUIDELINES. None.

2.4.6.11 ACCESS CLAUSE.

FUNCTION. The ACCESS clause defines the manner in which records 
of a

file are to be accessed.

2-47



CSCM 18-1-1 15 Dec 81

2.4.6.11' ACCESS CLAUSE. (Cont.)

-" FORMAT.

SEQUENTIAL
ACCESS MODE IS RAoUTL

RANDOM J____
I DYNAMIC

SYNTAX RULES. Sequential access is assumed if clause omitted.

GENERAL RULES.

9 Sequential access may be applied to files residing on tape, unit record,
or mass storage.

* For random access, file must be assigned to mass storage and retrieval is
based upon RELATIVE KEY associated with each record.

* For dynamic access, records in the file may be accessed sequentially and/or
randomly.

VENDORS' GUIDELINES.

e IBM.

For ACCESS IS RANDOM, storage and retrieval are on the basis of a RELATIVE
or NOMINAL KEY associated with each record. When the RANDOM option is specified,
the file must be assigned to a mass storage device. ACCESS IS RANDOM may be
specified when file organization is direct, relative, or indexed.

USACSC GUIDELINES. None.

2.4.6.12 RELATIVE KEY CLAUSE.

FUNCTION. The clause identifies a data-name that can be directly used by
the system to locate a logical record on a mass storage device.

FORMAT.

LRELATIVE KEY IS data-name-1 ]
SYNTAX RULES.

e The RELATIVE KEY clause is affected by/affects execution of the READ,
REWRITE, START and WRITE statements.



15 DEC 81 CSCM 18-1-1

2.4.6.12 RELATI VE KEY CLAUSE. (Cont.)

GENERAL RULES.

* Must be specified for direct files when ACCESS is RANDOM.

* Value of data-name-i Must be established prior to READ or WRITE.

e Data-name-i must be defined in the File, Working-Storage, or Linkage
Section. However,' if data-name-i is specified in the File Section, it may not
be contained in the file for which it is the key.

*If the RELATIVE KEY phrase is specified, execution of the READ statement
is dependent upon the FORMAT used.

e FORMAT 1 updates the contents of the RELATIVE KEY data item such that it
contains the relative record number of the record made available.

e Execution of a FORMAT 2 READ statement sets the current record pointer
to, and makes available, the record whose relative record number is contained in
the data item named in the RELATIVE KEY phrase for the file. If the file does not
contain such a record, the INVALID KEY condition exists and execution of the

0.1 READ statement is unsuccessful.

e For a REWRITE of a file accessed in either random or dynamic access mode,
the MSCS logically replaces the record specified by the contents of the RELATIVE
KEY data item associated with the file. If the file does not contain the record
specified by the key, the INVALID KEY condition exists; the updating operation
does not take place and the data in the record area is unaffected.

e For the START statement, a comparison specified by the relational opera-
tor in the KEY phrase occurs between a key associated with a record in the file
referenced by file-name and a data item referenced by the RELATIVE KEY clause
associated with file-name.

If the comparison is satisfied, the current record pointer is positioned
to the first logical record currently existing in the file whose key satisfies
'he comparison.

If the comparison is not satisfied by any record in the file, an INVALID
KEY condition exists, the execution of the START statement is unsuccessful, and
the position of the current record pointer is undefined.

o For the WRITE statement, when a file is opened in the output mode,
records may be placed into tie file by one of the following:

If the access mode is sequential, the WRITE statement will cause a record
to be released to the MSCS. The first record will have a relative record number
of one (1) and subsequent records releised will have relative record numbers of
2, 3, 4.....If the RELATIVE KEY data item has been specified in the file
control entry for the associated file, the relative record number of the record
just released will be placed into the RELATIVE KEY data item by the MSCS during
execution of the WRITE statement.

2-49



CSCM 18-1-1 15 Dec 81

2.4.6.12 RELATIVE KEY CLAUSE. (Cont.)

If the access mode is random or dynamic, prior to the execution of the
WRITE statement, the value of the RELATIVE KEY data item must be initialized in
the program with the relative record number to be associated with the record in
the record area. That record is then released to the MSCS by execution of the
WRITE statement.

When a file is opened in the I-0 mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value of the
RELATIVE KEY data item must be initialized by the program with the relative
record number to be associated with the record in the record area. Execution of
a WRITE statement then causes the contents of the record area to be released to
the MSCS.

VENDORS' GUIDELINES.

a IBM.

* Data-name-1 may be from 5 to 259 bytes in length.

e The first four bytes of data-name-1 are the track identifier and must be
defined as a 5-integer binary data item whose maximum value does not exceed
65,535.

* The remainder of data-name-1 -- 1 through 255 bytes in length -- repre-
sents the record identifier. It is the user's responsibility to select from I
through 255 bytes for the symbolic portion of the RELATIVE KEY field.

USACSC GUIDELINES. Reference is directed to USACSCM Executive Software
Module P66ATP (DOS) and P59ATU (OS).

2.4.6.13 RECORD KEY CLAUSE.

FUNCTION. A RECORD KEY is used to access an indexed file. It specifies the
item within the data record that contains the key for the record.

FORMAT.

RECORD KEY IS data-name-i

SYNTAX RULES.

* Data-name-1 may be any fixed-length item within the record. It must be
less than 256 bytes in length.

e When two or more record descriptions are associated with a file, a simi-
lar field must appear in each description, and must be in the same relative
position from the beginning of the re(ord, although the same data-name-1 must
not be used for both fields.

2-50



75 DEC 81 CSCM 18-1-1

2.4.6.13 RECORD KEY CLAUSE. (Cont.)

* Data-name-i must be defined to exclude the first byte of the record

in the following cases:

Files with unblocked records.

Files from which records are to be deleted.

Files whose keys might start with a delete-code character (HIGH VALUE).

e With these exceptions, the item specified by data-name-1 may appear any-
where within the record.

GENERAL RULES. The RECORD KEY clause must be specified for an indexed file.

USACSC GUIDELINES. None.

2.4.6.14 ALTERNATE RECORD KEY CLAUSE.

FUNCTION. An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key provides an alter-
nate access-path to records in an indexed file.

FORMAT.

ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES] ...

SYNTAX RULES.

e The value of an alternate record key may be non-unique if the DUPLICATES
phrase is specified for it.

GENERAL RULES.

e The data description of data-name-2 and its relative location within a

record must be the same as that used when the file was created.

a The number of alternate keys or the file must also be the same as that
used when the file was created.

USACSC GUIDELINES. None.

2.4.6.15 FILE STATUS CLAUSE.

FUNCTION. The FILE STATUS clause is used to indicate to the COBOL program
the status of an input-output operation.

2-51



CSCM 18-1-1 15 Dec 81

2.4.6.15 FILE STATUS CLAUSE. (Cont.)

- FORMAT.

FILE STATUS is data-name-3]

SYNTAX RULES.

* Data-name-3 may be qualified.

GENERAL RULES.

e When the FILE STATUS clause is specified, a value will be moved by the
operating system into the data item specified by data-name-3 after the execu-
tion of every statement that references that file either explicitly or implicitly.
This value indicates the status of execution of the statement.

2.4.6.16 1-) CONTROL PARAGRAPH.

FUNCTION. The 1-0 CONTROL paragraph defines some of the special control
techniques to be used in the object program. This paragraph specifies the
points at which rerun is to be established, the memory area which is to be
shared by different files, and the location of files on a multiple file reel.

FORMAT.

-- CONTROL.

fREELy

( file-name-i I Df OF file-name-2 1

;RERU ON implementor-nam EVERY1 integer-1 RECORDS
i j integer-2 CL KUNITS
f I L condition-name

[SAME L ECURD] AREA FOR file-name-3 ( file-name-4} ... ..

[MULTIPLE FILE TAPE CONTAINS file-name 5 [POSITION integer-3]

file-name-6 2POSITION integer-4 ...

2-52



15 DEC 81 CSCM 18-1-1

2.4.6.16 1-0 CONTROL PARAGRAPH. (Cont.)

SYNTAX RULES.

a The 1-0 CONTROL paragraph is optional.

* File-name-1 must be a sequentially organized file.

e The END OF REEL/UNIT clause may only be used if file-name-2 is a sequen-

tially organized file. The definition of UNIT is determined by each implementor.

* When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS

clause is specified, implementor-name must be given in the RERUN clause.

* More than one RERUN clause may be specified for a given file-name-2,

subject to the following restriction: When multiple integer-1 RECORDS clauses

are specified or when multiple END OF REEL or END OF UNIT clauses are

specified, no two of them may specify the same file-name-2.

e Only one RERUN clause containing the CLOCK-UNITS clause may be

specified.

e The two forms of the SAME clause are considered separately in the

following: More than one SAME clause may be included in a program, however

a file-name must not appear in more than one SAME AREA clause.

* The files referenced in the SAME AREA clause need not all have the

same organization or access.

GENERAL RULES.

* The RERUN clause specifies when and where the rerun information is

recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on

each reel or unit of an output file and the implementor specifies where, on

the reel or file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is

written as a separate file on a device specified by the implementor.

e There are many forms of the RERUN clause, based on the several con-

ditions under which rerun points can be established. The implementor must

provide at least one of the specified forms of the RERUN clause.

a. When either the END OF REEL or END OF UNIT clause is used without

the ON clause. In this case, the rerun information is written on

file-name-2, which must be an output file.

2-53



CSCM 18-1-1 15 Dec 81

2.4.6.16 1-0 CONTROL PARAGRAPH. (Cont.)

b. When either the END OF REEL or END OF UNIT clause is used and
file-name-1 is specified on the ON clause. In this case, the rerun informa-
tion is written on file-name-I, which must be an output file. In addition,
normal reel, or unit, closing functions for file-name-2 are performed.
File-name-2 may either be an input or an output file.

c. When either the END OF REEL or END OF UNIT clause is used and
implementor-name is specified in the ON clause. In this case, the rerun
information is written on a separate rerun unit defined by the implementor.
File-name-2 may be either an input or output file.

d. When the integer-1 RECORDS clause is used. In this case, the
rerun information is written on the device specified by impl ementor-name,
which must be specified in the ON clause, whenever integer-1 records of
file-name-2 have been processed. File-name-2 may be either an input or
output file with any organization or access.

e. When the integer-2 CLOCK-UNITS clause is used. In this case,
the rerun information is written on the device specified by implementor-
name, which must be specified in the ON clause, whenever an interval of
time, calculated by an internal clock, has elapsed.

f. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written
on the device specified by implementor-name whenever a switch assumes a
particular status as specified by condition-name. In this case, the asso-
ciated switch must be defined in the SPECIAL-NAMES paragraph of the
Configuration Section of the Environment Division. The implementor specifies
when the switch status is interrogated.

g. When the condition-name clause is used and file-name-i is speci-
fied in the ON clause. In this case, thie rerun information is written on
file-name-i, which must be an output file, whenever a switch assumed a par-
ticular status as specified by condition-name. In this case, as in para-
graph f above, the associated switch must be defined in the SPECIAL-NAES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

e The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same memory area during proc-
essing. The area being shared includes all storage area assigned to the
files open at the same time.

USACSC GUIDELINES. None.

2-54

\



15 DEC 81 CSCM 18-1-1

2.4.6.17 RERUN CLAUSE.

FUNCTION. The RERUN clause specifies the intervals at which the checkpoint
recordsar(-to be taken.

FORMAT.

S file-name- EY EN O] R OF file-name-2
;RRU Ifl -1 EVERYt I integer-l RECORDS)

implementor name integer-2 CLO'R--UN S

L condition-ne"e

SYNTAX RULES. File-name-2 represents the file for which the checkpoint
records are to be written. It must be described with a file description entry
in the Data Division.

GENERAL RULES. Checkpoint records are written sequentially and assigned to
mass or tape storage devices.

USACSC GUIDELINES.

9 The need for recovery must be considered in all system designs. The
types of recovery required by a subsystem will depend on such factors as fre-
quency of operation, history records that must be maintained, the speed at which
the subsystem must recover and required data accuracy. Every system designer
must consider recovery procedures and document how recovery operations will be
accomplished. Any generalized approach to recovery is inefficient and difficult
to use. Each system designer must, therefore develop his own recovery proce-
dures. A checkpoint will be taken at least every sixty minutes of program execu-
tion time. The RERUN clause is not always adequate for use in restarting complete
systems. Specialized restart procedures should also be allowed in lieu of
checkpoints (e.g., job or step restart), when appropriate.

* Checkpoint Considerations. The system analyst must give consideration to
the lollownq Doints:

Available I/0 device for writing the checkpoint, i.e., use unassigned
unit if possible.

Select the input file that is close to sixty minutes per reel in running
time and take a checkpoint each time this reel ends.

If the fastest input file requires more than sixty minutes to reach end
of volume, it will be necessary for the programer to use the number of records
option, i.e., take checkpoint every 9,999 records.

2-55



CSCM 18-1-1 15 Dec 81

2.4.6.17 RERUN CLAUSE. (Cont.)

9 Program Checkpoint Considerations. When a program is expected to run for
longer than sixty minutes, provision should be made for taking checkpoint infor-
mation periodically during the run. This information describes the status of
the job and the system (main storage, input/output status, general and floating
point registers) at the time the records are written. This provides a means of
restarting at a checkpoint position rather than at the beginning of the entire
Job if processing is terminated for any reason before the normal end-of-job. To
permit taking checkpoints and restarting, the programer should insure that:

Upon restarting, the program will be able to continue as though it has
just reached that point in the program at which termination occurred.

File handling is organized to permit easy reconstruction of the status
of the system as it exists at the time of each checkpoint.

The contents of files are not altered significantly between the time of
the checkpoint and the time of the restart in sequential files. All records
written on the file at checkpoint time should be unaltered at restart time. With
non-sequential files, care must be taken to design the program so that a restart
will not duplicate work that has been completed between checkpoint and restart
time.

e Restart Procedures. Restart procedures must list, for the operator, the
actin-rs riequvr- to -recover that unit of work or series of jobs. This may
constitute restarting the program or may require that previous programs be rerun
to recreate input files. Complete ref erence to programs and files necessary to
accomplish the rerun must be given as well as any manual actions to be taken,
when applicable, prior to rerunning the program.

o Device Error Recovery. Most 1/O devices have a unique device error
recovery routine. The appropriate routine is entered upon detection of an
error. rn all these routines an attempt is made to recover from the error.
Additional error recovery may be attempted by programing or by operator action.
The following choices are available:

An error can be ignored (record processed).

The job can be terminated.

The problem program can take a:tion fan exit to a user routine is
allowed).

The record in error can be by-passed.

2.4.6.18 SAME CLAUSE.

FUNCTION. The SAME clause specifies that two or more files are to use the

same s-orage area during processing.

2-56



'5 DEC 81 CSCM 18-1-1

2.4.6.18 SAME CLAUSE. (Cont.)

FORMAT.

I L;SAME rSR AREA FOR file-name-3 ......me-

SYNTAX RULES. For file-name-3, file-name-4, etc., enter the names of the
appropriate files the same way they are coded in the SELECT statement.

GENERAL RULES.

9 A specific file-name must not appear in more than one SAME AREA clause.

e A specific file-name must not appear in more than one SAE RECORD AREA
cl ause.

e If one or more file-name of a SAME AREA clause appear in a SAME RECORD
AREA clause, all of the file-names in that SAME AREA clause must appear in that
SAE RECORD AREA clause. However, that SAE RECORD AREA clause may contain
additional file-names that do not appear in that SAME AREA clause.

* File names specified in a given SAME clause may not be open simultane-
ously.

USACSC GUIDELINES. In IBM DOS COBOL, SAE RECORD AREA should not be used.
.- It increases core requirements unnecessarily and the same effect can be achieved

by using one WORKING-STORAGE entry for all files with the same Record Descrip-
tion. WORKING-STORAGE entries are easier to locate in a core dump than a
compiler assigned work area.

2.4.6.19 MULTIPLE FILE TAPE CLAUSE.

FUNCTION. MULTIPLE FILE TAPE clause is t sed to indicate that more than one
file occurs on a tape reel.

FORMAT.

;MULTIPLE FILE TAPE CONTAINS file-name-5 nee-]LPOSITION integer-3] [;file-name-6 POSITION integer- ...

2-57

U . . ..



CSCM 18-1-1 15 Dec 81

2.4.6.19 MULTIPLE FILE TAPE CLAUSE. (Cont.)

SYNTAX RULES. Integer indicates the position of the file relative to the
beginning.

GENERAL RULES.

* The MULTIPLE FILE clause is required when more than one file shares a
single physicdl reel of tape.

* Regardless of the number of files on a reel, only those files that are
used in a program need be specified.

* If all the file-names have been listed in consecutive order, the POSITION
clause need not be given.

e If any file in the sequence is not listed, the POSITION clause must be
listed.

e No more than one file on the same reel can be open at one time.

* Tape files with RECORDING MODE ASCII or EBCDIC must be named in the
MULTIPLE FILE clause.

USACSC GUIDELINES. None.

2.4.7 DATA DIVISION.

2.4.7.1 ELEMENTS.

FUNCTION. The DATA DIVISION describes the information that is pro-
cesseF Tye object program. This includes the data that is accepted as
input, created, manipulated, or produced as output. Data to be processed
falls into the following categories:

e Data contained in files input to the object program or output from
it. This data enters or leaves the internal memory of the computer from a
specified comrputer storage device.

* Data developed internally and placed in an intermediate (working)
storage area.

* Constants defined by the program in an intermediate (working)
storage area.

e Linkage data descriptions used for communication between the main
program and subprograms.

2-58



15 DEC 81 CSCM 18-1-1

2.4.7.1 ELEMENTS. (Cont.)

FORMAT.

DATA DIVISION.

FFILE SECTION.

FD - file-description-entry
record-description-entryj

data-description-entry-

L FSD - sort-description-entry
record-description-entry

L r data-decription-entry

WORKING-STORAGE SECTION.

L ~77-level-description-entry ] .. j
record-description-entry

LI NKAGE SECTION .
F7-eedecito-entry..

Lrecord-description-entry •'

[COMMUNICATION SECTION.

L ~[communication-description-entry [record-description-entry]...] ..

SYNTAX RULES.

e DATA DIVISION must begin in Area 'A'.

* Each section is optional.

GENERAL RULES. Within each section may be found different levels of entries.
The record description is the highest level of organization in all sections
except the File Section where it is subordinate to the file description. The
data description is subordinate to the record description. The entries are
differentiated by the use of a level indicaLor, level-number or special
level-number.

.s The level indicator (FD or SD) is used only in the File Section to
specify the beginning of a file description or sort description entry. It must
be followed by at least one record description entry and its associated data
description entries.

?-59

• -.



CSCM 18-1-1 15 Dec 81

2.4.7.1 ELEMENTS. (Cont.)

- * The level-numb~er is used to structure a record so that individual ele-
ments of data within th Ie record may be referenced. The level-number represents
either a record description or a data description.

The level-number 01 indicates a record description entry. This is the
highest level of data organization and is not subordinate to any other items of
data.

Data descriptions are subdivisions of record descriptions and have a
level-number higher than 01. For record descriptions which are not subdivided,
the record description and the data description are synionymous. Data descrip-
tions may be further subdivided as long as each level of sub-division has a
numerically higher level-number assigned. (See paragraph 2.3.5, UISACSC COBOL
Reference Format for formatting standards for data descriptions.)

The lowest subdivision of a record is an elmna tm The elementary
item entry contains a level-number, one or more spacs, the data item-name, and
a period. The size of the group item is computed from the sizes of its elemen-
tary items. Group items may be subdivisions of other group items. The group
item contains all the subordinate group items and elemientary items with
level-numbers higher than the level-number of that group item.

*The special level-numb~er does not structure a record. It represents a
special type entry.

The data item description entry is used only in the WORKING-STORAGE
SECTION and is prefixed by a special level-number of 77. This is an elementary
data item which is not a subdivision of a group item and cannot be subdivided.

The condition-name entry is prefixed by a special level-number of 88.
This entry indicates a specific value or range of values a data item might con-
tain during program execution.

USACSC GUIDELINES. None.

2.4.7.2 FILE SECTION.

FUNCTION. The FILE SECTION contains the descriptions of all data stored

externally (input and output files) and of all sort-files used in the program.

2-60



15 DEC 81 CSCM 18-1-1

2.4.7.2 FILE SECTION. (Cont.)

FORMAT.

F FILE SECTION.
t IFD - file-description-entry

record-description-entry ]
data-description-entry

FSD - sort-description-entry
record-description-entry ...

L data-description-entry

SYNTAX RULES. The FILE SECTION begins with the header FILE SECTION followed
by a period. This section contains file description and sort description
entries followed by their associated record description entries.

GENERAL RULES.

* FILE/SORT DESCRIPTIONS.

In a COBOL program the File Description (FD) and/or Sort File Descrip-
tion (SD) represents the highest level of organization in the FILE SECTION. The
FILE SECTION header is followed by one or more FD entries consisting of a level
indicator (FD or SD), a data-name, and a series of independent clauses. These
clauses specify the size of the logical and physical records, the recording mode
and label information and the names of the data records which comprise the file.
The entry is terminated by a period and followed by record descriptions associ-
ated with it.

A Sort-File Description (SD) gives information about the name and size

of data records in the work file. The name Sort-File designates a set of
records sorted by a SORT statement. There are no label procedures which the
user can control and the rules for blocking and internal storage are peculiar to
the SORT statement.

USACSC GUIDELINES.

9 DATA-NAMES. Unique data-names must be assigned to each data item in a
program to eliminate the necessity for qualification. Use as COBOL data-names
the abbreviation specified on the appropriate DA Form 4738, contained in the
Program Maintenance Manual (PM). A prefix may be attached to the beginning of a
standard data-name to distinguish an item in a master record from the same item
in a transaction. For data-names which are not in AR 18-12, use a meaningful
description. -ource statement library facilities will be used for record
descriptions occurring in more than two programs provided they are supported by
the compiler and the operating system.

2-61

LI



CSCM 18-1-1 15 Dec 81

2.4.7.2 FILE SECTION. (Cont.)

The use of standard Data Division entries without recoding them is
available through the library copy feature. These entries will be stored in

- user-created libraries, and included in the source program at compile time. The
levels used by a COPY clause and the level of the data-name being copied from
the library must be the same.

To avoid data-name qualification, the data-names under each file
description may be prefixed. The prefix should be meaningful to the developer
according to program requirements. The resultant prefix will uniquely identify
any data-name to the FD and appropriate 01-level record description.

,e.

e Improved processing can be achieved by placing the FD's in the order of
most used to least used files, and also placing the most used working storage
areas first.

2.4.7.3 WORKING-STORAGE SECTION.

FUNCTION. The WORKING-STORAGE SECTION describes data items and records that
are deveoped and processed internally. It is composed of the section header,
followed by data item description entries (77-level independent data items) and
record description entries (01-level) in that order.

FORMAT.

SWORKING-STORAGE SECTION.

* [ 7-level-description-entries ...• L~record-des cr ipt ion-entry _

SYNTAX RULES. The section must begin with the section header WORKING-STORAGE
SECTION followed by a period.

GENERAL RULES. The section contains data description entries for non-
contiguous items (77-level) and record description entries (01-level) in that
order.

USACSC GUIDELINES.

* Each independent data item-name and each record name must be unique.
Data-names subordinate to the record-name must also be unique.

0 When data-names are not described by CSCM 18-5 or AR 18-12, data-names
used will clearly describe the function of the field.

2-62

S - -\



15 DEC 81 CSCM 18-1-1

- 2.4.7.3 WORKING-STORAGE SECTION. (Cont.)

* All elementary numeric items used as a subscript or as the object of an
OCCURS ... DEPENDING ON or a GO TO .... DEPENDING ON clause should be defined as
COMPUTATIONAL. This will preclude the addition of extra code by the compiler to
convert the number to binary each time it is referenced.

e The character 'S' indicating an operational sign is strongly recommended
for inclusion in the PICTURE clause of every numeric elementary item with a
USAGE of COMPUTATIONAL.

* Numeric items with an explicit or implicit USAGE of DISPLAY should have a
PICTURE with a sign indicator of IS' if arithmetic is to be performed on this
field repeatedly.

* Working storage entries will be prefixed with "WS-" or "WSnn-". The only
exception being those data items and record-names used in conjunction with COPY
library which are excluded from the WS or WSnn prefix requirement.

For small-to-average-sized programs where there is little or no problem
of multiple occurrences of the same data element in different record descrip-
tions, prefix all data-names with the characters "WS-" in the WORKING-STORAGE
SECTION. See FIGURE 2-7.

For programs that are very large and/or which have large areas of
WORKING-STORAGE, use the following rules for the WORKING-STORAGE SECTION. See
FIGURE 2-7.

Example of use in small-to-average-sized programs:

WORKING-STORAGE SECTION.
77 WS-PAGE-COUNTER PIC S999

USAGE IS COMP (NOTE: COMP usage
varies by vendor)

VALUE IS ZERO.
01 WS-CARD-AREA.

03 WS-RECORD-ID PIC X.
03 FILLER PIC X(70).
03 WS-NAME-FIELD PIC X(9).

01 WS-TRANSACTION-ID PIC X.

FIGURE 2-7

2-63



CSCM 18-1-1 15 Dec 81

2.4.7.3 WORKING-STORAGE SECTION. (Cont.)

Example of use in small-to-average-sized programs: (Cont.)

01 WS-TRANSACTION-ID PIC X
VALUE IS "A".

01 WS-CORRECTION-ID PIC X
VALUE IS "C".

Example of use in large programs:

WORKING-STORAGE SECTION.
01 WSOI-PAGE -COUNTER PIC S999

USAGE IS COMP
VALUE IS ZERO.

01 WS 1-END-OF-FILE-SWITCH PIC X.
01 WS01-NAME-HOLD-AREA PIC X(9).

01 WS92-CARD-ARE-1.
03 WS92-RECORD-ID PIC X.

03 FILLER PIC X(79).

01 WS93-CARD-AREA-2 REDEFINES WS52-CARD-AREA-1.

03 WS93-RECORD-ID PIC X.

03 FILLER PIC X(70).
03 WS93-NAME-FIELD PIC X(9).

01 WS-TRANSACTION-ID PIC X
VALUE IS "A".

01 WS-CORRECTION-ID PIC X
VALUE IS "C".

FIGURE 2-7 (Cont.)

1. Prefix all fixed-value constants in WORKING-STORAGE SECTION with

the characters "WS-" and group them all together in one contiguous area

in WORKING-STORAGE, preferably in the back of the section. These data

elements would be used in place of literals in the body of the program's

PROCEDURE DIVISION, etc.

2. Prefix all variable value data elements in WORKING-STORAGE

SECTION with characters of the construction "WSnn-", where the nn is nor-

mally (but not always, as will be explained later) a two-digit numeric

designator that uniquely identifies either a group of independent variables

and small record description entries where there are no problems of repeti-

tion of the same data element in more than one place, or individual record

description entries (01-level entries). The areas, of either type

discussed above, should be designated in ascending numeric sequence, thus

making any portion of WORKING-STORAGE easy to find in the program listing.

2-64

II



15 DEC 81 CSCM 18-1-1

2.4.7.3 WORKING-STORAGE SECTION. (Cont.)

e All elementary numeric items used as a subscript or as the object of an
OCCURS ... DEPENDING ON or a GO TO .... DEPENDING ON clause should be defined as
COMPUTATIONAL. This will preclude the addition of extra code by the compiler to
convert the number to binary each time it is referenced.

* The character 'S' indicating an operational sign is strongly recommended
for inclusion in the PICTURE clause of every numeric elementary item with a
USAGE of COMPUTATIONAL.

e Numeric items with an explicit or implicit USAGE of DISPLAY should have a
PICTURE with a sign indicator of IS' if arithmetic is to be performed on this
field repeatedly.

o Working storage entries will be prefixed with "WS-" or "WSnn-". The only
exception being those data items and record-names used in conjunction with COPY
library which are excluded from the WS or WSnn prefix requirement.

For small-to-average-sized programs where there is little or no problem
of multiple occurrences of the same data element in different record descrip-
tions, prefix all data-names with the characters "WS-" in the WORKING-STORAGE
SECTION. See FIGURE 2-7.

For programs that are very large and/or which have large areas of
WORKING-STORAGE, use the following rules for the WORKING-STORAGE SECTION. See
FIGURE 2-7.

Example of use in small-to-average-sized programs:

WORKING-STORAGE SECTION.
77 WS-PAGE-COUNTER PIC S99

USAGE IS COMP (NOTE: COMP usage
varies by vendor)

VALUE IS ZERO.
01 WS-CARD-AREA.

03 WS-RECORD-ID PIC X.
03 FILLER PIC X(70).
03 WS-NAME-FIELD PIC X(9).

01 WS-TRANSACTION-I PIC X.

FIGURE 2-7

2-63

. - .



15 DEC 81 CSCM 18-1-1

2.4.7.3 WORKING-STORAGI SECTION. (Cont.)

Use of this convention illlow; th(, s.ame daLa l euIri,. L) ,,Iir in many ( ift erernt
1cation; without hav ln, t.* (o the one thinj thal. wil I II I de- tL oy a program ,
ijabllity and maintainability -- making minor changes to the meaningtut porLion
of the data-name in order to make it unique, thus destroying the continuity of
the program where that data element is concerned.

For the larger programs, with large amounts of storage requireo, tne
use of the dual method of "WSnn-" variables and "WS-" constants has numerous
advantages. These include:

1. Easy access to any portion of a long listing of storage tnrougn use
of the numeric sequence.

2. Elimiiation of the problem of data-name uniqueness where the same
data element occurs in multiple locations.

3. Unique, easily recognizable labeling of any area of storage througn
the designation of blocks of numbers to a given series of record types. For
example, all report output record areas in WORKING-STORAL/ might be set up tc
carry prefixes in the 40's; all input transaction record areas prefixes in the
50's; etc.

4. An extremely high number of areas may be set up using this method.
Simply within the normal numeric series, up to 99 different blocks of data
elements may be established. For extremely large programs, though, or those
with an extremely high number of recrctd description entries, the following
extension to the "WSnn-" prefix is suggested. Once the entire 99 numbers have
been employed, begin using a prefix of the structure "WSxn-", where the x is an
alphabetic character, beginning with the letter "A" and working up, with the n
character, still a numeric digit, working through the sequence from zero (0) to
nine (9) for each alphabetic character. Thus the first area would be prefixed
"WSAO-", the second "WSAI-", the third "WSA2-", etc. This method adds 260 more
prefix combinations to the available set, certainly covering any foreseeable
situations.

5. Using the dual method, the appearance of a "WS-" type prefix
immediately labels that data-name to the programer as belonging to a constant
whose value will not change. The programer doesn't have to constantly keep
referring to the listing to determine the type of data element being worked
with.

The "WSnn-" data-name prefixing applies to new programs under develop-
ment. Existing programs will be converted to these standards mechanically
through the use of USACSC COBOL formatting programs when and as convenient.

2-65



CSCM 18-1-1 15 Dec 81

2.4.7.4 LINKAGE SECTION.

FUNCTION. The Linkage Section is used to describe data made available in a
called program from a calling program. See VENDORS' GUIDELINES for additional
features available under IBM Operating System.

FORMAT.

L INKAGE SECTION.1

-77-level-description-entry 3
record-descri ption-entry

L

SYNTAX RULES. The LINKAGE SECTION begins with the header LINKAGE SECTION
followed by a period.

GENERAL RULES. Data item description entries and record description entries
in the Linkage Section provide names and descriptions, but storage within the
program is not reserved since the data area exists in a calling program. All
data description clauses may be used to describe items in the Linkage Section,
with one exception: the VALUE clause may not be specified for other than
level-88 items.

VENDORS' GUIDELINES.

e The Linkage Section, under the IBM Operating System (OS), is also used to
describe data from the PARM field of the EXEC statement. Data is made available
to a main program at execution time.

* In the Linkage Section, the compiler assumes that each level-01 item
starts on a doubleword boundary.

e The combined total number of level-77 and level-01 items in the Linkage
Section may not exceed 255.

USACSC GUIDELINES. Linkage Section entries will be preFixed with "LS-" or
"LSnn". The only exception being when COPY library is used 'n conjunction with
the Linkage Section.

e For small-to-average-sized programs where there is little or no problem
of multiple occurrences of the same data element in different record descriptions
prefix all data names with the characters "LS-" in the LINKAGE SECTION.

e For programs that are very large and/or which have large LINKAGE area,
use the following rules for the LINKAGE SECTION.

2-66

1



15 DEC 81 CSCM 1-1-1

2.4.7.4 LINKAGE SECTION. (Cont.)

Prefix all fixed-value constants in the LINKAGL SL-CTION with the ciiarac-
ters "LS-" and group them all together in one contiguous area, prefera1l. in t11c
back of the section. These data elements would be used in place of liierals in
the body of the program's PROCEDURE DIVISION, etc.

Prefix all variable value data elements in the lINKAGE LCI ION wt
characters of the construction "LSnn-", where the nn is normally iout not
always, as will be explained later) a two-digit numeric designator tnat .nique
itentifies either a group of independcnt variables anc siai ! recort cesc"
ertries where there are no problems of repetition of tee same data ele;e-.
mcre than one place, or individual recor description cat'ries 1-levi - -:
The areas, of either ty)e Giscussea atove, sncu d :e ca-<qnaec: -:- ascen, nc
numeric sequence, thus riaKing any portion of the LINAuL SECThO eds,, 0 T C,
the program listing. Use of this convention aliows tne same daaca eiemer t,
appear in many different locations without having to co the one thn r tat Ni
most destroy a program' ; usability and maintainablity -- Main c minor c¢,ances
to the meaningful portion of tne data name in order to make ,t unique, tn,,s
destroying the continuity of the program where that data eloiqent is concerr e.

For the larger )rograms, with large v'ounts uf stord ,O rte L, .!e G 0
of the dual method of "! Snn-" variables and "LS-" constants has nlj:erom 2van-
tages. Those include:

1. Easy access to any portion of a long listing of stoagc :",>.-
of thp numeric sequence.

2. Elimination of the problem of oata-nane uniqueness ,Ne"e t ,.
data element occurs in multiple locations.

3. Unique, easily recognizable labeling of any area of stic,,- "- tfr,)Luc
the designation of blocks of numoers to a given series of recoro t -Pe . -or
example, all report output record areas in the LINKAGE SECTION miqnt <c ,
carry prefixes in the 40's; all input transaction record areas profixes )--' t'i
59's; etc.

4. An extremely high number of areas may be set up using tiis melt c'd.
Simply within the normal numeric series, up to 99 different blocks P' data
elements may be established.

5. For extremely large programs, though, or those with an increi'7
high number of record description entries, the following extension tc. the
"LSnn-" prefix is suggested. Once the entire 99 numbers have been employt-,i,
begin using a prefix of the structure "LSxn-" where te x is an alphabetic
character beginning with the letter "A" and working up, with the n character,
still a numeric digit, working through the sequence from zc-o (0) to nine ,
for each alphabetic character. Thus the first area would be prefixed "LSAV-",
the second "LSA1-", the third "LSA2-", etc. This method adds 260 more prefix
combinations to the available set, certainly covering any foreseeable situations.

2.67

. . ... . -mmmmm~mm m --I --ii m iN



AD-A113 456 ARMY COMPUTER SYSTEMS COMMAND FORT BELVO1R VA F/6 9/2
PROGRAMING PROCEDURES MANUAL (PPM).(U)

UNCLASSIFIED :NL

26LE flfllflfflfllflfflf



______'- 
~ 11 2.2

111IL2 1.4 lI~

M MICROCOPY RESOLUTION TEST CHART
NF1(N l 11P .I(I (I A 1A P l



CSCM 18-1-1 15 Dec 81

2.4.7.4 LINKAGE SECTION. (Cont.)

6. Using the dual method, the appearance of a "LS-" type prefix imme-
-" diately labels that data-name to the programer as belonging to a constant whose

value will not change. He doesn't have to constantly keep referring to his
listing to determine which type of data element he is working with.

The "LSnn-" data-name prefixing applies to new programs under develop-
ment. Existing programs will be converted to these standards mechanically
through the use of USACSC COBOL formatting programs when and as convenient.

2.4.7.5 FILE DESCRIPTION (FD) AND SORT-FILE (SD) DESCRIPTION ENTRIES.

FUNCTION. The file description entry furnishes information concerning the
physical structure, identification, and record-names necessary for processing a
given external file. The sort-file description entry provides this information
for a file that is to be sorted or merged.

FORMAT.

FD file-namer J RECORDS i11
BLOCK CONTAINS [integer-1 jOinteger-2 CHARACTERS11

C; RECORD CONTAINS [integer-3 TD integer-4 CHARACTERS]

JSTANDARDI
; LABEL RECORDS ARE _O

MITTEF

data-name-11
C; VALUE OF implementor-name-1 IS {literal-i (

Fdata-name-2 l
implementor-name-2 IS literal-2

;DATA L OR S AREJ data-name-3 [,data-name-4] ...

LCODE-SET IS alphabet-name.]

SD file-name

RECORD CONTAINS tinteger-1 TO3 integer-2 CHARACTERS3

DATA 1RM ARE data-name-i r, data-name-2]

2-68



15 DEC 81 CSCM 18-1-1

2.4.7.5 FILE DESCRIPTION (FD) AND SORT-FILE.(SD) DESCRIPTION ENTRIE-'. ((nrlt..j

SYNTAX RULES.

* The level Indicator (FD or SD) starts in the first position of Margin 'A'
and signifies the beginning of the file (or sort) description.

* The file-name immediately follows the level indicator.

* The file and/or sort descriptions are only allowed in the FILE SECTION
of the DATA DIVISION.

GENERAL RULES.

o The file description entry must have one or more record description
entries subordinate to it. If it has more than one, internal storage is
reserved for only the largest record description. Each additional record
description is assumed to redefine the largest one and occupies the same storage
area. Redefinition is implied.

o The file description entry for file-name must be equivalent to that used
when this file was created.

USACSC GUIDELINES.

o For ease of maintenance of modified record format, it is suggested that
all record description eitries be kept on a direct-access storage device and
called into the program using the COPY verb.

e Each clause under the FD or SD entry must be on a separate line.

2.4.7.6 LABEL RECORDS CLAUSE.

FUNCTION. The LABEL clause specifies the presence of labels for a file.

FORMAT.

{STANDARD 1
LABEL RECORDS ARE

tOMITTEDJI

SYNTAX RULES. The LABEL RECORDS clause is required in each file description.

GENERAL RULES. STANDARD signifies the existence of file labels which
conform to system specification.

USACSC GUIDELINES. All output files must have standard labels where file
processing conditions do not prohibit them.

2-69



CSCM 18-1-1 15 Dec 81

2.4.7.7 RECORD CONTAINS CLAUSE.

FUNCTION. The RECORD CONTAIN% c lau-& , *,,xcif ie the, ,,/v of (Ii.ta rtcod-v..

FORMA t.

EODCONTAINS rinteger-3 TO]. integer-4 CHARACTERS

SYNTAX RULES. Integer-3 and integer-4 must be positive, unsigned integers.

GENERAL RULES.

* In a variable length file, integer-3 refers to the minirrum record length
and integer-4 refers to the maximum record length.

Integer-4 may never be zero and should be used alone only for files
containing fixed length records.

* Integer-3 and integer-4 are expressed in terms of actual bytes of data
required for the record.

* Actual record lengths are computed by the compiler from the record
descriptions.

VENDORS' GUIDELINES.

e IBM.

If the record description for a file contains more than one OCCURS
DEPENDING ON clause, the maximum compiler-calculated size may be greater than
needed. The user may override this calculation by specifying the size desired
in integer-4. In this case, the user-specified value of integer-4 determines
the amount of storage set aside to contain the data r,-,.d.

USACSC GUIDELINES. The use of this clause is re:, .d.

2.4.7.8 VALUE OF CLAUSE.

FUNCTION. The VALUE OF clause particularizes the description of an item in
the I elrecords associated with a file.

2-70



15 DEC 81 CSCM 18-1-1

2.4.7.8 VALUE OF CLAUSE. (Cont.)

FORMAT.

fdata-name-
VALUE OF implementor-name-l IS Lliteral-i

" '" [ Idata-name-2 ]

, implementor-name-2 IS literal-2 .. ]
SYNTAX RULES.

* Data-name-i, data-name-2, etc., should be qualified when necessary, but
cannot be subscripted or indexed, nor can they be items described with the USAGE
IS INDEX clause.

a Data-name-i, data-name-2, etc., must be in the Working-Storage Section.

GENERAL RULES.

* For an input file, the appropriate label routine checks to see if th?
value of implementor-name-1 is equal to the value of literal-1 or data-name-1.

* For an output file, at the appropriate time the value of implementor-
name-1 is made equal to the value of literal-1 or data-name-1.

* A figurative constant may be substituted in the format above wherever
a literal is specified.

VENDORS' GUIDELINES.

9 IBM.

In both OS and DOS, this clause is treated as a comment.

USACSC GUIDELINES. None.

2.4.7.9 BLOCK CONTAINS CLAUSE.

FUNCTION. The BLOCK CONTAINS clause specifies the size of the physical
record-s-Cblcks) which contain the logical records in a file.

FORMAT.

BLOCK CONTAINS Jinteger-I T] integer-2 R

BRCRS

2-71



CSCM 18-1-1 15 Dec 81

2.4.7.9 BLOCK CONTAINS CLAUSE. (Cont.)

SYNTAX RULES. Integer-1 must be a positive unsigned integer.

GENERAL RULES.

9 If this clause is not used, a physical record containing one and only one
complete logical record is assumed.

e Use of the RECORDS option: This option states the number of logical
records to be placed in a physical block. The compiler computes the block size
to be the sum of integer-2 records of maximum size plus any required control
bytes.

e Use of CHARACTERS option:

If neither RECORDS nor CHARACTERS are specified, CHARACTERS is assumed.

The CHARACTERS option represents the exact size of the physical record in
terms of the number of character positions required to store the physical record.

Techniques for handling physical records (blocks) containing variable-
- length logical records are specified by each vendor.

* If integer-1 and integer-2 are both shown, they refer to the minimuin and
maximum size of the physical record, respectively.

VENDORS' GUIDELINES.

9 IBM.

IBM specifies that for variable-length files (mode of V) a block descrip-
tor field is appended to the beginning of each block. This is a four byte field
which must be added to the desired actual block size (integer-2) when the
CHARACTERS option is used.

The CHARACTERS option represents the exact size of the physical record
in terms of the number of bytes occupied internally by its logical records plus
slack bytes.

The CHARACTERS clause need not be specified for U-mode files.

An IBM OS extension allows that integer-2 be set to zero. If zero is
specified, the block size is determined at object tirme from the DD parameters or
the data set label for the file. The file name may not appear in a SAME AREA
clause and the file must either be a sequential or indexed file 4hose ACCESS
MODE is sequential.

2-72

. - • - -~ "



15 DEC 81 CSCM 18-1-1

2.4.7.9 BLOCK CONTAINS CLAUSE. (Cont.)

USACSC GUIDELINES.

* IBM.

The following is applicable for IBM-OS COBOL:

* BLOCK CONTAINS 0 clause is recommnended for all sequential input files,
tapes, or DASD sequential output files.

e BLOCK CONTAINS 0 option should not be used with variable-length records
since it may lead to inefficient blocking of logical records. Also, index-
sequential files cannot use block contains zero clause.

e BLOCK CONTAINS 0 option cannot be used for those files utilizing the
SAME AREA clause.

2.4.7.10 CODE-SET CLAUSE.

FUNCTION. The CODE-SET clause specifies the character code set used to
represent -data on the external media.

FORMAT.

tCODE-SET IS alphabet-name3

SYNTAX RULES.

e When the CODE-SET clause is specified for a file, all data in that file
must be described as usage is DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

* The alphabet-name clause referenced by the CODE-SET clause Must not
specify the literal phrase.

*The CODE-SET clause may only be specified for non-mass storage files.

GENERAL RULES.

e If the CODE-SET clause is specified, alphabet-name specifies the
character code convention used to represent data on the external media. It also
specifies the algorithm for converting the character codes on the external media
from/to the native character codes. This code conversion occurs during the exe-
cution of an input or output operation. (See paragraph 2.4.6.5, SPECIAL-NAMES
PARAGRAPH).

e If the CODE-SET clause is not specified, the native character code set is
assumed for data on the external media.

USACSC GUIDELINES. None.

2-73



CSCM 18-1-1 15 Dec 3l

2.4.7.11 DATA RECORD CLAUS..

FUNCTION. The DATA RI CORDS ci ause merely documenl.s the iame:; roi tho record,
SI d fie.

FORMAT.

(RECORD IS1RECORD data-name-3 g,data-name-41 ...
~RECORDS ARE

SYNTAX RULES. Data-name-3 and data-name-4 are the names of data records in
the file. They are the names of the 01-level record description entries for
that file.

GENERAL RULES.

* The use of more than one data-name indicates the presence of more than
one type of data record. These data records may have different descriptions.

* Multiple data records for a file share the same storage area.

* The order in which data-names are listed is unimportant.

USACSC GUIDELINES. None.

2.4.7.12 RECORD DESCRIPTION CLAUSE.

FUNCTION. The RECORD DESCRIPTION entry consists of the various levels of
data-description entries which describe the record(s) contained in a file.

FORMAT.

Slevel-number data-name COPY I i br ary- name

SYNTAX RULES.

* A level-number of 01 signifies the beginning of the record description.

e The record description is terminated by the next level-number of 0)1 or
the next level indicator of SD or FD.

2-74



15 DEC 81 CSCM Io-I-I

2.4.7.12 RECORD DESCRIPTION CLAUSE. (Cont.)

GENERAL RULES.

a Every file description (FD) entry or sort description (SD) entry must
have at least one record description describing it.

a The record description entry is valid in all sections of a COBOL source
program.

e If the record description is not subdivided, it is also a data description

entry and must follow the rules for data description entry development.

e The record description may be copied from a direct-access storage library.

USACSC GUIDELINES. It is suggested that for ease of maintenance of record
formats, that the record description be copied from the direct-access storage
library.

2.4.7.13 DATA DESCRIPTION CLAUSE.

FUNCTION. The DATA DESCRIPTION entry describes the characteristics of a
77-leveT data item, an 88-level condition name, and all elementary and group
data items subordinate to a record description. It consists of a level-number
and data-name, plus any applicable data description clauses.

FORMAT.
FORMAT 1.

fdata-name)

level-number FILLER J

C; REDEFINES data-name-2]

[OCCUR clause]

L .ICTRE } IS character-string]

{ COMPUTATIONAL 1
[USAGE IS] TCOMP

DTIfLAY

FLEADING
; SIGN IS] LEAING } [SEPARATE CHARACTER]

SY }NCHRONIzED  [

L JUSTIFIED } RIGHT]

9; BLANK WHEN ZERO]

9; VALUE IS literal.

2-75

• , .. .. ... -- .. ... .. .. . ... ... Iiii-t . ... • . . .. II *11 ....



CSCM 18-1-1 15 Dec 81

2.4.7.13 DATA DESCRIPTION CLAUSE. (Cont.)

FORMAT 2.

88 conditIon-name VALUE clause

SYNTAX RULES.

* An entry plus its clauses must be terminated by a period.

* The maximum liength for a data description entry is vendor specified.

9 The PICTURE clause must be specified for every elementary item except an
Index data item, in which case use of this clause is prohibited.

* Condition-name 88-level entries must immediately follow the data
description entry of which they are a variable.

GENERAL RULES.

* Data description clauses and 77-level data items are to be written in the
order outlined in FORMAT 1. However, unnecessary clauses may be omitted.

a The PICTURE, JUSTIFIED and BLANK WHEN ZERO clauses may only be specified
for elementary items.

* The following rules apply to the use of 88-level condition names:

A condition-name can be associated with any elementary item except
another condition-name or index data item.

A condition-name can be associated with a group item with the following

restrictions:

1. The value must be a non-numeric literal or figurative constant.

2. The size of the condition cannot exceed the total of the sizes of the
elementary items in the group.

3. No element in the group may contain a JUSTIFIED clause.

4. All items within the group must have a USAGE of DISPLAY.

5. Condition-names may also be applied to levels subordinate to the
group item that has a condition-name associated with it.

2-76

A



15 DEC 81 CSCM 18-1-1

2.4.7.13 DATA DESCRIPTION CLAUSE. (Cont.)

N,-- VENDORS' GUIDELINES.

" IBM.

The maximum length for a data description entry is 32,767 bytes except
for a fixed-length WORKING-STORAGE or LINKAGE SECTION group item which may be
131,071 bytes.

USACSC GUIDELINES. When used, data description clauses should be arranged
in the following order:

REDEFINES VALUE
OCCURS JUSTIFIED
PICTURE SYNCHRONIZED
USAGE BLANK WHEN ZERO

rI-

2.4.7.14 DATA-NAME OR FILLER CLAUSE.

FUNCTION. A data-name refers to the name of the data item being described.
The word FILLER refers to an elementary item of a logical record which is never
referenced and need not be named.

FORMAT.

l data-name

level-number ( F LE

SYNTAX RULES. Data-name or FILLER must immediately follow the level-number.

GENERAL RULES.

* The key word FILLER may never be directly referenced.

0 In the WORKING-STORAGE and LINKAGE SECTIONS, level-77 and level-91 entries
should be given unique data-names.

* A data-name subordinate to another data-name must be unique.

* A data-name refers to a type of data, not a specific value. The value of
a data-name may vary throughout the program.

2-77



CSCM 18-1-1 15 Dec 81

2.4.7.14 DATA-NAME OR FILLER CLAUSE. (Cont.)

e The key word FILLER is to be ured only wi h the elementary level items.

Group level items will have unique descriptive labels.

USACSC GUIDELINES.

9 When the term FILLER is used it will be spelled in full.

e The WORKING-STORAGE and LINKAGE SECTIONS will be prefixed by "WS-" or
"WSnn-" and "LS" or "LSnn", respectively. Reference WORKING-STORAGE SECTION and
.LINKAGE SECTION.

e Data-names under each file des:ription will follow the rules prescribed
in the FILE SECTION of the DATA DIVISION.

2.4.7.15 REDEFINES CLAUSE.

FUNCTION. The REDEFINES clause provides a means for giving different
definitions to the same area of computer storage. This implies a redefinition
of the physical storage area not the data items describing the area. The
redefinition may involve structure usage, or rearrangement of the storage posi-
tions.

FORMAT.

level-number data-name-1 REDEFINES data-name-2

NOTE: Level-number and data-name-1 are shown in the above format to improve

clarTT they are not part of the REDEFINES clause.

SYNTAX RULES.

e The REDEFINES clause, when specified, must immediately follow data-name-1.

* The level-numbers of data-name-1 and data-name-2 must be the same but
must not be an 88-level.

# This clause may not be used at the 01-level in the FILE SECTION. When
more than one 01-level entry applies to a file description, redefinition is
implied.

GENERAL RULES.

9 The area to be redefined starts at data-name-2, includes all data items
subordinate to data-name-2, and ends when a level-number equal to or less than

2-78

L



15 DEC 81 CSCM 18-1-1

2.4.7.15 REDEFINES CLAUSE. (Cont.)

data-name-2 is reached. This point should be the data description entry for
data-name-1. There can be no interveninq entries with niimerically lower lvol-
nismhors than data-name-1 and data-name-?.

* The computed length of data-name-i must equal the computed length of
data-nie-2.

* The USAGE may be changed oy the redefinition. This does not, however,
change the existing data.

* The entries making up the nEw definition (data-name-I and its subordinate
entries) may not contain VALUE clauses.

* Multiple redefinitions of the same area are allowed. However, data-name-2
in all redefinitions will be the same as the data-name which originally described
the area.

* Redefinitions may be nested. A redefining entry may have another
redefining entry subordinate to it.

a Certain restrictions are necessary when using the OCCURS clause in
conjunction with the REDEFINES.

The area being redefined (data-name-2) cannot contain an OCCURS clause.

Data-name-2 cannot be subordinate to an entry containing an OCCURS
clause.

Data-name-I and its sbordinates and subordinates to data-name-2 may
contain the OCCURS clause without the DEPENDING ON option.

USACSC GUIDELINES. None.

2.4.7.16 SIGN CLAUSE.

FUNCTION. The SIGN clause specifies the position and the mode of represen-
tation of the operational sign when it is necessary to describe these properties
explicitly.

FORMAT.

_ FILEADING _

(SIGN IS] -... CSEPARATE CHARACTER]
TRAILING

2-79



CSCM 18-1-1 1~ Do 0 3

2.4.7.16 SIGN CLAUSE. (Cant.)

SYNTAX RULES.

*The SIGN clause may be specified only for a numeric data description
entry whose PICTURE contains the character '5', or a group item containing at
least one such numeric data description entry.

* The numeric data description entries to which the SIGN clause applies
must be described as usage is DISPLAY.

a At nu~st one SIGN clause may apply to any given numeric data description
entry.

@ If the CODE-SET cliuse is specified, any signed numeric data description
entries associated with ttat file description entry must be described with the
SIGN IS SEPARATE clause.

GENERAL RULES.

9 The optional SIGN clause, if present, specifies the position and the mode
of representation of the operational sign for the numeric data description entry
to which it applies, or for each numeric data description entry subordinate to
the group to which it applies. The SIGN~ clause applies only to numeric data

- description entries whose PICTURE contains the character 'S'; the 'S' indicates
the presence of, but neither the representation nor, necessarily, the position
of the operational sign.

a A numeric data description entry wihose PICTURE contains the character
'S', but to which no optional SIGN clause applies, has an operational sign, but
neither the representation nor, necessarily, the position of the operational
sign is specified by the character 'S'. In th~is (default) case, the implEmentor
will define the position and representation of the operational sign. The
following general rules do not apply to such signed numeric data items.

*If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the
leading (or, respectively, trailing) digit position of the elemientary numeric
data item

b. The letter 'S' in a PICTURE character- string is not counted in deter-
mining the size of the item (in terms of standard data format characters).

c. The implementor lefines what constitutes valid sign(s) for data items.

a If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumied to be the leading (or, respec-
tively, trailing) character position of the elementary numeric data item; this
character position is not a digit position.

b. The letter 'S' in a PICTURE character- string is counted in determining
the size of the item (in terms of standard data format characters).

2-80



15 DEC 81 CSCM 18-1-1

2.4.7.16 SIGN CLAUSE. (Cont.)

C. The operational signs for positive and negative are the standard data
format characters '+' and '-', respectively.

* Every numeric data description entry whose PICTURE contains the character
'S' is a signed numeric data description entry. If a SIG clause applies to
such an entry and conversion is necessary for purposes of computation or compar-
isons, conversion takes place automatically.

USACSC GUIDELINES. None.

2.4.7.17 OCCURS CLAUSE.

FUNCTION. The OCCURS clause eliminates the need for separate entries for
repeated data by indicating the number of times a series of data items with
identical format is repeated. It defines tables and supplies information on the
application of subscripts and indexes.

FORMAT.FORMAT 
1.

OCCURS integer-2 TIMES

KEY IS data-name-2 data-name-
DESCENDING L d .

C INDEXED BY index-name-1 [, index-name-2] ...3

FORMAT 2.

OCCURS integer-1 TO integer-2 DEPENDING ON data-name-i

[ASCENDING KEY IS data-name-2 C, data-name-3] ...

INDEXED BY index-name-1 E, index-name-23 ...

2-81



CSCM 18-1-1 5ncQ

2.4.7.17 OCCURS CLAUSE. (Cont.)

SYNTAX RULES

* Inteqer-] and integer-? must ho posiltivo in l,,r.; . Wher, holl 'I Ir.' 1
the value of Integer-2 muxLJ. hi qr,,at.rr I.li. viluv nf tilv(ler-l.

9 The OCCURS clause cannot be specified for an entry that has a 7/, 8, or
01-level number.

* The OCCURS clause may not hav a variable size item subordinate to it.
That is, an OCCURS clause with the DEPENDING ON option cannot be contained
within another OCCURS clause.

* A VALUE clause may not be use( in a description containing an OCCURS

clause or in a description subordinale to it.

e Data-name-1 must describe a p(sitive integer.

s Data-name-i, data-name-2, ... may be qualified.

e Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containinq the OCCURS
clause.

@ Data-name-3, etc., must be the name of an entry subordinate to the group
item which is the subject of this entry.

e An entry which contains an OCCURS DEPENDING ON clause or which has a

stbordinate entry containing this clause cannot be redefined.

* These clauses must be in the order shown.

GENERAL RULES.

* Any clauses used in conjunction with an OCCURS clause applies to each
occurrence of the data item.

e Three levels of subscripting or indexing are allowed, therefore, only
three nested levels of OCCURS clauses are allowed.

* The subject of an OCCURS clause is the data-name of the entry containing
the clause. Whenever the subject or a data item subordinate to it are referenced
(except in the SEARCH statement), it must be subscripted or indexed.

@ Rules for integer-] and integer-2 with the OCCURS clause are:

In FORMAT 1, integer-2 represents the exact number of occurrences of
the subject of the occurs. It must be greater than zero.

In FORMAT 2, integer-1 states the minimum number of occurrences of the
subject of the occurs and may be zero or greater.

2-8?



15 DEC 81 CSCM 18-I-i

2.4.7.17 OCCURS CLAUSE. (Cont.)

In FORMAT 2, integer-2 states the maximum number of occurences and
must be greater than zero. The value of data-name-1 cannot be greater than
i nteger-2.

9 The DEPENDING ON option indicates that the subject of the entry may occur
a varying number of times. The value in data-name-1 determines the number of
occurrences. Data-name-1 has the following restrictions:

It must be a positive integer equal or less than integer-2.

It may not be part of a table and, therefore, may not be suoscripted.

If data-name-1 is contained in the same record as the variable lengtn
table data, data-name-i must be in a fixed portion of the record. It cannot be
in the variable length portion.

If the value of data-name-1 is reduced, the contents of data items
exceeding the new number of occurrences in data-name-1 is unpredictable.

01 * The KEY option is used when the table is arranged in sequence and the
SEARCH ALL statement is to be used. The KEY option states the sequence of the
repeated fields, ASCENDING or DESCENDING, according to the values of data-name-2,
data-name-3, etc. The data-names have certain restrictions.

If data-name-2 is the name of the entry containing the OCCURS clause,
it is the only key that may be specified.

If data-name-2 is not the name of the entry containing the OCCURS
clause, it must be an entry subordinate to it. In this case, multiple keys may
be used with the following rules.

1. The keys may be DISPLAY or COMP.

2. All keys must be subordinate to another entry containing an OCCURS
cl ause.

3. The keys may not contain an OCCURS clause.

4. The keys must be listed in order of significance.

0 The INDEXED BY option is used if the subject of the entry or an item
subordinateto itare to be referred to by indexing. The index-name is not
defined elsewhere in the program since its allocation and format are dependent
on the system. It is not data and, therefore, it cannot be associated with a
data hierarchy.

No more than 12 index-names may be used per entry.

The index-name must be initialized by a SET statement before use.

2-83



CSCM 18-1-1 15 Dec 81

2.4.7.17 OCCURS CLAUSE. (Cont.)

An index-name is a fullword and represents a binary value of the actual
displacement from the beginning of the table to the occurrence number in the
table. This is calculated in the following way:

'(occurrence number minus 1) * (length of entry)

If the entry is set up this way,

SA OCCURS 15 TIMES INDEXED BY N PIC X(19).

on the fifth occurrence of A,

I INDEX-NAME = (5-1) * 19 = 49.

e The KEY option and INDEXED BY option are further developed in paragraph
2.5.4, TABLE HANDLING FEATURE.

VENDORS' GUIDELINES.

e IBM.

In FORMAT 2, integer-2 must be less than 32,768 bytes.

Using the KEY option, the total number of keys per table element is 12.
The sun of the lengths of all the keys for a particular table element may not be
more than 256.

USACSC GUIDELINES. None.

2-84

i UI . ~ ... -. .. . . .



2.4.7.18 P~ICTURE CLAUSE. ~1--

FUNCTION. The PICTURE clause describes the general characteristics and
editing requirements of an elementary item.

FORMAT.

SYNTAX RULES.

9 PIC is an abbreviation of PICTURE and is the preferred form.

e A PICTURE clause may only be specified at the elementary item level.

* The PICTURE clause must be specified for each elementary item except
index data items for which no PICTURE clause is allowed.

s The character- string must contain only certain allowable combinations of
symbols from the COBOL character set. The allowable combinations determine the
category of the elementary item.

e The maximum number of positions coded for a character- string is 30.

* The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO may not appear in the same entry.

GENERAL RULES.

*For elementary items data is classified into five categories:
Alphabetic, numeric, alphanumeric, alphanumeric-edi ted and numeric-edi ted.

* Group items are always considered to be in the alphanumeric class.

* The size of an elementary item is a function of the character positions
in the PICTURE character-string and the USAGE clause.

* The PICTURE clause may be written with a symbol and a following integer
inclosed in parentheses. The combination X(10) refers to a character-string
of 10 X's.

*The following symbols may appear only once in a PICTURE clause.

S V . CR DB

2-85



CSCM 18-1-1 15 Dec 81

2.4.7.18 PICTURE CLAUSE. (Cont.)

*The symrbols used in a PICTURE clause a'e:

A The 'A' represents a character position which can only be filled by
a letter of the alphabet or a space.

B The 'B' represents a charecter position where a space character will
be inserted.

P The 'P' represents an assumied decimal scaling position. It is used
to specify the location of an assumed decimal point when the point
is not within the number that appears in the data item. The 'P' is
not counted in the size of the dat'-a item but is counted toward
determining the maximumn number of digit positions allowable (18) in
numeric-edited items or in items that appear as arithmetic operands.
The scaling character 'PI may only appear in a continuous string
(may not be intermixed with other symibols) to the left or right of
other characters in the picture. The sign character 'S' and the
assumied decimal point ' are the only symbols which may appear to
the left of a leftmost string of 'P's. Since the 'PI implies an
assum~ed decimal point (to the left of the string of 'P's if they are
the leftmost characters and to the right if they are the rightmost
characters) the assumed decimal point V is redundant.

S The '5' indicates the presence of an operational sign (but not its
position or representation). It is written in the leftmost position
of the character- string. The 'S' is not counted in the size of the
item unless a SIGN clause with the SEPARATE CHARACTER option is
associated with it. May only appear once per PICTURE clause.

V The IV' indicates the position of an assumed decimal point and may
appear only once in a character string. The I' does not represent
a character position; it is used for alignment only, and therefore
not counted in the size of the item. When the ' is the rightmost
symibol in the string, it is redundant.

X An 'X' represents a character position which may contain any charac-
ter from the COBOL character set.

Z A 'Z' in the character string represents a leading numeric character
position. Its purpose is for editing. Whenever the character posi-
tion it represents contains a zero, a space is substituted for the
zero. The 'Z' is counted in the size of the item.

9 The '9' represents a character position that can contain only a
numeral. The '9' is counted in the item size.

S A zero represents a position where the numeral zero will be inserted.
Each zero is counted in the size of the item.

2-86



15 DEC 81 CSCM 18-1-1

2.4.7.18 PICTURE CLAUSE. (Cont.)

Each '/' (stroke) in the character-string represents a character
position into which the stroke character will be inserted. The s/I

is counted in the size of the item.

The comma represents a position where a comma will be inserted. The
comma cannot be the last character in the picture. It is counted in
the size of the item.

A period represents the decimal point for alignment purposes. It is
also an editing sybol which inserts a period in that position. It
cannot be the last character in a string and is counted in the size
of the item.

+ These symbols are used as editing sign control synbols. Each repre-
- sents the position into which the editing sign control synbol will
CR be placed. Only one type of these synbols may be used per character
0B string. These are counted in determining the size of the data item.

A signed numeric literal cannot be used in a value clause unless it
is associated with a signed PICTURE character-string.

An asterisk represents a leading numeric character position into
which an asterisk will be placed when that position contains a zero.
The asterisks are counted in the size of the item. When representing
a data item with an asterisk in its PICTURE clause, the BLANK WHEN
ZERO clause cannot be used in that entry.

$ The currency synbol represents a position into which a dollar sign
is to be placed. This synbol is counted in the size of the item.

9 The five categories of data and their characteristics are:

An alphabetic item's picture contains only the synbol 'A'. Its value
must be a combination of the 26 letters of the Roman alphabet or a space. Each
character is stored in a separate position. If the VALUE clause is specified,
the literal must be non-numeric.

The picture for a numeric item is restricted to synbols '9', 'V$, 'P',
and 'S'. The maximum numberof-digit positions permissible is 18. The contents
must be Arabic numerals from 0 through 9 and it may contain an operational sign.
If the PICTURE contains an 'S', the contents of the item are positive or nega-
tive depending on the sign. If the PICTURE has no 'S', the contents of the item
is considered an absolute value. A value specified for an elementary numeric
item must be numeric.

2-87



CSCM 18-1-1 15 Dec S1

2.4.7.18 PICTURE CLAUSE. (Cont.)

An alphanumeric item has a PICTURE character-string which contains
combinations t A, 'X', and '9'. The item is treated as if the character-
string was all 'X's. A character-string of all 'A's or all '9's does not con-
stitute an alphanumeric. Its contents must be from the Vendor's character set.
All group items are treated as alphanumerics and any values assigned must be
non- numeri c.

,-

An alohanumeric edited item is restricted to combinations of the 'A',
'X', '9', '81, 0 and '/' synbols. The character-string must contain at least
one 'A' or 'X', and must contain at least one '/', 'B' or '0'. The contents
must be characters from the Vendor's character set. If a value is specified, it
must be non-numeric. No editing will be done on the value assigned; it is
treated exactly as stated.

A numeric-edited item is restricted to the use of the following symbols:

p.- B/ P V Z 9 , * + - CR DB $

The literal in the VALUE clause of numeric-edited data items must be
non- numer i c.

The maximum number of digit positions must not exceed 18 and the
contents of character positions which represent digits must be numerics. The
character-string must contain at least one of the following: '', 'B', '/',
,7,, ,,,, ,',, ,.,, ,-, 'CR, '08' or the currency sybol. Since a numeric-
edited item is DISPLAY, a value specified must be non-numeric. The literal is
placed in the value as stated, no editing takes place for initial values.

* Editing is accomplished in the PICTURE clause using two methods:
insertion editing or suppression and replacements. There are four types of
insertion editing: simple insertion, special insertion, fixed insertion, and
floating insertion. There are two types of suppression and replacement editing:
zero suppression and replacement with spaces and zero suppression and replace-
meit with asterisks.

* Floating insertion editing and editing by zero suppression and replacement
may not be used with any other forms of editing. Only one type of replacement
(space or asterisk) may be used with zero suppression in the PICTURE clause.

* Simple insertion editing uses only the ',' (comma), 'B' (space) and '0'
(zero) as insertion characters. These characters are counted in the size of the
item and represent the position where the comma, space, or zero is to be
inserted. See FIGURE 2-8.

2-88



15 DEC 81 CSCM 13-1-1

2.4.7.18 PICTURE CLAUSE. (Cont.)

PICTURE VALUE RESULT

99,999 12345 12,345
9,999,000 12345 2,345,000
99B999BO00 1234 01 234 000
99B999BO00 12345 12 345 000

99BBB999 123456 23 456

FIGURE 2-8

9 Special insertion editing uses the ' ' (period) as the iisertion charac-
ter. It also represents the decimal point for alignment purposes and as such is
counted in the size of the item. The use of the assumed decimal point (V) and
the actual decimal point (.) is not allowed in the same picture clause. The
result of this type of editing is the placement of the period in the same posi-
tion as shown in the character-string. See FIGURE 2-9.

PICTURE VALUE RESULT

999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50

FIGURE 2-9

* Fixed insertion editinq uses the currency synbol C$) and the editing sign
control's-ybois '+', '-, 'LKR and 'DB' as insertion characters. Only one cur-
rency synbol and one sign control symbol may appear in one PICTURE character-
string. The insertion character will occupy the same position in the edited
item as it occupied in the PICTURE character-string. Restrictions on the use of
these synbol s are:

$ The currency symbol may be preceded by '+' or '-'; otherwise, it
must be the leftmost character in the character-string. It is
counted in the size of the item.

+ One of these synbols ('+' or '-') must be the rightmost or left-
- most character position and is counted in the size of the item.

CR These synbols ('CR' or 'DB') represent two rightmost character
OB positions and are counted in the size of the item. See FIGURE

2-10.

2-89



CSCM 18-1-1 15 Dec 81

2.4.7.18 PICTURE CLAUSE. (Cont.)

PICTURE VALUE RESULT

999.99+ +1234.567 234.56+
+9999.99 -1234.567 -1234.56
9999.99- +1234.56 1234.56
$999.99 -123.45 $123.45

-$999.99 -123.45 -$123.45
$9999.99CR +123.45 $0123.45
$9999.990B -123.45 $0123.45DB

FIGURE 2-10

e For floating insertion editing, the currency symbol ($) and editing sign
symbols (+ or -) are used as insertion characters and are mutually exclusive in
a PICTURE character-string. At least two of the floating insertion characters
must appear in a string as the leftmost character. Fixed insertion symnbols may
be embedded in the floating character-string or may be to the right of the

-. string. In either case, they are counted as part of the floating character-
stri ng.

There are two ways of representing floating insertion editing in a
PICTURE character-string. Each way causes a different result in the edited
field.

The first way is to represent any or all of the leading numeric charac-
ter positions to the left of the decimal point by insertion characters. This
will result in an edited field with a single insertion character placed in the
character position immediately preceding the first non-zero digit in the data
or the decimal point, wiichever is leftmost. The character positions in the
floating character-string that are left of the inserted synbol are replaced with
spaces.

The second way is to represent all the numeric character positions in
the PICTURE character-string by the inse-Ton character. The edited results of
this format is dependent on the value of the data. If the data is equal to
zero, the entire edited field will contain spaces. If the value is not zero,
the same type of editing applies as above. A single insertion character will be
placed before the last non-zero digit or the decimal point (whichever is left-
most) and the remaining insertion sybols to the left will be replaced by spaces.

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the sending data
item, plus the number of nonfloating insertion characters being edited into the
receiving data item, plus one for the floating insertion character. See FIGURE
2-11.

2-90



15 DEC 81 CSCM 18-1-1

2.4.7.18 PICTURE CLAUSE. (Cont.)

PICTURE VALUE RESULT

$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$$,$$$,999.99 -1234.56 $1,234.56
++ ,+++ ,999.99 -123456.789 -123,456.78
$$,$$$,$$$.99CR -1234567 $I,234,567.0OCR
$$,$$$,$$$.99DB +1234567 $1,234, 567.00

+,+++ ,+++.+++ 0000.00

FIGURE 2-11

e The zero suppression and replacement form of editing means the suppres-
sion of leading zeroes in a numeric item and replacing them with spaces or
asterisks. If the alphabetic character 'Z' is used as the insertion symbol, the
replacement character is space. If the insertion sybol is '*', the replacement
character will be '*'. The 'Z' and '*' may not be mixed in the same PICTURE.
Each suppression synbol is counted in the size of the item.

Any simple insertion characters embedded in the string or to the right of
the string are part of the string. Simple insertion or fixed insertion editing
characters to the left of the string are not included.

There are two ways of representing zero suppression in a PICTURE charac-
ter-string. Any or all of the characters left of the decimal point may be
represented by suppression synbols; or all of the characters may be represented
by suppression symbols. In the first instance, leading zeroes are replaced with
replacement characters from the left until the first non-zero digit or the deci-
mal point is encountered. In the second instance, all leading zeroes will be
replaced regardless of the decimal point - if the value is zero, the entire data
item will be spaces or asterisks except for the decimal point. See FIGURE 2-12.

PICTURE VALUE RESULT

ZZZZ.ZZ 0000.00
•*** .** 0000.00 **** **
ZZZZ.99 0000.00 .00
***.99 0000.00 ****.0
ZZ99.99 0000.00 00.00

Z,ZZZ.ZZ+ +123.456 123.45+
* ,*** .**+ -123.456 **123. 45-

$Z,ZZZ,ZZZ.ZZCR +12345.67 $12,345.67
B*,***,*** .**BBDB -12345.67 $***1 2, 345.67 DB

FIGURE 2-12

VENDORS' GUIDELINES. The character set for IBM is the EBCDIC character set.

2-91



CSCM 18-1-1 15 Dec 81

2.4.7.19 USAGE CLAUSE.

FUNCTION. The USAGE clause specifies the format of a data item in the
computer storage.

FORMAT.

I' COMPUTATIONAL
CUSAGE ISj G LAF

= T3LAY

SYNTAX RULES.

* The PICTURE character-string of a COMPUTATIONAL item can contain only
'9's, the operational sign character 'S', the implied decimal point character
'V', one or more 'P's.

0 COMP is an abbreviation for COMPUTATIONAL.

GENERAL RULES.

* The USAGE clause can be written at any level. If the USAGE clause is
written at a group level, it applies to each elementary item in the group. The
USAGE clause of an elementary item cannot contradict the USAGE clause of a group
to which the item belongs.

e This clause specifies the manner in which a data item is represented in
the storage of a computer. It does not affect the use of the data item, although
the specifications for some statements in the Procedure Division may restrict
the USAGE clause of the operands referred to. The USAGE clause may affect the
radix or type of character representation of the item.

* A COMPUTATIONAL item is capable of representing a value to be used in
computations and must be numeric. If a group item is described as COMPUTATIONAL,
the elementary items in the group are COMPUTATIONAL. The group item itself is
not COMPUTATIONAL (cannot be used in computations).

@ The USAGE IS DISPLAY clause indicates that the format of the data is a
standard data format.

e If the USAGE clause is not specified for an elementary item, or for any
group to which the item belongs, the usage is implicitly DISPLAY.

USACSC GUIDELINES. None.

2-92



15 DEC 81 iSCM C 8 --

2.4.7.20 VALUE CLAUSE.

FUNCTION. The VALUE clause is used to define the initial value of a
WORKT r07 AGE item.

FORMAT.

FORMAT 1.

VALUE IS literal

FORMAT 2.

isLU IS rTHROUGHj
~7 FsARE) literal-i literal-2

[ ,literal-3 (THRU } literal-4] ]

SYNTAX RULES.

@ The VALUE clause may not be used for a variable length item.

e A figurative constant may be used instead of a literal.

GENERAL RULES.

e The VALUE clause is only applicable to the NG-' r AGE SECTION.
VALUE can be specified in LINKAGE SECTION or FILE N cniy with condition-
names.

* The VALUE clause specifies the initial v, ,t an item.

2-93



CSCM 18-1-1 15 Dec 81

2.4.7.20 VALUE CLAUSE. (Cont.)

e Certain rules pertain to usage of the VALUE clause:

If the item is numeric, the literals must be numeric. The literal will
be aligned from right to left and must not require truncation. In other words,
the value must be within the numeric range described by the PICTURE clause.

If the ite,, is alphabetic or alphanumeric, the literals must be non-
numeric. The literal will be aligned from left to right-a-n-d-must not require
truncation.

Editing characters in the PICTURE clause are used to determine the size
of the item. Therefore, the value for an edited item must appear in the edited
form.

* The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the hierarchy of the
item.

s The VALUE clause cannot be specified in a data description entry which
contains either an OCCURS clause or a REDEFINES clause. It also cannot be
specified in a data description entry which is subordinate to an entry containing
an OCCURS or REDEFINES clause.

* If a VALUE clause is used with a group level item, the literal must be a
figurative constant or a non-numeric literal. The group is initialized as thoulih
the USAGE was display and no consideration is made of the USAGE of tre su-,.di-
nate items within the group. Subordinate levels of entries may not cor' : •,
VALLE clause.

@ The VALUE clause cannot be specified for a group containing items with
descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than USAGE IS
DISPLAY).

o FORMAT 2 can be specified only for a condition-name (level 88) entry.
Literal-2 must be larger than literal-I, and literal-4 must be larger than
literal-3, etc.

VENDORS' GUIDELINES.

o IBM.

If VALUE is not specified, the initial value is unpredictable.

USACSC GUIDELINES. None.

2-94

SMIN



15 DEC 81 CSCM 18-I-I

2.4.7.21 JUSTIFIED CLAUSE.

FUNCTION. The JUSTIFIED clause specifies non-standard positioning of data
within a receiving alphabetic or alphanumeric data item.

FORMAT.

JUSTIFIED RIGHT

SYNTAX RULES.

* The JUSTIFIED clause is applicable only at the elementary item level.

* JUST is an abbreviation for JUSTIFIED.

e This clause may only be specified for fixed-lenqth alphabetic or alphanu-
meric data items.

* This clause may not be used with 88-level data items.

GENERAL RULES.

e The JUSTIFIED clause is only applicable when it is in a data description
entry which is the receiving field of a MOVE instruction.

e Alignment of alphabetic and alphanumeric data in the receiving field of 3
MOVE occurs as follows:

This type of data is normally aligned within an elementary data item
beginning in the leftmost position and moving character by character toward the
right. Space filling or truncation occurs to the riqht.

If JUSTIFIED is specified, the alphabetic or alphanumeric data is
aligned beginning in the rightmost position and moving character by character
toward the left. Space filling or truncation occurs to the left. If JUSTIFIED
is specified and the receiving field is larger than the sending data item, the
data is aligned at the rightmost character position in the data item with space
fill for the leftmost character positions.

USACSC GUIDELINES. None.

2-95

- t . ...-



CSCM 18-1-1 15 Dec 81

2.4.7.22 SYNCHRONIZED CLAUSE.

FUNCTION,. The SYNCHRONIZED clause specifies the alignment of an elementary
item on one of the proper boundaries of core storage. It is used to insure
efficiency when performing arithmetic operations on an item.

FORMAT.

I SYNCHRONIZED 1.FLEFT1
I R IG;HT

SYNTAX RULES.

o SYNC is an abbreviation of SYNCHRONIZED and is the preferred form.

9 This clause is designed to be used only with elementary items. Some
vendors also allow SYNC to be used with 01-level record descriptions.

- - GENERAL RULES.

o This clause reserves the storage area between the leftmost and rightmost
natural boundaries for this data item and aligns it within these boundaries. If
the data item is smaller than the reserved space, slack bytes are inserted to
fill the unused positions.

o If slack bytes are added, they do not affect the size of the elementary
item. They are included in the size of the group item to which the synchronized
elementary item belongs.

* If the LEFT or RIGHT options are not specified, the vendor determines
alignment within the natural boundaries. The vendor may override these options.

If LEFT is specified, the item will be aligned beginning from left to
right.

If RIGHT is specified, the item will be aligned beginning from right to
left.

9 If the data description contains an operational sign, the sign will
appear in its normal operational position regardless of whether SYNC RIGHT or
SYNC LEFT is specified.

9 Whenever a SYNC item is referenced in the source program, the original
PICTURE size of the item is used in determining any action which depends on
size, such as truncation or justification.

2-96



15 DEC 81 CSCA 18-1-1

2.4.7.22 SYNCHRONIZED CLAUSE. (Cont.)

* Where a SYNC clause is used within the scope of an OCCURS clause, each
occurrence of the item is synchronized.

" When a SYNC clause is used with an item which contains a REDEFINES clause,
the item that is being redefined must have the proper boundary alignment for the
item that Is redefining it.

* This clause is hardware dependent and each vendor specifies the applica-
tion of the clause.

VENDORS' GUIDELINES.

0 IBM.

IBM allows the use of SNYC with 01-level record descriptions as well as
elementary items. If used at the 01-level, every elementary item within the
record description is synchronized.

If either the LEFT or RIGHT option is specified, it is treated as
comments.

The boundary alignment of a data item depends upon the USAGE clause
specified.

1. For DISPLAY items, the SYNC clause is treated as comments.

2. For COMP items, the alignment and size of boundaries are determined
by the size of the item.

a. If the PICTURE is in the range from S9 through S9(4), the item is
aligned on a halfword (even) boundary.

b. If the PICTURE is in the range from S9(5) through S9(18), the
item is aligned on a fullword (multiple of 4) boundary.

When SYNC is not specified for binary items, no space is reserved for
slack bytes. Even if thTe-OMP item is aligned, it is assumed to be unsynchro-
nized and the computer generates coding to move the item to a properly aligned
field before it is used in computation.

In the FILE SECTION, the compiler assures that all level-91 records
containing synchronized items are aligned on a doubleword boundary in the buffer.

In the WORKING-STORAGE SECTION, the compiler aligns all level-V1
entries on a doubleword boundary.

In the LINKAGE SECTION, the compiler assumes that all level-V1 entries
begin on a doubleword boundary. If the CALL statement with the USING option is
used, all data items referenced by the calling and called programs must be cor-
respondingly aligned.

2-97



CSCM 18-1-1 15 Dec 81

2.4.7.22 SYNCHRONIZED CLAUSE. (Cont.)

USACSC GUIDELINES. Use of SYNC clause reduces generated codinij and lkir,-
fore run time For arithmetic operations and subscripting. To prevent addi Lion
of slack bytes all COMP SYNC items of the same type, such as counters,
subscripts, totals etc., should be of the same length and grouped together
under the same 0 entry.

2.4.7.23 BLANK WHEN ZERO CLAUSE.

FUNCTION. The BLANK WHEN ZERO clause is an editing feature which allows an
item tonbe5set to blanks when its value is zeroes.

FORMAT.

BLANK WHEN ZERO

I,

SYNTAX RULES.

* This clause may only be used with an elementary numeric or numeric-edited
item.

* This clause cannot be used for variable length items.

GENERAL RULES.

* If the value of the item is zero, it will contain only blanks.

e When this clause is used for an item which is numeric, the category of
the item is considered to be numeric.edited.

USACSC GUIDELINES. None.

2-98



15 DEC 81 CSCM 18-1-1

2.4.8 PROCEDURE DIVISION.

2.4.8.1 General Description. The PROCEDURE DIVISION must be included in every
COBOL source program. This division specifies those procedures needed to solve
a given problem. These procedures (computations, logical decisions, input/
output, etc.) are expressed in meaningful statements, similar to English, which
employ the concepts of verbs to denote actions, and statements and sentences to
descri be procedures.

2.4.8.2 Structure.

FORMAT.

PROCEDURE DIVISION E USING identifier-l Uidentifier-21 ... I

(DECLARATIVES.

{section-name SECTION. USE Sentence

- (paragraph-name. rsentencel .. . ...

END DECLARATIVES.j

{section-name SECTION Epriority]

(paragraph-name. (sentence] . ..

TITLE. The PROCEDURE DIVISION title must begin with the words PROCEDURE
DIVlS-rOfT-in Margin 'A' followed by a period. This must appear on a1lnebyT
iTsef.

HEADER. The PROCEDURE DIVISION header is followed, optionally, by Declara-
tive Tecions, which are in turn followed by procedures, each made up of
statements, sentences, paragraphs, and/or sections, in a syntactically valid
format. The end of the PROCEDURE DIVISION (and the physical end of the program)
is that physical position in a COBOL source program after which no further pro-
cedures appear.

STATEMENT. The statement is the basic unit of the PROCEDURE DIVISION. A
statement is a syntactically valid combination of words and symbols beginning
with a COBOL verb. There are three types of statements: conditional statements
containing conditional expressions (that is, test for a given condition),
imperative statements consisting of an imperative verb and its operands, and
compiler-drecting statements consisting of a compiler-directing verb and its
operands.

2-99

ll a ' 1 . . m- . ... . .



CSCM 18-1-1 15 Dec 81

2.4.8.2 Structure. (Cont.)

SENTENCE. A sentence is composed of one or mire staitemtes. Ihe %kIt.tvoit-Wt
may optionally be separated by semicolons. A sentence must be teniiinated by i
period followed by a space.

PARAGRAPH. Several sentences that convey one idea or procedure may be
grouped to form a paragraph. A paragraph must begin with a paragraph-name
followed by a period. A paragraph may be composed of one or more successive
sentences. A paragraph ends immediately before the next paragraph-name or
section-name, at the end of the PROCEDURE DIVISION, or, in the Declarative por-
tion, at the key words END DECLARATIVES.

* PARAGRAPH AND SECTION-NAMES. Paragraphs should be kept short and
modular, no more than one routine should be contained in the same paragraph, and
paragraph-names should be meaningful and should be stated in terms of the appli-
cation if possible.

a PARAGRAPH NUMBERING. A four digit number will be the first part of each
paragraph or section-name followed by a hyphen and a title. Paragraphs will be
in ascending order by this number. All paragraph numbers will be initially
incremented by 10's or more to allow room for future insertions. If additional
insertions are needed, use a hyphen and another number following the first four
digit numbers to maintain sequence. Alphabetic characters forming a meaningful
title will be included after the number as shown below:

i )921V-REA D- INP UT-T RANSA CT ION.

SECTION. One or more paragraphs form a section. A section must begin with
a section header (header-name fol*,owed by the word SECTION, followed by a period;
if program segmentation is desired, a space and a priority number followed by a
period may be inserted after the word SECTION). The general term procedure-name
may refer to both paragraph-names and section-names.

USING PHRASE. The USING phrase is present if and only if the object program
is to function under control of a CALL statement, and the CALL statement in the
calling program contains a USING phrase.

* OPERANDS. Each of the operands of the USING phrase of the PROCEDURE
DIVISION header must be defined as a data item in the LINKAGE SECTION of the
program in which this header occurs. Also, it must have a 01 or 77-level number.

2.4.8.3 General Rules. The PROCEDURE DIVISION is organized with the following
basic grouping of e7pressions:

2-100

I -



15 DEC 81 CSCM III-;

2.4.8.3 General Rules. (Cont.)

1. Declaratives.

2. Statements.

3. Arithmetic Expressions.

4. Conditional Expressions.

2.4.8.3.1 Declaratives. DECLARATIVE SECTIONS must he grouped a- the beginning
of the PROCEDUREDTVION preceded by the word DECLARATIVES. Declarative sections
are concluded by the key words END DECLARATIVES. (For more information, see )S_
AFTER ERROR PROCEDURE.)

2.4.8.3.2 Statements. A STATEMENT is a syntactically valid combination of
words and symbols BegIinning with a COBOL verb or the word IF followed by any
appropriate operands, and other COBOL words that are necessary for the comple-
tion of the statement. There are three types of COBOL statements. They are:
compiler-directing, imperative and conditional.

e CATEGORIES OF STATEMENTS. Refer to FIGURE 2-13.

CATEGORY VERBS

ADD
COMPUTE
DIVIDE

Arithmetic INSPECT (TALLYING)
MULTIPLY
SUBTRACT

COPY
Compiler Directing USE

ADD (SIZE ERROR)
CALL
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
IF

Conditional MULTIPLY (SIZE ERROR)
READ (AT END or INVALID KEY)
RETURN (AT END)
REWRITE (INVALID KEY)
SEARCH (AT END)
START (INVALID KEY)
SUBTRACT (SIZE ERROR)
WRITE

FIGURE 2-13

2-101



CSCM 18-1-1 15 Dec 81

2.4.8.3.2 Statements. (Cont.)

.INSPECT (REPLACING)

Data Movement MOVE

Ending STOP

ACCEPT (identifier)
CLOSE
DELETE
DISPLAY

Input-Output OPEN
READ
REWRITE
START
STOP (literal)
WRITE

Inter-Program CALL
Communicating CANCEL

rRELEASE
Ordering RETURN

S ORT

(CALL
Procedure Branching )EXIT

GO TO
[P ER ORM

Table Handling SEARCH
SET

FIGURE 2-13 (Cont.)

IF is a verb in the COBOL sense; it is recognized that it is not a verb
in English.

e COMPILER-DIRECTING STATEMENT. A compiler-directing statement directs the
compiler to take action at compilation time. A compiler-directing statement
contains one of the compiler-directing verbs (COPY, USE) and its operands.

9 IMPERATIVE STATEMENT. An imperative statement indicates a specific
unconditional action to be taken by the object program. An imperative statement
is any statement that is neither a conditional statement, nor a compiler-
directing statement. An imperative statement may consist of a sequence of
imperative statements, each possibly separated from the next by a separator.
The imperative verbs are listed on FIGURE 2-14.

2-102

F .\



15 DEC 81 CSCM 18-1-1

2.4.8.3.2 Statements. (Cont.)

ACCEPT DISPLAY OPEN START (2)
ADD (1) DIVIDE (1) PERFORM STOP
CALL(3) EXIT READ (4) SUBTRACT (1)
CANCEL GO RELEASE WRITE (5)

4 CLOSE INSPECT REWRITE (2)
COMPUTE (1) MOVE S!7T
DELETE (2) MULTIPLY (1) SORT

(1) Without the optional SIZE ERROR phrase.
(2) Without the optional INVALID KEY phrase.
(3) Without the optional ON OVERFLOW phrase.
(4) Without the optional AT END phrase or INVALID KEY phrase.
(5) Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

FIGURE 2-14

-Whenever 'imperative-statement' appears in the General Format of
statements described in this Chapter, 'imperative-statement' refers to that
sequence of consecutive imperative statements that must be ended by a period or
an ELSE phrase associated with a previous IF statement or a WHEN phrase associ-
ated with a previous SEARCH statement.

9 CONDITIONAL STATEMENT. A conditional statement is a statement co'-
taining a condition that is tested to determine which of the alternate paths of
program flow is to be taken. A conditional statement is one of the following:

1. An IF, SEARCH or RETURN statement.

2. A READ statement that specifies the AT END or INVALID KEY phrase.

3. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE
phrase.

4. A START, REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT)
that specifies the SIZE ERROR phrase.

6. A RECEIVE statement that specifies a NO DATA phrase.

7. A STRING, UNSTRING or CALL statement that specifies the ON OVERFLOW

phrase.

2.4.8.3.3 Arithmetic Expressions.

* DEFINITION. An ARITHMETIC EXPRESSION can be any of the following:

1. An identifier described as a numeric elementary item.

2-103



CSCM 18-1-1 15 Dec 81

2.4.8.3.3 Arithmetic Expressions. (Cont.)

2. A numeric literal.

3. Those identifiers and literals separated by arithmetic operators.

4. Two arithmetic expressions separated by an arithmetic operator.

5. An arithmetic expression inclosed in parentheses.

Any arithmetic expression may be preceded by an unary operator.

Those identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric literals on which arith-
metic may be performed.

S ARITHMETIC OPERATORS. There are five binary arithmetic operators and two
unary arithmetic operators that may be used in arithmetic expressions. They are
represented by specific characters that must be preceded by a space and followed
by a space. Refer to FIGURE 2-15.

Binary Arithmetic Operator Meaning

+ ADDITION
SUBTRACT ION

* MULTIPLI CAT ION
/ DIVISION
** EXPONENTIATION (not supported

by Honeywell)

Unary Arithmetic Operator Meaning

+ The effect of multiplication
by the numeric literal +1
The effect of multiplication
by the numeric literal -1

FIGURE 2-15

. PERMISSIBLE ARITHMETIC SYMBOL PAIRS. A symbol pair in an arithmetic
expression is the occurrence ot two synbols that appear in sequence.

Permissible Symbol Pairs. Refer to FIGURE 2-16.

2-104

g * r



15 DEC 81 CSCM 18-1-1

2.4.8.3.3 Arithmetic Expressions. (Cont. )

Second

Symbol
Variable Unary +

First (identifier or
Symbol ov literal) * / ** + - Unary -

Variable P P
(i denti fi er
or literal)

S + P p

'Unary T or
Unary - P - P P

IP

, ( - P

P indicates a permissible pairing
- indicates that the pairing is not permitted

FIGURE 2-16

An arithmetic expression may begin only with a left parenthesis, a unary
+, a unary -, or a variable, and may end only with a right parenthesis or a
variable.

There must be a one-to-one correspondence between left and right paren-
theses of an arithmetic expression.

e RELATION CONDITION.

COMARISON OF OPERANDS OF EQUAL SIZE.

Characters in corresponding character positions of the two operands are
compared from the high-order end through the low-order end. The high-
order end is the leftmost position; the low-order end is the rightmost
character position.

If all pairs of characters compare equally through the last pair, the
operands are considered equal wien the low-order end is reached.

2-105

U .



CSCM 18-1-1 15 00c 'Ill

2.4.8.3.3 Arithmetic Expressions. (Cont.)

If a pair of unequ.al characters is encountered, the two characters are
compared to determine their relative position in the collating sequence.
The operand that contains the character higher in the collat-*ng sequence
is considered to be the greater operand.

COMPARISON OF OPERANDS OF UNEQUAL SIZE.

If the operands are of unequial size, comparison proceeds as though the
shorter operand were e,,tended on the ri ght by a suffi ci ent number of
spaces to make the operancs of equal size in the case of alphabetic or
alphanumeric items. For numeric operands of unequal size, comparison
proceeds after extending the shorter operand on the left with a suffi-
cient number of zeroes to make the operands of equal size.

COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS.

The comparison of two index-names is equivalent to the comparison of
their corresponding occurrence numbers.

In the comparison of an index data item with an index-name or with
another index data item, the actual values are compared without conver-

- sion.

The comparison of an index-name with a numeric item is permitted if the
numeric item is an integer. The numeric integer is treated as an occur-
rence number. All other comparisons involving an index-name or index
data item are not allowed. Refer to FIGURE 2-17 for Permissible
Comparisons.

2.4.8.3.4 Arithmetic Operators. The arithmetic statements are used for compu-
tations. Individual operators are specified by the ADD, SUBTRACT, MULTIPLY and
DIVIDE statements. Although the arithmetic statements are individual operators,
they do have several common features.

1. The data descriptions of the operands need not be the same. Any
necessary conversion and decimal point alignment is supplied throughout
the calculation.

2. The maximum' size of each operand is eighteen (18) decimal digits.

Also there are several options that are common to the arithmetic statement
and appear frequently. A discussion of these options follows.

In the discussion that follows, a 'resultant-identifier' is that identifier
associated with a result of an arithmetic operation.

2-106



15 DEC 81 CSCM 18-1-1

2.4.8.3.4 Arithmetic Operators. (Cont.)

* GIVING OPTION. If the GIVING option is specified, the value of the
identie thatf ows the word GIVING is set equal to the calculated result of
the arithmetic operation. This identifier, since not itself involved in the
computation, may be a numeric-edited item.

* ROUNDED OPTION. If, after decimal point alignment, the number of places
in the traction of-the result of an arithmetic operation is greater than the
number of places provided for the resultant-identifier, truncation will occur,
and it will be relative to the size provided for the resultant-identifier. How-
ever, if ROUNDED is specified, the absolute value of the resultEnt-identifier is
increased by one (1) whenever the most significant digit of the excess is greater
than or equal to five (5).

2-107



CSCM 18-1-1 1 lt- Sl

2.4.8.3.4 Arithmtic Operators. (Cont.)

SecondOperand (R A- PN ANE IE FC* M ED BI ID EF IF SR SN IN IDI
First Operand NNL NL
Grup (G) NNM NN NN NN NN NN NN M M M M NN N

,,Alphabetic AL NN NN' NN" NN NN T NN NN NN NN

A,1 arnmr1c (AN NN N N N NN ,NN NN N.N N NNW
o,anurreric Edited (ANE) N M NN N NN NN NN NN NN NN NA

l T r1c Edited (NE) M R I M NN W MN 7 NN SR N%
-.gurative Constant (FC) * & NN NN NN"NN M NNi W, NN N

n-numte itral (%L )
F- ig. Constant Z' (F)& NN N N N NU NU U U NU U NU NU 10]N;,Teric Literal (NLQ

E.xternal Deciarl (E) NN lN NN NN NN NU' NU NU NU NU NU NN NU W!
Binary (Bri) NN NU NU NU NUU NU NU gjinternal Decimal (10) NN NU NU NUd NU NU NU NU I0,
E ternal Floating, Point (E ) NAI NN NN NN'NN NUJ NUI NU NU NU NU NN'NU]

SInternal Floatin 'Poirt IF)'"NN NU NU NRl'NU NU NU N
S ter Ii ngReport S) oN NN NI NN NN NN NN NN NN NN N
S-er [,n2Q-NTnreport (,'A) N N NN NN NN NN NN NU N1 NU"NQ NU NU NN'NU

Index Nme (IN) lU1  IUJ IU 1 IU' l IV
Index Data Iten (101) v v

*FC ircludes all Figurative Constants except ZERD.

iValid only if the numEric itemn is an integer.

NN = caparison as described for numrEic operands
NU = coparison as described for rneric operands
10 = caraison as described for two index-nanes
IV = ccnWison as described for index data iteTs

Permissible Corparisons

FIGURE 2-17

2-108



15 DEC 81 CSCM 18-1-1

2.4.8.3.4 Arithmetic Operators. (Cont.)

When the low-order integer positions in a resultant-identifier are repre-
sented by the character 'P' (the assumed decimal scaling position) in the PICTURE
for that resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for wich storage is allocated.

a SIZE LRROR OPTION. If, after decimal point aliqnment, the absolute value
of a result exceeds the largest value that can be contained in tile associated
resultant-identifier, a size error condition exists. The algebraic value of the
final result of the arithmetic operation must be accuratc to the precision spec-
ified by the resultant-identifier. The SIZE ERROR applies only to the final
resalts of an arithmetic operation and does not apply to the intermediate
results, except in MULTIPLY and DIVIDE statements in which case SIZE ERROR
applies to intermediate results as well. (See VENDORS' GUIDELINES.) If the
ROUNDED option is soecified, rounding takes place before checking for size error.
If a size error condition occurs, the subsequent action is a function of whether
or not the SIZE ERROR option was specified.

1. Division by zero always causes a size error condition.

2. If the SIZE ERROR option is not specified and a size error condition
occurs, the value of the resultant-identifier affected may be unpre-
dictable.

3. If the SIZE ERROR option is specified and a size error condition
occurs then the value of the resultant-identifier affected by the
size error is not altered. After completion of the execution of the
arithmetic operation, the imperative statement in the SIZE ERROR
option is executed.

VENDORS' GUIDELINES.

* IBM. IBM does not allow ANSI specifications. The SIZE ERROR option
never applies to intermediate results.

e FORMATION AND EVALUATION RULES.

Parentheses may be used in arithmetic expressions to specify the order in
which elements are to be evaluated. Expressions within parentheses are evaluated
first, and within nested parentheses, evaluation proceeds from the least inclu-
sive set to the most inclusive set. When parentheses are not used, or parenthe-
sized expressions are not used, or parenthesized expressions are at the same
level of inclusiveness, the following hierarchical order of execution is implied:

1st - Unary Plus and Minus.

2nd - Exponentiation.

3rd - Multiplication and Division.

4th - Addition and Subtraction.

2-109



CSCM 18-1-1 15 Dec 81

2.4.8.3.4 Arithmetic Operators. (Cont.)

An arithmetic expression may only begin with the symbols (', '+' -
or a variable and may only end with ')' or a variable. There must be a one-to-
one correspondence between left and right parentheses of an arithmetic expression
such that each left parenthesis is to tie left of its corresponding right paren-
thesis.

2.4.8.3.5 Conditional Expressions. CONDITIONAL EXPRESSIONS enable the object
program to select between alternate paths of control depending upon the truth
value of the condition. Conditional expressions are specified in the IF, PERFORM
and SEARCH statements.

2.4.8.3.6 Simple Conditions. The SIMPLE CONDITIONS are:

1. Relation Condition.

2. Class Condition.

3. Switch-status Condition.

4. Condition-name Condition.

5. Sign Condition.

A simple condition has a truth value of 'true' or 'false'. The inclusion in
parentheses of simple conditions does not change the simple condition truth
value.

* RELATION CONDITIONS. A relation condition causes a comparison of two
operands, either of which may be an identifier or a literal.

The format for a relation condition is as follows:

denti fi er-I } IS [N R ARTHAN) tidenti fi er-2 )

Ii teral- I IS tW ES A i tera-2
arithmetic-expression-1) IS [NTW EQUJAL TO arithmetic-expression-21

1. The first operand is called the subject of the condition, the second

operand is called the object of the condition.

2. The subject and object may not both be literals.

3. The subject and object must have the same USAGE, except when two
numeric operands are compared.

4. A relation-operator, (IS NOT GREATER THAN, IS NOT LESS THAN, IS
NOT EQUAL TO) specifies the type of comparison tobe made.

5. A space must precede and follow each reserved word comprising the
relational operator.

2-110



15 DEC 81 CSCM 18-1-i

2.4.8.3.6 Sinple Conditions. (Cont.)

e ABBREVIATED COMBINED RELATION CONDITIONS.

When simple or negated simple relation conditions are combined with
logical connectives in a consecutive sequence such that a succeeding relation
condition contains a subject or subject and relational operator that is cohmion
with the preceding relation condition, and no parentheses are used within such
a consecutive sequence, any relation condition except the first may be abbrevi-
ated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subjezt and relational operator of the relation
condition.

The format for an abbreviated combined relation condition is:

~fANDJ *
relation-condition ).R -}  CNOTJ rrelational-operator] object

Within a sequence of relation conditions both of the above forms of abbrevi-
a a,'ion may be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject, and the
last stated relational operator were inserted in place of the omitted relational
operator. The result of such implied insertion must comply with the rules for
combinations of conditions, logical operators, and parentheses, shown in FIGURE
2-18 below. This insertion of an omitted subject and/or relational operator termi-
nates once a complete simple condition is encountered within a complex condition.

Location in In a left-to-right sequence of elements:
conditional
expression Element, when not Element, when not

Given the follow- first, may be last, may be
ing element First Last immediately pre- immediately fol-

ceded by only: lowed by only:

simple-condition Yes Yes OR, NOT, AND, ( OR, AND,

OR or AND No No simple-condition, simple-condition,
_ __._ _ _ NOT, (

NOT Yes No OR, AND, ( simple-condition,

( Yes No OR, NOT, AND, ( simple-condition,
_ _ _ _NOT, (

) No Yes simple-condition, OR, AND,

FIGURE 2-18

2-111



CSCM 18-1-1 15 Dec 81

2.4.8.3.6 Simple Conditions. (Cant.)

The interpretation applied to the use of the word 'NOT' in an abbreviated
combined relation condition is as follows:

(1) If the word immediately following 'NOT' is 'GREATER', ')', 'LESS',''
EQUAL', '=', then the 'NOT' participates as part of the relational operator;
otherwise

(2) The 'NOT' is interpreted as a logical operator and, therefore, the
implied insertion of subject or relational operator results in a negated rela-
tion condition.

Sane examples of abbreviated combired and negated combined relation conldi-
tions and expanded equivalents follow.

Abbrevi ated Combined
Relation Condition Expanded Equivalent

a 3) b AND NOT 4 c OR d ((a 3,b) AND (a NOT < c)) OR (a NOT d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a =c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a -Cc))

NOT (a NOT)> b AND c AND NOT d) NOT ((((a NOT)> b) AND (a NOT)> c))
AND (NOT (a NOT ) d))))

# COMPARISON OF NUMERIC OPERANDS.

1. For those operands whose class is numeric, a comparison is made with
respect to the algebraic value of the operands.

2. The length of the literal is not significant.

3. Zero is considered a unique value regardless of the sign.

4. Unsigned numeric operands are considered positive for purposes of
comparison.

e COMPARISON OF NON-NUMERIC OPERANDS.

1. For non-numeric operands, or one numeric and one non-numeric operand,
a comparison is made with respect to a specified collating sequence
of characters. For EBCDIC collating sequence, reference COLLATING
SEQUJENCE -in the Glossary.

2. If one of the operands is described as numeric, it is treated as
though it were moved to an alphanumeric data item of the same size
as the numeric data item, and contents of this alphanumeric data item
were then compared to the non-numeric operand. (See MOVE statement.)

2-112

IA



15 DEC 81 CSCM 1S-1-1

2.4.8.3.6 Sinple Conditions. (Cont.)

3. The size of an operand is the total number of characters in the
operand.

4. Numeric and non-numeric operands may only be compared when their
USAGE is the same, implicity or explicity.

* COMPARISON OF OPERANDS OF EQUAL SIZE.

Comparison proceeds by comparing characters in corresponding character
positions starting from the high-order end (leftmost position) and continuing
until either a pair of unequal characters is encountered, or the low-order er,
(rightmost character position) is reached, whichever comes first. If all pairs
of characters compare equally through the last pair, tne operands are considered
equal when the low-order end is reached.

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence. The operand that contains
the character that is positioned higher in the collating sequence is considered
to be the greater operand.

* OPERANDS OF UNEQUAL SIZE. If the operands are of unequal size, comparison
proceeds as though the shorter operand were extended on the right by a sufficient
number of spaces to make the operands of equal size.

e COMPARISONS INVOLVING INDEX-NAMES AND/OR INDEX DATA ITEMS.
Relation tests may be made between:

1. Two index-names: The result is the same as if the corresponding
occurrence numbers were compared.

2. An index data item and an index-name or another index data item:
The actual values are compared without conversion.

3. An index-name and an integer numeric item: The occurrence number
that corresponds to the value of the index-name is compared to the
integer numeric item.

4. The results of the comparison of an index data item with any data
item not specified above is undefined, and therefore not allowed.

* CLASS CONDITIONS. The class condition determines whether the operand is
numeric; that is, consists entirely of the characters '9', '1', '2', ... , 19',
with or without operational signs, or alphabetic; that is, consist entirely of
the characters 'A', 'B', 'C', ... , 'Z', space.

2-113



CSCM 18-1-1 15 Dec 81

2.4.8.3.6 Sinple Conditions. (Cont.)

The general format for the class condition is:

I ~ ~~~identi fier IS CNOT3 A P AB T C .

The operand being tested must be described implicitly or explicitly,
USAGE DISPLAY. (See VENDORS' GUIDELINES.)

The identifier being tested is determined to be numeric only if the
contents consist of any combination of the digits 0 through 9. If the PICTURE
of the identifier being tested does not contain an operational sign, the identi-
fier being tested is determined to be numeric only if the contents are numeric
and an operational sign is not present. If the PICTURE does contain an opera-
tional sign, the identifier being tested is determined to be numeric only if the
contents are numeric and a valid operational sign is present.

The NUMERIC test cannot be used with an identifier described as alphabet-
ic. For example, refer to FIGURE 2-19.

REPRESENTATION TESTS NUMERIC
PICTURE VALUE

IBM IBM

s999 +123 Fl F2 C3 Yes
s999 -123 F1 F2 03 Yes
s999 123 F1 F2 F3 Yes
999 +123 F1 P2 C3 No
999 -123 F1F2D3 No
999 123 F1 F2 F3 Yes

FIGURE 2-19

The identifier being tested is determined to be alphabetic only if the
contents consist of any combination of the alphabetic characters 'A' through 'Z'
and the space.

The ALPHABETIC test cannut be used with an identifier described as
numeric.

2-114



15 DEC 81 CSCM II-I-I

2.4.8.3.6 Simple Conditions. (Cont.)

VENDORS' GUIDELINES.

o IBM.

1. The operand being tested can be described as USAGE COMP.

2. Valid operational signs are hexadecimal F, C, and D.

3. For numeric data items described with the SEPARATE SIGN clause, valid
operational signs are hexadecimal 4E and 60.

* C9NDITION-NAME CONDITION (CONDITIONAL VARIABLE). In a condition-name
condition, a conditional variable is tested to determine whether or not its
value is equal to one of the values associated with the condition-name.

The general format for the condition-name is:

i 88 condition-name

An example of the condition-name condition is:

05 PAY-STATUS PIC X.
88 GS-12 VALUE '1'.
88 GS-13 VALUE '2'.
88 GS-14 VALUE '3'.

PAY-STATUS is the conditional variable; GS-12, GS-13 and GS-14 are
condition-names. Only one of the conditions specified by condition-name can be
present for individual records in the file. In order to determine the pay
status of the individual whose record is being processed, IF GS-12 ... can be
coded, and its true or false evaluation determines the subsequent path the
object program takes.

If the condition-name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value falls
in this range, including the end value. The result of the test is true if one
of the values corresponding to the condition-name equals the value of its asso-
ciated conditional variable.

2-115

I



IN II ! ! -

CSCM 18-1-1 15 Dec 81

2.4.8.3.6 Simple Conditions. (Cont.)

A condition-name is used in conditions as an abbreviation for the relation
condition. This can be done since the associated condition-name is equal to
only one of the values (or ranges of values) assigned to that conditional varia-
ble hence, IF PAY-STATUS EQUALS 1... would have the same effect as using the
condition-name test IF GS-12...

* SIGN CONDITION.

The sign condition determines whether or not the algebraic value of an
arithmetic expression (i.e., an item defined as numeric) is less than, greater
than, or equal to zero.

The general format for a sign condition is:

i POSIT IVE

arithmetic-expression IS gNOTZ RTI

When used, NOT and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value, e.g., 'NOT ZERO' is a
truth test for a non-zero (positive or negative) value.

An operand is positive if its value is greater than zero, negative if its
value is less than zero, and zero if its value is equal to zero. An unsigned
field is always positive or zero.

# SWITCH-STATUS CONDITION. A switch-status condition determines the 'on'
or 'offI status of an Implnentor-defined switch. The implementor-name and the
'on' or 'off' value associated with the condition must be named in the SPECIAL-
NAMES paragraph of the Environment Division.

The general format for the switch-status condition is as follows:

condi tion-name

The result of the test is true if the switch is set to the specified
position corresponding to the condition-name.

2-116



15 DEC 81 CSCM 18-1-1

2.4.8.3.7 Compound (Comrlex) Conditions. Two or inore simpl condit ion, con ho
combined to form a CTMPOUNU (GUMPLEX) CONDITION. Fach simple condition ik
separated by one of the logical operators ('AND' and 'OR') or neqating these
conditions with logical negation (NOT).

* The logical operators and their meanings are shown on FIGURE 2-20.

Logical Operator Meaning

AND Logical conjunction: The truth value is
'true' if both of the conjoined conditions
are true; 'false' if one or both of the
conjoined conditions are false.

OR Logical inclusive: The truth value is 'true'
if one or both of the included conditions are
true; 'false' if both included conditions
are false.

NOT Logical negation or reversal of truth value:
The truth value is 'true' if the condition is
false; 'false' if the condition is true.

FIGURE 2-20

Logical operations must be preceded by a space and followed by a space.

The following table on FIGURE 2-21 shows the relationships between the
logical operators and simple conditions 'A' and 'B'.

2-117



CSCM 18-1-1 15 Dec 8)l

2.4.8.3.7 Compound (Coplex) Conditions. (Cont.)

SIMP LE
ONDITION IF AND IF AND IF AND IF AND

A B A B A B A B
LOGI CAL IS IS IS IS IS IS IS IS
OPERATION True True False True True False False False

THEN

A AND B True False False False

A OR B True True True False

NOT (A AND B W False True True True

I
NOT A AND B L False True True True

L
NOT (A OR B) B False False False True

E

NOT A OR B True True False True

A AND NOT B False False True False

A OR NOT B True False True True

FIGURE 2-21

9 EVALUATION HIERARCHY.

Logical evaluation begins with the least inclusive pair of parentheses
and proceeds to the most inclusive.

2-118



15 DEC 81 CSCM IS--1

2.4.8.3./ Compound (Complex) Conditions. (Cont.)

If the order of evaluation is not specified by parentheses, then the

order is:

1. Arithmetic expressions.

2. Relational operators.

3. NOT condition.

4. AND and its surrounding conditions, starting at the left and
W-ceeding to the right.

5. OR and its surrounding conditions, proceeding from left to right.

* COMPOUND CONDITION STRUCTURE. Parentheses will always be used to specify
the order in which compound co nditions are to be evaluated. When a single rela-
tion test (e.g., A = B below) can determine the truth or falsity of a compound
condition, that relation should be written first.

- For example, the statement

IF A EQUALS B OR C EQUALS D AND E EQUALS F ...

will be written in the following format:

IF (A EQUALS B) OR ((C EQUALS D) AND (E EQUALS F))

This expression will be evaluated in the following manner. Refer to
FIGURE 2-22.

2-119



CSCM 18-1-1 15 Dec 81

2.4.8.3.7 Compound (Complex) Conditions. (Cont.)

First - within the least inclusive parentheses (C EQUALS D)
AND (E EQUALS F) the relational-operator EA-S-will
e evaluae.

Second - The AND condition within that parenthetical expression
wil e evaluated.

Third - The relational-operator EQUALS of (A EQUALS B) will be
evaluated.

Fourth - The OR function for the compound condition will be
resoTved.

IF (A EQUALS B) OR ((C EQUALS D) AND (E EQUALS F)) ...

E E First
i 2

T Second

E Third
3

T Fourth
2

where E equals evaluation
n
T equals total
n

FIGURE 2-22

2-120



15 DEC 81, ' I

2.4.9 STATEMENTS.

2.4.9.1 ACCEPT STATEMENT.

FUNCTION. The purpose/function of the ACCEPT statement is to obtain low
voluTe datavia a system input device.

FORMAT.

ACCEPT identifier (FROM mnemonic-name]

SYNTAX RULES.

a Identifier may be either a fixed-length group item or an elementary
alphabet alphanumeric, or external decimal item. Identifier may not be any
Special Register. The data is read and the appropriate number of characters is

"- moved into the area reserved for identifier. No editing or error checking of
the incoming data is done.

* If the input/output device specified by an ACCEPT statement is the same

one designated for a READ statement, the results may be unpredictable.

GENERAL RULES.

e The ACCEPT statement causes the transfer of data from the hardware device.
This data replaces the contents of the data item named by the identifier.

e The implementor will define, for each hardware device, the size of a data
transfer.

* If a hardware device is capable of transferring data of the same size as
the receiving data icem, the transferred data is stored in the receiving data
item.

9 If a hardware device is not capable of transferring data of the sarne size
as the receiving data item, then:

a. If the size of the receiving data item exceeds the size of the trans-
ferred data, the transferred data is stored aligned to the left in the receiving
data item. In Level 1, only one transfer of data is provided.

b. If the size of the transferred data exceeds the size of the receiving
data item, only the leftmost characters of the transferred data are stored in
the receiving data item. The remaining characters of the transferred data which
do not fit -nto the receiving data item are ignored.

2-121

. .. *. _ -- -. . . ..... ..



CSCM 18-1-1 15 loc, ""I

2.4.9.1 ACCEPT STATEMENT. (Cont.)

Is If the FROM phrase is not given, the device that the implementor speci-

fies as standard is used.

VENDORS' GUIDELINES.

* IBM.

When an ACCEPT statement with the FROM CONSOLE option is executec, tnte
following actions are taken:

1. A system generated message code is automatically displayec followea
by the literal "AWAITING REPLY".

2. Execution is suspended. When a console input message is identiflec
by the control program, execution of the ACCEPT statement is resumed anc tie
message is moved to the specified identifier and left justified regardless If
the PICTURE. If the field is not filled the low-order positions may contain
invalid data.

r" USACSC GUIDELINES.

• The use of the FROM option with any other mnemonic-name than CONSOLE is
not permitted. Use of the FROM CONSOLE is not permitted unless there is abso-
lutely no other way to get the required inforrlation into the machine and tnat
information is of such a nature that it can only be obtained from the operator
in a realtime mode. Use of the FROM CONSOLE option must be justified on a case-
by-case basis.

e The execution of the ACCEPT verb, in conjunction with the FROM option, is
extremely inefficient, causes frequent error conditions due to erroneous replies
and programers are therefore advised to utilize other methods in obtaining
required data.

@ Programers may utilize the ACCEPT verb, without the FROM option, to
obtain data via the system logical input device.

* Another technique is to obtain the data via a READ statement after estab-
lishing the other related programing elements.

2-122



15 DEC 81 (SCM I,,:- I-

2.4.9.2 ADD STATEMENT.

FUNCTION. The ADD statement causes two or more iiumeric operands to be

sumed and the result to be stored.

FORMAT.

FORMAT 1.

identifier-I) [,identifier-21
ADD ... TO identifier-mE ROJNDED

literal-I ,literal-2 J

;NSIZE ERRORimeav-[ identifier-n (ROUNDED] I ... [ statement

FORMAT 2.

ADD fidentifier-1\ , identifier-2 ['identifier-31

- iteral-1 literal-2 JL,literal-3 j

GIVING identifier-m L- ROUNDED F, identifier-nROUNDED] 1
[;ON SIZE ERROR imperative-statement]

SYNTAX RULES.

e Each identilier must refer to an elementary numeric item except tne
obje.t of the GIVING option (identifier-m) which may be a numeric edite. data
item.

* Each literal must be a numeric literal.

* The maximum size of each operand is 18 digits. The maximum size of the
resultant sun, after decimal alignment, is 18 digits.

GENERAL RULES.

@ In FORMAT 1, the values of the operands preceding the word TO are added
together, then the sum is added to the current value of each identifier following
the word TO (identifier-m, etc.). The result is stored in each resultant-
identifier (identifier-m etc.).

2-123

__ A



CSCM 18-1-1 15 Dec 81

2.4.9.2 ADD STATEMENT. (Cont.)

* In FORMAT 2, the values of the operands preceding the word GIVING are
added together, then the sumn is stored as the new value of the object of the
GIVING option, identifier-n.

e The compiler insures that enough places are carried so as not to lose any
significant digits luring execution.

*The GIVING, ROUNDED and SIZE ERROR options are explained in Aritnrnetic
Options.

VENDORS' GUIDELINES.

*IBM.

Only one identifier following the GIVING option in FORMAT 2is allowed.

USACSC GUIDELINES.

*For efficient execution, and ease of maintenance, ADD statements should
be as simple as possible. Consequently:

Do niot use ON SIZE ERROR unnecessarily. This option increases execution
time and takes more space whether a size error exists or not.

Do not use ROUNDED unnecessarifly, for the same reason as above. ADD 5
and then MOVE to drop insignificant digits is more efficient.

Avoid using more than 3 addends in a single ADD statement.

*In regard to the data items specified as operands in arithmetic state-
ments5:

When they are all defined with the same USAGE, the relatively expensive
operation of conver-sion is avoided. This does not apply to display items in the
IBM-360/370. In these computers display items must be converted to packed deci-
mal before they can be used arithmetically.

When, for ADD and SUBTRACT, they are all defined with the same number of
decimal places, the relatively expensive operation of scaling is avoided.

When the data items are defined small enough so that the operation does
not produce a calculated result greater than 15 digits the expensive operation
of double precision arithmetic is avoided.

*In regard to a result item specified in the GIVING clause:

When it is defined with sufficient integer places to provide for the
maximum integer value possible, the need for the ON SIZE ERROR clause is elimi-
nated.

2-124



15 DEC 81 (SCM I -1-

- 2.4.9.2 ADD STATEMENT. (Cont.)

When it is defined with the same number of decimal places as the calcu-
lated result, the relatively expensive operation of truncation, rounding, or
scaling (whichever applies in the particular case) is avoided.

When it is defined with the same USAGE as the calculated result, a con-
version operation is avoided.

When it is defined as signed, the operation of removing the sign ',which
is generated automatically by the hardware) is avoided.

2-125



CSCM 18-1-1 15 lec 1

2.4.9.3 ALTER STATEMENT

FUNCTION. The ALTER statement is used to change the transfer point in a GO
TO sTatement.

USACSC GUIDELINES. This statement is not to be used in maintenance or new
development of programs. It is included here only for documentation purposes
for previously coded modules. The complexity in program logic that the ALTER
statement creates precludes its use due to maintenance consideration. As an
alternative to using ALTER as a switching mechanism, a data item can be set and
tested: Use a MOVE statement to change the value of a data item.

2- 126

* r



15 DEC 81 CSCM 18-1-1

2.4.9.4 CALL STATEMENT.

FUNCTION. The CALL statement causes control to be transferred fron one
obJect program to another, within the run unit. This statement provides the
communication link between a main object program and one or more subprograms.

FORMAT.

SCALL literal-i I USING data-namne-I [data-name-2 I ... ]

SYNTAX RULES.

* Literal-i must be a non-numeric literal.

* The USING option is included in the CALL statement (in the calling
program) only if there is a USING phrase in the PROCEDURE DIVISION header of the
called program. The order of the operands in each USING clause must be identi-
cal.

@ Each of the operands in the USING clause must have been defined as a data
item in the FILE SECTION, WORKING-STORAGE SFCTION, or LINKAGE SECTION and must
have a level-number of 01 o r 77.

GENERAL RULES.

* The program whose name is specified by the value of literal-1 is the
called program; the program in which the CALL statement appears is the calling
program.

e The execution of a CALL statement causes control to pass from the calling
program to the called program.

9 A called program is in its initial state the first time it is called with
a run unit. On all successive entries into the called program, the state of the
program remains unchanged from its state when last existed.

0 Unchanged will be data fields, file status, file positioning, and all
alterable switches.

* It is the programer's responsibility to reinitialize such things as:

i data items

PERFORM statements
ON statements

2-127

* .. -



CSCM 18-1-1 15 Dec 81

2.4.9.4 CALL STATEMENT. (Cont.)

a Called programs may contain CALL statements. However, a called program
must not contain a CALL statement that cirectly or indirectly calls the calling
program.

* The identifiers specified by the USING option of the CALL statement indi-
cate those data items available to a calling program that may be referred to in
the called program.

The order of appearance of the identifiers in the USING option of the
CALL statement and the USING option in the PROCEDURE DIVISION header is criti-
cal. The data items in the USING options are paired on a one-to-one relation-
ship.

Corresponding identifiers refer to a single set of data which is available
and is defined in both the called and calling program. These data items corre-
spond by position not by name. Their data descriptions must be equivalent.

In the case of index-names, no correspondence is established. Index-
names in the called and calling program always refer to separatE indices.

VENDORS' GUIDELINES.

e Honeywell.

For the using list, data-name parameters are limited to 25.

USACSC GUIDELINES. Refer to USACSC COBOL programing techniques, "Transfer
of Control" for further guidance.

2-128



15 DEC 81 CSCM 18-1-1

2.4.9.5 CANCEL STATEMENT.

FUNCTION. To release memory area,; occupied by the named program.

FORMAT.

CANCEL iiteral- l } ['literal -2 I
I identi fi er-1 ,identi fier 2 . .

SYNTAX RULES.

* Literal-i, literal-2, ...literal-n must each be a non-numeric literal
whose value is F program-name.

* Identifier-I, identifier-2, ...identifier-n must each have a value that
is a program-name.

GENERAL RULES.

9 After the execution of a CANCEL statement, the CANCELed subprogram ceases
to have a logical relationship to the run unit in which the CANCEL statement
appears. When a subsequent CALL statement is executed naming the same program,
that program begins execution in its initial state.

9 A program cannot be cancelled which has been called but has not executed
an EXIT PROGRAM statement.

* A logical relationship to a cancelled subprogram is reestablished only by
executing a subsequent CALL.

e Control passes to the next statement when the program named in a CANCEL
statement has not been called in this run unit or has already been CANCELed.

* If a CALLed program has not been CANCELed by a CANCEL statement, it is
automatically CANELed by the termination of the run unit of which it is a
member.

0 Memory areas associated with CANCELed subprograms are released for dispo-
sition by the operating system.

VENDORS' GUIDELINES. Not implemented in IBM DOS compiler and some levels of
IBM 05 compilers.

USACSC GUIDELINES. None.

2-129



CSCM 18-1-1 15 Dec 81

2.4.9.6 CASE STATEMENT.

FUNCTION. The CASE statement is used to cause control to be passed to one
or more imperative statements based on the value of an integer variable. Refer
to "STRUCTURED PROGRAMMING STATEMENTS - MetaCOBOL Macro Facility" of the "Special
Features" section.

2-130



15 DEC 81 CSCM 18-1-1

2.4.9.7 CLOSE STATEMENT.

FUNCTION. The CLOSE statement terminates the processing of input-output
reel-sunits, and files.

FORMAT.

rfREEL1I rITH JNO REWINDi
CLOSE file-name-l LLOCL

f -ne2[ REEL ITH fNO REWIND1
[f il1e-name-2 LOCK ~ii

SYNTAX RULES.

* The files referenced in the CLOSE statement need not all have the same

organization or access.

* File-name must not be the name of a sort or merge file.

e The REEL or UNIT option may only be used for sequential files.

GENERAL RULES.

* A CLOSE statement may only be executed for a file in an open mode.

e The action taken if a file is in the open mode when a STOP RUN statement
is executed is specified by the implementor.

s If a CLOSE statement has been executed for a file, no other statement can
be executed that references that file, either explicitly or implicitly, unless
an intervening OPEN statement for that file is executed.

2-131



CSCM 18-1-1 15 Dec 81

2.4.9.7 CLOSE STATEMENT. (Cont.)

* Following the successful execution of a CLOSE statement, the record area
associated with file-name is no longer available. The unsuccessful execution of
such a CLOSE statement leaves the avaiIability of the record area undefined.

Except vtiere otherwise stated in the general rules below, the terms 'reel',
'unit', and 'volume' are synonymous and completely interchangeable in the CLOSE
statement. Treatment of sequential mass storage files is logically equivalent
to the treatment of a file on tape or analogous sequential media.

* For the purpose of showing the effect of various types of CLOSE statements
as applied to various storage media, all files are divided into the following
categori es:

Unit record. A file whose input or output medium is such that rewinding,
units and reels have no meaning.

Sequential single-volume. A sequential file entirely contained on one
voltine (one reel or one unit).

Sequential multi *.reel/unit. A sequential file that is contained on more
than one volume.

e The results of executing each type of CLOSE for each category of file are
summarized below in FIGURE 2-23.

Relationship of Categories of Files and the Formats of the CLOSE Statement.

File Category
CLOSE _
Statement Sequential Sequential Non-Sequenti al
Format Non- Single- Multi- Singl e/Mul ti -

Reel/Unit Reel/Unit Reel/Unit Reel/Unit

CLOSE YES YES YES YES

CLOSE WITH YES YES YES YES
LOCK

FIGURE 2-23

2-132



15 DEC 81 CSCM 18-1 -1

2.4.9.7 CLOSE STATEMENT. (Cont.)

File Category
CLOSE
Statement Sequential Sequential Non-Sequenti al

e Format Non- Single- Multi - Singl e/Mul ti -
Reel/Unit Reel/Unit Reel/Unit Reel/Unit

CLOSE WITH NO NO NO NO
NO REWIND

CLOSE REEL/ NO NO YES NO
UNIT

CLOSE REEL/ NO NO YES NO
UNIT FOR
REMOVAL

CLOSE REEL/ NO NO NO NO
UNIT WITH
NO REWIND

FIGURE 2-23 (Cont.)

* Relationship of Categories of Files and the Formats of the CLOSE State-
ment. The definitions for FIGURE 2-23 are given below. Where the definition
depends on whether the file is an input, output or input-output file, alternate
definitions are given; otherwise, a definition applies to input, output, and
input-output files.

A. Previous Reels/Units Unaffected.

Input Files and Input-Output Files

All reels/units in the file prior to the current reel/unit are processed
according to the implementor's standard reel/unit swap procedure, except
those reels/units controlled by a prior CLOSE REEL/UNIT statement. If
the current reel/unit is not the last file, the reels/units in the file
following the current one are not processed.

Output Files

All reels/units in the file prior to the current reel/unit are processed
according to the implementor's standard reel/unit swap procedure, except
those reels/units controlled by a prior CLOSE REEL/UNIT statement.

2-133f

EL_



CSCM 18-1-1 15 Dec 81

2.4.9.7 CLOSE STATEMENT. (Cont.)

-B. No Rewind of Current Reel.

The current reel/unit is lef t in its current position.

C. Close File.

Input Files and Input-Output Files (Sequential Access Mode):

If the file is positioned at its end and label records are specified
for the file, the labels are processed according to the implementor's
standard label convention. The behavior of the CLOSE statement when
label records are specified but not present, or when, label records are
not specified but are present, is undefined. If specified by the USE
statement, a 'user's label procedure is executed. The order of execu-
tion of these~ two procedures is specified by the USE statement. In
addition, other closing operations specified by the implemientor are
executed. If the file is positioned at its end and label records are
not specified for the file, label processing does not take place but
other closing operations specified by the implemientor are executed.
If the file is positioned at other than its end, the closing operations
specified by the implementor are executed, but there is no ending label
processing.

Input Files and Input-Ou.tput Files (Random or Dynamic Access Mode);
Ouitput Files (.Random, Dynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are processed
according to the implemientor's standard label convention. The behavior
of the CLOSE statement when label records are specified but not present,
or when label records are not specified but are present, is undefined.
If specified by the USE statement, a user's label procedure is executed.
The order of execution of these two processes is specified by the USE
statement. In addition, other closing operations specified by the
implemientor are executed. If label records are not specified for the
file, label processing does not take place but other closing operations
specified by the implemientor are executed.

0. Reel/Unit Removal.

An implementor-defined technique is supplied to ensure that the current
reel or unit is rewound when applicable and that the operating system
is notified that the current reel or unit is logically removed from
this run unit; however, the reel or unit may be accessed again, in its
proper order of reels or units within the file, if a CLOSE statement
without the REEL or UNIT phrase is subsequently executed for this file
followed by the execution of an OPEN statement for the file.

2-134



15 DEC 81 CSCM 18-1-1

2.4.9.7 CLOSE STATEMENT. (Cont.)

E. File Lock.

An implementor-defined technique is supplied to ensure that this file
cannot be opened again during this execution of this run unit.

F. Close Reel/Unit.

Input Files:

The following operations take place:

1. A reel/unit swap.

2. The standard beginning reel/unit label procedure and the user's
beginning reel/unit label procedure (if specified by the USE state-
ment) are executed. The order of execution of these two label
procedures is specified by the USE statement. The next executed
READ statement for that file makes available the next data record
on the new reel/unit.

Output Files and Input-Output Files:

The following operations take place:

1. (For output files only.) The standard ending reel/unit label pro-
cedure and the user's ending reel/unit label procedure (if specified
by the USE statement) are executed. The order of execution of these
two procedures is specified by the USE statement.

2. A reel/unit swap.

3. The standard beginning reel/unit label procedure and the user's
beginning reel/unit label procedure (if specified by the USE state-
ment) are executed. The order of execution of these two procedures
is cpecified by the USE statement. For input-output files, the
next executed READ statement that references that file makes the
next logical data record on the next mass storage unit available.
For output files, the next executed WRITE statement that references
that file directs the next logical data record to the next reel/unit
of the file.

G. Rewind.

The current reel or analogous device is positioned at its physical
beginrning.

H. Illegal.

This is an illegal comibination of a CLOSE option and a file category.
The results at object time are undefined.

2-135



:SCM 18-1-1 15 Dec 81

2.4.9.7 CLOSE STATEMENT. (Cont.)

*The action taken if a file is in the open mode when a STOP RUN statement
is executed is specified by the implemlentor. The action taiken for a file that
has been opened in a called program and not closed in that program prior to the
execution of a CANCEL statement for that program is also specified by the imple-
mentor.

* If the OPTIONAL clause has been specified for the file in the FITLE-CONTROL
paragraph of the Environment Division ard the file is not present, the standaro
end-of-file processing is not performed for that file.

* If a CLOSE statement without the REEL or UNIT phrase has been executed
for a file, no other statement (except the SORT or MERGE statements with the
USING or GIVING phrases) can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for that file is
executed.

* All reports associated with a report file that have been initiated must
be ended with the execution of a TERMINATE statement before a CLOSE statement is
executed for that report file.

e The WITH NO REWIND and FOR REMOXVAL phrases will have no effect at object
time if they do not apply to the storage media on which the file resides.

* Following the successful execution of a CLOSE statement, without the REEL
or UNIT phrase, the record area associated with file-name is no longer available.
The unsuccessful execution of such a CLOSE statement leaves the availability of
the record area undefined.

VENDORS' GUIDELINES.

* IBM.

e Files left open will be automatically closed by IBM OS, except under MVT,
a file must be closed before STOP RUN or EXIT PROGRAM statement is executed.
Failure to do this results in an abnormal termination.

* Use of 1-0 areas defined in FD's after CLOSE, before an OPEN or in the
case of an INPUT file, after OPEN~ and before READ, are prohibited under DOS and
under OS MVT. Conversion problems encountered Wien converting from DOS to OS
precludes the use of 1-0 areas in the cases cited.

Each CLOSE statement for a file requires the use of a storage area that
is directly proportional to the number of files being closed. Closing more than
one file with the same statement is faster than when using a separate statement
for each file. However, separate statements require less storage.

2-136



15 DEC 81 CSCM 18-1-1

- 2.4.9.7 CLOSE STATEMENT. (Cont.)

USACSC GUIDELINES.

* CLOSE Statement. There are two ways in which to use the CLOSE statement
when closing several files:

CLOSE DETAIL-FILE MASTER-FILE.

or

CLOSE DETAIL-FILE.

CLOSE MASTER-FILE.

e Tape files should be closed as soon as possible after end of file so that
rewind action can begin immediately.

2-137



CSCM 18-1-1 15 Dec 81

2.4.9.8 COMPUTE STATEMENT.

FUNCTION. The COMPUTE statement assigns to one or more data items the value
of an ar-n"thetic expression.

FORMAT.

COMPUTE identifier- [ROUNDED [, identifier-2 CROUNDED]

- arithmetic-expression C; ON SIZE ERROR imperative-statement]

SYNTAX RULES.

e Identifiers that appear only to the left of = must refer to either an
elementary numeric item or an elementary numeric edited item.

9 The arithmetic-expression option permits the user to combine arithmetic
operations without the restrictions imposed by the arithmetic statements ADD,
SUBTRACT, MULTIPLY, and DIVIDE.

* The assignment operator =" (equal sign) must be used in the COMPUTE
statement.

2-138



15 DEC 81 CSCM 18-1-1

2.4.9.8 COM'PUTE STATEMENT. (Cant.)

GENERAL RULES. Maximumi size of each operand is 18 bytes.

VENDORS' GUIDELINES.

9 Exponentiation may be accomplished to a fractional power.

EXAMPLE: A ** .5 or A ** (BI/D)

This situation should be avoided as it requires floating point instruc-
tions. It would be more efficient to accomplish this operation with the DIVIDE
and MULTIPLY statements.

USACSC GUIDELINES. The use i~f the COMPUTE statement generates more effi-
cient coding than does the use of individujal arithmetic statements because the
compiler can keep track of internal work areas and does not have to store the
results of intermediate calculations. It is the user's responsibility, however,
to insure that the data is defined with the level of significance required in
the answer. The compute statement should not be used for simple arithmetic

- operations.

9 Hierarchy.

The compiler has a built-in hierarchy of operations. Example of
Hierarchy:

**EXPONENTIATION 1.

*MULTIPLICATION 2.

/DIVISION

+ ADDITION 3.

-SUBTRACTION

The sequence that takes place is to scan the expression from left to right
three or more times.

1. The first scan is to resolve any exponentiation.

2-139



CSCM 18-1-1 15 Dec 81

2.4.9.8 COMPUTE STATEMENT. (Cont.)

2. The second scan across the expression from left to right will creak,
Instructions to take care of all multlplication and/or division, as they are
encountered.

3. The third time through, instructions will be generated to accomplish
the addition and/or subtraction.

* Example of a compute statement and what actually is accomplished.

COMPUTE X = D * A ** 2 + 2 * B + C - E / 4.

S -5-

S-6-

S -7-

STORE IN XilJ

X =DA2+2B+C-E

4

e We do have the capability of altering the COMPUTE statement to force a
different evaluation to occur. We do this by use of parentheses.

If parentheses are used, the compiler will resolve the statement beginning
with the innermost set of parentheses first and work its way out.

Within each set of parentheses, the scan is still left to right and uses
the normal hierarchy.

e Let's take a look at this same COMPUTE statement with a few parentheses
added.

2-140

*



15 DEC 81 CSCM 18-1-1

2.4.9.8 COMPUTE STATEMENT. (Cont.)

COMPUTE X= (0* (A** 2 (B + C)) - E) 14.

2-

-4-

*-5-

I -6-

I -7-

STORE IN X

X =D(A2+2 (B+C))-E

* The COMPUTE statement may be used similar to FORTRAN notation.

EXAMPLE: COMPUTE X Y
COMPUTE X 0

It is more efficient to use other statements such as MOVE for this pur-
pose in COBOL.

@ Arithmetic expressions may be used only with the COMPUTE statement and
certain testing statements which we will get to shortly. The arithmetic opera-
tors may not be used with the other four arithmetic verbs.

2-141

i ili U il uil*iigl an ma laN-



CSCM 18-1-1 15 Dec 81

2.4.9.9 COPY STATEMENT.

FUNCTION. The COPY statement allows the inclusion of prewritten entries in
a source program. These may be DATA DIVISION entries, ENVIRONMENT DIVISION
clauses, and/or PROCEDURE DIVISION procedures.

FORMAT.

COPY library-name

F I word-?
REPLACING word-i BY literal-i

--
i dentifier-i

ord -41 1
word-3 BY literal- 2  J

identifier-2

SYNTAX RULES.

e The COPY statement must be preceded by a space and terminated by a period.

e Within a COBOL library, each library-name must be unique.

* A CPY statement may occur in the source program anywhere a character
string or separator may occur. However, a COPY statement cannot be contained
within another COPY statement.

e No other statement or clause may appear in the same entry as the COPY
statement.

o Word-i, word-2, etc., may be a data-name, procedure-name, condition-name,
mnemonic-name or file-name.

e The entries on the library itself remain unchanged even if the REPLACING
option is used.

e If the REPLACING option is not specified, the library text is copied
unchanged.

# If the REPLACING option is specified each properly matched identifier,
word, or literal in the library text is replaced by the corresponding identifier,
word, or literal.

e Text replacement occurs in the following manner:

Any separator (comma, space, semicolon) preceding the leftmost library
text-word is copied into the source program.

2-142



15 DEC 81 CSCM 18-1-1

2.4.9.9 COPY STATEMENT. (Cant.)

Starting with the leftmost library text-word, the entire REPLACING oper-
and is compared to an equivalent number of contiguous lib text-words.

A match occurs if the library text is equal, characte- far character, to
the REPLACING operands.

If no match occurs, the comparison is continued using the next set of
REPLACING operands until a match is found or there are no more REPLACING oper-

ad.When all the sets of REPLACING operands have been compared and no match
has occurred, the leftmost library text-word is copied into the source program.
The next library text-word is then considered as the leftmost library text-word
and the comparison cycle starts again.

When a match occurs between the REPLACING operands and the library text,
the corresponding BY operands are placed into the source program. The compari-
son starts again with the library text-word immediately following the last text-
word which participated in the match.

The comparisons continue until the library text-words have been depleted.

*A word or literal that is the result of the operation of REPLACING
phrase cannot be operated on by any other REPLACING phrase in any explicit COPY
statement.

GENERAL RULES.

* Compiling a source program containing a COPY statement is logically
equivalent to processing all COPY statements prior to the processing of the
resultant source program.

* The copied statements associated with text-name 1logically replace the
entire COPY statement beginning with the resolved word 7 -an -ending with the
punctuation character, 11." peniad.

* Commnent lines appearing in library text are copied into the source
program unchanged.

* The text produced as a result of the complete processing of a COPY
statement must not contain a COPY statement.

* Debugging lines are permitted within library text. If a COPY statement
is specified on a debugging line, then the text that is the result of the proc-
essing of the COPY statement will appear as though it were specified an debugging
lines with the following exception: comment lines in library text will appear
as comment lines in the resultant source program.

e The syntactic correctness of the library text cannot be independently
determined. The syntactic correctness of the entire COBOL source program cannot
be determined until all COPY statements have been completely processed.

2-143



CSCM 18-1-1 15 Dec 81

2.4.9.9 COPY STATEMENT. (Cont.)

9 Library text must conform to the rules for COBOL reference format.

VENDORS' GUIDELINES.

* IBM.

The SUPPRESS option is an IBM extension to the ANSI COBOL standards.

* Honeywell.

The REPLACING option is not available.

USACSC GUIDELINES.

e The IBM SUPPRESS option, COPY library-name SUPPRESS, may be Aser to indi-

cate that the library entry is n-otto be listed.

Coes The REPLACING option will not be used to alter Standard Data Elements andCodes.

e Qualification of names in the COBOL source program will not be allowed
except when used in conjunction with a COPY statement.

1%4

2-144



15 DEC 81 CSCM 18-1-1

2.4.9.10 USE FOR DEBUGGING STATEMINT.

FUNCTION. The USE FOR DEBUGGING statement identifies the items in the
source program that are to be monitored by the associated debugging declarative

- procedure.

FORMAT.

section-name SECTION [priority-number].
USE FOR DEBUGIN ON procedure-name-1

SYNTAX RULES. All debugging sections must be written together immediately
aftertECLATIVES header. Except for the USE FOR DEBUGGING sentence itself,
within the debugging procedure there must be no reference to any nondeclarative
procedure.

GENERAL RULES.

9 Automatic execution of a debugging section is not caused by a statement
appearing in a debugging section.

e A debugging section is not executed for a specific operand more than once
as the result of the execution of a single statement, no matter how many times
the operand is explicitly specified. An exception to this rule is that each
specification of a subscripted or indexed identifier will cause invocation of
the debugging declarative. For a PERFORM statement that causes repeated execu-
tion of a procedure, any associated procedure-name debugging declarative section
is executed once for each repetition.

e For debugging purposes, each separate occurrence of an imperative verb
within an imperative statement begins a separate statement.

* Statements appearing outside the debugging sections must not refer to
procedure-names defined within the debugging sections.

* Except for the USE FOR DEBUGGING sentence itself, statements within a
debugging declarative section may refer to procedure procedure-names defined in
a different USE procedure, only through the PERFORM statement.

e Procedure-names within debugging declarative sections must not appear in
any USE FOR DEBUGGING sentence.

* Procedure-name-1 may appear in only one USE FOR DEBUGGING sentence, and
only once in that sentence.

@ When a USE FOR DEBUGGING operand is used as a qualifier, such a reference
in the program does not activate the debugging procedures. The debugging proce-
dures are activated immediately before the procedure-name-1 referenced in the

2-145

w



CSCM 18-1-1 15 Dec 81

2.4.9.10 USE FOR DEBUGGING STATEMENT. (Cont.)

USE FOR DEBUGGING is called in the normal logic of the program. The WITHDEBUGGING MODE clause is stated in the SOURCE-COMPUTER paragraph.

* References to the DEBUG-ITEM special register may only be made from
within a debugging declarative procedure.

USACSC GUIDELINES. All USE FOR DEBUGGING statements are to be used during
testing and are not to be used in operational programs.

2-146



15 DEC 81 CSCM 18-1-1

2.4.9.11 DEBUG-ITEM Special Register.

FUNCTION. The DEBUG-ITEM special register provides information for a
debugging declarative procedure. It provides information about the conditions
causing debugging section execution.

FORMAT.

91 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-NAE PICTURE IS X(30).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS LEADING SEPARATE

CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE

C HARA CTE R.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PICTURE IS X(n).

GENERAL RULES.

s Before each debugging section is executed, DEBUG-ITEM is filled with
spaces. The contents of the DEBUG-ITEM subfields are then updated according to
the rules for the MOVE statement, with one exception: DEBUG-CONTENTS is updated
as if the move were an alphanumeric to alphanumeric elementary move without con-
version of data from one form of internal representation to another. After
updating, each field contains:

DEBUG-LINE: The source-statement sequence-number or the compi ler-generated
card number, depending on the compiler option chosen.

DEBUG-NAME: The first 30 characters of the name causing debugging section
execution. Any qualifiers are separated by the word "OF." (Subscripts or
indexes are not entered in DEBUG-NAE.)

DEBUG-SUB-I, DEBUG-SUB-2, DEBUG-SUB-3: If the DEBUG-NAME is subscripted or
indexed, the occurrence number of each level is entered in the respective
DEBUG-SUB-n. If the item is not subscripted or indexed, these fields remain
spaces.

DEBUG-CONTENTS: Data is moved into DEBUG-CONTENTS as shown in FIGURE 2-24.

2-147

F \



CSCM 18-1-1 15 Dec 81

2.4.9.11 DEBUG-ITEM Special Register. (Cont.)

Item causing debug DEBUG-LINE contains DEBUG-NAME DEBUG-CONTENTS
section execution number of COBOL contains contains

statement referring
to

GO TO GO TO statement procedure-name-n spaces
.procedure-name-n

procedure-name-n SORT statement procedure-name-n "SORT INPUT"
in SORT INPUT/ "SORT OUTPUT"

_OUTPUT PROCEDURE as app licable

PERFORM statement this PERFORM procedure-name-n "PERFORM LOOP"
transfer of control statement

procedure-name-n statement causing procedure-name-n "USE PROCEDURE"
in a USE procedure USE procedure

execution I

implicit transfer previous statement procedure-name-n "FALL THROUGH"
from previous executed in previous
sequential sequenti al procedure
_rocedure (see note)

1st execution of line number of first first "START PROGRAM"
1st nondeclarative nondecl arati ve pro- nondecl arati ve
Procedure cedure-name procedure-name

NOTE: If this paragraph is preceded by a section header and control is passed
through the section header, the statement number refers to the section header.

FIGURE 2-24

2-148

I



15 DEC 81 (SCM I'- -1

2.4.9.12 DELETE STATEMENT.

FUNCTION. The DELETE statement logically removes a record from a mass
storage file.

FORMAT.

DEET file-name RECORD r;INVALID KEY imperative-statementl

SYNTAX RULES.

* The INVALID KEY phrase must not be specified for a DELETE statement Wi:h
references a file which is in sequential access mode.

* The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and fc- which an appli-
cable USE procedure is not specified.

GENERAL RULES.

* The associ ated file must be open in the 1-0 mode at the time of the exe-
cution of this statement.

- For files in the sequential access mode, the last input-output statement
executed for file-name prior to the execution of the DELETE statement must have
been a successfully executed READ statement. The MSCS logically removes from
the file the record that was accessed by that READ statement.

* For a file in random access mode, the MSCS logically removes from the
file that record identified by the contents of the RELATIVE KEY or prime recora
key data item associated with file-name. If the file does not contain the
record specified by the key, an INVALID KEY condition exists.

@ After the successful execution of a DELETE statement, the identified
record has been logically removed from the file and can no longer be accessed.

e The execution of a DELETE statement does not affect the contents of the
record area ;.ssociated with file-name.

* The current record pointer is not affected by the execution of a DELETE
statement.

* The execution of the DELETE statement causes the value of the specified
FILE STATUS data item, if any, associated with file-name to be updated.

2-149



CSCM 18-1-1 15 Dec 81

2.4.9.13 DISPLAY STATEMENT.

FUNCTION. The DISPLAY statement causes low volume data to be written to a
specified output device.

FORMAT.

I DISPLAY literal -I literal-2 ... UPON e1

- identifier- 1 identifier-2 mnemoni c- nam

SYNTAX RULES.

* Each literal may be any figurative constant, except ALL literal.

* If a numeric literal is used, it must be an unsigned integer.

GENERAL RULES.

* If the UPON option is not used, the vendor specifies the default device
which will be used.

* Identifier may not be any special register.

* The size of the output records acceptable to each hardware device is
designated by each vendor.

e The DISPLAY statement causes the contents of each operand to be trans-
ferred to the hardware device in the order listed. The size of the sending item
equals the sum of the sizes of the operands.

* The implementor will define, for each hardware device, the size of a
data transfer.

e If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

* If the hardware device is not capable of receiving data of the same
size as the data item being transferred, then one of the following applies.

a. If the size of the data item being transferred exceeds the size of
the data that the Iardware device is capable of receiving in a single transfer,
the data beginning with the leftmost character is stored aligned to the left in
the receiving hardware device. Only one transfer of data is provided.

b. If the size of the data item that the hardware device is capable of
receiving exceeds the size of the data being transferred, the transferred data
is stored aligned to the left in the receiving hardware device.

2-150



15 DEC 81 CSCM 18-1-1

2.4.9.13 DISPLAY STATEMENT. (Cont.)

* When a DISPLAY statement contains more than one operand, the size
of the sending item is the sum of the sizes associated with the operands, and
the values of the operands are transferred in the sequence in which the oper-ands
are encountered.

* The implementor's standard display device is used.

VENDORS' GUIDELINES.

* IBM.

An IBM extension allows the use of the DISPLAY statement options UPON
CONSOLE, UPON SYSPUNCH (OS)/SYSPCH (DOS), or UPON SYSOUT (OS)/SYSLST 'DOS).

IBM defines the size of the output records for its hardware devices to be
100 (OS)/72 (DOS) characters for CONSOLE, 120 characters for SYSOUT (OS)/SYSLS7
(DOS) and 80 characters (72 usable characters and 8 program-name characters' fp'-
SYSPUNCH (OS)/SYSPCH (DOS).

IBM assigns SYSOUT/SYSLST as the default device if the UPON option is not ,sc.

Identifiers with a USAGE COMP are automatically converted to external decimal
format. Signed values cause a low-order sign overpunch to be developed; for
example, -34 displays as 3M; +34 displays as 3D.

The following statements cause the printer to space before printing:
DISPLAY and WRITE AFTER ADVANCING. A simple WRITE statement or a WRITE BEFORE
ADVANCING cause, the printer to space after printing. Mixing these two categc-
ries of output statements in the same program may cause overprinting.

* Honeywell.

Identifiers with USAGE COMP, COMP-l, COMP-?, and COMP-5 are not converte4
to printable characters when the DISPLAY is executed. Consequently, the data t,
be displayed should be moved to a USAGE DISPLAY elementary numeric field before
the DISPLAY.

USACSC GUIDELINES.

* Informative type data will be displayed on the system printer.

@ Use of the DISPLAY statement for messages r-quiring console-operator
response will be avoided except for contingencies where no other approach is
feasible. Approval must be obtained from QAD prior to use of this statement.

9 Informative messages which do not require console operator intervention
may be displayed to the console. However, it is preferable that such messages
be directed to SYSLST (DOS) or SYSOUT (OS).

2-151



CSCM 18-1-1 15 Dec 81

2.4.9.14 DIVIDE STATEMENT.

FUNCTION. The DIVIDE statement is used to find the quotient and remainder
resulting from the division of one numeric data item into another numeric data

... item.

FORMAT.

FORMAT 1.

DIVIDE dlier-I INTO identifier-2 -ROUNDED -f

1 iteral-1 I
-ON SIZE ERROR imperative-statement J

FORMAT 2.

-idet f r INTO ~ ident ifi er-2 .y
DIVIDE f dentifier- r Ji GIVING identifier-3

iteral-I B literal-2

E ROUNDED [REMAINDER identifier-43

E ON SIZE ERROR imperative-statements I

SYNTAX RULES.

* Each identifier must refer to an elEmentary numeric item except the
identifiers associated with the GIVING or REMAINDER clause which may be a
numeric-edited item.

e Each literal must be a numeric literal.

@ The maximum size of each operand is 18 decimal digits. The maximu size
of the decimal-aligned results of the division (quotient and remainder) may not
exceed 18 decimal digits each.

GENERAL RULES.

* In FORMAT 1, the value of identifier-i (or literal-i) is divided into the
value of identifier-2. The result (quotient) of the division is stored in the
dividend (identifier-2).

2-152



15 DEC 81 CSCM 18-1-1

2.4.9.14 DIVIDE STATEMENT. (Cont.)

e In FORMAT 2, the value of identifier-I (or literal-i) is divided into
identifier-2 (or literal-2) or when BY is used the value of identifier-i (or
literal-I) is divided by identifier-2 (or literal-2). The result is stored in
the object of the GIVING option, identifier-3. A remainder, if specified, is
stored in the object of the REMAINDER option, identifier-4.

* A remainder is defined as the result of subtracting the product of the
quotient and the divisor from the dividend. The remainder may be numeric-edited.

e When the ROUNDED option is used, the quotient is rounded after the
remainder has been determined.

e When ON SIZE ERROR is used with REMAINDER the following rules pertain:

If the SIZE ERROR occurs in the quotient no REMAINDER calculation is
meaningful. Thus the contents of both identifier-3 and identifier-4 REMAIN
unchanged.

If the SIZE ERROR occurs in the REMAINDER the contents of identifier-4
REMAIN unchanged. However, the user must do his own analysis to realize which

- has occurred.

* The GIVING, ROUNDED and SIZE ERROR options are explained in the Arithmetic

Operations Section in Language Element: PROCEDURE DIVISION.

VENDORS' GUIDELINES.

e IBM.

IBM 360/370 requires display items to be converted into packed decimal
before they can be used arithmetically.

USACSC GUIDELINES.

e For efficient execution, DIVIDE statements should be as simple as possi-
ble. Consequently:

Test for zero divisor before execution.

Do not use ON SIZE ERROR unnecessarily. This option increases execution
time and takes more space whether a size error exists or not.

Do not use ROUNDED unnecessarily, for the same reason as above. To ADD

5 and then MOVE to drop insignificant digits is more efficient.

Use of GIVING option saves instructions.

e In regard to the data items specified as operands in arithmetic state-
ments:

When they are all defined with the same USAGE, the relatively expensive
operation of conversion is avoided, except on the IBM 360/370.

When, for ADD and SUBTRACT, they are all defined with the same number
of decimal places, the relatively expensive operation of scaling is avoided.

2-153



CSCM 18-1-1 15 DeL 81

2.4.9.14 DIVIDE STATEMVENT. (Cont.)

s In regard to a result item specified in the GIVING clause:

When it is defined with sufficient integer places to provide for the
maximum integer value possible, the need for the ON SIZE ERROR clause is elimi-
nated.

When it is defined with the same number of decimal places as the calcu-
lated result, the relatively expensive operation of truncation, rounding, or
scaling (whichever applies in the particular case) is avoided.

When it is defined with same USAGE as the calculated result, a conver-
sion operation is avoided.

When it is defined as signed, the operation of removing the sign (which
is generated automatically by the hardware) is avoided.

2-154



it Du. 81 CSCM 18-1-1

2.4.9.15 DO STATEMENT.

-" FUNCTION. The DO statement is used to cause the execution of the module
specifl y a procedure name. Refer to "STRUCTURED PROGRAMMING STATEMENTS -MetaCOBOL Macro Facility" of the "Special Features" section.

2-155

..... .....



CSCM 18-1-1 15 Dec 81

2.4.9.16 DO UNTIL STATEMENT.

FUNCTION. The DO UNTIL statement is used to cause execution of one or more
imperative statements over and over again until a specified condition is met.

*:' Refer to "STRUCTURED PRO(AMMING STATEIENTS - MetaCOBOL Macro Facility" of the
"Special Features" section.

2-156



15 DEC 81 CSCM 18-1-1

2.4.9.17 DO WHILE STATEMENT.

FUNCTION. The DO WHILE statement is used to cause the execution of the
statetnait repeatedly in a loop as long as the condition is true. Refer to
"STRUCTURED PROGRAMMING STATEMENTS - MetaCOBOL Macro Facility' of the "Special
Features" section.

2-157



CSCM 18-1-1 15 Dec 81

2.4.9.18 ENTER STATEMENT.

FUNCTION. The ENTER statement provides a means of allowing the use of more
than one language in the same program.

FORMAT.

SYNTAX RULES.

*The language-name is specified by the implemientor and refers to any
programing language which the implementor specifies may be entered through COBOL.

*A routine-name is a COBOL word and may be referred to only in an ENTER
sentence.

*The sentence ENTER COBOL must follow the last non-COBOL statement to
indicate to the compiler the resumption of COBOL source coding.

GENERAL RULES.

* The non-COBOL statements are executed in the object program as if they
had been compiled into the object program following the ENTER statement.

o Details on non-COBOL languages and how they are to be written will be
specified by individual vendors.

9 If the statements in the entered language cannot be written in-line, a
routine-name is given to identify the portion of the non-COBOL coding to be
executed at this point in the procedure sequence. If the non-COBOL statements
can be written in-line, routine-name is not used.

VENDORS' GUIDELINES. IBM uses this statement only as comments. The IBM
compiler alows no other source language in-line in the source program.
Non-COBOL routines can be incorporated by using the CALL statement.

USACSC GUIDELINES. This statement is not to be used in maintenance or
new developiment of programs. It is included here only for documentation pur-
poses for previously coded modules. The ENTER statement provides no useful
function with the current IBM compiler and thus should be avoided.

2- 158



T_. . . .. _

15 DEC 81 CSCM 18-1-1

2.4.9.19 EXIT STATEMENT.

FUNCTION. The EXIT statement provides the common end point for a series of
procedures. The EXIT PROGRAM statement marks the logical end of a called
program.

FORMAT.

I paragraph-name.
EXIT.
XT" PROGRAM.

SYNTAX RULES.

* The EXIT or EXIT PROGRAM statement must appear in a sentence by itself

and must be the only sentence in the paragraph.

GENERAL RULES.

* The EXIT statement serves to allow the user to assign a procedure-name to
- a given point in a program. Usually control is passed through a series of pro-

cedures by going from paragraphs or sections sequentially or as directed. In
the case of a PERFORM, control may be passed to another point in the program by
associating a procedure-name at the point of the EXIT statement.

* If control reaches an EXIT paragraph and no associated PERFORM is active,
control is passed through the EXIT statement to the first sentence in the next
paragraph.

* The EXIT PROGRAM option is used in a sprgran (called by another
program). If a program has been called and an PROGRAM statement is
encountered, control is returned to the calling program at a point immediately
following the CALL statement.

* If the program has not been called and an EXIT PROGRAM is encountered, it
drops through to the first sentence in the next paragraph.

USACSC GUIDELINES.

* The EXIT PROGRAM statement should be used to return to the calling
program in lieu of the GOBACK statement. The EXIT PROGRAM is recognized as a
CODASYL standard whereas GOBACK is not.

9 An EXIT paragraph should always be the last paragraph in a PERFORM (para-
graph-i) through (paragraph-n) statement.

.25

2-159

1*



CSCM 18-1-1 15 Dec 81

2.4.9.20 GO TO STATEMENT.

FUNCTION. The GO TO statement ca:j-,es control to be transferred from one
part of the PROCEDURE DIVISION to another.

FORMAT.

FORMAT 1.

GO TO procedure-name
I--_

FORMAT 2.

GO TO procedure-name-1 t procedure-name-2 .

DEPENDING ON identifier

SYNTAX RULES.

e Identifier is the name of a numeric elementary item with no decimal
positions.

& If FORMT I of the GO TO statement appears in a series of imperative
statements in a sentence, it must be the last statement in the sentence.

GENERAL RULES.

* In FORMAT 1, when the GO TO statement is executed, control is transferred
to procedure-name-1.

* In FORMAT 2, control is transferred to one of a series of procedures
depending on the value of identifier. If identifier is 1, control passes to
procedure-name-i. If identifier is 2, control passes to procedure-name-2, etc.

Identifier must represent a positive unsigned integer. If not, the GO TO
statement is ignored and control passes to the next statement in the normal
sequence for execution.

VENbORS' GUIDELINES. IBM limits the number of procedure-names specified in
FORMAT z to 2,731.

USACSC GUIDELINES. Use of the GO TO without procedure-name(s) or DEPENDING
options Is prohibited as the ALTER statement must be used for proper execution.

2-160



15 DEC 81 CSCM 18-1-1

-" 2.4.9.21 IF STATEMENT.

FUNCTION. The IF statement causes a condition to be evaluated. The subse-
quent action of the object program depends upon whether the condition is true or
false.

FORMAT.

IF condition J statement-I ELSE statement-2
NEXT SENTENCE _ NEXT SENTENCE

SYNTAX RULES.

* Statement-1 and statement-2 represent an imperative statement.

* The phrase ELSE NEXT SENTENCE may be omitted if and only if it immediately
precedes the period for the sentence.

GENERAL RULES. When an IF statement is executed, the following transfers of
control occur.

* If the condition is true, statement-i is executed if specified. If
statement-1 contains a procedure branching statement, control is explicitly
transferred in accordance with the rules for that statement. If there is no
procedure branching statement, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence.

* If the condition is true and the NEXT SENTENCE is specified instead of
statement-I, the ELSE phrase, if specified, is ignored and control passes to the
next executable sentence.

* If the condition is false, statement-i or its surrogate NEXT SENTENCE is
ignored, and statement-2, if specified, is executed. If statement-2 contains a
procedure branching statement, control is explicitly transferred according to
the rules for that statement. If statement-2 does not contain a procedure
branching statement, control passes to the next executable sentence.

* If the condition is false and the ELSE NEXT SENTENCE phrase is specified,
statement-i is ignored, if specified, and control passes to the next executable
sentence.

VENDORS' GUIDELINES.

* IBM.

The ALL figurative constant should be used to test a sinqle character field.

2-161

-



CSCM 18-1-1 15 Dec 8I1

2.4.9.21 IF STATEMENT. (Cont.)

USACSC GUIDELINES.

9 The nested IF statement will only be used on projects defined as
Structured Programming by the Command. This does not apply to programs written
prior to the published date of this change until they are rewritten. Nested
IF's beyond three levels are discouraged.

* When statement-1 or statement-2 contains an IF statement, the IF state-
ment is said to be nested.

* IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Any ELSE encountered is con-
sidered to apply to the immediately preceding IF that has not been already
paired with an ELSE.

e When control is transferred to the next sentence, implicitly or expli-
citly, control passes to the next sentence as written or to a return mechanism
of a PERFORM or a USE statement.

* The following example contains two independent nests of conditional
statements. The first nest ends after the statement PERFORM procedure-name-2;

- the second nest consist of the remainder of the sentence and has an implied ELSE
NEXT SENTENCE before the period. 'A', 'B', 'C', 'D', 'E', and 'F' each corre-
sponds to a conditional expression.

IF A THEN
IF B THEN

PERFORM PROCEDURE-NAME-i
ELSE

NEXT SENTENCE
ELSE
IF C THEN

NEXT SENTENCE
ELSE

PERFORM PROCEDURE-NAME-2
IF D THEN
PERFORM PROCEDURE-NAME-3
IF E THEN

PERFORM PROCEDURE-NAME-4
IF F THEN

PERFORM PROCEDUR'-NAME-5
ELSE

PERFORM PROCEDURE-NAME-6
ELSE

STOP RUN.

2-162



15 DEC 81 CSCM 18-1 -1

2.4.9.21 IF STATEMENT. (Cont.)

IMPLIED NEXT SENTENCE.

*Compound conditions viiich require combining both the logical connectors
AND and OR will not be permitted without the use of parentheses to make the
exact evaluation of the total expression clear. Failure to use parentheses in
this situation relies on the evaluation algorithm of the particular compiler(s)
emiployed, which can vary from compiler to compiler, and is easily misunderstood
and erroneously programed.

*Complex relational conditions whiich employ NOT logic must not, under any
conditions, use the logical connector OR to connect the arguments of the relation
condition. Such a construction will never work properly, as the imperative
statement (the true path) will always be executed no matter what arguments are
being tested. The proper logical connector is AND, and is the only one which
will work properly. It is used in the following sense: "If condition to-be-
tested is not equal to any of the following arguments, execute imperative state-
ment."8 An example of improper ;oding is as follows:

IF A NOT EQUJAL TO B OR C OR D PERFORM ...

The same statement, coded properly, is as follows:

[IF ANOT EQUALTO BAND CAND DPERFORM ... I
The following example does not fall under the restriction stated in this

paragraph, as it is simply a compound condition having two elEiients.

IIF ANOTEQUAL TO BOR CNOT EQUAL TODPERFORM ... 1
The above example is correct because the conditions being tested are

different. However, if the second condition is changed to read "A NOT EQUJAL TO
0", it is wrong for the same reason the first example will always be executed.

*Avoid:

Using the class test condition unnecessarily. This test is expensive in
terms of coding generated and execution time.

2-16 3



AD-AL13 456 ARMY COMPUTER SYSTEMS COMMAND FORT BELVOIR VA F/6 9/2

DEC 81PROGRAMING PROCEDURES MANUAL 
(PPM).(U)

UNCLASSIFIED NL

EEIIIIIIIIIIIE
EEEElllllEEEEI
IEElllEEEllllE
IIIIIEIIIIIII
IEIIEIIEIIIIIE
EEEEIIIEEIIEI



.,, I" 1|a
~~fl~ ,_ 33 II!1It L

I--

11112-2

.IIII 1 11" 1111 -

MICROCOPY R[SOLUIION U I1 CHART

W I',~ NA, f- I I--II TN ;AF!



CSCM 18-1-1 15 Dec 81

2.4.9.21 IF STATEMENT. (Cont.,)

Numeric comparisons of items with different numbers of decimal places.
This type of compaison is particularly dangerous because comparison is based on
composite field size; not minimum field size. For example, comparison of items
defined as 9V99 and 9V9 cannot be equal unless the former has a zero as its low-
order digit (e.g., 1.21 is not equal to 1.2). To circmvent this problem, deci-
n~al places can be truncated by moving the longer item to one properly defined
(in this case as 9V9). Any conversion to a more efficient usage can be accom-
plished at the same time.

Comparing non-numeric items of different sizes.

Making group comparisons on records that contain slack positions, because
the contents of the slack positions are generally unpredictable and can cause an
invalid comparison.

Using the phrase "ELSE NEXT SENTENCE", which is meaningless unless it is
within a nested IF statement. In a simple IF this is the result when the condi-
tion is not met; therefore, use of the phrase is redundant and should be avoided.

# The following techniques should be employed whenever possible to assure
efficient IF statements. Refer to the table following this test for example
references (FIGURE 2-25).

Do not specify a GO TO (in an IF statement) to a sequence of coding which
returns control to the statement following the IF. If the sequence is 3 state-
ments or less, place them in the IF statement (refer to example #1). If it is a
longer sequence PERFORM it from the IF statement.

NEXT SENTENCE (or its equivalent) can often be conveniently avoided by
reversing the relation (refer to example #2).

There is a definite breakdown po-nt (in terms of efficiency of object
code) between the use of a series of IF statements and the GO TO DEPENDING ON,
where both are applicable. The breakeven point is 4 IF statements. (Refer to
example #3). A still more efficient corollary should be used when one particular
value of the series tested is expected to be present a majority of the time. In
this case, test for the particular value with an IF statement and use the GO TO
DEPENDING as the false branch of the IF.

Avoid testing the same item for more than one value once the condition has
been satisfied (refer to example #4).

When appropriate, test for ranges of values rather than each individual
value (refer to exam ple #5).

Use of IF ... ALPHABETIC conditional is extremely inefficient. Avoid use
or specify IF NOT NUM4ERIC.

2-164

L.



15 DEC 81 CSCM 18-1-1

2.4.9.21 IF STATEMENT. (Cont.)

* Examples. Refer to FIGURE 2-25.

EXAMPLE MORE EFFICIENT METHOD LESS EFFICIENT METHOD

IF A EQUALS B IF A EQUALS B GO TO C.

MOVE X TO Y D. MOVE

#1 PERFORM Z.

D. MOVE ... C. MOVE X TO Y
PERFORM Z

___GO TO D.
#2 IF A NOT EQUAL TO B IF A EQUALS B NEXT SENTENCE

* MOVE C TO D ELSE MOVE C TO D.

#3 GO TO P1, P2, ..P12 IF A EQUALS 1 GO TO P1
DEPENDING ON A IF A EQUALS 2 GO TO P2

iF A EQUALS 12 GO TO P12

IF A EQUALS 1 MOVE X TO B IF A EQUALS 1
GO TO C. MOVE X TO B.

#4 IF A EQUALS 7 MOVE Y TO B IF A EQUALS 7
GO TO C. MOVE Y TO B.
IF A EQUALS 9 MOVE Z TO B IF A EQUALS 9
GO TO C. MOVE Z TO B.

C.

IF A LESS THAN 1 GO TO C. IF A EQUALS 1 GO TO B.
IF A EQUALS 2 GO TO B.

#5 IF A LESS THAN 5 GO TO B. IF A EQUALS 3 GO TO B.
IF A EQUALS 4 GO TO B.

C . .. C.

FIGURE 2-25

NOTE: When the IF statement is used in structured programming it must be
termied by the keyword ENDIF. Refer to "STRUCTURED PROGRAMMING STATEMENTS -
MetaCOBOL Macro Facility" of the "Special Features" section.

2-165



CSCM 18-1-1 15 Dec 81

2.4.9.22 INSPECT STATEMENT.

FUNCTION. The INSPECT statement provides the ability to tally (FORMAT 1),
replaceF ORT 2), or tally and replace (FORMAT 3) occurrences of single char-
acters or groups of characters in a cata item.

FORMAT.

FO T 
FORMAT 1.

INSPECT identifier-1 TALLYING

identifier-2 FOR IFUDIIG {literal-Ii i -C CT{ H=ARACERSJ
identifier-4)ll

INITIAL {.iteral-2 }]}}

FORMAT 2.

INSPECT identifier-1 REPLACING

fi dent i fi er-67 ['BEFORE Iidentifi er-7fl
CHARACTERS BY (literal-4 y L\AFTE- INITIAL 3literal-5 ,-

J ALL 1
j LEADING , Jidentifier-5) Jidentifier-6) FfBEFORE
TLI1 rF literal-3 J BY -itera--4-

tidentifier-7
INITIAL literal-5

2-166

S



15 DEC 81 CSCM 18-1-1

2.4.9.22 INSPECT STATEMENT. (Cont.)

FORMAT 3.

INSPECT identifier-I TALLYING

fFOR ALL fidentifier-'3 Er
identifier-2 SDING literal-I BEFORELLTER S iL ATE

INI iAL Qdent ifi er-4]ii

REPLACING

identifier-6 BEFRE) fidentifier-7

CHARACTERS BY Oiteral-4 T INITIAL id t iera -

D I N G identifier-S BY fidentifier-6) IfBEFORE1
LFIRST j 'literal-3 f - literal-4 J ['AFTER f

identifier-i f
INITIAL lIiteral-S ]J'

SYNTAX RULES.

ALL FORMATS

9 Identifier-1 must reference either a group item or any category cf ele-
mentary items, described (either implicitly or explicitly) as usage is DISPLAY.

2-167

A \



CSCM 18-1-1 15 Dec 81

2.4.9.22 INSPECT STATEMENT. (Cont.)

e Identifier-3 ... identifier-n must reference either an elementary alpha-
betic, alphanumeric or numeric item described (either implicitly or explicitly)
as usage is DISPLAY.

e Each literal must be non-numeric and may be any figurative constant,
except ALL.

# In Level 1, literal-i, literal-2, literal-3, literal-4, and literal-5,
and the data items referenced by identifier-3, identifier-4, identifier-5,
identifier-6 and identifier-7 must be one character in length. The length
restriction does not apply to Level 2.

FORMATS 1 and 3 ONLY

e Identifier-2 must reference an elementary numeric data item.

r * If either literal-i or literal-2 is a figurative constant, the figurative
constant refers to an implicit one character data item.

FORMATS 2 AND 3 ONLY

@ The size of the data referenced by literal-4 or identifier-6 must be
equal to tKe size of the data referenced by literal-3 or identifier-5. When a
figurative constant is used as literal-4, the size of the figurative constant is
equal to the size of literal-3 or the size of the data item referenced by
identifier-5.

e When the CHARACTERS phrase is used, literal-4, literal-5, or the size of
the data item referenced by identifier-6, identifier-7 must be one character in
length.

* When a figurative constant is used as literal-3, the data referenced by
literal-4 or identifier-6 must be one character in length.

GENERAL RULES.

e (1) Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying and/or
replacing) begins at the leftmost character position of the data item referenced
by identifier-i, regardless of its class, and proceeds from left to right to the
rightmost character position as described in general rules (4) through (6).

* (2) For use in the INSPECT statement, the contents of the data item
referenced by identifier-i, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 will be treated as follows:

2-168



15 DEC 81 CSCM 18-1-1

2.4.9.22 INSPECT STATEMENT. (Cont.)

(a) If any of identifier-i, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric, the INSPECT statement
treats the contents of each such identifier as a character-string.

(b) If any of identifier-I, identifier-3, identifier-4, identifier-5,
identifier-6 or identifier-7 are described as alphanumeric edited, numeric edited
or unsigned numeric, the data item is inspected as though it had been redefined
as alphanumeric (see general rule (2)(a)) and the INSPECT statement had been
written to reference the redefined data item.

(c) If anj of the identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6 or identifier-7 are described as signed numeric, the
data item is inspected as though it had been moved to an unsigned numeric data
item of the same length and then the rules in general rule (2)(b) had been
applied.

* (3) In general rules (4) through (11) all references to literal-i,
literal-2, literal-3, literal-4, and literal-5 apply equally to the contents of

r the data item referenced by identifier-3, identifier-4, identifier-5, identifier-
6, and identifier-7, respectively.

* (4) During inspection of the contents of the data item referenced by
identifier-I, each properly matched occurrence of literal-1 is tallied (FORMATS
1 and 3) and/or each properly matched occurrence of literal-3 is replaced by
literal-4 (FORMATS 2 and 3).

e (5) The comparison operation to determine the occurrences of literal-1 to
be tallied and/or occurrences of literal-3 to be replaced, occurs as follows:

(a) The operands of the TALLYING and REPLACING phrases are considered
in the order they are specified in the INSPECT statement from left to right.
The first literal-i. literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position in the data item
referenced by identifier-i. Literal-i, literal-3 and that portion of the con-tents of the data item referenced by identifier-i match if, and only if, they

are equal, character for character.

(b) If no match occurs in the comparison of the first literal-i,
literal-3, the comparison is repeated with each successive literal-i, literal-3,
if any, until either a match is found or there is no next successive literal-i,
literal-3. When there is no next successive literal-I, literal-3, the character
position in the data item referenced by identifier-i immediately to the right of
the leftmost character position considered in the last comparison cycle is con-
sidered as the leftmost character position, and the comparison cycle begins
again with the first literal-i, literal-3.

2-169

L



CSCM 18-1-1 15 Dec 81

2.4.9.22 INSPECT STATEMENT. (Cont.)

(c) Whenever a match occurs tallying and/or replacing takes place as
described in general rules (8) and (101. The character position in the data
item referenced by identifier-1 immediately to the right of the rightmost char-
acter position that participated in the match is now considered to be the left-
most character position of the data item referenced by identifier-I, and the
comparison cycle starts again with the first literal-i, literal-3.

(d) The comparison operation continues until the rightmost character
position of the data item referenced by identifier-1 has participated in a match
or has been considered as the leftmost character position. When this occurs,
inspection is terminated.

(e) If the CHARACTERS phrase is specified, an implied one character
operand participates in the cycle described in paragraphs (5)(a) through (5)(d)
above, except that no comparison to the contents of the data item referenced by
identifier-I takes place. This implied character is considered always to match
the leftmost character of the contents of the data item referenced by identifier-
1 participating in the current comparison cycle.

* (6) The comparison operation defined in general rule (5) is affected by
the BEFORE and AFTER phrases as follows:

(a) If the BEFORE and AFTER phrase is not specified, literal-i,
literal-3 or the implied operand of the CHARACTERS phrase participates in the
comparison operation as described in general rule (5).

(b) If the BEFORE phrase is specified, the associated literal-I,
literal-3 or the implied operand of the CHARACTERS phrase participates only in
those comparison cycles which involve that portion of the contents of the data
item referenced by identifier-1 from its leftmost character position up to, but
not including, the first occurrence of literal-2, literal-5 within the contents
of the data item referenced by identifier-i. The position of this first occur-
rence is determined before the first cycle of the comparison operation described
in general rule (5) is begun. If, on any :omparison cycle, literal-I, literal-3
or the implied operand of the CHARACTERS phrase is not eligible to participate,
it is considered not to match the contents of the data item referenced by
identifier-i. If there is no occurrence of literal-2, literal-5 within the con-
tents of the data item referenced by identifier-i, its associated literal-I,
llteral-3, or the implied operand of the CHARACTERS phrase participates in the
comparison operation as though the BEFORE phrase had not been specified.

(c) If the AFTER phrase is specified, the associated literal-i,
literal-3 or the implied operand of the CHARACTERS phrase may participate only
in those comparison cycles which involve that portion of the contents of the
data item referenced by identifier-1 from the character position immediately to
the right of the rightmost character position of the first occurrence of
llteral-2, literal-5 within the contents of the data item referenced by
Identifier-1 and the rightnost character position of the data item referenced by

2-170

*



15 DEC 81 CSCM 18-1-1

2.4.9.22 INSPECT STATEMENT. (Cont.)

identifier-1. The position of this first occurrence is determined before the
first cycle of the comparison operation described in general rule (5) is begun.
If, on any comparison cycle, literal-I, literal-3 or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to match
the contents of the data item referenced by identifier-i. If there is no occur-
rence of literal-2, literal-5 within the contents of the data item referenced by
identifier-i, its associated literal-I, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison operation.

e (7) The contents of the data item referenced by identifier-2 is not
initialized by the execution of the INSPECT statement.

s (8) The rules for tallying are as follows:

(a) If the ALL phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one (1) for each occurrence of
literal-1 matched within the contents of the data item referenced by identifier-
i.

(b) If the LEADING phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one (1) for each contiguous occur-
rence of literal-1 matched within the contents of the data item referenced by
identifier-I, provided that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle in which literal-1 was eligible
to participate.

(c) If the CHARACTERS phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (1) for each character
matched, in the sense of general rule (5)(e), within the contents of the data
item referenced by identifier-i.

FORMAT 2

e (9) The required words ALL, LEADING and FIRST are adjectives.

* (10) The rules for replacement are as follows:

(a) When the CHARACTERS phrase is specified, each character matched,
in the sense of general rule (5)e, in the contents of the data item referenced
by identifier-1 is replaced by literal-4.

(b) When the adjective ALL is specified, each occurrence of literal-3
matched in the contents of the data item referenced by identifier-1 is replaced
by literal-4.

2-171



CSCM 18-1-1 15 Dec 81

2.4.9.22 INSPECT STATEMENT. (Cont.)

(c) When the adjective LEADING is specified, each contiguous occur-
rence of literal-3 matched in the data item referenced by identifier-1 is
replaced by llteral-4, provided that the leftmost occurrence is at the point
where comparison began in the first comparison cycle in which literal-3 was
eligible to participate.

(d) When the adjective FIRST is specified, the leftmost occurrence
of literal-3 matched within the contents of the data item referenced by
•;dentifier-1, is replaced by literal-4.

FORMAT 3

e (11) A FORMAT 3 INSPECT statement is interpreted and executed as though
two successive INSPECT statements specifying the same identifier-1 had been
written with one statement being a FORMAT 1 statement with TALLYING phrases
identical to those specified in the FORMAT 3 statement, and the other statement
being a FORMAT 2 statement with REPLACING phrases identical to those specified
in the FORMAT 3 statement. The general rules given for matching and counting
apply to the FORMAT 1 statement and the general rules given for matching and
replacing apply to the FORMAT 2 statement.

EXAMPLES.

Following are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A", count-i FOR
LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = 0.
Where word = ANALYST, count = 0, count-i = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY "E" AFTER
INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL
"A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

2-172

U



15 DEC 81 CSCM 18-1-1

2.4.9.22 INSPECT STATEMENT (Cont.)

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL

Where word - RXXBQWY, word = RYYZQQY.
Where word - YZACDWBR, word YZACDWZR.
Where word RAWRXEB, word = RAQRYEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 1 2 X Z A B C D
word before: 8 B B 8 B A B C D

4

2-1/3



CSCM 18-1-1 15 jec 81

2.4.9.23 MOVE STATEMENT.

FUNCTION. The MOVE statement transfers data, in accordance with the rules
- of editing, to one or more data areas.

FORMAT.
FORMAT 1.

i denti fi er-1I

MOVE literal TO identifier-2 F,identifier-31 ...

FORMAT 2.

MOVE c R  identifier-1 TO identifier-2

SYNTAX RULES.

o Identifier-1 and literal represent the sending area; identifier-2,
identifier-3, ..., represent the receiving areas.

* An index data item cannot appear as an operand of a MOVE statement.

GENERAL RULES.

& The data designated by literal or identifier-1 is moved first to
identifier-2, then to identifier-3 (if specified), etc.

e The rules referring to identifier-2 also apply to other receiving areas.
Any subscripting or indexing associated with identifier-2, ..., is evaluated
immediately before the data is moved to the respective data item. Any sub-
scripting or indexing associated with identifier-1 is evaluated only once,
immediately before data is moved to the first of the receiving operands.

* Any move in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the fol-
lowing categories: numeric, alphabetic, alphanumeric, numeric-edited,
alphanumeric-edited. Literals and figurative constants are categorized as fol-
lows:

Numeric literals belong to the category numeric.

4 Non-numeric literals belong to the category alphanumeric.

The figurative constant ZERO (ZEROS, ZEROES) belong to the category
numeric.

2-1 74



15 DEC 81 CSCM 18-1-1

2.4.9.23 M4OVE STATEMENT. (Cont.)

The figurative constant SPACE (3PACES) belongs to the category alphabetic.

All other figurative constants belong to the category alphanumeric.

*Data items from each group are considered corresponding when they have
the same name and qualification, up to but not including identifier-i and
identifier-2.

*The following rules apply to an elementary move between categories:

A numeric-edited, alphanumeric-edited, or alphabetic data item or the
figurative constant SPACE cannot be moved to a numeric or numeric-edited data
item.

A numeric literal, a numeric data item, a numeric-edited data item, or
the figurative constant ZERO must not be moved to an alphabetic data item.

A non-integer (containing an explicit decimal point) numeric literal or a
non-integer numeric data item must not be moved to an alphanumeric or alpha-
numeric-edited data item.

e Any necessary conversion of data from one form of internal representation
to another takes p lace during the move, along with any specified editing in the
receiving item.

When an alphanumeric or alpanmeric-edited item is the receiving item,
the following data conversion prnilsapply.

1. Alignment takes place from left to right as defined under the Standard
Alignment Rules (Language Concepts), unless the JUSTIFIED clause specifies
otherwise.

2. Unused character positions are filled with spaces.

3. If the size of the sending item is greater than the size of the
receiving item, the receiving item will be filled from the left and excess
characters will be truncated on the right, unless otherwise specified by the
JUSTIFIED clause.

4. If the sending item is described as a signed numeric, the operational
sign will not be moved.

When a numeric or numeric-edited item is the receiving item, the following
data conversion prnciple aply

1. Alignment by decimal point takes place as defined by Standard Align-
ment Rules (Language Concepts).

2. Unused positions are zero-filled unless otherwise specified by editing
requirements.

2-175



CSCM 18-1-1 15 Dec 81

2.4.9.23 MOVE STATEMENT. (Cant.)

3. When the receiving item is a signed numeric, the sign of the sending
item is placed in the receiving item. If the sending item is unsigned, a posi-
tive sign is generated for the receiving item.

4. When the receiving item is an unsigned numeric, the absolute value of
the sending item is moved and no operational sign is generated for the receiving

i tern.
5. If the sending item has more digits to the left or to the right of

the decimal point than the receiving item can contain, the excess digits are
trunicated.

6. If the sending item is alphanumeric, it is moved as if it were an
unsigned numeric integer.

7. If the sending item contains any non-numeric characters, the results
are unpredictable.

When an alhaetic item is the receiving item, the following data conver-
sion considerations appy.

1. Alignment takes place from left to right according to the Standard
Alignment Rules (Language Concepts), unless otherwise specified by the JUSTIFIED
clause.

2. If the sending item is greater than the receiving item, truncation
will occur to the right unless otherwise specified by the JUSTIFIED clause.

*Any move that is not an elementary move is treated as if it were an
alphanumeric to alphanumeric elementary move, except that no data conversion
takes place. The receiving area is filled without consideration of individual
elementary or group items contained within either the sending or receiving area.

@ The following chart summnarizes various types of MOVE statements. Refer
to FIGURE 2-26.

2-776



15 DEC 81 CSCM 18-1-1

2.4.9.23 MOVE STATEMENT (Cont.)

Category of Receiving Data Item

Category of Alphanumeric Numeric Integer
Sending Edited Numeric Non-Integer

Data Item Alphanumeric Alphanumeric Numeric Edited

Alphabetic Yes Yes No

pA Iphanumeri c Yes Yes Yes

Alphanumeric Yes Yes Yes
Ed i ted

Integer No Yes Yes

Numeric Non-Inte- No No Yes
_ger

Numer i c-Edi ted No Yes No

FIGURE 2-26

USACSC GUIDELINES.

o For character moves:

Employ caution when using a group item as a receiving field because data
is moved to a group item on a character basis without regard to individual items
within the group.

When the receiving field is longer than the sending field the MOVE is
less efficient than when the receiving field is shorter or the fields are of
equal size.

Remember that when the receiving field is shorter, the excess characters
in the sending field are ignored.

a Edited moves are extremely costly.

* Each reference to an unsigned numeric item as a receiving field requires
an extra object instruction.

e With IBM 360 only; MOVE, READ ... INTO, WRITE ... FROM, or REWRITE
FROM where receiving field exceeds 256 characters requires extra object instruc-
tions, avoid where possible.

2-177

A--



CSCM 18-1-1 15 Dec 81

2.4.9.23 MOVE STATEMENT. (Cont.)

e Performing a MOVE operation for an item greater than 256 bytes in length
requires the generation of more instructions than are required for that of a
MOVE operation for an item of 256 bytes or less.

* When a MOVE statement with the CORRESPONDING option is executed, data
items are considered CORRESPONDING only if their respective data names are the
same, including all implied qualification, up to, but not including the data-
names used in the MOVE statement itself. For example,

01 AA 01 XX
03 BB 03 BB

05 CC 05 CC
05 DO 05 DO

03 EE 03 YY
05 FF 05 FF

The statement MOVE CORRESPONDING AA TO XX will result in moving CC and
DO but not FF because FF of EE does not correspond to FF of YY.

The compiler assumes that the data being moved conforms to PICTURE and
USAGE specifications. If it does not, dissimilar results will occasionally
occur because of the different code generated for various sending and receiving
fields.

NOTE: The other rules for MOVE CORRESPONDING, of course, must still be
satisfied.

* Numerous times a programer will read a record, MOVE it to WORKING-STORAGE
and check to see if he needs that record. It could be possible that a very
small percentage of these records are processed causing unnecessary CPU time to
MOVE these records to WORKING-STORAGE. MOVE statements with larger amounts of
data are costly in terms of CPU time. The programer should check to see if he
needs a record prior to moving it to WORKING-STORAGE.

2-178



15 DEC 81 CSCM 18-1-1

2.4.9.24 MULTIPLY STATEMENT.

FUNCTION. The MULTIPLY statement is used to multiply one numeric data item
by another numeric data item.

FORMAT.

FORMAT 1.

ridentifier-i
1 MULTIPLY BY identifier-2 kOUNDEDJ

(literai-l

E;ON SIZE ERROR imperative-statement J

FORMAT 2.

MULTIPLY BYliter 2 GIVING identifier-3

literal-I ljiteral-2

ROUNDED J

[;ON SIZE ERROR impe-ative statement J

SYNTAX RULES.

* Each identifier must refer to an elementary numeric item except the
object of the GIVING option (identifier-3) which may be a numeric-edited item.

e Each literal must be a numeric literal.

e The maximum size of each operand is 18 decimal digits. The maximum size
of each receiving field, after decimal alignment, is 18 decimal digits.

GENERAL RULES.

e In FORMAT 1, the value of identifier-1 (or literal-i) is multiplied by
the value of identifier-2. The value of the multiplier (identifier-2) is
replaced by the result of the multiplication.

a In FORMAT 2, the value of identifier-i (or literal-i) is multiplied by

identifier-2 (or literal-2) and the result is stored in the object of the GIVING
option, identifier-3.

@ The GIVING, ROUNDED and SIZE ERROR options are explained in Arithmetic
Operations, PROCEDURE DIVISION.

2-179

4J



CSCM 18-1-1 1)% 81 ~

2.4.9.24 MULTIPLY STATEMENT. (Cant.)

VENDORS' GUIDELINES.

0 IBM.

Only one identifier is allowed as the object of the GIVING option.

For the IBM 360/370, when they are defined small enough so that the oper-
ation does not produce a calculated result greater than 15 digits the expensive
operation of double precision arithmetic is avoided.

For the IBM 360/370, when it is defined as signed, the operation of
removing the sign (which is generated automatically by the hardware) is avoided.

USACSC GUIDELINES.

*For efficient execution, MULTIPLY statements should be as simple as
possible. Consequently:

Do not use ON SIZE ERROR unnecessarily. This option increases execution
time and takes more space whether a size error exists or not.

Do not use ROUNDED if possible, for the same reason as above. To ADD 5
and then MOVE to drop insignificant digits is more efficient.

Use of GIVING option saves instructions.

@ In regard to the data items specified as operands in arithmetic statements:

When they are all defined with the same USAGE, the relatively expensive
operation of conversion is avoided. This does not apply to display items in the
IBM 360/370. In these computers, display items must be converted to packed
decimal before they can be used arithmetically.

When, for ADD and SUBTRACT, they are all defined with the same number of
decimal places, the relatively expensive operation of scaling is avoided.

*In regard to a result item specifiei in the GIVING clause:

When it is defined with sufficient integer places to provide for thle
maximum integer value possible, the need for the ON SIZE ERROR clause is elimi-
nated.

When it is defined with the same number of decimal places as the calcu-
lated result, the relatively expensive operation of truncation, rounding, or
scaling (whichever applies in the particular case) is avoided.

When it is defined with the same USAGE as the calculated result, a con-
version operation is avoided.

2-180



15 DEC 81 CSCM 18--I

2.4.9.25 OPEN STATEMENT.

FUNCTION. The OPEN statement initiates the processing of input, output, and
input-output files. It performs checking and/or writing of labels and other
input-output operations.

FORMAT.

FORMAT 1 - Indexed 1-0 and Relative 1-0.

INPUT file-name-1 C, file-name-2] ...
OPEN OUTPUT file-name-3 E, file-name-43 ...

L I i-'flename-5 E, file-name-6] ...

FORMAT 2 - Sequential 1-0.

INUTfie-am - REVERSED jjREVERSED )].?INPUT Tfle-name-I LWWM [-O'REWIND ,fi le-name-2 LiM rT-'REWIND .

OPEN OUTPUT fi le-name-3 FWITH NO REWIND I F, fi le-name-4 JWITH NO REWIND I .

1-0 file-name-5 j, file-name-6 1 ...

SYNTAX RULES.

* The file-name must be defined by a file description entry in the Data
Division. All files referenced in the OPEN statement need not all have the same
organization or access.

* The REVERSED and the NO REWIND phrases can only be used with sequential
files.

* At least one of the options INPUT, OUTPUT, or 1-0 must be specified.
However, there must be no more than one instance of each option in the same
statement, although more than one file-name may be used with each option. These
options may appear in any order.

GENERAL RULES.

* The successful execution of an OPEN statement determines the availability
of the file, results in the file being in an open mode, and makes the associated
record area available to the program.

e The 1-0 option pertains only to mass storage files.

2-181



CSCM 18-1-1 15 Dec 81

2.4.9.25 OPEN STATEMENT. (Cont.)

e The OPEN statement must not specify a sort-file, but an OPEN statement
must be specified for all other files. The OPEN statement for a file must be
executed prior to the execution of any statement referencing the file, explicitly
or implicity. A file can be opened with the INPUT, OUTPUT, and 1-0 phrases in
the same program. However, a second OPEN statement for a file cannot be executed
prior to the execution of a CLOSE statement for that file. The CLOSE statement
cannot contain the REEL or UNIT phrases. The OPEN statement does not obtain or
release the first data record. A READ or WRITE statement must be executed to
obtain or release, respectively, the first data record.

o The OPEN statement causes the user's beginning label subroutine to be
executed if one is specified by a USE sentence in the Declaratives Section.

@ When the REVERSED option is specified, subsequent READ statements for the
file make the data records of the file available in reversed order; that is,
starting with the last record.

e When the REVERSED option is specified, execution of the OPEN statement
causes the file to be positioned at the end of the file.

* For the table below, Permissible Statements, an "X" at an intersection
indicates that the specified statement, used in the access mode given for that
row, may be used with the relative file organization and the open mode given at
the top of the column.

Open Mode

File Access
Mode Statement Input Output Input-Output

Sequential READ X X

REWRI TE X
SlTART XX
DELETE .. .X_

Random READ X X
WRITE _ X
R-WIIE _ X
START _DELETE

Permissible Statements

* If label records are specified for the file, the beginning labels are
processed as follows:

2-182



15 DEC 8i1 CSCM 18-1-1

2.4.9.25 OPEN STATEMENT. (Cont.)

a. When the INPUT phrase is specified, the execution of the OPEN state-
ment causes the labels to be checked in accordance with the implementor's speci-
fied conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with the implementor's
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified but
not present, or when label records are not specified but are present, is unde-
fined.

* For files being opened with the INPUT or 1-0 phrase, the OPEN statement
sets the current record pointer to the first record currently existing within
the file. If no records exist in the file, the current record pointer is set
such that the next executed FORMAT 1 READ statement for the file will result in
an AT END condition.

* The 1-0 phrase permits the opening of a mass storage file for both input
and output operations. Since this option implies the existence of the file, it
cannot be used if the mass storage file is being initially created.

* When the 1-0 phrase is used, and the LABEL RECORDS clause indicates label
records are present, the execution of the OPEN statement includes the following
steps:

The label is checked in accordance with the implementor's specified con-
ventions for input-output label checking.

The user's label subroutine, if one is specified by a USE sentence, is
executed or new labels are written in accordance with the implementor's speci-
fied conventions for input-output label writing.

The label is written.

Upon successful execution of an OPEN statement with the OUTPUT phrase speci-
fied, a file is created. At that time the associated file contains no data
records.

VENDOR'S GUIDELINES.

e IBM.

The IBM compiler allows the REVERSED option to be uised with a sequential
multiple reel file.

2-183



CSCM 18-1 -1 15 Dec 81

2.4.9.25 OPEN STATEMENT. (Cont.)

When opening a file, under the Operating System (OS), the NO REWIND option
may have no effect on file positioning. Any file positioning at OPEN time is
controlled by the operating system, and the NO REWIND option may be overridden
by JCL.

The DOS NO REWIND option will keep the file static and negate any positioning
commuands from the system.

The REVERSED and the NO REWIND options can be used only with a sequential
single reel file or guideline. The REVERSED option cannot be used for a file
containing mode IV' records.

If the option is specified for a file containing mode 'U' records, doubleword
boundary alignment of the logical record is obtained only if the length of the
logical record is divisible by eight. If there is no doubleword boundary align-
ment for a record containing SYNCHRONIZED items, the record cannot be properly
processed.

Use of 1-0 areas defined in FD's after CLOSE, before an OPEN or in the case
of an INPUT file, after OPEN and before READ are prohibited under DOS and under
OS MVT. Conversion problems encountered when converting from DOS to OS precludes
the use of 1-0 areas in the cases cited.

USACSC GUIDELINES.

e It is best to specify as many files in the same OPEN statement as is
logically possible. Although some additional storage is required, it is offset
by a relatively significant savings in execution time.

*Execution of an OPEN statement for an input file does not make the
record-area in the File Section available for subsequent operations. Statements
that refer to the record area must not be executed until a READ has been exe-
cuted for the file.

* Execution of an OPEN for an output file makes a record area available.
Therefore, statements that refer to the record(s) of the file may be executed
after the OPEN and before the first WRITE.

2-184



15 DEC 81 CSCM 18-1-1

2.4.9.26 PERFORM STATEMENT.

FUNCTION. The PERFORM statement is used to explicitly transfer control to
one or more procedures and to return control implicitly whenever execution of
the specified procedure is complete.

FORMAT.

FORMAT 1.

PERFORM procedure-name- [ THRU procedure-name-2

FORMAT 2.

PERFORM procedure-name-I [ THRU procedure-name-2 ]

identifier-l IME

integer-l I

FORMAT 3.

PERFORM procedure-name-i [THR_ U procedure-name-?

UNTIL condition-I

FORMAT 4.

PERFORM procedure-name-i (THRU procedure-name-2]

rindex-name-1l findex-nae-21

VARYING FROM l iteral-i
V identifier-2J ROj.dentifier-3J

literal-2
BY identifier-4 UNTIL condition-I

index-name-3 index-name-4 1
F AFTER FROM literal-3

Identifier-5 J Lidentifier-6

2-185

9 .



CSCM 111-1-1 15 Dec 81

2.4.9.26 PERFORM STATEMENT. (Cont.)

FORMAT 4. (Cont.)

BY l i t er  ' 7  UNTIL condition-2
- identifier-7 J

index-name-5 1 ndex-6
-AFTER FROM iteral-5

L dentifier-81 -identi fier-9

By literal-6 0 UNTIL cond i ti on-3]BY identi fi er- 0

SYNTAX RULES.

* Each identifier represents a numeric elementary item described in the
DATA DIVISION. In FORMAT 2, identifier-1 must be described as a numeric integer.

* Each literal represents a numeric literal.

* If an index-name is specified in the VARYING or AFTER phrase, the fol-
lowing applies:

The identifier in the associated FROM and BY phrases must be an integer
data item.

The literal in the associated FROM phrase must be a positive integer.

The literal in the associated BY phrase must be a non-zero integer.

* If an index-name is specified in the FROM phrase, the following applies:

The identifier in the associated VARYING or AFTER phrase must be an
integer data item.

The identifier in the associated BY phrase must be an integer data item.

The literal in the associated BY phrase must be an integer.

* The literal in the BY phrase must not be zero.

* Condition-i, condition-2, condition-3 may be any conditional expression.

GENERAL RULES.

e An identifier in the BY option must not have a zero value.

2-186



15 DEC 81 CSCM 18-1-1

2.4.9.26 PERFORM STATEMENT. (Cont.)

- If an index-name is specified in the VARYING or AFTER option, and an
identifier is specified in the associated BY option, the identifier must have a
positive value.

e The THRU option will be used in all cases except when procedure-1 refers
to the section-name. In this case, the THRU option may or may not be used.

e When the PERFORM statement is executed, control is transferred to the
first statement of the procedure named procedure-name-i. An implicit transfer
of control to the next executable statement following the PERFORM statement is
established as follows:

If procedure-name-1 is a section-name and procedure-name-2 is not speci-
fied, then the return is after the last statement of the last paragraph in
prccedure-name-l.

If procedure-name-2 is specified and is a paragraph-name, then the return
is after the last statement of the paragraph.

If procedure-name-2 is specified and it is a section-name, then return is
after the last statement of the last paragraph in that section.

* There is no relationship between procedure-name-I and procedure-name-2
except that a consecutive sequence of operations is to be executed beginning at
procedure-name-1 going through procedure-name-2.

GO TO and PERFORM statements may occur between procedure-name-1 and the
end of procedure-name-2.

If there is more than one logical path to the return point, procedure-
name-2 must be the name of a paragraph consisting of an EXIT statement, to which
all of these paths must lead.

* If control is passed to any procedures within the range of the PERFORM by
means other than the execution of the PERFORM statement, the PERFORM statements
are ignored and control passes normally through the last statement of the proce-
dures.

9 FORMAT 1 is the basic PERFORM statement. The procedure referred to by
the PERFORM is executed once and then control passes to the next executable
statement following the PERFORM statement.

* In FORMAT 2, the procedures are performed the number of times specified
by integer-1 or identifier-i.

If, at the time of execution of the PERFORM statement, the value of
identifier-1 or integer-1 is zero or negative, control passes to the statement
following the PERFORM statement.

Once the PERFORM statement has been initiated, any references to
identifier-1 cannot alter the number of times the procedures are to be executed.

2-187

V • .



CSCM 18-1-1 15 Dec 81

2.4.9.26 PERFORM STATEMENT. (Cont.)

e In FORMAT 3, the specified procedures are performed until the condition
specified by the UNTIL option is used.

When the condition is true, control is passed to the statement following
the PERFORM statement.

If the condition is true when the PERFORM statement is encountered, the
specified procedures are not executed.

o In FORMAT 4, the values of identifiers and/or index-names are updated in
an orderly fashion during the execution of the PERFORM statement.

References to identifier as the object of the VARYING, AFTER and FROM
options also refers to index-name.

When an index-name is used, it is initialized and updated by the FORMAT 4
options of the PERFORM according to the rules of the SET statement.

* When one identifier is varied, the following sequence occurs:

Identifier-i is set equal to its starting value (identifier-2 or
literal-2).

If condition-1 is false, procedure-name-1 through procedure-name-2 is
executed once.

The value of identifier-i is updated by the increment or decrement value
of identifier-3 (or literal-3) and condition-i is retested.

The preceding two steps are repeated until condition-i is true. At this
point, control is transferred to the next executable statement following the
PERFORM statement.

If condition-1 is true when the PERFORM statement is encountered, the
procedures are not executed and control passes directly to the next executable
statement after the PERFORM statement.

FIGURE 2-27 is a flowchart for the VARYING option of the PERFORM state-
ment having one condition.

* When two identifiers are varied, the following sequence occurs.

Identifier-1 and identifier-4 are set to their respective initial values
(identifier-2/literal-2 and identifier-5/literal-5).

Condition-1 is evaluated. If true, control is passed to the next
executable statement following the PERFORM statement. If false, condition-2 is
evaluated.

If condition-2 is false, procedure-name-i through procedure-name-2 is
executed.

2-188



1DEC 81 CSCM 18-1-1

2.4.9.26 PERFORM STATEMENT (Cont.)

Identlfier-4 is updated by identifier-6 (or literal-6) and condition-? is

- reevaluated.

If condltion-2 is false, the preceding two steps are repeated.

If condition-2 is true, identifier-4 is set to its initial value

(ldentlfler-5).

Identifier-i is updated by identifier-3 (literal-3).

The cycle of the preceding six steps is repeated until condition-i is
true.

If condition-i was true when the PERFORM was encountered, identifier-i
and identifier-4 contain their initial values.

ENTRANCE

Set identifier-i
equal to current FROM value

lh ond it ion-ijX j

False

Execute procedure-name-i

THRU procedure-name-?

Augment identifier-i with its

__________________________________BY_________ va u

FIGURE 2-27

2-189



CSCM 18-1-1 15 Dec 81

2.4.9.26 PERFORM STATEMENT. (Cont.)

FIGURE 2-28 is a flowchart for thc VARYING option of th PERFORM satr-

ment having two conditions.

g When three identifiers are varied, the following sequence occurs:

The mechanism is the same as fo.- two identifiers except that identifier-7
goes through the complete cycle each tine that identifier-4 is updated by
identifier-6 (literal-6) which in turn goes through a complete cycle each time
identifier-i is varied.

FIGURE 2-29 is a flowchart for the VARYING option of the PERFORM state-
ment having three conditions.

. If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with the
included PERFORM must itself either be totally included in, or totally excluded
from, the logical sequence referred to by the first PERFORM. Thus, an active
PERFORM statement initiated within the range of another PERFORM statement must
not allow control to pass to the exit of the first PERFORM statement. Two or
more such active PERFORM statements may not have a common exit.

x PERFORM a THRU m

a_ _____________

d PERFORM f THRU j
f
f _____ u j_
m

2-190



15 DEC 81 CSCM 18-1-1

2.4.9.26 PERFORM STATEMENT. (Cant.)

Set identifier-i and
identifier-4 to current

proceure- FROM- FROMvalu

ldntfir- CodentifiEIT

BYFas vauTBrue

FonIGURE -2

2-1ls1

U~~Exct Set.-,* p-



CSCM 18-1-1 15 Dec 81

2.4.9.26 PERFORM STATEMENT. (Cont.)

I.

prcdr-aiidentifier-4, identifier-

to itsen curren toatscuren

rocedur-nalee Fraue 
FO au

C11ntion-ugen

prdeie-1 identlfier-4 identifier-4
wthR turen it current woit current

BY value-nm YRO value FROM B value _

E ugmentAu 
g Re 2-gme9

FIU2-9



15 DEC 81 CSCM 18-1-1

2.4.9.26 PERFORM STATEMENT. (Cont.)

x PERFORM a THRU m

a

d PERFORM f THRU j
h
m
f

0. x PERFORM a THRUm

a

m

k PERFORMfTR

e A PERFORM initiated within the range of an active PERFORM cannot allow
control to pass to the exit of the first PERFORM statement.

x PERFORM a THRU m

a
b PERFORM f THRU j
f
m

2-193



CSCM 18-1-1 15 Dec 81

2.4.9.26 PERFORM STATEMENT. (Cont.)

9 Refer to RESTRICTION ON PERFORM STATEMENTS, COBOL SEGMENTATION FACILITY.

USACSC GUIDELINES.

s Groups of procedural statements that are frequently executed in an object
program should be executed using the PERFORM mechanism. This technique reduces
the size of the object program and also organizes the program in a way that can
improve the program documentation and facilitate its maintenance. The grouping
of input-output procedures into subroutines called by PERFORM statements is
especially useful.

9 Always execute the last statement of a series of routines being operated
on by a PERFORM statement. When branching out of the routine, make sure control
will eventually return to the last statement of the routine. This statement
should be an EXIT statement. Although no code is generated, the EXIT statement
allows a programer to immediately recognize the extent of a series of routines
within the range of a PERFORM statement.

* Always either PERFORM with the THRU option, or PERFORM section-name. A
PERFORM paragraph-name can cause trouble for the programer trying to maintain
the program. For example, if a paragraph must be broken into two paragraphs,
the programer must examine every statement to determine whether or not this
paragraph is written the range uf a PERFORM statement. Then all statements
referencing the paragraph-name must be changed to PERFORM THRU statements.

* Only PERFORM A THRU A-EXIT, do not PERFORM A THRU C-EXIT when using struc-
tured programing techniques. PERFORM statement should never include a range of
paragraphs.

2-194



15 DEC 81 CSCM 18-1-1

2.4.9.27 READ STATEMENT.

FUNCTION. The READ statement makes available the next logical record from
an input Mie.

FORMAT.

FORMAT 1.

READ file-name RECORD [INTO identifier]

IAT END imperative-statement3

FORMAT 2.

READ file-name RECORD [INTO identifier]

- - CINVALID KEY imperative-statement3

SYNTAX RULES.

* The INTO phrase must not be used when the input file contains variable-
length records. The storage area associated with identifier and the record area
associated with file-name must not be the same area.

* The AT END phrase must be specified for sequential files.

* For files in sequential access mode, FORMAT 1 must be used.

* For RANDOM or INDEXED-SEQUENTIAL files, FORMAT 2 is used.

e The INVALID KEY phrase or the AT END phrase must be specified if no
applicable USE procedure is specified for file-name.

GENERAL RULES.

e The file-name must be defined by a file description entry in the DATA
DIVISION.

2-195

L.aw*,



CSCM 18-1-1 15 Dec 81
2.1.9.27 READ STATEMENT. (Cont.)

e An OPEN statement must be executed for the file prior to the first READ
of that file. This positions the current record pointer to the beginning of the
file.

e Execution of a READ statement causes the current record pointer to point
to the next existing record in the file. This record is made available to the
program in the input area defined by the associated record description entry.

e In FORMAT 2, the record the READ makes available is a function of the
organization of the file and of the key fields associated with it.

* If a file contains more than one type of logical record, these records
automatically share the same storage area by implicit redefinition of the 01-
level record descriptions.

e Only information present in tne current record is accessible. No
reference can be made by a PROCEDURE DIVISION statement to information beyond
the current record. Unpredictable results will result from referencing the nth
occurrence of data that occurs fewer than n times.

e The record remains in the input area until the next READ for that file is
01 executed.

*When the INTO option is specified, the following rules apply:

Identifier must be a WORKING-STORAG3E SECTION entry, a LINKAGE SECTION
entry, or an output record in the FILE SECTION. If identifier is an output
record, its associated file must have been opened before the READ was executed.

This option acts as a combination READ statement and MOVE statement. The
record is read then moved from the record area to the identifier area. Any
subscripting or indexing associated with the identifier is evaluated after the
record is read and immrediately before it is moved into the area associated with
the identifier.

Data is moved according to the COBOL rules for the MOVE statement.

The record being read is available in both the input record area and the
area defined by identifier.

* In a multi-volume file, if the end of a volume (tape reel or mass storage
unit) is detected during the execution of a READ statement, and the logical end
of the file has not been reached, the following occurs:

The standard ending label procedures are executed.

A volume switch is executed.

The standard beginning label procedures are executed.

The first data record of the new volume is made available.

2-196



15 DEC 81 CSCM 18-1-1

2.4.9.27 READ STATEMENT. (Cont.)

e When the last logical record in a file has been read, the next READ
attempted for that file produces an end-of-file condition.

Control is passed to the imperati ve-statement associated with the AT ENDphrase.

The contents of the input record area is now unpredictable.

Another READ cannot be executed for that file without an intervening
CLOSE statement followed by an OPEN statement for that file.

JSACSC GUIDELINES.

* The number of READ statements should be minimized; normally only one per
file is required. The technique to effect this is to code the READ as a separate
procedure and to PERFORM it whenever the READ operation is required.

e For a file with several types of records (multiple 01 record descriptions)
the type of record read should be determined immediately after the READ has been
accomplished. Remember that only one logical record at a time is available (not
one record of each type).

• After end-of-file has been encountered, the execution of statements that
refer to the area record of the file must be avoided, because no record is
available to refer to.

@ Never execute a READ statement for a file on which end-of-file has been
detected, unless it has been subsequently closed and reopened as input.

* The primary reason for using the READ INTO option of the READ statement
- is as follows:

Ease of debugging programing errors. It is far easier to determine which
record in a file is being processed when that record is to be found in the
WORKING-STORAGE of a program. Determining which record is the current one when
processing in the buffers of a blocked file requires an extreme amount of exper-
tise and is time-consuming.

Avoidance of system problems. The IBM OS MVT operating systzn takes away
the program's buffers immediately after the at-end condition has been detected
for any file. This forces the program to avoid all tests of data in the buffer
areas. Better programing practice is the READ ... INTO a WORKING-STORAGE area,
setting some condition in the area (such as moving HIGH-VALUES to the area) when
the end-of-file condition is detected. The programer's only alternative in a
situation where two files are being bounced together for comparison is to resort
to use of switches or separate blocks of code specifically for the after-at-end
conditions. Neither is normally desirable as a standard programing practice.

4 2-197

V

'i



CSCM 18-1-1 
15 Dec 81

2.4.9.28 RELEASE STATEMENT.

FUNCTION. The RELEASE statement causes the records named by record-name to

- be released "to the initial phase of a SORT operation.

FORMAT.

RELEASE record-name E FROM identifierj

SYNTAX RULES.

e Record-name must be the name of a logical record in the associated

sort-file description (SD).

a Record-name and identifier must not refer to the same storage area.

e A RELEASE statement must only be used within the range of 
an input proce-

dure associated with a SORT statement.

GENERAL RULES.

* The FROM option makes the RELEASE statement equivalent 
to the statement

MOVE identifier TO record-name, followed by a RELEASE 
statement.

* After the execution of the RELEASE statement, the logical record is no

longer available. However, if the FROM option is used, information stored 
in

the identifier is available.

2-198

. . .. |



15 DEC 81 CSCM 18-b-1

2.4.9.29 RETURN STATEMENT.

FUNCTION. The RETURN statement obtains individual records in sorted order

e The file-name must be the name given in the sort-file-description (SD)
entry that describes the records that are to be sorted.

e The identifier must be the name of a WORKING-STORAGE area or the name of
an output record area.

e A RETURN statement must only be used within the range of an output proce-
dure associated with a SORT statement for file-name.

@ The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The storage
area associated with identifier and thE record area associated with file-name
must not be the same storage area.

GENERAL RULES.

# When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of any
data items which lie beyond the range of the current data record are undefined
at the completion of the execution of the RETURN statement.

* The execution of the RETURN statement causes the next record, in +he
order specified by the keys listed in the SORT statement, to be made available
for processing in the record areas associated with the sort file.

*The INTO OPTION has the same effect as the MOVE statement for alpha-
numeric items. The implied MOVE does not occur if there is an AT END condition.
Any subscripting or indexing associated with identifier is evaluated after the
record has been returned and immediately before it is moved to the data item.

e When the INTO phrase is used, the data is availabale in both the input
record area and the data area associated with identifier.

* If no next logical record exists for the file at the time of the execution
of a RETURN statement, the AT END condition occurs.

* The imperative-statement in the AT END phrase specifies the action to be
taken when all the sorted records have been completed and have been obtained
from the sorting operati~n. The contents of the record areas associated with
the file when the AT END condition occurs are undefined. After the execution of
the imperative-statement in the AT END phrase, no RETURN statement may be exe-
cuted as part of the current output procedure.

2-199



CSCM 18-1-1 15 Dec 81

2.4.9.30 REWRITE STATEMENT.

FUNCTION. The REWRITE statement logically replaces a record existing in a
mass storage file.

FORMAT.

SREWRITE record-name £FOM idertifier2

t; INVALID KEY imperative-statement3

SYNTAX RULES.

* Record-name and identifier must not refer to the same storage area.

* Record-name is the name of a logical record in the FILE SECTION of the
DATA DIVISION and may be qualified.

e The INVALID KEY phrase must be specified in the REWRITE statement for
files for which an appropriate USE procedure is not specified.

* The INVALID KEY phrase must not be specified for a REWRITE statement
which references a file in sequential access mode.

* The INVALID KEY phrase must be specified in the REWRITE statement for
files in the random access mode for which an appropriate USE procedure is not
specified.

GENERAL RULES.

o The file associated with record-name must be a mass storage file and must
be open in the I-0 mode at the time this file is executed.

o The last input-output statement executed for the asssociated file prior
to the execution of the REWRITE statement must have been a successfully executed
READ statement. The MSCS logically replaces the record that was accessed by the
READ statement.

o The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being replaced.

o After the execution of the REWRITE statement, the logical record that was
rewritten is no longer available in the record area.

o The execution of a REWRITE statement with the FROM phrase is equivalent
to the execution of:

MOVE identifier TO record-name

2-200

nn* u l~ m nmi mmm ml i nllat . .. ..... . .



15 DEC 81 CSCM 18-1-1

2.4.9.30 REWRITE STATEMENT. (Cont.)

followed by the execution of the same REWRITE statement without the FROM phrase.
The contents of the record area prior to the execution of the implicit MOVE

* statement have no effect on the executicn of the REWRITE statement.

*The current record pointer is not affected by the execution of a REWRITE
statement.

* The execution of the REWRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated.

*The REWRITE statement must be used with caution since the orig-Inal record
is not available after its execution. The user must provide some form of backup
capability for files that are being rewritten.

*The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the prime
record key data item of the record to be replaced is not equal to the value of
the prime record key of the last record read from this file, or

b. The value contained in the prime record key data item does not equal
that of any record stored in the file.

* The updating operation does not take place and the data in the record
area is unaffected.

* For a file accessed in random access mode, the MSCS logically replaces
the record specified by the contents of the RELATIVE KEY data item associated
with the file. If the file does not contain the record specified by the key,
the INVALID KEY condition exists. The updating operation does not take place
and the data in the record area is unaffected.

e For a file in the sequential access mode, the record to be replaced is
specified by the value contained in the prime record key. When the REWRITE
statement is executed the value contained in the prime record key data item of
the record to be replaced must be equal to the value of the prime record key of
the last record read from this file.

USACSC GUIDELINES. None.

2-201



CSCM 18-1-1 
15 Dec 81

2.4.9.31 SEARCH STATEMENT.

FUNCTION. The SEARCH statement is used to search a table 
for an element

that-s'atisfTes a specified condition and to adjust the associated index-

name to indicate that table element. Refer to "Table Handling Feature" in

"Special Features" section.

2-202



15 DEC 81 CSCM 18-1-1

2.4.9.32 SET STATEMENT.

FUNCTION. The SET statement establishes reference points for table handling
operations by setting index-names to values associated with table elements. The
SET statement is used for initializing index-name values before transferring
values between index-names and other elementary data items. Refer to "Table
Handling Feature" in "Special Features" section.

2-20 3



CSCM 18-1-1 15 Dec 81

2.4.9.33 SORT STATEMENT.

FUNCTION. The SORT statement provides the information that is needed to
control the sorting operation. This statement directs the sorting operation to
ontain the records that are to be sorted from an INPUT PROCEDURE or the USING
file, to SORT the records by keys in either ASCENDING and/or DESCENDING order
and then to make the sorted records available to either an OUTPUT PROCEDURE or
to a GIVING FILE.

FORMAT.

ASCENDING
SORT file-name-1 ON DESCENDING,( KEY data-name-i C, data-name-2 I ...

DON E SCE IGJ KEY data-name-3 C, data-name-4 I ...
FfTHROUGHI

INPUT PROCEDURE IS section-name-i LTHR } section-name-2

L USING file-name-2

rOUTPUT PROCEDURE IS section-name-3 [{LT section-name-41

fIVING file-name-3

SYNTAX RULES.

* File-name-1 must be the name given on the sort-file description (SD)
entry in the Data Division. This entry describes the entry to be sorted.

* Section-name-i represents the name of an INPUT PROCEDURE. Section-name-3
represents the name of an OUTPUT PROCEDURE.

e File-name-2 and file-name-3 must be described in a file description
entry, not in a sort-file description entry, in the Data Division. The actual
size of the logical record(s) described for file-name-2 and file-name-3 must be
equal to the actual size of the logical record(s) described for file-name-i. If
the data descriptions of the elementary items that make up these records are not
identical, it is the programer's responsibility to describe the corresponding
records in such a manner so as to insure that all KEYS are physically located in
the same position and have the same data-format in every logical record of the
sort-file.

* Data-name-I, data-name-2, data-name-3, and data-name-4 are KEY data-names
and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-1.

b. KEY data-names may be qualified.

2-204



15 DEC 81 CSCM 18-1-1

2.4.9.33 SORT STATEMENT. (Cont.)

c. The data items identified by kEY data-names must not be variable
length items nor may they name group items which contain variable length data
items.

d. If file-name-1 has more than one record description, then the data
items identified by KEY data-names need be described in only one of the recnrd
descriptions.

e. None of the data items identified by KEY data-names can be described
by an entry which either contains an OCCURS clause or is subordinate to an entry
which contains an OCCURS clause.

* The words THRU and THROUGH are equivalent.

* SORT statements may appear anywhere except in the declaratives portion of
the Procedure Division or in an INPUT or OUTPUT PROCEDURE associated with a SORT
statement.

e No more than one file-name from a multiple file reel can appear in the
SORT statement.

* At least one ASCENDING or one DESCENDING clause must be specified.

* Keys must be listed from left to right in order of decreasing signifi-
cance.

e Either section-name-2 or section-name-4 is required if that procedure
terminates in a section other than the one in which it started.

GENERAL RULES.

* The ASCENDING and DFSCENDING options specify the sequence in which the
records are to be sorted based on the sort keys.

The ASCENDING option indicates that the sorting sequence is from the
lowest value of the key to the highest value.

The DESCENDING option indicates that the sorting sequence is from the
highest value of the key to the lowest value.

e The INPUT PROCEDURE option is used to indicate that the programer has
written an INPUT PROCEDURE to process records before they are sorted.

The INPUT PROCEDURE must consist of one or more sections written consecu-
tively which do not form a part of any OUTPUT PROCEDURE.

The INPUT PROCEDURE must include at least one RELEASE statement.

There are three restrictions on the procedural statements within an INPUT
PROCEDURE.

1. The INPUT PROCEDURE must not contain a SORT statement.

2-205

4 . -



CSCM 18-1-1 15 Dec 81

2.4.9.33 SORT STATEMENT. (Cont.)

2. The INPUT PROCEDURE must not contain any transfers of control to
points outside the INPUT PROCEDURE except for the CALL statement.

3. The remainder of the PROCEDURE DIVISION must not contain any trans-
fers of control to points inside the INPUT PROCEDURE.

Section-name-i is the name of the INPUT PROCEDURE; section-name-2 is the
name of the last section that contains the INPUT PROCEDURE.

At the end of the INPUT PROCEDURE, the compiler inserts a return mechanism
and then the records that have been released to file-name-1 are sorted.

* When the USING option is specified, al' the records in file-name-? are
transferred automatically to file-name-i. The actual size of the logical record
described for file-name-2 must be equal to the actual size of the logical record
described for file-name-1. It is the programer's responsibility to describe the
corresponding records in such a manner so as to cause an equal number of charac-
ter positions to be allocated for the corresponding records. File-name-2 must
not be open at the execution of the SORT. For this option, the compiler will
generate instructions to open, read, release, and close file-name-2 automati-
cally.

* The OUTPUT PROCEDURE is specified in order that control be passed to a
procedure after all the records are sorted.

The OUTPUT PROCEDURE must consist of sections written consecutively which

do not form a part of any INPUT PROCEDURE.

The OUTPUT PROCEDURE must include at least one RETURN statement.

The same three restrictions that apply for the INPUT PROCEDURE also apply
for the OUTPUT PROCEDURE.

Section-name-3 is the name of the OUTPUT PROCEDURE; section-name-4 is the
name of the last section that contains the OUTPUT PROCEDURE.

At the end of the OUTPUT PROCEDURE, the return mechanism provides for
termination of the SORT and control then goes to the next sentence following the
SORT statement.

e When the GIVING option is specified, all sorted records in file-name-1
are automatically transferred to file-name-3. The actual size of the logical
record described for file-name-3 must be equal to the actual size of the logical
record described for file-name-i. It is the programer's responsibility to
describe the corresponding records in such a manner so as to cause an equal
number of character positions to be allocated for the corresponding records.
File-name-3 must not be open at the execution of the SORT. For this option, the
compiler will generate instructions to open, return, write and close file-name-3
automatically.

File-name-3 must be a standard sequential file.

2-206

p -I



15 I;EC 81 CSCM 18-1-1

2.4.9.33 SORT STATEMENT. (Cont.)

* The areas described by data-names following key must not overlap.

* Output order of records with keys of equal value is unspecified.

* Segmentation can be used in programs containing SORT statements subject
to the following restrictions:

If a SORT statement appears in a section in the permanent resident
segment, any INPUT PROCEDURE or OUTPUT PROCEDURE specified must appear totally
within non-independent segments or wholly within a single segment.

If a SORT statement appears in an overlayable segment, any INPUT PROCEDURE
or OUTPUT PROCEDURE specified must appear totally within the permanent resident
segment or wholly within the same overlayable segment.

*Nested SORTs are not allowed.

VENDORS' GUIDELINES.

e IBM.

e A character in the EBCDIC collating sequence (used for alphabetic,
alphanumeric, etc., data items) is interpreted as not being signed. For numeric
data items, characters are collated algebraically (as being signed).

e A maximum of 12 keys may be specified.

o The total length of all the keys must not be greater than 256 bytes.

* All key fields must be located within the first 4,OP2 bytes of a logical
record.

*An IBM extension to ANSI COBOL allows GO TO and PERFORM statements in the
remainder of the PROCEDURE DIVISION to refer to procedure-names within the input
or output procedure.

o RESERVED WORD DATA ITEMS. For the IBM-360/370, four reserved word data
items are supplied by thq comiler for use in controlling the Sort operation.
These data items must not be defined by the programer in the DATA DIVISION.

The first three items may have control information transferred to them
at object time if the user specifies them as the receiving fields of statements
such as MOVE. The information must be passed before the SORT statement is exe-
cuted. The items are initialized to zero by the compiler, but are not reset
after a Sort procedure is executed.

o SORT-FILE-SIZE (IBM Extension) is the name of a binary data item whose
PICTURE is S9(8). It is used for the estimated number of records in the file to

2-207



CSCM 18-1-1 15 Dec 81

2.4.9.33 SORT STATEMENT. (Cont.)

be sorted. If SORT-FILE-SIZE is omitted, it is assumed that the file contains
the maximum number of records that can be processed with the available core size
and number of work units. In order to make more efficient use of both main and
intermediate storage, the SORT-FILE-SIHE special register should be used whenever
possible. It is realized that the exact number of records in a file may not be
known, however, an estimate of the file size should be moved to this register.
If the estimate exceeds the maximum, the estimate will be ignored.

EXAMPLE. An example of using the SORT-FILE-SIZE register is as follows:

1. If the number of records in your file is 1,000, you just simply state:

t . MOVE 1,000to SORT-FILE-SIZE.

2. This statement causes the value 1,00 to be placed in a special
register that is a binary data item with a PICTURE of S9(8).

9 SORT-CORE-SIZE (IBM Extension) is the name of a binary data item whose
PICTURE is S9(8). It is used to specify the number of character positions of
core storage available to the sorting operation if it is different from the core
size that the Sort would normally use.

* SORT-MODE-SIZE (IBM Extension) is the name of a binary data item whose
PICTURE is S9(5). It is used for variable-length records. If the length of
most records in the file is significantly different from the average record
length performance is improved by specifying the most frequently occurrig
record length. If SORT-MODE-SIZE is omitted, the average length is assumed.
For example, if records vary in length from 20 to 100 bytes, but most records
are 30 bytes long, the value 30 should be moved to SORT-MODE-SIZE. The maximum
record length handled by the Sort is 32,000 characters.

2-208



15 DEC 81 CSCM 18-1-I

2.4.9.33 SORT STATEMENT. (Cont.)

The following, FIGURE ?-3f, i; ian oxmnple of tho SORT slitement and oiho,
basic statements that are used to ma;,( up the SORT facility, (OS).

000025 IDENTIFICATION DIVISION.
000050 PROGRAM-ID. SAMPSORT.
000075

" 00010

000125
000150 ENVIRONMENT DIVISION.
000175 CONFIGURATION SECTION.
000200 SOURCE-COMPUTER. IBM-360-G40.
000225 OBJECT-COMPUTER. IBM-360-G40.
000250 INPUT-OUTPUT SECTION.
000275 FILE-CONTROL.
000300 SELECT INFD ASSIGN TO UT-S-INFILE.
000325 SELECT OUTED ASSIGN TO UT-S-OUTFILE.
000350 SELECT SORTSD ASSIGN TO UT-S-SORTFILE.
000375 DATA DIVISION.
000400 FILE SECTION.
000425 FD INFD
000450 LABEL RECORDS ARE STANDARD
000475 RECORDING MODE IS F
000480 BLOCK CONTAINS 0 RECORDS
000500 RECORD CONTAINS 80 CHARACTERS
000525 DATA RECORD IS INREC.
000550 01 INREC PIC X(80).
000575 FD OJTFD
000600 LABEL RECORDS ARE STANDARD
000625 RECORDING MODE IS F
000640 BLOCK CONTAINS 0 RECORDS
000650 DATA RECORD IS OUTREC.
000700 01 OUTREC.
000725 05 CARR-CON PIC X.
000750 05 REC PIC X(80).
000775 SD SORTSD
000800 LABEL RECORDS ARE STANDARD
000825 RECORDING MODE IS F

FIGURE 2-30

?-209



CSCM 18-1-1 15 Dec 81

2.4.9.33 SORT STATEMENT. (Cont.)

000850 RECORD CONTAINS So CHARACTERS
000875 DATA RECORD IS SORTREC.
000900 01 SORTREC.
000925 05 KEY-i PIC X( ).
000950 05 FILLER PIC X(20).

000975 05 KEY-2 PIC X(20).
000905 05 FILLER PIC X(30).
001025 PROCEDURE DIVISION.
001050 0010-SORTSEC.
001075 OPEN INPUT INFD.
001100 OPEN OUTPUT OUTFD.
001125 SORT SORTSD ON ASCENDING KEY KEY-i KEY-2
001150 INPUT PROCEDURE IS INPROC SECTION
001175 OUTPUT PROCEDURE IS OUTPROC SECTION.
001180 IF SORT-RETURN IS NOT EQUAL TO 0
001185 GO TO 0080-ABEND.
001225 0020-INPROC SECTION.
001250 0030-INSEC.
001275 READ INFD AT END GO TO 0030-INPROCEND.

S001300 MOVE INREC TO SORTREC.
001325 RELEASE SORTREC.
001350 GO TO INSEC.
001375 0030-INPROCEND.
001380 CLOSE INFD.
001390 4-EXIT.
00140 EXIT.
001425 OUTPROC SECTION.
001450 0050-OUTSEC.
001475 RETURN SORTSD AT END GO TO 0060-CLOSE-FILE.
001500 MOVE SORTREC TO REC.
001525 MOVE SPACE TO CARR-CON.
001550 WRITE OUTREC.
001575 GO TO OUTSEC.
001600 0060-CLOSE-FILE.
001625 CLOSE OUTFD.
001630 0070-EXIT.
001675 EXIT.
001700 0080-ABEND.
001725 DISPLAY 'ABNORMAL END OF SORT'.

(ABNORMAL TERMINATION PROCEDURE)

FIGURE 2-30 (Cont.)

2-210



15 DEC 81 CSCM 18-1-1

2.4.9.33 SORT STATEMENT. (Cont.)

USACSC GUIDELINES.

9 Specify the minimum of primary and intermediate storage nooded to 0\0-
cute the sort successfully.

e Use the ANSI COBOL SORT feature rather than tho system utilitY somi
program since it provides:

cto.Flexibility in the allocation of storage, record and file size specifi-

The ability to process records before and/or after the sort.

Protection from user errors in handling JCL job stream.

The benefits of standard COBOL documentation.

e The sort execution speed can be increased if records and files are
carefully described, considering the following:

In formatting SORT records, specify as sort keys only the minimum
amount of data necessary. If you specify more than one sort key field, try to
make all keys contiguous and ordered from major key to minor key. If ke *y
fields are contiguous, group them under one group item and use the group iter
as the sort key. These actions will improve sort execution speed.

The definition of sort keys has certain restrictions. KEYS must be
physically located in the same relative position of ev, ry logical record in
the sort file. KEYS must not contain OCCURS clauses, no~r ipine,-ir after a
variable portion of a record.

When blocking input and output files, block as many records as
possible. Low blocking factors are the greatest single causes of poor execu-
tion speed.

Sort records should be as small as possible (the physical block must
be 18 bytes or longer to avoid noise record errors). Use of an input proce-
dure to extract unnecessary fields before each record is released to the sort
should be employed whenever feasible.

In handling large files, the limiting factor is not primary storage or
record size, but the amount of intermediate storage available. If a large
file is to be sorted, it is best to divide it into several sorts and merge
them together later. This reduces the possibility of abnormal program ter-
mination due to inadequate intermediate storage.

To better handle intermediate storage allocations, anticipate the mini-
mum storage requirements and specify the amount to be used for sorting.

On IBM equipment, SORT-RETURN must be checked and if it is not equal to zero,
abnormal termination procedures observed.

2-2 11



CSCM 18-1-1 15 Dec 81

2.4.9.33 SORT STATEMENT. (Cont.)

Input and output procedures must be terminated with an EXIT statement.

The IBM extension to ANSI COBOL allowing GO TO and PERFORM statements in
the remainder of the PROCEDURE DIVISION to refer to procedure names within the
input or output procedure will not be used.

Use of the DISPLAY statement within a SORT INPUT or OUTPUT procedure
should be used with extreme care. The SORT INPUT procedure uses a WRITE
BEFORE ADVANCING which results in an overprint on the SYSOUT file if the
program has previously DISPLAY'ed a message.

NOTE: For additional information see paragraph 2.5.3, SORT FEATURE.

2-212



15 DEC 81 CSCM 18-1-1

2.4.9.34 START STATEMENT.

FUNCTION. The START statement provides a basis for logical positioning within
an indexed or relative file, for subsequent sequential retrieval of records.

FORMAT.

START file-namne INVALID KEY imperative-statement

SYNTAX RULES.

* File-name must be the name of an indexed or relative file.

* File-name must be the name of a file with sequential or dynamic access.

e File-name must not be the name of a sort or merge file.

* File-name must be defined by a file description entry in the DATA

DIVISION.

GENERAL RULES.

*Normally, an indexed file in the sequential mode is processed sequentially
from the first record to the last or until the file is closed. If processing is
to begin at other than the first record, a START statement must be executed after
the OPEN but before the first READ statement. Processing will then continue
sequentially until a START statement or a CLOSE statement is executed or until
the end-of-file is reached.

o If processing is to begin at the first record, a START statement is not
required before the first READ.

* The contents of the NOMINAL KEY are used as the key value of the record
at which processing is to begin. In this instance, this key value must be
placed in the data-name specified by the NOMINAL KEY clause for this file before
the START statement is issued.

o When the INVALID KEY option is specified, control is passed to the
imperative-statement following INVALID KEY when the contents of the NOMINAL KEY

fedare inva 1 . The key is considered invalid when the record is not found
in the file.

USACSC GUIDELINES. None.

2-21 3



CSCM 18-1-1 1 ) nec 81

2.4.9.35 STOP STATEMENT.

FUNCTION. The STOP statement causes a permanent or temporary suspension of
-the execution of the object program. Data may be displayed upon the CONSOLE but

the use of SYSLST or SYSOUT is preferred.

FORMAT.

STOP (U

SYNTAX RULES.

* Both the STOP RUN and the STOP literal statement must be followed by a
period.

* The literal may be numeric or non-numeric or may be a figurative constant,
except ALL.

* If the literal is numeric, it must be an unsigned integer.

GENERAL RULES.

*When the STOP RUN statement is executed, processing of the problem program
is immediately terminated and control is returned to the operating system.

*The STOP RUN statement must appear as the only, or the last, imperative
statement in a series of statements within a paragraph as no further processing
will occur after its execution.

e When the STOP literal statement is executed, the information in the
literal portion of the statement is displayed on the system logical output
device. The problem program is then placed in a temporary suspension of execu-
tion mode, and may be restarted by the operator as dictated by system specifica-
tions.

o The STOP literal statement may be placed at any point within the logical
flow of a problem program. Once the program is restarted by the operator,
execution will continue with the next sequential instructions.

VENDORS' GUIDELINES.

e IBM.

The statement STOP RUN should not be used in a subprogram. In this case,
control will not return to the main program, but will go directly to the oper-
ating system and terminate the entire job.

2-214



15 DEC 81 CSCM 18-1-1

2.4.9.35 STOP STATEMENT (Cont.)

The contents of the literal portion of the STOP literal statement are
displayed on the system console, then the program goes into a temporary halt
condition. The operator restarts the problem program by keying in an end-of-
block indication for that program (EOB key). As no other information is entered
by the operator, this is the most efficient and least error-prone method of
effecting a temporary halt in a user program control.

USACSC GUIDELINES.

*There should be only one STOP RUN statement in a program, and it should
be the last entry in the program's logical flow. Ideally, it should be coded as
a single sentence paragraph. The program would then either fall through into it
in the case of a completely normal processing run or GO TO it in the case of an
othEr than normal processing run. If there are certain tasks that must always
be executed before the RUN STOP can be executed, those tasks may also be includec
in the same paragraph, placed before the STOP RUN statement. An example is a
file CLOSE statement that must always be executed. It should be coded only once,
and the logical place for it to be placed is in the paragraph with the STOP RUN.

9 All open files must be closed before the STOP RUN statement is executed.
OS will close all open files itself, but does so in a very inefficient fashion,
after much time delay. DOS will not close files left open, causing probable
error conditions in later processing of those files.

* Due to its greater efficiency and lesser chance for error, the STOP
literal statement should always be used if possible in preference to the combi-
nation of a DISPLAY ... UPON CONSOLE followed by ACCEPT ... FROM CONSOLE to
effect a program-controlled temporary halt in processing. Program halts of

- either kind, though, should be avoided whenever another method can be employed
to achieve the same effect.

2-2 15

ai



CSCM 18-1-1 15 Dec 81

2.4.9.36 SUBTRACT STATEMENT.

FUNCTION. The SUBTRACT statement i. used to subtract one, or the sum of two
or more, numeric data items from one or more items, and set the values of one or
more items equal to the results.

FORMAT.
FORMAT 1.

SUBTRACT fidentifier-li identifier-2 .

Iliteral-I J.literal-2 J""

FROM identifier-m f ROUNDED ]

E; ON SIZE ERROR imperative-statement]

FORMAT 2.

SUBTRACT identifier-I[ identifier- ..

literal-l fL literal-2
fidentifi er-mn1

FROM ( i t er m  GIVING identifier-n ROUNDED

[; ON SIZE ERROR imperative-statement]

SYNTAX RULES.

e Each identifier must refer to an elementary numeric data item except the
object of the GIVING option (identifier-n) which may be a numeric-edited data
item.

* Each literal must be a numeric literal.

9 The maximum size of each operand is 18 digits. The maximum size of the
result, after decimal alignment, is 18 digits.

GENERAL RULES.

In FORMAT 1, all identifiers or literals preceding the word FROM are
added together, and this total is subtracted from identifier-m, (identifier-n,
etc.). The result of the subtraction is stored as the new value of identifier-m
(Identifier-n, etc.).

2-216



15 DEC 81 CSCM 18-1-1

2.4.9.36 SUBTRACT STATEMENT. (Cont.)

e In FORMAT 2, all identifiers or literals precedinq the word FROM are
added together, and this total is subtracted from identifier-m. The result of
the subtraction is 'stored in the object of the GIVING option, identifier-n.

@ The GIVING, ROUNDED, and SIZE ERROR options are explained in Arithmetic
Operations - PROCEDURE DIVISION.

VENDORS' GUIDELINES.

* IBM.

In FORMAT 2, only one operand is permitted as the object of the GIVT 1
clause.

USACSC GUIDELINES.

* For efficient execution and ease of maintenance, SUBTRACT statements
should be as simple as possitle.

Do not use ON SIZE ERROR unnecessarily. This option increases executi,1
time and takes more space whether a size error exists or not.

Do not use ROUNDED unnecessarily, for the same reasons as above. To ADD
5 and then MOVE to drop insignificant digits is more efficient.

Avoid using more than three operands before the word FROM.

e In regard to the data items specified as operands in arithmetic state-
ments:

When they are all defined with t!e same USAGE, the relatively expensive
operation of conversion is avoided. This does not apply to display items in the
IBM-360/370. In these computers, display items must be converted to packed
decimal before they can be used arithmetically.

When, for ADD and SUBTRACT, they are all defined with the same number of
decimal places, the relatively expensive operation of scaling is avoided.

* In regard to a result item specified in the GIVING clause:

When it is defined with sufficient integer places to provide for the
maximum integer value possible, the need for the ON SIZE ERROR clause is elimi-
nated.

When it is defined with ,, same ,umber of decimal places as the calcu-
lated result, the relatively expensive operation of truncation, rounding, or
scaling (whichever applies in the particular case) is avoided.

2-217

.. ...... .ii llil l~i -. mm ml im l - -- .. ... . ..



CSCM 18-1-1 15 Dec 81

2.4.9.36 SUBTRACT STATEMENT. (Cont.)

When it is defined with the same USAGE as the calculated result, a con-
version operation is avoided.

For the IBM-360/370, when it is defined as signed, the operation of
removing the sign (which is generated automatically by the hardware) is avoided.

01

2-218



15 DEC 81 CSCM 18-1-1

2.4.9.37 USE STATEMENT.

FUNCTION.

9 The USE statement is part of the DECLARATIVE Section which provides a
method of including procedures that are invoked nonsynchronously; that is, they
are executed not as part of the sequential coding but rather when a condition
occurs which cannot normally be tested by the programer.

* The USE sentence specifies the procedure to be followed if an input/
output error occurs during file process;ing.

FORMAT.

file-name-1 Cfile-name-]
INPUT

USE AFTER STANDARD ERROR PROCEDURE ON D=T~

SYNTAX RULES.

e A USE statement, when present, must immediately follow a section header
in the DECLARATIVES Section and must be followed by a period followed by a
space. The remainder of the section must consist of zero, one or more proce-
dural paragraphs that define the procedures to be used.

e The USE statement itself is never executed; it merely defines the condi-
tions calling for the execution of the USE procedure. Recursive USE procedures
are prohibited.

* No file-name may reference a sort or merge file.

GENERAL RULES.

* The designated procedures are executed by the input-output system at the
appropriate time after completing the standard input-output error routine, or
upon recognition of the INVALID KEY or AT END conditions, when the INVALID KEY
phrase or AT END phrase, respectively, has not been specified in the input-output
statement.

For relative or indexed files the INVALID KEY phrase is required only
when no applicable USE AFTER ERROR procedure is specified.

9 After execution of a USE procedure, control is returned to the invoking
routine.

e Within a USE procedure, there must not be any reference to any non-
declarative procedures. Conversely, in the non-declarative portion there must
be no reference to procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE statement having the proce-
dures associated with such a USE statement.

2-219



CSCM 18-1-1 15 Dec 81

2.4.9.37 USE STATEMENT. (Cont.)

- * In the statements of the out-of-line procedures, the execution of a
PERFORM statement affects that partict-lar processing cycle only; that is, any
6ther asynchronous processing cycle in -he out-of-line set of procedural state-
ments is not affected by another concurrent processing cycle in which a PERFORM
statement is executed.

USACSC GUIDELINES.

9 The programer may wish to consider using the USE statement as an assist
to debugging in printing subtotals or conditions in the program processing at
the point of ABEND.

NOTE: See paragraph 2.4.9.10 for USE FOR DEBUGGING STATEMENT.

2-220



15 DEC 81 CSCM 18-1-1

2.4.9.38 WRITE STATEMENT.

FUNCTION. The WRITE statement re:eases a logical record for a standard
- sequential output file or input-output file. It can also be used for vertical

positioning of lines within a logical page.

FORMAT.
FORMAT 1.

WRITE record-name [FROM identifier-1i

[BEFORE} f {nteger LINES
A ADVANCING mnemonic-name

PAGE

FORMAT 2.

WRITE record-name E FROM identifier-l

I- INVALID KEY imperative-sLatement -

SYNTAX RULES.

* Record-name and identifier-1 must not reference the same storage area.

9 The record-name is the name of a logical record in the FILE SECTION of
the DATA DIVISION and may be qualified.

e Identifier-2 must be the name of an elementary integer data item.

9 Integer or the value of identifier-2 may be zero.

e FORMAT 2 cannot be used for sequential files. See USE Statement.

GENERAL RULES.

e The associated file must be open in the OUTPUT or 1-0 mode at the time of
the execution of this statement.

e After the WRITE statement is executed, the logical record released is no
longer available in the record area unless the execution of the WRITE statement
is unsuccessful due to an INVALID KEY condition or due to a boundary violation.

* The results of the execution of the WRITE statement with the FROM phrase
is equivalent to the execution of:

2-221

\ - .9



CSCM 18-1-1 15 Dec 81

2.4.9.38 WRITE STATEMENT. (Cont.)

a. The statement:

MOVE identifier-1 TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the eAecution of this WRITE statement.

After execution of the WRITE sta-ement is complete, the informatior in
the area referenced by identifier-i is dvailable, even though the information
in the area referenced by record-name may not be.

e The current record pointer is unaffected by the execution of a WRITE
statement.

* The execution of the WRITE statement causes the value of the FILE STATUS
data item, if any, associated with the file to be updated.

s The maximum record size for a file is established at the time the file is
created and must not subsequently be changed.

e The number of character positions on a mass storage device required to
store a logical record in a file may or may not be equal to the number of char-
acter positions defined by the logical description of that record in the program.

* The execution of the WRITE statement releases a logical record to the
operating system.

* The ADVANCING phrase allows control of the vertical positioning of each
line on a representation of a printed page. If the ADVANCING phrase is not
used, automatic advancing will be provided by the implementor to act as if the
user had specified AFTER ADVANCING 1 LINE. If the ADVANCING phrase is used,
advancing is provided as follows:

a. If integer is specified, the representation of the printed page is
advanced the number of lines equal to the value of integer.

b. If the BEFORE ADVANCING phrase is used, the line is presented before
the representation of the printed page is advanced according to rule a above.

c. If the AFTER ADVANCING phrase is used, the line is presented after
the representation of the printed page is advanced according tc rule a above.

d. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is repositioned to the
next logical page. If the record to be written is associated with a file whose
file description entry does not contain a LINAGE clause, the repositioning to
the next logical page is accomplished in accordance with an implementor-defined

2-222

* \ ' -



15 DEC 81 CSCM 18-1-1

2.4.9.38 WRITE STATEMENT. (Cont.)

technique. If page has no meaning in conjunction with a specific device, then
advancing will be provided by the implementor to act as if the user had speci-

-* fied BEFORE or AFTER (depending on the phrase used) ADVANCING 1 LINE.

*When an attempt is made to write beyond the externally defined boundaries
of a sequential file, an exception condition exists and the contents of the
record area are unaffected. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated file
is set to a value indicating a boundary~ violation.

b. If a USE AFTER STANDARD EXCEPT.:ON declarative is explicitly or implicitly
specified for the file, that declarative procedure will then be executed.

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly or
implicitly specified for the file, the result is undefined.

* If an end of volume (tape reel or disk unit) occurs during a WRITE state-
ment for that file, the following occurs:

The standard ending label procedure is executed.

A volume switch is executed.

The standard beginning volume procedure is executed.

9 If the ADVANCING clause is omitted, the default value is BEFORE.

* Execution of the WRITE statement causes the contents of the record area
to be released. The MSCS utilizes the content of the record keys in such a way
that subsequent access of the record key may be made based upon any of those
specified record keys.

9 The value of the prime record key must be unique within the records in
the file.

* The data item specified as the prime record key must be set by the program
to the desired value prior to the execution of the WRITE statement.

e When a file is opened in tt iutput mode, records may be placed into the
file by one of the following:

a. If the access mode is sequential, the WRITE statement will cause a
record to be released to the MSCS. The first record will have a relative record
number of one (1) and subsequent records released will have relative record num-
bers of 2, 3, 4,.......If the RELATIVE KEY data item has been specified in the
file control entry for the associated file, the relative record number of the
record just released will be placed into the RELATIVE KEY data item by the MSCS
during execution of the WRITE statement.

2-22 3



CSCM 18-1-1 lb Dec 81

2.4.9.38 WRITE STATEMENT. (Cont.)

b. If the access mode is random or dynamic, prior to the execution of
the WRITE statement the value of the RELAlIVE KEY data item must be initialized
in the program with the relative record n~umber to be associated with the record
in the record area. That re :ord is then released to the MSCS by exection of the
WRITE statement.

a When a file is open in the 1-0 mode and the access mode is random or
dynamic, records are to be inserted in the associated file. The value of the
RELATIVE KEY data item must be initializec by the program with the relative
record number to be associated with the record in the record area. Execution of
a WRJE statement then causes the contents of the record area to be released to
the MSCS.

*The INVALID KEY condition exists under the following circumstances:

a. When sequential access mode is specified for a file opened in the
output mode, and the value of the prime record key is not greater than the value
of the prime record key of the previous record, or

b. When the file is opened in the output or 1-0 mode, and the value of
the prime record key is equal to the value of a prime record key of a record
already existing in the file, or

c. When the access mode is random or dynamic, and the RELATIVE KEY data
item specifies a record which already exists in the file, or

d. When an attempt is made to write beyond the externally defined bound-
aries of the file.

* When the INVALID KEY condition is recognized the execution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected and
the FILE STATUS data item, if any, associated with file-name of the associated
file is set to a value indicating the cause of the condition.

VENDORS' GUIDELINES.

*IBM.

The integer must be a positive integer of less than 100.

In the ADVANCING option, the first character of each record in a file
must be reserved by the user for the control character. The compiler generates
instructions to insert the appropriate carriage control character as the first
character in the record. It is the user's responsibility to see that the car-
riage control tape is correctly punched.

Certain statements (DISPLAY, EXHIBIT, WRITE AFTER ADVANCING) cause the
printer to space before printing. A simple WRITE or a WRITE BEFORE ADVANCING
causes the printer to space after printing. Mixing these statements may cause
overprinting.

The BEFORE option is significantly more efficient (in terms of execution
time) than the AFTER option.

2-224



15 DEC 81 CSCM 18-1-1

2.4.9.38 WRITE STATEMENT. (Cont.)

USACSC GUIDELINES.

*The number of WRITE statements should be minimized; normally one per
record type is adequate. The technique tc effect this is to code each WRITE in
a separate procedure and PERFORM it whenever the WRITE operation is required.

* When a file contains records of several types it is often best to define
the records in WORKING-STORAGE, build then. there and move them to the record
area just prior to the WRITE. The 01s following the FD would then be effectively
"dunmmy" record descriptions required only to indicate the various record lengths
that can be written. This technique avoids the problem of a record not being
available in the output area after a WRITE has been executed. In this way, data
commnon to each record can be saved for use in more than one record without having
to move it separately to the record each time.

2-22 5



CSCM 18-1-1 15 Dec 81

2.5 SPECIAL FEATURES.

2.5.1 STRUCTURED PROGRAMING STATEMENTS - MetaCOBOL Macro Facility.

To enhance the COBOL language and facilitate the implementation 
of structured

programming, additional statements are afailable through MetaCOBOL. They are

described below.

2-226

; I



15 DEC 81 CSCM 18-1-1

2.5.1.1 DO STATEMENT.

FUNCTION. The DO Statement causes the execution of the module specified by
procedure-name.

FORMAT.

DO procedure-nalie [description i

SYNTAX RULES.

* The procedure-name in the DO statement should match the procedure-name
specified in'the Identification Section of another module.

e The description, if present, serves as documentation commentary only,
The description should be brief. For example:

DO READ-MASTER (ACQUIRE NEXT MASTER)

* "READ-MASTER" is the name of another module. The function of that module
is to "ACQUIRE NEXT MASTER" record.

GENERAL RULES.

For any DO where the procedure-name does not match a named Identification
Section, dummy paragraphs will 5e generated at the end of the program to make it
compilable and executable.

USACSC GUIDELINES. None.

2-227

. . . i l - '.. . . . . . -- °- . ..



CSCM 18-1-1 15 Dec 81

2.5.1.2 DO WHILE STATEMENT.

FUNCTION. DO WHILE causes execution of the statement repeatedly in a loop
- as long as the condition is true.

FORMAT.

DO WHILE condition

stater2it

ENDDO

SYNTAX RULES.

e The condition can be any valid COBOL conditional test, Incluaing zoimpounG
relationships connected by AND or OR. The statement can be one or more COBOL
imperative statements or special structurr - programing statements, including DO
WHILE.

For example:

DO WHILE BI-VALID-FLAG NOT = SPACE
DO READ-TRANS (ACQUIRE NEXT TRANS)
IF NOT M-EOF

DO TRANS-VALIDITY-CHECK (CHECK SEQUENCE)
ENDIF

ENDDO

GENERAL RULES.

* The ENDDO signals the end of the list of statements forming toe loop
represented by statement for the previous unterminated DO WHILE.

True

condiion statement

False

2-228



'.5 DEC 81 CSCM 18-1-1

2.5.1.2 DO WHILE STATEMENT. (Cont.)

e If 81-VALID-FLAG is non-blank, the DO and IF are executed. This process
is repeated until B1-VALID-FLAG is blank, presumably as a -esult of executions
of module READ-TRANS. The processing continues at the next statement after
ENDDO.

USACSC GUIDELINES. None.

22



CSCM 18-1-1 1' Ih,( o

2.5.1.3 IF STATEMENT.

FUNCTION. This IF statement is simi'ar to a COBOL IF except that it is ter-
minate y NDIF and not a period.

FORMAT.

FO M T 
IF condition

statement-1 ...

ELSE statement-2 ..
=1NF

SYNTAX RULES. The ENDIF terminates the previous unterminazea cry.

Sstatement-2

The condition can be any valid COBOL conditional test, including cyomDnd con-
ditionals using AND or OR. Both statement-1 and statement-2 can be one or more
COBOL imperative statements or special structured programing statements,
including IF.

Statement-1 is executed if the condition is true, and statement-2 is executed f

the condition is not true.

For example:

IF M-FLAG = 'S'
MOVE M-SAVE TO W-MASTER

EL SE
PERFORM READ-MASTER (ACQUIRE NEXT MASTER)

ENDIF

2-230



15 DEC 81 CSCM IB-1-1

2.5.1.3 IF STATEMENT. (Cont.)

GENERAL RULES. Elither the MOVE or PLRFORM is executed, depending on) whe(the(r
M-FLAG contafns an IS'.

USACSC GUIDELINES. None.



Clacm 18-1-1 15 Dec 81

2.5.1.4 DO UNTIL STAIZMENT.

FUNCTION. The DO UNTIL statement ci:cj'es execution of one or more imperative
statements over again and again until ,' soecified condition is met.

-- FORMAT.

DO UNTIL condition
statement-1

ENDDO

SYNTAX RULES.

-he condition can be any valid COBOL conditiona. test, includinq co;:;pcunC
conditionals connected by AND or OR. Statement-i can be one or more COBOL
imperative statements or special structured programming statements includinc DO
UNTIL.

GENERAL RULES.

9 DO UNTIL always causes execution of statement-I and then causes execution
of statement-1 repeatedly in a loop as long as the condition is false. The
ENDDO signals the end of the list of statements forming the loop representec
by statement-1 and statement-2 for the previous unterminated LOOP.

true

stoatement- 1 on

__ false

e For example:

DO UNTIL TRANS-KEY IS GREATER THAN T-OLD-KEY
PERFORM NEXT-TRANS

ENDDO

The module NEXT-TRANS will be executed and then if TRANS-KEY is greater than
T-OLD-KEY the construct will be exited otherwise the processing returns to per-
form the moaule NEXT-TRANS again.

USACSC GUIDELINES. None.

2-232



15 DEC 81 CSCM 18-1-1

2.5.1.5 CASE STATEMENT.

FUNCTION. The CASE statement causes control to be passed to one or more

imperaftve statements based on the value of an integer variable.

FORMAT.

CASENTRY identifier

CASE condition-1 (or condition ...)
statement-1

CASE condition-2
L statement-2

p

CASE condition-n~statement-n

ELSECASE statement-n+1

ENDCASE

SYNTAX RULES.

* The identifier is a field whose value is to be checked against n literals

and/or fields for an equal condition.

e Any statement can be one or more COBOL imperative statements or special

structured programming statements, including up to 9 nested CASE statements.

GENERAL RULES.

* The CASE statement is similar to the IF structured programming statement

except that it provides an n-way decision instead of a binary decision.

2-233

-------------------------------------- ~ ---- -I



CSCM 18-1-1 15 Dec 81

2.5.1.5 CASE STATEMENT. (Cont.)

* The CASE statement for structured COBOL uses the GO TO ... DEPENDING ON
statement. This verb permits the programer to select one of a set of procedures
depending upon the value of an integer whose range is from I to the number of
procedure names listed in the statement. For any integer outside these limits
the GO TO statement is ignored and cortrol passes to the statement which follows
it.

* Statement-n is executed if the corresponding condition-n is true.

For example:

CASENTRY TRANSACTION-CODE
CASE 'A'

*DO ADD-ROUTINE (PROCESS ADD TRANSACTION)

CASE 'C'

DO CHANGE-ROUTINE (PROCESS CHANGE TRANSACTION)
CASE '0'

DO DELETE-ROUTINE (PROCESS DELETE TRANSACTION)
ELSECASE DO ERROR-T-ROUTINE (TRANSA:TION CODE ERROR)
ENOCASE

e The field TRANSACTION-CODE can contain three valid values, each of which
specifies further processing. Any other value in this field is an error.

0 Case 'A' could as well have been 'A' or 'B' or 'Z' should more than one
case require the same processing.

s The literal may be numeric or any legal length alphabetic literal.

s The use of variable names is prohibited from use as this violates the
"spirit" of structured programming in that such a use does not lend itself to
code which is easily understood and is not likely to be a part of an eventual
COBOL version.

2-234

. . . .....



15 DEC 81 CSCM 18-1-1

2.5.2 COBOL SEGMENTATION FACILITY. The COBOL segmentation facility provides
a means by which the user may communicate with the compiler to specify object
program overlay requirements. The segmentation feature permits segmentation of
procedures only. Sections of a program are resident or overlayable in core
according to user-specified section numbers. In this way, a large program can
be executed in a defined area of core storage by limiting the number of segments
that are in core storage at any one time.

2.5.2.1 Organization of Segmentation Facility. When segmentation is used, the
entire PROCEDURE DIVISION must be writteF1Tsections. Each section must be
classified as belonging either to a fixed portion or to one of the independent
segments of the object program. Segmentation in no way affects the need for
qualification of procedure-names to ensure uniqueness.

e The fixed portion is defined as that part of the object program which is
logically treated as ifit were always in memory. This portion of the program
is composed of two types of segments: fixed permanent segments and fixed
overlayable segments.

A fixed permanent segment is a segment in the fixed portion which cannot
be overlaid by any other part oT the program. These segments must be available
for reference at all times.

A fixed overlayable segment is a segment in the fixed portion which,
although logically treated as if it were always in storage, can be overlaid (if
necessary) by another segment to optimize storage utilization. Such a segment,
if called for by the program, is always made available in the state it was when
it was last used. These segments are generally less frequently used than the
fixed permanent segments.

* The independent segment portion is made up of independent segments. An
independent segment is a part of the chject program which can overlay, or be
overlaid by, either a fixed overlayable segment or another independent segment.
These segments are not as frequently used in the program logic as the fixed
portion segments. An independent segment is always considered to be in its ini-
tial state each time it is made available to the program.

* l2-235



CSCM 18-1-1 15 Dec 81

2.5.2.2 Segment Classification. Sectiois to be segmented are classified using
a system of segment priority numbers. The numbers are assigned using the
following criteria:

e Logic Requirements. Sections which must be available for reference at
all times, or which are referred to very frequently, are normally classified as
belonging to one of the fixed permanent segments. Sections which are less fre-
quently used are normally classified as belonging to one of the fixed overlayable
segments or to one of the independent segments, depending on logic requirements.

*9Feqec of use. Generally, the more frequently a section is referred
to, the lwrissegment-number; the less frequently it is used, the higher its
segment-number.

* Relationship to other sections. Sections which frequently commnunicate
with one another should be given the same priority number. All sections with
the same priority number make up a single program segment.

2.5.2.3 Segmentation Control. The logical sequence of a source program is the
same as the phsclsequenc-e except for specific transfers of control. When
the sections of a segment are not contiguous, the object module is reordered to
make the sections contiguous. However, the compiler provides transfers to assure
that the program logic flow is followed as written. The compiler also inserts
instructions to load and/or initialize a segment when necessary. Control may be
transferred within a source program to any paragraph in a section; it is not
mandatory to transfer control to the beginning of a section.

2.5.2.4 Structure Of Program Segments.

e Proiynmes Sections are combined into segments by a system of
priority numbers. The priority number is included in the section header. All
sections with the same priority number constitute a segment.

FORMAT.

I section-name SECTION priority-number.

RULES.

*The priority-number must be an integer from 0 through 99.

Segments with priority-numbers from 0 through 49 are part of the fixed
portion of the object program, unless altered by the SEGMENT-LIMIT clause.

Segments with priority-numbers from 50 through 99 are independent seg-
ments.

2-236



15 DEC 81 CSCM 18-1-I

2.5.2.4 Structure Of Program Segments. (Cont.)

- If a priority-number is omitted from a section header, the priority is
assumed to be zero.

* Segment-limit. Normally, all program segments with priority numbers
from to 49 are treated as permanent segments. However, at times the permanent
segments plus the largest overlayable segment exceed core limitations. In this
case, it is necessary to decrease the number of permanent segments. This is
done by using the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

FORMAT.

jSEGMENT-LIMIT IS priority-number ] -j

RULES.

a Priority-number must be an integer from 0 to 49.

a When the SEGMENT-LIMIT clause is used, only those segments with priority-
numbers up to (but not including) the designated segment limit are considered as
permanent segments.

e The segments aving priority numbers from the segment limit through 49
are considered as ovrlayable fixed segments.

* If the SEGMENT-LIMIT clause is omitted, all segments havinq priority

numbers from 0 through 49 are considered to be permanent segments.

2.5.2.5 Restrictions On PERFORM Statement.

* A PERFORM statement that appears in a section whose priority number is
lower than the segment limit can only refer to the following:

Sections with priority numbers lower than 50 (fixed or fixed overlayable
segments).

Sections wholly contained in a single segment whose priority number is
higher than 49 (an independent segment).

* A PERFORM statement that appears in a section whose priority number is
equal to or higher than the segment limit can only refer to the following:

Sections within the same priority number as the section containing the
PERFORM statement (entirely contained in one independent segment).

2-237



CSCM 18-1-1 15 Dec 81

2.5.2.5 Restrictions On PERFORM Statement. (Cont.)

Sections with priority numbers that are lower than the segment limit
(fixed permanent segments).

e When a procedure-name in a permanent segment is referred to by a PERFORM
statement in an independent segment, t:,o independent segment is reinitialized
upon exit from the performed procedures.

2.5.2.6 Example of Segmentation. Refeir to FIGURE 2-31.

ENVIRONMENT DIVISION .
OBJECT-COMPUTER. ILM-360-H50.

SEGMENT-LIMIT IS 10.

DATA DIVISION.

PROCEDURE DIVISION.

0010-NBR-1 SECTION 5.

0020-NBR-2 SECTION 5.

i030-NBR-3 SECTION 18.

i04O-NBR-4 SECTION 5.

0050-NBR-5 SECTION 53.

FIGURE 2-31

2-238



15 DEC 81 CSCM 18-1-1

2.5.2.6 Example of Segmentation. (Cont.)

0060-NBR-6 SECTION 18.

0070-NBR-7 SECTION 53.

FIGURE 2-31 (Cant.)

e In the preceding sample program, shown at FIGURE 2-31, seven sections
composing t:;,ree segments are illustrated. Sections 1, 2, and 4 have a priority
number of 5 which is less than the segment-limit. They constitute a fixed per-
manent segment which will always be available in core. Sections 3 and 6 have a
priority number of 18 which is greater than the segment-limit but less than 49.
They constitute a fixed overlayable segment which will normally remain in core
but may be overlaid if necessary. This segment is always in its last used state
whenever it is returned to core. Sections 5 and 7 have a priority number of 53
which places this segment in the category of an independent segment which is ir
its original state each time it is called into core.

2.5.2.7 USACSC Guidelines For Segmentation.

*If a program is to be segmented, a primary requirement is that the
possibility be considered during the system and program design phase. During
this phase the nature and sequence of data to be processed should be investi-
gated to determine paths of the program which will be required all of the time
and those with lower percentage of use. A great amount of preplanning is
required to determine efficient overlay structure.

e The decision to segment a program is a tradeoff of the memory to be
saved against the time lost reading and reloading segment blocks. Some consid-
erations in creating a segmented program are:

The amount of memory to be saved.

The percentage of use of a procedure. A procedure that is used more than
5% of the time should probably be a permanent segment. A procedure used only 5%
of the time will be required on an average once in every twenty records. This
could amount to reloading the segment 500 times if 10,000 transactions are pro-
cessed.

ANSI segmentation is best utilized where successive execution of over-
layable segments are possible. "Flip-flop" processing of overlayable segments
is not recommlended because it requires excessive CPU time.

2-239



CSCM 18-1-1 15 Dec 81

2.5.2.7 USACSC Guidelines For Segmentation. (Cont.)

The size of a segmented program is equal to the size of the fixed segment
plus the largest overlayable or independent segment. The size of a segmented
program with COBOL sort input/output procedures is equal to the fixed segment
plus the largest overlayable segment plus the largest overlayable sort segment.

For techniques on debugging an OS segmented program, see OS COBOL Program
Debugging Aids in the Debugging Aids section of this manual.

Segmentation of very large programs can also be accomplished through
sepi rately compiled and called overlays. Refer to USACSCM Executive Software
Catalogs (18-2-B series) (P54ATP DOS, P52ATU OS) for additional information.

2.5.3 SORT FEATURE.

2.5.3.1 Introduction.

s Sorting is the process of rearranging a group of records into a new
sequence. A COBOL sort-file is the group of records to be rearranged and the
sort keys are fields within the sort-file records according to which the records
are sequenced. Records may be sorted in conjunction with regular file processing
which may consist of addition, deletion, creation, editing, validation, or any
other modification either to the records being sorted or to other records being
processed in the sort program. This processing may occur before and/or after
the sorting occurs. The procedures that cause special processing before sorting
are called input procedures. Those that cause processing after sorting are
called output procedures. For example, a transaction file can be validated,
sorted, and then applied to a master file all in a single program. Or, a master
file can be updated, sorted into a different sequence for printing, then edited
and written in the new sequence.

* The basic elements of the COBOL Sort Feature are the SORT statement in
the PROCEDURE Division and the Sort-File-Description (SD) entry, with its asso-
ciated record description entries, in the Data Division. A sorting operation is
based on sort-keys named in the SORT statement. Sort-keys are defined in the
record description associated with the SD entry. The sort-key data items may be
evaluated in ascending or descending order, or in a mixture of the two; that is,
the sort-keys may be specified as ascending or descending, independent of one
another, and the sequence of the sorted records will conform to the mixture
specified.

s The SORT statement in the PROCEDURE DIVISION is the primary element of a
source program that includes a COBOL sorting operation. The term sorting opera-
tion is used to mean not only the manipulation by the sort program of sort files
o-n-The basis of the sort-keys designated by the COBOL programer, but also to
include the method of making records available to, and retrieving records from
the sort-work files. A sort-work file is the collection of records actually
involved in the sorting operation as they e, ist on an intermediate device. To
use the Sort Feature, the COBOL programer must provide information related to
sorting in the Environment, Data, and Procedure Divisions of the source program.
The specifications for these language elements follow this general description.

2-240

\ *



15 DEC 81 CSCM 18-1-1

2.5.3.2 Environment Division Sort Feature.

e In the Environment Division, the programer must write a SELECT entry for
the sort-file in addition to the SELECT entries required for all the files used
as input and output in the program. The SELECT entry for the sort-file speci-
fies, in the ASSIGN clause, the hardware device that the sort operation uses for
the work files generated during the execution of the sort.

FORMAT.

* In the ENVIRONMENT DIVISION, the following format must be used for IBM:

SELECT file-name

ASSIGN TO [integer-i ] system-name-i [ystem-name-?]..

RULES.

* File-name identifies the sort-file to the compiler.

* The ASSIGN clause is used to describe the sort work files. See language
element - ASSIGN clause for DOS/OS specifications for integer-1 and system-name-
n.

* The 1-0-CONTROL paragraph specifies the memory area to be shared by dif-
ferent sort-files, if applicable. The SAME SORT AREA clause specifies that two
or more files, at least one of which is a sort-file, will use the same memory
area for processing of the current logical record. The logical record of only
one of the files can exist in the record area at one time. During the execution
of a SORT statement that refers to a sort-file named in this clause, any non-
sort-files named in the clause must not be opened.

2.5.3.3 Data Division Sort Feature.

* In the Data Division, the programer must include File Description entries
(FD) for all files that are used to provide input to or receive output from the
sort program. He must also write a Sort-File Description (SD) entry and its
associated record description entries to describe the records that are to be
sorted, including their sort-key fields.

FORMAT.

* The sort-file-description entry must appear in the File Section. The
following format must be used:

2-241

..l 1



CSCM 18-1-1 15 Dec 81

2.5.3.3 Data Division Sort Feature. (Cont.)

SD file-name

[;RECORD CONTAINS [integer-i TO 3 integer-2 CHARACTERS ]

;DATA RECORD ARE1  data-name-i data-name- ...

RULES.

e File-name is the name used to describe the records to be sorted.

e The RECORD CONTAINS clause merely specifies the size of the data records.
The actual size and mode of the records is determined from the level-0l descrip-
tions associated with a given SD entry.

2.5.3.4 Procedure Division Sort Feature.

e In the Procedure Division, the programer specifies in the SORT statement
the sort file-name, the sort-key-names, and whether the records are to have
special processing. Ii' there is to be such processing, the Procedure Division
must also include the program sections that perform the processing.

NOTE: For additional information see paragraph 2.4.9.33, SORT STATEMENT.

2.5.4 TABLE HANDLING FEATURE.

2.5.4.1 Introduction.

TABLES OF DATA. Tables of data are common components of business data
processing problems.

* Tables composed of contiguous data items are defined in COBOL by
including the OCCURS clause in their data description entries. The clause
specifies that the item is to be repeated as many times as stated. The item
is considered to be a table element and its name and description apply to each
repetition or occurrence. Since each occurrence of a table element does not
have assigned to it a unique data-name, reference to a desired occurrence may
be made only by specifying the data-name of the table element together with
the occurrence number of the desired table element. The occurrence number is
known as a subscript, and this technique of specifying individual table ele-
ments is called subscripting.

2-242

* .



15 DEC 81 CSCM 18-1-1

2.5.4.1 Introduction. (Cont.)

@ In order to facilitate such operations as table searching and manipu-
lating specific items, a technique called indexing is also available.

INITIAL VALUES OF TABLES. In the WORKING-STORAGE SECTION, initial values
of elements within tables aespecified in one of the following ways:

*The table may be described as a record by a set of contiguous data
description entries, each of which specifies the VALUE of an element, or part
of an element, of the table. In defining the record and its elements, any
data description clause (USAGE, PICTURE, etc.) may be used to complete the
definitions where required. This form is required when the elements of the
table require separate handling due to synchronization, USAGE, etc. The
hierarchical structure of the table is then shown by use of the REDEFINES
entry and its associated subordinate entries. The subordinate entries,
fol lowing the REDEFINES entry which are repeated due to OCCURS clauses, must
not contain VALUE clauses.

*When the elements of a table do not require separate handling, the
value of the entire table may be given in the entry defining the entire table.
The lower level entries will show the hierarchical structure of the table;
lower level entries must not contain VALUE clauses.

2.5.4.2 Subscripting.

FORMAT.

data-name (subscript( subscript2 ... )

*Subscripts are inclosed in parentheses following the space after data-
name, which is the table element.

e When more than one subscript is used, a comma must separate the
subscripts, and a space must follow each comma.

o No space must appear between the inclosing parentheses and their adjacent
subscripts.

SUBSCRIPTING. A method by which occurrence numbers may be specified is to
append one or more subscripts to the data-name. A subscript is an integer
greater than zero, whose value specifies the occurrence number of an element
within the group item that has the next lower level-number. The subscript can
be represented either by a literal which is an integer or by a data-name which
is defined elsewhere as a numeric elementary item with no character positions to
the right of the assumed decimal point. In either case, the subscript inclosed
in parentheses, is written immuediately following the name of the table element.
A table element must include as many subscripts as there are dimensions in the
table whose element is being referred to. That is, there must be a subscript
for each OCCURS clause in the hierarchy containing the data-name including the
data-name itself.

2-243



CSCM 18-1-1 15 Dec 81

2.5.4.2 Subscripting. (Cont.)

EXAMPLE OF SUBSCRIPTING. For a table with three levels of subscripting, the
following Data Division entries would result in a storage layout as shown below.

01 PARTY-TABLE REDEFINES TABLE.
05 PARTY-CODE OCCURS 3 TIMES.

10 AGE-CODE OCCURS 3 TIMES.
15 M-F-INFO OCCURS 2 TIMES PICTURE $9(7)V9

A USAGE DISPLAY.

@ Reference to elementary items within PARTY-TABLE is made by use of a
name that is subscripted. A typical Procedure Division statement might be:

MOVE M-F-INFO (PARTY, AGE, M-F) TO M-F-RECORD. I

* In order to use the Table Handling feature, the programer must provice
certain information in the Data Division and Procedure Division of the program.
Refer to FIGURE 2-32 for Storage Layout for Party-Table.

v When more than one subscript is required, they are written in the order
of successively less inclusive dimensions of the data organization. If a multi-
dimensional table is thought of as a series of nested tables, the most inclusive
or outermost table is considered to be the major table, with the innermost or
least inclusive table being the minor table, then the subscripts are written
from left to right in the order major, intermediate, and minor.

2-244



15 DEC 81 CSCM 13-1-1

2.5.4.2 Subscripting. (Cont.)

8 bytes Byte
No.

fM-F-INFO (1, 1, 1)
AGE-CODE (1,1)------------------------8( M -F-I N FO (1, -1, -2) 16

PART-COD(1) GE-COE (,2)-----------------------2

r M F -IN FO ( -1, 3, 1 )
PART-COD~l) AGE-CODE (1,3)---------- 2

M- ,F-INFO '1, 3, 2)

AGE-CODEO (2,3 4,1
AGE-ODE 2,1)-----------------------5

(~M-F-INFO (2, 1, 2)
----------- ---- 43

rM-F-INFO (2, 2, 1)
PART-TABE PRTY-OOE2) AE-COE (,2)------------ --- ------ 7

AGE-CODE (2, M-F-INFO -(2, 2 , -2) 5fM-F-INFO (2, 3, 1)
PARY-TBLE PATY-ODE2) AGE-CODE (2,2)------------------------72

LMFINO(2, 3, 2) 9(M-F-INFO (3, 1, 1)
AGE-CODE (231)------------ --- -- ---- 13

M-F-INFO (3, 3, 2)
--------- ---- -- 1 2

rM-F-INFO (3, 2, 1)
PART-COE(3AGE-CODE (3,2)-----------------------124

EM-F-INFO (3, 2, 2)
-------- ---- --- 1 2

rM-F-INFO (3, 3, 1)
L PRTYCOD(3) AGE-CODE (3,2)-----------------------136

LM-F-INFQ (3, 3, 2)

OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES

FIGURE 2-32

2-245



CSCM 18-1-1 15 Dec .I

2.5.4.2 Subscripting. (Cont.)

- A reference to an item must not be subscripted if the item is not a
table element or an item or condition name within a table element.

e The lowest permissible subscript value is 1. The highest permissible
subscript value in any particular case is the maximum number of occurrences of
the item as expressed in the OCCURS clause.

s When a data-name is used as a subscript, it may be used to refer to
items within many different tables. These tables need not have elements of the
same size. The data-name may also appear as tne only subscript witn one item
ard as one of two or three subscripzs with another item. Also, it is per-
missible to mix literal and data-name suoscripts.

For example:

ARGMNT (12, KEY, 2).

2-246



15 DEC 81 CSCM 18-1-1

2.5.4.3 OCCURS STATEMENT.

* Another method of referring to iteins in a table is indexinQ. To use
ithis technique the programer assigns one or more index-names to an 1zer -huse

data description contains an OCCURS clause. An index is assigneo to a given

level of a table by using the INDEXED BY clause in the definition of thc table.

FORMAT.

a The following are formats of the OLCURS clause showing how

an index-name is assigned through use of the INDEXED BY clause.

FORMAT 1.

OCCURS integer-2 TIMES

[ EKEY IS data-name-2 Cdata-name-33 ...

L(DESCENDING1

[INDEXED BY index-name-1 Cindex-name-2] ... 3

FORMAT 2.

OCCURS integer-l TO integer-2 DEPENING" ON data-name-1

ASCENDING ) KEY IS data-name-:! [data-name-33 ......

Ll[DESCENDINGJ

C INDEXED BY index-name-i index-name-2] ... 3

At object time the contents of the index-name will correspond to an

occurrence number for that specific dimension of the table to which the index-

name was assigned.

* The OCCURS clause may not be specified in a data description entry that:

Has a level-01 or level-77 number.

Describes an item whose size is variable (the number of times the item

may occur can be variable).

a Data-name-i, the object of the DEPENDING option has the following

restrictions:

Must be described as a positive integer.

Must not exceed integer-2 in value.

2-247



CSCM 18-1-1 15 )ec 81

2.5.4.3 OCCURS STATEMENT. (Cont.)

Must not be subscripted.

- Must not appear in the variable portion of the record.

e Any Data Division entry which contains an OCCURS DEPENDING clause or
which has a subordinate entry which contains a DEPENDING clause, cannot be the
object of a REDEFINES clause.

KEY OPTION: The KEY option is used in conjunction with the INDEXED BY
option in the execution of a SEARCH ALL statement. The KEY option is used to
indicate that the repeated data is arranged in ASCENDING or in DESCENDING order,
according to the values contained in data-name-2, data-name-3, etc.

* Data-name-2 must be either the name of the entry containing an OCCURS
clause, or it must be an entry subordinate to the entry containing the OCCURS
clause. If data-name-3 is the subject of this table entry, it is the only key
that may be specified for this table. If data-name-3 is not the subject of this
table entry, all the keys identified by data-name-2, data-name-3, etc.:

Must be subordinate to the subject of the table entry itself.

Must not be subordinate to any other entry that contains an OCCURS
clause.

Must not themselves contain an OCCURS clause.

* When the KEY option is specified, the following rules apply:

Keys must be listed in decreasing order of significance.

The total number of keys for a given table element must not exceed 12.

The sum of the lengths of all the keys associated with one table element
must not exceed 256.

A key may have the following usages: DISPLAY or COMPUTATIONAL.

2-248



15 DEC 81 CSCM 8-*

2.5.4.4 Indexing.

DIRECT INDEXING. The INDEXED BY option of the OCCURS clause refers to data-
names accessed by indexing. Direct indexing is specified when a reference is
made to a table element, and the item is followed by its related index-name.

e The index-namt(Us is not defined elsewhere in the program, since its
allocation and format are dependent on the system, and, not being data, cannot
be associated with any data hierarchy.

e The number of index-names for a Data Division entry must not exceed
twelve.

e An index-name must be initialized through a SET statement before it is
used.

e Each index-name is a fullword in length and contains a binary value that
represents an actual displacement from the beginning of the table that cor-
responds to an occurrence number in the table. The value is calculated as the
occurrence number minus one, multiplied by the length of the entry that is
indexed by this index-name.

EXAMPLE.

For example, if the programer writes

IA OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10).

on the fifth occurrence of WA, the binary value contained in 'Z' will be:

Z - (5 - 1) * 10= 40

* No..3 that, for a table entry of variable length, the value contained in
the index-name entry will become invalid whien the table entry length is changed,
unless the user issues a new SET statement to correct the value contained in the
index-name.

2-249



CSCM 18-1-1 15 Dec 81

2.5.4.4 Indexing. (Cont.)

FORMAT.

- The following format is used to imply that a data-name belongs to a
structure with three nested levels of OCCURS.

[ data-name (index-1 [, index-2] ...

v Data-name is originally defined in an OCCURS clause as part of the record
description entries in the Data Division. The OCCURS clause must also use the
INDEXED BY option.

* Index-i, index-2, index-3 must correspond to the index-names assigneo in
the INDEXED BY clause in the Data Division.

RELATIVE INDEXING. Relative indexing is specified when the index-name is
followed by one of the operators, + or -, and a numeric literal. The numeric
literal is considered to be an occurrence number and is converted to an index

avalue before being added to, or subtracted from the corresponding index-name.

FORMAT.

& The following format is used to imply that a data-name belongs to a
structure with three nested levels of OCCURS.

data-name (index-name (+ integer

S, index-name-2 [1} integer ] (, index-name-3 integer 3

* Data-name is originally defined in an OCCURS clause as part of the record
description entries in the Data Division. The OCCURS clause must also use the
INDEXED BY option and the index-names used in the Data Division must correspond
to those in the Procedure Division. Integer must be a numeric literal.

INDEX DATA ITEM. An index data item is an elementary item (not necessarily
connected with any table) that can ue used to save index-name values for future
reference. An index data item must be assigned an index-name value (i.e.,
(occurrence number -1)* entry length) through the SET statement. Such a value
corresponds to an occurrence number in a table. The USAGE IS INDEX clause
allows the programer to specify index data items.

2-250



15 DEC 81 CSCM 18-1-1

2.5.4.4 Indexing. (Cont.)

FORMAT.

e The USAGE IS INDEX clause may be written at any level. If a group item
is described with the USAGE IS INDEX clause, it is the elementary items within
the group that are index data items; the group itself Is not an index data item.,
and the group name cannot be used in SEARCH and SET statements or ii relation
colditions. The USAGE clause of an elementary item cannot contradict the USAGE
clause of a group to which the item belongs.

o An index data item can be referred to directly only in a SEARCH or SET
statement or in a relation condition. An index data item can be part of a group
which is referred to in a MOVE or an input/output statement. When such opera-
tions are executed, however, there is no conversion of the contents of the index
data item.

* An index data item cannot be a conditional variable.

* The SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE clauses
cannot be used to describe group or elementary items described with the USAGE IS
INDEX clause.

2.5.4.5 Procedure Division Considerations for Table Handling.

*The SEARCH and the SET statements may be used to facilitate table
handling. In addition, there are special rules involving table handling ele-
mnents when they are used in relation conditions.

RELATION CONDITIONS. Comparisons involving index-names and/or index data
items conform Et te following rules:

e The comparison of two index-names is actually the comparison of the
corresponding occurrence numbers.

s In the comparison of an index-name with a data item (other than an index
data item), or in the comparison of an index-name with a literal, the occurrence
number that corresponds to the value of the index-name is compared with the data
item or literal.

e In the comparison of an index data item with an index-name or another
index data item, the actual values are compared without conversion.

*Any other comparison involving an index data item is illegal.

2-25 1



CSCM 18-1-1 15 Dec 81

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

TABLE LOOK-UP.

- e SEARCH STATEMENT. The SEARCH statement is used to search a table for an
element that satisf'ies a specified condition, and to adjust the value of the
associated index-name to the occurrence number corresponding to that table ele-
ment.

FORMAT.

FORMAT 1.

SEARCH identifier-1 [VARYING inenae-2|

I dentifier- _

C AT END imperative-statement-I]

Wimperati ve-statement-2 )
WHEN condition-i

.NEXT SENTENCE J

rimperati ve-statement-3 .
(WHEN condition-2 i I I .

NEX T SENTENCE J

FORMAT 2.

SEARCH ALL identifier-1 [AT END imperative-statement-I]

cdto-name-i ritetieresio-
WHEN IS EQUAL TO literal ticondition-name-1 trtmtcepeso-

Fidentifi er-4
data-name-2 IS EQUAL TO tliteral-2 1

-AN arithmetic-expression-21 1 ..

I condition-name-2

r imperati ve-statement-2
NEXT SENTENCE

2-252



15 DEC 81 CSCM 18-1-1

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

- Identifier-I must not be subscripted or indexed. Its description must
contain an OCCURS clause with the INDEXED BY option.

Identifier-I can be a data item subordinate to a data item that contains
an OCCURS clause, Chus providing for a two or three dimensional table. An
Index-name must be associated with each dimension of the table through the
INDEXED BY phrase of the OCCURS clause. Execution of a SEARCH statement causes
mocification only of the setting of the index-name associated with identifier-1
(and, if present, of index-name-i or identifier-2). Therefore, to search a[,
entire two or three dimensional table7,it is necessary to execute a SEARCh state-
ment several times; prior to each execution, SET statements must be executed
to adjust the associated index-names to their appropriate settings.

In the AT END and WHEN options, if any of the specifieo imperative
statement(s) do not terminate with a GO TO statement, control passes to the next
sentence after execution of the imperative statement.

FORMAT 1 Considerations -- Identifier-2, when specified, must be
cescribed as an index data item, or it must be a fixed-point numeric elementary
item described as an integer. When an occurrence number is incremented,
identifier-2 is simultaneously incremented by the same amount.

Condition-i, condition-2, etc., may be any condition, as follows:

relation condition
class condition
condition-name condition
sign condition

Upon the execution of a SEARCH statement, a serial search takes place,
starting with the current index setting.

If, at the start of the SEARCH, the value of the index-name associated
with identifier-I is not greater than the highest possible occurrence number for
ident-iier-i, the following actions take place:

1. The condition(s) in the WHEN option are evaluated
in the order they are written.

2. If none of the conditions is satisfied, the index-
name for identifier-1 is incremented to reference
the next table element, and step i is repeated.

2-253



CSCM 18-1-I 15 Dec 81

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

3. If, upon evaluation, one of the WHEN conditions is satisfied, the
search terminates immediately, and the imperative-statement
associated with that condition is executed. The index-name points
to the table element that satisfied the condition.

4. If the end of the table is reached without the WHEN condition beinc
satisfied, the search terminates as described in the next paragraph.

If at the start of the search, the value of the index-name associated
with identifier-i is greater than the highest permissible occurrence number for
identifier-I, the search is terminated immediately, and if the AT END option is
specified, imperative-statement-1 is executed. If this option is omitted,
control passes to the next sentence.

When the VARYING index-name-i option is specified, one of the following
applies:

1. If index-name-i is one of the indexes for identifier-i, index-name-I
is used for the search. Otherwise, the first (or only) index-name
for identifier-i is used.

2. If index-name-1 is an index for another table entry, then when the
index-name for identifier-I is incremented to represent the next
occurrence of the table, index-name-i is simultaneously incremented
to represent the next occurrence of the table it indexes.

FORMAT 2 Considerations -- The first index-name assigned to identifier-1
will be used for the search.

The description of identifier-1 must contain the KEY option in its OCCURS

clause.

Condition-1 must consist of one of the following:

1. A relation condition incorporating the EQUALS, EQUAL TO, or equal
sign ( = ) relation. Only the subject of the relation-condition
must consist solely of one of the data-names that appear in the KEY
clause of identifier-i; the object of this cindition may not be a
data item named_"d-TaEY phrase.

2. A condition-name condition in which the VALUE clause describing the
condition-name consists of a single literal only. The conditional
variable associated with the condition-name must be one of the data-
names that appear in the KEY clause of identifier-1.

3. A compound condition formed from simple conditions of the types
described above, with AND as the only connective.

2-254



15 DEC 81 CSCM 18-1-1

- 2.5.4.5 Procedure Division Considerations fo- Table Handling. (Cont.)

Any data-name that appears in the KEY clause of identifier-i may be
tested in coTnto-n,1. However, all data-names in the KEY clause preCedinq the
one to be tested must also be so tested in condition-1. No other tosts nay he
made in condition-i.

The example below, FIGURE 2-33, shows the use of a FORMAT 1 SEARCH state-
ment with two WHEN options.

77 1 PICTURE S9(4) USAGE IS INDEXED.

05 A OCCURS 10 TIMES ASCENDING KEY IS KEYl, KEY2, KEY3, KEY4
INDEXED BY I.
10 KEYl PICTURE S9.
10 KEY2 PICTURE S99.
10 KEY3 PICTURE S9.
10 KEY4 PICTURE S9.

88 BLUE VALUE 1.

in the Procedure Division, valid WHEN phrases could be:

WHEN KEYI (I) = 3 AND KEY2 (I) = 10 AND KEY3 (I) = 5

WHEN KEYl (I) = 3 AND KEY2 (I) = VALUE-i
AND KEY3 (I) = 5 AND BLUE (I)

FIGURE 2-33

During execution of a FORMAT 2 SEARCH statement, a binary search takes
place; the setting of index-name is varied during the search so that at n' tirne
is it less than the value that corresponds to the first element of the table,
nor is it ever greater than the value that corresponds to the last element of
the table. If condition-1 cannot be satisfied for any setting of the index
within this permitted range, control is passed to imperative-statement-1 when
the AT END option appears or to the next sentence whfen this cTausi does not
appear. In either case, the final setting of the index is not predictable. If
the index indicates an occurrence that allows condition-1 to be satisfied,
control passes to imperative-statement-2.

2-255



CSCM 18-1-1 15 Dec 81

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

The results of a SEARCH ALL operation are predictable only when thr data in
the table Is ordered as described hy the ASCFNDING/DrSCFNDING KEY Clausp a,,n
ctated with identifier-1

@ SET STATFMENT. The SET statement establishes reference points for table
handling operations by setting index-names to values associated with table ele-
ments. The SET statement must be used when initializing index-name values
before execution of a SEARCH statement, it may also be used to transfer values
between index-names and other elementary data items.

FORMAT.

FORMAT 1.

rindex-name-i [index-name-2] ... T index-name-3
SET 

1 (!

[I~~ ST T identifier-3identifi er-1 [i dentifier-2] ... nteger-1

FORMAT 2.

[ r WN UP BY BYI identifier-4litge.

SET index-name-4 [index-name-51 ... 
U

IDOWN BY J nteger-2 J
All identifiers must name either index data items or fixed-point numeric

elementary items described as integers; however, identifier-4 must not name an
index data item. When an integer is used, it may be signed; however, integer-1
must be a positive integer7Thdex-names are related to a given table throghY
the INDEXED BY option of the OCCURS clause; when index-names are specified in
the INDEXED BY option, they are automatically defined.

All references to index-name-I, identifier-i, and index-name-4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

FORMAT 1 Considerations -- When the SET statement is executed, one of the
following actions occurs:

1. Index-name-1 is converted to a value that corresponds to the same
table element to which either index-name-3 is an index data item,
or if index-name-3 is related to the same table as index-name-i,
no conversion takes place. Both before and after the execution
of the SET statement the resultant value of index-name must
correspond to an occurrence number of an element in the associated
table.

2-256



15 DEC 81 CSCM 18-1-1

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

2. If identifier-i is an index data item, it is set equal to either tne
contents of index-name-3 or identifier-3, where identifier-3 is also
an index data item. Integer-i cannot be used in this case.

3. If identifier-1 is not an index data item, it is set to an occurrence
number that corresponds to the value of index-name-3. Neither
identifier-3 nor integer-1 can be used in this case.

FORMAT 2 Considerations -- When the SET statement is executed, the con-
tents of index-name-4 (and index-name-5, etc., if present) are incre-
mented (UP BY) or decremente (OWN TBFY by a value that corresponds to
the number of occurrences represented by the value of integer-2 or
identifier-4.

Data in the following chart represents the validity of various operanG
combination in the SET statement.

RECEIVING TIME

SENDING ITEM Integer Data Item Index-name Index Data Item

Integer Literal No VALID No

Integer Data Item No VALID No

Index-Name VALID VALID VALID*

Index Data Item No VALID* VALID*

*NOTE: No conversion takes place.

e SAMPLE TABLE HANDLING PROGRAM. Refer to FIGURE 2-34.

The program below illustrates the Table Handling feature, including the
use of indexing, of the SET statement, and of the SEARCH statement (including
the VARYING option and the SEARCH ALL format).

The census bureau uses the program to compare:

1. The number of births and deaths that occurred in any one of the 50
states in any one of the past 20 years with -

2. The total number of births and deaths that occurred in the same state
over the entire 20-year period.

The input file, INCARDS, contains the specific information upon which the
search of the table is to be conducted. INCARDS is formatted as follows:

2-257



CSCM 18-1-1 15 Dec 81

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

STATE-NAME a 4-character alphabetic abbreviation of the state name

SEXCODE 1 = male; 2 = female

YEARCODE a 4-digit field in the range 1950 through 1969

A typical run might determine the number of females born in New York in
1953 as compared with the total number of females born in New York in the past
20 years.

IDENTIFICATION DIVISION.
PROGRAM-o. TABLES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO UT-S-INTAPE.
SELECT OUTFILE ASSIGN TO UT-S-PRTOUT.
SELECT INCARDS ASSIGN TO UT-S-ICARDS.

DATA DIVISION.
FILE SECTION.
FD INFILE LABEL RECORDS ARE OMITTED.
01 TABLE PIC X(28200).
01 TABLE-2 PIC X(1800).
FD OUTFILE LABEL RECORDS ARE OMITTED.
01 PRTLINE PIC X(133).
FD INCARDS LABEL RECORDS ARE OMITTED.
01 CARDS.

02 STATE-NAME PIC X(4).
02 SEXCODE PIC 9(4).
02 YEARCODE PIC 9(4).
02 FILLER PIC X(71).

WORKING-STORAGE SECTION.
01 PRTAREA-20.

02 FILLER PIC X VALUE SPACES.
02 YEARS-20 PIC 9(4)
02 FILLER PIC X(3) VALUE SPACES.
02 BIRTH-20 PIC 9(7).
02 FILLER PIC X(3) VALUE SPACES.
02 DEATHS-20 PIC 9(7).
02 FILLER PIC X(108) VALUE SPACES.

01 PRTAREA.
02 FILLER PIC X
02 YEAR PIC 9(4).
02 FILLER PIC X(3) VALUE SPACES.
02 BIRTHS PIC 9(5).
02 FILLER PIC X(3) VALUE SPACES.
02 DEATHS PIC 9(5).
02 FILLER PIC X(112) VALUE SPACES.

-FIGURE Z-34

2-258



15 DEC 81 CSCM 18-1-1

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

01 CENSUS-STATISTICS-TABLE.
02 STATE-TABLE OCCURS 50 TIMES INDEXED BY ST.

03 STATE-ABBREV PIC X(4).
03 SEX OCCURS 2 TIMES INDEXED BY SE.

04 STATISTICS OCCURS 20 TIMES ASCENDING KEY IS YEAR
INDEXED BY YR.
05 YEAR PIC 9(4).
05 BIRTHS PIC 9(5).
05 DEATHS PIC 9(5).

01 STATISTICS-LAST-20-YRS.
02 SEX-20 OCCURS 2 TIMES INDEXED'BY SE-20.

03 STATE-20 OCCURS 50 TIMES INDEXEn BY ST-20.
04 YEARS-20 PIC 9(4).
04 BIRTHS-20 PIC 9(7).
04 DEATHS-20 PIC 9(7).

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INFILE INCARDS OUTPUT OUTFILE.
READ-TABLE.

READ iNFILE INTO CENSUS-STATISTICS-TABLE
AT END GO TO READ-CARDS.

READ INFILE INTO STATISTICS-LAST-20-YRS
AT END GO TO READ-CARDS.

READ-CARDS.
READ INCARDS

AT END GO TO EOJ.
DETERMIINE-ST.

SET ST ST-20 TO 1.
SEARCH STATE-TABLE VARYING ST-20 AT END GO TO ERROR-MSG-1

WHEN STATE-NAME = STATE-ABBREV (ST) NEXT SENTENCE.
DETERMINE-SE.

SET SE SE-20 TO SEXCODE.
DETERMINE-YR.

SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2
WHEN YEAR OF STATISTICS (ST, SE, YR) = YEARCODE

GO TO WRITE-RECORD.

FIGURE 2-34 (Cont.)

2-259



PROGRAMING PROCEDURES MANUAL (PPM).(U)

UNCLASSIFIED NL



i I L II32

1111.25 1.4

A MICROCOPY RtSOLUION TEST CHART

NW '1NAI FUNIlP l 'F 'ANAPA [

L .2



CSCM 18-1-1 15 Dec 81

2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

ERROR-MS(;- 1.

DISPLAY "INCORRECT STATE" STATE-NAME.
CGO TO WRITE-RECORD.

ERROR-MSC-2.
DISPLAY "INCORRECT YEAR" YEARCODE.
GO TO READ-CARDS.

WRITE-RECORD.
MOVE CORRESPONDING STATISTICS (ST, SE, YR) TO PRTAREA.
WRITE PRTLINE FROM PRTAREA AFTER ADVANCING 3.
MOVE CORRESPONDING STATE-20 (SE-20, ST-20) TO PRTAREA-20.
WRITE PRTLINE FROM PRTAREA-20 AFTER ADVANCING 1.
GO TO READ-CARDS.

EOJ.
CLOSE INFILE INCARDS OUTFILE.
STOP RUN.

FIGURE 2-34 (Cont.)

USACSC GUIDELINES.

* In order to facilitate ease of program debugging and maintenance, use of
compound conditional statements in conjunction with the SEARCH verb should be
avoided if at all possible.

* Indexing is a more efficient means of searching a table and is the pre-
ferred procedure.

* Programers should ensure program logic includes checks to verify that
subscripts and indices do not exceed maximum values as defined in the
appropriate OCCURS clause.

* Subscripting will be limited to a maximum of three levels. Subscripting
beyond one level should be avoided if possible.

e SEARCH ALL verb should be used instead of the SEARCH verb for large
tables unless the following situations exist:

The keys of the table being searched are not sequenced. The SEARCH ALL
verb requires sequenced keys - SEARCH verb does not.

2-260



15 DEC 81 CSCM 18-1-1

-~ 2.5.4.5 Procedure Division Considerations for Table Handling. (Cont.)

The elements of the table will have a high frequency of hits, which will
take place in the same sequence as the table keys; i.e., the search can continue
where the last one left off rather than needing to start at the front, and prob-

-. *-ably will require very few iterations before the next hit is made. Random
searching of any large table almost always favors SEARCH ALL.

When neither of the above conditions exist, the following criteria can be
uscd to decide when to use one version or the other. If the table contains more
than 25 to 30 valid codes to be searched, the SEARCH ALL verb is more efficiert.
If less, use the SEARCH verb.

e Refer to USACSCM Executive Software Manual 18-2 for OS and DOS table

handling routines.

2.5.5 SOURCE PROGRAM LIBRARY FACILITY.

2.5.5.1 Introduction to Copy Library Facility.

e The COBOL Source Program Library Facility provides a capability for speci-
fying text that is to be copied from a library. These texts are available for
copying at compile time using the COPY statement. The effect of the COPY state-
ment is to insert te.,,t into the source program where it will be treated as part
of the source program.

LIBRARY. The COBOL text is placed on a user maintained library. The routines
for placing this text on the library and updating the text are designated by each
vendor. Retrieval of the text is accomplished using the COPY statement. See
paragraph 2.5.5.2.

LIBRARY MAINTENANCE AND CONTROL. Development, maintenance and control of
the system/subsystem copy libraries and its members is the responsibility of the
system coordinator appointed by the ASD. Entries to the library will conform to
the definitions contained in the USACSC Data Element Dictionary. Once the stan-
dards are established and loaded into user libraries (copy, source, etc.,
library), they are easily retrieved and the standard is perpetuated throughout
all programs in the system.

2-261



CSCM 18-1-1 15 Dec 81

2.5.5.2 COPY STATEMENT.

. The COPY statement may be used in the ENVIRONMENT DIVISION, DATA
DIVISION, and PROCEDURE DIVISION. Prewritten source program entries, such as
standard file descriptions, record descriptions, or procedures. may be inclided
in the snurce listinq withnut RECODING them.

* The source listing produced using the copy statement varies Irom vendor
to vendor. In some instances, the COPY statement itself is included in the
printed listing as comments with the copied text following it. In other cases,
the COPY statement is completely replaced by the copied text. (See VENDORS'
GJIELINES.)

* The full format for the COPY statement is shown under Language Elements
'COPY Statement'. The general formats for use of the COPY statement are shown
at FIGURE 2-35 below.

Option I (within the CONFIGURATION Section):
SOURCE-COMPUTER. COPY statement.
OBJECT-COMPUTER. COPY statement.

Option 2 (within the INPUT-OUTPUT Section):
FILE-CONTROL. COPY statement.
TURTROF7 COPY statement.

Option 3 (within the FILE Section):
FD file-name COPY statement.
3- sort-file-name COPY statement.

Option 4 (within the DATA DWI.: 'M):

1 data-name COPY st,

Option 5 (within the WORKING-STORAGE Section or LINKAGE Section):
77 data-name COPY statement.

FIGURE 2-35

2-262



15 DEC 81 CSCM 18-1-1

2.5.5.2 COPY STATEMENT. (Cont.)

Option 6 (within the WORKING-STORAGE Section or LINKAGE Section):
77 data-name-1 REDEFINES data-name-2 COPY statement.
01 data-name-1 REDEFINES data-name-2 COPY statement.

Option 7 (within PROCEDURE DIVISION):
section-name SECTION. COPY statement.
paragraph-name'COPY Statement.

FIGURE 2-35 (Cont.)

GENERAL RULES.

* The text is placed on the library using a unique entry name. This name
is stored as a header record for identification of the entry and is not part of
the text. When the text is retrieved from the library, only the text is copied,
not the entry name.

* When the COPY statement is used for 01-level record descriptions or
77-level data item descriptions in the DATA DIVISION, the programer coded
01-level or 77-level name replaces the 01-level or 77-level name from the
library on the compiled source listing.

If a reference is made in an OCCURS ... DEPENDING ON clause to the original
01 or 77-level name on the library, this reference must be changed by using the
REPLACING option of the COPY statement. (See EXAMPLES 2 and 3 of FIGURE 2-36.)

The library name and text are unchanged in the library entry.

* When the COPY statement is used in the PROCEDURE DIVISION, the copy state-
ment as written by the programer is completely replaced by the copied text. (See
EXAMPLE 4 of FIGURE 2-36.)

VENDORS' GUIDELINES.

IBM.

s When the COPY statement is used in the ENVIRONMENT DIVISION or for cata-
logued file descriptions in the DATA DIVISION, the compiler prints out the COPY
statement as written by the programer with the copied text following it. (See
EXAMPLE 1 of FIGURE 2-36.)

2-263

w 1 i l . . . . . T - . .. . -.. .. .



CSCM 18-1-1 13 Dec 81

2.5.5.2 COPY STATEMENT. (Cont.)

e IBM allows the retrieval of the data fromt the copy library two ways: the
-- use of the COPY statement in the source coding and the use of the BASIS card in4

the Job Control Language (JCL) in the compile deck.

*The IBM compiler flags each statement copied from a library with a 'C'
preceding the sequence number on the resultant source listing.

EXAMPLES. The following examples in FIGURE 2-36 illustrate the use of the
COPY statement. The examples start in column 7. Any vendor's indicators
flagging copied statements are not shown.

USACSC GUIDELINES. None.

2-264



15 DEC 81 (7SCM 18-1-1

owl 2.5.5.2 COPY STATEMENT. (Cont.)

*EXAMPLE 1.
* THIS EXAMPLE ILLUSTRATES THE COPYING OF AN FD.

* THE FOLLOWING ENTRY IS A MEMBER OF A COPY LIBRARY.
* THIS ENTRY HAS A LIBRARY ENTRY NAME OF PAYFILEA.

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS
BLOCK CONTAINS 500 CHARACTERS
DATA RECORD IS PAYREC-A.

01 PAYREC-A PIC X(100).

* THE FOLLOWING CODING WAS INCLUDED IN A SOURCE LISTING.

FD PAYFILE COPY PAYFILEA.

* THE FOLLOWING IS THE RESULTANT CODING PRODUCED BY THE
* COMPILER FROM THE ABOVE LIBRARY ENTRY AND COPY STATEMENT.

FD PAYFILE COPY PAYFILEA.
FD PAYFILE

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
RECORD CONTAINS 100 CHARACTERS
BLOCK CONTAINS 500 CHARACTERS
DATA RECORD IS PAYREC-A.

01 PAYREC-A PIC X(100).

FIGURE 2-36

2-265

ML



CSCM 18-1-1 15 Dec 81

2.5.5.2 COPY STATEMENT. (Cont.)

*EXAMPLE 2.
* THIS EXAMPLE ILLUSTRATES THE COPYING OF 01-LEVEL RECORD
* DESCRIPTIONS.

* THE FOLLOWING ENTRY IS A MEMBER OF A COPY LIBRARY.
* THIS ENTRY HAS A LIBRARY ENTRY NAME OF PAYREC-2.

01 PAYREC-2.
05 PAYREC-GRADE PIC 99.
05 PAYREC-RATE PIC S9(5) COMP-3.
05 PAYREC-HOURS PIC S9(3) COMP-3.
05 PAYREC-CODE OCCURS 1 TO 18 TIMES

DEPENDING ON
PAYREC-GRADE OF PAYREC-2

PIC XX.
05 FILLER PIC X(57).

* THE FOLLOWING CODING WAS INCLUDED IN A SOURCE LISTING.

01 PAYREC-B COPY PAYREC-2.

* THE FOLLOWING IS THE RESULTANT CODING PRODUCED BY THE
* COMPILER FROM THE ABOVE LIBRARY ENTRY AND COPY STATEMENT.

01 PAYREC-B COPY PAYREC-2.
01 PAYREC-B.

05 PAYREC-GRADE PIC 99.
05 PAYREC-RATE PIC S9(5) COMP-3.
05 PAYREC-HOURS PIC S9(3) COMP-3.
05 PAYREC-CODE OCCURS 1 TO 18 TIMES

DEPENDING ON
PAYREC-GRADE OF PAYREC-2

PIC XX.
05 FILLER PIC X(57).

* NOTE THAT THE QUALIFIER PAYREC-2 IN THE DEPENDING ON OPTION
* OF THE OCCURS CLAUSE DID NOT CHANGE. THIS MUST BE ACCOMPLISHED
* USING THE REPLACING OPTION OF THE COPY STATEMENT.

-J

FIGURE 2-36 (Cont.)

2-266



15 DEC 81 CSCM 18-1-1

2.5.5.2 COPY STATEMENT. (Cont.)

*EXAMPLE 3.
* THIS EXAMPLE ILLUSTRATES THE USE OF THE REPLACING OPTION OF
* THE COPY STATEMENT. THE COPY LIBRARY MEMBER FROM EXAMPLE 2
* IS USED FOR THIS EXAMPLE.

* THE FOLLOWING CODING WAS INCLUDED IN A SOURCE LISTING.

01 PAYREC-B COPY PAYREC-2 REPLACING PAYREC-2
BY PAYREC-B.

* THE FOLLOWING IS THE RESULTANT CODING PRODUCED BY THE
* COMPILER FROM THE ABOVE LIBRARY ENTRY AND COPY STATEMENT.

01 PAYREC-B COPY PAYREC-2 REPLACING PAYREC-2

BY PAYREC-B.
01 PAYREC-B.

05 PAYREC-GRADE PIC 99.
05 PAYREC-RATE PIC S9(5) COMP.
05 PAYREC-HOURS PIC S9(3) COMP.
05 PAYREC-CODE OCCURS 1 TO 18 TIMES

DEPENDING ON
PAYREC-GRADE OF PAYREC-B

PIC XX.
05 FILLER PIC X(57).

* NOTE THAT PAYREC-2 HAS NOW BEEN CHANGED TO PAYREC-B IN ALL
* OCCURRENCES IN THE RECORD.

FIGURE 2-36 (Cont.)

2-267

'" " ...... ' . ..' ... . ... .. ." -. . . . . .' . . .... ... . .. . .. .. ., . ... .



CSCM 18-1-1 15 Dec 81

2.5.5.2 COPY STATEMENT. (Cont.)

t-1

*EXAMPLE 4.
* THIS EXAMPLE ILLUSTRATES THE COPYING OF PROCEDURES INTO A
* SOURCE PROGRAM.

* THE FOLLOWING ENTRY IS A MEMBER OF A COPY LIBRARY.
* THIS ENTRY HAS A LIBRARY ENTRY NAME OF STATE-TAX-RT.

MULTIPLY PAYREC-RATE BY PAYREC-HOURS
GIVING TOTAL.

MULTIPLY TOTAL BY .015 GIVING STATE-TAX.

* THE FOLLOWING CODING WAS INCLUDED IN A SOURCE LISTING.

0010-ST-TAX-RTN. COPY STATE-TAX-RT
REPLACING MULTIPLY TOTAL BY .015 GIVING STATE-TAX
BY MULTIPLY TOTAL BY .020 GIVING STATE-TAX.

* THE FOLLOWING IS THE RESULTANT CODING PRODUCED BY THE
* COMPILER FROM THE ABOVE LIBRARY ENTRY AND COPY STATEMENT.

MULTIPLY PAYREC-RATE BY PAYREC-HOURS
GIVING TOTAL.

MULTIPLY TOTAL BY .020 GIVING STATE-TAX.

FIGURE 2-36 (Cont.)

2-268

. . . ... .. .. .. . , . . . . .. .1I'



15 DEC 81 CSCM 18-1-1

2.5.6 DEBUGGING AIDS.

2.5.6.1 Introduction to Debugging Aids.

DEBUGGING FEATURES. The debugging features available in COBOL are designed
to aid the programer in producing an error-free program in the shortest possible
time. Further, the debugging features are designed to permit most debugging to
be accomplished at the source language level. Debugging in COBOL call occur at
two points in the program production process: during compilation and during
execution of the object program. In general, debugging during compilation deals
primarily with the removal of synlax errors from the source program, while
debugging during execution deals with the removal of logical errors from the
ob;ect program. For the most part, the COBOL compiler detects syntax errors in
the source program and advises the programer of these during the compilation
process. The programer can then correct the source program and recompile,
repeating this cycle until the compiler indicates that an error-free compilation
has occurred.

At this point, the programer is ready to test and debug the object program
using test data. The compiler provides a debugging language feature for this
phase of the debugging. This feature enables the programer to insert source
language statements that, when compiled and executed as part of the source
program, will produce output showing the flow of control and the values of
selected items as the program is being executed. Based on this output, the
programer can correct the source program, recompile, execute, and reevaluate the
new output. When an error-free object program has been obtained, the debugging
statements are removed from the source program and the program is recompiled
producing an object program ready for execution in a production mode.

* DESK-CHECKING. The whole idea of debugging is to produce a program that is
free of errors. There are other things that do aid in detecting errors and can
therefore be included under the topic of debugging. One such method is simple
desk-checking. The following is a list of things that should be double checked
since they have consistently been causes for errors in previous programs.

* Problems that arise in many programs are the result of:

Missing or misplaced periods.

Files not being properly opened and closed.

Duplicate paragraph names.

Misspelled data-names, reserved words and procedure-names.

Improper characters in names or more than 30 characters in a name.

2-269



CSCM 18-1-1 15 Dec 81

2.5.6.1 Introduction to Debugging Aids.' (Cont.)

Improper use of the VALUE IS clause. The VALUE IS clause:

Must be compatible with the class of the item.

Must not be used in an entry with an OCCURS clause.

Must not be used in an entry subordinate to an OCCURS
clause.

Must not be used in the FILE SECTION of the DATA
olVI STW.
Must not be used in an entry containing an edit
picture.

Misuse of the OCCURS clause. The OCCURS must:

Not be used in entries with levels 01, 77, 88.

An item defined with an OCCUPS clause must not be
referenced without a subscript.

Alphanumeric literals requiring more than one line must have a hyphen()
in column 7 and a quote (') in column 24 of the continuation line.

Misuse of the REDEFINES clause. In the REDEFINES clause:

Multiple redefinitions must be at the same level with
no entries intervening at the same level.

Explicit redefinition may not occur at the 01 level
in the FILE SECTION.

Values of subscripts outside of their range: The values in a subscript
should be checked to assure you that the subscript has not gone outside of its
range.

DEBUGGING FACILITY. The debugging facility consists of the use of the USE
FOR DEBUGGING decl-a-rative or individual debugging lines. See paragraph
2.4.9.10.

DEBUGGING LINES

A debugging line is any line in a source program with a I'D" coded in
column 7 (the continuation area). If a debugging line contains nothing but spa-
ces in Area A and Area B, it is considered a blank line.

2-270



15 DJEC 81 CSCM 18-l-1

2.5.6.1 Introduction to Debugging Aids. (Cont.)

Each debugging line must be written so that a syntactically correct
program results whether the debugging lines are compiled into the program, or
treated as documentation.

Successive debugging lines are permitted. Debugging lines may be con-
tinued; however, each continuation line must contain a "D" in column 7, and
character-strings must not be broken across two lines.

Debugging lines may be specified only after the OBJECT-COMPUTER para-
graph.

When the WITH DEBUGGING MODE clause is specified in the SOURCE-COMPUTE-K
paragraph, all debugging lines are compiled as part of the object program.

When the DEBUGGING MODE clause is omitted, all debugging lines are
treated as documentation.

2.5.6.2 DOS COBOL Program Debugging Aids.
r

* The following are a few pointers to aid the programer in lebugging DOS
COBOL programs. The necessary tools for debugging from a core dump are:
program post list, core dump, and Linkage Editor Map.

@ Determine the COBOL statement that generated the address of the program
check.

The top of the system dump will tell you the address of the program check
and the type of program check. Locate the instruction in the core dump.

Determine the relocation factor of your program from the Linkage Editor
Map. Subtract the relocation factor of your program in the Linkage Editor Map
from the address. of the offending instruction.

The address that results may be located in the Procedure Division Map
generated at compile time.

Preceding the address and code found in step three, you will find the
sequence number of the corresponding COBOL statement in the post list and the
number of the element in the sentence that generated the code.

9 Determine if the COBOL statement is coded incorrectly.

* If the statement is coded correctly, go back to the core dump and find
out the type of program check.

If it is a data exception, you will probably find that the instruction is
a decimal instruction and one of the fields either will not have a valid sign or

2-271

. . .. . . " .. II .. I i* -- . . .. . . .. . .. . . . .



CSCM 18-1-1 15 Dec 81

2.5.6.2 DOS COBOL Program Debugging Aids. (Cont.)

will contain digits other than 0 through 9. To determine this, it will be
-necessary to find the fielli in core.

Inspect bits 4-7 of the low order byte for a valid sign. If one is not
present, this is the cause of the program check.

2.5.6.3 Common Causes of Errors.

* Blanks in fields defined a.s numeric.

9 Failing to initialize counters and thus not insuring a valid beginning
vabie.

* Moving zeros to a group level item to zero several fields -- a valid
sign is generated only for tne lowest order field.

* Adding into a field that is subscripted can cause trouble if care is not
taken to insure that the subscript does not get too large.

If it is a protection exception, one possible cause is that a base
register used in the instruction has not been initialized. Base registers in
COBOL are initiali'zed at different times. For input files, the register is not
initialized until the first successful read; they are not initialized when the
files are opened. For output files, the registers are initialized when they are
opened. When faced with a protection exception, go to the COBOL post list and
check to be sure that no data has been moved prior to the time when base
registers will be initialized.

If an addressing or specification exception occurs, you may (but not
always) find upon inspection that registers have been unexpectedly modified and
the problem becomes one of the finding out how. A possible approach is: Check
the addresses in register fourteen and fifteen against the address of the
program check instruction. If the address of the program check instruction is
equal or slightly larger than the address in register fifteen, you are probably
in a subroutine and the address in register fourteen should be your return
address. A BAL or BALR instruction will probably precede your return address.
Look for this particularly when the problem does not seem to be with a COBOL
statement.

e If the job is canceled because of an illegal supervisor call (SVC 32),
two of the possible causes are a wrong length record condition occurred or the
problem program says it will handle a file in a certain manner when, in fact, it
does not. One method of investigating the cause of this type of problem 4s:

Determine the module that contains the SVC 32 instruction from the error
address given with the error message (first page DOS core dump) and the reloca-
tion factors on the Linkage Editor Map.

2-272



'15 DEC 81 CSCM 18-1-1

2.5.6.3 Commion Causes of Errors. (Cont.)

If the instruction is located in the lower problem program area, you pro-
bably have a wrong length record error. The file name (SYS number) of the file
on which this occurred will be located 98 bytes (Hex '62') ahead of the SVC 32.

If the instruction is located in a logic module, obtain the listing of
the module from the error address. The resulting number is the address of the
error instruction in the module post list. After locating the offending
instruction, you will often find commients which will point you toward the source
of the trouble.

Failure to clear the Output area, clearing the output area before the
first record is written only clears the first record area within the output
block.

Failure to insure that a subscript does not exceed the range of the asso-
ciated OCCURS clause may lead to referencing incorrect storage locations.

Branching out of a perform and not exiting properly may cause trouble.

Moving any data to or from any 1/O area before opening the file, and in
r the case of input files before issuing the first successful read.

Attempting to read from a file which has already taken the 'AT END'

branch will cause trouble for the programer.

2.5.6.4 Link Edit Map.

* The PHASE, on a Link Edit Map, is the name by which a program was cata-
loged to theCore Image Library. It is the name by which a program phase is
retrieved from the Core Image Library, brought into main storage and executed,
when the name is the phase-name parameter of an EXEC control statement.
Programs that are link-edited and executed inmmediately, from the transient area
of the Core Image Library, are given the name PHASE***, as shown on the example
link edit map. This is merely a dummrry name for all phases that are tested
before cataloging to a permanent location on the Core Image Library.

a XFR-AD is the abbreviation for TRANSFER ADDRESS. This column on the link
edit map will show the absolute address of the first instruction of the COBOL
program's Procedure Division in main storage when the program is to be executed.

e LOCORE indicates the absolute address, in main storage, of the beginning
of the area immediately following the LABEL PROCESSING area.

e HICORE indicates the absolute address of the last instruction of the
link-editedprogram.

*DSK-AD is the disk address, on the systems residence disk pack of the
program.

2-2 73



CSCM 18-1-I 15 Dec 81

2.5.6.4 Link Edit Map. (Cont.)

o ESD TYPE - External Symbol Dictionary. This column designates the ele-
ments, or Control S~ctions that make up a program -- with sub-elements or
entries, whether program phases or overlays.

* LABEL - An eight character name of a control section, entry, overlay or
element-tT is part of a program phase.

s Each character position, or grojp of character positions, of an B
module has specific meaning. The firs- two positions identify the type of
module; the third position contains a code which represents the media of he
file; the fourth position will contain a code, for data file modules, which
reoresents the recording mode of the records in the file; the fifth through
eighth positions indicate options such as:

Control character.

Input or output.

How many I/0 areas.

Device.

Error options.

Checkpoint options.

* LOADED shows the absolute address of the module or element in the
executabe-program.

* REL-FR is the abbreviation for relocation factor.

2.5.6.5 Object Storage Layout.

e The relative positions of the components of a COBOL program in core will
generally be in the following sequence within the background partition. See
FIGURE 2-37 below.

2-274

. .. .. . .. .. . . . .. . . ,. . . . . .. . .| m . . . ...* .. .



15 DEC 81 (;SCM 18-I-1

2.5.6.5 Object Storage Layout. (Cont.)

I-I

Supervisor Work Area
Label Processing Area
COBOL Problem Program

WORKING-STORAGE Data Items
Edit Masks
DTF Tables
Record Buffers
Initialization Instructions
Work Area
Literal Pool & Global Table
Generated Instructions

Input/Output Subroutines (IJxxxxxx modules)
CALLED Subprograms
COBOL Subroutines (ILBxxxxx modules)

FIGURE 2-37

SUPERVISOR WORK AREA.

e This area, a part of the supervisor, is for special groups of instruc-
tions, or subroutines, which the supervisor calls in from the Core Image Library
as needed for special functions. After the instructions are executed, other
subroutines are called in again, as needed.

s One of the subroutines most frequently called into this area is the
'Attention Routine'. Brought in by depressing the Request Key on the Console
Typewriter, this is the communication media between the supervisor and the con-
sole operator. Other subroutines called in when needed are: outputting a core
dump and opening and closing files.

LABEL PROCESSING AREA.

* While a program is executing, file labels have to be either checked to
ensure that the proper files are being accessed, or created if the files do not
yet exist.

2-275



CSCM l(8-l-I 15 I)c 8l1

2.5.6.5 Object Storage Layout. (Cont.)

0 This checking or creating is accomplished by the special Logical
Input-Output Control System (LIOCS) module that manipulates the particular file.
These are special LIOCS modules for each type of file: tape, sequential disk,
card, print, index sequential, etc.

Most of these special moaules have their own working-storage area in
which labels can be stored while checking or creating them. The two exceptions
are the module that manipulates a tape file and the module that manipulates an
index sequential file. Therefore, when a program has either or both of these
types of files, a special area has to be set aside at Link Edit time called the
'Label Processing Area'. This is done by inserting a // LBLTYP card in the job
stream immediately preceding the // EXEC LNKEDT card. This will allow the
Linkage Editor program to reserve the proper amount of additional core storage
needed for processing the labels of the tape or index sequential files. The //
LBLTYP card must contain a parameter tnat describes the maximum amount of aadi-
tional core storage needed for this area. If the processing program has a tape
file, the parameter NSD(nn), where nn is the largest number of extent for a
single file, should be included in TFe // LBLTYP card. This will reserve 80
additional bytes of core storage for label processing. If the processing
program has an index sequential file, 84 bytes will be reserved plus 20 addi-
tional bytes for each // EXTENT card. If the processing program has both tape
and index sequential files, only one // LBLTYP card is needed -- with the para-
meter describing the largest file -- the index sequential file.

COBOL SUBROUTINES.

s The Linkage Editor program has the capability of recognizing that a
program phase needs subroutines that were not recognized as needed by the com-
piler. If the compiler had seen the need for these routines, it would have
created an INCLUDE card to alert the Linkage Editor of the need and caused the
subroutine to be pulled from the relocatable library at Link Edit time. One
type of these modules is the ILB series of relocatable modules.

WORKING-STORAGE.

* The area designated 'Working-Storage' is the beginning of the COBOL
problem program. This beginning point will be related to a location in the Link
Edit Map, which will be discussed later.

e The working-storage area contains those constants, accumulators, headers
and other data defined in tne WORKING-STORAGE SECTION of the COBOL problem
program.

EDIT MASKS.

e Edit Masks will be present whenever the program has any items described
with a report usage, such as floating dollar signs, leading zero suppression,
check protection, credit or debit signs and others.

2-276



15 DEC 81 CSCM 18-1-1

2.5.6.5 Object Storage Layout. (Cont.)

* Edit Masks are constructed by the compiler and are used whenever a
numeric item is moved to the report item for which the edit mask was created.
The edit mask is moved to a work area before the numeric move so the mask will
not be destroyed and can be used again when needed.

DTF TABLES.

* DTF is the abbreviation for Define the File. There will be a DTF table
for every logical file in a program. The table will contain much meaningful
information concerning the file.

Some of this information is:

The symbolic name of the file.

The address of the LIOCS module that manipulates the file.

The type of device on which the file resides.

4 The access method.

The organization of the file.

The record length.

The block length.

The key location and length -- if index sequential.

The current record address.

The current block address.

The alternate block address.

Some of this information is inserted at compile time, other information
at execution time. Naturally, ineormation in the DTF changes as records and
blocks are accessed.

ANSI COBOL. DECIPHERING DTFs.

e GENERAL. Conveys general information about OTFs and covers the following
topics: definition of DTFs, core storage layout, general location of DTFs,
exact address of DTFs and contents of DTFs.

* DEFINE THE FILE (DTF). In a COBOL program each file is described by
statements in the ENVIRONMENT and DATA DIVISIONS. The COBOL compiler analyzes
the file description entries and produces an area of "summary information" for

2-277



CSCM 18-1-1 15 Dec 81

2.5.6.5 Object Storage Layout. (Cont.)

each file described. The file descriptors define the file, so the "summary
information" is called the DTF for the file. The area will vary depending on
the device-class (unit-record, utility, direct-access); access method (input,
output, I/O); file organization (direct, sequential, indexed); record/block
length; and presence or absence of an alternate record/block area.

e GENERAL LOCATION OF DTFs. DTFs are located beginning a few bytes beyond
the last element of the area generated by the WORKING-STORAGE SECTION of a COBOL
procram--always on a double word boundary (last nex digit of the core location
will be either 0 or 8). This, one method of locating the general area of the
DTFs is to add the length of the WORK:NG-STORAGE SECTION (from the DA DIVISION
MAP) to the load point for the COBOL program (from the linkage editor map). The
sum obtained will usually be within 50 bytes of the first DTF for the program in
core. The DTFs will be in the same order as the FD entries in the COBOL source
program.

e EXACT ADDRESS OF DTFs. To locate the exact address of a particular DTF,
the following procedure may be used if a current Source Statement Listing,
Procedure Division Map, and core dump are available.

In the Source ;tatement Listing, locate a READ, WRITE, or REWRITE state-
ment for the file in question.

Using the line number for the READ, WRITE or REWRITE statement in the
Source Statement Listing, find the generated machine-language instructions for
that line in the Procedure Division Map.

In the generated machine language irstructions, find the first machine
language instruction beginning with '41' (Load Address) for COBOU-v-Fb READ or
'58' (Load) for COBOL verb WRITE. The corresponding DTF is identified here in
each case under the column of compiler generated information about the operands
of the generated instructions.

Add the value in the base register (from the first page of the core dump)
to the displacement value in the '41' Load Address or '58' Load instruction.

The sum of the two values is the hexadecimal location of the beginning of
the DTF in the core dump.

NOTE: The above method will work if the register
settings have not been changed by subroutines,
IOCS modules, or subprograms.

* CONTENTS OF THE DTF. Once located, the DTF reveals information which can
be quite useful in debugging a program having I/O problems. Indicators in the
DTF reveal the status of the file at the time the core dump occurred. In the

2-278



1 DEC 81 CSCM 18-1-1

2.5.6.5 ObJect Storage Layout. (Cont.)

following discussion, consideration is given to only those areas of the DTF

which might help to determine the cause of a file handling problem. (Refer to
FIGURE 2-38.)

NOTE: Both byte locations and contents are expressed
in hexadecimal notation relative to zero.

BYTES CONTENTS

0-l The first two bytes of DTF are used as a counter. For an

input file, the number of bytes transferred from the input

device is counted into bytes 0-1. After the block of records

has been transferred, the count in bytes 0-1 is subtracted

from the block size specified for the file. Thus, if these

bytes have a non-zero count, the block transferred was shorter

than what was specified in the RECORD and BLOCK CONTAINS

clauses of the FD entry for the file. When a non-zero situa-

tion occurs in these two bytes, the system takes one of two
actions. If the non-zero count is an even multiple of the

record size (such as the short block written at the end of a

tape or sequential disk file), file processing will continue

in a normal manner, taking the AT END instruction after the

last record in the short block has been read. A non-zero size

causes automatic and immediate program termination with a
core dump. The reason given for the dump will appear on both

the console and the printer as ILLEGAL SUPERVISOR CALL 32.

Generally, the hex core location of the 'OA 32' instruction
will be within the DTF having a non-zero count. Note that when

a block of records longer that what was described in the FD

is encountered while processing a file, these bytes will con-

tain '0000' but a core dump termination will still occur since

no core is available for the additional data waiting to be
transferred.

6-7 For COBOL files, byte 6 will contain '01' indicating an open

file. Byte 7 will hold the 'SYS' number assigned to the file

in the ENVIRONMENT DIVISION for unit-record and tape files.

For disk files, the SYS number in the EXTENT card for the

prime data area will appear in byte 7.

FIGURE 2-38

2-279

babo



C'CM 18I-I- 15 Dec 81

2.5.6.5 Object Storage Layout. (Cont.)

BYTES CONTENTS

11-13 These bytes point to the address of the logical IOCS module being
used by the file. The address should match the load point of one
of the IJxxxxxx subroutines listed in the LINKAGE EDITOR MAP.

14 Byte 14 is the DTF "type" byte. It identifies the device-type,
access method, and organization of the file. FIGURE 2-39 shows
the more common configurations for this byte.

16-1B For disk and tape files only, these bytes will contain the letters
"SYS" followed by the assigned numbers for the file from the
SELECT entry.

FIGURE 2-38 (Cont.)

* The rest of the DTF is highlighted in FIGURE 2-40 since, beyond what has
been mentioned above, the address locations for file elements are in different
positions for different types of files. Add the value found in FIGURE 2-40 to
the location of the first byte of the DTF to determine the data element sought.

EXAMPLE: To find the address of the current record in a
sequential disk file, add hex '58' to the
beginning location of the DTF. At DTF + '58'
will be found the address of the first byte of
the record being processed at the time the core
dump occurred. For additional information, see
the Sample Problem.

2-280

* 1 . -.



15 OEC 8? CSCM 18-7-i

2.5.6.5 Object Storage Layout. (Cont.)

HEX VALUE FILE TYPE

02 Card Reader

03 Console

04 Card Punch

08 Printer

10 Unlabeled Tape

11 Non-Standard Labeled Tape

12 Labeled Output Tape

14 Labeled Input Tape

20 Sequential Disk

22 Direct-Access (LOADA)

23 Device Independent File

24 Index-Sequential (LODIS)

26-27 Index-Sequential (SRUIS, RRUIS,
RUAIS, RSAIS)

34 Direct Access File

CONFIGURATIONS FOR BYTE X'14' FOR OPEN FILES

FIGURE 2-39

2-281

L \ _ __ _



CSCM 18-11 15 Dec 81
2.5.6.5 Objeict Stor;ne L*Xout. (Cont.)

I-S ADD-RTV
z

I-S RETRVE _T0

I-S ADD e'j CN u~ m~ <~i~C.

I-S LOAD ;L 00 Q. Lf r IS.

SEQ DISK OUTPUT 7<<<00Qs

SEQ DISK INPUT Nn00 _ u ci0

_ tD. <<w< -T %LABELED TAPE 11 1 IT m~1 c-_ .T '? C

PRINTER mc

-t 00000
CARD-PUNCH IMC1 14z - N*

N1 ID .0 <C -: 0 Co CO
CARD READER M ' 04 --- - - C

zt z z

Z U. Z -,E4



15 DEC 81 CSCM 18-1-1

2.5.6.5 Object Storage Layout. (Cont.)

GENERAL NOTES:

1. Some of the values shown above will not be present until after the file

is opened.

2. All values above are for fixed-length records only.

3. B = I byte, H = 2 bytes, F = 4 bytes.

SPECIFIC NOTES.

1. The block length shown in the DTF will be the actual block length + 8.

2. The data begins 8 bytes beyoid the address given in the DTF.

3. Key location figure is valid only when records are blocked.

4. The address will be valid only when bytes '64-65' contain '00DC' and
the program has specified sequential retrieval.

RECORD BUFFERS.

e These are the areas into which input data is stored after retrieval from
the physical file or from which output data is retrieved when being placed on a
physical file.

* It is normal to have two areas for each file justifying the term 'double
buffered'. This allows one area to be filled with information or data while the
other area is being accessed or, for output files, one area to be outputed while
the other is being filled.

e Programs which are very large and are considered 'core-bouna', or so
large as to need almost all of the available core storage, can limit buffers to
one, but this reduces efficiency as the one buffer cannot be refilled intil it
has been completely exhausted.

e Input/output buffers should be as large as a program will permit so that
a maximum number of characters can be transmitted between the device and core
storage. This produces the greatest efficiency.

WORK AREA, TASK GLOBAL TABLE (TGT), PROGRAM GLOBAL TABLE (PGT), LITERAL
POOL.

# The work area is used during execution of a COBOL program for arithmetic
calculations having intermediate results, for editing numeric fields being moved
to a report receiving field -- using one of the edit masks -- and by some of the
more complex COBOL verbs such as GO TO ... DEPENDING ON.

4"

2-283

- - - -, MUMMA"



CSCM 18-1-1 1) DoI') 81

2.5.6.5 Object Storage Layout. (Cant.)

*The literal pool is generated by the compiler whenever literal values,
rather than data-names are used in the PROCEDURE DIVISION of a COBOL program.
There are two types of literals: numeric -- utilizing the numbers 0 through 9
and non-numeric -- utilizing any of our 256 character set inclosed in quote marks.
Numeric literals have a size limit of 18 digits while non-numeric literals may be
120 characters in length.

*The global tables are used as directories to sn~ow core positions or abso-
lute addresses assigned to program elements or modules by the Linkage Editor
program. At compile time, the compiler only sets up linkage to these elements,
as their absolute address cannot be known until Link Edit time.

COMPILED INSTRUCTIONS - PROBLEM PROGRAM.

s This area contains the object language instructions generated by the com-
piler from the COBOL source statements of the problem program.

*Machine language generated by the compiler will appear in the core dump.

LIOCS MODULES.

* LIOCS is the abbreviation for Logical Input Output Control System. Some
of the modules that make up this group of elements are the file manipulating
modules. These are the instructions that LIOCS will execute when reading,
writing or rewriting a file. There are special modules for each of the
following file types:

Card Reader.

Print File.

Card Punch.

Tape.

Sequential Disk Input.

Sequential Disk Output.

Index sequential being created (output, ISC).

Indexed sequential extend (input, ISE).

e When a program has more than one tape file or more than one disk file,
the same module will probably be used to manipulate each file, but each will
have its awn DTF table as previously discussed.

2-284



15 DEC 81 CSCM 18-1-1

2.5.6.5 Object Storage Layout. (Cont.)

CALLED SUBROUTINES. The Procedure Division of a COBOL program can 'CALL',
from the Relocatable Library, subroutines that exist there which will perform a
special function. The Compiler, while compiling the source statements of a COBOL
program, will create INCLUDE cards, which will alert the Linkage Editor program
to pull these subroutines from the Relocatable Library and make them part of a
program phase. There are many preconstructed subroutines on the Relocatahle
Library that can be used by a program. Two examples are: P51ATP, which
retrieves today's date from tne communication area of the sunervisor, fnl P5IATP,
which stores records on a tape which may De later outputed to the printer.

2.5.6.6 System Action Under Carcel.

o The following lists all cancel codes and their message prefixes. Some
do not appear in a foreground PIB, such as the HEX 'FF' code (supervisor catalog
failure). This type of function can be performed only in the background par-
tition. The linkage editor and system maintenance functions must also be per-
formed in the background area.

e Byte 1 of the PIB table contains a cancel code stored by the system any
time a cancel condition is encountered. The PIB table can be located by c-is-
playing on the console the communication region address (located at HEX 16-17)
plus the displacement of a '5A' and '5B'. This is the address of the first Dart
of the PIB table. Remember each entry is 16 decimal (HEX '1P') bytes in lenqth.
Each type of the PIB is numbered starting with S and continuing through 15.

* Cancel Code (Hexadecimal): 10

Message Code: None

Description, Action or Condition: This is normal end of job (EOJ).
Cancel code X'1I' is posted in byte--f the PIB for the program issuing the SVC
14. The next time the canceled program is selected on general exit, an SVC 2 is
taken to call in a B-transient program, which, in turn, calls job control to
perform the end-of-job step.

9 Cancel Code (Hexadecimal): 17

Message Code: 0S021

2-285



CSCM 18-1-1 15 Dec 81

2.5.6.6 System Action Under Cancel. (Cont.)

Description, Action or Condition: This is caused by the main task in a
partition issuing the CANCEL macro without detaching all subtasks running under
its rontrol.

e Cancel Code (Hexadecimal): 18

Message Code: None

Description, Action or Condition: This is caused by the main task
issuing the DUMP macro with subtasks attached. It allows the dump to take place
without the error cancel message being printed. All subtasks are detached and
EOJ is taken after the dump is complete.

e Cancel Code (Hexadecimal): 19

Message Code: 0P741

Description, Action or Condition: This is caused by the operator
responding to an I/O error message with the cancel option nn the 1052.

* Cancel Code (Hexadecimal): 1A

Message Code: 0P731

Description, Action or Condition: This is caused by an I/O error that
cannot be handled by the program (task), thus causing the program to be can-
celed. If the DUMP option is specified at system generation time, a dump of the
supervisor and the partition in which the program was running will be taken.

* Cancel Code (Hexadecimal): 1B

Message Code: -P821

2-286



2.5.6.6 System Action Under Cancel. (Cont.)

Description, Action or Conoition: This is caused by a channel failure.

* Cancel Code (Hexadecimal): IC

Code: 0S141

Description, Action or Condition: This is caused by a subtask issuing
the CANCEL ALL macro. This causes all other subtasks to be detached and can-
celed. The main task is canceled, and a dump of the supervisor and partition
involved results.

e Cancel Code (Hexadecimal): ID

Message Code: 0S121

Description, Action or Condition: This is caused when the main task ter-
minates before all subtasks have been detached. This indicates the subtasks
were canceled before they came to a normal EOJ. The subtasks are detached, and
the complete partition is canceled.

* Cancel Code (Hexadecimal): 1E

Message Code: 0S131

Description, Action or Condition: This is caused by the combination of
one task issuing an enqueue for a resource, and another task issuing a dequeue
for that same resource. As a result, the previous owner cannot be identified
because register 0 in the save area has been modified.

* Cancel Code (Hexadecimal): 1F

' Message Code: OP81I

2-287



CSCM 18-1-1 15 Dec 81

2.5.6.6 System Action Under Cancel. (Cont.)

Description, Action or Condition: This is caused by a CPU failure.

@ Cancel Code (Hexadecimal): 20

Message Code: 0S031 or OS111

Description, Action or Condition: This is caused by a program check
interrupt. The program is canceled by the system. The user may supply a PC or
AB routine to handle this condition via the STXIT macro. This code is also used
when a routine in the transient area is canceled due to a program check in the
task or subtask using it.

* Cancel Code (Hexadecimal): 21

S Message Code: OS041 or OS09I

Description, Action or Condition: This can be caused by many user errors.

e The complete text for message 05041 is:

S ILLEGAL SVC - HEX LOCATION nnnnnn - SVC CODE nn

where nn is in hexadecimal notation. This message results from the

following causes:

When nn is 02: The phase name given does not start with $$B, or

For LIOCS, macros called in invalid sequence. As a result, an SVC 8
is issued after an SVC 2 before an SVC 9 has been issued to free the transient
area, or for other conditions, the user specified a temporary exit (SVC 8) for a
logical transient. In the temporary exit routine, another routine is called (by
an SVC 2) before an SVC 9 is issued to free the transient area.

When nn is 05: The 'to' range specified in the MVCOM macro is invalid,
or MVCOM macro was issued by a foreground program, operating under single
program initiation.

2-288



15 DEC 81 CSCM 18-1-1

2.5.6.6 System Action Under Cancel. (Cont.)

When nn is OA, 12, 13, or 18: The interval timer was not allocated to

this partition, or the superviscr was generated without the timer option.

When nn is OB: The call was not given by a logical transient routine.

When nn is 16, 17, or IA: The caller did not have a PSW key of zero.
This is applicable oily in a multiprograming system.

When nn is 23: More than 16 holds have bcen issued for tne same
track.

When nn is 24: Free a non-DASD or a track that is not held.

When nn is 26: A subtask issued attach, or the save area is not on a
doubleword boundary.

When nn is 27: A main task issued detach without SAVE = parameter, or
a main task issued detich, but the ID of the subtask in the save area passed i;
not valid, or if a main task attempts to detach an already terminating subtask.

When nn is 29: A DEQ is issued by a task that did not ENQ the
resource. (This is valid in an AB routine.)

When nn is 2A: A subtask (without an ECB = parameter) has issued ail
ENQ macro, or a subtask has issued an ENQ macro to a resource that has been
dequeued by another task that has been terminated, or a task has issued two ENQ
macros to the same resource without an intervening DEQ.

When nn is 2D: Emulator execution was attempted, but the EU parariete,"
of the SUPVR macro was omitted or incorrectly specified during system genera-
tion.

When nn is 32: For LIOCS:

1. An imperative macro (such as WRITE or PUT) was issued to a module
that does not contain the requested function, or

2. A PUT was issued for an ISAM retrieve module without a preceding
GET, or

3. An invalid ASA first character for the printer was used, or

4. A wrong length record indication occurred while processing 1287
documents when RECFORM=UNDEF, or

5. The 1287 program erroneously contained a CCW(s) with the SLI flag
bit 'OFF', or

6. For COBOL, a wrong length record was detected in the object proqram.

When nn is au other value: The supervisor function requested by
the operand of the SVC'is not defined for the supervisor being used.

2-289



CSCM 18-1-1 ! P) Do B11

2.5.6.6 System Action Under Cancel. (Cont.)

* Cancel Code (Hexadecimal): 22

Message Code: 0S051 or 0S061

Description, Action or Condition: This is caused by the issuing of a
FETCH (SVC 1) or a LOAD (SVC 4) macro whose phase name cannot be found. This
ca:icel code is also used when a logical transient is canceled.

* Cancel Code (Hexadecimal): 23

Message Code: 0S021

Description, Action or Condition: This is caused by a program, task or
subtask issuing a CANCEL macro. IF 'issued by a program or task, the program or
partition is canceled. If issued by a subtask, the subtask only is cancelEa.

* Cancel Code (Hexadecimal): 24

Message Code: OSII

Description, Action or Condition: This is a result of an operator
entering CANCEL from the 1052. I

e Cancel Code (Hexadecimal): 25

Message Code: OP711

Description, Action or Condition: This is a result of attempting to load
a problem program phase at an address outside main storage or outside the
requester's area (background or foreground). This condition also occurs:

If the program requires more main storage than is allocated to the
partition where the program is to run, or if an improper address is detected on
an SVC interrupt (i.e., CCW address in CCB is invalid).

2-290



15 DEC 81 CSCM 18-1-1

2.5.6.6 System Action Under Cancel. (Cont.)

* Cancel Code (Hexadecimal): 26

Message Code: OP711

Description, Action or Condition: This is a result of a program issuing
an I/O request for a logical unit that-is not assigned to a device. If a dump
is taken, general register i contains the address of the CCB. if the CCS is
unavailable, the logical unit message contains SYSxxx.

e Cancel Code (Hexadecimal): 27

Message Code: OP70I

Description, Action or Condition: This is a result of a program issuing
an I/O request for a logical unit for-which there is no logical unit block (LUB)
entry (invalid LUB code in CCB). If a dump is taken, general register i contains
the address of the CCB.

* Cancel Code (Hexadecimal): 28

Message Code: None

Description, Action or Condition: QTAM cancel in progress.

* Cancel Code (Hexadecimal): 30

Message Code: 0P721

Description, Action or Condition: This is a result of a program ignoring
the reading of the /& statement on SYSRDR or SYSIPT.

2-291



CSCM 18-1-1 15 Dec 81

2.5.6.6 System Action Under Cancel. (Cont.)

* Cancel Code (Hexadecimal): 31

Message Code: 0P751

Description, Action or Condition: This is a result of the number of
pending I/0 errors exceeding supervisor capacity.

e Cancel Code (Hexadecin-al): 32

Message Code: 0P761

Description, Action or Condition: This is caused by DASD file-protect
limits being exceeded or by an incorrect record reference for system files on
disk. It will also be posted for unrecoverable I/O errors on tape.

* Cancel Code (Hexadecimal): 33

Message code: 0P79I

Description, Action or Condition: This occurs when a DASD command chain
in a file-protected environment does not start with a command code of X'7'.
This code indicates a long seek and must be the first command in the chain.

o Cancel Code (Hexadecimal): 34

Message Code: 0P841

Description, Action or Condition: This is caused by an unrecoverable I/O
error during a FETCH of a non-$ phase, thus resulting in the job being canceled.

* Cancel Code (Hexadecimal): FF

2-292



15 DEC 81 CSCM 18-1-1

2.5.6.6 System Action Under Cancel. (Cont.)

Message Code: 0P781

Description, Action or Condition: This occurred when an IBM-supplied
ccmponent failed to post a valid cancel code.

All of these cancel codes cancel the program, task, or subtask when they
occur. If multitasking is being used and a main task is cance'ed, all of the
subtasks attached are detached and canceled as a result of the main task bei
canceled, with the exception of cancel code X'?3'. If a dump option was speci-
fied at system generation time, the contents of the supervisor and the partition
in which the cancel condition occurred is written on SYSLST.

The linkage editor map can be a great help in locating programs and
subroutines that are included in the programs at object time. Common areas,
load address, relation factors, low-core and high-core addresses are also shown.
In addition, the PHASE card is displayed to show where the phase was loaded
(i.e., directly following the supervisor or at some other location). This map
is also helpful when working with multiphase programs.

The system dump of main storage used with these items allows the programer
to relate all the information he has gathered to the contents of main storage at
the time the error occurred. By using the dump and the listing, the programer
can see how his program appeared in main storage at the time of the error. By
using the values found in the Program Information Key (PIK) and Program
Information Block (PIB) table in the dump, he can see partition save areas,
registers, and instructions to determine what actually caused the error.

There are times when a system dump is not available to the programer, such
as hard waits and unending loops. When one of these conditions occurs, the only
way to get a dump of main storage is to use a stand-alone dump. Remember that
the address of the communication region (COMRG) is lost when a stand-alone dump
is taken. Therefore, bytes X'16' and X'17' should be displayed before taking a
dump of main storage to ensure that the programer has the correct communication
region address to use when he is analyzing the dump. If bytes '16' and '17' are
not displayed, the communications region start address can still be found by
scanning the dump for the date in the form MM/DD/YY or DD/MM/YY (this indicates
the start of COMRG). Although the register values in a stand-alone dump
(register print area of the dump) may not be valid, the partition save area
values most likely will be valid.

LABEL STORAGE AREA (1 cylinder).

* The label storage area will start in track 0 of the first cylinder
following the end of the SSL and will continue for one cylinder. Byte 13 of
record 4 of the System Directory contains the address of the label storage
cylinder. This address is also furnished for Job Control and LIOCS in the
communication region.

2-293



CSCM 18-1-1 15 Dec 81

2.5.6.6 System Action Under Cancel. (Cont.)

9 The label storage cylinder will contain label blocks which define the labels
on files used by processing programs. Label blocks are built at Job Control time
for labeled tape files from // VOL and // TLBL cards and for disk files from // VOL,
// DLBL and // EXTENT cards. These label blocks are retrieved from the label
storage cylinder at execution time and read into main storage by the OPEN and CLOSE
routines. File labels are also read by the OPEN and CLOSE routines into the
transient area. A comparison is then made between the label block information
and the file label to ensure that the proper file is being accessed.

* Core storage need not be reserved for sequential DASD files as the label
blocks will be read into the transient area. Core storage must be reserved by
the user for non-sequential DASD files and labeled tape files. However, core
need be reserved for only the largest label block which will be retrieved. This
core reservation is accomplished with the //LBLTYP statement at link edit time.
This statement has two parameters: TAPE or NSD (nn).

e A // LBLTYP TAPE will reserve 80 bytes of user core and is used when ONLY
labeled tape files are to be processed. This same 80 bytes is used by all tape files.

e A // LBLTYP NSD (nn) is used when non-sequential DASD files will be proc-
essed regardless of whether labeled tapes will also be processed. This state-
ment reserves 84 bytes of core plus 20 bytes for each extent. A // LBLTYP
NSD(nn) is submitted for the non-sequential DASD file with the largest number of
extents with the number of extents being specified in the (nn) parameter. This
same core storage will be used by label blocks for non-sequential DASD files
with fewer extents and by labeled tape files.

e If neither non-sequential DASD label blocks nor labeled tape label blocks
will be retrieved by the program, no core storage needs to be reserved (i.e., no
// LBLTYP statement is submitted at link edit time).

* Only one // LBLTYP statement maximum is ever submitted at link edit time.

e LABELED TAPE LABEL BLOCKS.

Always 80 bytes per file.

Always read into lower portion of user core.

* LABEL BLOCK KEY FOR EVERY LABEL BLOCK. (Refer to FIGURE 2-41.)

BYTE FUNCTION CONTENT/FORMAT

1-8 File Name CL8 'filename'
9 Reserved X '00'

10 Extent Sequence # X 'bb'
A. Mag Tape 'bb''00'
B. DASD 'bb'=# of

first extent

FIGURE 2-41

2-294



15 DEC 81 CSCM 18-1-1

2.5.6.6 System Action Under Cancel. (Cont.)

. LABEL BLOCKS SUMMARIZED. (Refer to FIGURE 2-42.)

'" FILE TYPE .. KEY LABE| BLOCK
i TAPE 10 80 for each file
SSEQ DASD 10 104 for cacti extent

S NON-SEQ DASD 10 84 + 20 (number of extents) l

FIGURE 2-42

The label storage cylinder consists of two kinds of label blocks. Track
0 is used for permanent label blocks while tracks 1-9 are used for temporary
label blocks. Permanent label blocks will remain in effect across job boundaries.
Temporary label blocks are destroyed at job step completion time (end of // EXEC)
by an EOF indication being placed in track I of the label storage cylinder.

Permanent label blocks for sequential disk files and labeled tape files can
be created on track 0 by submitting a // OPTION STDLABEL statement prior to the
// VOL, // OLBL and // EXTENT statements control cards. This procedure is
recommended for sequential disk files used by the systems programs (SYS000,
SYS001, SYS002, SYS003) so that // VOL, // DLBL and // EXTENT statements need
not be submitted for every job. Permanent label blocks for all files must be
rewritten every time a // OPTION STDLABEL control statement is used.

The format of the label blocks is depenoent upon the kind of file being

described as shown below.

* SEQUENTIAL DASD FILE LABEL BLOCKS. (Refer to FIGURE 2-43.)

1. Always at least 104 bytes per file.

2. Additional extents will require an additional 20 bytes similar to
bytes 85-104.

3. Always read into lower portion of user core.

BYTE FUNCTION CONTENT/FORMAT

No. of Extents X 'bb'
A. SEQ DISK 'bb'='0l' for

all except last extent.
B. SEQ DISK 'bb'=FF' for

last extent.
C. Non-SEQ 'bb'=number of

extents (maximum of 125)

FIGURE 2-43

2-295

IL



CSCM 18-1-1 15 Dec 81

2.5.6.6 System Action Under Cancel. (Cont.)

BYTE FUNCTION CONTENT/FORMAT

2-9 ii Iv Name CJ.8 'filename' (DTF name)
S, j & lb(14 L4 'Qualified name (Geni Ver#)'

m/v P';f a L ID (I.L '1 '

h-60 F Je ',vrlaI (1.6 'serial'

61-62 Volum - Sequence H n'
63 Cr at Lon Date X I yI

64-65 " " dd'
66 Expiration Date X ' '
67-68 * " " H 'cid'
69-71 Reserved 3X '00'
72-84 System Code CL13 'alphamerics'
85-90 Extent Serial CL6 'serial'
92 Extent Seq. No. X 'bb'

A. ISFMS without a master

index 'bb'='Ol'
8. All others 'bb'='00'

93-96 Lower Limit 4X 'CI', 'C2', 'Hi', 'Ii2'

97-100 Upper Limit 4X 'CI', 'C2' , 'HI', '112'

101-102 Symbolic unit
from CCB 2X 'b', 'bb'

103 Old cell X ']i'
104 New cell X '112'

FIGURE 2-43 (Cont.)

2.5.6.7 Wait States.

e The system is said to be in a wait state when the "wait" light is con-
tinuously lit and the "system" light is off. Wait states are divided into hard
waits and soft waits.

e If the system is in a hard wait, the wait bit in the current PSW (bit 14)

is set to one and the system mask is set to zeros, thus disabling all
interrupts. Because no interrupts are allowed, a PSW swap cannot occur and the
system must be re-IPLed to continue processing.

e A soft wait occurs when the DOS supervisor finds no in-core programs
ready to run and loads a PSW with the wait bit set to one and the system mask
set te ones. The first interrupt returns control to the supervisor and proc-
essint -ontinue.

* A wait can easily be determineo as hard or soft by causing an interrupt.
If the system responds with some action, the wait is soft; if not, the attention
routine responds with the "READY FOR COMMUNICATIONS" message.

2-296



*15 DEC 81 CSCM 18-1-1

2.5.6.7 Wait States. (Cont.)

SOFT WAITS. If the system is in a continuous soft wait, it is waiting for
an interrupt to signal the completion of an event. Although the expected
interrupt may be from the timer or external interrupt key, a missing device-end
caused by hardware is the most frequent cause. The operator can make each
device not-ready, then ready, to generate i device-end interrupt from each
address. The system light flashes briefly as the supervisor examines and dis-
cards interrupts for which it was not waiting. The interrupt from the device
wait.ed for causes normal processing to cortinue. (The occurrence should be
brought to the attention of the customer engineer as a possible hardware
failure.) If this technique does not end the wait, take a stand-alone dump L3
find what the system was waiting for.

HARD WAITS. The DOS supervisor loads a hard-wait PSW when a failure occurs
that puts the integrity of the control program or system data in doubt. The
supervisor attempts to place a message in low core bytes 0-4.

e If a hard wait occurs, it is im:)erative that this message be retrieved
and recorded. Effective diagnosis is extremely difficult if this step is
neglected.

*If byte one of main storage contains an S (HEX 'E2'), the following
information can be obtained easily:

* Check byte '73' for a 'OF'. This indicates either a channel control
check or an interface control c heck. Bytes '3A'-138' contain the device address.
If byte '73' does not contain a 'OF', a machine check must have occurred.

a Byte one may have a W. If a W (HEX 'E6') is found, a hard stop on SYSREC
is indicated.

* If the CPU detects an error in its own circuitry, or (in the System/360,
model 50 or smaller) in the channel or interface control circuits, it forces a
machine check interrupt. The system places an "S" in byte 1 and enters a hard
wait. The "S" is a request to run the SEREP (System Environmental Recording,
Editing, and Printing) dump to format and display the contents of the CPU's
hardware registers and log-out area for use by the customer engineer. (A SEREP
dump configured for the system should be available to the operator. A copy can
be obtained from the customer engineer responsible for the CPU.)

2.5.6.8 Commonly Encountered User Errors.

* The following is a list of eight of the most conmmonly encountered type
of user errors under the disk operating system (DOS). For each, the error con-
dition is shown and possible reasons for the error given. Not all of the infor-
mation provided will apply in every case, but as far as possible, common causes
and sources of information are pointed out.

4

2-297

p7



CSCM 18-1-1 15 Dec 81

2.5.6.8 Commonly Encountered User Errors. (Cont.)

SPECIFICATION EXCEPTION.

e When data, an instruction or control-word address does not specify an
integral boundary for the unit of information.

e When the multiplier or divisor in decimal arithmetic exceeds 15 digits
and sign.

* When the first operand field is shorter than or equal to the second
operand field in decimal multiplication or division.

OPERATOR INTERVENTION. The coisole operator will cancel a job when it is
apparent the program is executing instructions in a manner that indicates a
closed loop.

I/O EXCEPTION. This occurs when the program requests an illegal file
handling operation. Reading, writing, etc.

DATA EXCEPTION. During arithmetic operations data is always in packed
decimal form. The low order byte of each operand must contain a valid sign A-F.

OPERATION EXCEPTION. Occurs when a program is attempting to execute an
illegal operation code. Can be caused by the forcing of control to outside the
Procedure Division. Can be caused by a bad subscripting move overlaying
instructions.

ADDRESSING EXCEPTION. Occurs when an instruction attempts to access an
address outside of available storage. May be caused by:

s Program too large.

e Bad subscript.

e I/O malfunction.

a Bad register modification.

PROTECTION EXCEPTION. Occurs when an instruction attempts to access an
address in some other partition. Can be caused by:

# Program too large.

e Bad subscript.

SUPERVISOR CALL ERRORS. Supervisor Call Errors, SVC's, are caused by a
program requesting action from the supervisor with required prerequisite infor-
mation either not available or improperly defined. This can be caused by

2-298



15 OK III CSCM I81-I-1

2.5.6.8 Commonly Encountered User Errors. (Cont.)

describing a file differently than the way it was created or gibing other erro-
neous information concerning the file -- wrong record size, wrong blocking fac-
tor, wrong recording mode, wrong logical assignment. When the supervisor
recognizes some deficiency, it will plug into the DTF for the file an 'OA 32' to
indicate the SVC 32 error.

,.

2.5.6.9 DOS Core Dump Tracing.

I f a serious error occurs dirIng executicn of the proble.i proqram, zhe
job is abnormally terminated; any remaining steps are bypassed; ano a program
phase dump is generated. The programer can use the dump for program checkout.
(However, any pending transfers to an external device may not be completed. Fcr
example, if a READY TRACE statement is in effect when the job is abnormally ter-
minated, the last card number may not appear on the external device.) in cases
where a serious error occurs in other than the problem program (e.g.,
Supervisor), a dump is not produced. Note that program phase dumps can be
suppressed if the NODUMP option of tie OPTION control statement has been speci-
fied for the job, or if NODUMP was specified at system generation time and is
not overridden by the DUMP option for the current job.

HOW TO USE A DUMP. When a job is abnormally terminated due to a serious
error in the problem program, a message is written on SYSLST which indicates
the:

* Type of interrupt (e.g., program check).

* Hexadecimal address of the instruction that caused the interrupt.

9 Condition code.

e Reason for the interrupt (e.g., data exception).

The instruction address can be compared to the Procedure Division map.

The contents of LISTX provide a relative address for each statement. The
load ddrels of the module (which can be obtained from the map of main storage
generated by the Linkage Editor) must be subtracted from the instruction address
to obtain the relative instruction address as shown in the Procedure Division
map. If the interrupt occurred within the COBOL program, the programer can *j1e
the error address and LISTX to locate the specific statement in the program
which caused a dump to be taken. Examination of the statement and the fields
associa ed with it may produce information as to the specific nature of the
error.

In the following sample dump which was caused by a data exception, invalid
data (i.e., data which did not correspond to its usage) was placed in the
numeric field B as a result of redefinition. The following discussion illustrates
the method of finding the specific statement in the program which caused the

2-299

IIIII_-- " " - 9T.. . Il I I - -. . .



CSCM 18-l-1 15 Dec 81

2.5.6.9 DOS Core Dump Tracing. (Cont.)

dump. Letters identifying the text correspiid to letters in the program
listing. (See FIGURE 2-44.)

e The program interrupt occurred at HEX LOCATION 0039BC (Circle A). This
is indicated in the SYSLST message printed just before the dump.

* The linkage editor map (Circle 1) indicates that the program was loaded
into address 0032A0. This is determined by examining the load point of the
control section TESTRUN. TESTRUN is the name assigned to the program module by
the source coding: PROGRAM-ID. TESTRUN.

# The specific instruction which causea the dump is located by subtracting
the load address (Circle B) from the interrupt address (Circle A) (i.e.,
subtracting 32A0 from 39BC). The result, 71C, is the relative interrupt address
and can be found in the object code listing (Circle C). In this case the
instruction in question is an AP (add decimal).

* The left-hand column of the object code listing gives the compiler-
generated card number associated with the instruction. It is card 69. As seen
in the source listing, card 69 contains the COMPUTE statement.

LOCATING DATA.

* The location assigned to a given data-name may similarly be found by
using the BL number and displacement given for that entry in the glossary, and
then locating the appropriate one fullword BL .ll in the TGT. The hexadecimal
sum of the glossary displacement and the contents of the cell should give the
relative address of the desired area. This can ther be converted to an abselute
address as described above.

P Since the problem program interrupted because of a data exception, the
programer should locate the contents of field B at the time of the interrupt.
This can be done as follows:

@ Locate data-name B in the glossary (Circle J). It appears under the
column headed SOURCE-NAME. Source-name B has been assigned to base locator 3
(i.e., BL = 3) with a displacement of 050. The sum of the value of base locator
3 and the displacement value 50 is the address of data-name B.

e The Register Assignment table (Circle K) lists the registers assigned to
each base locator. Register 6 has been assigned to BL = 3.

@ The contents of the sixteen general registers at the time of the
interrupt are displayed at the beginning of the dump (Circle L). Register 6
contains the address 00003388.

2-300

-Ii. . .. . ..



15 DEC 81 CSCM 18-1-1

2.5.6.9 DOS Core Dump Tracing. (Cont.)

9 The location of data-name B can now be determined by adding the contents
of register 6 and the displacement value 50. The result 33D8, is the address of
the leftmost byte of the 4-byte field B (Circle M).

NOTE: Field B contains F1F2F3C4. This is external decimal
representation and does not cortespond to the USAGE
COMPUTATIONAL defined i the sujrce listing.

2-301



CSCM 18-1-1 11 ec~

2.5.6.9 DOS Core Dump Tracing. (Cont.)

tJf J0'i OIAC141
/I OPTIO 104 1008,LI'iK.LISTLI STX.SYN.8ftSS
/I EXEC FCOBOL

COL 0QJT E; SQ
000 01 300010 IDENTIFICATION DIVISION.
00002 000020 PR00A&M-10. ?85TRUN.
00001 OVO0ID AU.~M 1: NNE

00004 03C~O ISTALTI. %"W43k iPaCAAIN&G (JNTEI.
00004 00.00 OATWITON. %~Q 8 .t, v i

0CC0 008 OAT - %ITT N:08 l.'/0

000 000050 DIT_ I~L. T.4fZP0.NN~A5lI lITNAl£S.PIPC 4 AV0

00009 0000 t0 CO53L USERS. IT ERLA1ES AN OUTPUT FILE AND READ$ IT SACK AS

00009 000090 INPUT.

00310 000100
00011 000110 9NVT'O0P

1  
DIVISION.

00012 000220 C3ZFIGUQATION SECTION.
00013 0o013O0 14'CECC4P8JTlk. IP-4-360-H50.

p 001' 000T'.0 0SjfC -C0%PUTOK. iBN-360-'4.0.

00015 000110 INOUT-0CVTPU SECTION.
00016 0001c,0 FILE-CONTkOL.
00017 0001'0 SEL.ECT PILL-I ASSIGN TO SYSO-T-~0S

00015 000180 SELECT FILE-3 ASSIGN to SSO0S-UT-2400-3.
00019 000190
00020 000230 CUlA DIVISION.
00025 000210 PILE SECTION.
00022 070220 VD PILE-I
00021 000130 LAPEL RECORDS ARE 0417TTE

0032' 00024.0 SLCCX CONTAINS 5 RECORDS

00021 000250 RECOROING H000 IS P
£026 00051 EPLORD CONTAINS 20 CHARACTERS
0002 1 0c,260 DATA RICOAO IS REC080-I.

0002. 00c270 01 tECOR0-1.
00029 01080 05 FIELC-A PIC 1(201.
00030 000V PO - ILE-2

~C01I ~0I00 LATL RECODS &Of O*ITTE0
c::1 OC~lO eLORK CON4TAINS " RECORDS
0313 CG~20 *COA0 CC4ETAINS 20 C.ARACTERS

0~134 001330 K!'ODI'N3 900E IS P
00,)S Ci23310 DATA RECORD 15 RECORD-2.
00038 C00350 01 RECOAD-2.
(%Oob? 000360 05 FIEL.D-& FIC 11201.

FIGURE 2-44

2-302



15 DEC 81 CSCM 18-1-1

2.5.6.9 DOS Core Dump Tracing. (Cont.)

0003 000370 VOfRRIXG-STORAGE SECIUN.
009 O003O 0 FILLER.
00040 000390 0 COUNT PIC S99 COP SYK.

00 04O0 0? ALPHASET PlC 1126) VALUE |S *APCOLIGHJ(.N*PO4STUVWEYI*.
00342 000410 02 ALPIMA OEDEFINES A HOEI PlC 1 OCCURS Z6 TIMES.
00041 000420 02 NUMB* PlC S99 COAP SYNC.
00044 000430 02 OEPENDENTS PIC A1261 VALUE -01?3401Z340123401Z14012340.
004S 000440 02 DEPEND REDEFINES DEPENDENTS PIC X OCURS 16 TIRES.
00046 000450 0t wooK-lEC O.
00047 000460 OS NAME-FIELD PIC X.
00048 000470 05 FILLER PIC X.
00049 000480 05 RECOro-NO PIC 99"9.

0005 000'.90 05 FILLEA PIC X VYLUE IS Si'ACE.
00065 000500 L5 LOCATION PIC IA. .ALUE S NYC'*
00052 0007.10 05 FILLER P C. X V UE IS . iCEt
00053 0005.'0 05 NO-OF-DEPENDENTS PIC XX.

00054 UOO!30 05 FILLER PIC XI7) VALUE IS SPACES.
00055 000534 01 ArCORDA.

00056 000535 02 A PICTURE S9(4) VALUE 1234.

00057 000536 02 b REDEFINES A PICTURE S911 COKPUTATIONAL-.
0008 000s,0
00059 000550 PROCEOURE DIVISION.
00060 000560 BEGIN. REAOY TRACE.
00061 000570 NOTE THAT THE FOLLOWING OPENS THF OUTPUT FILE TO BE CREATED

00062 000560 A4O INITIALTIES COUNTERS.

00065 006590 S(EP-X. OPEN OUTPUT FILE-I. MoVi ItaO TO COUNT. NUMSR.
000" 030630 NOTE IHAT TE FOLL34ING CVLATES I|IERN&LLY THS RECORDS TO BE

000b 000610 CC74TAINED IN T4E F!LE. WRITES THEM ON TAPE. A';0 DISPLAYS

00066 *,:-01.20 10444 N r H(C0'solE.
00067 000o30 STEP-2. ADO I TO COUNT. NUmR. PuvE ALPHA (COUNT) TO
00066 000640 NiN-RIeFLO.

00069 00064S COC-UTE B B I .
00070 000650 MOVE DEPEND ICOUNT) TO NO-OF-DEPENODNTS.

*071 000660 P.OVE NUMBA TO RECOqD-NO.

00072 000670 STEP-3. DISPLAY WORK-RECORO UPON CONSOLE. WRITE RECORD-1 FADO
00073 000680 WORK-RECORD.
00074 000.qO STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL C3UNT IS EQUAL TO 16.

00075 000700 NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE ANO ACOPENS

00076 000710 IT AS INPUT.

0007? 000720 STEP-S. CLOSE FILE-I. OPEN INPUT FILE-2.
00076 0007)0 NOTE THAT THE rOLLOWING READS BACK THE FILE ANO SINGLES

00079 00074u OUT EMPLOYEES WITH NO DEPENDENTS.

00080 000?50 STEP-6. READ FILE-? RECORD INTO WDRX-RECORO AT END GO TO STEP-*.
00081 000760 STEP-?. IF NO-OF-OEPENDENTS IS EQUAL TO - MOYV -I- TO

000 0C0770 M9-OF-OEPENDENTS: EXHIBIT KAMED LORK-RECORD, GO TO STEP-&.
007.63 000760 STEP-S. CLOSE FILE-2.
00034 000790 STOP RUN.

FIGURE 2-44 (Cont.)

2-303

U



CSCM 18-1-1 15 Dec 81

2.5.6.9 DOS Core Dump Tracing. (Cont.)

S.-W

o 0 o

V g

00 n- fta N

........... aa~a~a.. ... V

* .-..... t... . ...... r..,...4.45
-- -- -- -- -- -- - - ---------

0 0 a° co°°  00..... .....oo

0
0 coo 0L00000000-00000

FIGURE 2-44 (Cont.)

2-304

i i
I

" . .. l . . i . . .... . .. . . .. 0 .0 0.. . . l . . . . . . . . l l i . . . . . . . . .



15 DEC 81 CSCM 18-1-1

2.5.6.9 DOS Core Dump Tracing. (Cont.)

M31tv U6P

SAVE AREA 00116SWIT C 00430
TALLY 

004)4
SORT SAVE 0043S
fAtT A y- 5A VR 0041C
so R CORE size 00~40
NS 70O E 6 LS 00'.b4
SO0RT RT 00446
h.0RRId CEtLS 

0,4SoRt Ir ILE SIZE 00578
SORT NOOE SIZE 00570
PCT- VV ToL 40530
TGT-V. 581 00584
SORTAe A DDS 0058
LtNGTU OFR VA?4 TBL DO03*0

I NGIh O )R OT A 00561
'GIN in 00590

LUNITII00596
.-S I SWIhS
OVt "FLOW CELL! O05A4
Il CELLS 005 A4

0IFR40i Cftl.5 00360
TEM4P STORNAGE 0058
?EOP STORAGE-2 00s cc
TE-40 STO4AGE-3 00SCC

LIL CELLS 001Co
VI1C CELLS 00 ,CA
SOlL (CC$L 00SC4
INDEX CCTLtS 005C4
VJ2AO , pELts 005C4
OCTL C!LLS 005CC
F C Tt CELLS 005CC
PlMsT-V CELLS 009;CC
v-t cE(LI 00500
54VE 4" PA -Z DO.04
..1Sw CEII.s 00504
'SA CELLS 00504

1A I, CELLS 00304

CMElCKPT CT: 00, 0:
l0PS' CELLS 00506

FIGURE 2-44 (Cont.)

2-305



Cscm 18-1-1 15 Dec 81

2.5.6.9 DOS Care Dump Tracing. (Cant.)

POW. aRIGitS ASSIGtNMT

10 61.L1-

OBJECT CODE LISTING.

67 OOO6FC 41 40 6 002 Lit 4000210.61OM -3

0D0O0 46 20 : 0000 LM 2.00A0,6 Ot-30A
0"070:4 A 0C0*M 2.000:0.121 I
000706 IA 42 ARt 4,2
00070A 56 40 C 035 S A,038t0,1ZI LIT*0
00070: 50 4C 0 IOC ST 44.I0cc0o.13)1 ~

0072 56 E0 0 DOC v A.OCO.3
000?1 02 00 A 03 0 -. y I(1.bIC00024 ON. C 432~ D.%4:1-339

69 00071C FA 30 6 050 C 03C 4~j.A C0ii(C.61,03C(k.IZI 0 A 2-113 LIT 4
000722 41 40o A Ole L&. ". I t l0.1A, 1- .l392

000726 4d 20 A 000 IN 2:,,"0:2,6 ONN.1-306
00072A AC ?0 C 03A MH 2. 3AI0.1I LIT 2
00072 1 IA 42 AfIt Ag?

* 000730 58 ". C 054 S 03,O6(0.121 $ 1T.0
000734 50 40 D 1 0 ST 4,II.3' S81.2
000736 So. E0 0 160 L .I1fI0.1 58S.2
00073C 02 00 6 04)31 000 ayC 04111.,0.00(14) 049.--? Dkq-t-392
000142 9Z 40 6 046 NW)1 044(61,X40. CNK*2-17.1

EXE 181 NKEOT

LiNKAGE EDITOR MAP.

.PHASE XFRt-40 IOdINE HICORE DIN-AD ESD TYPE L1A0* 6L 01 LODE RL-FR

PN*IE464 0032A0 00121*00o4ADD 53 01 2 CSECT TkSTRUN 0032A0 0032A0

CIECT IJFFBZZN 003C50 003CS0
0 EN4TRY tJPPZZZN 00C3d

* NlAy IJFF&ZZZ 003CS0
0INfTAY IJFFZZZZ 003130

CSECT IL(E3SAEO 049F0 0049FO

WR~fY IL&OS&EI OOAAO6

CSECI 2160MNS 004C)E6 0049E6

dUICT ILE003P0 00412 00416
* HIT 1LLIOSPI 004106
EM RV~ft ILEOOSP2 0047*0

* ENTRY I10001P3 004956
9

CS(CT !L'.0INL0 oC,449 004990

CSIC? IJJC6'01 COSFCC OOSFCO
ENYMY 2J.CVOtM LOIICO

0 114TRY 2JJCFDI 003PC0

IILSOSm S?1006,Xs161'
li [SIC

FIGURE 2-44 (Cont.)

2-306



15 DEC 81 CSCM 18-1-1

2.5.6.9 DOS Core Dump Tracing. (Cont.)

0$031 P'0(t."& ('41CK 61666(JPWIo' - HER IocATIOE 0") . bc - c091)OmN COE0 - WA8 Ear(PIION
@$Q@I Jot CTACHK C8NceiLI

G: 0-7 0ooooeso 00003960 00o000001 0oo000OI 0000))081 S0003C12 n("03388 00003950
G, :-F 000035g$ 00001882f 000032A0 000032&0 000380 0000168 a001s3& 00004668
F8 816 00000030 COOOOOOO 00000000 00000000 00000000 00000000 &000(000 00000000

(044866 6G took Is ODoozoe

":1C000 000 0000 000030000 O sOCc0O0 00003300o 030000 00 00 FCI-00 0000-300
.)V:020 f7030037 '3002E36 PF,,5'307 C0103402 $.5 0?"5 353'I86.Q 880(0004 30oo
0,0040 0000Z20 0500300 0000016B 00000003 FCB-1c63 150)5fa C03400001 Of001461L
00(C60 00040000 00000)16& 000.000 00301'.74 oCCoOOoo 00 0355c '00400.0 0002 .D

000080 00000000 00000000 OQ001J001 01,003003 0050);608 6b04(68s 00134510
000080 0146940F 84784140 C0544570 08844(8A IIQUO156 41-36?CE 47FOO00 oeOObbo
000000O 06600680 05800680 0650'l58B 001741BB 005457301((.84160 015&6840 &00191?0
000080 &00C4710 00EA9260 600195E2 424'80 33IC695C1 A)3074780 00Ct-9561 A0024780
000100 010E9004 A0004780 0108E9203 005F428) 63304460 0?62457A C000.9AO 0276414A
000120 004.40710 94F970"8 070170S8 1058928) AC1(660 A00 44.00 O'4080780 947FA00
000140 4S0218 07F54280 00E749)0 0?CB47F0 BC70',570 40700105 R8868865 000588(
000160 C04.415AA 00068888 00004341 000?4 60 021741b4 C0444400 AC045890 A0044eZ0
*000180 A0009140 A0014710 53640.07 01809308 640090s8 f84209360 56404068 48609070
000140 48A00262 41AAC300 02010016 A0009898 q0106 00 11C'.400 h0(4sego A30'.968
OCOICO 90309800 01F08200 003SQ284 00A40207 01F06F50 9o .o666S 820001F0 968C0003
0001t0 4110C030 47808166 %6030334 82000035 FFO-50007 40102! C6 OTO3 OO 00002000
003203 0000)300 4000)I048 8(8461C2 F4.61FFI 3.'001000 o000,10 (:303130 (0000000
003Z20 (483C11.1 -'824040 0007F" 00004105 00001409 OV0000l( C37-FFF 88758001
00-'240 A8907CO00C6 1O072l1 2118ZZ69 ?26A0000 2510:1.'51 5IE SFIF417 F I8(IFI(F4
000?60 00007044, 00CO0000 2?FZ(84f l'41 -04 18F14002 0 2 41 - oIC O 54 Ib0 OC 1 0' 31
0,00280 O0O01F9 40 'CIC30 00000333 0?0910000 00000 9 0"00000 01035AC 00(000.4
000240 0000(820 04'JO300 CG00001) 00000000 00000000 00000000 00000030 00000000
000200 0000289. 0000322A 1 00,J2('(8E 0000106 00002690 913801CV 8.39DO(80 4190C?6C
000M8 4A&00116 .400262 91636000 '7100106, 58806004 90186030 4811001CI 41CS9000
00W300 410400 0 7F90631 h0'3'4q80 0184108 0000410) 0 eooo9r £0080609 90808'&C
000320 48800(09S 02 0 7BFS0 F03-94F0 BF S102 13 88F5801IF0 0769909D 01809220 0104490

C60340 02k04193' 0(669503^ 002347-0 3r4'.52 00234710 009C4860 00221&66 %670oica
000360 '864703 LYF6If I t64.1 N 0008 4570 Is(404860 RE5(48 2 '.2c,1& Iv T t0.C1

8

0003ao 182347-C 39(4130 0051623 47-300192 IA734220 04054320 10074?FO 04584'20
000340 OOC4423 010948Z0 02,64322 (003:,423 q0C8I007 47F3(4,. No-ce'( 06011302
0003C0 960C1034 07791P859 41'3)0 41',0000 41.5 000 (L,4.A'0 6654'05 40004770
000380 0)0(428'. 000007c9 95F8(481 076*1800 50008F74 95880-hl 47Vq393 .6600216
0C0400 95600237 47800366 0',02600) 0281'.770 04204111 003 04410 sf)L.780 04201466
000420 412100OF 45708CAC 05021009 0239%780 0OC61833 43301nO? V 9021 036 47 7 0191
000440 9 68F0409 02000440 A0004123 D0(60530 10078008 475001(A 040S1002 135804(82

000460 20(04870 OZS'."08 7000'930 68384760 0156930 C0003-430 026'4l 3D'14-790
000'60 660[0501 0026820 43808884 0501B4c b65L4720 04AE4.930 SE7'.477O 04.A895OF
000,40 002)4750 r46(9(10 30064700 62364180 00014148 400016'.' .4401.154 (4)4'.4i0
000400 02740200 0.914000 $010'010 92884000 '220S000 42601.00C q,'03-019 91F0304
000460 47805628 .79004F0 58606680 4'.000088 qS60C09C 4770(66 0.2022( 10095860
000^500 02CC9507 60004770 05660202 02C06001 567002CC 18444-)40 3005-C40 6(46SA40
000520 02004144 00500501 70014000 47800566 91201000 47100560 9001002 43100560
000540 91406004 47800560 .941IF6004 qI101002 47800558 Q6601002 '6141002 96011000C
000S60 0203'000 70019588 30OZ6770 01064200 30029198 101607 79 '1i0)200 43220090
000560 4.8603000 95003030 47005*2 9F006000 0?6'94060 09S 9550 '00-4780 ;e60(9 S04
000560 50164780 08409101 10004710 0500940f 0 68F1 1F0 Sl00(67@0 ^."00030 00901004

000500 95035018 47000634 9560C09C 4678006'(C 02020049 1 09.08F 07010030 (0445000
0005E0 9(000001 477005F2 4017C(34 96801006 0 ?F 4 730 Ce8('.5I(,e, 30464 70 84890911)f

000600 00454770 0600916 r-0443 789 0201003A 05(29550 10144?70 36107 02 006491309
600620 586000'.' 44608030 50600040 4012(064 4678 001;qA4 -5311 r 71 00O614 9',60009
000440 4770(654 4)7008444 91238008 47100094 47F00650 91208006 47I1304 '414000QC
000660 47006"0 45700684 40L.00262 41760,000 9140308 47100500 90688O 9500300

FIIrURE 2-44 (Cont.)

2-307



CSCM 18-1-1 1 b Dec W1

2.5.6.9 DOS Core Dump Tracing. (Cant.)

OACH

oozfo 00005214 00"0204 00000000 00000000 00000000 00000000 00O0000 00000000
00100 00000000 --SA-i--
003120 00000000 SI800FOC6 5BECCOO 0008006OC 9500E000 4770F0AZ q6100046 qZF~fO00

00)340 4760600C 980(6034 90EC000C 180089F 6009I10 D0490'19 07FrO0 00001st?
003360 00003240 00103240 00003900 00003658 000036EC 000035C0 C 306010A 6 F l F

003380f 830382E3 09fi40340 00010102 C3C4CS04 (7C8C901 02030405 06070609 UEM34ES

0013A0 E6Lt71 I(q 001).8061I 8Z$!jF4F clF2F3P&, F8I6c 293 F460I 18? ' 6 I F'~ ?jj16
0031C0 C1oo0o00 00004105 ES034000 00404041 K ^,, '07 ,214 '?'c.o'o'6C.9
0033E0 01010014 OOTY)1000 OOOCOOOO 0000000J. . 7-.0 0 -0') (^O 97 7000
001400 00003430 00000010 10 0 C3X030 1160E8 1'Dr2a 0.316 -)Z000O0l
003420 00700'LO0 410ECC)O. SIZO10"4 2-If ?&,-76, -)G3!50 020005!0
0014%0 00000'014 00'153 ON 4036' COOCO10O 00~ ~ 11 COCOCO
Ca3460 00030000 OC)070 CnOOOOOD 040O 1-4 r' OoNoo
C03-80 I00CIC50 662 2 -0F0~ -.Z2' .r '- '7C 66',C'0I3
003.60 41E08001 532:I14 0273 1 r)Si 00 1 ? Z ~ :T 6;z1 2c-^ 1300
003400O 006.C63l )000000CO COCC'603, CCCO.;60 ('co0 C GO C,0000O 00000,2O 01 00COO
0014E0 00000000 OCOO0000 COOC-.77n 301ZQ261 lCZ'.l0i l)073) )?046?Cc bo1rD.'O1

003300 67056274 CbC3D6C2 04036660 6660611.0 F162lrS 6i6062
6

2 FZF63F6 F6.6OisF0
003320 F5616660 F6616760 0100C066 10 L4710 0003148 '.00C5DC8 70004C40 '11IC00'
003340 411.30004 4111004 50110000 589:0010 45EFC010 4110534.2 0 715000D GOODA280

*0039560 0000336. 05001',F6 0000300' GOCO1960 C C,1 944 00040. 0003006 00003150
003500 0001,62AB OODC4478 0000409' 000.5704 cCCC ODOCS6 0300173E ooo10 3SE
003560 000036A6 OtOC4.066 C4520E0" 02106174 02-.71010 02111 60366276 19663080.l
0035C0 4110601C 56400630 4120030b 6 v. I B 24 4, 7 030I 9',401000 47703012 q2611100
0035E0 41101001 00000000 6276C49' 58 1 C j40 0 7 ? '0 6A027? I'S 8, 000'..'30
003620 00000146 oocosoco 0070369 00003768 03 t162C 9'0~6 10 Ot.2 7C O0300
003600 00004340 OO030.30 0070510 0C103?68 Orr ' ) 2C:.- 14 CO.270 000,0006
003640 0000370A 00003P4A 00003E6C 00011060 C'.[040 ,,3e50 31 01. f(oci~ 0000396
003660 00003bCb C'O0fl?03 02.030001 C'.C','104 0",a0201 00o7~ u 0O1 %(00304V4 00010104
003680 04040202 0lI0000O 00202320 202100D0 [C C4016 4-4),000 3(00000OO 030061's0
00360 00160014 060600100 00001000 00000(000 56-0(010 C,,O6C4 10000006 O(000022
006 CC0 00000000 00040000 01(40767 000(0003 10 000049 On'COOO 0 0 ' nC-000 CaOOOLc

6003LE0 000(0000 00707300 000033F6 010035S 00003260 00303368 50003C8 02661000OO

0031DO, 00100C00 319EE0000 FrF'0201 60300494 48100A6 06104030 C'605010 D14C'SIO
003)20 04A60610 .CIOC,80 50100264- 41406266 56400240 F8110200 4 03020S 00000000
003040 5L0006)b2 '30053F6 5430516A 906?3366 1660"~06 8700436 1 FO ,0(5,60 '2960706
003760 436e800C 80600004 89600002 88700010 0033036E 916010 '7705.00 -11'5300

003160 4 7E03 0 000 O395' C00031,50 0 100f.366 ?) 7~'3.4 0,10046 1 016~ eg000(~ O 3950
003?A0 O00035 C 0(00126a0 0000 36'. 50003012 C7(.6,33BS 0).-0 15 0 On 0359 8 00" 3 9 f
003300 000(032A6 00003Z&0 00001 R 0 00003C.S0 00 004:1 8 anOr c cI sc 1.004

7
o0 Cc 0035S.)

0033E0 0001S510 00303'586 36100O1C0 5 'Cllq nG; 4T 7..7,F o3E? 60'3 S32F53?E '7'C069E
O3600 '7A6036 '06005'6 019(i' '30.'81' .o 03 co,,oOOou 00:;00000

L'%P- .'c". 1 0036 q168301
03620' f0592047A' -1- ~- 1) 1 200001

003e60 00000000 0300C33A s.60 DO~0 Os~~ TbT'6i672, 04366
003000 000049E0 0000'.160 00C4990 00003450 M01601E .10003660 0000382C 00003680
003060 0000365E 00303672 00003026 00003858 00)03613 S0407966 00000001 10000016
003Co. ,836C206 0TC05040 5856c2C.3 03060Cz3 5?'1.CIC6 C304f4:)3 f0(90D000 0000O00
003'1E0 (6060902 60090303 0606,0420 360(004l 05160001 4.004F60 40404.0AA q6400040
003900 56C004 03160001 400D4F6~l 404904010 4110C040 58000I00 l0400$FO 30006000
003920 4500F000 000033F0 04024100 0106886 00060386 30100100B 96101020 "020016C
001940 S670018C 02016000 00380201 6010C030 58600004 O5160001 400..66P7 4404036
00390 4030003A 4A300000 4E300100 07050100 01003606F 01064610 0100-030 600040630
003V80 (0364630 60104E30 01000705 01000100 9,060106 4F6300100 40106010 41404002
0C39A0 kt?06000 4CZ0C03A 16623860 COSS5040 OJOCSSE0 OIDCD200 60106000 FA306050
00314C0 CO)C6140 60tE.020 603004C20 CC3AI64Z 5510C036 3040D160 550870160 02006043

0039C0 £0009240 60444030 60.C4630 030031 603&0)06 96F60,0 5 O OC-04 0S160001

004600 4004676? 1#040404F safac 0 51FO00 00000014 000001C4 00506691 WI183000

FIGUPE 2-44 (Cont.)

2-308



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output.

* The Full American National Standard COBOL compiler, COBOL object module,
Linkage Editor, and other system components can produce output in the form of
printed listings, punched card decks, diagnostic or informative messages, and
data files directed to tape or to mass storage devices. This chapter gives the
format of and describes this output. The same COBOL program is used for each
example. "Sample Program Output" shows the output formats in the context of a
complete listing generated by the sample program.

COMPILER OUTPUT. The output of the compilation job step may include:

9 A printed listing of the job control statements.

* A printed listing of the statements contained in the source program.

* A glossary of compiler-generated information about data.

* Global tables, register assignments, and literal pools.

* A printed listing of the object code.

* A condensed listing containing only the relative address of the first
4 1 generated instruction for each verb.

* Compiler diagnostic messages.

e A cross-reference listing.

e System messages.

e An object module.

The presence or absence of the above-nentioned types of compiler output is
determined by options specified at system generation time. These options can be
overridden or additional options specified at compilation time by using the
OPTION control statement and the CBL card.

The level of diagnostic message printed depends upon the FLAGW or FLAGE
option of the CBL card.

All output to be listed is written on the device assigned to SYSLST. If
SYSLST is assigned to a magnetic tape, COBOL will treat the file as an unlabeled
tape. Line spacing of the source listing is controlled by the SPACEn option of
the CBL card and by SKIP 1/2/3 and EJECT in the COBOL source program. The
number of lines per page can be specified in the SET commvand. In addition, a
listing of input/output assignments can be printed on SYSLST by using the LISTIO
control statement.

Aj

2-309



LSCrlI }II -1 15 Dve( 81

2.5.6.10 Interpreting Output. (Cont.)

The illustration of compiler output (FIGURE 2-49) contains the compiler out-
put listing showing Sample Program Output. Each type of output is numbered, and

-" each format within each type is lettered. The text below and that following the
listing is an explanation of the ENTRY.

9 (Circle 1) The listing of the job control statements associated with this
job step. These sta ents are listed because the LOG option was specified at
system generation time.

# (Circle 2) Compiler options. The CBL card, if specified, is printed on
SYSLST unless the LIST option is suppressed.

* (Circle 3) The source module listing. The statements in the source
program are listed exactly as submitted except that a compiler-generated card
number is listed to the left of each line. This is the number referenced in
diagnostic messages and in the object code listing. It is also the number
printed on SYSLST as a result of the source language TRACE statement. The
source module is not listed when the NOLIST option is specified.

* The following notations may appear on the listing:

"Ce° Denotes that the statement was inserted with a COPY statement.

** Denotes that the card is out of sequence. NOSEQ should be specified
on the CBL card if the sequence check is to be suppressed.

"I" Denotes that the card was inserted with an INSERT or BASIS card.

* If DATE-COMPILED is specified in the Identification Division, any sentences
in that paragraph are replaced in the listing by the date of compilation. It is
printed in one of the following formats depending upon the format chosen at system
generation time.

DATE-COMPILED. month/day/year or
DATE-COMPILED. day/month/year

(Circle 4) Glossary. The glossary is listed when the SYM option is speci-
fied. The glossarycontains information about names in the COBOL source
program.

2-310

*



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

Columns 'A' and 'F', the internal-name generated by the compiler. This name
is used in the compiler object code ',isting to represent the name used in the
source program. It is repeated in column 'F' for readability.

Column 'B', a normalized level number. This level number is determined by
the compiler as follows: the first level number of any hierarchy is always 01,
and increments for other levels are always by one. Only level numbers 03
through 49 are affectea; level numbers 66 (not USACSC COBOL), 77, and 88, and FD,
SD, RD indicators are not changed.

Column 'C', the data-name that is used in the source module.

Columns 'D' and 'E', for data-names, contain information about the address
in the form of a base and displacement. For file-names, the column contains
information about the associated DTF, if any.

Column 'G', defines storage for each data item. It is represented in
assembler-like terminology. The Glossary definition and usage table refers to
information in this column.

Column 'H', usage of the data-name. For FD entries, the DTF type is iden-
tified (e.g., DTFDA). For group items containing a USAGE clause, the usage type
is printed. For group items that do not contain a USAGE clause, GROUP is
printed. For elementary items, the information in the USAGE clause is printed.

GLOSSARY DEFINITION AND USAGE. (Refer to FIGURE 2-45.)

2-311



CSCM 18-1-1 15Dec 81 -

2.5.6.10 Interpreting Output. (Cont.)H

TYPE EFTNIIOLJSAGE

Grou-Fied-Lngt DS CLNGROUP

4 Alphanumeric DS NC DS P
Alphanumeric Edited US NC AN-EDiT
Numeric Edited DS NC %M-IDIT
Index-Name DS lH INDEX-NM
Group Variable-Length DS-VL f-N RU
Sterling Report DS NC RPT-ST
External Decimal DS-NC 1)ISP-NM
External Floating-Point DS-NC DTSP-FP
Internal Floating-ioint DS lF COHP-l

DS 1D COMP-2
Binary BS lH, IF, or 2F CMM7
Internal Decimal DS NP COMP-3
Sterling Non-Report DS NC DISP-ST

Index-Name BLANK INDEX-NAME
File (FD) BLANK DTF TYPE
Condition (88) BLANK BLANK
Report Definition (RD) BLANK BLANK

Sort Definition (SD) BLANK BLANK

Note: Under the definition column, N=size in bytes, except in group
variable-length where it is a 'ariable cell number.

FIGURE 2-45

2-312



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

Column 'J', the letter under column:

R - Indicates that the data-name redefines another
data-name.

0 - Indicates that an OCCURS clause has been specified
for that data-name.

Q - Indicates that the data-name is or contains the
DEPENDING ON object of the OCCURS clause.

M - Indicates the record format. The letters which
may appear under column M are:

F - fixed-length records.

U - undefined records.

V - variable-length records.

S - spanned records.

(Circle 5) Global tables and literal pool are listed when the LISTX option
is specified, unless SUPMAP is also specified and an E-level error is encoun-
tered. A global table contains easily addressable information needed by the
object program for execution. For example, in the Procedure Division output
coding (3), the address of the first instruction under STEP-1 (OPEN (JTPUT
FILE-i) is found in the PROCEDURE NAME CELLS portion of the Program Global Table
(PGT ).

(Circle (5,A)) The Task Global Table (TGT) is used to record and save
information needed during the execution of the object program. This information
includes switches, addresses, and work areas.

(Circle (5,B)) The Literal Pool lists all literals used in the program,
with duplications removed. These literals include those specified by the com-
piler (e.g., to align decimal points in arithmetic computations). The literals

2-31 3



2.5.6.10 Interpreting Output. (Cont.)

are divided into two groups: those that are referenced by instructions (marked
"LITERAL POOL") and those that are parameters to the display object time
subroutine (marked "DISPLAY LITERALS").

(Circle (5,C)) The Program Global Table (PGT), contains literals and the
addresses of procedure-names and generated procedure-names referenced by
Procedure Division irstructions.

(Circle (5,6)) Fegister assignment lists the permanent register assigned to
each base locator in the object program. The remaining base locators are given
temporary register assignments but are not listed. Register assignments are
listed when LISTX is specified,

(Circle 7) The object code listing is produced when the LISTX option is
specified, unless SUPMAP is also specified and an E-level error is encountered.
The actual object code listing contains:

(Column A) The compiler-generated card number identifies the COBOL state-
ment in the source deck which contains the verb that generates the object code
found in column C.

(Column B) The relative location, in hexadecimal notation, of the object
code instruction in the module.

(Column C) The actual object code instruction in hexadecimal notation.

(Column D) The procedure-name number. A number is assigned only to
procedure-names referred to in other Procedure Division statements.

(Column E) The object code instruction in the form that closely
resembles assembler language (Displacements are in hexadecimal notation).

(Column F) Compiler-generated information about the operands of the
generated instruction. This includes names and relative locations of literals.

(Circle 8) The -ross reference dictionary is produced when the XREF option
is specified. It consists of two parts:

(Column A) The XREF dictionary for data-names consists of data-names
followed by the generated card number of the statement which defines each data-

(Column B) The XREF dictionary for procedure-names consists of the
procedure-names followed by the generated card number of the statement where
each procedure-name is used as a section-name or paragraph-name, and the
generated card number of statements where each procedure-name is referenced.

2-314



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

The names appear in the order in which they appear in the source program.
The number of references appearing in the cross reference dictionary for a given
name is based upon the number 3f times the name is referenced in the code
generated by the compiler. (Refer to ::IGURE 2-46.)

SYMBOLS USED IN THE LISTING AND GLOSSARY TO DEFINE
COMPILER-GENERATED INFORMATION

SYMBOL MEANING

DNM SOURCE DATA NAME
SAV SAVE AREA CELL
SWT SWITCH CELL
TLY TALLY CELL
WC WORKING CELL
TS TEMPORARY STORAGE CELL
VLC VARIABLE LENGTH CELL
SBL SECONDARY BASE LOCATOR
BL BASE LOCATOR
BLL BASE LOCATOR FOR LINKAGE SECTION
ON ON COUNTER
PFM PERFORM COUNTER
PSV PERFORM SAVE
VN VARIABLE PROCEDURE NAME
SBS SUBSCRIPT ADDRESS
XSW EXHIBIT SWITCH
XSA EXHIBIT SAVE AREA
PRM PARAMETER
PN SOURCE PROCEDURE NAME
GN GENERATED PROCEDURE NAME
DTF DTF ADDRESS
VN VARIABLE NAME INITIALIZATION
LIT LITERAL
TS2 TEMPORARY STORAGE

(NON-ARITHMETIC)
RSV REPORT SAVE AREA
SDF SECONDARY DTF POINTER
TS3 TEMPORARY STORAGE

(SYNCHRONIZATION)
INX INDEX CELL
V (BCDNAME) VIRTUAL
VIR VIRTUAL

FIGURE 2-46

2-315



CSCM 18-1-1 15 Dec 81

2.5.6.10 Interpreting Output. (Cont.)

(Circle 9) The diagnostic message associated with the compilation is
always listed. The format of the diagnostic message is:

(Circle (9,A)) Compiler-generated card number is the number of a line in
the source program related to the error.

(Circle (9,B)) The message identification for the Disk Operating System
Full American National Standard COBOL compiler always begins with the symbols
IL.A.

(Circle (9,C)) There are four severity levels as follows:

9 (W) Warning. This level indicates that an error was made in the source
program. However, i is not serious enough to interfere with the execution of the
program. These warning messages are listed only if the FLAGW option is specified
in the CBL card or ciosen at system generation time.

e (C) Conditional. This level indicates that an error was made but the
compiler usually makes a corrective assumption. The statement containing the
error is retained. Execution can be attempted.

* (E) Error. This level indicates that a serious error was made. Usually
the compiler maTes no corrective assumption. The statement or operand con-
taining the error is dropped. Compilation is completed, but execution of the
program should not be attempted.

e (D) Disaster. This error indicates that a serious error was made.

,Compilation is not completed. Results are unpredictable.

(Circle (9,D)) The message text identifies the condition that caused the
error and indicates the action taken by the compiler.

OBJECT MODULE.

e The object module contains the external symbol dictionary, the text of
the program, and the relocation dictionary. It is followed by an END statement
that marks the end of the module. For additional information about the external
symbol dictionary and the relocation dictionary, see the publication DOS System
Control and Service.

e An object dec, is punched if the DECK option is specified, unless an E-
level diagnostic message is generated. The object module is written on SYSLNK
if the LINK option is specified, unless an E-level diagnostic message is
generated.

LINKAGE EDITOR OUTPUT. The output of the link edit step may include:

e A printed listing of the job control statements.

2-316



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

* A map of tho phA,,P af .(-r |I. ha'. hrri pror-, n.P( by Lh , I in ka r, F d it r.

@ l1annoLIc ine'. nqt,'s.

a A It inq hr thr lirnknge r'ditr f.rnlyrl sbltrtvnnt%.

* A phase which may be assigned to the core image library.

Any diagnostic messages associated with the Linkage Editor are automatically
generated as output. The other forms of output may be requested by the OPTION
ccntrol statement. All output to be listed is printed on the device assigned to
SYSLST.

The illustration of Linkage Editor Output (FIGURE 2-50) is an example of a
linkage editor output listing. It shows the job control statements and the
phase map. The different types of output are numbered and each type to be
explained is lettered.

Comments on the Phase Map. The severity of linkage editor diagnostic mes-
sages may affect the production of the phase map. Since various processing
options affect the structure of the phase, the text of the phase map will some-
times provide additional information. For example, the phase may contain an
overlay structure. In this case, a map will be listed for each segment in the
overlay structure.

LINKAGE EDITOR MESSAGES. The Linkage Editor may generate informative or
diagnostic messages. A complete list of these messages is included in the
publication DOS Operator Communications and Messages.

DOS ANSI COBOL UNRESOLVED EXTERNAL REFERENCES.

o When the linkage editor encounters a weak external reference (WXTRN),
autolinking is suppressed and the V-type address constant is either resolved
from those modules included into the load module or it remains unresolved.
Unresolved WXTRNs will not cause the linkage editor to cancel the link step if
ACTION CANCEL is in etlect.

e The object time subroutine library of the ANSI FULL COBOL compiler utilizes
WXTRNs not only as address constants but also as switches to determine at object
time whether certain options are in effect.

s Unresolved WXTRNs are normally intentional but unresolved WXTRNs are nor-
mally unintentional and an error.

* Any of the following unresolved WXTRNs may appear when link editing an
object module produced by an ANSI COBOL compiler:

2-317

* \ . -'-



CSCM 18-1-1 15 Dec 81

2.5.6.10 Interpreting Output. (Cont.)

[LBDCKP2

ILBDDSPO

ILBDREL0

ILBDDSP1

IL BDDSP3

COBOL PHASE EXECUTION OUTPUT.

e The output generated by program execution (in addition to data written on
output files) may include:

Data displayed on the console or on the printer.

Messages to the operator.

System informative messages.

System diagnostic messages.

A system dump.

* A dump and system diagnostic messages are generated automatically during
program execution only if the program contains errors that cause abnormal ter-
mination.

* The following text is an explanation of an example of output from the
execution job step. (Refer to FIGURE 2-47.)

2-318



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Co,,t.)

1/ASX .E s xC // .IB SA.41PI.E

Mi'. A 0001i N\I 0
ill ItO40: NN.

I I n1, MO. v. V

16 BfC E 0005 NYC.

WORK-RECORD - A 0001 NYC 2 BG G 0007 NYC I~

77 3G 1 0009 NYC

WORK-RECORD - b 0002 NYC I BG ,1 0010 NYC
76 IC K 01 YC 0 ..
77 B L L 00[2 NYC i
WORK-RECORD - C 0003 NYC 2 C, BM 0013 NYC 1

76-- G N 014 NYC 3 -
77 SC 0 0015 NYC 10

WORK-RECORD - 0 0004 NYC 3 BC P 0016 NYC 0

76 BG Q 0017 NYC 1
77 3c; R 0018 NYC 2
WORK-RECORD - E 0005 NYC 4 BC S 0019 NYC 3

76 BG T 020 NYC 4
77 BG U 0021 NYC 0

WORK-RECORD - F 0006 NYC Z BG V 0022 NYC I

,B W 0023 NYC 2
BG X 0024 NYC 3

BG Y 0025 NYC 4

BG Z 0026 NYC J
B( EOJ SAMPLF.

00.09.20. DNIRATlON 00.0,..i

CL'UPL FROM EXECUTION JOB STEPS

FIGURE 2-47

s Each of these messages contains an identification code in the first

column of the message to indicate the portion of the operating system that
generated the message. The following table lists these codes, together with

identification for each. (Refer to FIGURE 2-48.)

F CODE 
IDENTIFICATION___

0An on-line console message from the
Supervisor

] A message from the Job Control Processor

2 A message from the I inkj' _Editor

3 A messageo from te. _ltibrar i - . .

4 A message from JlC -..

7 A message from the Sort program

C A message from COBOL, object-time
subroutines

FIGURE 2-48

2-319



CSCM 18-1-1 15 Dec 81

2.5.6.10 Interpreting Output. (Cont.)

LINKAGE EDITOR OUTPUT.

9 (Circle 1) The job control stat-ments are listed since the LOG option is
specified.

* (Circle 2) Disk linkage editor diagnostic message of input. The ACTION
statement is not required. If the MAP option is specified, SYSLST must be
assigned. If the statement is not used and SYSLST is assigned, MAP is assumed
and a map of main storage and any error diagnostic messages are considered out-
put on SYSLST.

(Circle 3) Map of main storage. A phase map is printed when MAP is speci-
fied (or assumed) during linkage editor processing. The following information
is contained in the map of main storage:

* (Column A) The name of each phase. This is the name specified in the
phase statement.

e (Column B) The transfer address of each phase.

e (Column C) The lowest main storage location of each phase.

e (Column D) The highest main storage location of each phase.

* (Column E) The hexadecimal disk address where the phase begins in the
core image library.

* (Column F) The names of all CSECT's belonging to a phase.

@ (Columi G) All defined entry points within a CSECT. If an entry point
is not referenced, it is flagged with an asterisk (*).

* (Column H) The address where each CSECT is loaded.

e (Column J) The relocation factor of each CSECT.

2-320



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

ILLUSTRATION OF COMPILER OUTPUT

/ insi Sh"OL f
UOPTION l'10ECK.LINK,LIST.:tISTX,SYM#i'RqS
II IEL t0 SOL

CFL QUOTE .SEQ---iD
Coe001 CC -0 !0 If7~C1fNDIVISION.
(000'2 0CY,20 PkOGRAm-lI. mfSloiN.
CC,13 c(t-'0 io auiK). vQncRAMIEqt NAME.
OGZD4 COC, '4t) JNSTAILATTON. JE YOp( Pw;.PA4IN(, CENTER.

Cl'000s or lO0;0 OAIE- .. IITEN. FUbROAR' 2,1971
00006 00,^-Otfl 341U-0 L~ 04/74/71
CO JO? 06.30(0 QE.2K5* I" T--ROGUAM '.s ;kf il. .. :ThN ,AS A SAm;%E OftM~3
J0008 000080 C C8L SEAS. I T CREA ES AN 31UI kT IL - A D RE ADS IT EACK S

000011 100090 INPUT.
00610 f 0" 1co
00011 0('jI10 EN VI kNMItNT DIV ISii.
00012 00012 0 C 014 I(,Ur ATI1 0N SECTIU1N.
00013 00)130 SrOUICI-0Mq4UTF. 1eM-36D--H5D.
00014 000140 OaJECI-TCUMPUTER. IDM-160-HSO.
00015 000150 IP0UT-OUTPUT SECTION.
00016 000160 FILf-CflNTQOL.
03017 000170 SELECT FILE-1 ASSIGN TO SYI,05-UT-2400-S.
0018 o00010 SELECT FILE-? ASSIGN TO SYS008-UT-2400-S.

00019 000190

00;56 000550 POOCEDUPE DIVISION.
00357 00,CSE60 PEGI'.. kEADY TAACE.
o'5Rl CGol.' ro NTE THAT 714E V0L L04INS OPL NS IC HEUT PUT r ILE T0 B E CP EAlED
00059 01,00'80 AND INITIAL17ES COUN1tRS.
00060 000590 STEP-I. OPEN OUTPUT FILE-I. MOVE IERO TO COUNT, NU~'SR.

00073 000720 STEP-S. CLOSE FILE-I. OPEN INPUT FILt-?.H
0074 000?30 NOTE THAT THE FOLLOWING PRA0VI BACK H FILE AND SINGLES
C0075 000740 OUT [EVPIOYFES WITH NO DE

3
INflINIS.

00076 0007',0 ST EP-6. R EAD F I LE-2 RE C0'0~ I NT0 4~, K-kCl0q( AT INO GO TO SIEF'-8.
00377 000760 STEP-?. IF N r -nF-UE LNOFNTS IS .OAL TO 110" 'JV "1" TO
00078 00E0170 '40O-DE-PENDENTS. EXHIB17 NA'l*,O WORK-RECORD. GO 7O STEP-.
000'79 000780 STEP-8. CLOSE FlIE-2.
00080 000790 STOP RUN.

FIGURE 2-49

2-32 1



CSCM 18-1-1 15 Dec 81

2.5.6.10 Interpreting Output. (Cont.)

000 01110 onI0i
4"4-1I 116 rL fill", Off*0 l.1S*2.16 If.5 r

C''III 01 UItD-I- .T1 000 :11. 2 0 ,p8 OiI.30 ;RSjJ
of.. a 2189 0* I1LO IL.) 000 DmI '2879 as GC02 0810'

0.a221 02 VILOA IL-3 000 0~'*.. S I0 C I' a
172I~S 0) t as 4L.) 000 1, '-32 :Is '..' t0822

I _42-0 0 2 L* 140'I IL:I 01E DN~-)O D$ F .
W,42-)10 2. D IL. 00 D'1.-S08 D!o At'c1 1 2 . I 02 'A'.51, III aL* a 3: 0 12 ZS D I

2 5 1- 4542 S 0 2 0. 1 , .fi' LIL a. 4 1- , a0 L, 0 2
DosI.) 02 21.1,011 IL.) 03IL '.Ss D C p.2

% I2 1.13 . IA " , i .) SL.) 038 %%a' _S3 I-0 OL
OV4.2-51) 02 flL J !2. 0S4 00S-.O ,i 01 1?

W,35.-019 02 FILIA OL.2 032 DS'014 IC 0 Ii r

ton.*0i 07 .1) " -OLpt"DL42's :L.3 0.3 0:14-2- 037 as 2: 01?
o: 2 6 a ) 2 r LLOM IL-3 00 DN%-2-063 DS IC 0.

T..? G 003E0

r ALLY .0.2c
93.f SAME0 000 30
(4Y ' 5"t 004 34
sor :.,no S11 00:36

.11,0AT CIL 009

S) r.r II. P .1 Z 0O'%70

S,0r ma00 ,izt 00%74
1.7-VI ' .' 0076

1.-VII TOIL 0 0%1

SIRA 05 R 1 2 3 0"
2.230 09 No VI Po rOL 00038%
11.112 3r 530083 00%0

OPO 1 .1?:22L 01
308 3d:1LLIS 003S9

OL kLLS 0007
0 r , 3A :L S 00si0
rt ,P ir.'A z 0010

r1 1' .&-- ocspo

Vi: Z2LLS BSO
0.02 -ILLS O0 PC

3, DC A W%-O 0OSOC 0
S J , O ~ R C L L I.I as 3 c 0

.400 r ILLS COSCft

'IN -1 Ll 0 GO'CI
:-10.11, 2.9 2 03C

:S-kh CLLS 00 CC
11. 11. El vs0

C- :81:0? Cis 00000
Z3?? :tLLS 00I00

L2T6WAL POOL colts*)

010ILI?*01 0000000I 00100541 C2060CS 0305311S oo 2:3)
00 , Lit-.#?) C2:.CID% 94030 699 COQGQOJO

O1IFLt~k LifCALI COCOS

001 l10L'15I EIIIOI

OVMP~ CC 00,00
VI T UAL C(I1.S 0.'as

atCD.* '4-%E CLLI 4000

sjo')r hflflIL.$ CELLS 00:

*IPILAT LII.SAL. 011h

FIGURE 2-49 (Cont.)

21-322



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

1''

00 - -

000

,vo

o o 0 0

a a ~ ~ ~ 00- C* .0

4.101 ..0 , 425

.. .. .,. ... - 5000oo .. 000T.

0 0 - 0 s c

,. 4 4 0 0000000000000000

- S . 2 " 2 . .0. .- C - - - - - - - - - -_ ' . . . ° a. . - - - - --0

.40------ 4

40 0 0 0 0 ' 0 * ... O 0 00 .. 00000 00 0-

000. . . . ..- - - 00.0. . . .ooo

~N 5 oo o o o o o o - - - o- - - - - o 4 4

FIGURE 2-49 (Cont.)

2-323

"- " " ..... ...- . ... .... ... ' .... ...... ... . a.. .... ... II .Jl 0.4 II I r ..... .. C U .. ... . ..... .. . .a ... .. . ..... .



CSCM 18-1-1 15 Dec 81

2.5.6.10 Interpreting Output. (Cont.)

0 0

0 0 a I I

S.0
o 0 0 0
o 0 0 -0

o00 0 0 0

0 ~ 0 0 0 0
.0 0 4' 0 .0 0

0 0 0 0 0 0
o 0 0 0 0 0 0

0c : 000 00 0
00.0 0 .0 . 0 0 00kil
0c0oo 00000 0 a0

O 0 M0 0 0 0 0 o O 0 01
0 0 00 0 00 00 0

0 00 00004. 00 0000
0 0000 00000 00 00x

Wu&~ 000000000000 C. 008:
0 000OO00000000 wJ c C,

I00

W~ 00 0 0 0 0 00~0 0
0 00 0000 000 0 000

or2

.. 0.0 N.Ig 4 Z C3 -t0

O 0000 000000 0 0000WW
:5- W-00

a 61 4 z 0x z C z00

2-2



15 DEC 81 CSCM 18-1-1

2.5.6.10 Interpreting Output. (Cont.)

C, ,i '-l 0 w C0

ED 0 0 l C C ,Sc 0 4) 0

z, f 0 0 c WC 0

.Q°

~~ r 0 ra C,

c 0 C,,, 0 4'0 0 CO

0 00 v0 0 0 0 0Q ~ ~ ~ ~ s~ 0 00 0000 0

o; 0 0 0-
4 

0

mw- "0

5-c

...~.. ..e5)~ 5 ~ .e...

m

o -,~~~~~ 0 * . 0 0 .J *

-

FIGURE 2-50

2-325

" l i i ii iii i llml I l .



CSCM 18-1-1 15 Dec 81

2.5.6.11 OS COBOL Program Debugging Aids.

INTRODUCTION.

@ As the result of testing COBOL programs, abnormal dumps may occur. The
reason for abnormal termination is usually indicated by a system completion code
which appears on the ABEND dump listing. A SYSUDUMP or SYSABEND JCL card must
be provided for each step where a core dump is required.

e The general explanation for system completion codes is usually in the
IBM Messages and Codes Manual. For some codes, the explanation may not be ade-
quate for determining the exact reason for the abnormal termination of the
program. For additional explanation of COBOL core dumps, see Programers Guide
to Debugging.

9 Following is a list of the most commonly encountered system completion
codes. For each one, the error is described, possible causes listed and addi-
tional reference information given. Not all of the information provided will
apply in every case, but, as far as possible, common causes and sources of
information are pointed out. The completion codes are listed in sequence for
easy reference.

2.5.6.12 COMPLETION CODE - 001.

ERROR DESCRIPTION.

* Input/Output error, issued under QSAM or BSAM.

e No SYNAD exit was specified.

PROBABLE CAUSES.

e Wrong length record.

* Wrong length physical block.

s No end of file marker.

* Attempt to read record after end-of-file condition found.

* Physical damage to recording medium.

* Device malfunction.

ADDITIONAL REFERENCE INFORMATION.

e Before proceeding, refer to Messages and Codes on listing
number IECO201.

2-326



15 DEC 81 CSCM 18-1-1

2.5.6.12 COMPLETION CODE - 001. (Cont.)

e Register I of the SVRB for SVC 55 (end-of-volume) points to DCB for
which the I/0 error was found.

e Register 2 also points to the DCB (if these registers vary, register 2
is more likely to be correct; register 1 is altered regularly by several super-
visor routines).

e Register 0 points to the 10B-8.

* Address of the DCB + hex 2D (dec. 45): DEB address.

* Address of the DEB + hex 21 (uec. 33): UCB address.

* Address of the DCB + hex 44 (dec. 68): lOB prefix address.

e First lOB prefix + 1: Second IOB prefix address.

o Second lOB prefix + 1: third lOB prefix address, etc.

o Register 4 contains a pointer to the current lOB prefix.

o Register 6 should contain the same pointer as register 4.

o lOB prefix address + 8: Standard lOB fields.

# First byte of IOB, IOBFLAG1 field, bit 5 on indicates
permanent error.

o lOB address + 2: first and second sense bytes.

* lOB address + 4: event control block (ECB) completion code.

* 1OB address + 5: address of ECB.

a lOB address + hex C (dec. 12): two bytes, status information of the
last channel status word (CSW).

* Register 5 contains the first byte of flags (IOBFLAG1) and the first and
second sense bytes.

* lOB address + hex 11 (dec. 17): address of channel program.

* lOB address + hex 20 (dec. 32): or hex 28 (dec. 40) for direct access
devices: channel program beginning.

2-327



CSCM 18-1-1 15 Dec 81

2.5.6.13 COMPLETION CODE - 013.

-. ERROR DESCRIPTION.

* Detection of conflicting or unsupported parameters during OPEN proc-
essing.

PROBABLE CAUSES.

e Member name specified in a DD statement could not be found.

* A directory allocation subparameter was not specified in a DD statement
for a partitioned data set.

* Conflicting or incomplete DCB subparameters.

* No BLKSIZE DCB subparameter specified for a DUMMY data set.

* Default SYSIN or SYSOUT blocking (specified in OS procedures) conflicts
with problem program specifications.

o Track overflow or updating may be attempted for an operating system ver-
sion that does not support these features.

ADDITIONAL REFERENCE INFORMATION.

e Before proceeding, refer to Messages and Codes message number IEC 1411.

a The PSW field of the dump (not the APSW field) gives the next instruc-
) tion to be executed in the problem programs.

e The loader or linkage editor map can help specify if this instruction is
in the mainline processing or in a called module.

2.5.6.14 COMPLETION CODE - 031.

ERROR DESCRIPTION.

* An input/output error was detected when processing under the indexed
sequential access method (QISAM).

PROBABLE CAUSES.

e Physical damage to recording medium or device.

e Out of sequence key when loading an ISAM data set.

9 Wrong length record or block.

2-328



15 DEC 81 CSCM 18-1-1

2.5.6.14 COMPLETION CODE - 031. (Cont.)

ADDITIONAL REFERENCE INFORMATION.

* The DCB for the file which contains the I/O error can be found as
follows:

Note address of 'INTERRUPT'.

Find the module in which the interrJpt occurred in the 'LOAD LIST'.

Under 'SAVE AREA TRACE' find module name that was ENTERED VIA CALL. The
return address in the problem program is listed under 'RET'. The last macro
instruction (calling an SVC instruction) in the problem program before this
address was the one executing when the ABEND occurred.

The DCBEXCD1 and DCBEXCD2 fields of the ISAM DCB indicate the cause of
the error. DCBEXCD1 is at offset, hex 50 (dec. 80) of the DCB access method
interface for ISAM section, DCBEXCD2 is at offset 51 (dec. S1). These fields

contain:

DCBEXCD1

Bit Meaning

0Lower limit key not found

1 Invalid device address for lower limit

2 Space not found

3 Invalid request

4 Incorrectable input error

5 Incorrectable output error

6 Unreachable block

7 Overflow record

2-329



CCM 18-1-1 15 Dec 81

2.5.6.14 COMPLETION C001 031. (Cont.,

Bit Meanin 9

0 Sequence check

I Duplicate record

2 DCB closed when error detected

3 Overflow record

4-7 Reserved bits

A SYNAD routine may be helpful in pinpointing the cause of error.

2.5.6.15 COMPLETION CODE - 038.

ERROR DESCRIPTION.

@ The error occurred during OPEN processing for an indexed sequential data
set.

PROBABLE CAUSES.

9 The data set had not been created.

* The data control block had not been closed after the data set had been
created.

ADDITIONAL REFERENCE INFORMATION.

e An indexed sequential file must be created and closed before it can be
accessed.

* Be certain that the DCB subparameter MACRi: specifies an indexed sequen-
tial data set (Assembly Language).

* Be certain that indexed file creation and retrieval is specified in the
source program code (COBOL).

* The presence of a FORMAT 2 data set control block (DSCB) on a direct
access device indicates the creation of an indexed sequential data spt.

2-330



15 DEC 81 CSCM 18-1-1

2.5.6.16 COMPLETION CODE - 030.

ERROR DESCRIPTION.

I The error occurred during OPEN processing for an indexed sequential or
direct data set.

PROBABLE CAUSES.

* Indexed sequential organization not specified in the DSORG subparameter
of the DCB (this is required, even if indexed organization is specified in the
source program).

a Not all volume serial numbers were specified, or they were not in

correct sequence.

ADDITIONAL REFERENCE INFORMATION.

* Before proceeding, refer to Messages and Codes message number IEC 1565.

e For indexed sequential, the volume containing the index must be
described in the first job control language statement.

9 The number of volumes and the number of units to which these volumes
will be mounted must be the same; all volumes must be mounted.

2.5.6.17 OCx COMPLETION CODE NOTE.

e A number of s milarities exist among the debugging techniques indicated
for the OCI, OC2, OC4, OC5, 0G6, and 0C7 completion codes that follow. These
techniques are also ipplicable to other OCx completion codes not reviewed in
this analysis, namely 0C3, 0C8, 0C9, OCA, OCB, OCC, OCD, OCE and OCF. These
latter codes are rarely encountered.

* Because of the similarity of the processing leading to these codes,
check other OCx dump reference pages if the problems cannot be found among the
reasons given for your particular OCx dump. Many of these techniques pertain to
all OCx completion codes.

2.5.6.18 COMPLETION CODE - 0CI.

ERROR DESCRIPTION.

* The operation code detected is not valid or has not been implemented on
this model S/360 or S/370.

PROBABLE CAUSES.

e A branch to a data area; fetching of data as an operation code for this
instruction.

2-331



CSCM 18-1-1 15 Dec 81

2.5.6.18 COMPLETION CODE - OC1. (Cont.)

* A missing or misspelled DD statemient.

* A data set had not been opened when an input/output instruction was
issued for it.

@ A data set had been closed when an input/output instruction was issued
for it (this may also cause an OC5 termination).

ADDITIONAL REFERENCE INFORMATION.

e Check register 1 or 2 at entry to ABEND + hex 28 (dec. 40).

* This should point to the DDNAME of the DD statement in error. Register 2
will be the best indicator if the addresses differ.

* The APSW field has the address of the next instruction to be executed in
the problem program.

2.5.6.19 COMPLETION CODE - OC5.

ERROR DESCRIPTION.

0 An address is specified that is outside of the available storage of the
particular computing system.

PROBABLE CAUSES.

# Invalid data address.

o Indexing (subscripting) outside the program's assigned limits.

0 Uninitialized index (or subscript). This may also cause a data exception
(oC7).

& An input/output instruction triggered termination because OPEN was unable
to complete the DCB.

o A missing or misspelled DO statement.

o An attempt to CLOSE a data set a second time.

# COBOL: An improper exit from a procedure being operated on by a PERFORM
statement.

* COBOL: A sort operation is being attempted with an incorrect cataloged
procedure.

2-332



15 DEC 81 CSCM 18-1-1

- 2.5.6.19 COMPLETION CODE - OC5. (Cont.)

-* * COBOL: an attempt to reference an input/output area before a REA0 or
OPEN statement has been issued for the file.

ADDITIONAL REFERENCE INFORMATION.

* Register 1 at entry to ABEND contains the address of the DCB.

* The address plus hex 28 (dec. 40) contains the DDNAME of the data set
involved.

# Register 14 points to the 4instruction following the input/output instruc-
tion.

* The APSW field contains the address of the next instruction to be exe-
cuted in the problem program.

2.5.6.20 COMPLETION CODE - 0C7.

ERROR DESCRIPTION.

9 Data in a field was of incorrect format for the instruction attempting
to process it.

PROBABLE CAUSES.

* A data field was not initialized, e.g., blanks were read into a field
designed to be processed with packed decimal instructions.

9 A packed decimal field had an incorrect sign field.

* Uninitialized index or subscript. This may also cause an addressing
(0C5) or protection (0C4) completion code.

# Fields in decimal arithmetic overlap incorrectly.

* The decimal multiplicand has too many high-order significant digits.

9 The index (or subscript) value was incorrect and invalid data was
referenced. This could also cause an addressing (OC5) or protection (0C4)
completion code.

* ASSEMBLY LANGUAGE: The sign or digit codes of operands in decimal
arithmetic, editing operations or the CONVERT TO BINARY (CVB) instruction are
incorrect.

4
2-333



CSCM 18-1-1 15 Dec 81

2.5.6.20 COMPLETION CODE - 0C7. (Cont.)

9 COBOL: Data was moved from the DISPLAY field to the COMPUTATIONAL
field at group level.

s COBOL: The figurative constants ZERO or LOW-VALUE were moved to a group
level numeric field.

*COBOL: Omiission of USAGE clause or inclusion of an erroneous USAGE
clause.

* Incorrect linkage section data definition, passing parameters in the
wrong order, omission or inclusion of a parameter, failure to carry over a USAGE
clause when necessary, defining the length of a parameter incorrectly.

ADDITIONAL REFERENCE INFORMATION.

* Registers 1 or 2 point to the DGB for the last referenced file.

e Register 9 may contain the address of the ODNAME of the last referenced
file.

e Register 8 and/or register 10 may contain the UCB address for the last
referenced file.

e Register 4 + hex 64 (dec. 100) may contain the OSNAME of the last
referenced file.

e The APSW field contains the address of the next instruction to be exe-
cuted in the problem program.

2.5.6.21 COMPLETION CODE - 237.

ERROR DESCRIPTION.

e The end-of-volume routine (SVC 55) detected an error at the end-of-
volume or while positioning the second or subsequent volume for processing.

PROBABLE CAUSES.

e A verification error occurred in label processing (an incorrect label
may have been encountered).

s The tape label block count did not agree with the DCB block count
(probably because of a skipped block due to hardware difficulties).

2-334



15 DEC 81 CSCM 18-1-1

2.5.6.21 COMPLETION CODE - 237. (Cont.)

e The data set name specified in the DSN parameter of the DD statement was
not the same as the data set name in header el I of a tape volume.

* An incorrect volume was mounted.

a The volume serial number was specified incorrectly in the SER sub-
parameter of the DD statement.

ADDITIONAL REFERENCE INFORMATION.

* Before proceeding, refer to Messages and Code message number IEC 0231.

e For "incorrect volume" serial number: Register 2 contains the address
of the DCB.

a Address of DCB + hex 28 (dec. 40): the address of a 2-byte field giving
the TIOT offset.

* The TIOT address + TIOT offset is the address of the DDNAME entry in the
TIOT.

a The DONAME entry + 4: 8-byte DDNAME in the TIOT.

% Register 9 may contain the 8-byte DONAME address.

* Register 8 may contain the UCB ad.'ress.

* Address of the UCB + hex IC (dec. 28): volume serial number of the
volume presently mounted.

9 Register 4 contains the address of the label in storage.

% Register 4 + hex 64 (dec. 100): DSN in storage.

* (SOURCE: D statement VOL=SER=parameter). Up to the first five volume
serial numbers are adjacently arranged here.

* Register 5 points to the DEB.

FOR BLOCK COUNT DISCREPANCY.

* Register 2 contains the address of the DCB.

a Address of the DCB + hex 28 (dec. 40): The address of a 2-byte fie'd
giving the TIOT offset.

* The TIOT address + the TIOT offset is the address of the DONAME entry in
the TIOT.

2-335

_ . ' , . ., ,-...o .... .



CSCM 18-1-1 15 Dec 81

2.5.6.21 COMPLETION CODE - 237. (Cont.)

* The DDNAME entry + 4: 8-byte DDNAME in the TIOT.

* Register 9 may contain the 8-byte DDNAME address.

* The address of the DDNAME + hex 10 (dec. 16): UCB address (one word).

a Register 10 may contain the UCB address.

* Address of the UCB + hex 1C (dec. 28): volume serial number of the
volume presently mounted.

* Register 4 contains the address of the label in storage.

* Register 4 + hex 64 (dec. 100): DSN in storage (SOURCE: DD statement or
catalog).

% Register 4 + hex DA (dec. 218): volume serial number (SOURCE: DD state-
ment or VOL=SER=parameter).

e Up to the first five volume serial numbers are arranged in order.

e Register 5 points to the DEB.

* The address of the DCB + hex C (dec. 12): block count field of the DCB.

e If register 4 + hex 36 (dec. 54): block count in label (decimal
notation).

* Register 12 contains the block count also (hexadecimal notation).

2.5.6.22 COMPLETION CODE - 637.

ERROR DESCRIPTION.

e An incorrectable I/O error occurred during end-of-volume processing on a
tape just read or a new volume just mounted.

* Concatenated data sets have unlike attributes.

PROBABLE CAUSES.

@ An I/O error was encountered in writing a tape mark.

* An I/O error was encountered in positioning the tape.

2-336

* ..



15 DEC 81 CSCM 18-1-1

2.5.6.22 COMPLETION CODE - 637. (Cont.)

* An I/O error was encountered in reading a label.

* An I/O error was encountered in sensing for a file protection ring.

ADDITIONAL REFERENCE INFORMATION.

* Before proceeding, refer to Messages and Codes message number IEC 0261.

a I/O errors frequently indicate a hardware malfunction.

* If data sets with unlike attributes (e.g., blocksize) are being con-
catenated, the DCBOFLGS in the DCB must be set to indicate a concatenation of
unlike attributes.

* Register 2 contains the address of the DCB being OPENed.

* Address of the DCB + hex 28 (dec. 40): the address of the 2-byte field
containing the TIOT offset.

e Register 9 may contain the address of the DDNAME field in the TIOT.

* TIOT address + TIOT offset: address of the DDNAME entry in the TIOT.

9 The DDNAME entry + 4: 8-byte DDNAME in the TIOT.

* Register 4 points to the label read into storage.

* Register 4 + hex 64 (dec. 100) contain the DSNAME (SOURCE: DD
statement).

e Register 4 + hex 110 (dec. 272): IOB prefix for OPEN.

9 Address of lOB + 8 (for BSAM, QSAM, BPAM): lOB standard fields.

* The first byte of the IOB contains the IOBFLAG1 byte: If bit 5 is on, a
permanent error has been encountered.

* The LOB + 2 contains the first and second sense bytes.

* The 103 + 4 contains the ECB completion code.

* The lOB + hex C (dec. 12) contains the two status bytes of the channel
status word (CSW).

2-337



CSCM 18-1-1 15 Dec 81

2.5.6.22 COMPLETION CODE - 637. (Cont.)

- * The 108 + hex 11 (dec. 17) contains the starting address of the channel
program.

*Register 10 contains the address of the UCB.

2.5.6.23 COMPLETION CODE - 804.

ERROR DESCRIPTION.

e More storage was requested than was currently available in the region.

PROBABLE CAUSES.

*The REGION parameter in JOB or EXEC statement does not specify enough
storage for the processing program. (If a REGION is specified on the JOB card,
REGION parameters on EXEC cards are ignored.)

*If a REGION parameter was not included, the default region size for the
installation was too small.

*Blocking factors were increased without correspondingly increasing the
REGION size request to accommiodate the larger physical blocks.

e A cataloged procedure step requested more storage than was available.

ADDITIONAL REFERENCE INFORMATION.

* Be sure the SIZE parameter, sometimes used to pass storage size inf or-
mation to the processing program (such as compilers, sort/merge, etc.) be com-
patible with the storage provided in the region.

e ASSEMBLY LANGUAGE: In a dynamic programing environment, be certain that
FREEMAIN requests are regularly issued before GETMAIN requests.

s Check to be certain that a REGION parameter wasn't incorrectly overrid-
den.

* Completion code BOA is closely related to this completion code.

2.5.6.24 COMPLETION CODE -806.

ERROR DESCRIPTION.

*A requested program mrodule could not be found.

PROBABLE CAUSES.

* A JOBLIB or STEPLIB DD statement was missing (a comimon error).

2-338



15 DEC 81 CSCM 18-1-1

2.5.6.24 COMPLETION CODE - 806. (Cont.)

* The module name was misspelled.

* The library data set had been deleted from the device.

* An unrecoverable input/output error occurred while searching the direc-
tory in order to retrieve the program.

ADDITIONAL REFERENCE INFORMATION.

e Register 15 contains 00000004 if the requested module could not be found
in the private library, job library or link library (SYS1.LINKLIB).

* Register 15 contains 00000008 if an uncorrectable I/O occurred in
searching the library directory.

* Register 12 + 4 bytes is the location of the 8-byte name of the
requested program that could not be loaded.

2.5.6.25 COMPLETION CODE - 813.

ERROR DESCRIPTION.

* The error occurred during OPEN processing because the data set name on a
magnetic tape volume did not match the DSNAME specified for it through job
control language.

PROBABLE CAUSES.

* The volume serial number specified through job control language or
through the catalog was incorrect.

* The DSNAME parameter is misspelled.

* The wrong volume is mounted.

ADDITIONAL REFERENCE INFORMATION.

9 Before proceeding, refer to Messages and Codes message number IEC 1491.

* Register 2 contains the address of the DCB.

* The DCB address + hex 28 (dec. 40): the address of a 2-byte field con-
taining the TIOT offset.

* The address in the TCBTTO field (word 4 of the TCB) + the TIOT offset:
address of DDNAME entry in TIOT.

2-339



CSCM 18-1-1 15 Dec 81

2.5.6.25 COMPLETION CODE - 813. (Cont.)

* The TIOT address may be contained in register 9.

* Register 14 may contain the address of the DDNAME entry in the TIOT.

* The DDNAME entry + 4 is the start of the 8-byte DDNAME field in the
TIOT.

* Register 4 has the address of the label in storage.

* Register 4 + 4 is the low-order 17 bytes of the tape label as repre-
sented on the tape label (this follows the HDRI identification).

e Register 4 + 64 contains the DSNAME in storage (SOURCE: DD statement).

* Register 11 may contain this DSNAME address.

* Register 4 + hex 110 (dec. 272): lOB prefix for OPEN.

* IOB address + 8 contains the IOB standard fields (BSAM, QSAM, BPAM).

* The first byte of the IOB contains the IOBFLAG1 byte. If bit 5 is on, a
permanent error is indicated.

e The IOB + 2 contains the first and second sense bytes.

* The 10B + 4 contains the ECB completion code (if the high order bit is
not on, an error condition occurred).

* The 1OB + hex C (dec. 12) contains the two bytes of CSW status flag
information.

* The 'OB + hex 11 (dec. 27) contains a pointer to the start of the chan-
nel proqram.

* Register 10 may contain the UCB address.

2.5.6.26 COMPLETTON CODE - D37.

ERROR DFSCRRTP'ION.

e Space allocated for a data set on a direct access device was exceeded.
No secondary allocation was specified. The error was detected by end-of-volume
processing.

PROBABLE CAUSES.

* The SPACE parameter did not request any secondary storage area for the
data set.

2-340



15 DEC 81 CSCM 18-1-1

2.5.6.26 COMPLETION CODE - D37. (Cont.)

9 A related completion code, B37, is encountered if secondary space was
specified and all primary and secondary extents were exceeded.

ADDITIONAL REFERENCE INFORMATION.

* Before proceeding, refer to Messages and Codes message IEC 0311 for D37
or IEC 0301 for B37.

* The DEB indicates the physical location and size of the single extent
created for this data set.

@ Register 2 contains the address of the DCB.

* DCB address + hex 28 (dec. 40): address of the 2-byte TIOT offset field
in the DCB.

* TIOT address (from 4th word in TCB) + the TIOT offset is the address of
the DONAME field in the TIOT.

e Register 9 may also contain the DDNAME field address.

* DDNAME field in TIOT + 4 gives the starting address of the 8-byte DONAME

stored in the TIOT.

@ Register 4 + hex 64 (dec. 100): DSNAME (SOURCE: DD statement).

* Register 10 contains the address of the UCB.

2.5.6.27 COMPLETION CODE - E37.

ERROR DESCRIPTION.

* The usual error is that space is exceeded when writing a partitioned
data set on a direct access device. The error is detected by end-of-volume proc-
essing routines.

PROBABLE CAUSES.

# Sixteen extents had been written for a partitioned data set on a direct
access device, but additional space was needed.

* For a partitioned data set creating extents beyond the first, additional
space was needed, but no more space was available on the volume (a partiticned
data set cannot be continued on a second volume).

e For tape or direct access, not enough volumes were specified but more
space was needed.

2-341

. . .. , | | ... * . .. . . . . . . . . .



CSCM 18-1-1 15 Dec 81

- 2.5.6.27 COMPLETION CODE - E37. (Cont.)

ADDITIONAL REFERENCE INFORMATION.

* Before proceeding, refer to Messages and Codes message IEC 0321.

* The DEB contains the physical starting and ending address of the data
set on the device.

* Register 2 contains the address of the DCB.

* The DCB address + hex 28 (dec. 40) contains the 2-byte TIOT offset
field.

@ The TIOT address (from word 4 of the TCB) + the TIOT offset references
the DDNAME entry in the TIOT.

e Register 9 may contain the DDNAME field address.

e DDNAME field in the TIOT + 4: 8-byte DDNAME entry in the TIOT.

* Register 4 contains the address of the volume serial number.

@ Register 4 + hex 64 (dec. 100): DSNAME (SOURCE: DP statement).

* Register 4 + hex DA (dec. 218): address of volume serial number
(SOURCE: DD statement or system catalog).

* Register 10 contains the address of the UCB.

* Register 1? may contain the address of the volume serial number in storage.

?.5.6.28 Control Block Pointers.

* This paragraph summarizes the contents of the control blocks that are most
Jseful in debugging. Control blocks are presented in alphabetical order, with dis-
'lacements in decimal, followed by the hexadecimal counterpart in parentheses.

CVT - Communications Vector Table.

+0 Address of TCB control words

+53(35) Address of entry point of ABTERM

+193(cl) Address of secondary CVT (used

only with Model 65
Multiprocessing systems and TSO)

2-342



15 DEC 81 CSCM 18-1-1

2.5.6.28. Control Block Pointers. (Cont.)

DCB - Data Control Block.

+40(28) ddname (before open); offset to
ddname in TIOT (after open)

,-.45 (2D) )EB address

DEB - Data Extent Block.

+1 TCB address

+5 Address of next DEB

+25(19) DCB address

+;3(21) UCB address

+38(26) Address of start of extent

+42(2A) Address of end of extent

ECB - Event Control Block.

RB address or completion code

2-343

e\



CSCM 18-1-1 15 Dec 81

2.5.6.28 Control Block Pointers. (Cont.)

IOB - Input/Output Block.

-7 Address of next lOB (BSAM, QSAM,

and BPAM)

+2 Sense bytes

+5 ECB address
I.

+9 CSW

+17(11) CCW list address

+21(15) DCB address

RB - Request Block (PCP and MFT).

-8 Address of previous RB on load
list

-4 Address of next RB on l.oad list

+0 Module name

+13(D) Entry point address

+16(10) Resume PSW

+29(11)) Address of previous RB

RB - Request Block (MVT).

Last half of user's PSW

+13(D) CDE address

+16(10) Resume PSW

4-29(D) Address of Drev'ous RB

2-344



15 DEC 81 CSCM 18-1-1

2.5.6.28 Control Block Pointers. (Cont.)

TIOT - Task Input/Output Table.

+9 Job name

+8 Step name

+24(18) DD entries begin (one variable-length
entry for each DD Statement)

+9 Length of DD entry

+4 ddname

+16(10) Device entries begin (one 4-byte
entry for each device)

+20(14) Next device entry (if there is one)

(Next DO entry begins at 24 (18) plus length of first DO entry)

TCB - Task Control Block (PCP and MFT).

+1 Address of most recent RB

+9 Address of most recent DEB

+13(D) TIOT address

+16(10) Completion code

+25(19) MSS boundary box address

+37(25) Address of most recent RB on load
list

+113(71) Address of first save area

+161(Al) Address of STAE control block

+181(B5) Address of the job step control
block

2-345

.... ... ... .. m m l mm -J a un m m m m~m Jm~llm .. ... . .



CSCM 18-1-1 15 Dec 81

2.5.6.28 Control Block Pointers. (Cont.)

TCB - Task Control Block.

(MFT) With Subtasking.

+45(2D) Address of TCB for job step task

+129(81) Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task

+137(89) Address of TCB for most recent
subtask

+141(91) Address of ECB to be posted at
task completion

+181(B5) Address of the job step control block

TCB - Task Control Block (MVT).

+1 Address of most recent RB

+9 Address of most recent DEB

+13()) TIOT address

+L6(10) Completion code

2-346



15 DEC 81 CSCM 18-1-1

2.6.6.28 Control Block Pointers. (Cont.)

+25(19) Address of most recent SPQE

+33(21) Bit 7 Non-dispatchability bit

+37(25) Address of most recent LLE

+113(71) Address of first save area

+125(7D) Address of TCB for job step task

+129(81) Address of TCB for next subtask
attached by same parent task

+133(85) Address of TCB for parent task

+137(89) Address of TCB for most recent
subtask

+145(91) Address of ECB to be posted at

task completion

+153(99) Address of dummy PQE minus 8
bytes

+161(Al) Address of STAE control block

+181(B5) Address of the job step control
block

UCB - Unit Control Block.

-4 CPU ID (used only with Model 65
Multiprocessing systems)

+2 FF (UCB identification)

2-347



CSCM 18-1-1 15 Dec 81

2.5.6.28 Control Block Pointers. (Cont.)

+4 Device address

+13(D) Unit name

+18(12) Device class

+19(13) Device type

+22(16) Sense bytes (except devices with

extended sense byte informition)

+24(18) Number of sense bytes (devices
with extended sense byte information)

+25(19) Address of sense bytes (devices

with extended sense byte information)

+40(28) Number of outstanding RESERVE

requests (shared DASD only)

2.5.6.29 OS/MVT Core Dump.

e This paragraph describes the format of an OS/MVT core dump. It is
suggested that the dump be kept close at hand during the review of this analy-
sis. See FIGURE 2-51 for explanation.

* The dump will be reviewed by going through certain portions of the dump
and discussing the information provided.

e The first line of the dump (Circle A) displays the job name, step name,
time of day (hhmmss where hh = hours, mm = minutes, ss = seconds), date (yyddd
where yy = last two digits of year, ddd = day rumber of year), and page number.
An ID field, not shown here, may be present if subtasks are used.

* The second line (Circle B) display; the completion code in hexadecimal
notation, and indicates whether the SYSTE1 (control program) or the USER
(problem program) caused the termination.

* Line three (Circle C) displays the Program Status Word (PSW) AT ENTRY TO
ABEND field, a field that is generally of little use in MVT dumps. The reason
is that ABTERM enters an SVC 13 instruction in this PSW to branch to the ABEND
routine 'SVC 13) upon completion of its procesAng. For prograw checks, i.e.,

2-348



15 DEC 81 CSCM 18-1-1

2.5.6.29 OS/MVT Core Dump. (Cont.)

errors caused under control of the Program Request Block (PRB), the right half
of the PSW prior to entry to ABTERM is retained in the Active Program Status

- Word (APSW) field of the PRB. This area would, in that case, contain the
address of the instruction to be executed following the program check.

- The Task Control Block (TCB) (Circle D) is shown for this active task;
the register contents contained in the TCB are not shown for active tasks.

o The Request Block Pointer (RBP) field (Circle E) contains the address of
the request block (RB) most recently added to the active RB queue.

e The DEB field (Circle F) points to the first data extent block for this
task. This pointer is to the first byte of the DEB proper, following the prefix
bytes. The first word of the DEB points back to the TCB address, the second
word (Circle G) references the next DEB. Zeroes are shown in the address por-
tion for the last DEB. The seventh word of the DEB (Circle H) proper points to
the data control block (DCB) associated with this DEB.

* The TCB field points to the next lower priority task in the system. All
TCB's are chained together on a main TCB queue which is used by the di!patcher
to pass control to the highest dispatching priority TCB that can currently use
the CPU resource.

o A field of zeros indicates that this task is currently the lowest
priority TCB on this queue (MVT can dynamically create and delete TCB's, and the
facility exists to alter dispatching priorities of TCB's, altering their effec-
tive positions on this main TCB queue).

e In the PRB, the first word is reserved (RESV). The second word, labeled
APSW (Circle I), contains the right half of the user's PSW if the program
interrupt occurred in the code represented by this RB (this did not occur in
this example). This field would then contain the same information (i.e., the
next instruction to be executed) that could be obtained from the PSW AT ENTRY TO
ABEND field of other options of OS. Under MVT, this information is in the APSW
field; the PSW AT ENTRY TO ABEND field is altered by ABTERM and is very rarely
of help in debugging.

a The next field, FL-CDE (Circle J) contains a byte of flags pertaining to
the way the module was obtained and the address of the contents directory ele-
ment for the code controlled by this RB.

* The Wait-Link (WT-LNK) field (Circle K) indicates the number of requests
waitina (the wait count) in the first byte; the LNK field points to the previous
RB on the R3 q deue, or to the TCB if the RB containing the reference is the
oldest RB.

* The SVRB format and some of its labeled fields differ from the fields of
the PRB.

2-349

\ I



CSCM 18-1-1 15 Dec 81

2.5.6.29 OS/MVT Core Dump. (Cont.)

# The APSW usually contains an identification of the SVC number in the
high or low-order two bytes, depending on the SVC itself (this is actually the
last first characters of the module name of the requested routine). For
example, F5F5F1C4 (Circle L) represents SVC 55 or end-of-volume. F1FDF5C1
(Circle M) represents SVC 51 or ABDUMP. The PSW field of the preceding RB con-
tains the hexadecimal representation of the SVC number in its fourth byte.
Thus, in this dump, SVC 51 (Circle M) is shown as X'33' in the SVRB; SVC 13 is
shown as X'OD'. Therefore, the PSW field provides a way to double check the SVC
identification field shown in the APSW for SVRB's. The SVC 13 block will always
contain the register contents, when available, for the user program.

9 In the CDE section of the dump (Circle N), each contents directory ele-
ment is listed separately.

s The EPA field (Circle 0) defines the entry point address associated with
the name in the NM field. For most ABEND conditions this is the address taken
to compute the relative address, i.e., EPA address minus the APSW address will
provide the relative address of Next Sequential Instruction (NSI).

e The XL/MJ field (Circle P), contains the starting address of the extent
list (XL) for a major COE, or the starting address of the major CDE if the
module is a minor CDE (minor CDE's are created by alias entries or by the
IDENTIFY macro which creates an additional entry point for a load module already
in storage).

a Every major CDE contains an entry in the extent list which is identified
by XL and begins immediately following the CDE's. (All CD s were major CDE's
on this dump.) The fields in the XL are:

SZ indicates the length of this entry in hexadecimal bytes.

NO shows the number of scattered control sections for the load module
described by this entry (this is almost always 1, indicating block loading).

LN gives the length of the control section(s) of the load module defined
by this entry. The high order b4t is on if this is the last entry in the list.

ADR cives the starting address of the control section(s) defined hy t!is
XL entry.

Space for three LN-ADR entries exist on each line.

* Data extent blocks follow (Circle 0): A DEB exists for every data set
open at the time of the dump. It generally contains information not available
until the data set is opened. Each DEB is associated with a data control block
(DCB) created as a part of the problem program. The DEB fields are not labeled

2-350



15 DEC 81 CSCM 18-1-1

2.5.6.29 OS/MVT Core Dump. (Cont.)

as were the preceding control blocks of the dump; instead the entire DEB is pre-
sented unformatted. Specific fields useful in debugging will be identified
below.

* The first word of the DEB points to the TCB address. The second word of
the DEB addresses the next DEB on the chain for this task (the last DEB contains
zeros). The ninth byte of the DEB contains a number of data set status flags of
interest: 01 indicates that data set status (disposition) is OLD; 10, status is
MOD; 11, status is NEW. Three additional bytes follow which contain other
flags.

9 Offset 28 (1C hex), (Circle R) of the DEB contains a one byte field indi-
cating the type of device dependent information beginning at offset 32 (20 hex).
A 04 indicates direct access information, 02 is for non-direct access devices
and communications devices. Unit record, magnetic tape, telecommunications and
graphics devices are indicated with a 02. Indexed sequential and direct access
sections are indicated with 04. The direct access section, applicable to this
dump, defines the physical location of the data set on the direct access devi-
ces. Each extent entry contains 16 bytes and appears as shown below (Circle S).
The first extent entry begins at offset 32 (hex 20) of the DEB.

Direct access extent description segment:

BIN Cyl Track Cyl Track No. of

File UCB Num Start Start End End Tracks in

Mask Addr (2321) Addr Addr Addr Addr Extent

Offset: 0 1 4 6 8 10 12 14

16 bytes

* The DCB for the data set is contained within the proble,, program and is
referenced by the seventh word of the DEB. It is modified by OPEN and with the
DEB and unit control block (UCB) serves as a repository of data management
information pertinent to data sets used by the task. Although the DGB varies
substantially based on the type of access method used, it generally consists of
three segments: a device interface segment, a processing program interface
segment (sometimes called the foundation segment) and an access method interface
segment. The foundation segment is important in debugging -- it begins at off-
set 40 (28 hex), i.e., DCB address plus hex 28.

* Before OPEN, the foundation segment contains the DDNAME of the JCL state-
ment defining the data set. This field is restored after the data set hes been
processed and CLOSE has been correctly completed.

2-351



CSCM 18-1-1 15 Dec 81

2.5.6.29 OS/MVT Core Dump. (Cont.)

a While the data set is being processed, the first two bytes of the foun-
dation segment field at offset 40 (28 hex) contains the Task Input/Output Table
(TIOT) offset for the device entry of this data set (Circle T). The TIOT ties
the job control DCB information to the unit control block (UCB) for this data
set.

* If a complete (SYSABEND) dump is not available the DDNAME can still be
found from the formatted TIOT in the dump. Find the TIOT offset from the
DEB-DCB chain as described above. Subtract 4 from this figure in hex and then
match this to the length identity of the entries in the formatted TIOT. The
first is 14; others progress in increments of hex 14, i.e.,

Hex Identity

First entry 14

Second entry 28
Third entry 3C
Fourth entry 50
Fifth entry 64
Sixth entry 78
Seventh entry 8C
Eighth entry AO (etc.)

The DONAMIE is the second word of the entry found through this process.

-3"1



15 DEC 81 CSC4 18-1-1

2.5.6.29 OS/MVT Core Dump. (Cant.)

0!!". a got 000

C 0-.0 V.., coo

0000. coo 0 ... 0

Er 0040 S.06-

0000 a 0 0

C ~ ~ - calloC N 0
OT 0 00 .?a.%4.

o 0 0, 0 000. 4 0.

-P ., . .... .. 0CC
'CN 0 C C OO 049

a ~ . C4o 0 0 CC - 0*4

43 0 .0P

000000

CC0 C. a. 0 a

.00 0 -. 00 a3 .- O0

(* a.~ C .- 00 00 C 0 '4.0

coo.2 .4 .
0' C 1. 7 f

CcO 3010.a "
0000W! 10 . Z

0P3 - , 'C 0 CZ o0. 0." 0 a 0. 0 0 C 0 *
N 00- It, 011 cc 'pJ 0 0.. 0 Q0

C 0 4 @ .OC. 0 .0

00 0 000 Co -%e

N 0 (~~~~g 0,.4t C.O 0
, -I-SIS :CU 0 0 N 0te 4.94

3~~~~ 3 o a 3 40 -0,4 - a-"4 .. ,' -... 0 0 0

094

N I ~ 1111 v i~;Nn;
FIUR 25

2-35300 ,400

LC 0
.4 3.4



CSCM 18-1-1 15 Dec 81

2.5.6.29 OS/MVT Core Dump. (Cont.)

1o 04 -:10 1 0I. 4 0"

0000

272 00 0" 0 0 0

aaN* 000000000000

00,0000000%,o. 0z 0

0400

~0%0
00 0. 0 . . . . . . . . .

FI0U0 2-1 (C n .

a2-354 )



15 DEC 81 CSCM 18-1-1

2.5.6.29 OS/MVT Core Dump. (Cont.)

4.0 . . .

.0.

.; 0 o0

00 10 00 I
01 " 13 14 V!

OIo S c 11 0 p

III 0.-04

... .,o.

0 0 a ~ 00o nu'.0 00000

0:H 0J 0~ ~~0 a o 0
:0-

a. -000
4O 00 ~ 00.0

00.4140 0 000 000

00 0 0 0 0 000

020~-0 0l r0 00
o-..O 00 a, . cc 00,

0 C.0 0o0 00 040

0 s.0,0 0 0 00

0 ~ - -0 04. xoO 4.

0 ~ ~ 0 l00 000

0000 .000,

0 ~~ ~ 00' 0 400

* ,ce,0 o co-c ..- I -0-

o. 0 0 In - z00 090 -II

0 r~.jO 0 000 -CO 000

000 I0 00 00 00

I-COOIR 205 (0Cont.) **4

o 0 000020355



AD-AI13 456 ARMY COMPUTER SYSTEMS COMMAND FORT RELVOIR VA F/B 9/2
PROGRAMINO PROCEDURES MANUAL (PPM).(U)
DEC 81

UNCLASSIIEDD N

6~hEhh~E
Emhmhohhohmhh

mhhEomhhhEohEEI



I 1 111112.5

1.1 1112.0

1ff1L 5  1.4 11111.

MICROCOPY R[SOL U ION T[I CH~I(IART



CSCM 18-1-1 15 Dec 81

2.5~.6.30 OS Data Exceptions, Recognition and Error Recovery.

- e This section is intended to assist the user in recognizing and
c-orrecting data exceptions which may occur in the program. It will show the
user how to use an OS core dump to find the error in question and how to find
the exact place in the program where the error occurred.

9 The typical data exception results from the type of instruction that
uses fields which are either deied or converted to the usage COMPUTATIONAL.
The restrictions on such fields are as follows: The field must contain a
numeric sign which is preceded by 1 to 31 decimal digits (0 to 9 inclusive).
This is true for both fields being used. The total length of a Storage to
Storage (SS) instruction is six bytes and is broken down as follows: First byte
operation code defining the instruction and one byte containing the hex value of
the length of both fields minus one. The hex number on the left pertains to the
length of the receiving field. The hex number on the right pertains to the
length of the sending field. The next two bytes are the general register and
displacement used to locate the receiving operand. The first hex digit indicates
the base register. The three following hex digits represent the displacement.
The last two bytes represent the sending field which is formatted the same as
the receiving field, having a base register and a displacement.

9 The fields are located in the core dump by taking the value that is
found in the base register indicated and adding the displacement to that value
in hex. The hex digit in the second byte as explained will give you the length
of each field less 1 in bytes. Once the fields are found in the dump they
should be examined for decimal digits and a sign of 'C', 'D', or 'F' in low
order position.

e A data exception occurs when the sign is other than mentioned, or when a
non-decimal digit appears in the field. As mentioned, by using the length you
can determine where the digits and the sign should be. Both fields should be
checked for errors. Once the field is found and determined to be either a
sending or receiving field, the user should then locate the instruction that
caused the exception in his compiled listing.

* To locate the offending instruction, subtract the program loading point
(EPA), from the address of the error (APSW), which can be found on the first
page of the dump. Once found, and reference is made to the PMAP, or CLIST, the
line-position number will give you the exact COBOL verb used to generate the
instructions. At this point, with this information, the Data Division must be
checked for an invalid picture or value, if any. If there is a value, the data-
name must be located everywhere in the program that it is used as a receiving
field. Evaluate what is being put into the field. If the data-name is a group
item, the sub-fields must be evaluated. In this case usually there are a number
of signs in the core dump. Check all subroutines which are called using that
data-name.

a Any field without a value clause contains the current value already in the
machine. This data may be correct and it may not be correct. The use of the COBOL
VERBS ON EXHIBIT and READY TRACE also are appropriate when trying to find program
errors.

2-356



15 DEC 81 CSCM 18-1-1

2.5.6.31 Register and Save Area.

*Review the register and save area conventions of the Operating System.
Because of the large number of jobs run concurrently under OS, each program must
take the precaution of saving the contents of the sixteen general registers for
the program that called it. Then, by restoring those register contents before
returning control, the program insures that the program that called it can con-
tinue to run successfully. Basic terminology for the dynamic linking of pro-
grams is:

The CALLING program is the program that calls a subprogram.

The CALLED program is the subprogram that is brought in by the calling
program.

9 In reality, the program is always a called program, since it is called
in by the Operating System.

*If we then call in a subprogram, the main program is both a called and a
calling program. It was called by the Operating System and it is calling by
bringing in a subprogram.

# Therefore, each called program must, immediately upon gaining control,
save the register contents of the calling program in the calling program's save
area and restore the registers before turning control to the calling program.

9 To do this, each program provides an eighteen word save area in which
the registers will be saved by the called program. This is done automatically
by the high level languages, but mus;t be done by the programer in assembly
language. Remember that the save drea is provided by the ~!inprogram, but
the registers are saved (stored in that save area) by the program.

*The format of the save area is as shown in the following diagram:

Word

1 Used by PL/1

2 Higher save area address (register 13)

3 Lower save area address

4 Register 14 (return address)

5 Register 15 (entry point address)

6-18 Registers -12

* Near the end of the formatted portion of an ABEND dump, is a section
called the SAVE AREA TRACE. This portion of the dump traces the save areas
used, first in forward sequence from the main program through the last
subprogram called, then in backward sequence.

2-357



CSCM 18-1-1 15 Dec 81

2.5.6.32 0C7 (Data Check) Debugging Exercise.

*The purpose of this section is to examine in detail an actual 0C7 data
check and analyze the conditions involved, both user created and system
generated, which resulted with an ABEND and DUMP of a program written under OS.

*Before starting this debugging exercise, review FIGURE 2-52 through
FIGURE 2-57 on the following pages which you will be requested to reference in
detail.

o FIGURE 2-52 is a program listing of the Working-Storage Section and the
Procedure Division of a COBOL program which, you as a programer, should be quite
familiar with.

o FIGURE 2-53 is the Procedure Division Map (PMAP) which reflects:

The line number in the Procedure Division in which to reference an
instruction.

The COBOL statement verb which begins the sentence being referenced.

The relative address within the user program where the object code is
located.

The object code (machine language) representing the source statement as
interpreted and coded by the COBOL compiler.

The assembler language coding representing the object code on the same
line.

The identification of the FD statement within the Data Division, i.e.,
DCB-2 would reflect the FD as defined in the second SELECT statement in the
ENVIRONMENT division. The BL notation (Base locator) will point to a register
which contains the address of an instruction.

e FIGURE 2-54 and FIGURE 2-55 reflects the t 'id second pages of the
core dump. Since the general format and description ., a dump is explained in a
previous section of this chapter, this section will address itself to only those
areas that are necessary to successfully debug an 0C7 (data check) ABEND.

* FIGURE 2-56 and FIGURE 2-57 formats the data and problem program areas
of the core dump which we will reference in detail later on in this section.

e The first thing that should be done, upon receiving an ABEND, is to
reference the appropriate completions code manual and make note of the probable
causes that are applicable to the particular code that was given as a result of
the ABEND.

2-358



15 DEC 81 CSCM 18-1-1

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

- After considerable debugging experience, the meaning of the most common
completion codes become second nature to the programer. At the beginning of
this chapter, codes and their meanings are listed.

* The one ABEND condition that is singled out and addressed in this sec-
tion is the 0C7 (data check). An 0C7 always indicates that the computer tried
to perform an operation that turned out to contain invalid data or the data
fields in question were not properly defined to accept the data given.

* At this point consider the 0C7 ABEND that did take place (FIGURE 2-52
through FIGURE 2-57).

Reference FIGURE 2-54, block A, and note that the program terminated on
the GO step, that the system completion code, block B, is an OC7.

FIGURE 2-54, block C, the Active Program Status Word (APSW) displays the
address of the next sequential instruction (NSI) as located in the core dump.
This is the NSI taken from the updated PSW after the interrupt occurred and a
successful recovery not made by the interrupt handler. This is why the pro-
gramer must remember to back up one instruction to reference the actual
offending instruction. Make a pencil note of this APSW address (131874) because
it is used later in determining the relative address of the NSI located in the
PMAP.

FIGURE 2-55 block A, displaces the entry point address (EPA) which
reflects the beginning address of the region where the problem program was
loaded in main storage. Therefore, the EPA address is subtracted from the APSW
address as follows:

131874 APSW
- 1313C0 EPA

4B4 RELATTVE ADDRESS

The relative address, in this case is 4B4, is used to reference a point
within the PMAP which provides assistance to the programer during most debugging
exercises. (If the PMAP is not available, use the APSW address and go directly
to core which will reference the Next Sequential Instruction.)

2-359



CSCM 18-1-1 15 Dec 81

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

FIGURE 2-53, block A, reflects the NSI, but remember to back up one
instruction to arrive at the actual instruction that ABENDED. Therefore, the
relative address of the actual instruction is 4AE and the machine instruction on
the same line is:

Bits 8 4 4 4 12 4 12

F9 1 1 6 000 C 038

OP Code Li L2 Bi D1 B2 D2

Examination of the above instruction reveals that it is a storage to
storage (SS) format and checking our data reference card (green card), we find
that the F9 Operations Code (OP-Code) is a COMPARE DECIMAL operation. Further,
we see that the length to each data field is two bytes long; the base register
for the first operand (81) reveals that general register 6 was used to store the
base address for the first operand. Reference FIGURE 2-54, block D, which

- displays the contents of register 6 (1315AO) plus the displacement for the first
operand which, in this case is 000, gives us the exact address in core of the
data being operated on by the first operand. The same method should be used to
find the data area for the second operand as follows:

FIGURE 2-53, block C.

Register C = 1317B8

Plus displacement 038

1317FO

The resulting value of 1317FO give the exact location in main storage of
data being operated on by the second operand.

Examination of core location 1315A0, FIGURE 2-56, block A for two bytes,
reveals the value of data as 4830 (unsigned).

2-360



15 DEC 81 CSCM 18-1 -1

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

Examination of core location 1317F0, FIGURE 2-57, block A, for two bytes,
reveals the value of data as 080C (signed).

Imm~ediately we can see that we are attempting to add signed data to
unsigned data. Further, we can determine that the field value at location
1315A0 is not properly formatted to contain valid numeric data and cannot be
operated on under the current conditions.

Let's go to the Procedure Division and consider the logical aspects of
the problem. FIGURE 2-53, block B, displays the system assigned line number in
the Procedure Division where the source instruction may be found.

As indicated, FIGURE 2-52, block A, line 37 in the Procedure Division speci-
fies that: IF SUBi EQUAL 080 GO TO IMAGE-END. In analyzing the statement we
know that 080 is a numeric literal which will be placed in packed, signed format
by the compiler and treated so by a compare instruction. So, looking at the
field as a separate entity, there is nothing wrong here.

The SUBI data item that is being referenced would have to first be
defined in the Data Division. FIGURE 2-52, block B, indicates that SUBi was
defined to accept three bytes of numeric data, packed and signed.

At first glance this may appear to be a valid way of defining data
fields. But when you stop and realize that the S/360 does not clear storage
unless told to do so and that it is the user's responsibility to initialize
numeric data areas before they are needed for arithmetic operations, you will
see that the data definition of SUBi is not complete until the VALUE ZERO clause
is added to the line. This is why the 4830 value is still resident at location
1315AO which is the data reference point in core for SUBi. Further, checking
(daai reference card) reveals that the value of 4830 is actually part of a
LOAD HALF (RX) machine language instruction and as far as the computer is con-
cerned, tte sign being absent, it was recognized as an alphabetic value. Thus,
numeric data was to be compared to alphabetic data, which is illegal as far as
the Sf360 is concerned.

This is why the program ABENDED with a data check (0C7) and may be
corrected by inserting the value clause on the SUBi definition line.

2-361



CSCM 18-1-1 15 Dec 81

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

'V 30001 IDENTIFICATION DIVISION.
03032 PROGRAM-ID. 'PEVERSE'
03003 ENVIRONMENT DIVISION.
I003' CONFIGURATION SECTICN.
003J5 SOuRCE-COMPUTER. IFM-3T0.

0 ?105JECT-COPUTER. IBM-370.
31.01. INPUT-OUTPUT SECTION.
3:$359 FILE-CONTRQL.
0)009 SELECT IMAGE ASSIGN'TO OA-3330-S-IMAGEINv
O I) SELECT IMAGET ASSIGN TO DA-3330-S-IMAGEOUT,
JI 1U DATA DIVISION.
33)12 FILE SECTION.
) 03'V) FD IMAGE#
)01,14 LABEL RECORDS ARE OMITTE0,
0.)i 5 PECOPOCNG MODE IS 9,
3.31 5DATA RECORD IS INOUT-IN,
00317 BLOCK CONTAINS 0 RECORDS.
0)016 OL INPUT-ZN.

03 OATA-IN OCCURS 80 TIMES PICTURE X.
FO IMAGET,

C4'121 L13Et RECORDS ARE STANDARDt
3Cv22 RECORDIN;G MOVE IS F,
03123 BLOCK CONTAINS 5 RECORDS,
OJ0)2 DATA RECORD IS OUTPUT-OUT.
01 O025 01 OUTPUT-OUT.
012'2 03 CUTPT-OT OCCURS SO TINES PICTURE X.

O2lr WORKIN'-STOnAGE SECTION.
00029 01 wS-SUBSCKIPTS COMP-3.
C 2 9 03 SUaL PICTURE S999o
333 \03 SUS2 PICTURE $999.

0)031 PROCEDURF DIVISION.

)OJ3Z TOPPEP.
0^Z33 OPeN INPUT IMAGE, OUTPUT IMAGET.

, " 4MAIN-LINE.

)1)35 REA) IMAGE, AT END GO TO JOB-ENO-ROUTINE.
0 1136 LOOP,
3J313 IR SUBI = 80 GO TO IMAGE-END.

FIGURE 2-52

2-362



15 DEC 81 CSCM 18-1-1

2.5.6.32 0C7 (Data Check) Debuggingq Exercise. (Cont.)

-ee

- 0L -

ooft

0 -

o0 0

Nf-

44 4

wu 4 I

oooo- NNco o cos c o o c o c

0-
N - *~% N 0 ~ 4N N 0 N *NS

- - - - - - - - - - - - - - -- - - - - - - -53 - - -

-a. . . . . . . . . . . . . . .



CSCM 18-1-1 15 Dec 81

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

0000

0U 00 0000 aC.4
z ~ 4 4S0 4~ 0 N0

0000 co N 0- IW00O00
--~00 C 00 06, 1.

ON NN - 0 -%

00000 0 0 00

00006. V. &!
*'00000 0 0 . U f 0 0 404

0 0 9 a'~ 0006
WO~i 0 -. c oo~

Cy 0 0 C C 0 0 t-U

00000 N N N
wamoC 0 06000 400
-6000 '

00000 C, 0 aN 0 N
N~ftv 0 0- a 000

000 C 000 0 000

0 0, 0f o 
W

000000
oi 0600 0 00000

'-4C 4 0 O.-ow a 0-1
NNNU 6. - N 0.0 0f00000000 0 -. 00. 000r

0000 0000
0000 O,.

Co o N I% WWWMJS

06NU 0 -g w COC 0
COWWO C C 000 000000

ow w Cov ... W..~l -
N 0 6000 0 .00 40404

0006 C, 0.. I

0 O.C 0 0 0. 0 00.

00000 400 0
00000 ft'6~0.

00000C w 6.
00000 le 00 90C 00 ftC mCN -q

0 C oa NUO *Ov06. 00

0000. U U CU U VCUO 000 0

6. 0 000o- 00 0 z4
000u '00 0. 0

0 40 14.
Z4 00 00 C.0 U 8 J 0 0 -1

-Z 0 00 0 0 cc 0 0 v
, 0.04 , ~ * . 6aa0S

0040 TON ON N S 0N0 00-'
0 0 - C; 90 suog . 00 g.70,

z 000aC 0 C NO O .2 4 0/ 6100

00000 ~ ~ V.U00

'1 ~ 6. .N N000900

00 0 00U 00~I0 ~ 00%

- 2 NOFIGNR. 2050

0 4 .s0 IC .452-36400



15 DEC 81 CSCM 18-1-1

2.5.6.32 OC? (Data Check) Debugging Exercise. (Cont.)

* .w a

n~ ~~~~ 1% .3- r.e , nj

@uO0OO600OOOL'00:0000

Ug.54 m S 02 .P a C..0 0 0 00 o -
~~~~ '*****,.*-.--,-0*

o~os"00000000 0
a 0 0 a 0 0 t- c- :C .

. . .. ...... C 0
00

000Ca nan 1a%, -1 a

- 0000

0000000000000 0CS

&W.M CDWU'WCWW 0OggP

00000as0o

.UtC.00000*90

0000

00 OUcoIoQ0c 0030

FIUE25

2-365 E.,4.o



CSCM 18-1-1 15 Dec 81

2.5.6.32 0C7 (Data Check) Debugging Exercise. (Cont.)

00 * ** * * * 5
.. . . . . .. . .. . .. . . . . .

.... .... .. .. . .. .. .. .. . . .
%.. . . . . . . .. . . . . . . .

0............................................................................

o nC Ct 0.. . .. . . . . .

o 00

0~D 00 0... .. .. .. ..

0o 04 -.................
V. 00% . . . . ? . . . C . .

o-0 0 20 , 10 -0t '10.

0 C-
00..... .... ....

0 ~ ~ ~ " 0fl . . . . . . . . . . . .

. . . . . . . . . . . . . . . .. . . . . . . . . . .

0 00

a 0 m**.0

I" . c00

o 41,

0~~~~ -4 -.0 0 0 0 0 0 - - - - -- - -

0 ~ ~ ~ ~ ~ itR 2-564O4O0O,*.O.N4.Ot0

0 4 m 0V 0.~,O~0~u4,4.sr:.366..



15 DEC 81 CSCM 18-1-1

2.5.6.32 OC? (Data Check) Debugging Exercise. (Cont.)

.. .. .. .. . .. .. .. .. . .. ........
.. .. . .. . .. .. . .. . .. ...... :1:

4.. . . . . . . . . . ..0 . . . . . . . . . . .....

9%.. . . . . . . . .. . . . . . . . 0 0 . . . . .
. . . . . . . . . . . . . . .. . . . . . O . . W. . . .
. . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . .

. . . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . . . .T.. .4

. . . . . . . . .. . . . . . . . . .

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . .

.0. .. . . . . . . . .4 ~ . . .

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .

. . . . . . . .. . . . . . . . . , . .

. . . . . . . . . . . . . .. . . . . . . . . . .-00...........,...................................
. . . . . . . . . . . . .. . . . . . . . . . . . .

*0.* ~ ~ ~ ~ ~ ~ ~ 0 v * tO O tct* 0 0 t**O t t * *

0 '- Q o. .0 U- : C .lC J 0U~0 .(0 .

0-o, i0C "onC ... OC ' 00- f oo .

-::.; :; 1. , o . ' .. t r ., . c w ., r e ., " .

t t t t t t t t t t t t t . 0 T,~. ~ t ~ P

O0C~C~.0tt~lO O0O U-U,%~U 0 L, c- . a.~ y .

00000

z 0*0000U0C N000c 00,. 0-N
.o~to 40 0Ol-00 O 0< u -'**

7:O t~~0 O * 0"

00-~000000U '0*FIGURE4* O'2-57.

0..O UU 0U.,00 * OO 'OO02-367?0U00



CSCM 18-1-1 15 Dec 81

2.5.6.33 Debugging of COBOL Segmented Programs Under OS/MFT.

* This paragraph is designed to assist programers in debugging segmented
programs. Special techniques are necessary to determine which segment is in
core at the time a segmented program abends, and to find the program location
of the last instruction executed.

@ The link edit map and core dump must be available.

* Steps to be followed for debugging a segmented program.

Determine the origin of the abending program by subtracting the segment
table length (FIGURE 2-58) from the user entry point given in the first active
RB in the core dump (FIGURE 2-59).

D880 User Entry Point
- 38 Segment Table Length

ID848 Origin of Load Module

Subtract the origin of the abending program from the current PSW
address (FIGURE 2-59). This gives the address of the abend relative to zero:

22786 Current PSW Address
-ID848 Origin of Load Module

4F3E Addres:; of Abend Relative to Zero

If the address relative to zero is within the root segment (less than
the origin of the overlay area), continue with normal debugging procedures.
Otherwise, the address relative to zero should point to a location within the
overlay area. The current segment in core must be determined by adding the
CURSEGM location (FIGURE 2-58) to the load nodule origin. This gives the
location of the segment priority number.

2- 36n



15 DEC 81 CSCM 18-1-1

2.5.6.33 Debugging of COBOL Segmented Programs Under OS/MFT. (Cont.)

1D848 Origin of Load Module
+3611 CURSEGM Location

20E59 Location of Segment Priority Number

The segment priority number is a binary half word. In the example, the
priority number is X'371 (FIGURE 2-59) or decimal 55. The priority number in
decimal will identify the segment in core. This priority number corresponds to
the priority assigned to the sections of the COBOL source program.

The address of the failing instruction, relative to the beginning of the
overlay segment, is calculated by subtracting the origin of the overlay area
(FIGURE 2-58) from the address of the abending instruction relative to zero:

4F3E Address of abend relative to zero

-4298 Origin of Overlay Area

CA6 Address of Abend Relative to beginning

of overlay segment

The programer can now refer to the compile source listing for the
overlay segment in error and determine the failing instruction as in normal
debugging procedures.

2*...6g



Cscm 18-1-1 15 Dec 81

2.5.6.33 Debugging of COBOL Segmented Programs Under OS/MFT. (Cont.)

SAMPLE LINK EDIT MAP

F128-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF, IST, LFT,
DEFAULT OPTION(S) USED - STZE = (151552,40960)

IEWOOO INSERT P3MALL
IEWOOO OVERLAY A
IEWOOO INSERT P3MALL50
IEWOOO OVERLAY A
IEWOOO INSERT P3MALL55
IEWOOO OVERLAY A
IEWOOO INSERT P3MALL60
IEWOOO ENTRY P3MALL

CROSS REFERENCE TABLE

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG.NO. NAME LOCATION

$SEGTAB 00 34 1
P3MALL 38 207A 1
ILBODTEO 2CB8 700 1

ILBODTE1 33C2

ILBOSGMO 34E8 12F 1

CURSEGM 3611
P3MALL50 4298 4BE 2

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG.NO.

SAMPLE LINKEDIT MAP

CONTROL SECTION ENTRY

NAME ORIGIN LENGTH SEG.NO. NAME LOCATION

P3MALL55 4298 3994 3

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG.NO.

CONTROL SECTION ENTRY

NXME ORIGIN LENGTH SEG.NO. NAME LOCATION

P3MALL60 4298 F4 4

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG.NO.

FIGURE 2-58

2-370

I



15 DEC 81 CSCM 18-1-1

2.5.6.33 Debugging of COBOL Segmented Programs Under OS/MFT. (Cont.)

SAMPLE CORE DUMP

JOB P3MALL3T STEP STEP2 TIME 105404 DATE 74169

COMPLETION CODE SYSTEM = OC7

PROGRAM INTERRUPTION (DATA) AT LOCATION 022780

INTERRUPT AT 022786

PSW AT ENTRY TO ABEND FF75000D C0022786

TCB OOBDCO RB 00035458 PIE 00000000 DEB 000355CC TIOT 00036670

MSS 0000BE90 PK 70A10008 FLG 000004AD LLS 00035058

ACTIVE RBS

PRB 01D800 NM P3MALL SZ/STAB OF8F0OCO USE/EP 0001D880 PSW
FF75000D C0022786

LOAD LIST

LPRB 036280 nM IEWSZOVR SZ/STAB 00382010 USE/EP 0203627A0

GA 0-7 000000FF 000052B0 00005208 000056A9 00000000-00000000
0000000c 00000000

GR 8-F 0000581A 8A006632 00006632 0000502A 00005FA0 00000000

00000350 00000000

000000 00000000 00000000 00000000 00000000 00000000 00000350
FF060040 00000000

000010 FF050007 4000483E 00000000 00000000 5B58C2C5 00000000
FF0500E0 7000474A

020E40 9640F126 132247F0 F004002B 080051,9 0000007F 7FFFFFFF

00370037 00370030

FIGURE 2-59

2-371

• .,. . .. . . . . . . i .. . .. i . . d - = . . . m . ... . i.. . ... L I - . -- - = - " _ . . . .. . . . . .



CSCM 18-1-1 15 Dec 81

2.6 USACSC COBOL PROGRAM DESIGN TECHNICUES.

*While most programing problems defy a common approach, a number of
general techniques can aid in writing, debugging and maintaining computer
programs. This section recommends approaches to programing which, in the long
run, will free the programer to put more time and energy into problem-solving
and responding to users' needs.

2.6.1 PROCEDURE DIVISION DESIGN.

TIE MAINLINE.

9 The mainline should be devoted to the chief processing activity. Implied
in this is the logical interface function. Choosing what problem-solving code
is to be executed is its main function. This control is executed through
testing then performing subroutines. If abnormal situations can arise, a cur-
sory test can be made to identify th~e cases and then be dealt with separately in
a subroutine.

9 The mainline should describe the program in its most abstract form. A
programer should be able to pick up a program listing and, by reading through
the mainline, gain a general knowledge of the program's major functions.

initial housekeeping.

Sub rout ines.

End-of-job processing.

HOUSEKEEPING.

@ Housekeeping is a familiar function to everyone. The obvious tasks
included in housekeeping are opening of files, data field initialization,
obtaining the date and/or time, table loading, etc.; in short, anything that
deals more with preparing to run a program than accomplishing the program's
functions.

* Most housekeeping is performed once, such as file opening; some is per-
formed cyclically such as blanking fields after each transaction. These one-
time functions can be kept separate so that the cyclical occurring actions can
be performed when required.

* All housekeeping routines should be PERFORMed by the mainline of the
program.

SUBROUTINES.

* A subroutine consists of one, clear and well-defined function.

* The PERFORM verb and paragraph structure of COBOL provide the natural
environment for closed subroutine structures.

2-372



15 DEC 81 CSCM 18-1-1

-" 2.6.1 PROCEDURE DIVISION DESIGN. (Cont.)

* Since COBOL is not strict in its structure of the PERFORM statement, the
user can easily violate its usefulness in implementing closed subroutines.
Therefore, as mentinned under the PERFORM verb in the PROCEDURE DIVISION
Techniques, the PERtuRM verb should always be used with the following format:

PERFORM paragraph-name THRU paragraph-exit-name.

Paragraph-exit-name should be an EXIT paragraph. By using the THRU option, the
scope of the code referenced by the PERFORM is clearly indicated.

* PERFORMing a SECTION is not a good technique because the tendency is to
forget to define the scope of a SECTION by another SECTION statement.

* A subroutine should always have a single entry point and a single exit
point. All conditional and unconditional branches within the subroutine should
always pass control to the EXIT paragraph. The point of entry of a subroutine
should always be the same. The user can probably see little harm in PERFORMing
an inner paragraph. However if this rule is violated it can at some time cause
program difficulties.

9 Subroutines should be grouped together in the program apart from the main
line or process-directing paragraphs. These process-directing paragraphs should
never be branched to (GO TO ...) by a subroutine. A GO TO, AT END path, etc.,
should never cause control to pass from the range of a PERFORM.

e Entire paragraph-groups can be frequently reused in more than one
program. If a given paragraph-group is often executed it may be more desirable
to include it in-line rather than using it 2n a called subprogram.

* The COPY facility of COBOL provides the programer with the capability of
reusing code.

END-OF-JOB ROUTINES. End-of-job routines normally include closing of files

and either return to the mainline routine or STOP RUN.

2.6.2 STANDARD LOGIC CONSTRUCTS.

CONDITIONAL STATEMENT ORDERING.

* The relative frequency of data item values should be considered in
ordering conditional statements within the source program.

2-373

I...



CSCM 18-1-1 15 Dec 81

- 2.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

. EXAMPLE. Program A (FIGURE 2-60) is a master file update accepting five
basic transactions, each with the following occurrence ratio:

number of one transaction type
TOTAL NUMBER TRANSACTIONS type

TiANSACTION CODE MEANING FREQUENCY

A Add record to file 40%

C data field change 15%

1) delete record from file 30%

K control field change 2%

I inquiry 13%

FIGURE 2-60

Therefore within the source program the tests of transaction code should
occur as follows: (Refer to FIGURE 2-61.)

2-374

e
°  

- ,

1



15 DEC 81 CSCM 18-1-1

2.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

0010-DIRECT-TRANS.

IF T-TRANS-CODE IS EQUAL TO 'A'
,-

PERFORM 0060-ADD-MASTER THRU 0070-ADD-MASTER-X

GO TO 0050-READ-TRANS.

IF T-TRANS-CODE IS EQUAL TO 'D

PERFORM 0080-DELETE-MASTER THRU 0090-DELETE-MASTER-X

GO TO 0050-READ-TRANS.

IF T-TRANS-CODE IS EQUAL TO 'C'

PERFORM 0100-CHANGE-MASTER THRU 0110-CHANGE-MASTER-X

GO TO 0050-READ-TRANS.

IF T-TRANS-CODE IS EQUAL TO 'I'

PERFORM 0120-INQUIRY-EXTRACT THRU 0130-INQUIRY-EXTRACT-X

GO TO 0050-READ-TRANS.

IF T-TRANS-CODE IS EQUAL TO 'K'

PERFORM 0140-CONTROLCHANGE THRU 0150-CONTROL-CRANGE-X

GO TO 0050 TO 0050-READ-TRANS.

FIGURE 2-61

LATEST DECISION PRINCIPLE

* This principle asserts that decisions which control program flow should

not be made now if they can be made at a later time. This action usually

results in a program which is easy to follow, and it generally eliminates many
redundant statements.

2-375

. ] . . .. .. .., . . .. .. , . .. ... . .. .. .. ...... . . . . .. .... . . .. .. .... ... . . . .. .. .. .. . . .



CSCM 18-1-1 15 Dec 81

-" 2.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

9 Example:

INCORRECT APPROACH

IF A IS EQUAL TO B

GO TO 0040-XY.

MOVE C TO X.

MOVE D TO Y.

GO TO 0060-ZZ.

0040-XY.

MOVE C TO X.

MOVE E TO Y.

0060-ZZ. MOVE F TO Z.

LATEST DECISION APPROACH

MOVE C TO X.

MOVE F TO Z.

LF A IS EQUAL TO B
MOVE E TO Y

ELSE

MOVE D TO Y.

2-376



15 DEC 81 CSCM 18-1-1

2.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

--- LOOP CONTROLLING.

* The most natural and apparent loop in COBOL is the PERFORM with the
VARYING option. This form of looping, combined with indexing, can eliminate
most of the typical problems such as underflow and overflow of the index.

* The general ANSI construct of this standard form is:

PERFORM paragraph-name THRU paragraph-exit-name

VARYING index-name FROM identifier-i BY

identifier-2 UNTIL condition-statement

The index-name should be unique for each PERFORM ••. VARYING.

If care has been taken to define a simple, one-dimensional table, the

initial value (identifier-i) and the stepping value (identifier-2) can usually
both have a value of 1.

The condition statement tests the index-name for its having equaled a
predetermined limit.

Example:

PERFORM IA-MARCH-LOOP THRU LAX-MARCH-LOOP-X
VARYING MAR-INDEX FROM 1 BY 1
UNTIL MAR-INDEX IS GREATER THAN 31.

* It cannot be overstressed that much difficulty may be avoided by using
the PERFORM ... VARYING for looping. There may be a few instances, however, in
which it is not feasible to use this construct. In these cases, every step of a
loop should be clearly separated and defined.

INITIALIZE.

INCREMENT.

TEST INDEX-VALUE.

TEST COND'TION.

EXIT.

A practical method of programing this type of situation is to first
program the body of the loop for the general case and next program it for the
last iteration. Then backup and program the initialization and incrementat'on

step. Finally, determine if the body will operate correctly for all values of

the parameter.

2-377

U S -



CSCM 18-1-1 15 Dec 81

?.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

Making it simple to find the whereabouts of looping tasks (initializing,
. incrementing, testing, etc.) can bring increased success. If there is good

reason why these tasks must be separated, then careful structural arrangement of
the program can help increase the readability. For example, if involved com-
putation is required to obtain values assigned to an index, limit and increment
value, PERFORM the module(s) to determine these parameters just prior to
PERFORMing the process module.

Example: programer control of looping with indexing.
(Refer to FIGURE 2-62.)

This example shows a practical method of loop controlling. The programer should
note, however, that the PERFORM ... VARYING could accomplish the function as
well.

WORKING-STORAGE SECTION.

77 WS-INDEX-LIMIT USAGE IS INDEX.

PROCEDURE DIVISION.

0010-HOUSEKEEP.

SET WS-INDEX-LIMIT TO 32.

00020-AA-ENTER.

SET WS-A-INDEX TO ZERO.

0030-AB-LOOP.

SET WS-A-INDEX UP BY 1.

IF WS-A-INDEX-LIMIT IS EQUAL TO WS-INDEX-LIMIT

GO TO 00 40-ABX-LOOP-EXIT.

GO TO 0030-AB-LOOP.

0040-A:3X-LOOP-EXIT.

EX IT.

FIGURE 2-62

2-378



15 DEC 81 CSCM 18-1-1

2.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

-. RELATION CONDITIONS--TESTING THE INDEX.

* When testing an index-name used in a loop for its limit, a data conver-
sion may be necessary for certain comparisons. In addition, some comparisons
are illegal. The following rules apply:

1. The comparison of two index-names is actually the comparison
of the corresponding occurrence numbers.

2. In the comparison of an index-name with an ordinary data item
or with a literal, the occurrence number that corresponds to the
value of the index-name is compared with the data item or literal.

3. In the comparison of an index data item with an index-name or another
index data item, the actual values are compared without conversion.

4. Any other comparison involving an index data item is illegal.

INDEX-NAMES AND INDEX DATA ITEMS--COMPARISONS

SECOND
OPERAND DATE-NAME LITERAL

FIRST INDEX (numeric (numeric
OPERAND INDEX-NAME DATE ITEM integer) integer)
INDEX-NAME Compare Compare Compare Compare

occurrence without occurrence occurrence
number conversion number with number with

data-name literal
(conversion (conversion

.__ implied) implied)
INDEX Compare Compare

DATA ITEM without without Illegal Illegal
conversion conversion

DATE-NAME Compare
(numeric occurrence
inteQer) number with Illegal

data-name
(conversion

__ _ _ implied)
LITERAL Compare
(numeric occurrence
integer) number with illegal

literal
(conversion

_ ___ implied) I

FIGURE 2-63

2-379

-% C-. -



CSCM 18-1-1 15 Dec 81

2,6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

USING FLAGS.

9 The term "flag" refers to the use of data items to control processing.
"Switch" can be a synonym, however, it has a second generation-computer con-
notation of toggle switches on the computer's console. The use of a flag is
simple. Somewhere in the program a MOVE statement sets the value of the flag.
Elsewhere in the program the value of the flag is tested and action is taken
dependent on the value. Finally the flag may be reset.

e The use of flags can be a problem area.

The programer can lose track of where in the logic the flag was last set
or reset.

The same flag is used for several purposes, and again the programer loses
track of which use last set the flag's value.

e The use of flags/switches is not recommended and programers are advised
to develop a habit of using data to determine proper logic flow.

The technique of moving (HIGH-VALUES) to an input (WORKING-STORAGE) area
when encountering an end-of-file conditiol provides a logical means of deter-
minina which file should be read.

In the event flags/switches are required the important point Is to develop
consistency. If a programer treats flags/switches in the same manner each
time a high level of dependability results. Keep flag/switch constructs simple
and visible.

Comment lines both within the logical flow and the data description of
flags add further clarity.

Alphanumeric program flags result in more efficient object code when con-
dition testing is done. For simple program flags, there are certain techniques
apolicable across verdor lines.

-. For improved readabil'ty and maintainability of program flags, it is
best to use aiphanumeric flaas with values of "Y" or "N" to indicate the field
status. This can be done in two ways. A data item can be interrogated directly
by data-name or condition-names (88-levels) may be assigned and interrogated.
(Refer to FIGURE 2-64.)

2-380



15 DEC 81 CSCM 18-1-1

?.6.2 STANDARD LOGIC CONSTRUCTS. (Cont.)

WORKING-STORAGE SECTION.

77 WS-EOJ-FLAG PIC X VALUE "N".

05 WS-FILE-STATUS PIC X VALUE "Y".
38 FILE-OPEN VALUE IS "Y".

38 FILE-CLOSE VALUE IS "N".

FIGURE 2-64

?. The use op- an alphanumeric PICTURE X rather than numeric PICTURE 9

for flags has definite efficiency considerations for some vendors. For all ven-

dors, the alphanumeric flag is more desirable because of readability.

2.7 COBOL PROGRAM STRUCTURE TECHNIQUES.

WORKING STORAGE ORGANIZATION.

* 'o help improve source listing readability and debugging capability, the
following formatting techniques are recormended for the WORKING-STORAGE SI-CTION.
This organization will result in execution-time improvement and main-storage

savinqs for some vendors.

* The placement of the following non-numeric literals as the first ard last

,ORKING-STORAGE statement is an aid in locating this section of the proagam in

0 ect-t ime dumps.

77 FILLFR PICTURE X(44) VALUE

"PROGRAM VXXXvX WORKING-STORAGE BEGINS HERE".

01 FILLER PICTURE X(42) VALUE

"PRMGRAM X)XXXXXXX WORKING-STORAGE ENDS HERE".

2-381

U\



CSCM 18-1-1 15 Dec 81

2.7 COBOL PROGRAM STRUCTURE TECHNIQUES. (Cont.)

* These two literals will appear in all dumps of the program delineating
the WORKING-STORAGE SECTION. The program-name replaces the XXXXXXXX in the
literal.

a The actual WORKING-STORAGE data should be divided into three groups:
COMPUTATIONAL 77-level items, all other 77-level items and 01-level items. The
structure within groups is listed below.

COMPUTATIONAL 77-level items should have the following structure:

Items with PICTUREs from S9(10) through S9(18), in alphabetical order.

Items with PICTUREs from S9(5) through S9(9), in alphabetical order.

Items with PICTUREs from S9 through S9(4), in alphabetical order.

All other 77-level items should be grouped in alphabetical order.

All 01-level record descriptions should be listed in order of frequency
of use.

* Liberal use should be made of spacing, page ejecting, and comments to
make the WORKING-STORAGE coding more meaningful.

IBM GUIDELINES.

a The first 4,096 characters of data in the WORKING-STORAGE SECTION are
assigned a permanent base register. By putting the 77-level data items and the
most referenced 01-level data item first, the most frequently used WORKING-
STORAGE data may be referenced without resetting registers. This results in
execution-time improvement.

* IBM COMPUTATIONAL items are aligned on boundaries according to the
following schema:

Items described by PICTUREs corresponding to 10 through 18 decimal dig'ts
are aligned on doubleword boundaries.

items described by PICTUREs corresponding to 5 through 9 decimal digits
ar? aligned on ful'word bound3ries.

Items described by PICTUREs corresoonding to 1 through 4 decimal digits
are aligned on halfword boundaries.

41 The WORKING-STORAGE organization recommended will help make maximum use
of main storage. The fields are arranged so that boundary alignment is auto-
matic and the need for slack bytes between fields is eliminated.

2-382

I



DEC CSCM 18-1-1

2.7.1 DATA FORMAT CONSIDERATIONS.

NUMERIC DATA ITEMS.

* GENERIC CONCEPTS.

The internal representation and use of numeric data items is a function
of the compiler provided by each vendor.

9 IBM GUIDELINES.

IBM supports the use of three data formats, two of which are permitted
in SPEC coded modules: binary and external decimal. These are referred to in
COBOL terminology as, respectively, COMPUTATIONAL and DISPLAY. For the purposes
CF the following discussions, DISPLAY refers to numeric DISPLAY items. The
shortened form COMP for COMPUTATIONAL is used in this text.

The internal representation of a numeric data item is a function of the
?::7T'RE and USAGE zlauses pertaining to it. The following charts illustrate
-hese relationships.

NUMERIC DISPLAY (External Decimal).

C T 11 'RL ',S A6E VALUE INTERNAL REPRESENTATION
9909°. DISPLAY -1234 F1 F2 IF3 I, F4

$9999 DISPLAY -1234 F,, F.2 IF3 [D4

Hexadecimal 'F' is treated arithmetically as a plus in the low-order
Dvte. The hexadecimal character 'D' represents a negative sign. Therefore, it
is iiportant to 3ooly a sian to the PICTURE clause for any numeric DISPLAY item
vnich will oe used in an arithmetic operation. If a sign is not used, invalid
-esults -iay occur.

:OMPUTATIONAL (3inary).

Ij!: INTERNAL REPRESENTATION

(Sign Position)

- -- - I ,,,_

2-383

UJ



I
CSCM 18-1-1 15 Dec 81

2.7.1 DATA FORMAT CONSIDERATIONS. (Cont.)

1. The allocated space for a binary item can contain a value much larger
than the value implied by the PICTURE. For example, for a field defined with a
PICTURE of S9(4), the maximum value is 9,999. However, the actual maximum value
could be 32,767.

Generally, the programer does not need to be concerned with this
situation. However, in the following cases, he must be very careful of the
value of his data.

a. When the ON SIZE ERROR option is used, the size test is based on
the implied maximum value as defined by the PICTURE clause of the result field.
If a size error is detected, control passes to the imperative statements speci-
fied by the error option.

The programer must remember that the result field has not been altered
and still contains the value which created the size error condition. This value
is larger than that implied by the PICTURE clause of that field.

b. When a binary item is displayed or exhibited, the value used is a
function of the number of 9s specified in the PICTURE clause.

c. Since a 0-bit in the sign position means a number is positive and a
1-bit in the sign position means a number is negative, care must be taken not to
let the value overflow into the sign position. For instance, when the actual
value of a positive number is significantly larger than its picture value, a 1
could result in the sign position of the item, causing the item to be treated as
a negative number.

2. The following table illustrates three binary manipulations. The
result fields have been described as PICTURE S9 COMPUTATIONAL. The ON SIZE
ERROR option was not used. If it had been specified, it would have executed for

the last two items in the table.

HL'xddcCimal Rcsultant Actual Decimal Display
of - Dec imal Value in Halfword Exhibit

Caculatiov Euiwv Ien t of Storage Value

0008 8 +8 8

OOOA 10 +10 0

C350 50000 -15536 6

Effective use of the above data representation can be summarized in the
following general rules.

1. Use 9's in a PICTURE only when arithmetic or editirg operations will
be executed on the data item (for switches/flags use PIC X).

2-384



15 DEC 81 CSCM 18-1-1

2.7.1 DATA FORMAT CONSIDERATIONS. (Cont.)

2. Unless the field is used as part of an edit PICTURE, the 9 should
always be preceded by an operational sign, i.e., use PIC S9.

3. When a data item is used as a subscript or as the object in a GO
TO ... DEPENDING ON, the usage of the data item should be COMP (signed binary).

DATA FORMAT CONVERSIONS.

9 GENERIC CONCEPTS.

The data format selected can make considerable difference in the amount
of object code generated and in the execution time of the operation. Data for-
mats of a mixed mode require internal conversions to a commnon mode before execu-
tion takes place. This is especially true for mixed elementary numeric data
formats. These items usually cause code to be generated which moves the item to
an internal work area, converts it, and then executes the indicated operation.
The result may also have to be converted.

The types of formats available and the conversions which take place are a
function of each vendor.

e IBM GUIDELINES.

Program efficiency can be improved by minimizing the number of instruc-
tions generated to convert mixed mode data to a commnon format. The following
techniques indicate ways this can be accomplished.

1. The same data formats should be used throughout the program for items
which are frequently used together.

2. If it is impractical to use the same data formats throughout the
program, a one-time conversion should be effected. The data should be moved to
a work area which is in a format which does not require conversion for specified
operations, (i.e., arithmetic operations). The work area can then be referenced
whenever these operations are performed on that data item. This eliminates the
need for internal conversions every time the item is used since the data is
stored in the work area already in converted form.

3. Suggestions for working with numeric data fields.

a. Study the decimal requirements of your present file, then align
the decimals of related fields on the converted data file.

b. Avoid mixed modes. Move frequently-used numeric DISPLAY fields
to work fields defined as COMP to avoid multiple conversions.

c. Write literals with the same number of decimal positions as the
receiving field.

? 385



CSCM 18-1-1 15 Dec 81

2.7.1 DATA FORMAT CONSIDERATIONS. (Cont.)

d. Specify a sign with the picture, except when the sign is specifi-

cally unwanted.

e. COMP processing should only be used for whole numbers.

f. Literals should be used when possible.

2.7.2 DATA ITEM CONSIDERATIONS.

PREFIXING.

* GENERIC CONCEPTS.

Readability and transferability of programs are greatly enhanced if the
data-names referenced are meaningful. The recommended technique for making
these data-namtes more meaningful is as follows: (Note this technique is cam-
patible with the standard names assigned in the USACSC Data Element Dictionary.)

File and Sort Description (FD/SD) Record Entries. Refer to the USACSC
GUIDELINES under the FILE SECTION of this manual for USACSC prefixing rules.

WORKING-STORAGE SECTION entries. Refer to the USACSC GUIDELINES under
the WORKING-STORAGE SECTION of this manual.

LINKAGE-SECTION entries. Refer to the USACSC GUIDELINES under the
LINKAGE-SECTION of this manual.

The data element definitions (such as DATE) are defined in most cases in
the file descriptions copied from the DATA ELEMENT DICTIONARY. These descrip-
tions should be perpetuated with unique prefixes in those programer-defined
records which are not copied (i.e., WORKING-STORAGE SECTION entries).

REDEFINES CLAUSE.

* GENERIC CONCEPTS.

The REDEFINES clause is an excellent COBOL tool for reducing main sto-age
requirements. Two basic applications for the REDEFINES clause are the reuse of
the same data area for different ecords and the redefinition of elements within
a single record.

1. Reuse of data areas: The main storage area can be used more effi-
ciently by writing different data descriptions for the same data area. The
following example shows how the same work area can be used to define several
different records which are not processed concurrently.

2-386



15 DEC 81 CSCM 18-1-1

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

WORKING-STORAGE SECTION.

01 WS-WORK-FILE1.
03 WS-WORK-FILEI-DATA.

(Largest file description for FILE])

01 WS-WORK-FILE2 REDEFINES WS-WORK-FILEl.
03 WS-WORK-FILE2-DATA.

(Largest file description for FILE2)

2. Redefinitions of subfields: Program data can often be described
more efficiently by providing alternate groupings of data descriptions for thesame data. For example, a program may refer to both a field and its subfields
each of which is more efficiently described with a different usage.

01 MSTR-DATEI PIC $9(5).
01 MSTR-DATE2E2 REDEFINES MSTR-DATEI.

03 MSTR-YR-NUM PIC 599.
03 MSTR-DAY-NUM PIC S999.

01 MSTR-DATE3 REDEFINES MSTR-DATEI.
03 MSTR-YR-ALPHA PIC XX.
03 MSTR-DAY-ALPHA PIC XXX.

While the REDEFINES clause represents a useful tool, indiscriminate useof this clause should be avoided. Hierarchical, or nested, REDEFINES are
often ambiguous and freauently misinterpreted.

For numeric data items, there is no savings in machine efficiency using
any one technique. However., for better readability, literals used should
correspond to the PICTURE of the data item being initialized.

.S W-FL02 PIC S9V99.

MOV- +1.00 TO WS-FLV.

2-387

.



CSCM 18-1-1 15 Dec 81

?.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

Group data items can also be initialized in both the 
DATA DIVISION and

PROCEDUIF"-TVISION.

1. In the DATA DIVISION group items can be initialized either 
at the

group level or each elementary i emwithin the group may be initialized 
sepa-

,-ately. By the use of the REDEFINES clause, the group item can be redefined as

an elementary item. This is especially effective for initializing numeric fields

and tables. For example:

WORKING-STORAGE SECTION.

01 WS-MESSAGE-TABLE.

03 FILLER PIC X(16) VALUE '001ADD MASTER..'.
03 FILLER PIC X(16) VALUE '002CHANGE MASTER'.
03 FILLER PIC X(16) VALUE '003DELETE MASTER'.

03 FILLER PIC X(16) VALUE '/ /INVALID ADD '

01I WS-MESSAGE-TABLE-R REDEFINES WS-MESSAGE-TABLE.
03 WS-TAB-ITEM OCCURS 20 TIMES.

05 WS-TAB-KEY PIC XXX.
05 WS-TAB-IN-CLEAR PlC X(13).

PROCEDURE DIVISION.

00I0-AA-MATCH-MASTER.
IF IN-TRANS3-KEY IS EQUAL TO IN-MASTER-KEY

MOVE 'P20' TO WS-STORE-ERR
GO TO 0020-AZ-MATCH-EXIT.

0030-WA-ERROR-REPORT.
MOVE WS-TAB-IN-CLEAR (WS-STORE-ERR) TO WS-REP-ERR-LINE.

2-3S8



15 DEC 81 CSCM 18-1-1

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

2. Data fields can be initialized in the PROCEDURE DIVISION using state-
ments such as the following:

MOVE SPACES TO WS-WORK-DATA-2.

MOVE +99999 TO JUL-DATE-2.

Additional techniques for initializing tables are explored under TABLE

HANDLING TECHNIQUES.

DECIMAL-POINT ALIGNMENT.

s GENERIC CONCEPTS.

PROCEDURE DIVISION ooerations are most efficient when the decimal posi-
tions of the data items involved are aligned. If they are not aligned, the
compiler generates instructions to align the decimal positions before any
operations involving the data items can be executed. This is referred to as
scaling.

An example of inefficient coding due to decimal alignment:

WORKING-STORAGE SECTION.

77 WS-A PIC $999V99.
77 WS-B PIC $99V9.

PROCEDURE DIVISION

L ADD WS-A TO WS-B.

2-389

* I



CSCM 18-1-1 15 Dec 81

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

This is inefficient because WS-B must be internally aligned so that it

contains the same number of decimal positions as WS-A. This requires more

compiler-generated coding and internal work areas.

Both time and internal storage space can be saved by defining WS-B as:

77 WS-B PIC S99V99.

If it is not feasible to define WS-B in this manner, a one-time conver-

sion might be done to an aligned work area in the program.

Literal values assigned to a data item should correspond in decimal

alignment.

I 77 WS-C PIC S9v99 VALUE 1,l0.

FIELD INITIALIZATION.

* GENERIC CONCEPTS.

For readability, maintainability and as a debugging aid, data fields in

a program should be initialized to a value prior to their use. Initialization

of data fields is a function of both the data description and PROCEDURE

DIVISION statements. The data item can be initialized using either the VALUE

clause or by developing the value during the execution of the program.

2-390

|I



15 DEC 81 CSCM 18-1-1

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

Elementary data items can be initialized using the following
techniques:

1. In the DATA DIVISION, the VALUE clause using a literal or figura-
tive constant can be used.

77 WS-A PIC X VALUE' '.

77 WS-B PIC X VALUE SPACE.

77 WS-C PIC $9 VALUE +1.

77 WS-D PIC $9 VALUE ZERO.

2. In the PROCEDURE DIVISION, literals, figurative constants, or pre-
initialized data names may be moved to a field to initialize it.

For alphanumeric items, the use of the literal or pre-initialized data-
name is generally preferred to the use of a figurative constant. The use of a
figurative constant causes extra coding to be generated to convert it to the
size and format of the data item being initialized. However, if the item is
exceptionally large, the use of the figurative constant may make the statement
more readable and more maintainable.

77 WS-FLDI PIC X(5).

77 WS-FLD2 PIC X(5) VALUE SPACE.

2-391

N * -



CSCM 18-1-1 15 Dec 81

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

The following techniques are recommended for initializing FLD1.

MOVE ' ' to WS-FLD1.

MOVE WS-FLD2 TO WS-FLD1.

However, if WS-FLD1 was defined with a PICTURE X(500), it would be
better to initialize it this way:

M MOVE SPACES TO WS-FLDI.

EDITING.

. GENERIC CONCEPTS.

For efficient object program execution the following editing characters
should be avoided, if at all possible:

1. DB.

2. + (plus sign).

3. - (floating minus sign).

When the currency sign ($) or check protection (*) symbols are specified,
the rightmost $ or * should be preceded by the same character rather than by an
insertion character. A PICTURE of $$$,999.99 is more efficient than $$$,$99.99.

A rightmost Z should not 5e preceded by a $.

BLANK WHEN ZERO should be avoided.

2-392



15 DEC 81 CSCM 18-1-1

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

The insertion character 0 should be used only in the leftmost character
positions. Additional coding is generated for the execution of a MOVE state-
ment when 0 is placed in other character positions. For example, a PICTURE of
000,999.99 is more efficient than +++,000,999.99.

QUALIFICATION.

e GENERIC CONCEPTS.

Qualification of data-names is not allowed. The use of unique data-
nari,s is much more readable and less confusing. This makes program main-
tenance much easier. The careful use of prefixing makes qualification unnec-
essary. Like data items can be described the same way with only the prefix
being different.

For example, these two descriptions:

I IJUL-DATE OF MASTER I
J UL-DATE OF TRANS

can be just as easily and much more clearly defined as:

NISTR-,IUIL-DATE

IPRNS-,TIUL-DATE

USE OF SIGNS.

* GENERIC CONCEPTS.

The absence or presence of a plus or minus sign in the description ol
an arithmetic field often can affect the efficiency of a program. The degree
to which the program is affected depends on the interna' representation of
numeric data items by a particular vendor.

2-393

C -- -



CSCM 18-1-1 15 Dec 81

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

A plus or minus sign: If 'S' is specified in the PICTURE clause, a
plus or minus sign is inserted in one of two ways: the item is in
WORKING-STORAGE and has had a VALUE clause specified or a value has been
assigned as a result of PROCEDURE DIVISION operations (such as, arithmetic
operations, MOVE instructions, etc.) during the execution of the program.

For numeric DISPLAY items, the presence of a plus or minus sign has
special considerations if the field is punched, printed or displayed. If any
of these operations occur, the sign digit is output with an overpunch in the
low-order output digit. This results in representations:

1. Low-order digits of positive values will be represented by one of
the letters 'A' through 'I'. These are the digits I through 9 with a hexadec-
imal 'C' in the zone portion of the low-order byte.

2. Low-order digits of negative values will be represented by one of
the letters 'J' through 'R'. These are the digits I through 9 with a hexadec-
imal 'D' in the zone portion of the low-order byte.

3. Low-order zeroes in EBCDIC may be unprintable characters.

* IBM GUIDELINES.

For IBM's numeric configurations of internal or external decimal items,
the sign position can contain a valid plus or minus sign, a hexadecimal F, or
an invalid configuration.

1. A hexadecimal 'F': If 'S' is not specified in the PICTURE clause,
a hexadecimal 'F' is inserted in the sign position in one of two ways: the
item is in WORKING-STORAGE and has had a VALUE clause specified or a value has
been developed during the execution of a program. The 'F' is treated as being
oositive but does not cause an overpunch when printed, punched or displayed.

2. An invalid configuration: If an internal or external decimal item
contains an invalid configuration in the sign position, and the item is used
in a PROCEDURE DIVISION ooeration, the program wil7 abnormally terminate.

a. Unsigned items (no 'S' has been specified in the PICTURE clause,
are treated as absolute values. Whenever a value (signed or unsigned) is
stored in or moved in by an elemeltary move to an unsigned item, a hexadecimal 'F'
is stored in the sign position of the unsigned item.

For example, an arithmetic operation involving signed operands
and an unsigned result field will result in a hexadecimal 'F' being placed in
the sign position of the result field.

2-394



15 DEC 81 CSCM 18-1-1

2.7.2 DATA ITEM CONSIDERATIONS. (Cont.)

Note that extra code is always generated to erase the existing
sign and place a hexadecimal 'F' in the sign field for unsigned items.
Therefore, it is important to use an 'S' in the PICTURE clause for numeric
items except when there is a vital well-defined reason not to do so.

b. For internal and external decimal items used as input, it is the
user's responsibility to ensure that the input data is valid. The compiler
does not test the sign position for validity.

c. When a group item is involved in a MOVE, the data is moved
alphanumerically without regard to the level structure of the group items
involved. It is possible for the sign position of a subordinate numeric item
to be destroyed. Therefore, caution should be exercised in moves involving
group items with subordinate numeric fields or with other groiup operations
such as READ or ACCEPT.

DISPLAY ITEMS - NUMERIC VS ALPHANUMERIC.

a GENERIC CONCEPTS.

The relative value of defining DISPLAY fields in a program as numeric

or alphanumeric is totally vendor-oriented.

* IBM GUIDELINES.

* If a numeric DISPLAY field is not to be used for computations or in an
operation requiring it to be in numeric format, it is more efficient to define
this field as alphanumeric.

1. The use of a numeric PICTURE for DISPLAY fields for comparisons
with literals, figurative constants or alphanumeric fields is very inefficient
because of the extra coding that is generated to make a numeric comparison.
Every time the field is interrogated, the data in that field is converted to
packed decimal and a packed decimal comparison is made. This requires not
only extra coding wh ich results in increased execution time but also additional
main storage for the internal work areas which are generated.

2. The use of an alohanurneric PICTURE produces a simple canpare ins-ruc-
tion with no intermediate work area.

Th~ese techniques are especially applicable to program flags.

2-395



CSCM 18-1-1 15 Dec 81

2.7.3 PROCEDURE DIVISION TECHNIQUES.

2.7.3.1 Paragraph Naming. Paragraph naming conventions can increase the
readability and intelligibility of programs; they can make it easier and
faster to scan a program, to find paragraphs or sections. Subroutine
paragraph names will be prefixed by a 4 digit numeric.

2.7.3.2 File Processing.

OPEN AND CLOSE ROUTINES.

* GENERIC CONCEPTS.

When multiple files are to be processed in a program, a determination
must be made as to which savings is more important - processing time or main
memory.

Each OPEN or CLOSE statement for a file requires the use of a storage
area that is directly proportional to the number of files being opened or

Opening or closing more than one file with the same statement is faster

than using a separate statement for each file.

OPEN INPUT FILEt FILE2 ...

Separate statements, however, require less storage.

OPEN INU IIE2
Unless core storage is exceedingly limitea, it is recommended that all

opening and closing of files be done in parallel rather than separate state-
merts.

When oossible, all files should be opened at the same time and closed
at the same time. This helps vrevent abendinc by trying to open a file Ahich
is already opened or closing a ffle which is already closed.

?-396



15 DEC III CSCM 18-1-1

2.7.3.2 File Processing. (Cont.)

READ AND WRITE STATEMENTS.

*GENERIC CONCEPTS.

READ and WRITE particularly need modular isolation. On~e READ or one
WRITE per file is all that should occur in a program.

Any associated activity such as line controlling and page overflow
should be logically located near the READ or WRITE.

REWRITE.

* GENERIC CONCEPTS.

This verb is only applicable for certain vendors.

9 IBM GUIDELINES.

For mass storage files which require only minor updating the REWRITE
statement is a useful technique.

The file must be opened in the I-0 mode and a READ must be executed for
each record before it is rewritten.

The use of this term requires only one storage allocation for the file.
The file is read and written on the same physical location.

The REWRITE statement must be used with caution since the original
record is not available after its execution. The user must provide some form
of backup capability for files that are being rewritten.

2.7.3.3 Conditional Statements.

IF NUMERIC TESTS.

*GENERIC CONCEPTS.

When the 'IF statement is being used to determine if a field is NUMERIC
and the last character of an otherwise numeric field contains a valid signed
diait, the -ield is considered nuimeric.

For the IBM system 360, valid sign is a hexadecomal 'C', ID', or 'P'.
However, the numeric test result depends upon the description of the data item

2-397



CSCM 18-1-1 15 Dec 81

2.7.3.3 Conditional Statements. (Cont.)

1. If a data item is defined as a signed numeric field (S999), a valid
sign can be a hexadecimal 'C', 'D' or 'F'.

2. If data item is defined as an unsigned numeric field (999), the only
valid sign is a hexadecimal 'F'.

3. Note that it is important to be aware of the data description used
when testing numeric fields.

IF STATEMENT OPTIONS.

* GENERIC CONCEPTS.

There are two options available for use of the IF STATEMENT - NEXT
SENTENCE and ELSE.

The NEXT SENTENCE clause is usually redundant, generates unnecessary
object coding and should be avoided. For example, the statement,

IS A IS EQUAL TO A NEXT SENTENCE
ELSE ADD A TO B.

can be written more clearly as:

IF A IS NOT EQUAL TO B
ADD A TO B.

This example results in main storage and execution time savings.

ELSE. When ELSE is used in an IF conditional statement, it should be
positioned so that it is easily recognized. A suggested format is:

IF DATA-FIELD-A IS EQUAL TO DATA-IELD-B

PERFORM SUBROUTINE-A

ELSE

PERFORM SUBROUTINE-B

2-398



15 DEC 81 CSCM 18-1-1

2.7.3.3 Conditional Statements. (Cont.)

IF STATEMENT EFFICIENCY.

9 GENERIC CONCEPTS.

Several abuses can arise in using the IF statement. These should be
avoided:

1. Abbreviated forms of the IF statement (See example below).

2. Use of complex conditional statements.

3. Inefficient logic.

4. Nested IF statements with more than 3 levels.

5. Combinations of the above.

Abbreviated forms of the IF STATEMENT.

The COBOL structure can violate the normal, English-language logic of

connectives. An IF statement in which the subject is implied may read:

IF T-TOTAL IS EQUAL TO 05 OR 10 OR ZEROS
GO TO 0020-PARA-B

The implied meaning is:

IF T-TOTAL IS EQUAL TO 05
OR T-TOTAL IS EQUAL TO 10
OR T-TOTAL IS EQUAL TO ZEROS
GO TO 0020-PARA-B.

Confusion arises when a programer uses the following construct in which
the subject and relational operand are implied:

IF T-TOTAL IS NOT EQUAL TO 05 OR 10 OR ZEROS

GO TO 00@20-PARA-B.

4

2- 399



CSCM 18-1-1 15 Dec 81

2.7.3.3 Conditional Statements. (Cont.)

Although its intended meaning may be:

IF T-TOTAL IS NOT EQUAL TO 05
AND T-TOTAL IS NOT EQUAL TO 10

I AND T-TOTAL IS NOT EQUAL TO ZEROS
GO TO 0020-PARA-B.

Its actual meaning is:

IF T-TOTAL IS NOT EQUAL TO 05
OR T-TOTAL IS EQUAL TO 10
OR T-TOTAL IS EQUAL TO ZEROS
GO TO 0020-PARA-B.

Obviously the programer won't be getting the object coding he expects. If con-
'usion can arise from simple constructs, the confusion resulting from more complex
constructs increases geometrically. Therefore, it pays off for programers to
spell out IF statements completely.

Complex Conditional Statements.

Even when IF statements are fully written out, errors can result from using
complex conditional statements. For example:

IF ONE-TOTAL IS EQUAL TO 1
AND TWO-TOTAL IS EQUAL TO 1
OR TWO-TOTAL IS EQUAL TO 2
GO TO 0010-PARA-A.

in order for the relational tests oF TWO-TOTAL to be considered as a unit it
must be parenthesized:

2-400



15 DEC 81 CSCM 18-1-1

2.7.3.3 Conditional Statements. (Cont.)

IF ONE-TOTAL IS EQUAL TO 1
AND (TWO-TOTAL IS EQUAL TO 1
OR TWO-TOTAL IS EQUAL TO 2)
GO TO 001-PARA-A.

Thus at the very least, such conditionals should be parenthesized and
laid out for the best visual clarity by using the USACSC standard formatting as
shown above. But obviously the best solution is to avoid such complex con-
ditional IFs in favor of simple conditional statements.

Inefficient Logic.

1. The logic involved in an IF statement can sometimes be reversed and
result in clearer coding.

IF FLDA EQUAL TO 3
GO TO 0040-PARA-4

ELSE
ADD 1 TO FLDB.

0040-PARA-4.

The following example is clearer.

IF FLDA NOT EQUAL TO 3
ADD I TO FLDB.

2. When testing for a value, the most likely occurrence should be tested
first. The next most likely occurrence should be tested second. The next mest
likely should be tested next, etc.

Nested IF Statements.

Stringing IF statements together represents the most confusing and most
difficult to maintain use of this statement. Because of this, USACSC Standards
do not 41low the use of more than 3 levels of nested IF statements.

2-A01



CSCM 18-1-1 15 Dec 81

2.7.3.4 Arithmetic Operations.

-ADDITION AND SUBTRACTION.

* GENERIC CONCEPTS.

The most efficient ADD and SUBTRACT statements are:

SUBTRACT data-name-I FROM data-name-2
Where the decimal point scaling of data-name-I is identical

to that of data-name-2.

Less efficient object coding is produced when the programer uses operands
with different decimal point scaling with the GIVING, ROUNDED or ON SIZE ERROR
option. However, this should not preclude the programer from using ON SIZE
ERROR, ROUNDED and GIVING when he determines their necessity. Use of these
terms may make the program more maintainable and this should be weighed before
dismissing their use.

MULTIPLICATION.

* GENERIC CONCEPTS.

The multiplication of a numeric DISPLAY field by a power of 10 (.1, 10,
10, 1900, etc.) should be avoided. The same results can be obtained by rede-
fining the field.

3 P I TDA PICTURE S9(5)V99.

MUITTPLY 100 BY FIELVA.

'-402

* \



15 DEC 81 CSC4 18-1-1

2.7.3.4 Arithmetic Operations. (Cont.)

The example on the previous page can be accomplished by redefinition
which will result in a savings in main storage and execution time.

E 05 FIELDB REDEFINES 
FIIEDA PICTURE S9(7).

ON SIZE ERROR.

*GENERIC CONCEPTS.

The ON SIZE ERROR is used with arithmetic operations. It occurs when the
defined size of the result data field is smaller than the calculated result, or
when the divisor is zero. The final result will not be accurate.

1. If the ON SIZE ERROR option is specified and a size error condition
occurs, the resultant data-name is not altered and the series of imperative state-
ments specified for the condition is executed.

2. The values involved in the arithmetic may be tested for limits if a
size error condition is possible.

3. A test for a zero divisor should be made before dividing.

Size error conditions are possible when the operands involved in an
arithmetic operation contain the maximum value allowable in a data description
and the resultant field is not defined to contain the maximum allowable result.

s IBM GUIDELINES.

The ON SIZE ERROR condition applies only to final results. It does not
apply to intermediate results.

INTERMEDIATE RESULTS.

*GENERIC CONCEPTS.

Compilers treat arithmetic statements as a series of operations and set
up intermediate result fields to contain the results of these operations. The
internal code generated and the size and description of these intermediate
fields are different for each vendor.

*IBM GUIDELINES.

2-403

A .-



CSCM 18-1-1 15 Dec 81

2.7.3.4 Arithmetic Operations. (Cont.)

The intermediate result fields generated by the IBM compiler depend upon
the usage of the data items involved and the arithmetic statement being
executed.

Binary Data Items.

If an operation with binary operands requires an intermediate result of
greater than lb digits, the compiler converts the operands to internal decimal
before performing the operation. If the result is a binary field, the calcu-
lated result will be converted from internal decimal to binary.

If an intermediate result will not be greater than 9 digits, binary data
fields are not converted. The operation is much more efficiently performed
using binary data if no conversions are required.

Multiplication.

If a decimal multiplication operation requires an intermediate result
greater than 30 digits, a COBOL library subroutine is used to perform the opera-
tion. The result is then truncated to 30 digits.

Division.

A COBOL library subroutine is used for division when one of the following
occurs:

1. The scaled divisor is equal to or greater than 15 digits.

2. The internal decimal length of the scaled divisor plus the internal
decimal length of the scaled dividend is greater than 16 bytes.

3. The scaled dividend is greater than 30 digits. (A scaled dividend is
a number that has been multiplied by a power of te, in order to obtain the
desired number of decimal places in the quotient.)

Intermediate Results Greater Than '.Digits.

When the number of digits in an intermediate result is greater than 30.
the field is truncated to 30 digits. A warning message will be generated by the
compiler, but no abend will occur during execution. However, the truncation 'lay
cause ain incorrect result.

ON SIZE ERROR.

This option applies only to the final calculated results and not to
intermediate result fields. Problems can arise when intermediate results are
not understood, as in the following example:

2-404



15 DEC 81 CSCM 18-1-1

2.7.3.4 Arithmetic Operations. (Cont.)

I COMPUTE PERCNT = (A/B) * 100.

If A and B are defined as whole numbers, PERCNT will always be zero because the

intermediate result will be truncated.

EFFECTS OF SIGNS.

* GENERIC CONCEPTS.

The use of the sign field (S) in the PICTURE clause for a numeric data
item is important when arithmetic operations are performed using that field.

e IBM GUIDELINES.

If the result field of an arithmetic operation is not signed, extra
instructions are generated to strip the sign from that field. Therefore, all
result fields of arithmetic operations should be signed.

2.7.3.5 Branching Statements.

GO TO STATEMENT.

* GENERIC CONCEPTS.

The GO TO statement is considered one of the primary contributors to the
complexity of computer programs. The GO TO when misused, creates "monolithic
monsters" and therefore destroys the cleanliness of closed subroutine struc-
tures. It takes only a few intertwined branches in a program to exceed an ooti-
mum level of complexity.

Using PERFORM statements as a structure for subroutining and modularizing
will significantly reduce the number of GO TO's in a program. However when the
GO TO is used, there are guidelines which should be followed.

1. The object of the GO TO should only be a paragraph within the
subroutine or module to which the GO TO belongs. Therefore, the programer does
not have to look through the entire program to determine the impact of the
branch.

This guideline also prohibits branching out of the middle of one
subroutine into the middle of another one which destroys the independence of the
paraqraph-groups involved.

2-405

w



CSCM 18-1-1 15 Dec 81

2.7.3.5 Branching Statements. (Cont.)

2. The GO TO should only branch forward in the program and only to an
intermediate paragraph or EXIT paragraph within a subroutine or module.
Branching backward implies a loop and the natural construct for a loop in COBOL
is the PERFORM ... VARYING.

The ideal u-age of GO TO is the branching forward only to the EXIT
paragraph of a paragraph-group.

There are several operational questions the programer can ask himself as
an aid in structuring a modularized, GO TO free program.

1. Is the mainline of the program concise and forward-moving?

9. Are the mainline paragraphs logically ordered?

3. Are any transactions bouncing through often repeated condition-
testinq?

4. Should the GO TO statement be replaced with a PERFORMed subroutine?

S. Are thle Subroutines properly modularized, that is, are they each per-
forming one logical function?

GO TO ... DEPENDING ON ... STATEMENT.

e GENERIC CONCEPTS.

For less than 3 paragraph names, a comparison for equal conditions is
just as efficient.

The GO TO ... DEPENDING ON should be well documented by conment entries
to explain what the values of the object of the DEPENDING ON represent.

The prcyc7ramer must be careful when using this feature. Its use can be
economical or costly in terms of memory and runtime. Following is an example of
the DEPENDING 011 Feature used to best advantage.

1.. P'-ooram A is a validation program accepting five types of transac-
tions on a file. These transactions are identified by a three-position code.
Program A assigns a number, I through 5, to a new field, TRANS-CD, which is
included in the record written onto the output transaction file.

2. Program B is a master file update program which reads the transaction
file, output of Program A. The processing of each transaction read into Program
B can be determined as follows:

2.406



15 DEC 81 CSCM 18-1-1

2.7.3.5 Branching Statements. (Cont.)

CO TO 0110-AA-ADD-MASTER

0120-AB-CRANGE-MASTEb

0130-AC-INQUIRY-EXTRACT

0140-AD-DELETE-MASTER

0150-AE-CONTROL-CHANGE

DEPENDING ON WS-TI-TRANS-CD.

IBM GUIDELINES.

The object of the DEPENDING ON should be defined with a computational
PICTURE.

PERFORM STATEMENT.

9 GENERIC CONCEPTS.

Most arguments used against use of the PERFORM verb say it is less effi-

cient than a GO TO. Taken on a one-to-one basis PERFORM does require more
machine instructions than a GO TO. What is often overlooked is the additional
coding, such as IF statements and flag settings, it takes to implement more than
one logical path passing through in-line coding.

A most important reason for using PERFORM is that it is one of the more
powerful tools available in COBOL for modularity. A fuller treatment of the
PERFORM statement and its use in modular program design can be found in PROGRAM
DESIGN TECHNIQUES paragraph.

EXIT STATEMENT.

e GENERIC CONCEPTS.

The EXIT should always be used as the only sentence in the last paril-yaph

of a subroutine. This aids program readability and self-documentation by maving
the subroutine limit clear to any user of the program.

The relationship of the EXIT verb with the PERFORM ... THRU is shown under

LOOP CONTROLLING in PROGRAM DESIGN TECHNIQUES paragraph.

The return path of a PERFORM should always be through an EXIT.

2-407

w , .... . .. . . .. 
. .. .. . .

w - - | . . . . . 1111m " .. i . . . .. lmm . .. . .



C-Cm 18-I-1 15 Dec 81

2.7.3.6 Data Manipulation.

FIXED-LENGTH MOVE.

@ GENERIC CONCEPTS.

The most efficient MOVE statement for unedited transfers, zero
suppression and alphanumeric report editing is:

I MOVE data-name-I TO data-name-2.

For non-numeric elementary or group moves, the size of data-name-1 should
be equal to or greater than the size of data-name-2.

A non-numeric literal may be moved more efficiently if the literal is made
equal in size to the receiving field's size.

For a numeric-edited move, the scaling and computational size of
data-rame-l should be identifiable with that of data-name-2. Computational size
re'ers to the maximum number of numerics which can be present in the edited
item. :or example:

: N1 ETU COMPUTATIONAL SIZE

5
$.9R 4

4

2.7.4 TABLE HANDLING TECHNIQUES.

2.7.4.1 Table Construction and Referencing.

TABLE STRUCTURE.

e GENERIC CONCEPTS.

2-408



15 DEC 81 CSCM 18-1-1

2.7.4.1 Table Construction and Referencing. (Cont.)

Tables are structured in the WORKING-STORAGE portion of the DATA DIVISION
using the OCCURS clause. The organization of the table elements and their
structure are interrelated with the types of techniques that will be used to
interrogate the table.

01 WS-TABI.
03 WS-TABl-ELMT OCCURS 20 TIMES

INDEXED BY INDEXl
PIC X(lo).

e IBM GUIDELINES.

Large tables (greater than 4,095 bytes) should be placed at the end of
WORKING-STORAGE to avoid having assigned to them registers that would otherwise
be assigned to more frequently accessed items (the 2nd thru nth register
assigned to a large table is used only when executing index expressions composed
entirely of literals).

TABLE REFERENCING.

e GENERIC CONCEPTS.

There are two techniques for referencing elements within a table:
subscripting and indexing. Indexing is never slower than subscripting and may
be up to 16 times faster.

Subscripting should be used as little as possible because of the complex
conversions generated to conve t the subscript (which represents an occurrence
number in a table) to the address of the item being referenced. Therefcre,
subscripts should never by used when searching a table.

1. However, direct subscripting using literals or a data-field are use-
ful. If u, iy a direct reference need be made to a known ocurrence number In
the table, a literal subscript is efficient and makes the program more readable.

2-409

" V ikm |mmm ..



CSCM 18-1-1 15 Dec 61

2.7.4.1 Table Construction and Referencing. (Cont.)

I F WS-'1 Ali-L 'IM (1) EQUALS SPACES I

2. Direct subscripting using a data-name has limited use. However, if
a data-field contains an occurrence number (such as a data-field in an input
record) this could be used as a one-time reference. This should be used
sparingly. If any computations need to be done for additional referencing,
indexing should be used.

[F WS-TAB-ELMT (WS-INPUT-FIELD) EQUALS WS-INPUT-KEY

Indexing is faster than subscripting because an index is an internal
binary counter which contains a displacement value which is added to the base
address of the table to determine the address of the item referenced. Once an
index has been set, it remains in a usable state without conversions being
required. A subscript must be internally converted every time it is used even
if the value of the subscript has not changed. Execution time, therefore, is
saved when an index is used several times to refer to the same table element.

Execution time can be saved also by the use of efficient techniques for
setting the value of the index. The order of preference for setting this value
is:

1. SET TO another index-name which relates to a table having the same
dimensions or to an index data item. Note that index data items are storage
units for index-names. An index data item is described at the 77-level with the
"SAGE IS INDEX clause.

2. SET TO (UP BY or DOWN BY) a literal. Conversion instructions are not
needed because the value of a literal is fixed at compilation time.

3. SET TO an index-name related to a table of different dimensions.

Only a short version of the conversion procedure is executed at object time.

4. SET TO an identifier other than an index-name.

5. Examples of these techniques:

2-410



15 DEC 81 CSCM 18-1-1

?.7.4.1 Table Construction and Referencing. (Cant.)

77 WS-DATA-ITEM PIC S9(5) COMP.
77 WS-INDEX-DATA-ITEM USAGE IS INDEX.

9)1 WS-TAB1.
0)3 IWS-TAS1-ELPMT OCCURS 5 TIMES

INDEXED BY WS-INDEX1
PIC X(50).

9)1 WS-TAE3?.
0)3 WS-TAB2-ELMT OCCURS 5 TIMES

INDEXED BY WS-INDEX2
PIC X(50).

9)1 WS-TAB3.
03 WS-TAB3-ELMT OCCURS 10 TIMES

INDEXED BY,~WS-INDEX3
PIC X(100).

PROCEDURE DIVISION.
* 019-INIT.

MO1VE +1 TO WS-DATA-ITEM.
* SET WS-INDEX1 TO I1.
* SE~TWSNDXTO1

SET WS-INDEX3 TO 1.

0)..'29-PROCESS.
SET WS-INDEX-DATA-NAME TO WS-INDEX1.

I 0039-EXAMPLE 1.
* SET WS-INDEX1 TO 14S-INDEX2.

SET WS-INDEXI TO WS-INDEX-DATA-NAME.

0049-EXAMPLL2.
SLT WS-INDEXI TO 4.

0050-EXAMPLE3.
SET WS-INDEXI TO WS-INDEX3.

00969-EXAMPLE4.

SET 14S-INDEX1 TO WS-DATA-I rEM.

2-411



CSCM 18-1-1 15 Dec 81

..7.4.1 Table Construction and Referencing. (Cont.)

TABLE INITIALIZATION.

e GENERIC CONCEPTS.

All tables being constructed in a program should have their data areas
initialized before construction. This aids in debugging and maintenance of the
program. There are several techniques available for accomplishing this initiali-
zation.

In the DATA DIVISION, alphanumeric group items can be initialized using
the VALUE clause at the group level.

01 WS-TABI VALUE SPACES.
03 WS-TABI-ELMT OCCURS 10 TIMES

PIC X(10).

In the PROCEDURE DIVISION, the technique used for initialization depends
o. tie description of the table elements.

1. Alphanumeric table elements can be initialized simply by moving a
value to the group level.

L MOVE SPACES TO WS-TAB1.

2. Sianed numeric table elements must be initialized individually in order
to preserve the sign position. This can be done by indexing through the table.

01 WS-TABI.
03 WS-TABl-ELMT OCCURS 10 TIMES

INDEXED BY WS-INDEX1
PIC S9(5).

PROCEDURE DIVISION.
@01 -HSKP.

SET WS- 'NLX1 TO 0.

0020-INIT.
SET WS-INDEXI UP BY 1.
MOVE +0 TO WS-TABI-ELMT (WS-INDEXI).
IF WS-INDEXl NOT EQUAL 10

GO TO 0020-INIT.

2-412



15 DEC 81 CSCM 18-1-1

2.7.4.1 Table Construction and Referencing. (Cont.)

e IBM GUIDELINES.

If a table has data elements which are COMP, the whole table can be ini-

tialized to ZERO by moving LOW-VALUES to the group level.

01 WS-TABI.
03 WS-TABl-ELMT OCCURS 20 TIMES

PIC S9(4) COMP.

MOVE LOW-VALUES TO WS-TABl.

If a table contains numeric DISPLAY fields, each elementary item in order

to be operated on arithmetically must have a sign associated with it.

The following method may be used to initialize the elementary items to ZERO.

F 1 WS-DATA-AREA.
03 WS-DATA-DUMMYI.

• 4 05 FILLER PIC S9(5) DISPLAY VALUE 0 .

05 WS-DATA-DUMMY2.
07 WS-DATA-VALUE OCCURS 20 TIMES

PIC S9(5) DISPLAY.

MOVE WS-DATA-DLIMMYI TO WS-DATA-DUMMY2.

2-13

4



CSCM 18-1-1 15 Dec 81

2.7.4.1 Table Construction and Referencing. (Cont.)

A move from WS-DATA-DUMMY1 to WS-DATA-DUWMY2 propagates the value of
WS-DATA-DUMMY1 throughout the area WS-DATA-DUJ"MY2 initializing each elementary
item to ZERO with proper placement of the sign.

• t, IMOVE WS-DATA-DUMMYI TO WS-DATA-DUMMY2.

This should be executed only when the area is to be initialized to ZERO.

2.7.5 TRANSFER OF CONTROL.

2.7.5.1 Overlay Structures.

GENERIC CONCEPTS.

* A diagram of a typical overlay structure is shown in FIGURE 2-65.

OVERLAY 4

OVERLAY 3

OVERIY 

ROOT

FIGURE 2-65

2-414



15 DEC 81 CSCM 18-1-1

2.7.5.1 Overlay Structures. (Cont.)

The root portion remains core resident throughout the execution of the
program. The root controls loading and execution of the overlays.

Overlay segments are loaded into core when CALLed by the root or other
segments and can be overlaid by other segments.

An overlay module may be created through use of the COBOL segmentation

facility. Refer to the segmentation feature in the Special Feature Section.

2.7.5.2 Subprogram Linkage.

GENERIC CONCEPTS.

* The CALL statement serves to pass control from one module to another
module within a program. When control passes to a called module, execution is
from procedure statement to procedure statemrent beginning with the first non-
declarative statement. The logical end of the run unit is reached when a STOP
RUN statement is executed and control is passed to the operating system. The
logical end of the called module i.. reached only when an EXIT PROGRAM statement
is executed; control then reverts to the next instruction following the CALL
statement in the calling module. An EXIT PROGRAM in a non-subprogram is equiva-
lent to a fall through.

* A called module can itself CALL other modules. However, where cir-
cularity of control is initiated an unusual end-of-program will occur. For
example, if module A calls module B, then module B calls module A or another
module which calls module A, an abend will result. The distinction between cir-
cularity of control and returning control to a calling module should be
recognized. When A calls B and B calls C, control may return to B after the
execution of EXIT PROGRAM in C and lastly control returns to A after the execu-
tion of EXIT PROGRAM in B. In this case, no circularity of control exists.

* Because a calling program may also be called, some confusion may arise as
to whether to use the STOP RUN statement or the EXIT PROGRAM statement. Since a
STOP RUN -Fatement returns control to the operating system when encountered, it
should ne used when the program is to be called. The EXIT PROGRAM, however,
returns cL to the program calling it and should not be used if the program
is being use, as the root calling program.

By specifying the following coding, both of these situations can be
covered in the same program.

0090-EXIT-PROG.
EXIT PROGRAM.

0100-STOP-PROG.
STOP RUN.

L . . ... 4

2-415



CSCM 18-1-1 15 Dec 81

2.7.5.2 Subprogram Linkage. (Cont.)

In this example, if the program is being called, the EXIT PROGRAM state-
ment will return control back to the calling program. If the program has not
been called, the EXIT PROGRAM statement will not be executed and control will
pass to the STOP RUN statement which will terminate the execution of the run
unit.

2.7.5.3 Subprogram Technique.

The technique to be used when calling COBOL subprograms is discussed in
this section.

Reference should be made to using the PROCEDURE DIVISION USING ... option
in the called program. This procedure is preferred to the ENTRY "entry point"
USING ... technique which is not an ANSI standard but an IBM extension.

The LINKAGE SECTION provides useful core utilization. A called COBOL
program, with the passed data defined within a LINKAGE SECTION, will reference
the address locations defined in the main program. The called program will not
establish duplicate allocations. The following is an example of a calling and
called program with a LINKAGE SECTION. (Refer to FIGURE 2-66.)

CALLING PROGRAM

- IDENTIFICATION DIVISION.
PROGRAM-ID. CALLPROG.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 WS-RECORD-1.
03 WS-SALARY PIC S9(5)V99.
03 WS-RATE PlC S9V99.
03 WS-HOURS PIC S99V9.

FIGURE 2-56

2-416

L ,



15 DC 81CSCM 18-1-1

WAS-2.7.5.3 Subprogram Technique. (Cant.)

PROCEDURE DIVSION.
CALL SUBPROGRAM USING WS-RECORD-1. STOP RUN.

CALLED PROGRAM

IDEN7IFICATION DIVISION.
PROGRAM-ID. SUBPROGRAM.

DATA DIVISION.

LINKAGE SECTION.

£01 LS-PAYREC.
03 LS-PAY PIC S9(5)V99.
03 LS-HOURLY-RATE PIC 59V99.
03 LS-HOURS PIC 599V9.

PROCEDURE DIVISION USING LS-PAYREC.

9090-END-SUB.
EXIT PROGRAM.

FIGURE 2-66 (Cant.)

2-417



CSCM 18-1-1 15 Dec 81

2.7.5.3 Subprogram Technique. (Cont.)

P52ATU, a USACSC OS executive software module, should be used as a link
module whenever subprograms that are subject to a high degree of change and
modification are used. The P52ATU module loads and transfers control to the
subprogram at execution time. This allows changes to the subprogram without
relinking the main program. The following techniques aid in clarifying which
items in the called program are paired with items in the calling program.

All data items in the called program which are to be used by one or
nore calling programs should be physically grouped together.

The group of items should be combined into one 01-level record descrip-
tion. It is more efficient to reference one data-name with the USING clause than
each individual item.

If the data items in a group cannot be combined into a single 01-level
record description entry, they should be consolidated as much as possible and
listed with the 77-level items first and the 01-level record description
following.

The above techniques apply to the WORKING-STORAGE items for the calling

program and the LINKAGE-SECTION items in the called program.

2.7.6 SOURCE LANGUAGE SYSTEM (SLS)/PROGRAM LANGUAGE UPDATE SERVICE (PLUS).

2.7.6.1 Source Library Maintenance.

* Source Language System (SLS) or Program Language Update Service (PLUS)
will be used by all USACSC developers for source library maintenance. SLS will
be used by all developers maintaining a single copy of a program coding that can
be compiled and executed on different operating systems and/or across computer
lines, for all 360/370 OS systems, and for all developers using the 370 test
bed. PLUS may be used for systems developed exclusively for IBM 360 DOS
although the use of SLS is encouraged. PLUS may be used for systems converting
f,-mn DOS to OS for a period of 120 days after completion of the conversion.

2.7.6.2 Catalogued Programs.
9 All programs will be catalogued to the SLS or PLUS library prior to all

updating or compilation.

2.8 SINGLE SOURCE LIBRARY SYSTEM.

2.8.1 OBJECTIVE.

e The objective of the single source library system is to establish a means
of developing and maintaining a single copy of program source coding that can be
compiled and executed on different operating systems and across computer lines.

2-418



15 DEC 81 CSCM 18-1-1

2.8.2 PROCEDURES.

* All program source will be maintained using the USACSC standard source
language maintenance systems. All unique coding that is needed to satisfy the
requirements of various operating systems (OS vs DOS) or multi-vendor environ-
ment (IBM vs Burroughs, etc.), will be entered into the source language system.
These lines of coding are identified as being unique to a specific requirement.

?.8.3 CODING.

* Column 7 of the COBOL coding format is used to indicate operating system
or vendor unique coding. Cur-ent operating system codes are:

A in column 7 for 9S only lines
B in column 7 for DOS only lines
C in column 7 for CDC only lines
D in column 7 for Debugging lines
E in column 7 for Burroughs only lines

0F in column 7 for Honeywell only lines
G in column 7 for Series 1
H in column 7 for Univac only lines
* in column 7 for Comment lines
I-R reserved for future use

?.3.4 SINGLE SOURCE SYSTEM.

9 Under the single source system, the source program is passed through a
orogram which scans column 7 before the source is passed to the compiler. If
the programer desires an OS comoilation, this program would:

Upon encountering an "A" in column 7, replaces the "A" with a space acti-
vatino that line for an OS compile and places an indicator in columns 73-80.

Jpo e-ncountering a "", "C", "E", "F", "G", or "H" in column 7, replaces
the chara:te- with an asterisk makina that line a comment to the OS compiler and
,laces ar indicator in columns 73-80. The OS and all other unique lines remain
OS commerts.

For a DOS, CDC, UN 2, Burroughs, Honeywell or Series 1 compile, the

onoosite process would occur.

?.S.5 !IP-LEXENTING INSTRUCTIONS.

* For OS users more detailed information including JCL required to use the
Sinnle Srjrc- languaqe System can be found in the USACSCM Executive Software
?ataloq, IRM/O', Manuial Number 18-?-B-ATU under program J05ATJ.

?-419



CSCM 18-I-I 15 Dec 81

2.9 OS/DOS COMPATIBILITY.

2.9.1 PROGRAM TECHNIQUES.

e Program conversions, from DOS to OS, have revealed several OS problems
(causing abnormal program termination) that were found to be caused by COBOL
programing techniques. These techniques have proven to be entirely satisfactory
as far as ANSI COBOL syntax and DOS execution are concerned but have caused
problems when operating under OS.

2.9.2 INPUT/STORAGE AREAS.

e DOS programers occasionally use input areas (the data areas associated
wizh FD's or SD's) as storage areas. The use of these storage areas is often on
a temporary basis as an intermediate work area. The DOS programer has found
that it is more core efficient to use the input areas as compared to
establishing similar a;eas in WORKING-STORAGE. DOS pointers to input areas are
valid in circumstances where OS has random or incorrect pointer information. In
OS, 1-0 buffer areas are available with these restrictions:

2.9.2.1 Input Buffers.

e OS obtains input buffers when an OPEN statement is executed and releases
these buffers when a CLOSE statement is executed. No moves to or from the data
area of a closed file should occur. Such moves may cause abends or may overlay
other data in the partition/region.

2.9.2.2 Address Pointer.

* The OS address pointer to the input area is not established until after
the First READ instruction. Again, a move to/from an OPEN but not read file
gives unpredictable results. The output buffer area, however, is established
ahen the output area is opened and data manipulations in the output area is per-
missible.

2.9.3 STOP RUN STATEMENT.

@ The STOP RUN statement in DOS causes a return to the system and end-of-
Job step (E02 macro). The STOP RUN statement under the OS system causes a
return to the invoker of the main COBOL program as follows:

2-420



15 DEC 81 CSCM 18-1-1

2.9.3 STOP RUN STATEMENT. (Cont.)

INVOKER RESULTS

•"Operating System EOJ step

t'ro lram in another language EOJ step
that follows COBOL invoca-

tion convent ions. A program
ill 111otht- lngulage thalt follows
('0)01, inovocat ion conventions

is logicaliv considered to be a

COWL program.

Program in another language Return to the invoking

that does not follow COBOL program of the main

invocation conventions. COBOL program.

A situation frequently encountered is the placement of a 'STOP RUN' state-
ment within an INPUT or OUTPUT PROCEDURE. This will cause an ABEND 0C4. Like-
wise, a branch to a paragraph outside an INPUT or OUTPUT procedure causes an
ABEND if a 'STOP RUN' is encountered.

2.9.4 DATA FORMATS.

* The DOS version of CURRENT-DATE has two formats, MM/DD/YY and DD/MM/YY.
The OS format of these eight bytes is MM/DD/YY.

2.9.5 RECORD IDENTIFIER.

e Under DOS processing, there are no restrictions on the contents of the
'record-identifier' portion of the RELATIVE KEY. However, when processing F-mode
records under OS, the frst byte of the 'record-identifier' portion of the
RELATIVE KEY must not be HIGh-VALUE e'se the system regards the record as a
dummy record.

2.9.6 PROGRAM SWITCHES.

9 OS cannot access the UPSI program switches. All references to these
switches in the SPECIAL-NAMES paragraph and all switch conditions in IF, PERFORM
and SEARCH statements should be removed.

2-421

A



CSCM 18-1-1 15 Dec 81

2.9.7 PICTURE CLAUSE.

* The PICTURE clause for the RELATIVE KEY statement varies between DOS and
OS. The PICTURE size is smaller in OS and the value of the track identifier is
smaller. In addition, DOS allows the RELATIVE KEY to be specified under either
actual track addressing or relative track addressing. OS allows only relative
track addressing to define the RELATIVE KEY.

2.9.8 APPLY CLAUSE.

e Several options of the APPLY clause are normally handled in OS at execu-
ti rn time (JCL) whereas DOS would handle the techniques at compile time. The
Co,lowing are examples or clauses that must be removed from source coding and
replaced by JCL.

(See IBM System 360/370 Operating System: Job Control Language Reference
GC28-6 704).

APPLY CLAUSE OS JCL (DCB PARAMETER)

APPLY XTENDED-SEARC OPTCD = E
LIMIT = (No. of tracks)

APPLtY 1%R ITE-VERI FY OPTCD = W
OPTCD = WC

APPLY CYL-OVERFLOW OPTCD = Y

CYLOFL = (No. of tracks)

APPLY CYL-INDEX OPTCD = M

NTM = (No. of tracks)

2.9.9 INVALID KEY OPTION.

* Under DOS, for a randomly accessed file, the INVALID KEY option of the
REWRITE statement is executed when the preceding READ statement caused an invalid
key condition. When the OS READ statement for an indexed file causes an INVALID
KEY condition, a REWRITE statement should not be executed for the record with
that key since the INVALID KEY condition will not be detected and results are
unp-edictable.

2.9.10 SYNTAX ERRORS.

* Several additional differences exist however; syntax errors will be
generated by the OS compilation. These differences are avoided by using USACSC
COBOL which precludes the use of such special registers as COM-REG (Communica-
tion Region) and NSTD-REELS (Non-Standard Label Reel) count. The differences in
the format of the system-name in the ASSIGN and RERUN clauses cannot be avoided,
but must be recognized and accounted for since it is implementor defined by the
COBOL language. A complete description of the system-name syntax and rules is
in the section on USACSC Standard Coding Conventions.

2-422



15 DEC 81 CSCM 18-1-1

CHAPTER 3

USACSC STRUCTURED PROGRAMING TECHNOLOGY

3.1 INTRODUCTION.

3.1.1 GENERAL. Computer programing has evolved over the years as an art rather
than a science. Developments in recent years have demonstrated that, at least
in some areas, a scientific or disciplined approach is possible.

Structured programing technology was introduced and implemented into USACSC
by Plans 10-75 and 33-75. The Command has gained experience in structured
programing technology primarily through the DS4, VIC, SAAS, VFDMIS, and IFS proj-
ects. The information acquired from these previous projects showed a need for
a refinement of techniques.

The techniques which are included below are to be used for structured
programing technology:

Top Down Development

StructurE Chart
Data Flow Graph (Optional)
Program Design Language (POL)
Programing Support Library (PSL)
Structured -oding (SC) or Structured Programing (SP)
Structured Walkthrough (SW) (Optional)
Team Operation or Chief Programer Team (CPT) (Optional)
Structured Testing
IPO (Input, Process, Output)
Nine Step Module Management Process (Optional)

The concept of Structured Coding followed, rather than preceded, the devel-
opment of COBOL. In order to write structured code in COBOL, a programer must
simulate the control logic structures or, with the aid of a preprocessor such as
MetaCOBOL, utilize structure verbs.

3.1.2 PURPOSE. This chapter is to be used along with other chapters of this
manual, particularly Chapter 2 which deals with USACSC standards for COBOL. It
provides definition of terms, an introduction to the concepts, standards, and
guidelines for implementation.

3.1.3 DEFINITIONS.

3.1.3.1 Backup Programer. In team operation, a backup programer is a senior
programer and analys Who functions as an alternate to the chief programer so
that he can assume the chief programer's responsibility temporarily or permanently.

3-1



CSCM 18-1-I 15 Dec 81

3.1.3.2 Chief Programer. In team operation, a chief programer is a senior
programer and analyst responsible for the complete development of the programing
system.

3.1.3.3 Data Flow Graph. This is a graphic technique that highlights the data
transforms in a program. A data flow graph will also show the conversion of
input elements to output elements. It also helps define the structure of the
program by showing the input, central transform (point where data is changed
from input to output), and output legs of a program. A data flow graph can also
oe ised as a review and documentation tool. Refer to Chapter 3 of TB 18-103
(Structured Design and Development) for an example of data flow graph.

3.1.3.4 IPO (Input, Process, Output) Chart - Shows the input, processes, and
outputs for a program in a system. If a program consists of more than one
:nodule, an IPO chart can be drawn for each module and/or one can be drawn for
the entire program.

3.1.3.5 Librarian. The librarian is a vital team member who transfers hard
copy records into machine readable form. The librarian is depended upon for all
assembly, compilation, linkage editing, and test runs as required by project
orogramers. The results are filed by the librarian to maintain current status
and history of the project.

3.1.3.6 Program Design Language (PDL) or PSEUDO-CODE. PDL is a near English
like non-compilable language for describing the program logic. All the state-
ments or instructions of this program are written in English like form, with
indentation to show nested logic (lonns). The actual source program can then be
coded from this PDL, and it should generally be one statement of PDL generating
one or two source statements. The term Systems Design Language (SDL) is also
used sometimes, but it means the same as PDL or PSEUDO-CODE.

3.1.3.7 Programing Support Library (PSL). PSL is a repository for data
necessary for the orderly development of computer programs using structured
nrograming technology (SPT). The data repository is in two forms: internal
library modules/segments are stored in machine readable form accessible by the
computer and the external library identical data is stored in hard copy form in
project notebooks. A PSL system also includes the necessary interlocking com-
outer and office procedures for manipulating this data to provide a constantly
ip-to-date representation of the project and test data, together with an archive
file for reference and backup purposes.

3.1.3.8 Structure Chart.

3.1.3.8.1 System Level. During the design state of a system, structure charts
can be used to diagram the system. This diagram will show the top-level modules
and each top-level module's subordinate modules. Also within each module is the
title of that module.

3-2



15 DEC 81 CSCM 18-1-1

3.1.3.8.2 Program Level. The structure chart depicts all the pieces (modules
of a program and all the interconnections. It represents the actual physical
structure of a program. (See FIGURE 3-2.) The structure chart is designed to
show the physical structure of a modular program, hence, it does not directly
show either the flow of data or control although explanation of the boxes in the
structure chart is that a flowchart shows the flow of control, but does not show
the data flow. IPO (Input/Process/Output) charts are tools used to further
describe any given module in a structure chart. The IPO chart will divide the
input, process, and output into columns and then list and describe the data
elements for input, processing involved on data elements in the process column,
and explain the output elements. A pictoral representation of IPO is shown in
FIGURE 3-3 of this chapter.

3.1.3.9 Structured Program. Structured program is a program constructed of a
basic set of control logic figures which provide at least the following:
sequence of two operations, conditional branch to one of two operations and
return, and repetition of an operation. A structured program has only one entry
and one exit point. Logic flow always proceeds from beginning to end without
arbitrary branching.

3.1.3.10 Structured Programing (SP) or Structured Coding (SC). To enhance
the USACSC COBOL language and facilitate the implementation of structured
programing, additional statements are available through the MetaCOBOL Macro
Facility. These verbs should be used by the programer to accomplish structured
module design. The structured verbs (DO, DO WHILE, IF, DO UNTIL, and CASE) are
discussed in Chapter 2. SP is the process of developing the design, writing,
and testing of a program which is made up of interdependent parts in a definite
pattern of organization. Association with SP are certain practices and a set of
rules added for clarity and readability, such as indentation of source code to
represent logic levels, the use of meaningful data names, and descriptive com-
mentary.

3.1.3.11 Structured Source Code Listing. Structured source code listing is a
listing for a top down structured program (TDSP) comprised of the following
sections:

3.1.3.11.1 The source list for the first executable structured module "commonly
referred to as the top level module).

3.1.3.11.2 In alphabetical order, the source listings for all remaining struc-
tured modules.

3.1.3.11.3 Oescriptive commentary (e.g., a table of inputs/outputs for each
executable structured module).

3.1.3.11.4 The logical hierarchy of the structured modules which constitute
this TDSP. It must show the executing sequence between executable structured
modules.

3-3



CSCM 18-1-1 15 Dec 81

3.1.3.12 Structured Testing.

3.1.3.12.1 Unit Testing. This type of testing is performed by using the same
technique of top down development, whereby each program from the top down is
tested as soon as it is written. Stubs may have to be developed to perform
this, and they will be defined next. After it is tested, it is then implemented
into the system to test lower level modules or programs and this is done down to
the lowest level program. This testing is done by the programer.

3.1.3.12.2 JIntegration Testin . If a particular system can be broken into sub-
systems, then~ aftr al te unit testing of programs in this subsystem are writ-
ten and tested, an integration test can be performed on it by the development
group to see if this subsystem is performing its functions accurately and
completely.

3.1.3.12.3 Systems Testing. This is performed by a quality assurance group
(QAD) to develop an independent view of the results of the integration testing
to see if all subsystems when integrated together will perform all functions
specified. This quality assurance group will also check the completeness of the
documentation.

3.1.3.13 Structured Walkthrough. In team operation, structured walkthrough is
a generic name given to a series of reviews, each with different objectives and
each occurring at a different time in the application development cycle. The
reviewee subjects his work product to a review by other team members with the
emphasis on design and coding error detection, thus contributing to increased
team and project productivity.

3.1.3.14 Stub. This is a dummny module used to simulate an operational module.
This is needed for top-down development technology whereby some upper level
modules may need lower level modules for testing before this lower module is
developed. In most cases, this stub will have only an entry and exit and pos-
sibly something to display that control was transferred to this module. When
the lower level module is developed, this stub is discarded.

3.1.3.15 Team Operation or Chief Programer Team. Team operation is a group of
programing specialists, consisting of chief programer, backup programer, and
librarian, plus additional programers, analysts, and technicians required to
complete the project.

3.1.3.16 Top Down Development. Top down development, is a method of program
design and development. The end result is a TREE-LIKE hierarchical structure ii
which the highest level of control logic and decision is designed first and pro-
ceeds downward in increasing detail through lower level modules. The design
phase is completed only when interface statements and initial data definitions
are developed; at that point, top down coding may conmmence developing downward
and top down testing may commnence integrating the functional units in the same
manner. Structure charts can be used at this level of the system (system level)
to describe the system in a diagrammnatic fashion. Within each diagram is the
title of each module.

3-4



15 DEC 81 CSCM 18-1-1

3.1.3.17 Top Down Program (TDP). In structured programing, a program can be
one module or a group of modules. TDP is a structured program with the addi-
tional characteristics of the source code being logically, but not necessarily
physically, segmented in a hierarchical manner and only dependent on code
already written. Control of execution between segments is restricted to trans-
fers between adjacent hierarchial segments. TDP is patterned after the natural
approach to system design and requires that programing proceed from developing
the control architecture (interface) statements and initial data definitions
downward to developing and integrating the functional units.

3.1.3.18 Top Down Structured Programing (TDSP). TDSP is that part of the top
down development process related to program coding and execution testing. With
TDSP the top segment of a program and its required stubs are coded first and
tested before proceeding in the development process. This process continues,
one segment at a time from the top down, until program development is completed.
Associated with TDSP are certain practices such as indentations of source code
to represent logic levels, the use of intelligent data names, and descriptive
commentary. TDSP requires TDP as the primary implementation methodology.

3.1.4 CONCEPTS OF TOP DOWN STRUCTURED PROGRAMING (TDSP).

3.1.4.1 General.

3.1.4.1.1 Functional Breakdown. TDSP starts with a desired function's specifi-
cations, repeatedly breaking down functions into simpler functions until
reaching easily coded functions. TDSP, as applied to testing, is an ordering of
system developing which allows for continual integration of the parts being
developed. At each state, the code already tested drives the new code, and
only external data r~juires no extra drivers.

3.1.4.1.2 Modular Structure. In top down programing, the system is organized
into a network structure of modules. The top module contains the highest level
of control logic and decisions withii the orogram, and either passes control to
next level modules, or identifies next level modules for in-line inclusions.
The incomplete next level modules are called "stubs" and those which are to be
replaced eventually with running code may contain a "no operation" instruction
or possibly a display statement to the effect that control had been received.
While it is recognized that such code, as with drivers, are also eventually
discarded, the effort involved in writing such statements is less than thiat
required to produce and pass data to a module for unit testing. The pro:ess of
replacement of successvely lower level stubs with processing code contilues for
as many levels as reau-red until all fulctions within a system are defined in
executable code.

3.1.4.1.3 Data Base Definition. Top down programing requires that sufficient
data base definition statements be coded and that data records be generated
before exercising any module which references them. Ideally, this leads to a
single set of definitions serving all the programs in a given application. This
approach provides the ability to evolve the product in a manner that maintains

3-5



CSCM 18-1-1 15 Dec 81

3.1.4.1.3 Data Base Definition. (Cont.)

the characteristic of being always operable, extremely modular, and always
available for successive levels of implemientation. The quality of a system pro-
duced using this approach is increased, as reflected in fewer errors in the
coding process. The act of structuring the logic and structured design tech-
niques calls for more forethought, and the uniformity and single entry, single
exit attribute of the structured code itself contributes to the reduction in

V errors. Because of the nature of TDSP, the resulting system is extremely modu-
lar in function and logic structure, minimizing the effect of requirement
changes on already-developed code.

3.1.4.1.4 Toe Down Development. Conceptually, TDSP proceeds from a single
starting poithilie conventional implemientation proceeds from as many starting
points as modules in the design. The single starting point does not imply that
the implemientation must proceed down the hierarchy in parallel. Some branches
intentionally will be developed earlier than other branches. For example, user
or other external interfaces might be developed to permit early training or
hardware/software integration. Also in many applications, requirements will
become firm in certain areas before others. The areas covered by known require-
ments can usually become operational whiile the requirements are being developed
for the others. Some module stubs intended to support long-range requirements
may remain after the program is fully operational as a guide if and when they
are needed.

3.1.4.2 Figures.

3.1.4.2.1 FIGURE 3-3. shows a comparison of traditional bottom up development
and top down development. (The dash lines represent the unfinished portions of
the programs.)

3.1.4.2.2 FIGURE 3-2 is an example of a structure chart at the program level.

3.1.4.2.3 FIGURE 3-3 is an IPO example of an overview diagram of the Gross Pay
Calculation Module and its subordinate modules. There can be a detailed IPO for
each module all the way down to the lowest level module if desired.

3.1.4.3 Program Design Language (PDL) or PSEUDO-CODE. This paragraph prescribes
guideline's to b observed in tie use of a Program Design Language (PDL). PDL
along with structure charts, is a textual alternative to flowcharts and decision
tables, and is particularly well suited for use in conjunction with SP. A P01
module consists of a logically complete group of POL statements, and is used to
state the program logic designed to satisfy a detailed functional requirement.
PJL, due to its textual form, is more easily maintained than graphic forms of
presentation.

3.1.4.3.1 Purpose. The purpose of a P01 is to provide a vehicle to translate
functional specifcations into program design, based on TDSP. It is used to
convey logic design when the coded solution is not readily apparent from the
specification.

3-6



15 DEC 81 CSCM 18-1-1

3.1.4.3.2 Description. PDL is a formatted English textual presentation of a
program logic that is prepared by the analyst or programer/analyst. This PDL is
prepared for use in a code walkthrough. It can also be used in communicating
with other people that may not know the computer program language (i.e., COBOL).
After the code walkthrough is completed and determined to be correct, the actual
source program is coded from this PDL by the programer. The grammatical struc-
tures prescribed parallel those required for structured coding, i.e., the basic
control structures. Indentation rules are defined to increase readability.
Selected keywords, used to outline the structure of POL, are reserved to enhance
communication among users, but the majority of PDL vocabulary is left to the
choice of the system developers. In the following subsections, keywords are
written in capital letters; brackets (C 1) and dotted lines indicate optional
items.

3-7



CSCM 18-1-1 15 Dec 81

L1
TI-

- -J

TRADITIONAL, sorrom up

r -J

TOP OWN

Approach Comparison

F LGURE 3-1

3-8



15 DEC 81 CSCM 18-1-1

AAY CALCULATIONL• OVERV;EW 2

HOR WRED PY AEGROSS PAY DDCIN O NET PAY

CALUULAT O S CALCULATIO

SACCUMULATE 1 DETERMINE ACUMEXTE CALCULATE WRITE CECK

(DRSIAEd PYRAE GRMS DE.1TON PAYROLL PA

FIGURE 3-2

INPUT GROSS PAY CALCULATION OUPUT

1. ACCUMULATE HOURS WORKED

SJ(B RECORDPARL

2. FIND CORRECT PAYRATE
FOR TYPE OF WORK
(DIAGRAM 1.2)

(PAYROLLf

MASTER 3. CALCULATE. GROSS PAY QLE
(DIAGRAM 1.3)

ERROR

FIGURE 3-3

3-9



CSCM 18-1-1 15 Dec 81

3.1.4.3.3 Module Delimitation. The beginning and end of modules are identified,
respectively, by a user-selected module name and the word 'end' both beginning
in the leftmost position of the POL text. A key word identifying the module
type may follow the module name. The portion of the PDL which related the
action of the module begins at a 2-columnm indentation. The following illus-
trates overall module structure.

Module name gsegment type3
module action Test

END Module name

3.1.4.3.4 Types of PDL Segments (Modules).

3.1.4.3.4.1 Main - represents the top-level control of the program. It includes
the program start and stop operations.

3.1.4.3.4.2 Subroutine - represents a discrete section of executable code per-
forming a complete operation. It is physically separate from the program and
will be called for at time of execution.

3.1.4.3.4.3 Included - represents executable code physically included in the
program at the time of compilation.

3.1.4.3.4.4 Data - describes a section of program which only contains data
definitions.

3.1.4.3.5 Internal Module Structure - PDL text describing action will be
indented 2 columns from the module name. PDL keywords which outline specific
logical figures will start at this margin of indentation. When figures are
nested, indentation is cumulative.

3.1.4.3.6 Guidelines for Semantics. The choice of vocabulary to be used to
describe predicates and functions is left to the development group. Selections
may be standard English language and/or may be derived from the intended imple-
mentation language. Most choices should be made on a projected basis, not
varying between programers within a project. The goal of the PDL is maximum
comprehensibility when transferring technical information among diverse groups
of managers, programers, and analysts.

in addition to the keywords already described, two others are reserved for use
in the action portion of a PDL module.

INCLUDE - This preceeds the name of a module to be included
(INCLUDED or DATA type module).

CALL - This preceeds the name of a subroutine to be executed
(SUBROUTINE type module).

3-10

h61



15 DEC 81 CSCM 18-1-1

3.1.4.3.7 USACSC Program Design Language (PDL) Conventions. The Program De-
sign Language (PDL) will be subject to the following rules:

3.1.4.3.7.1 Only the five logic structures (sequence, if-then-else, do while,
do until, and case) will then be used.

3.1.4.3.7.2 Indentation will be used. It is recommended that indentation when

used be 2 for dependency or 4 columns for continuation.

3.1.4.3.7.3 There will be only one logical statement per line.

3.1.4.3.8 PDL Example. Below is an example of PDL representation.

MOOOSOT WAFRE MAIN

DO INITIALIZATION
DO M001SOT-OBTAIN CLEAN WORD
DOWHILE (MORE WORDS)

DO M02SOT-UPDATE TABLE
DO M01SOT-OBTAIN CLEAN WORD

ENDO
DO M002SOT-DUMP TABLE
DO TERMINATION

END MOOSOT

MOO2SOT UPDATE THE TABLE INCLUDED
CALL "MODIFY"
IF (TABLE-FULL)

DO M003SOT-DUMP WORD FREQUENCY TABLE
* -CALL "MODIFY"

(ELSE)
ENDIF

END M002SOT

M003SOT DUMP WORD FREQUENCY TABLE INCLUDED
SET NEXT-WORD-POINTER TO 1
DOWHILE (NOT END-OF-TABLE)

CALL "DUMP"
DO M006SOT-FORMAT LINE
DO DFO2SOT-PRINT LINE
INCREMENT NEXT-WORD-POINTER BY 1

ENDDO

END M003SO
T

3.1.4.4 Programing Support Library (PSL).

3.1.4.4.1 General.

3-11

O9



CSCM 18-1-1 15 Dec 81

3.1.4.4.1.1 A Programing Support Library (PSL) serves as a repository for data
necessary for the orderly development of computer programs using SPT. The data
exists in two forms.

INTERNAL LIBRARY. Data is stored in machine readable form accessible by the
computer.

EXTERNAL LIBRARY. Corresponding data is stored in hard copy (Human
readable) form in project notebooks.

Included with PSL are the necessary computer and office procedures for manipu-
'ating this data.

3.1.4.4.1.2 The purpose of a PSL is to support the program development process.
This involves the support of the actual programing process and the management of
the process. Support of the programing process involves support of the design,
coding, testing, Gocumentation, and maintenance of computer programs and the
associated data-base definitions. A PSL provides this support through:

Storage and maintenance of programing data (Segments/modules).
Output of programing data and related control data.
Support of compilation and testing of programs.
Support of the generation of program documentation.

3.1.4.4.1.3 A PSL must also provide some means of generating and maintaining
itself. Support of the management of the programing process also involves the
storage and output of programing data. In addition, it involves:

Collection and reporting of management data related to program development.
Control over the integrity and security of the data stored in the PSL.
Separation of the clerical activity related to the programing process.

3.1.4.4.1.4 A PSL supports the approach in which people work on a common,
visible, centrally-stored product rather than on independent hidden pieces. It
provides a significant aid for test and evaluation in that the current opera-
tional software system code is centralized to avoid ambiguity of what is, and
what is not, valid software as well as centralizing the valid test program code.
The Drogramers communicate through this product in carrying out programer and
clerical interface activities. A PSL permits a programer to exercise a wider
span of detailed control and reduces explicit communication requirements. This
makes it easier to bring new personnel on board and to shift programers from one
part of the project to another. It also minimizes the preparation effort for
technical audits. A librarian is responsible for maintaining the notebooks and
archives of the PSL, and the programers are responsible for their source code.
This structure of responsibility permits standardization in project record
keeping and insures that the hard copy listings in the library correspond to the
most current version of the system. A PSL system has four components:

3-12



15 DEC 81 CSCM 18-1-1

Internal Libraries
External Libraries
Computer procedures
Office procedures

The components of the system are interlocked to establish an exact correspon-
dence between the internal (Computer readable) and external (Programer readable)
versions of the developing system. This continuous correspondence is the
characteristic of a PSL that guarantees on-going visibility of the developing
system.

3.1.4.4.1.5 Different implementations of a PSL exist for various computer and
operating system environments used in system development. The fundamental cor-
respondence between the internal and external libraries in each environment is
established by the PSL office and computer procedures. The office procedures
are specified at a detailed level so that the format of the external libraries
will be standard across programing projects, and so that the maintenance of both
internal and external libraries can be accomplished as a clerical function. The
PSL computer procedures for each are expressly designed for easy invocation by
librarians so that their use is nearly fail-safe.

3.1.4.5 Structured Walkthroughs. Project management has long recognized the
need for periodic reviews to determine whether the project is on schedule and to
identify areas that require special attention. Generally, however, these exer-
cises have been looked upon with hostility by those who must submit themselves
to the review. A structured walkthrough is a generic name given to a series of
reviews; each with different, but specific objectives and each occurring at
different times in the software development cycle. The basic characteristics of
the walkthrough are:

3.1.4.5.1 It is arranged and scheduled by the developer (person responsible for
the work product being reviewed).

3.1.4.5.2 Participants (reviewers) are given the review materials prior to the
walkthrough and are expected to be familiar with them.

3.1.4.5.3 Management above team leader (chief programer) will not be involved
in structured walkthrough(s) and structured walkthroughs will not be used for
employee evaluation.

3.2.4.5.4 The emohasis is on error detection rather than error correction.

3.1.4.5.5 Typical walkthrough will include four to six people and will las': for
a specified time, usually one or two hours. If at the end of this time the
objectives have not been met, another walkthrough is scheduled.

3-13



'SCM 18-1-1 15 Dec 81

3.1.4.5.6 All technical members of the project team have their work product
reviewed. The structured walkthrough increases the value of these reviews
beyond a determination of schedule variance and problem identification, and elim-
inates many negative aspects.

3.1.4.5.7 Specification Walkthrough - This type of walkthrough is done in the
first stages of the system. Its purpose is to look for problems or omissions in
the system specifications. This type of walkthrough would be attended by the
user, systems analyst, and one or more of the project programers.

3.1.4.5.7.2 Design Walkthrough - This walkthrough would be used to detect
weaknesses, misrepresentation of ideas, or omissions in the design structures
of the system. The people that should attend this walkthrough are the system
analyst, senior programer (Chief Programer) and possibly all the other programers
as well. The documents used in this walkthrough would be the structure charts
and data flow graphs.

3.1.4.5.7.3 Code Walkthrough - In this walkthrough, the two types of code are
reviewed. These two types of code are the Program Design Language (PDL) or
Pseudo Code that is designed by the analyst in an English like form, and after
this PDL is walked through and certified as correct by people other than the
author, then the programer prepares the source code from this PDL. Then, this
source code is reviewed and certified as correct by people other than the author
of the source code. The certification should be performed by people other than
the author for every code walkthrough. The people that should attend this
walkthrough are the author of the code, other programers on the team, and pos-
sibly, some programers from outside the team.

3.1.4.5.7.4 Test Walkthrouh - This walkthrough is performed after the source
code has been certied. It is performed to ensure the adequacy of the test
data for the system. This walkthrough does not examine the output of the test
data. People that should attend this walkthrough are the user, all the programers
on the project, the person performing the testing and the systems analyst.

3.1.4.5.8 In addition to all the various groups of people stated in these four
types of walkthroughs, the librarian should be present at most walkthroughs,
depending on his/her workload. It is the librarian's job to record items in
question, the results, record items accompli-;hed and at the conclusion of each
walkthrough, distribute a copy oP all items 1'rom above to all members that were
oresent at that specific walkthrough. If thG librarian is not able to attend a
walkthrough, someone else in the aroup should be appointed to act as librarian.

3.1.4.6 Chief Programer Team (CPT). The team operation has as its core, the
chief programer, the backup programer, and the librarian. The chief programer
is responsible for the complete development of the programing system. The chief
programer identifies and apportions assignments, constructively criticizes pro-
gress on design and coding, attends to career planning for his subordinates, and
regularly performs the appraisal and counseling of team operation. The backup
programer is an alternate to the chief programer. He can assume the chief

3-14
I.



15 DEC 81 CSCM 18-1-1

3.1.4.6 Chief Programer Team (CPT). (Cont.)

programer's responsibility temporarily or permanently. Because of the close
working relationship and code review practices, both understand all the code
produced by the team.

3.1.4.6.1 Librarian. A programer technician or specially trained secretary that
is an integral member of the Chief Programer Team. The librariar's duties are
largely clerical that consist of the following: key punching, submitting jobs,
maintaining program production library, and taking formal notes at structured
walkthroughs.

3.1.4.6.2 Support Members. The team operation may require additional support
to complete the project. People who serve on the team - programers, analysts,
and technicians - are chosen for their special skills. Their period of service
may range from a few months to a period just under the length of the project.

3.1.4.7 Nine Step Module Manapement Process. The nine step module management
process developed and refined by the VIC project provides a sound basis for the
determination of software development status. This procedure should be con-
sidered for software production and control procedures. The steps are as follows:

3.1.4.7.1 Step 1 Module Identified. The module is identified as a firm require-
ment, its position on the total system structure chart relative to superordinate
and subordinate module is determined, and a module number is assigned.

3.1.4.7.2 Step 2 Module Documented. The systems analysis and design have been
completed, and a package of documentation for the module has been prepared for
presentation to the functional proponent.

3.1.4.7.3 Step 3 Joint Review of Module. A joint review of the module has been
conducted in a walkthrough environment with the functional proponent for func-
tional modules, or the design manager for data modules, and an action list de-
tailing required chanqes has been prepared.

3.1.4.7.4 Steo 4 Module Accepted. Any corrections required by the joint -eview
have been made, the module package is considered complete, has been formally
accepted, and is ready for programing.

3.1.4.7.5 Step 5 Module Coded and Compiled. The module extended description
has been jointly reviewed by the chief programer and backup to ensure complete
understanding of the requirements. The module has been coded and cleanly com-
pilec and it is considered ready for qua'ity assurance review.

3.1.A.7.6 Step 6 Module Test Plan Complete. A test plan has been completed for
the major function of which this module-is part, incorporating all of the con-
ditions (TCR's) necessary to test this module, showing the sequence of testing
for each condition, and the expected output for each condition.

3-15



CSCM 18-1-1 15 Dec 81

3.1.4.7.7 Step 7 Module Quality Assurance Review. A quality control review has
been held to ensure tha the compiled code complies with all necessary USACSC
standards, in-house conventions, structured coding conventions, and that the code
should perform thie functions described in the approved extended description. In
addition, the test plan has been reviewed and' approved as being comprehensive
enough to adequately satisfy testing requirements.

3.1.4.7.8 Step 8 Module Linked. All corrections required by the quality
control review have been applied, the module has been cleanly compiled and is
linked to the library and is ready for testing. The test data (TCR's) are avail-
able and testing can begin.

3.1.4.7.9 Step 9 Module Ready. All processing functions/conditions
performed/encountered by the module have been tested to the satisfaction of the
software development team and the module is considered to be ready for full
scale systems testing utilizing proponent developed test data.

3.1.5 GENERAL STANDARDS AND GUIDELINES. There are two types of conventions
followed when writing structured programs - standards and guidelines. Standards
are those conventions which are to be followed without deviation. However, a
waiver is available to consider justifiable requests for deviations from the
standard. Guidelines are reconmmendations which can be followed exactly or with
appropriate local deviation. Thus, standards to achieve maximum benefit should
be enforced throughout an organization. Guidelines should be modified as
appropriate for a particular project or system development. The use of a specific
set of control structures is a standard. The indentation of source code is a
standard; the number of columns indented is a guideline.

3.1.5.1 Standards. Certain standards must be followed in order to implement
SP. These are:

3.1.5.1.1 Every code segment should contain a single entry and a single exit.

2.1.5.1.2 Explicit branching (GOTO type instructions) usage is restricted to
emergency type exits, i.e., specific compiler bugs or inefficiencies, data
error, and/or panic abort.

3.1.5.1.3 The beginning and end of any program or control segmient must be
comoletely contained in a single structured segment.

3.1.5.1.4 In free form.-, languages, only one verb per line of code is permitted.

3.1.5.1.5 TIndentation to indicate the span of control of a structured figure
must be used.

These standards are language independent. They are based directly on the struc-
ture theorem, or on the intent to make computer programs as readable as pos-
sible.

3-16



15 DEC 81 CSCM 18-1-1

The USACSC SPEC COBOL standards which are indicated in this chapter are intended
to serve as a base upon which production structured programing can be imple-
mented. They should be evaluated continuously, and as experience dictates,
improvements should be incorporated into the standards.

3.1.5.2 Guidelines. In addition to specifying the USACSC SPEC COBOL language
dependent standards for implementing the control logic structures, this section
also contains other recommendations which may be considered as guidelines. This
covers such items as indentation rules, grouping of data, data formats, etc.
The most important consideration with respect to guidelines is not that the ones
described be implemented exactly as indicated but rather that, for a given pro-
ject, conventions be established for the indicated areas, and then applied uni-
formly throughout the entire project.

3.1.6 USACSC SPEC COBOL LANGUAGE STANDARDS AND GUIDELINES. Refer to Chapter 2
for the format and guidelines for SP verbs (DO, DO WHILE, IF, DO UNTIL, and CASE).

3.1.7 INCLUDE CAPABILITY. The capability of nesting blocks of code within
other code blocks is a necessity for top down programing. This is best done
when such blocks of code are stored and can be accessed by the ANSI COBOL COPY
verb as separate members on a direct access device in a library system.
However, it should be noted that this requirement is a compiler dependency and
may not be possible for some ANSI compilers. The COPY verb may be used in all
divisions except the IDENTIFICATION DIVISION. The discussion which follows is
directed towards its use in the PROCEDURE DIVISION. Since the COPY does not
permit nesting, it is necessary to simulate this requirement with the use of
nested PERFORM statements. The blocks of code which are PERFORMed are presum-
ably stored as separate members which are easily accessed on a direct access
device and are referenced for the COBOL compiler by means of COPY statements.
This means that no COPY may appear in any block of code which is invoked by a
cooied PERFORM. With this technique the top level of the PROCEDURE DIVISION
looks as follows:

PROCEDURE DIVISION.
TOP-PARAGRAPH.

CODE A.
PEPFORM NESTED-PARAGRAPH-l.
CODE B.
STOP RUN.

NESTED-DARAGRAPH-1.
COPY LIBRARY-NAME-i.

NESTED-PARAGRAPH-2.
COPY LIBRARY-NAME-2.

3-17

U -



CSCM 18-1-1 15 Dec 81

3.1.7 INCLUDE CAPABILITY. (Cont.)

Note that the COPY statement references library names, not paragraph names.
"NESTED-PARAGRAPH-i" is a separate block of code which the COPY statement can
access and may take the following form:

CODE C.
t PERFORM NESTED-PARAGRAPH-2.

CODE D.

"NESTED-PARAGRAPH-2" is a sequence of statements similar to those contained in
the above paragraph within which it was invoked and it may contain other PERFORMs
for deeper nesting. The COPY statements following the top paragraph ensure that
the compiler is aware of all the segments of code which comprise the total program.
Furthermore, since no PERFORMed paragraph may contain a COPY, there is no danger
of violating the nesting limitation of this verb.

2.1.7.1 Additional Recommended Coding Conventions.

3.1.7.1.1 Restricted COBOL Statement Usage. In order to preserve the concept
-f SP, it is recommended that the general usige of these statements !n COBOL
, +)ich permit changes of sequential control b.i restricted to an exception basis
o ly. The ALTER statement will not be used.

3.1.7.1.2 Program Organization.

2.1.7.1.2.1 The structure of a COBOL program is such that many of the rules for
program organization have been predefined. For instance, all data must be speci-
fied in the DATA DIVISION. Furthermore, within this section, the formal rules
,A ich define the permissible hierarchical data structures are sufficient to pre-
serve the readability requirements of SP. However, within the PROCEDURE
DIVISION (with *he exception of the DECLARATIVE SECTION), the rules of COBOL
Qe-n't the oreing of PERFORMed code blocks to be completely flexible.

3.1.7.1.2.2 T'f the program is being developed with the aid of a library system,
th: order 4n this division is less critical since all that appears after the top
ot seament are COPY statements. The functions which exist in the copied code
1 ! t -eFunctions which are nested within them are determined by examining the
:" -ode segments which are present as printed 'istings of members in the

s>' ce code 'ib-ary rather than on the compiler output listing even though it
is sti'7 true that the resolut-on of the COPY statements by the compiler will
produce a complete source program as one of the compiler outputs. However,

3-18



15 DEC 81 CSCM 18-1-1

for a development process in which no random access library exists, the order-
ing of the segments of PERFORMed COBOL paragraphs in the Procedure Division is
more critical. This is because the source listing under this condition is a
single sequential data set. At present, the suggested sequence is initially by
nested level for 2 or 3 levels (depending on the program's complexity) and
alphabetically thereafter.

3.1.7.1.2.3 PERFORMed paragraphs should be separated from the main body of code,
and from other PERFORMed paragraphs, by at least two blank lines. Logically
non-contiguous paragraphs (other than those used in the CASE figure) should be
separated by at least one blank line.

3.1.7.1.3 Comments. One of the primary intents of the developers of the COBOL
language was to produce a self-documenting language. When this is coupled with
the discipline of SP, the resulting programs should be even more readable.
Experience has indicated that well written COBOL programs contribute toward
meeting this objective. Therefore, it is reconmmended that the use of commnents
in the form of NOTE sentences and NOTE paragraphs be held to a minimum. WhenIthey are used, they should be organized in such a manner as not to interfere
with the readability of the program itself. This may be done by such devices
as using blank lines to ensure that the NOTE text stands apart from the program
proper and starting and concentrating the textual commnentary in the middle of
the pages beginning in Column 35-40.

3.1.7.1.4 Indentation and Formatting Conventions. Variables and structures
defined in the DATA DIVISION should be arra'nged in a meaningful order. This
order could be alphabetic, by class such as the days of the week, or any other
class format. A suggested set of indentation rules for data items is as
follows:

3.1.7.1.4.1 General Format. All level 77 and 01 variables should have their
level numbers in columns 8-9 and names starting in column 12. The PICTURE
clause should be between columns 32-45, depending on the length of the longest
variable name. All other clauses used ;hould follow the PICTURE clause with
normal spacing. If mo~re than one line is needed for a variable's definition,
the second and succeeding lines should be indented from the PICTURE clause as

3-19



CSCM 18-1-1 15 Dec 81

3.1.7.1.4.2 Structures. Each successively lower level in a structure should be
indented four column's from the next higher level. Level numbers should precede
each variable name in the structure on the same line and two columns before it
as follows:

01 EMPLOYEE-RECORD.
02 NAME.

03 FIRST PIC X(10).
03 MIDDLE PIC X.
03 LAST PIC X(20).

02 ADDRESS.
03 STREET PIC X(15).

When condition-names (level 88 items) are used, they should be indented and
written with single spacing between words:

03 TYPE CODE PIC X.
88 NEW-TYPE VALUE "B".
88 OLD-TYPE VALUE "2".

3.1.7.1.5 Nested IF. The following should be avoided when using nested IFs:

More than three levels of nesting
Compound condi ti ons
NOTs
Implied subjects and operators

3.1.7.1.6 Module Size. Individual modules should be limited to one printer
page or approximately 50 lines of source code whenever possible.

3-20



15 DEC 81 CSCM 18-1-1

CHAPTER 4

FORTRAN PROGRAMING PROCEDURES

4.1 INTRODUCTION. This section used in conjunction with Chapter 1, will be
used as a guide for the design and programing of applications software that will
be translated by the FORTRAN compiler.

4.2 DESIGN CONSIDERATIONS. Prior to programing of an applicable program, a
search should be made for existing programs and subroutines that might be used,
either intact or modified. Top Down design should be taken into consideration
when designing FORTRAN systems. Although FORTRAN does not lend itself fully to
structured programing, the use of structured formatting, one entrance, one exit,
top down design with a minimal use of "GO TO" is beneficial to a successful
operation.

4.2.1 MODULARITY. Programs should be constructed in modular fashion. They
should be brokendown into distinct logical segments (subroutines). This prac-
tice will make programs far easier to write, test, maintain, and modify. Sub-
routines and function names when feasible, should be contractions or acronyms
that can be related to the processes they are effecting.

4.2.2 LIBRARY FUNCTIONS. Maximum use should be made of basic, existing intrin-
sic functions and of external functions. The programer can waste valuable time
and core storage creating code internal to his routine that could be implemented
using functions.

4.2.3 INPUT/OUTPUT FUNCTIONS. 1/O functions in FORTRAN programs, as in all
other co-mplers, are best hnled by the Executive Control Program (supervisory
routine). The applications programer should not attempt to initiate I/0 opera-
tions directly, but should use the compile provided READ and WRITE statements.

4.2.4 REAL AND INTEGER DATA. The programer should assure that the data is
identified with the correct data type. For instance, double precision real data
type should not be used if single precision or integer data type would suffice.

4.3 PROGRAM STRUCTURE. Programs consist of statements which are in turn com-
posed of character-sgroujped according to the following conventions:

4.3.1 SOURCE CARD CODING. FORTRAN statement source cards will use the following
card columns. Up' to 19ontinuation cards are permitted.

4-1



CSCM 18-1-1 15 Dec 81

4.3.1 SOURCE CARD CODING. (Cont.)

COLUMN USE

1-5 Statement Label

6 Continuation if not 0
or blank

7-72 Statement

73-80 Sequence

4.3.1.1 Comment Cards. FORTRAN comment source cards use the following card
columns:

COLUMN USE

1 C indicates comment

2-72 Comment verbiage

73-80 Sequence numbers

4.3.1.2 Sequence numbers. A sequence number, consisting of six digits in the
sequence number area, is used to numerically label each card image in a source
program to be compiled by the FORTRAN compiler. The use of coded sequence num-
bers is optional since USACSC Source Library System (SLS) will automatically
assign sequence numbers when extracting a source program. However, it is recomn-
mended that sequence numbers be assigned when coding. Sequence numbers should
be incremented by 10. Alpha characters are strongly recommended for continua-
tion sequence numbering.

4.3.1.3 Statement Labeling. Statements may be labeled (numbered) so that refer-
ence may bemade to t my other statements. Statement labels are placed in
columns 1 through 5 of the statement. Leading zeros are insignificant. From
one to five numeric characters may be used. The statement label must be unique
within the program unit. Statements should not be labeled unnecessarily. The
statement label numbers should increase from physical beginning to physical end
of the executable statements. This permits easy following of transfers. Using
a separate and distinct block of statement numbers in different sections of the
program emphasizes its structure and helps prevent accidental duplication of
statement numbers. At the initial wrltng of a program, leave gaps of about 100
between successively numbered statements to ease later insertions of statements.

4-2



15 DEC 81 CSCM 18-1-1

4.3.1.4 Statement Ordering. Place specification statements (e.g., DIMENSION,
COMMON) at the beginning of the pro gram. This way they are easy to find and do
not interrupt the executable statement logic flow. Furthermore, some compilers
reject these statements if they are not placed first. Place FORMAT statements
whiere they are easy to find. One method is to group them all at the beginning
or end of the program. Also acceptable is to place the FORMAT statement immedi-
ately following the 1/0 statement which referenced it, provided that the FORMAT
statement so placed is not multiply addressed.

4.3.1.5 Symboic ames. Symbolic names are composed of 1-6 alphanumeric char-
acters ofwic hefrst must be alphabetic. In naming variables, use names
beginning with I through N for integer variables, and names beginning with A
through H and 0 through Z for other variables. This widely accepted convention
reduces confusion. A type declaration overrides the implied association.
Starting a variable name with characters I through N is an implied (integer,
length 4) declaration to the compiler.

4.3.2 FORTRAN CHARACTER SET. The FORTRAN character set consists of the 26
alphabetic charactr A through Z, the 10 numeric characters 0 through 9, and
the 11 following special characters:

CHARACTERS NAME OF CHARACTER

Blank

Equal

+ Plus

Minus

* Asterisk

/ Slash or Virgule

( Left Parenthesis

Right Parenthesis

Commna

Decimal Point

$ Currency Sign

NOTE: In addition to the FORTRAN character set listed in 4.3.2, any other
characters acceptable to the applicable processor may be used in HOLLERITH TYPE
statements.

4-3



CSCM 18-1-1 15 Dec 81

- 4.3.3 OPERATORS USED IN FORTRAN PROGRAMS.

4.3.3.1 Arithmetic Expressions. Arithmetic expressions are formed using the
following arithmetic operations:

OPERATOR MEANING

+ Addition, positive value
(zero + element)

Subtraction, negative value
(zero - element)

* Multiplication

/ Division

** Exponentation

4.3.3.2 Relation Operators. Relation operators are used with two arithmetic
expressions and will have a true or false result depending on the relation. The
relational operators used are:

OPERATOR MEANING

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

4.3.3.3 Logical Operators. Logical expressions are formed with logical opera-
tors and logical elements and have a true or false value.

4-4



15 DEC 81 CSCM 18-1-1

4.3.3.3 Logical Operators. (Cont.)

The logical operators are:

OPERATORS MEANING

.OR. Logical disjunction

.AND. Logical conjunction

.NOT. Logical negation

4.3.3.4 Additional Information. Use parentheses to make arithmetic expressions
completely unambiguous. The expression A**B**C is computed from right to left
by some compilers; left to right by others. In general, replace complicated
compound exiressions by simpler operations when possible. This might be
accomplished by single variables previously set to the values of the expressions.

4.4 ARRAYS. Do not needlessly combine into one array what could separate into
arrays with fewer dimensions (e.g., use A(10,6), B(10,5) C(10,4) rather than
ABC (10,6,3). Similarly, do not needlessly form a single dimension array from
what could be single variables. The time and storage required for index manip-
ulation increases as the number of dimensions increase. Arrays shall have the
same length in all routines in which they are referenced unless the array is an
adjustable array (i.e., the array and its dimensions are dummiy arguments).
Arrays shall have no more than three dimensions.

4.5 VARIABLE NAMES. Whenever possible use variable names that are relatable to
the context of the problem the program is to solve and that correspond to -ta-
tion or terminology in the block diagram and program documentation. This heps
make the listing self-explanatory and relates it to the flow chart and asso-
ciated documents. Use variable names for quantities that might be expressed as
constants but could have to assume another value at a later date.

4.6 PROGRAM COMMENTS.

4.6.1 MEANINGFUL COMMENTS. Make your program self-explanatory by including
meaningful comments throughout. Since most programs outlive their authors'
responsibility for them and because no computer is permanent, your prograi will
be modified according to new machine, software, or performance requirements.
Depending on the complexity of the program, the number of necessary comments
varies, but usually the ratio of comments :D statements should be at least 1:5.
Commentary shall not be included on FORTRAN statements.

4.6.2 IDENTIFICATION OF PROGRAM IN A COMMENT. Identify the program in a com-
ment at the beginning of the listing. Comments should follow this card to pro-
vide a program abstract answering such questions as: What does the program do?
Is it confined to any particular application? Is it a special version? Why
was it written by whom, and when? Is it derived from or directly related to
another program? Are any relevant references published?

4-5



CSCM 18-1-1 15 Dec 81

4.6.3 PROGRAM MODIFICATION. Program modification should be noted by the date
and number of the modification (1, 2, 3, ... ) and the name of the programer
making it, i.e.,

MODIFICATION DATE OF PROGRAMER
NUMBER CHANGE NAME

3 YY/MM/DD H. L. JONES

4.6.4 PROGRAM COMMENTS FOR SUBROUTINES. For a subroutine, comments describing
the calling sequence should foilow the identification information. Identify
each argument as input, input/output, or output; and explain its purpose, type
dimension, etc. The different values that an indicator (such as an error code)
can assume shoulc be defined for both input and output.

4.6.5 DISTRIBUTE COMMENT. Distribute comments describing and summarizing the
computation appropriately throughout the listing. These should correspond in
terminology to the program block diagram. Clever but possibly obscure, coding
should be explained in detail. In-line commentary should identify the purpose
of every control statement. A control statement is defined as one which con-
ditionally alters a data value or which alters the sequential execution of
statements. For ease of reading, comments may be grouped at the beginning of a
set of logically contiguous statements. As a minimum, in-line comments should
precede blocks of one or more of each of the following:

0 IF statements.

# Input/output statements.

* Mixed mode arithmetic assignment statements.

* Call statements

* Control structures.

4.6.6 DESCRIPTIVE COMMENTS. Explain in comments any reason for peculiar array
dimensio, e.g., storage limitations or use by other routines.

4.6.7 CONSPICUOUS PRINTING STYLE FOR COMMENT. Use a conspicuous printing sty'e
for comments so that they stand out from the rest of the listing. Separate corl-
ments from statements by cards that are blank except for the C in Column 1.
(Although the listing looks cleaner without the C., some .ompilers reject totally
blank cards.) Comments are further accented if they are indented, starting
approximately in Column 15.

4.6.8 RECOVERY PROCEDURES IN COMMENTS. Explain error recovery procedures in
comments, unless they are already defined in FORMAT statements. This infor-
mation is important to those who maintain or modify the program.

4-6



15 DEC 81 CSCM 18-1-1

4.7 CHECK AND DESK CHECKING.

4.7.1 CHECKOUT METHOD. Plan your checkout method while designing a program.
Organize the program so checkout data is easy to prepare. Make up a block
diagram and preliminary checkout data before coding. Use the checkout data and
block diagram in "desk checking" the program. Caution should be taken that data
items that are meant to be real values have not been given a name beginning with
I, J, K, L, M, or N. This would cause them to be made integers and is often the
cause of execution errors.

4.7.2 DESK CHECKING. Desk checking means manually scrutinizing program logic
and deck structOre. Mistakes in either can cause an unsuccessful run, so a few
minutes of checking is worthwhile.

4.7.3 PROGRAM LOGIC CHECKLIST.

4.7.3.1 Statement Number. Assure that there is a statement number on the state-
ment immediately following each ar,.'etic IF statement and each GO TO state-
ment.

4.7.3.2 Verify Statement Number. Verify that there are statement numbers for
the exits fror IF, GO TO, and MO statements.

4.7.3.3 Assure Parentheses Balance. Start from the left with 0 and add 1 for
each left pa-enthesi.. If parentheses balance, the count will end up at 0;
however, this does not indicate correct grouping.

4.7.3.4 Subscripted Variables. Every subscripted variable must appear in a
specification statement.

4.7.3.5 Check For DO-loop. Check for DO-loop that ends with an IF statement or
GO TO statement.

4.7.3.6 Assure Statements Are Present. Assure that all referenced FORMAT state-
ments are present.

4.7.3.7 Check All Hollerith Fields. Check all Hollerith fields for the co-rect
length.

4.7.3.9 CALL Statement. Assure that the number, order, and type of arguments
in CALL statements are correct.

4.8 ARGUMENTS.

4-7

bt



CSCM 18-1-1 15 Dec 81

4.8.1 GROUPING OF ARGUMENTS. For ease of interpretation, group the arguments
of a callng sequence in this order: input, input/output, output, error code.
An input argument is one whose value the subroutine uses but does not change; an
input/output argument is one whose value the subroutine uses and subsequently
changes; an output argument is one whose values are computed by the subroutine
and where an assignment statement will be found for the output argument name.
The error code argument is the means of transmitting diagnostic information to
the calling program e.g., whether the subroutine executed normally or abnormally;
it is a special kind of output argument.

4.8.2 ERROR CODE. An error code returned by a subroutine should be zero for
normal execution and a non-zero value otherwise. The more different non-zero
values a subordinate can return, the more specifically it can describe to the
calling program the nature of a malfunction or improper condition in the input
data.

4.9 NON-INTEGER VARIABLE. The use of non-integer variable or non-integer
expressions for array subscripts shall be prohibited.

4.9.1 ARRAY NAMING CONVENTION. In a routine, the appearance of an array name
shall be immediately followed by a subscript except in the following cases:

* In the list of an input/output statement.

0 In the list of dummy arguments.

* In the list of actual arguments in a reference to an external
procedure.

* In a type statement.

4.9.2 ARGUMENTS IN CALL STATEMENTS. Arguments in routine calling statements
shiall no contain arithmetic or logical expressions.

4.9.3 DATA VARIABLE ASSIGNMENT. Only one dat-a variable assignment shall be
made in a line~ of code (i.e., A=B=C is not allowed).

4.9.4 WHOLE NUMBERS. Whole nuiibers use~d as exponents shall be expressed as
ntege s._

4.9.5 INPUT/OUTPUT DEVICES. I/O devices shall be referenced by integer
variable names.

4.9.6 CONSTANT COUNT INDICES. Constant count indices shall not be used to
control the input of data. An integer, real or double precision constant is
said to be signed when it is written immediately after a PLUS or MINUS.

4-



15 DEC 81 CSCM 18-1-1

The Proponent Agency for this manual is the Technical Evaluation and
Standards Directorate. Users are invited to send comments and suggested
improvements on DA Form 2028 (Recommended Changes to Publications and
Blank Forms) to Commander, USACSC, ATTN: ACSC-TES, Fort Belvoir, VA
22060.

IcA L JOHN F. VAN WERT, JR.

Chief of Staff

Adj al

4-9



AD-AILS 456 ARMY COMPUTER SYSTEMS COMMAND FORT BELVOIR VA F/6 9/2
PROGRAMING PROCEDURES MANUAL (PPM).IU)
DEC alI

UNCLASSIFIED NL66 ffffffffffff

EEL~hEEE



Ill ~1 11 28  f2
1ii 2L,7 11122

.1 .4 III

MICROCOfl RiSQL iiON CHI LARI
NAA ANA



15 DEC 81 CSCM 18-1-1

GLOSSARY

The definitions of the COBOL terms in the Glossary are provided merely as refer-
ence material or introductory material. The definitions are therefore brief and
do not give any detail of syntactical rules.

A

A-i



CSCM 18-1-1 15 Dec 81

GLOSSARY

DEFINITIONS

ABBREVIATED COMBINED RELATION CONDITION

The combined condition that results from the explicit omission of a comn-
mon subject or a common subject and commuon relational operator in a con-
secutive sequence of relation conditions.

ACCESS MODE

The manner in which records will be operated upon within a file by the
computer.

ACTUAL DECIMAL POINT

The physical representation, using the decimal point characters, period
(.) or comma (J), of the decimal point position in a data item. When used,
it will appear in a printed report and will require an actual space in

-* storage.

ALPHABET-NAME

A user-defined word, in the SPECIAL-NAMES paragraph of the Environment
Division, that assigns a name to a specific character set and/or collating
sequence.

ALPHABETIC CHARACTER

A character that belongs to one of the 26 characters of the alphabet or
space.

ALPHANUMERIC CHARACTER

Any character in the computer's character set.

ARITHM'ETIC EXPRESS ION

An arithmetic expression can be an identifier or a numeric elementary item,
a numeric literal, such identifiers and literals separated by arithmetic
operators, two arithmetic expressions separated by an arithmetic operator,
or an arithmetic expression inclosed in parentheses.

ARITHMETIC OPERATORS

The character set that defines COBOL arithmetic operators is as follows:

A-2



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

CHARACTER MEANING

+ ADDITION

SUBTRACTION

* MULTI PLICATION

/ DIVISION

EXPONENTIATION

ASCENDING KEY

A key upon the values of which data is ordered starting with the lowest
value of key to the highest value of key, in accordance to the rules of
the collating sequence.

ASSUMED DECIMAL POINT

A decimal point position which does not involve the existence of an actual
character in a data item. The assumed decimal point has logical meaning
but no physical representation.

ASYNCHRONOUS PROCESSING

A processing method in which each event or the performance of each opera-
tion starts as a result of a signal that the previous operation has been
completed.

AT END CONDITION.

A condition caused:

1. During the execution of a READ statement f or a sequentially accessed
file.

2. During the execution of a RETURAI statement, when no next logical
record exists for the associated sort file.

BLOCK

A physical unit of data that is normally composed of one or more logica'
records. For mass storage files, a block may contain a portion of a
logical record. The size of a block has no direct relationship to the
size of the file within which the block is contained or to the size of the
logical recor~d(s) that are either continued within the block or that over-
lap the block. The term is synonywous with physical record.

A-3



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

BUFF ER

A portion of main storage intowhich data is read or from which data is
written.

BYTE

A generic term to indicate a measurable portion of consecutive binary
digits; e.g., an 8-bit or 6-bit byte.

CALLED PROGRAM

A program which is the object of a CALL statement combined at object time
with the calling program to produce a run unit.

CALLING PROGRAM

A program which executes a CALL to another program.

CHANNEL

A device that directs the flow of information between the computer main
storage and the input/output devices.

CHARACTER

The basic indivisible unit of the language.

CHARACTER POSITION

A character position is the amount of physical storage required to store
a single standard data format character whose usage is DISPLAY. Further
characteristics of the physical storage are defined by the vendor.

CHARACTER SET

The most basic and indivisible unit of the language is the character. The
set of characters used to form a COBOL character-string and separators
includes the letters of the alphabet, digits and special characters. The
ANSI COBOL character set consists of the characters as defined below.

A-4



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)
ANSI COBOL

0, 1,..

A, B, ....Z
+

/

$

(
)
)

SPACE OR BLANK

In the case of non-numeric literals, comment-entries, and comment lines,
the character set is expanded to include the computer's entire character
set which may support such non-standard characters as:

p&

NOTE: USACSC programers should generally use only those characters defined
in the ANSI COBOL character set less the ( and ). Additional characters may
not be printable depending on the printer features and print chains avail-
able at a given DPI.

The character set used for the formation of words is restricted as follows:

0 A J S
1 B K T
2 C L U
3 D M V
4 E N W
5 F 0 X
6 G P Y
7 H Q Z
8 1 R - (hyphen)
9

NOTE: The hyphen may not be used as the first or last character in a word.

A-5

.....



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

CHARACTER-STRING

A sequence of contiguous characters which form a COBOL word, a literal, a
PICTURE character-string, or a comment-entry.

CLASS CONDITION

The proposition, for which a truth value can be determined, that the con-
tent of an item is entirely alphabetic or entirely numeric.

CLAUSE

A clause is an ordered set of consecutive COBOL character-strings whose
purpose is to specify an attribute of an entry.

COLLATING SEQUENCE

The sequence in which the characters that are acceptable to a computer are
ordered for purposes of sorting, merging and comparing. The EBCDIC col-
lating sequence, in ascending order, is:

1. (space)
2. . (Period or decimal point)
3. ( ("less than" symbol)
4. ( (left parenthesis)
5. + (plus sign)
6. $ (currency symbol)
7.* (asterisk)
8. ) (right parenthesis)
9. ; (semicolon)

10. - (hyphen or minus symbol)
11. / (stroke, virgule , slash)
12. , (commna)
13. ) ("greater than" symbol)
14. ' (apostrophe or single quotation mark) IBM
15. = (equal sign)
16. " (quotation mark)

17-42. A through Z
43-52. 0 through 9

COL UMN

A character position within a print line. The columns are numbered from
1, by 1, starting at the leftmost character position of the-print line
and extending to the rightmost position of the print line.

A-6



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

COMBINED CONDITION

A condition that is the result of connecting two or more conditions with
the 'AND' or the 'OR' logical operator.

COMMENT-ENTRY

An entry in the Identification Division that may be any combination of
characters from the computer character set.

COMMENT LINE

An annotation in the IDENTIFICATION DIVISION or PROCEDURE DIVISION of a
COBOL source program. A commnent is ignored by the compiler.

* COMPILE TIME

The time at which a COBOL source program is translated, by a COBOL comn-
piler, to a COBOL object program.

COMPILER DIRECTING STATEMENT

A statement, beginning with a compiler directing verb, that causes the
compiler to take a specific action during compilation.

COMPLEX CONDITION

A condition in which one or more logical operators act upon one or more
conditions. (See Negated Simple Condition, Combined Condition, Negated
Combined Condition.)

COMPOUND CONDITION

A statement that tests for two or more relational expressions, true or
false.

COMPUTER-NAME

A system-name that identifies the computer upon which the program is to
be compiled or run.

CONDITION

A status of a program at execution time for which a truth value can be
determined. Where the term 'condition' (condition-i, condition-2, .

* appears in these language specifications in or in reference to
'condition' (condition-i, condltion-2, ... ) of a general format, it is a

- - conditional expression consisting of eith.!r a simple condition optionally
parenthesized, or a combination condition consisting of the syntactically
correct combination of simple conditions, logical operators, and paren-
theses, for which a truth value can be determined.

A-7



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

CONDITIONAL EXPRESSION

A simple condition or a complex condition specified in an IF or PERFORM
statement. (See Simple Condition and Complex Condition.)

CONDITION-NAME

A user-defined word assigned to a specific value, set of values, or range
of values, within the complete set of values that a conditional variable
may possess; or the user-defined word assigned to a status of a user-
defined switch or device.

CONDITION-NAME CONDITION

The proposition, for which a truth value can be determined, that the value
of a conditional variable is a member of the set of values attributed to a
condition-name associated with the conditional variable.

CONDITIONAL STATEMENT

A statement which specifies that the determination of a truth value has to
be made and any subsequent action of the object program is dependent on
this truth value.

CONDITIONAL VARIABLE

A data item that can take on more than one value and the value(s) it as-
sumes is assigned a condition-name.

CONFIGURATION SECTION

A section of the ENVIRONMENT DIVISION that describes overall specifica-
tions of source and object computers.

CONNECTIVE

A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name or test-name
with its qualifier.

2. Link two or more cp~rands written in a series.

3. Form conditions (logical connectives).

CONSOLE

A COBOL mnemonic-name that is used to indicate the console typewriter.

A-8

* - - 1 j



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

S CONTIGUOUS ITEMS

Items that are described by consecutive entries in the DATA DIVISION, and
that bear a definite hierarchic relationship to each other.

CONTROL BYTES

Bytes used in conjunction with a physical record to serve to identify the
record and indicate its length, blocking factor, etc.

CORE STORAGE

CPU storage existing in the form of magnetic cores.

COUNTER

A data item used for storing numbers or number representations in a man-
ner that permits these numbers to be increased or decreased by the value

01. of another number, or to be changed or reset to zero or to an arbitrary
positive or negative value.

CURRENCY SIGN

The character '$' of the COBOL character set.

CURRENCY SYMBOL

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If no CURRENCY SIGN clause is present in a COBOL source pro-
gram, the currency symnbol is identical to the currency sign.

CURRENT RECORD'

The record which is available in the record area associated with the file.

CURRENT RECORD POINTER

An internal indicator that is used in the selection of the next record.

DATA CLAUSE

A clause that appears in a data des:ript4on entry in the DATA DIVISION
and provides information describing a particular attribute of a data item.

A- 9



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

DATA DESCRIPTION ENTRY

An entry in the DATA DIVISION that is composed of a level-number followed by a
data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION

This is the third of four divisions of a COBOL program. The files to be used
in the program and the records contained within the files are described here.

DATA ITEM

A character or a set of contiguous characters (excluding literals) defined
as a unit of data by the COBOL program.

DATA-NAME

A user-defined word that names a data item described in a DATA DESCRIPTION
entry in the DATA DIVISION. When used in the General Formats, 'data-name'
represents a word which can neither be subscripted, indexed, nor qualified
unless specifically permitted by the rules for that format.

DEBUGGING SECTION
A debugging section is a section that contains a USE FOR DEBUGGING statement.

DECLARATI VE-SENTENCE

A compiler-directing sentence consisting of a single USE statement ter-
minated by the separator period.

DECLARATI VES

A set of one or more special-purpose sections, written at the beginning
of the PROCEDURE DIVISION, the first of which is preceded by the key word
DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed by
a USE compiler directing sentence, followed by a set of zero, one or more
associated paragraphs.

DELIMITER

A character or a sequence of contiguous characters that identify the end
of a string of characters and separates that string of characters from the
following string of characters. A delimiter is not part of the string of
characters that it delimits.

DESCENDING KEY

A key upon the values of which data is ordered starting with the highest
value of key down to the lowest value of key, in accordance with the rules
of the collating sequence.

A-10



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

DESTINATION

A symbolic identification of the receiver of a transmission from a queue.
A destination is a message used in teleprocessing.

DESTINATION QUEUE

A Message Control Program storage queue for messages to or from remote
stations used in teleprocessing.

0EV ICE-NUMBER

A number which is assigned to any external device.

DIGIT POSITION

A digit position is the amount of physical storage required to store a
single digit. This amount may vary depending on the usage specified in
the DATA DESCRIPTION entry that defines the data item.

-' DIVISION

One or more sections or paragraphs that are formed and combined in accord-
ance with a specific set of rules. Each division consists of the division
header and the related division body. There are four divisions in a COBOL
program.

IDENTI FI CATION

ENV IRONMENT

DATA

PROCEDURE

DIVISION HEADER

A combination of words followed by a period and a space that indicates the
beginning of a division. The division he~aders are:

IDENTIF TCATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION.

A-1



CSCM 18-1 -1 15 Dec 81

GLOSSARY (Cont.)

DYNAMIC ACCESS

An access mode in which specific logical records can be obtained from or
placed into a mass storage file in a non-sequential manner and obtained
from a file in a sequential manner, dLring the scope of the same OPEN
statement.

EBCDIC CHARACTER

Any one of the symibols included in the eight-bit EBCDIC (Extended Binary-
Coded-Decimal Interchange Code) set. All of the 51 characters that belong
to the COBOL character set are included.

EDITING CHARACTER

A single character or a fixed two-character combination belonging to the
following set:

CHARACTER MEANING

B SPACE

0 ZERO

+ PLUS

MINUS

CR CREDIT

DB DEBIT

Z ZERO SUPPRESS

* CHECK PROTECT

$ CURRENCY SIGN

COMMA

PERIOD (DECIMAL POINT)

I STROKE (VIRGULE, SLASH)

A-i12



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

ELEMENTARY ITEM

A data item that is described as not being further subdivided logically.

END OF PROCEDURE DIVISION

The physical position of a COBOL source program after which no further pro-
cedures appear.

ENTRY

A descriptive set of consecutive clauses terminated by a period and written
in the IDENTIFICATION DIVISION, ENVIRONMI'ENT DIVISION, or DATA DIVISION cf
a COBOL source program.

ENVIRONMENT CLAUSE

A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION

This is the second of the four divisions of a COBOL program. The ENVIRON-
MENT DIVISION gives information about the computers upon which the source
program is compiled and those on which the object program is executed and
provides a linkage between the logical concept of files and their records,
and the physical aspects of the devices on which files are stored.

EXECUTION TIME

The time at which an object program is executed.

EXPONENT

A number that tells the power (number of times it can be factored) of a
base number, positive exponents indicate multiplication and negative
exponents indicate division. In COBOL, exponentiation is specified by ~

F-MODE RECORDS

Fixed length records.

FIGURATIVE CONSTANT

A compiler-generated value referenced through the use of certain reserved
words.

A-13



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

FILE

A collection of records.

FILE-CLAUSE

A clause that appears as part of any of the following DATA DIVISION entries.

File Description (FD)

Sort File Description (SD)

Record Description Entry (RD)

FILE-.CONTROL

The name of an ENVIRONMENT DIVISION paragraph in which the data files for
a given source program are declared.

FILE DESCRIPTION ENTRY

An entry in the FILE SECTION of the DATA DIVISION that is composed of the
level indicator FD, followed by a file-name, and then followed by a set of
file clauses as required.

FILE-NAME

A user-defined word that names a file described in the File Description
entry or a Sort File Description entry within the FILE SECTION of the DATA
DIVISION.

FILE ORGANIZATION

The permanent logical file structure established at the time that a file
is created.

FILE SECTION

The section of the DATA DIVISION that contains File Description entries
and Sort File Description entries together with their associated record
descriptions.

FORMAT

A specific arrangement of a set of data.

A..4



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

FUNCTION-NAME

A name that indicates a specific logical unit, printer and card punch con-
trol characters or report codes. In the ENVIRONMENT DIVISION, a function-
name can be associated with a mnemonic-name, in order that the mnemonic-
name can then be substituted in any valid format.

GROUP ITEM

A named contiguous set of elementary or group items. These items are logi-
cally related.

HEADER LABEL

A record that is used to identify the beginning of a physical file or a

volume.

HIGH ORDER END

The leftmost character of a string of characters.

I-0-CONTROL

The name of an ENVIROINMENT DIVISION paragraph in which object program re-
quirements for specific input-output techniques, rerun points, sharing of
same areas by several data files and multiple file storage on a single
input-output device, are specified.

I-0-MODE

The state of a file after execution of an OPEN statement, with the 1-0
phrase specified, for that file and before the execution of a CLOSE state-
ment for that file.

IDENTIFICATION DIVISION

This is the first of four divisions of a COBOL program. In the IDENTIFI-
CATION DIVISION, you can identify the source program, object program and
such documentation as author's name, installation, date-written, etc.

IDENTIFIER

A data-name followed, as required, by the syntactically correct combin-
tion of qualifiers, subscripts, and indices necessary to make unique rcfer-
ence to a data item.

A-15

- -,.



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

IMPERATIVE STATEMENT

A statement that begins with an imperative verb and specifies an uncondi-
tional action to be taken.

IMPLEMENTOR-NAME

A system-name that refers to a particular feature available on that imple-
mentor's computing system.

IN-LINE PROCEDURE

The set of statements that constitutes the main or controlling flow of the
run unit.

INDEX

A computer storage area or register, the contents of which represent the
identification of a particular element in a table.

INDEX DATA ITEM

A data item in which the values associated with a user defined index-name
can be stored in a form specified by the vendor.

INDEX-NAME

A user-defined word that names an index associated with a specific table.

INDEXED DATA-NAME

An identifier that is composed of a data-name, followed by one or more
index-names inclosed in parentheses.

INPUT FILE

A file that is opened in the input mode.

INPUT MODE

The state of a file after execution of an OPEN statement, with the INPUT
phrase soecified, for that file and before the execution of a CLOSE state-
ment for that file.

INPUT-OUTPUT FILE

A file that is opened in the 1-0 mode.

A-16



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

INPUT-OUTPUT SECTION

The section of the ENVIRONMENT DIVISION that names the files and the
external media required by an object program and which provides informa-
tion required for transmission and handling of data during execution of
the object program.

INPUT PROCEDURE

A set of statements that is executed each time a record is released to
the sort file.

INPUT QUEUE

A Message Control Program destination queue from which messages from the
remote stations are accepted by the COBOL teleprocessing program.

INPUT-UNIT

A system-name which specifies the input unit from which object program
01 computer instructions are read at object time.

INTEGER

A numeric literal or a numeric data item that does not include any char-
acter positions to the right of the assumed decimal point. NOTE: Where
the term 'integer' appears in General Formats, 'integer' must not be a
numeric data item in the DATA DIVISION, and must not be signed, nor zero
unless explicitly allowed by the rules of that format.

KEY

A set of data items which serve to identify the ordering of data.

KEY WORD

A reserved word whose presence is required when the format in which the
word appears is used in a source program.

LANGUAGE -NAM'E

A system-name that specifies a particular programing language.

LEVEL INDICATOR

Two alphabetic characters that identity a specific type of file or a posi-
tion in a hierarchy. The level indicators are: FD, SD, RD, CD.

A-l7



15 Dec 81
CSCM 18-1-1

owl GLOSSARY (Cont.)

LEVEL-NUMBER

A user-defined word which indicates the position of a data item in the
hierarchical structure of a logical record or which indicates special prop-
erties of a DATA DESCRIPTION entry. A level-number is expressed as a one
or two digit number. Level-numbers in the range 1 through 49 indicate the
position of a data item in the ierarchical structure of a logical record.
Level-numbers in the range 1 through 9 may be written either as a single
digit or as a zero followed by a significant digit. Level-numiber 77 iden-
tifies special properties of a DATA DESCRIPTION entry.

LIBRARY-NAME

A user-defined word that names a COBOL library that is to be used by the
compiler for a given source program compilation.

LIBRARY TEXT

A sequence of character-strings and/or separators in a COBOL library.

LINE NUMBER

An integer that denotes the vertical position of a report line on a page.

LITERAL

A character-string whose value is implied by the ordered set of characters
comprising the string.

LOGICAL OPERATOR

One of the reserved words AND, OR, or NOT. AND and OR may be used as logi-
cal connectives. NOT can be used for logical negation.

LOGICAL RECORD

The most inclusive data item. The level-number for a record is 01.

LOW-ORDER END

The rightmost character of a string of characters.

A-18



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

MASS STORAGE

A storage medium in which data may be organized and maintained in both a
sequential and nonsequential manner.

MASS STORAGE CONTROL SYSTEM (MSCS)

An input-output control system that directs, or controls, the processing
of mass storage files.

MASS STORAGE FILE

A collection of records that is assigned to a mass storage medium.

MNEMONIC-NAME

A user-defined word that is associated in the ENVIRONMENT DIVISION with a
specific implementor-name.

MODE-NAME

A system-name that refers to a particular method of data representation
on a physical storage medium.

NATIVE CHARACTER SET

The implementor-defined character set associated with the computer speci-
fied in the OBJECT-COMPUTER paragraph.

NATIVE COLLATING SEQUENCE

The implementor-defined collating sequence associated with the computer
specified in the OBJECT-COMPUTER paragraph.

NEGATED COMBINED CONDITION

The "NOT" logical operator immediately followed by a parenthesized combined
condition.

NEGATED SIMPLE CONDITION

The "NOT" logical operator immediately followed by a simple condition.

NEXT EXECUTABLE SENTENCE

The next sentence to which control will be transferred after execution of
the current statement is complete.

A-19

p -/



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

NEXT RECORD

The record which logically follows the current record of a file.

NONCONTIGUOUS ITEMS

Elementary data items, in the WORKING-STORAGE which bear no hierarchic
relationship to other data items.

NON-NUMERIC ITEM

A data item whose description permits its contents to be composed of any
combination of characters taken from the computer's character set. Certain
categories of non-numeric items may be formed from more restricted character
sets.

NON-NUMERIC LITERAL

A literal bounded by quotation marks. The string of characters may include
any character in the computer's character set. To represent a single quo-
tation mark character within a non-numeric literal, two contiguous quo-
tation marks must be used.

NONSWITCHED LINE

A line that is a continuous link between a remote station and the computer,
in teleprocessing.

NUMERIC CHARACTER

A character that belongs to the set of digits: 0 through 9.

NUMERIC EDITED CHARACTER

A numeric character which may be used in a printed output. It may consist
of external decimal digits '0' through '9', the decimal point, comuas,
the dollar sign, etc.

A- 20



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

NUMERIC ITEM

A data item whose description restricts its contents to a value repre-
sented by characters chosen from the digits '0' through '9'. If signed,
the item may also contain a '+', '-1, or other representation of an opera-
tional sign.

NUMERIC LITERAL

A literal composed of one or more numeric characters that may contain
either a decimal point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic sign, if present, must
be the leftmost character.

OBJECT-COMPUTER

The name of an ENVIRONMENT DIVISION paragraph in which the computer upon
which the object program will be run is described.

OBJECT OF ENTRY

A set of operands and reserved words, within a DATA DIVISION entry, that
is coded immediately following the subject of the entry.

OBJECT PROGRAM

A set or group of executable machine language instructions and other material
designed to interact with data to orovide problem solutions. An object
program is generally the machine language result of the operation of a COBOL
compiler on a source program.

OBJECT TIME

The time at which an object program is executed.

OPEN MODE

The state of a file after execution of an OPEN statement for that file and
before the execution of a CLOSE statement for that file. The particular
open mode is specified in the OPEN statement as either INPUT, OUTPUT, or
I -0.

A- 21



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

-. OPERAND

Any lower-case word (or words) that appears in a statement or entry format
may be considered to be an operand and, as such, is an implied reference
to the data indicated by the operand.

OPERATIONAL SIGN

An algebraic sign, associated with a numeric data item or a numeric literal
to indicate whether its value is positive or negative.

OPTIONAL WORD

A reserved word that is included in a specific format only to improve the
readability of the language and whose presence is optional to the user
when the format in which the word appears is used in a source program.

OUT-OF-LINE PROCEDURE

A set of statements not included in the main or controlling flow of the
program.

OUTPUT FILE

A file that is opened in either the output mode or extend mode.

OUTPUT MODE

The state of a file after execution of an OPEN statement, with the OUTPUT
or EXTEND phrase specified, for that file and before the execution of a
CLOSE statement for that file.

OUTPUT PROCEDURE

A set of statements to which control is given during execution of a SORT
statement after the sort function is completed.

OUTPUT QUEUE

An MCP (Message Control Program) destination queue into which a COBOL
teleprocessing program places messages for one or more remote stations.

OVERFLOW CONDITION

A condition which occurs in string manipulation when the sending area(s)
contain untransferred characters after the receiving area(s) have been
filled.

A-22



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

OVERLAY

The use of the same areas of internal storage for different stages in
processing a problem.

PAGE

A vertical division of a report representing a physical separation of re-
port data, the separation being based on internal reporting requirements
and/or external characteristics of the reporting medium.

PARAGRAPH

In the PROCEDURE DIVISION, a paragraph-name followed by a period and a
space and by zero, one or more sentences. In the IDENTIFICATION and
ENVIRONM4ENT DIVISIONS, a paragraph header followed by one or more entries.

PARAGRAPH HEADER

A reserved word, followed by a period and a space that indicates the
beginning of a paragraph in the IDENTIFICATION and ENVIRONMENT DIVISIONS.
The permissible paragraph headers are:

In the IDENTIFICATION DIVISION In the ENVIRONMENT DIVISION

PROGRAM-ID. SOURCE-COMPUTER.

AUTHOR. OBJECT-COMPUTER.

INSTALLATION. SPECIAL-NAMES.

DATE-WRITTEN. FILE-CONTROL.

DATE-COMPILED. I-0-CONTROL.

SECURITY.

PARAGRAPH-NAME

A user-defined word that identifies and begins a paragraph in the
PROCEDURE DIVISION.

PARAMETER

A variable that is given a specific value and is used to pass data values

between calling and called programs.

A -23



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

we-. PHRASE

A phrase is an ordered set of one or more consecutive COBOL character-
strings that form a portion of a COBOL procedural statement or of a COBOL
clause.

PHYSICAL RECORD

A term used synonymously with the term BLOCK. A physical record can be
composed of a portion of one logical record, of one complete logical
record, or of a group of logical records.

PRIORITY-NLR4BER

A number which classifies source program sections in the PROCEDURE

DIVISION. A priority-number ranges in values from 0 to 99.

PROCEDURE

A paragraph or group of logically successive paragraphs, or a section or
group of logically successive sections, within the PROCEDURE DIVISION.

PROCEDURE DIVISION

One of the four main parts of a COBOL program. The PROCEDURE DIVISION

contains instructions for solving a problem.

PROCEDURE- NAME

A user-defined word which is used to name a paragraph or section in the
PROCEDURE DIVISION. It consists of a paragraph-name (which may be quali-
fied), or a section-name.

PROCESS ING CYCLE

A single execution of a defined out-of-line procedure.

PROGRAM-NAME

A user-defined word that identifies a COBOL source program.

PSE UDO-Fl LE -NAME

A user-defined word that names a file residing on a multiple file tape for

which no FILE DESCRIPTION entry is specified.

A-24



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

7 PSEUDO-TEXT

A sequence of character-strings and/or separators bounded by, but not
including, pseudo-text delimiters.

PSEUDO-TEXT DELI MITER

Two contiguous equal sign (=) characters used to delimit pseudo-text.

PUNCTUATION CHARACTERS

The character set consists of the punctuation characters as follows:

GRAPHIC NAME

COMMA
SEMI COLON
PERIOD
QUOTATION MARK
LEFT PARENTHESIS

) RIGHT PARENTHESIS
SPACE
EQUAL

QUALIFIED DATA-NAME

An identifier that is composed of a data-name followed by one or more sets
of either of the connectives OF and IN followed by a data-name qualifier.

QUALI FIER

A data-name which is used in a reference together with another data-name
at a lower level in the same hierarchy.

A section-name which is used in a reference together with a paragraph-
name specified in that section.

A library-name which is used in a reference together with a text-name
associated with that library.

QUEUE

A logical collection of messages awaiting transmission or processing.

A-25



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cant.)

QUEUE BLOCKS

Blocks containing status and control information pertaining to the message
being processed and to each active queue. Queue blocks are created when
a queue is first accessed by a COBOL teleprocessing run unit and are chaired
together when in one region/partition.

QUEUE NAME

A symbolic name that indicates to the MCS (Message Control System) the
logical path by which a message or a portion of a completed message may
be accessible in a queue.

RECORD

A set of data items grouped for handling internally or by input/output
systems.

REEL

A module of external storage which is associated with a tape device.

REFERENCE FORMAT

A format that provides a standard method for describing COBOL source
programs.

RELATION CHARACTER

A. character that belongs to the following set:

CHARACTER MEANING

> GREATER THAN

< LESS THAN (NOTE: ) and A will
not be used in USACSC
COBOL.)

EQUAL TO (NOTE: To be used only
in the COMPUTE statement.)

RELATION CONDITION

The proposition, for which a truth value can be determined, that the value
of an arithmetic expression or data item has a specific relationship to
the value of another arithmetic expression or data item.

A- 26



15 DEC 81 CSCM 18-1-1

- GLOSSARY (Cont.)

RELATIONAL OPERATOR

A reserved word, a relation character, a group of consecutive reserved
words, or a group of consecutive reserved words and the relation char-
acters used in the construction of a relation condition. The permissible
operators and their meanings are:

RELATIONAL OPERATOR MEANING

IS (NOT) GREATER THAN GREATER THAN OR NOT
GREATER THAN

IS (NOT) LESS THAN LESS THAN OR NOT
LESS THAN

IS (NOT) EQUAL TO EQUAL TO OR NOT
EQUAL TO

EQUAL EQUAL TO

REMOTE STATION

A control unit and one or more input/output devices used in teleprocessing
which are connected to the central computer through common carrier facil-
ities. A remote station may be either a terminal device or another cortpu 4*er.

REPORT

A presentation of a set of processed data.

RESERVED WORD

A COBOL word specified in the list of words which may be used in a COBOL - -

source program, but which must not appear in the programs as user-defined
words or system-names.

ROUTINE-NAME

A user-defined word that identifies a procedure written in a language
other than COBOL.

RUN UNIT

A set of one or more object programs which function, at object time, as a
unit to provide problem solutions.

A-27



CSCM 18-1hi 15 Dec 81

GLOSSARY (Cont.)

SECTION

A set of zero, one, or more paragraphs or entries, called a section body,
the first of which is preceded by a section header. Each section con-
sists of the section header and the related section body.

SECTION HEADER

A combination of words followed by a period and a space that indicates the
beginning of a section in the ENVIRONMENT, DATA, or PROCEDURE DIVISION.

In the ENVIRONMENT and DATA DIVISION, a section header is composed of
reserved words followed by a period and a space. The permissible section
headers are:

In the ENVIRONMENT DIVISION In the DATA DIVISION

CONFIGURATION SECTION. FILE SECTION.

INPUT-OUTPUT SECTION. WORKING-STORAGE SECTION.

In the PROCEDURE DIVISION, a section header is composed of a section-
name, followed by the reserved word SECTION, followed by a segment-
number (optional), followed by a period and a space.

SECTION-NAME

A user-defined word which names a section in the PROCEDURE DIVISION.

SEGMENT-NUMIBER

A user-defined word which classifies sections in the PROCEDURE DIVISION
for purposes of segmentation. Segment-numbers may contain only the
characters '0', 11, ...191. A segment-number may be expressed either
as a one or two digit number.

SE NTEN CE

A sequence of one or more statements, the last of which is terminated by a

period followed by a space.

SEPARATOR

A punctuation character used to delimit a character-string.

A-28



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

SEQUENTIAL ACCESS

An access mode in which logical records are obtained from or placed into
a file in a consecutive predecessor-to-successor logical record sequence
determined by the order of records in the file.

SEQUENTIAL FILE

A file with sequential organization.

SEQUENTIAL ORGANIZATION

The permanent logical file structure in which a record is identified by a
predecessor-to-successor relationship established when the record is placed
into the file.

SEQUENTIAL PROCESSING

A term used synonymously with SYNCHRONOUS PROCESSING.

SIGN CONDITION

The proposition for which a truth value can be determined that the alge-
braic value of a data item or an arithmetic expression is either positive,
negative, or equal to zero.

SIMPLE CONDITION

Any single condition chosen from the set:

relation condition

class condition

condition-name condition

switch-status condition

sign condition

message condition

SLACK BYTES

Bytes which are inserted between data items or between records in order to
properly align some numeric items. Slack bytes are in some cases automat-
ically inserted by the compiler and in some cases is the responsibility of
the programer to insert them. The SYNCHRONZED clause instructs the com-
piler to insert slack bytes for proper alignment.

A-29



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

T. SORT FILE

A collection of records to be sorted by a SORT statement. The sort file
is created and can be used by the sort function only.

SORT-FILE NAME

A data-name which is used to identify a sort file.

SORT-KEY

The fields in a record which determine, or are used as a basis for deter-
mining, the sequence of records in a file.

SORT-WORK-Fl LE

A collection of records used in a sorting operation as it exists on an
intermediate device(s).

01 SORT MERGE FILE DESCRIPTION ENTRY

An entry in the FILE SECTION of the DATA DIVISION that is composed of the
level indicator SD, followed by a file-name, and then followed by a set of
file clauses as required.

SOURCE

The symbolic identification of the originator of a transmission to a queue.

SOUJRCE-COMPUTER

The name of an ENVIRONMENT DIVISION paragraph in which the computer en-
vironment, within which the source program is compiled, is described.

SOURCE ITEM

An identifier designated by a SOURCE clause that provides the value of a
printable item.

SOURCE PROGRAM

A syntactically correct set of COBOL statements beginning with an IDENTI-
FICATION DIVISION and ending with the end of the PROCEDURE DIVISION.

A-30



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

SPECIAL CHARACTER

A character that belongs to the following set:

CHARACTER MEANING

+ PLUS SIGN

- MINUS SIGN
* ASTERISK
/ SLASH

EQUAL SIGN
$ CURRENCY SIGN

COMMA
SEMICOLON

* PERIOD
QUOTATION MARK
LEFT PARENTHESIS

) RIGHT PARENTHESIS
> GREATER THAN SYMBOL (Not USACSC COBOL)

LESS THAN SYMBOL (Not USACSC COBOL)
EXCLAMATION POINT
NUMBER SIGN

% PERCENT
& AMPERSAND
' APOSTROPHE
: COLON
? QUESTION MARK
@ COMMERCIAL AT

SPECIAL-CHARACTER WORD

A reserved word which is an arithmetic operator or a relation character.

SPECIAL-NAMES

The name of an ENVIRONMENT DIVISION paragraph in which implementor-names
are related to user-specified mnemonic-names.

SPECIAL REGISTERS

Certain compiler generated storage areas whose primary use is to store in-
formation produced in conjunction with the use of specific COBOL features.

STANDARD DATA FORMAT

The concept used in describing data in a COBOL DATA DIVISION under which the

characteristics or properties of the data are expressed in a form oriented

A-31

qe .



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

to the appearance of the data on a printed page of infinite length and
breadth, rather than a form oriented to the manner in which the data is
stored internally in the computer, or on a particular external medium.

STATEMENT

A syntactically valid combination of words and symbols written in the
PROCEDURE DIVISION beginning with a verb..

SUB-QUEUE

A logical hierarchical division of a queue.

SUBJECT OF ENTRY

An operand or reserved word that appears immediately following the level
indicator or the level-number in the DATA DIVISION entry.

SUBPROGRAM

A term used synonymously with the term CALLed program.

SUBSCR IPT

An integer whose value identifies a particular element in a table.

SUBSCRIPTED DATA-NAME

An identifier that is composed of a data-name followed by one or more sub-
scripts inclosed in parentheses.

SWITCH-STATUS CONDITION

The proposition, for which a truth value can be determined, that an
implementor-defined switch, capable of being set to an 'on' or 'off' status,
has been set to a specific status.

SWITCHED LINE

A conTunication line, used in teleprocessing, for which no single continu-
ous path between the central computer and the remote station exists.
Several alternative paths are also available for transmission. The common
carrier switching equipment is used to select the proper path.

A-32



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

SYNCHRONOUS PROCESSING

A processing method in which each event or the performance of each opera-
tion starts as a result of a signal generated by a clock (contrasted with
asynchronous processing).

SYSTEM-NAME

A COBOL word which is used to commnunicate with the operating environment.

TABLE

A set of logically consecutive items of data that are defined in the DATA
DIVISION by means of the OCCURS clause.

TABLE ELEMENT

A data-item that belongs to thie set of repeated items comprising a table.

TERMINAL

The originator of a transmission to a queue, or the receiver of a trans-
mission from a queue.

TEST CONDITION

A statement which may be either true or false depending on the existing
circumstance at the time of the test.

TEXT-NAME

A user-defined word which identifies library text.

TEXT-kIORO

Any character-string or separator except space, in a COBOL library or in
pseudo-text.

TRAILER LABEL

A record used to indicate the ending of a physical file or of a volume.

TRUTH VALUE

The representation of the result of the evaluation of a condition in terms
of one of two values: True or false.

A-33



CSCM 18-1-1 15 Dec 81

GLOSSARY (Cont.)

Mr. U-MODE RECORDS

Records of which the length is unspecified. They may be either fixed or
variable. There is only one record per block.

UNARY OPERATOR

A plus N+ or a minus (-) sign, which precedes a variable or a left paren-
thesis in an arithmetic expression and which has the effect of multiplying
the expression by +1 or -1 respectively.

UNIT

A module of mass storage, the dimensions of which are determined by each
impl ementor.

USER-DEFINED WORD

A COBOL word that must be supplied by the user to satisfy the format of
a clause or statement.

V-MODE RECORDS

Records of which the length is variable. Blocks may contain more than
one record. Each record contains a field which specifies its length and
each block contains a field to specify its length.

VARIABLE

A data-item whose value may be changed by execution of the object program.
A variable used in an arithmetic expression must be a numeric elementary
item.

VARIABLE-LENGTH DATA ITEM

A variable-length data item is a data item which, although physically
fixed in size, contains a logically variable number of characters.

VARIABLE-OCCURRENCE DATA ITEM

A variable occurrence data item is a table element which is repeated a
variable number of times. Such an item must contain an OCCURS clause or
be subordinate to such an item.

A-34



15 DEC 81 CSCM 18-1-1

GLOSSARY (Cont.)

VERB

A word that expresses an action to be taken by a COBOL compiler or object
program.

VOLATILITY

In the case of a volatile file, the quality of being changeable, transient,
temporary or unpredictable in nature.

VOLUME

A module which is externally stored. For tape, it is a reel; for mass

storage devices, it is a unit.

VOLUME SWITCH PROCEDURES

Automatic procedures that are executed at the end of a reel or unit before
an end-of-file condition is reached.

WORD

A character-string of not more than 39 characters which forms a user-
defined word, a system-name, or a reserved word.

WORKING-STORAGE SECTION

The section of the DATA DIVISION that describes WORKING-STORAGE data items
and constants, composed either of noncontiguous items or of WORKING-
STORAGE records or of both.

77-Level-Description-Entry

A data description entry that describes a noncontiguous data item with the
level-number 77.

A- 35



15 DEC 81 CSCM 18-1-1

RESERVED WORDS

This list of words includes the reserved words published in ANSI X3.23-1974,
and the reserved words designated by IBM, CDC, and Honeywell in their various
COBOL compilers. These words should not be used except as provided for in this
manual to maintain program transferability between vendors' ADP hardware and
compilers.

B-1

I -



CSCM 18-1-1 15 Dec 81

RESERVED WORDS (Cont.)

ABOUT CALL

ACCEPT CALLEE-TASK

ACCEPT-CARD-READER CANCEL

ACCEPT-CONSOLE CARD-PUNCH

ACCESS CD

ACCESS-PRIVACY CDC

ACCOUNTING CF

ACTUAL CH

ADD CHANGED

ADDRESS CHANNEL

ADVANCING CHANNELS

AFTER CHARACTER

ALL CHARACTERS

ALPHABETI C CHECK

ALPHANUMERIC CLASS

ALPHANUMERIC-EDITED CLOCK-UNITS

ALSO CLOSE

ALTER COBOL

ALTERNATE CODE

AN CODE-SET

AND COLLATING

APPLY COLUMN

ARE COM-REG

AREA COMMA

AREAS COMMON-STORAGE

ASCENDING COMMON-W-STORAGE

ASSIGN COMMUNICATION

AT COMP

AUTHOR COMP-1

AUX-CHANNEL COMP-2

AUX-CHANNELS COMP-3

BASIS COMP-4

BCD COMP-n

BEFORE COMPASS

BEGINNING COMPUTATIONAL

BEGI N/PROG/AT COMPUTATIONAL-1

BINARY COMPUTATIONAL-2
BIT COMPUTATIONAL-3

BITS COMPUTATIONAL-4

BLANK COMPUTE

BLOCK COMPUTER

BLOCKS CONFIGURATION

BOTTOM CONSOLE

BUILD CONSOLE-KEYBOARD

BY CONSOLE-TYPEWRITER

B-?



15 DEC 81 CSCM 18-1-1

RESERVED WORDS (Cont.)

- CONSTANT DEBUG-SUB-3
CONTAINS DEBUG-SWITCH
CONTIGUOUS DEBUGGING
CONTINUE/PROG/AT DECIMAL
CONTROL DECIMAL-POINT
CONTROLS DECLARATIVES
COPY DELETE

f CORE-INDEX DELIMITED
CORR DELIMITER
CORRESPONDING DENSITY
COUNT DEPENDING
CRT DEPTH
CSP DESCENDING
CURRENCY DESTINATION
CURRENT-DATE DETAIL
CYL-INDEX DIGIT
CYL-OVERFLOW DIGITS
Col DISABLE
C02 DISK
C03 DISP
C04 DISPLAY
C05 DISPLAY-CONSOLE
C06 DISPLAY-n
C07 DISPLAY-PRINTER
C08 DISPLAY-ST
C09 DTVIDE
Cl0 DIVISION
Cll DOLLAR
C12 DOUBLE-BUFFER
DATA DOUBLE-FLOAT
DATE DOWN
DATE-COMPILED DUPLICATES
DATE-WRITTEN DYNAMIC
DAY EDITION NUMBER
DAY-OF-WEEK EGI
DE EJECT
DEBUG ELSE
DEBUG-CONTENTS EMI
DEBUG-ITEM ENABLE
DEBUG-LINE END
DEBUG-NAME END-OF-PAGE
DEBUG-SUB-i ENDING
DEBUG-SUB-2 ENTER

B-3

I.



CSCM 18-1-1 15 Dec 81

RESERVED WORDS (Cont.)

ENTRY H-nnn
ENVIRONMENT H-200-SPECIAL
EOP H-2000-SPECIAL
EQUAL HEADING
EQUALS HIGH
ERROR HI GH-VALUE
ES I HIGH-VALUES
ETI HLT-CTL
EVERY HOLD
EVF-SIGNAL HONEYWELL-nnn
EXAMINE HVF-SIGNAL
EXCEEDS HYPER
EXCEPTION 1-0
EXHIBIT I-O-CONTROL
EXIT ID
EXOR IDENTIFICATION
EXTEND IF
EXTENDED-SEARCH IN
FD INCLUDE
FILE INDEX
FILE-CONTROL INDEX-n
FILE-ID INDEXED
FILE-LIMIT INDEXED-SEQUENTIAL
FILE-LIMITS INDICATE
FILLER INITIAL
FINAL INITIATE
FIND INPUT
FINIS INPUT-OUTPUT
FIRST INPUT-RECOVERY
FLOAT INSERT
FLOATING-POINT INSPECT
FOOTING INSTALLATION
FOR INTO
FROM INVALID
GEN-ND IS
GENERATE JUST
GENERATION-NUMBER JUSTIFIED
GET KEY
GIVING KEYS
GO LABEL
GOBACK LABEL-RETURN
GREATER LAST
GROUP LEADING

B-4



15 DEC 81 CSCM 18-1-1

RESERVED WORDS (Cont.)

LEAVE NEGATIVE
LEAVING NEXT
LEFT N-nnn
LENGTH NO
LESS NO-TAPE-MARK
LI BRARY NOMINAL
LIMIT NOT
LIMITS NOTE
LINAGE NSTD-REELS
LI NAGE-COUNTER NUMBER
LINE NUMERIC
LINE-COUNTER NUMERIC-EDITED
LINES OBJECT-COMPUTER
LINKAGE OBJECT-PROGRAM
LINKED-INDEX OCCURS
LOAD OF
LOADER OFF
LOCATION OH
LOCK OMITTED
LOW ON
LOW-VAL UE OPEN
LOW-VAL UES OPTIONAL
LOWER-BOUND OR
LOWER-BOUNDS ORGAN IZATION
MASS-STORAGE-OEV ICE OTHERWISE
MASS-STORAGE-DEVICES OUTPUT
MASTER- INDEX OUTPUT-RECOVERY
MEMORY OV
MERGE OVERFLOW
MESSAGE OWNER-ID
MODE PAGE
MODIFICATION-PRIVACY PAGE-COUNTER
MODULE PAPER-TAPE-PUNCH
MODULES PAPER-TAPE-READER
MORE-LABELS PARTI TIONED
MOVE PASSWORD
MSD PERFORM
MULTIPLE PERMIT
MULTIPLY PF
MULTIPLY-DIVIDE PH
NAMED P IC
NATIVE PICTURE
NEAC- 280 PLACE

B-5



CSCM 18-1-1 15 Dec 81

RESERVED WORDS (Cont.)

PLACES RECORDS
PLUS REDEFINES
POINT REEL
POINTER REEL-NUMBER
POSITION REFERENCES
POSITIONING REL-CODE
POSITIVE RELATIVE
PREPARED RELEASE
PRINT-SWITCH RELOAD
PRINTER RELOCATABLE-CODE
PRINTERS REMAINDER
PRINTING REMARKS
PRIORITY REMOVAL
PROCEDURE RENAMES
PROCEDURES RENAMING
PROCEED REORG-CRITERIA
PROCESS REPLACE
PROCESSING REPLACING
PROGRAM REPORT
PROGRAM- ID REPORTING
PROTECT REPORTS
PT-PUNCH REPREAD
PT-READER RERUN
PUNCH RESERVE
PUNCHES RESET
QUEUE RESIDENT-CYLINDER-INDEX
QUOTE RETENTION-CYCLE
QUOTES RETURN
R-C INDEX RETURN-CODE
RANDOM REVERSED
RNAGE REWIND
RD REWRITE
READ RF
READER RH
READER-PUNCH RIGHT
READER-PUNCHES ROUNDED
READY RUN
REASS IGNMENT RWCS
RECEIVE SA
RECORD SAME
RECORD-MARK SCRATCH
RECORD-OVERFLOW SD
RECORD ING SEARCH

4.

B-6



15 DEC 81 CSCM 18-1-1

RESERVED WORDS (Cont.)

SECTION STOP
SECTOR STRING
SECURITY SUB-QUEUE-i
SEEK SUB-QUEUE-2
SEGMENT SUB-QUEUE-3
SEGMENTATION SUB-QUEUE-n
SEGMENTED SUBTRACT
SELECT SUM
SELECTED SWITCH
SEND SUPERVISOR
SENSE-SWITCH SUPPRESS
SENTENCE SUSPEND
SEPARATE SYMBOLIC
SEQUENCE SYNC
SEQUENCED SYNCHRONIZED
SEQUENTIAL SYSIN
SERVICE SYSIPT
SET SYSLST
SET-ID SYSOUT
SHORT-GAP SYSPCH
SIGN SYSPUNCH
SIGNED SYSTEM-DATE
SIZE SYSTEM-INPUT
SKIP1 SYSTEM-OUTPUT
SKIP2 SYSTEM-PUNCH
SKIP3 SYSTEM-TIME
SORT S1
SORT-CORE-SIZE S02
SORT-FILE-SIZE TABLE
SORT-MERGE TALL"
SORT-MESSAGE TALLYING
SORT-MODE-SIZE TAPE
SORT-RETURN TAPE-UNIT
SOURCE TAPE-UNITS
SOURCE-COMPUTER TERMINAL
SPACE TERMINATE
SPACES TEXT
SPECIAL-NAMES THAN
STANDARD THEN
STANDARD-1 THAN
STANDARD-80 THEN
STANDARD-120 THROUGH
START THRU
STATUS TIME

TIME-OF-DAY

B-7

. - - , - i, m . . . " . . . I .-- - - -~ . .



CSCM 18-1-1 15 Dec 81

RESERVED WORDS (Cont.) -

TIMES USING
TO VALUE
TOP VALUES
TOTALED VARYING
TOTALING VOL-S-NO
TRACE VOLUME-SERIAL-NUMBER
TRACK VERIFICATIONL-NUMBER
TRACK-AREA VOLUME
TRACK-LIMIT VOLUMES
TRACKS WHEN
TRAILING WITH
TRAILING-COUNT WORDS
TRANSFORM WORKING-STORAGE
TTY WRITE
TYPE WRITE-CHECKED
UNBANNERED WRITE-ONLY
UNEQUAL WRITE-VERIFY
UNIT ZERO
UNIT-OF-ALLOCATION ZEROES
UNITS-OF-ALLOCATION ZEROS
UNSTRING *
UNTIL **
UP +
UPON
UPPER-BOUND /
UPPER-BOUNDS
USAGE
USE

B -8

-- ] .. . . l iJ I I .. . . - . . - .. . . .. ... . . . ... . . . . 1 1 . .. - " - . . . . . . . I l " " " . . . . ..



15 DEC 81 CSCM 18-1-1

INDEX

This index provides an alphabetical list of paragraph headings or titles entered
in the text of this manual. It is provided as an easy reference and a primary
source of information to enable and assist the USACSC programer to readily
locate specific data in the text.

Index-1



CSCM 18-1-1 15 Dec 81

INDEX

Paragraph Page

ACCEPT Statement 2.4.9.1 2-121
ACCESS Clause 2.4.6.11 2-47
ADD Statement 2.4.9.2 2-123
Additional Information 4.3.3.4 4-5
Additional Recommended Coding Conventions 3.1.7.1 3-18
Address Pointer 2.9.2.2 2-420
Algebraic Signs 2.3.4.5 2-8
ALTER Statement 2.4.9.3 2-126
ALTERNATE RECORD KEY Clause 2.4.6.14 2-51
ANSI COBOL 2.1 2-1
ANSI COBOL, Authority to Grant an Exception 1.4.4 1-3
ANSI COBOL, Exception to the Use of 1.4.3 1-3
APPLY Clause 2,9.8 2-422
Arguments 4.8 4-7
Arguments in CALL Statements 4.9.2 4-8
Arithmetic Expressions 2.4.8.3.3 2-103
Arithmetic Expressions 4.3.3.1 4-4
Arithmetic Operations 2.7.3.4 2-402
Arithmetic Operators 2.4.8.3.4 2-106
Array Naming Convention 4.9.1 4-8
Arrays 4.4 4-5
ASSIGN Clause 2.4.6.9 2-35
Assure Parentheses Balance 4.7.3.3 4-7
A'sure Statements Are Present 4.7.3.6 4-7
AUTHOR Paragraph 2.4.5.3 2-24
Authority to Grant an Exception 1.4.4 1-3
Authority to Grant an Exception 1.5.3 1-4

Backup Prograner 3.1.3.1 3-1
Blank Lines 2.3.5.5 2-14
BLANK WHEN ZERO Clause 2.4.7.23 2-98
BLOCK CONTAINS Clause 2.4.7.9 2-71
Braces, Element 2.4.3.2.5 2-18
Brackets, Function 2.4.3.2.6 2-18
Branching Statements 2.7.3.5 2-405

CALL Statement 2.4.9.4 2-127
CALL Statement 4.7.3.8 4-7
CANCEL Statement 2.4.9.5 2-129
Cancel, System Action Under 2.5.6.6 2-285
Card 1.11.6.3 1-10
CASE Statement 2.4.9.6 2-130
CASE Statement 2.5.1.5 2-233
Catalogued Programs 2.7.6.2 2-418

Index-2



15 DEC 81 
CSCK 18-1-1

Paragraph Page

Changes to Manual 1.6 1-4

Chapter 1 1.2.1 1-1

Chapter 2 1.2.2 1-1

Chapter 3 1.2.3 1-2

Chapter 4 1.2.4 1-2

Character-String 2.3.2.4 2-2

Check All Hollerith Fields 4.7.3.7 4-7

Check And Desk Checking 4.7 4-7

Check For DO-loop 4.7.3.5 4-7

Checkout Method 4.7.1 4-7

Chief Programer 3.1.3.2 3-2

Chief Programer Team (CPT) 3.1.4.6 3-14

Chief Programer Team, Team Operation or 3.1.3.15 3-4

Classes of Data, Concept of 2.3.4.4 2-7

Clause 2.3.5.3.6 2-13

Clause 2.3.6.1.7 2-15

Clauses 2.3.5.3.8 2-13

CLOSE Statement 2.4.9.7 2-131

COBOL Levels, Concept of 2.3.4.2 2-6

COBOL Program Debugging Aids, DOS 2.5.6.2 2-271

COBOL Program Debugging Aids, OS 2.5.6.11 2-326

COBOL Program Structure 2.4.4 2-20

COBOL Program Structure Techniques 2.7 2-381

COBOL Program, Structure of the 2.4.4.3 2-21

COBOL Segmentation Facility 2.5.2 2-235

COBOL Specifications, USACSC 2.4 2-16

Code Walkthrough 3.1.4.5.7.3 3-14

CODE-SET Clause 2.4.7.10 2-73

Coding 2.3.6.1 2-14

Coding Conventions, USACSC Standard 2.3.6 2-14

Coding Data Description Entries 2.3.6.1.6 2-15

Coding Paragraph/Section Names 2.3.6.1.5 2-15

Coding, Single Source Library System 2.8.3 2-419

Comment Cards 4.3.1.1 4-2

Comment Lines 2.3.5.6 2-14

Comments 3.1.7.1.3 3-19

Common Causes of Errors 2.5.6.3 2-272

Commonly Encountered User Errors 2.5.6.8 2-297

Compatibility, OS/DOS 2.9 2-420

Completion Code - 001 2.5.6.12 2-326

Completion Code - 013 2.5.6.13 2-328

Completion Code - 031 2.5.6.14 2-328

Completion Code - 03B 2.5.6.15 2-330

Completion Code - 03D 2.5.6.16 2-331

Completion Code, OCx Note 2.5.6.17 2-331

Index-3



CSCM 18-1-1 15 Dec 81

Paragraph Page

Completion Code - ONi 2.5.6.18 2-331
Completion Code - OC5 2.5.6.19 2-332
Completion Code - 0C7 2.5.6.20 2-333
Completion Code - 237 2.5.6.21 2-334
Completion Code - 637 2.5.6.22 2-336
Completion Code - 804 2.5.6.23 2-338
Completion Code - 806 2.5.6.24 2-338
Completion Code - 813 2.5.6.25 2-339
Completion Code - D37 2.5.6.26 2-340
Completion Code - E37 2.5.6.27 2-341
Compound (Complex) Conditions 2.4.8.3.7 2-117
COMPUTE Statement 2.4.9.8 2-138
Concept of Classes of Data 2.3.4.4 2-7
Concept of COBOL Levels 2.3.4.2 2-6
Concepts of Data Reference 2.3.4 2-6
Concepts of Top Down Structured Programing (TDSP) 3.1.4 3-5
Concepts of Top Down Structured Programing (TDSP),

General 3.1.4.1 3-5
Conditional Expressions 2.4.8.3.5 2-110
Conditional Statements 2.7.3.3 2-397
Configuration Section 2.4.6.2 2-28
Console 1.11.6.1 1-10
Console Switches 1.11.11 1-14
Conspicuous Printing Style for Commnent 4.6.7 4-6
Constant Count Indices 4.9.6 4-8
Continuation 2.3.5.4 2-13
Continuation of Lines 2.3.5.4.1 2-13
Continuation of Non-numeric Literals 2.3.5.4.2 2-14
Continuation of Numeric Literals 2.3.5.4.3 2-14
Control Block Pointers 2.5.6.28 2-342
Conventions, Language 2.3 2-2
COPY Statement 2.4.9.9 2-142
COPY Statement 2.5.5.2 2-262
Core Dump Tracing, DOS 2.5.6.9 2-299
Core Dump, OS/MVT 2.5.6.29 2-348
CPT, Chief Programer Team 3.1.4.6 3-14

Data Base Definition 3.1.4.1.3 3-5
DATA DESCRIPTION Clause 2.4.7.13 2-75
Data Description Entries 2.3.5.3.2 2-12
Data Division 2.4.2.1.3 2-17
Data Division 2.4.4.1.3 2-20
Data Division 2.4.7 2-58
Data Division Entries 2.3.5.3 2-12
Data Division Sort Feature 2.5.3.3 2-241

Index-4



15 DEC 81 CSCM 18-1-1

Paragraph Page

- Data Flow Graph 3.1.3.3 3-2
Data Format Considerations 2.7.1 2-383
Data Formats 2.9.4 2-421
Data Item Considerations 2.7.2 2-386
Data Manipulation 2.7.3.6 2-408
DATA RECORD Clause 2.4.7.11 2-74
Data Variable Assignment 4.9.3 4-8
Data, Types of PDL Segments (Modules) 3.1.4.3.4.4 3-10
DATA-NAME or FILLER Clause 2.4.7.14 2-77
DATE-COMPILED Paragraph 2.4.5.6 2-26
DATE-WRITTEN Paragraph 2.4.5.5 2-25
Debugging Aids 2.5.6 2-269
Debugging Exercise, 0C7 (Data Check) 2.5.6.32 2-358
Debugging of COBOL Segmented Programs Under OS/MFT 2.5.6.33 2-368
DEBUG-ITEM Special Register 2.4.9.11 2-147
Declaratives 2.4.8.3.1 2-101
Default Option 2.4.3.3 2-18
Definition of a Word 2.3.3.1 2-2
Definitions, USACSC Structured Programing Technology 3.1.3 3-1
DELETE Statement 2.4.9.12 2-149
Delimiters 2.3.2.5 2-2
Description, Program Design Language (PDL) or PSEUDO

CODE 3.1.4.3.2 3-7
Descriptive Comments 4.6.6 4-6
Design Considerations 4.2 4-1
Design Walkthrough 3.1.4.5.7.2 3-14
Desk Checking 4.7.2 4-7
Detail Lines 1.11.7.1.4 1-11
Direct Access Storage Devices 1.11.6.4 1-10
DISPLAY Statement 2.4.9.13 2-150
Distribute Comment 4.6.5 4-6
DIVIDE Statement 2.4.9.14 2-152
Division Header 2.3.5.2.2 2-11
Divisions 2.3.5.1.2 2-10
Divisions, COBOL Program Structure 2.4.4.1 2-20
DO Statement 2.4.9.15 2-155
DO Statement 2.5.1.1 2-227
DO UNTIL Statement 2.4.9.16 2-156
DO UNTIL Statement 2.5.1.4 2-232
DO WHILE Statement 2.4.9.16 2,457
DO WHILE Statement 2.5.1.2 24228
DOS COBOL Program Debugging Aids 2.5.6.2 2-271
DOS Core Dump Tracing 2.5.6.9 2-299
DOS, Commonly Encountered User Errors 2.5.6.8 2-297

Index-5



CSCM 18-1-1 15 Dec 81

Paragraph Page

Efficiency 1.7.1.7 1-5
Element Braces 2.4.3.2.5 2-18
Element, Language 2.4.1.1 2-16
Elements 2.4.2.2 2-17
Elements of File Design 1.11.4 1-8
Elements, Data Division 2.4.7.1 2-58
Elements, Environment Division 2.4.6.1 2-27
Elements, Identification Division 2.4.5.1 2-23
El lipsis 2.4.3.4 2-19
ENTER Statement 2.4.9.18 2-158
Environment Division 2.4.2.1.2 2-16
Environment Division 2.4.4.1.2 2-20
Environment Division 2.4.6 2-27
Environment Division Sort Feature 2.5.3.2 2-241
Error Code 4.8.2 4-8
Error Condition Options 1.11.10 1-14
Errors, Cormmonly Encountered User 2.5.6.8 2-297
Example of Segmentation 2.5.2.6 2-238
Exception to the Use of ANSI COBOL 1.4.3 1-3
Exception to the Use of FORTRAN 1.5.2 1-3
Exception to the Use of SPEC 1.4.2 1-2
EXIT Statement 2.4.9.19 2-159

Figures 3.1.4.2 3-6
File Concept, Logical Record and 2.3.4.1 2-6
File Description (FD) and Sort-File (SD) Description

-Entries 2.4.7.5 2-68
File Design Considerations 1.11.5 1-8
File Organization 1.11 1-7
File Processing 2.7,3.2 2-396
FILE SECTION 2.4.7.2 2-60
FILE STATUS Clause 2.4.6.15 2-51
FILE-CONTROL Paragraph 2.4.6.7 2-33
FILLER Clause, DATA-NAME or 2.4.7.14 2-77
First Clause 2.3.5.3.7 2-13
First Header Line 1.11.7.1.2 1-11
Format 1.11.8.1 1-13
Format Presentation 2.4.3.2 2-17
Format Punctuation 2.4.2 2-16
Format Rules and Notes 2.4.1 2-16
Format, USACSC COBOL Specifications 2.4.1.3 2-16
Formats, COBOL Program Structure 2.4.4.2 2-20
FORTRAN 1.5 1-3
FORTRAN Character Set 4.3.2 4-3
FORTRAN Procedure 1.5.1 1-3
FORTRAN, Authority to Grant an Exception 1.5.3 1-4
FORTRAN, Exception to the Use of 1.5.2 1-3
Function Brackets 2.4.3.2.6 2-18
Function, USACSC COBOL Specifications 2.4.1.2 2-16
Functional Breakdown 3.1.4.1.1 3-5

Index-6



15 DEC 81 CSCM 18-1-1

Paragraph Page

- General Description of Reference Format 2.3.5.1 2-10
General Description, Format Punctuation 2.4.2.1 2-16
General Description, Procedure Division 2.4.8.1 2-99
General Format 3.1.7.1.4.1 3-19
General Rules, Procedure Division 2.4.8.3 2-100
General Rules, USACSC COBOL Specifications 2.4.1.5 2-16
General Standards and Guidelines 3.1.5 3-16
General, Concepts of Top Down Structured Programing

(TDSP) 3.1.4.1 3-5
General, Programing Support Library (PSL) 3.1.4.4.1 3-11
General, Symbols and Notations Used in This Manual 2.4.3.1 2-17
General, USACSC Programing Procedures 1.1 1-1
General, USACSC Structured Programing Technology 3.1.1 3-1
Glossary 2.3.1 2-2
GO TO Statement 2.4.9.20 2-160
Grouping of Arguments 4.8.1 4-8
Guidelines 3.1.5.2 3-17
Guidelines for Semantics 3.1.4.3.6 3-10

Halts 1.11.8.5 1-13
Header, Division 2.3.5.2.2 2-11
Hit Ratio 1.11.5.2 1-9

Identification Division 2.4.2.1.1 2-16
Identification Division 2.4.4.1.1 2-20
Identification Division 2.4.5 2-23
Identification of Program in a Comment 4.6.2 4-5
IF Statement 2.4.9.21 2-161
IF Statement 2.5.1.3 2-230
Implementing Instructions, Single Source Library
System 2.8.5 2-419

Include Capability 3.1.7 3-17
Included, Types of PDL Segments (Modules) 3.1.4.3.4.3 3-10
Indentation and Formatting Conventions 3.1.7.1.4 3-19
Indexed File Organization 1.11.2 1-7
Indexing 2.3.4.8 2-9
Indexing 2.5.4.4 2-249
Input Buffers 2.9.2.1 2-420
Input Media 1.11.6 I-IC
Input/Output Devices 4.9.5 4-8
Input/Output Functions 4.2.3 4-1
Input/Storage Areas 2.9.2 2-420
INPUT-OUTPUT Section 2.4.6.6 2-32
INSPECT Statement 2.4.9.22 2-166

Index-7



CSCM 18-1-1 15 Dec 81

Paragraph Page

INSTALLATION Paragraph 2.4.5.4 2-25
Integration Testing 3.1.3.12.2 3-4
Interacting Factors 1.11.5.1 1-8
Internal Module Structure 3.1.4.3.5 3-10
Interpretating Output 2.5.6.10 2-309
Introduction to Copy Library Facility 2.5.5.1 2-261
Introduction to Debugging Aids 2.5.6.1 2-269
Introduction, FORTRAN Programing Procedures 4.1 4-1
Introduction, Sort Feature 2.5.3.1 2-240
Introduction, Table Handling Feature 2.5.4.1 2-242
Introduction, Programing Procedures 1.2 1-1
Introduction, USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset 2.2 2-1

Introduction, USACSC Structured Programing
Technology 3.1 3-1

INVALID KEY Option 2.9.9 2-422
IPO (Input, Process, Output) Chart 3.1.3.4 3-2
1-0 CONTROL Paragraph 2.4.6.16 2-52

JUSTIFIED Clause 2.4.7.21 2-95

KEY Option, INVALID 2.9.9 2-422

LABEL RECORDS Clause 2.4.7.6 2-69
Language Conventions 2.3 2-2
Language Element 2.4.1.1 2-16
Language Structure 2.3.2 2-2
Level Indicators 2.3.5.3.1 2-12
Level-Number 77 2.3.5.3.4 2-13
Level-Number 88 2.3.5.3.5 2-13
Level-Numbers 2.3.4.3 2-7
Level-Numbers 01 Through 49 2.3.5.3.3 2-13
Librarian 3.1.3.5 3-2
Librarian 3.1.4.6.1 3-15
Library Facility, Source Program 2.5.5 2-261
Library Functions 4.2.2 4-1
Link Edit Map 2.5.6.4 2-273
LINKAGE SECTION 2.4.7.4 2-66
Logical Flow 1.7.1.5 1-5
Logical Operators 4.3.3.3 4-4
Logical Record and File Concept 2.3.4.1 2-6
Lower-Case Words 2.4.3.2.4 2-17

Index-8



15 DEC 81 CSCM 18-1-1

Paragraph Page

Machine Independence 1.7.1.2 1-5
Main, Types of PDL Segments (Modules) 3.1.4.3.4.1 3-10
Maintainability 1.7.1.3 1-5
Meaningful Comments 4.6.1 4-5
Message Number 1.11.8.3 1-13
Misleading Rules of File Design 1.11.5.3 1-9
Modular Structure 3.1.4.1.2 3-5
Modularity 4.2.1 4-1
Module Delimitation 3.1.4.3.3 3-10
Module Size 3.1.7.1.6 3-20
MOVE Statement 2.4.9.23 2-174
MULTIPLE FILE TAPE Clause 2.4.6.19 2-57
Multiple Program Outputs 1.10 1-6
MULTIPLY Statement 2.4.9.24 2-179

Nested IF 3.1.7.1.5 3-20
Nine Step Module Management Process 3.1.4.7 3-15
Non-integer Variable 4.9 4-8

Object Storage Layout 2.5.6.5 2-274
OBJECT-COMPUTER Paragraph 2.4.6.4 2-29
Objective, Single Source Library System 2.8.1 2-418
Objectives 1.3 1-2
OCCURS Clause 2.4.7.17 2-81
OCCURS Statement 2.5.4.3 2-247
0C7 (Data Check) Debugging Exercise 2.5.6.32 2-358
OCx Completion Code Note 2.5.6.17 2-331
OPEN Statement 2.4.9.25 2-181
Operators Used in FORTRAN Programs 4.3.3 4-4
Option, Default 2.4.3.3 2-18
Option, INVALID KEY 2.9.9 2-422
Organization of Segmentation Facility 2.5.2.1 2-235
OS COBOL Program Debugging Aids 2.5.6.11 2-326
OS Data Exceptions, Recognition and Error Recovery 2.5.6.30 2-356
OS/DOS Compatibility 2.9 2-420
OS/MVT Core Dump 2.5.6.29 2-348
Output Media 1.11.7 1-10
Overlay Structures 2.7.5.1 2-414

Page Line 1.11.7.1.5 1-11
Paragraph Naming 2.7.3.1 2-3)6
Paragraph-Name and Paragraph 2.3.5.2.4 2-12
Paragraph/Section Names 2.3.6.1.4 2-15
PDL Example 3.1.4.3.8 3-11
PDL Segments (Modules), Types of 3.1.4.3.4 3-10
PERFORM Statement 2.4.9.26 2-185

Index-9



CSCM 18-1-1 15 Dec 81

Paragraph Page

PICTURE Clause 2.4.7.18 2-85
PICTURE Clause 2.9.7 2-422
Printer 1.11.7.1 1-11
Printer, Detail Lines 1.11.7.1.4 1-11
Printer, First Header Line 1.11.7.1.2 1-11
Printer, Page Line 1.11.7.1.5 1-11
Printer, Remaining Header Lines 1.11.7.1.3 1-11
Printer, Security Classification 1.11.7.1.1 1-11
Printer, Skipping 1.11.7.1.7 1-12
Printer, Spacing 1.11.7.1.6 1-12
Procedure Division 2.4.2.1.4 2-17
Procedure Division 2.4.4.1.4 2-20
Procedure Division 2.4.8 2-99
Procedure Division Considerations for Table

Handling 2.5.4.5 2-251
Procedure Division Design 2.6.1 2-372
Procedure Division Sort Feature 2.5.3.4 2-242
Procedure Division Techniques 2.7.3 2-396
Procedures, Single Source Library System 2.8.2 2-419
Productivity 1.7.1.4 1-5
Program Comments 4.6 4-5
Program Comments for Subroutines 4.6.4 4-6
Program Design Criteria 1.8 1-6
Program Design Language (PDL) or PSEUDO CODE 3.1.3.6 3-2
Program Design Language (PDL) or PSEUDO CODE 3.1.4.3 3-6
Program Design Language (PDL) or PSEUDO CODE,

Description 3.1.4.3.2 3-7
Program Design Techniques, USACSC COBOL 2.6 2-372
Program Identification 1.9 1-6
Program Level 3.1.3.8.2 3-3
Program Logic Checklist 4.7.3 4-7
Program Modification 4.6.3 4-6
Program Organization 3.1.7.1.2 3-18
Program Segments, Structure of 2.5.2.4 2-236
Program Structure 4.3 4-1
Program Structure Techniques, COBOL 2.7 2-381
Program Switches 2.9.6 2-421
Program Techniques, OS/DOS Compatibility 2.9.1 2-420
Program to Operator Messages 1.11.8 1-12
Program, Structured 3.1.3.9 3-3
PROGRAM-ID 1.11.8.2 1-13
PROGRAM-ID Paragraph 2.4.5.2 2-24
Programer, Backup 3.1.3.1 3-1
Programer, Chief 3.1.3.2 3-2
Programing Support Library (PSL) 3.1.3.7 3-2
Programing Support Library (PSL) 3.1.4.4 3-11
Programing, USACSC Concepts 1.7 1-4

Index-t0

iL . . . . i .... .. . . . . . . .



15 DEC 81 CSCM 18-1-1

Paragraph Page

PSEUDO CODE, Program Design Language (PDL) or 3.1.3.6 3-2
PSEUDO CODE, Program Design Language (PDL) or 3.1.4.3 3-6
PSL, Programing Support Library 3.1.3.7 3-2
PSL, Programing Support Library 3.1.4.4 3-11
Punch 1.11.7.2 1-12
Punctuation Characters 2.3.2.2 2-2
Purpose of USACSC Standard Portable Expanded COBOL,
ANSI COBOL Subset Specifications 2.2.1 2-1

Purpose, Program Design Language (PDL) or PSEUDO
CODE 3.1.4.3.1 3-6

Purpose, USACSC Structured Programing Technology 3.1.2 3-1

Qualification of Name 2.3.4.6 2-8
Quotation Marks 2.3.2.3 2-2

Random File Organization 1.11.3 1-8
READ Statement 2.4.9.27 2-195
Readability 2.3.6.1.8 2-15
Real and Integer Data 4.2.4 4-1
RECORD CONTAINS Clause 2.4.7.7 2-70
RECORD DESCRIPTION Clause 2.4.7.12 2-74
Record Identifier 2.9.5 2-421
RECORD KEY Clause 2.4.6.13 2-50
Recovery Guidance 1.11.9 1-14
Recovery Procedures In Comments 4.6.8 4-6
REDEFINES Clause 2.4.7.15 2-78
Reference Format Representation 2.3.5.2 2-10
Reference Format, Clause 2.3.5.3.6 2-13
Reference Format, Clauses 2.3.5.3.8 2-13
Reference Format, Data Description Entries 2.3.5.3.2 2-12
Reference Format, Data Division Entries 2.3.5.3 2-12
Reference Format, Division Header 2.3.5.2.2 2-11
Reference Format, Divisions 2.3.5.1.2 2-10
Reference Format, First Clause 2.3.5.3.7 2-13
Reference Format, General Description of 2.3.5.1 2-10
Reference Format, Level Indicators 2.3.5.3.1 2-12
Reference Format, Level-Nunbers 01 Through 49 2.3.5.3.3 2-13

Reference Format, Level-Number 77 2.3.5.3.4 2-13
Reference Format, Level-Number 88 2.3.5.3.5 2-13
Reference Format, Paragraph-Name and Paragraph 2.3.5.2.4 2-12
Reference Format, Rules 2.3.5.1.1 2-10
Reference Format, Section Header 2.3.5.2.3 2-12
Reference Format, Sequence Numbers 2.3.5.2.1 2-11
Reference Format, USACSC COBOL 2.3.5 2-10

Index-t1



CSCM 18-1-1 15 Dec 81

Paragraph Page

Register and Save Area 2.5.6.31 2-357
Relation Operators 4.3.3.2 4-4
RELATIVE KEY Clause 2.4.6.12 2-48
RELEASE Statement 2.4.9.28 2-198
Remaining Header Lines 1.11.7.1.3 1-11
REMARKS Paragraph 2.4.5.8 2-27
RERUN Clause 2.4.6.17 2-55
RESERVE Clause 2.4.6.10 2-47
Reserved Words 2.3.3.2.1 2-3
Restricted COBOL Statement Usage 3.1.7.1.1 3-18
RETURN Statement 2.4.9.29 2-199
REWRITE Sta'ement 2.4.9.30 2-200
Rules 2.3.5.1.1 2-10
Rules, Ellipsis 2.4.3.4.1 2-19
Rules, Reference Format 2.3.5.1.1 2-10

SAME Clause 2.4.6.18 2-56
SEARCH Statement 2.4.9.31 2-202
Section Header 2.3.5.2.3 2-12
Security Classification 1.11.7.1.1 1-11
SECURITY Paragraph 2.4.5.7 2-26
Segment Classification 2.5.2.2 2-236
Segmentation Control 2.5.2.3 2-236
Segmentation, Example of 2.5.2.6 2-238
Segmentation, USACSC Guidelines for 2.5.2.7 2-239
SELECT Clause 2.4.6.8 2-34
Self-documenting Programs 1.7.1.1 1-5
Separators 2.3.2.1 2-2
Sequence Numbers 2.3.5.2.1 2-11
Sequence Numbers 4.3.1.2 4-2
Sequential File Organization 1.11.1 1-7
SET Statement 2.4.9.32 2-203
SIGN Clause 2.4.7.16 2-79
Simple Conditions 2.4.8.3.6 2-110
Simplistic Approach 1.7.1 1-4
Single Source Library System 2.8 2-418
Single Source Library System, Coding 2.8.3 2-419
Single Sou-ce Library System, Implementing

Instructions 2.8.5 2-419
Single Source Library System, Objective 2.8.1 2-418
5ingle Source System 2.8.4 2-419
Skipping 1.11.7.1.7 1-12

Index-12

J 4



15 DEC 81 CSCM 18-1-1

Paragraph Page

SORT Feature 2.5.3 2-240

SORT Feature, Data Division 2.5.3.3 2-241

SORT Feature, Environment Division 2.5.3.2 2-241

SORT Feature, Procedure Division 2.5.3.4 2-242

SORT Statement 2.4.9.33 2-204

Source Card Coding 4.3.1 4-1

Source Language System (SLS)/Proqram Language Update
Service (PLUS) 2.7.6 2-418

Source Library Maintenance 2.7.6.1 2-418

Source Program Library Facility 2.5.5 2-261

SOURCE-COMPUTER Paragraph 2.4.6.3 2-28

Spacing 1.11.7.1.6 1-12

SPEC 1.4 1-2

SPEC Procedures 1.4.1 1-2

Special Features 2.5 2-226

SPECIAL-NAMES Paragraph 2.4.6.5 2-30

Specification Walkthrough 3.1.4.5.7 3-14

Standard Coding Conventions, USACSC 2.3.6 2-14

Standard Construct 1.7.1.6 1-5

Standard Logic Constructs 2.6.2 2-373

Standards 3.1.5.1 3-16

START Statement 2.4.9.34 2-213

Statement Labeling 4.3.1.3 4-2

Statement Number 4.7.3.1 4-7

Statement Ordering 4.3.1.4 4-3

Statements 2.4.8.3.2 2-101

Statements 2.4.9 2-121

Statements, Branching 2.7.3.5 2-405

Step 1 Module Identified 3.1.4.7.1 3-15

Step 2 Module Documented 3.1.4.7.2 3-15

Step 3 Joint Review of Module 3.1.4.7.3 3-15

Step 4 Module Accepted 3.1.4.7.4 3-15

Steo 5 Module Coded and Compiled 3.1.4.7.5 3.15

Step 6 Module Test Plan Complete 3.1.4.7.6 3-15

Step 7 Nodule Quality Assurance Review 3.1.4.7.7 3-16

Step 8 Module Linked 3.1.4.7.8 3-16

Step 9 Module Ready 3.1.4.7.9 3-16

STOP RUN Statement 2.9.3 2-420

STOP Statement 2.4.9.35 2-214

Structure Chart 3.1.3.8 3-2

Structure of Program Segments 2.5.2.4 2-216

Structure n' the COBOL Program 2.4.4.3 2-2'

Index-13



CSCM 18-1-1 15 Dec 81

Paragraph Page

Structured Program 3.1.3.9 3-3
Structured Programing (SP) or Structured Coding (SC) 3.1.3.10 3-3
Structured Programing Statements - MetaCOBOL Macro
Facility 2.5.1 2-226

Structured Source Code Listing 3.1.3.11 3-3
Structured Testing 3.1.3.12 3-4
Structured Walkthrough 3.1.3.13 3-4
Structured Walkthroughs 3.1.4.5 3-13
Structures 3.1.7.1.4.2 3-20
Structure, Language 2.3.2 2-2
Structure, Procedure Division 2.4.8.2 2-99
Stub 3.1.3.14 3-4
Subprogram Linkage 2.7.5.2 2-415
Subprogram Technique 2.7.5.3 2-416
Subroutine, Types of POL Segments (Modules) 3.1.4.3.4.2 3-10
Subscripted Variables 4.7.3.4 4-7
Subscripting 2.3.4.7 2-9
Subscripting 2.5.4.2 2-243
SUBTRACT Statement 2.4.9.36 2-216
Support Members 3.1.4.6.2 3-15
Switches, Console 1.11.11 1-14
Switches, Program 2.9.6 2-421
Symbolic Names 4.3.1.5 4-3
Symbols and Notations Used in This Manual 2.4.3 2-17
Symbols/Words 2.3.6.1.1 2-15
SYNCHRONIZED Clause 2.4.7.22 2-96
Syntax Errors 2.9.10 2-422
Syntax Rules 2.4.1.4 2-16
System Action Under Cancel 2.5.6.6 2-285
System Level 3.1.3.8.1 3-2
Systems Testing 3.1.3.12.3 3-4

Taile Construction and Referencing 2.7.4.1 2-408
Table Handling Feature 2.5.4 2-242
Table Handlinq Techniques 2.7.4 2-408
Table Handling, Procedure Division Considerations 2.5.4.5 2-251
Tape 1.11.6.2 1-10
Tapes and Dirpct Access Storage Devices 1.11.7.3 1-12
Team Operation or Chief Programer Team 3.1.3.15 3-4
Test Walkthrough 3.1.4.5.7.4 3-14
Top Down Development 3.1.3.16 3-4
Top Down Development 3.1.4.1.4 3-6
Top Down Program (TDP) 3.1.3.17 3-5
Top Down Structured Programing (TDSP) 3.1.3.18 3-5
Top Down Structured Programing (TDSP), Concepts 3.1.4 3-5

Index-14



15 DEC 81 CSCM 18-1-1

Paragraph Page

Tracing, DOS Core Dump 2.5.6.9 2-299
Transfer of Control 2.7.5 2-414
Type of Message 1.11.8.4 1-13
Types of PDL Segments (Modules) 3.1.4.3.4 3-10
Types of Words 2.3.3.2 2-2

Unit Testing 3.1.3.12.1 3-4
Upper-Case Words (Underlined) 2.4.3.2.2 2-17
Upper-Case Words (Underlined/Not Underlined) 2.4.3.2.3 2-17
USACSC COBOL Program Design Techniques 2.6 2-372
USACSC COBOL Reference Format 2.3.5 2-10
USACSC COBOL Specifications 2.4 2-16
USACSC Guidelines 2.4.1.6 2-16
USACSC Guidelines for Segmentation 2.5.2.7 2-239
USACSC Program Design Language (PDL) Conventions 3.1.4.3.7 3-11
USACSC Programing Concepts 1.7 1-4
USACSC Programing Procedures, General 1.1 1-1
USACSC SPEC COBOL Language Standards and Guidelines 3.1.6 3-17
USACSC Standard Coding Conventions 2.3.6 2-14
USACSC Structured Programing Technology, Definitions 3.1.3 3-1
USACSC Structured Programing Technology, General 3.1.1 3-1
USACSC Structured Programing Technology, Introduction 3.1 3-1
USACSC Structured Programing Technology, Purpose 3.1.2 3-1
USAGE Clause 2.4.7.19 2-92
USE FOR DEBUGGING Statement 2.4.9.10 2-145
USE Statement 2.4.9.37 2-219
User Errors, Commonly Encountered 2.5.6.8 2-297
User-Defined Words 2.3.3.2.2 2-5
Utility Programs and Subroutines 1.11.12 1-14

VALUE Clause 2.4.7.20 2-93
VALUE OF Clause 2.4.7.8 2-70
Variable Names 4.5 4-5
Verbs 2.3.6.1.2 2-15
Verify Statement Number 4.7.3.2 4-7

Wait States 2.5.6.7 2-296
Whole Numbers 4.9.4 4-8
Word, Definition 2.3.3.1 2-2
Words 2.3.3 2-2
Words 2.4.3.2.1 2-17
Words, Lower-Case 2.4.3.2.4 2-17
Words, Reserved 2.3.3.2.1 2-3
Words, Types 2.3.3.2 2-2
Words, Upper-Case (Underlined) 2.4.3.2.2 2-17
Words, Upper-Case (Underlined/Not Underlined) 2.4.3.2.3 2-17
Words, User-Defined 2.3.3.2.2 2-5
Working-Storage Section 2.3.6.1.3 2-15
Working-Storage Section 2.4.7.3 2-62
WRITE Statement 2.4.9.38 2-221

Index-15

d _



LItIL~


