

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

> DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE BEFORE CONFLETING FORM 1. REFORT NUMBER 2. GOVY ACCESSION NO. 2. RECIPIENT'S CATALOG NUMBER CERL_TR-P-123 D. H. () 4 4 5 3. TYTE (and Swing) 3. TYPE OF REPORT A PEROD COVER A CONCEPT FOR QUANTIFYING THE READINESS CONTRIG- FINAL VITLG (and Swing) 4. CONCEPT FOR QUANTIFYING THE READINESS CONTRIG- 7. AUTHORYO 5. CONTRACT ON GRANT NUMBER 7. AUTHORYO 6. CONTRACT ON GRANT NUMBER 9. D.S. ARW CONSTRUCTION ENGINEERING RESEARCH LABORATORY 9. J.S. ARW 6. CONTROCTION ENGINEERING RESEARCH LABORATORY 9. J.S. ARW 10. PROGRAM ELEMENT PROJECT. TATALOR AUGE AND ADDRESS 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 11. CONTROLLING OFFICE NAME A ADDRESS(II different from Controlling Differe) 13. SCUMPT CLASS. (of Difference) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Differe) 13. SCUMPT CLASS. (of Difference) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Differe) 13. SCUMPT CLASS. (of Difference) 15. CONTROLLING OFFICE NAME AND ADDRESS(II different from Report) 13. SCUMPT CLASS. (of Difference) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Differe) 14. SCUMPT CLASS. (of Difference) <t< th=""><th>UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date E</th><th>intered)</th><th></th></t<>	UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date E	intered)	
Import Noumers COVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER CERL_TR-P-123 D_f_1/13_4/4_5 A CONCEPT FOR QUANTIFYING THE READINESS CONTRIB- UTION OF PROPOSED ARMY FACILITIES TYPE OF REPORT A PERIOD COVER FINAL PERFORMING ORGANIZATION NAME AND ADDRESS D_ARTONNIG ORGANIZATION NAME AND ADDRESS CONTRACT OR GRANT NUMBERS CONTRACT ON ENGINEERING RESEARCH LABORATORY P.O. BOX 4005, Champaign, IL 61820 REPORT DATE APT'IL 1962 REPORT DATE AREA ANORE UNITY CLASS. (of dria report) CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS RUMBER OF PAGES RUMPTORING AGENCY NAME & ADDRESS(II different from Controlling Office) SECURITY CLASS. (of dria report) Unclassified 4A DOSTATEMENT (of dria Report) Approved for public release; distribution unlimited. 7: DISTRIBUTION STATEMENT (of dria Report) Approved for public release; distribution unlimited. 7: DISTRIBUTION STATEMENT (of dria Report) Approved for public release; distribution onlimited. 7: DISTRIBUTION STATEMENT (of dria Report) <th>REPORT DOCUMENTATION P</th> <th>AGE</th> <th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>	REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
CERL-IR-P-123 ASP A 11.5.44.4. TILE fems banding 3. TYPE OF REPORT & PERIOD COVER FINAL A CONCEPT FOR QUANTIFYING THE READINESS CONTRIB- UTION OF PROPOSED ARMY FACILITIES 5. TYPE OF REPORT & PERIOD COVER FINAL AUTHORKO 6. CONTRACT OR GRANT AUMBER() John M. Deponai III 6. CONTRACT OR GRANT AUMBER() PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROPORT MUMBER() JOSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champign, IL G1820 11. RECONT ONTE AT 62731AT41-B-031 14. CONTROLLING OFFICE WAME AND ADDRESS 11. RECONT ONTE AT 6001TORING AGENCY NAME & ADDRESS() different from Centrolling Officer 15. SECURITY CLASS. (of this report) 11. RECONTY CLASS. (of this report) 15. DISTRIBUTION STATEMENT (of the Amount) 11. SECURITY CLASS. (of this report) Approved for public release; distribution unlimited. 11. DECLASSIFICATION/ODWNGRADIN SCHEDULE 7. DISTRIBUTION STATEMENT (of the Amount) Block 20, 11 different from Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the Amount of the National Technical Information Service Springfield, VA 22161 8. SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 8. AMETRACT (Centime on reversed and M meaconey and Manify by block member) <	. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
TYPE (med Substrip) A CONCEPT FOR QUANTIFYING THE READINESS CONTRIBUTION OF PROPOSED ARMY FACILITIES A CONCEPT FOR QUANTIFYING THE READINESS CONTRIBUTION OF PROPOSED ARMY FACILITIES A CONCEPT FOR QUANTIFYING THE READINESS CONTRIBUTION OF PROPOSED ARMY FACILITIES AUTHOR(a) John M. Deponai III PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARM CONTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 I. CONTROLLING OFFICE NAME AND ADDRESS I. CONTROLLI	CERL-TR-P-123	-413445	
A CONCEPT FOR QUARTER FOR THE THE DECK AND SO CONTINUES FINAL ITION OF PROPOSED ARMY FACILITIES 6. PERFORMING ORG. REPORT NUMBER A UTHORKO 6. CONTRACT OR GRANT AND SOURCES 6. CONTRACT OR GRANT NUMBER(*) John M. Deponai III 6. CONTRACT OR GRANT NUMBER(*) 6. CONTRACT OR GRANT NUMBER(*) P.A. BOX 4005, Champaign, IL 61820 10. PROPORTING OFFICE NAME AND ADDRESS 11. PROPONDERT TAKENER (*) CONTROLLING OFFICE NAME AND ADDRESS 11. REPORT DATE 37 CONTROLLING OFFICE NAME & ADDRESS(*) different from Controlling Office 11. SECURITY CLASS. (*) (*) (*) (*) (*) (*) (*) (*) (*) (*)	. TITLE (and Subtitie) A CONCEPT FOR OHANTIEVING THE DEAD	INESS CONTRIR-	5. TYPE OF REPORT & PERIOD COVERED
AUTHOR(s) John M. Deponai III PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 CONTROLLING OFFICE NAME AND ADDRESS L. CONTROL	UTION OF PROPOSED ARMY FACILITIES	THESS CONTRIDE	FINAL
AUTHOR(*) John M. Deponai III PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 CONTROLLING OFFICE NAME AND ADDRESS LONTROLLING OFFICE NAME AND AD			6. PERFORMING ORG. REPORT NUMBER
John M. Deponai III PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME AND ADDRESS CONTROLLING OFFICE NAME A ADDRESS(II different from Controlling Office) CONTROLLING AGENCY NAME & ADDRESS(II different from Controlling Office) CONSTRUCTION STATEMENT (of the Report) Approved for public release; distribution unlimited. CONSTRUCTION STATEMENT (of the abstract entered in Bleck 30, II different from Report) CONSTRUCTION STATEMENT (of the abstract entered in Bleck 30, II different from Report) Approved for public release; and Identify by Mack member) mathematical models Construction Response and Identify by Mack member) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic.	· AUTHOR()		8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY U.S. ARMY U.S. ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 4A762731A141-B-031 4A762731A14 4A767 4A7673 4A767 4A774 4A767 4A774 4A767 4A774 4A767 4A77 4A7	John M. Deponai III		
U.S. ANDI CONSTRUCTION ENGINEERING RESEARCH LABORATORY P.O. Box 4005, Champaign, IL 61820 I. CONTROLLING OFFICE NAME AND ADDRESS I. MOMITORING AGENCY NAME A ADDRESS(If different from Controlling Office) II. SECURITY CLASS. (of the open) II. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) III. SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 S. KEY WORDS (Continue on reverse of the Inscensesy and Identify by block number) mathematical models construction readiness A ADDRESCENCE Construction Engineering Research Laboratory for quantifying the force readiness contribution of the concept have six favorable characteristics. They are (1) logically simple. (2) complete. (3) consistent. (4) efficient in conflict resolution. (5) flexible to changes in managerial decisions. and (6) integrated and	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	CONSTRUCTION ENGINEERING RESEARCH P.O. Box 4005, Champaign, IL 6182	LABORATORY 20	4A762731AT41-B-031
 ADDITION AGENCY NAME & ADDRESS(II different from Controlling Office) Number of Pages	1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE April 1082
37 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 16. SUPPLEMENTARY WOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 5. KEV WORDS (Continue on reverse side If necessary and identify by block number) mathematical models construction Construction Engineering Research Laboratory for quantifying the force readiness contribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete (3) consisters (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. 70. "Complete 1473 EDTION OF ' NOV S is DEEDELETE			13. NUMBER OF PAGES
 IS. SECURITY CLASS. (of the report) Unclassified IS. SECURITY CLASS. (of the report) Unclassified IS. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. ID. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) IS. SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 IS. KEY WORDS (Continue on reverse side if necessary and identify by block number) mathematical models construction readiness AMETRACT (Continue on reverse side if necessary and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete. (3) consistent. (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. 			37
C. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) C. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different facilities, All three versions of the concept have	4. MONITORING AGENCY NAME & ADDRESS(11 dillerent	from Controlling Office)	15. SECURITY CLASS. (of this report)
15. DECLASSIFICATION/DOWNGRADING 6. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 18. KEY WORDS (Continue on reverse alds 11 necessary and Identify by block number) mathematical models construction readiness 10. ABSTRACT (Condum on reverse alds 11 necessary and Identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness contribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete. (3) consistent. (4) efficient in conflict resolution. (5) flexible to changes in managerial decisions, and (6) integrated and dynamic.			Unclassified
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) OISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report) SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 KEY WORDS (Continue on reverse olde If necessary and identify by block number) mathematical models construction readiness AMSTRACT (Continue on reverse olde N messessary and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic.			154. DECLASSIFICATION/DOWNGRADING SCHEDULE
 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 KEY WORDS (Continue on reverse elde If necessary and identify by block number) mathematical models construction readiness ABSTRACT (Conducts on reverse olde If necessary and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness contribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. UNCLASSIFIED 	Approved for public release; distr	ibution unlimit	ed.
 SUPPLEMENTARY NOTES Copies are obtainable from the National Technical Information Service Springfield, VA 22161 KEY WORDS (Continue on reverse eide if necessary and identify by block number) mathematical models construction readiness ADSTRACT (Continue on reverse eide N mesocasty and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness contribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. 	17. DISTRIBUTION STATEMENT (of the abatract entered i	n Block 20, If different fro	a Report)
Copies are obtainable from the National Technical Information Service Springfield, VA 22161 •. KEY WORDS (Continue on reverse elde II necessary and identify by block number) mathematical models construction readiness •. ABSTRACT (Continue on reverse elde N messenery and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. D (100 100 100 100 100 100 100 100 100 10	8. SUPPLEMENTARY NOTES		
 KEY WORDS (Continue on reverse eide it necessary and identify by block number) mathematical models construction readiness AMETRACT (Continue on reverse eide N messenary and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple. (2) complete. (3) consistent. (4) efficient in conflict resolution. (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. 	Copies are obtainable from the Nat Spi	tional Technical ringfield, VA 2	Information Service 2161
 mathematical models construction readiness ADSTRACT (Continue on reverse of M M messences and Identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. 	9. KEY WORDS (Continue on reverse elde il necessary and	identify by block number))
Construction readiness AMSTRACT (Centhus on reverse etch N mercenser and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. D 1 JAN 75 1473 EDITION OF 1 NOV 65 15 OPEOLETE UNCLASSIFIED	mathematical models		
 ABSTRACT (Continue on reverse of the N recordery and identify by block number) This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness contribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic. IMM 73 EDITION OF ' NOV 63 15 OPEOLETE UNCLASSIFIED 	construction readiness		
This report describes three versions of a model concept developed by the U.S. Army Construction Engineering Research Laboratory for quantifying the force readiness con- tribution of a proposed facility relative to the contribution of other facilities. All three versions of the concept have six favorable characteristics. They are (1) logically simple, (2) complete, (3) consistent, (4) efficient in conflict resolution, (5) flexible to changes in managerial decisions, and (6) integrated and dynamic.	G. ABSTRACT (Continue on reverse olde N researcy and	identify by block number)	
10 1 JAN 75 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED	This report describes three versions Construction Engineering Research L tribution of a proposed facility relativ versions of the concept have six favor (2) complete, (3) consistent, (4) effici managerial decisions, and (6) integrated	of a model concept de aboratory for quantify we to the contribution of rable characteristics. The tent in conflict resolution d and dynamic.	eveloped by the U.S. Army ing the force readiness con- of other facilities. All three hey are (1) logically simple, on, (5) flexible to changes in
	DI 1 JAN 78 1473 EDITION OF I NOV 65 IS OBSOL	ETE	UNCLASSIFIED

FOREWORD

This investigation was conducted for the Directorate of Military Programs, Office of the Chief of Engineers (OCE), under Project 4A762731AT41, "Design, Construction, and Operation and Maintenance Technology for Military Facilities"; Task B, "Construction, Management, and Technology"; Work Unit 031, "Quantification of MCA/Facilities Readiness." The applicable STO is 81-8:7. The OCE Technical Monitors were COL Carpenter, COL Coats, LTC Godfrey, and LTC Edwards, all of DAEN-ZCP-R.

The cooperation and advice of COL Edward G. Rapp and LTC Lynn Shaw, both formerly of DACS-DPA, are gratefully acknowledged.

The work was performed by the Facility Systems Division (FS) of the U.S. Army Construction Engineering Research Laboratory (CERL). Mr. E. A. Lotz is Chief of CERL-FS.

COL Louis J. Circeo is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

Acce	ssion For		
NTIS	GRA&I	M	
DTIC	TAB	6	
Unan	founced		
Just	ification_		
			7
By			
Dist	ibution/		7
Avai	lability	Codes	7
	Avail and	/or	-1
Dist	Special	• • •	
_	1 1		DTI
\square			Con.
H	{		INSPECTE
			1

CONTENTS

and the second second

l

h

	DD FORM 1473	2
	FOREWORD	3
	LIST OF FIGURES	5
1		. 7
	Background	7
	Purpose	7
	Approach	7
	Mode of Technology Transfer	7
2	FORCE READINESS QUANTIFICATION CONCEPT	. 7
	General	7
	Definitions/Perspectives	10
	Manpower Required	10
	Basic Concepts	11
	Model Benefits	11
3	FIELD TEST OF PILOT MODEL ON MCA PROJECTS	12
	General Procedures	12
	Test Procedure-Step 1	12
	Test Procedure-Step 2	12
	Test Procedure-Step 3	15
	Test Procedure-Step 4	15
	Test Procedure-Step 5	15
	Test Procedure-Step 6	16
	Test Procedure-Step 7	17
	Test Procedure-Step 8	17
	Test Procedure-Step 9	17
	Test Procedure-Step 10	17
	Favorable Characteristics of the Pilot Model	18
4	FORCE READINESS QUANTIFICATION OF PROJECTS	
	IN THE MCA PROGRAM	18
	Revised Model Description	18
	Results of Revising the Pilot Model	26
	Manual Model Description	28
5	CONCLUSION	34
	REFERENCES	34
	DISTRIBUTION	

FIGURES

ومتناه والمتعادية والمتعاطية والمتحافظ والمتعام والمتعادية والمتعادية

Num	ber	Page
1	Extension of Concept to DOD Level	8
2	Mission Hierarchy Used by the CRRC in July 1980 to Rate 61 MCA Projects	9
3	Amended Hierarchy	10
4	Benefit and Cost Component Relationships	11
5	Deriving the Ultimate B/C Ratio From the Intermediate B/C Ratio	12
6	Procedures Used in the Field Test of the Pilot Model (Version 1)	13
7	Working Definition of Force Readiness	15
8	Working Definitions of Readiness Subobjectives	16
9	Relative Weights of Readiness Subobjectives Determined During Field Test	17
10	Project Groupings Used During Field Test	18
n	Median Value of Project Relevance to Readiness and Normalized Median Values of Project Relevance to Readiness Subobjectives	19
12	Initial Working Definitions of Maximum Contribution Projects	21
13	Median Estimates of Relative Project Worths Within Each Subobjective	22
14	Examples of Step 7 Calculations	24
15	Group Merge Factors Used in Step 8	25
16	Examples of Step 9 Calculations	26
17	Facility Projects Arranged by Force Readiness Benefit/Total Cost Ratio	27
18	Times Required To Conduct Each Step of the Field Test	28
19	Revised Model Procedures (Version 2)	29
20	Simplified Hierarchy, Mission Significance Ratios, and Resulting Mission Weights	30
21	Revised Project Grouping Scheme	31
22	Revised Median Values of Project Relevance to Readiness and Revised Normalized Median Values of Project Relevance to Readiness Subobjectives	32

FIGURES (cont'd)

Num	umber								
23	Revised Median Estimates of Relative Project Worths Within Each Subobjective	33							
24	Group Merge Factors Used in the Revised Model	34							
25	Comparison of Facility Project Ranks From Versions 1 and 2 of the Model	35							
26	Procedures for the Manual Implementation of the Model (Version 3)	36							

10.1

<u>, </u>

A CONCEPT FOR QUANTIFYING THE READINESS CONTRIBUTION OF PRO-POSED ARMY FACILITIES

INTRODUCTION

Background

In July 1978, the U.S. Army Construction Engineering Research Laboratory (CERL) was tasked by the Office of the Chief of Engineers (OCE) to develop a model to relate military construction to force readiness. After extensive coordination with Department of the Army (DA) general and special staffs, it was determined that the model would be used primarily by the Construction Requirements Review Committee (CRRC). The CRRC is an advisory committee to the Assistant Chief of Engineers and is responsible for formulating, coordinating, and justifying the Military Construction, Army (MCA) program.

Purpose

The purpose of this report is to describe three versions of a model concept for quantifying the relative impact of proposed MCA projects on the readiness state of the Army.

Approach

Several preliminary model outlines were developed by CERL and critiqued by individuals on the Army staff. Based on those critiques, a concept model was formulated and presented to the CRRC. The concept was approved and a computer-based pilot model was developed and demonstrated. After this demonstration, the model was modified significantly to allow the CRRC more flexibility in controlling certain key parameters. The CRRC tested this modified concept by using it to evaluate the relative readiness worth of 61 projects proposed for the Fiscal Year (FY) 82 MCA program. All calculations and data analyses were done using programmable calculators. In 1980, the Army adopted a Mission Area Analysis approach to program evaluation, eliminating the requirement to determine the readiness worth of individual funding entities. CERL revised the model so it could be used at the CRRC's option (with programmable calculator support only) to determine the relative readiness merits of a few projects in the MCA program.

Mode of Technology Transfer

This report constitutes the technology transfer medium for the concept for quantifying the readiness contribution of proposed Army facilities.

2 FORCE READINESS QUANTIFICA-TION CONCEPT

General

The Army must respond effectively to constantly changing threats to the nation's security. It is generally accepted that a mission orientation provides the best planning framework. There are many ways to organize the defense mission universe. Because the threats, and therefore Army missions, are constantly changing, it is unlikely that any *detailed* mission orientation can be devised that would be completely stable from one year to the next. The planning environment is just too dynamic. The programming environment is even more dynamic because it is influenced both by the planning orientation and by the current administration's program guidance. Such program guidance usually changes with each new administration.

The Army's program is developed and packaged to conform to the planning and programming guidance for that year. At certain points in the process, committees estimate the relative worth of packages competing for funds. Because packaging is the result of a dynamic formulation process, the evaluator's frame of reference changes each year. Moreover, as issue and funding decisions are made at each level, the actual worth of a particular Program Development Incremental Package (PDIP) changes as components are added or subtracted. The PDIP worth as originally determined by an Army committee rapidly can become invalid.

If each funding entity could be assigned a force readiness worth relative to all other funding entities soon after it is first submitted to DA as a funding need, the force readiness worth of any package of entities could be set equal to the sum of the force readiness worths of the individual entities in that package at any particular time. Thus, changes in the force readiness contribution of a program caused by sudden changes in mission emphasis could be determined almost immediately. Then, sensitivity analyses could be run on alternate programs. Program evaluation could be separated from planning and program packaging activities. Program packaging and formulation could be done in light of initial evaluation data, instead of after the program is packaged and almost completely formulated. Values for subjective evaluation parameters other than readiness, such as safety, environment, quality of life, and morale, also could be developed in a similar manner. The values developed for qualitative issues and for quantitative issues, such as cost and energy conservation, could be used as limiting parameters in a linear program to optimize force readiness (subject to constraints on the total value of each parameter). By varying the limits on these parameters, several strawman programs could be formulated, analyzed, and debated. The best strawman program then could be adjusted manually to accommodate logical inconsistencies, political considerations, appropriation limits, personal preferences, etc.

In the CERL quantification concept, top managers directly influence the readiness worth of each funding entity by controlling the weights assigned to standard mission objectives. Middle managers at each intermediate level directly influence the readiness worths by deciding the size of "merge factors" at each level. Top managers also decide the size of merge factors at the top level. Operations-level staff officers influence the readiness scores by deciding (1) the relative functional and operational worth of each funding entity in a given homogeneous group, and (2) the percentage of each funding entity contributing to each standard mission objective. Thus, the final evaluation is the result of an integrated, dynamic, corporate decision.

Although the readiness quantification concept was developed to determine the relative readiness worth of funding entities (facility projects) in the MCA program, the concept could be extended to relate the readiness worth of all funding entities to a common base (Armyor DOD-wide). Figure 1 shows, in general terms, how the concept could be extended to even the DOD level.

Figure 1. Extension of concept to DOD level.

1. Top- and middle-level managers decide how to organize needs. This is essentially a one-time decision and does not necessarily depend on the planning orientation adopted for a particular year. Needs should be grouped successively into more operationally or functionally homogeneous groups until a manageable number of projects are in each of the lowest level groups. Existing, widely accepted, and well-defined functional and/or organizational schemes should be exploited. Managers at each level should have the authority to decide how to organize their needs. (Note that the MCA program also could have been broken down by using the Army Regulation [AR] 415-28 facility classification scheme.¹)

2. Top managers establish and weight the standard objectives hierarchy. For the force readiness objective, this would be a mission-oriented hierarchy. Such a hierarchy should have certain properties. It should be stable over a long period of time, address the entire mission universe, display the mission universe in a mutually exclusive way, and be simple to understand and to work with. Ideally, it should have about four to 10 subobjec-

¹Facility Classes and Construction Categories (Category Codes) Army Regulation (AR) 415-28 (Department of the Army, 1 November 1981).

tives (mission nodes), because the average person's comprehension span is generally believed to include about seven objects. Less than four subobjectives probably would not discriminate among the quantification results well enough; using more than 10 would greatly increase the computational burden. Also, if many more than 10 are used, the results probably would be less accurate because the success of the quantification method depends on the ability of operations-level staff officers to assess the relationship of each funding entity to each mission subobjective in light of the total mission.

Figure 2 presents an example mission hierarchy used by the CRRC in July 1980 to rate 61 projects proposed for the FY82 MCA program. The hierarchy in Figure 2 is based on the three major issues: modernization, Europe first, and win the first battle. Note that complements of these issues are also addressed by the hierarchy. The July 1980 test of the concept showed that for MCA projects, the present vs future issue (modernization) did not provide significant additional discrimination among projects. Yet including that distinction doubled the number of subobjectives. The mission hierarchy shown in Figure 3 was subsequently recommended. The goal is to use the least amount of effort to get the maximum readiness discrimination among projects. Relating entities to missions is a means to an end (i.e., discrimination), not an end in itself.

Figure 2. Mission hierarchy used at the CRRC in July 1980 to rate 61 MCA projects.

Figure 3. Amended hierarchy.

ومنافقت فأرد

A Delphi process for weighting the mission hierarchy is recommended, and ideally, mission weighting should be done by top-level management. The Delphi process is based on the hypothesis that on the average the median response of a group is closer to "truth" than the response of any one person in that group. Three features—anonymous response, iteration/controlled feedback, and statistical group response—are part of the Delphi method and essential to the readiness quantification concept.²

3. A panel of seven to 10 staff officers at the operational-staff level use the Delphi method to determine the relative worth of the funding entities in their operational area. Each expert on the rating panel applies his* own subjective criteria to determine the relative readiness contribution of each funding entity with respect to all others in his operational area. (Chapter 3 describes this process in more detail.)

4. At each higher merge level, a committee of managers decides the relative worths of all projects subordinate to that particular level. For example, at the major program level, projects in the MCA program are merged with projects in the Operation and Maintenance (O&M) program and with projects in the other major programs by selecting a *sample* of projects from each program and comparing their relative worths. (A separate sample would be required for each parameter other than readiness.) After the relative standings of the merge samples are decided, all the projects in each population from which the samples were taken would be assigned the same merge factor. One merge factor would be assigned for each parameter being considered. This process is repeated at each classification level until the highest level is reached. The result is that all objects in need of funding are related within the same frame of reference by their initial values (as determined at the operationsstaff level) and by a series of merge factors. The size of the merge factor at each level would be hidden from the evaluators at lower levels to discourage lower-level evaluators from gamesmanship. The process is dynamic. since the merge process would be reviewed both annually and as significant events altered the international situation. The process would address all identified funding needs; those in the program year. and those in the "out years." For each funding entity, the concept creates, at the lowest level, one value that represents that funding entity's parametric worth relative to all other funding entities. (Readiness is only one of the many parameters that could be considered.)

The process is sequential the first time through. After that, the force readiness worths would be updated continuously as new entities are added, as changes are made to the merge factors at every level, and as changes are made to the mission weights by top-level management.

Definitions/Perspectives

For purposes of this report, force readiness is defined to be the degree to which a force is capable of accomplishing the requirements of the specific mission(s) or contingency plan(s) for which it is responsible. A force is defined as an assemblage of resources formed to accomplish a mission(s). Thus, force capability can be viewed as being directly related to the level of fulfillment of those resources needed to accomplish the mission.

Manpower Required

After the staff becomes familiar with the model concept, about 5 manyears of evaluation effort would be required to execute one cycle of the concept Armywide. This is effort required over and above the time normally spent becoming familiar with the projects. Also, it assumes the existence of a sophisticated computer program to support the concept. The 5-manyear estimate was derived as follows: In the July 1980 test of the concept, the CRRC rated 61 projects, worth \$227 million, in 16 hours. Assuming (1) the method is applied to evaluate the relative worth of the components of only the last 25 percent of a \$40 billion Army

³Norman C. Dalhey, *The Delphi Method: An Experimental Study of Group Opinion*, RM-5888-PR (RAND Corporation, June 1969).

^{*}The male pronoun is used throughout this report to refer to both genders.

program, (2) 10 men are on each rating panel, and (3) there are 1840 hours in a manyear, then

$$(40.000^{\text{M}} \times 0.25) / 227^{\text{M}}) \times 16 \frac{\text{manhours}}{\text{man}} [\text{Eq 1}]$$

 $\times 10 \text{ men} / 1840 \frac{\text{manhours}}{\text{MY}} = 3.8$, or about 4 manyears.

The time needed to assign merge factors and weight the mission hierarchy is far less than the time needed to determine the basic ratings by the panel of experts. Therefore, treating these efforts as an overhead value requiring 25 percent additional effort gives a total effort value of 5 manyears. This is the estimated steadystate level of effort for one cycle, and does not include the time needed to train people in using the model and its associated computer system.

Basic Concepts

Using subjective criteria and Delphi techniques, experts generate a readiness benefit/cost (B/C) ratio for each funding entity. The total benefit (B_T) for each project is the sum of readiness benefits (B_R) and non-readiness benefits (B_{NR}):

$$\mathbf{B}_{\mathrm{T}} = \mathbf{B}_{\mathrm{R}} + \mathbf{B}_{\mathrm{NR}} \qquad [\mathrm{Eq}\ 2]$$

The total cost (C_T) of the entity theoretically can be assigned to readiness costs (C_R) and nonreadiness costs (C_{NR}) :

$$C_{T} = C_{R} + C_{NR} \qquad [Eq 3]$$

where C_T also equals the Program Amount (\$PA).

The ultimate B/C ratio used is relative readiness benefit to total entity cost:

$$\mathbf{B}_{\mathbf{R}} / \mathbf{C}_{\mathbf{T}} = \mathbf{B}_{\mathbf{R}} / \mathbf{SPA} \qquad [Eq 4]$$

where SPA is the estimated program dollar amount of the entity. Figure 4 shows this relationship.

As an intermediate step in the process, raters interact with the model to define a readiness benefit to readiness cost ratio (B_R/C_R) for each project. This ratio represents a funding entity's readiness contribution rate relative to that of all other funding entities. The benefits are measured in relative units of force readiness utiles, not in dollars. The B_R/C_R ratio is constrained between zero and some arbitrary maximum value. This value varies as funding entities from the dif-

Figure 4. Benefit and cost component relationships.

ferent experts' lists are related to different frames of reference. In other words, the intermediate ratio, B_R/C_R , not the *ultimate* ratio, B_R/SPA , must be used to merge funding entities. The ultimate ratio is derived by multiplying the intermediate ratio by the fraction $(C_{\rm R}/C_{\rm T})$ of the project cost attributed by operationslevel raters to readiness (Figure 5). The fraction $C_{\rm R}/C_{\rm T}$. is essentially an assessment by the operations-level raters of what the bare-bones readiness cost of the funding entity really is. The ultimate ratio must be used to do tradeoff analysis; to buy the readiness benefit, one also must be willing to buy the nonreadiness benefits, if any, that are designed into the entity. It is conceivable that an entity could be redesigned to provide only readiness benefits, but this usually would provide an artificial solution that would not relate well to the real world. (The purpose of the concept is to provide a way to model the real world, not to change the real world to fit the model.)

Model Benefits

The model has eight principal benefits:

1. It provides funding justifications based on readiness worths that are consistent across the total program.

2. It disciplines the decision-making process.

3. It provides an audit trail of the relative influence of each readiness component.

4. It discriminates among marginal funding entities by identifying each entity's relative readiness worth.

5. It shows the relative impact that changes in mission and/or program formulation have on force readiness.

6. It can be used to generate strawman programs based primarily on readiness contribution.

Figure 5. Deriving the ultimate B/C ratio from the intermediate B/C ratio.

7. It identifies areas of disagreement among staff.

8. It eliminates redundancy in the readiness evaluation. (Although people tend to have greater confidence in predictions based on redundant input variables, it has been shown that redundancy usually decreases accuracy.)³

3 FIELD TEST OF PILOT MODEL ON MCA PROJECTS

General Procedures

In July 1980, the CRRC tested the readiness quantification concept on 61 MCA projects being considered for the FY82 program (Figure 6). During this test, the CRRC functioned at all three management levels:

1. At the operations level, each project's B_R/C_R was developed.

2. At the middle-manager level, merge factors were determined.

3. At the top-manager level, the readiness subobjective (mission) weights were determined.

At each stage of the process, each CRRC member recorded his first pass opinion as to the relative value of that factor for each project. Then, the CRRC as a whole was advised of the median, low quartile, and upper quartile values of the group response and the results were debated. Each CRRC member then submitted a second-pass value for each factor for each project before going on to the next step of the process.*

Data processing was done between CRRC sessions by CERL using programs written for a Texas Instruments (TI)-59 calculator. (The programmable calculators were used to simulate the proposed computer system support to the concept.)

Test Procedure-Step 1

Figure 7 shows how the CRRC defined force readiness. It took the CRRC about 20 minutes to develop a common perspective on what readiness contribution means in an operational sense. This working definition lists primary readiness contribution areas, not secondary, tertiary, etc. effect areas. Note the definition includes not only what readiness *is*, but also what *it is not*. (This definition would be revised and expanded as time goes on to reflect real-world situations.)

Test Procedure-Step 2

The CRRC discussed the hierarchy of the mutually exclusive, all-inclusive readiness objectives (missions) established before the test. The results of this 40-minute exercise are shown in Figure 8. Figure 9 displays the second-pass median results of weighting the mission hierarchy. Weighting the hierarchy can be done either by distributing an arbitrary 100 points directly across all 12 subobjectives, so the weights sum to 100 at each level of the hierarchy (as in the top box of Figure 9); or by using a ratio scheme to relate the subobjectives (as in the lower box of Figure 9). If the ratio scheme is used, the values in the top box of Figure 9 would be calculated by the computer system supporting the model. A ratio scheme usually produces more extreme

³ Milan Zeleny, "Managers Without Management Science?" Interface, Vol. 5, No. 4 (August 1975).

^{*}Although this method produced good results, it may have been more efficient to delay the feedback until all steps had been completed at least once.

I. DEFINE FORCE READINESS (FR):

2. BREAK FR DOWN INTO NON-REDUNDANT, WEIGHTED SUB-OBJECTIVES:

3. GROUP FACILITY PROJECTS :

٩,

4 DECIDE EACH PROJECT'S RELEVANCE TO FR AND TO FR SUB-OBJECTIVES :

5. DEFINE MAX CONTRIBUTION PROJECTS AS STANDARDS :

Figure 6. Procedures used in the field test of the pilot model (Version 1).

6. COMPARE PROJECT WORTHS TO APPROPRIATE STANDARDS :

TEST AVERAGE : 3¹/₂ COMPARISONS PER PROJECT

7. COMPUTE EACH PROJECT'S INTERMEDIATE BR/CR:

$$\left(\sum_{i=1}^{12} a_i b_i w_i\right)_i = (B_R/C_R)_i$$

8. MERGE BR/CR RATIOS IN EACH GROUP TO COMMON BASE :

9. COMPUTE FINAL BR/CT FOR EACH PROJECT :

$$(B_R/C_R)_j \times f_j \times r_j = (B_R/C_T)_j = (B_R/PA)_j$$

10. REVIEW AND DISCUSS RESULTS :

Figure 6. (Cont'd).

Force Readiness Includes:

-Training

- -Maintenance
- -Command, Control, Communication (C³)
- -Security
- -Manning the Force
- -Making Military Operations More Efficient

Force Readiness Does Not Include:

-Aesthetics

- -Occupational Safety and Health Act (OSHA) Compliance
- -Pollution Abatement
- -Energy Conservation
- -Environmental Enhancement
- -Convenience of Operations

Figure 7. Working definition of force readiness.

distributions than the alternative points scheme and is easier to use. Each entry is determined independently, and the user does not have to ensure that his entries sum to 100. The resulting feedback is direct and easy to understand.

In the alternate points scheme, the median, low quartile. and high quartile feedback are difficult to present and understand. Also, because each subobjective feedback value must be considered independently, the sum of the feedback values for any one project is usually not 100.

The field test second-pass median ratings are shown in the lower box of Figure 9, and they result in the distribution of values shown in the upper box. It took the CRRC 1-1/4 hours to do both the first- and secondpass ratings. As mentioned, these ratings normally would be done by top management and conceivably would change frequently during the year.

Test Procedure-Step 3

During the field test, the CRRC arbitrarily decided to group the 61 facility projects as shown in Figure 10. This process took about 15 minutes. (Although these groupings worked well enough for the field test, a proponency orientation was subsequently determined to be more meaningful to the CRRC.)

Test Procedure-Step 4

Figure 11 shows the field test second-pass results. Each CRRC rater assigned a value to each project for

project relevance to force readiness (r_i) , and up to 12 values (b_i)_i, to show the distribution of that project's benefits among readiness subobjectives. It took 5-1/2hours to complete these two passes. The b values have been normalized to sum to 1 across all mission subobjectives. Note that the feedback values for each subobjective of each project are independent of each other. In other words, one should not expect the low quartile. median quartile, or high quartile feedback values for a project to sum to 1. This is similar to the feedback display problem discussed with respect to evaluating the mission weights. An alternate ratio-based rating scheme cannot be used in this step, however, because any one of the panel members could assign 0 to any subobjective; this presents the possibility of division by 0, thus invalidating the ratio scheme. A ratio scheme works for mission weighting only because, by definition, each of the missions must have a weight. That is not so in this step. A facility project to be built in one theater of operation may or may not be related to success in another theater of operation.

The problem with Step 4 is the format used to give raters the low quartile, median, and high quartile rating results. One sheet of paper per facility project is needed to communicate the results effectively. Up to 39 feedback values—three for the readiness relevance scores and three for each of the 12 subobjective relevance scores—have to be recorded. This creates quite a bit of paperwork, assuming that more than one or two sets of ratings will be submitted by at least some of the raters. But a sophisticated, interactive computer support system would permit each rater to input changes and have the results computed and displayed immediately, thus eliminating both paperwork and processing burdens.

In Figure 11, only a few projects were scored as contributing to the success of "Present Conflict" subobjectives. This suggests that, for the MCA programs, the objectives hierarchy could be halved by eliminating the distinction between "Present" and "Future" missions.

Test Procedure-Step 5

Figure 12 shows the maximum contribution projects defined for 40 subobjective areas. Actually, 60 such standards ultimately would have had to be developed to describe the maximum contribution facility of each of the five facility groups with respect to each of the 12 mission subobjectives. But for the field test, only those standards needed to compare the facility projects actually being rated were defined. It took the CRRC

Figure 8. Working definitions of readiness subobjectives.

panel 2 hours to come to a general agreement on what a "maximum contribution" project was for each of the 40 standards. Note that these standards were fairly vague. It is not efficient nor desirable to spend a lot of time initializing this aspect of the process, because there certainly will be more than one example of a maximum contribution project and, as time goes on, the raters will identify many real-life projects as such. These real-life examples then would replace the hypothetical examples. Note the standards relate to all existing or planned facilities within the particular frame of reference for which the standard is being developed. The standard is *not* just an example of the most valuable unfulfilled need in that reference frame. It is the standard for all possible entities in a particular group's subobjective frame of reference.

Test Procedure-Step 6

Figure 13 shows the second-pass median scores for the raters' estimates of the relative worth– $(w_i)_j$ -of each facility project. The CRRC panel took 2-1/2 hours to make their estimates. Project evaluations were made only against those subobjectives to which a project contributed. Those subobjectives for which the

	i i		FO	RCE F	READINES	S BASI	ESCORE	: <u>100</u>			•	
					BE REAL	DY TO	WIN:					
WHEN		66 Pre Co	.67 sent nflicts					<u>33.</u> Futt Con	33 Jre flicts			
WHERE		28.57 EUROPE	<u>9.53</u> USA		28.5 OTH	57 HER	<u>16</u> EU	. <u>66</u> IROPE	5. U	<u>56</u> SA	11.11 OTHE	R
RESPONSE PHASE	$\begin{array}{c c} \text{SPONSE} \\ \hline \text{SPONSE} \\ \hline \text{INIT} \\ \hline \text{INIT} \\ \hline \text{(a_1)} \\ \hline \text{(a_2)} \\ \hline \text{(a_3)} \\ \hline \text{(a_4)} \\ \hline \text{(a_5)} \\ \hline \end{array} \begin{array}{c} 5.72 \\ \hline \text{(3.81)} \\ \hline \ \text{(3.81)} \\ \hline \ \text{(3.81)} \\ \hline \ \text{(3.81)} \\ \hline \ \text{(3.81)} \hline \hline \ \text{(3.81)} \\ \hline \ \text{(3.81)} \hline \hline \ \text{(3.81)} \\ \hline \ \text{(3.81)} \hline \hline \ \text{(3.81)} \hline \hline \ \ \ \ \ \text{(3.81)} \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				9.52 SUST (a ₆)	<u>12.12</u> INIT (a ₇)	4.54 SUST (a ₈)	3.09 INIT (a ₉)	2.47 SUST (a ₁₀)	8.33 INIT (a ₁₁)	2.78 SUST (a ₁₂)	
EU (/S = 2.50 (EUR) (PRESEN	T)	= <u>3.00</u> I/S = (US/ (PRI	OTH/US = <u>1.50</u> A) ESENT)	P A = <u>3.(</u> 1/S (O (P	RESENT/F 20 5 = 2.00 TH) RESENT)	 	E = <u>2.00</u> EUR /S = <u>2.67</u> EUR) FUTURE	/USA = <u>3.</u> , (!	00 /S = <u>1.2!</u> USA) FUTUR	отн/u 5 E)	I/S = <u>2.00</u> I/S = <u>3.</u> (OTH) (FUTU	00 RE)

Figure 9. Relative weights of readiness subobjectives determined during field test.

project has an adjusted median subobjective relevance score greater than 0 (determined in Step 4) are the official subobjectives to which the facility project contributes. Note that it is not necessary to adjust these median scores to a base figure. Each feedback value is independent of all other feedback scores. The volume of feedback in this step is as severe as in Step 4. However, an interactive, real-time, computer support system would significantly improve the speed and efficiency of Step 6.

Test Procedure-Step 7

Figure 14 gives six examples of how intermediate B_R/C_R ratios were calculated for each project. All Step 7 calculations were done at CERL. These calculations would have to be done on a computer system for all but minor applications of the concept.

Test Procedure-Step 8

Figure 15 shows the merge factors developed by the CRRC panel. These factors are the median values of

the second-pass rating scores. It took the CRRC 2 hours to complete Step 8; most of that time was spent discussing the intermediate results.

Test Procedure-Step 9

Figure 16 gives examples of how to transform the intermediate project ratio, B_R/C_R , into the final ratio, B_R/SPA . These calculations were done manually at CERL. This step involved no CRRC time.

Test Procedure-Step 10

The CRRC spent 1-1/2 hours discussing the final results of the field test (Figure 17). Note that a project with a B/C ratio less than 1 is still feasible, because the benefits are measured in an arbitrary unit of measurement-readiness utiles. The CRRC panel took 16 hours over a 1-month period to complete the field test. Time requirements, by test activity, are shown in Figure 18. All calculations and typing were done at CERL. An average of 10 CERL manhours was required to support every hour of CRRC time during the test. Most of this

Group A

Operational and Training Facilities (AR 415-28 "100" series projects)

Research, Development, and Test Facilities ("300" series)

Group B

Maintenance and Production Facilities ("200" series)

Group C

Supply Facilities ("400" series) Administrative Facilities ("600" series)

Group D

Hospital and Medical Facilities ("500" series) Housing and Community Facilities ("700" series)

Group E

Utilities and Ground Improvements ("800" series) Real Estate ("900" series)

Figure 10. Project groupings used during field test.

time was spent computing and displaying feedback information in support of Steps 4 and 6, in making the summary calculations in Steps 7 and 9, and in organizing and displaying the information in Steps 8 and 10.

Favorable Characteristics of the Pilot Model

The model is *simple*, even with 12 mission subobjectives to be considered.

The model is *complete*; all mission possibilities are addressed. During the field test of the pilot model, three major readiness concerns (force modernization, Europe first, and win the first battle) were expanded to provide a complete mission universe.

The model is *consistent*. It fosters constructive dissension by providing a uniform structure within which to debate a project's merits. The model also records the quantitative median opinion of the rating panel as to the relative worth of a given entity. Thus, early in the Army's Planning, Programming, and Budgeting System (PPBS) process, the entity's proponent knows exactly where his entity stands and why. If a proponent (or adversary) feels an entity is misrated, he can present new facts and request another round of ratings. This uniform rating scheme compares the merits of all funding entities without stifling the individual rater's subjectivity. The model is *flexible*. Ratings can be changed as more information becomes available about the entity being evaluated or as the mission situation is affected by changes in the world situation, advances in technology, etc.

The model is *efficient*. Areas of disagreement can be pinpointed rapidly. Because the model provides a common logic train for its evaluations, arguments for and against an entity's funding merits can be developed and debated most efficiently. Readiness issues can be segregated from political issues; emotional arguments are exposed in the light of arguments based on structured logic. The focus is not on the influence of the person "pushing a project," but rather on the argument itself.

FORCE READINESS QUANTIFICA-TION OF PROJECTS IN THE MCA PROGRAM

Revised Model Description

When the results of the field test described in Chapter 3 were analyzed, it was determined from the data in Figure 11 that only 2.4 percent of total project benefits were scored as contributing to the "Present" mission subobjectives. This implies that including the "Present" vs "Future" mission distinction is not significant when MCA facility projects are evaluated. Therefore, the model was altered to eliminate this distinction and also to group MCA projects by DA staff proponency. Figure 19 is schematic of the revised model procedures. The general procedures are exactly the same as the procedures used during the field test. but the number of calculations is greatly reduced.

To determine what effect these changes might have on the final outcomes, the median ratings from the field test data were used to apply the revised procedure to the same 61 projects rated in the actual field test. These data were modified only as required to make them compatible with the revised procedures. For example, the same mission weight ratios used in the field test were used to score the "Future Conflicts" part of the mission tree. Then, 100 readiness utiles were distributed across six mission subobjectives, instead of 12. The revised mission tree definition, mission significance ratios, and resulting mission weights are shown in Figure 20. The projects were regrouped according to the proponency scheme shown in Figure 21. The same r values

					DISTRIBUTION OF PROJECT BENEFITS AMONG SUBOBJECTIVES FOR ARMY MISSION: BE READY TO WIN LAND BATTLES IN:											
					Present Conflicts (Within 5 Years) Future Conflicts (After 5 Years)											
					T/O	EUR	T/0	USA	T/0	OTH	T/0	EUR	T/0	USA	T/0	OTH
				Rel.]	<u> </u>	<u> </u>		Ţ	f	<u>, </u>	1	ļ	<u> </u>	1
Location	Project Number	Description	Category	te FR	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	sus
Korea	654	Airfid Fac Upgrade-Cp Hump	111	0.9					0.100						0.700	0.20
Okinawa	712	Pol Line Modifications-Var	125	0.8		1			0.107	1		1	1	1	0.413	0.48
Ft Campbell	252	CIDC Field Operations Bldg	141	0.3			ļ	[ļ — —	F	0.310	0.690		
Ft Hood	380	Div Hq & Opns Bldg	141	0.5			0.033	0.033	1		0.100	0.267	0.100	0.467		
Korea	650	Mono Buoy System-Pohang	163	1.0		1		1	0.059	0.029	1	,	+		0.265	0.64
Ft Eustis	303	Gen Instruct Bidg Addin	171	0.5	1				+	•	0.264	0.238	0.025	0.090	0.212	0.17
Germany	923	Gen Hq & Clasrms-Bamberg	171	0.9	0.063	1			•	+ 1	0.625	0.313	1			
Germany	391	Simul City Mout-Hohenfels	179	1.0	0.111	1	<u> </u>	•		•	0.611	0.278			1	1
Germany	594	Subcal Tank Rg-Bad Hers	179	1.0	0.031	[1	1		T	0.688	0.281				1
Germany	931	Surv Test Range-Weilerbach	179	0.9	0.033		[0.667	0.300				
Ft Riley	117	Acft Mnt Hangar Shop Addn	211	1.0						1	0.500	0.500				1
Loc 177	029	Aircraft Maint Hangar	211	1.0		1	1		0.081	0.027				1	0.649	0.24
Schofid Bks	103	Aircraft Hangar-Wheeler	211	0.9		ţ	1		•						0.510	0.49
Kwajalein	222	Rkt Assem Bldg-Roi Namur	212	1.0		1	1	1	•		0.146	0.293	0.073	0.146	0.086	0.25
Kwajalein	217	Marine Shop	213	0.9		1		1	•	1	0.158	0.283	0.060	0.158	0.060	0.28
Ft Benning	342	Tactical Equip Shops	214	0.9					1	1	0.281	0.259	0.107	0.044	0.202	0.10
Ft Hood	358	Tact Equip Shop	214	0.9		1	1				0.446	0.244	0.175	0.105	0.031	1
Germany	423	Maint Facs Mod-Hohenfels	214	0.9	0.053	1	1			1	0.708	0.239	1			1-
Germany	600	Tac Eq Shop-Bremerhaven	214	1.0	0.053	1	1			1	0.708	0.239	∲ 		 	†
Germany	924	Vehicle Meint Shop-Bamberg	214	0.9	0.080		1	1		1	0.679	0.241	1		•	-
Koree	690	Tact Equip Shop-Tangu	214	0.9			<u> </u>	†	0.076	1	1	1	1	<u> </u>	0.581	0.34
Germany	339	Surveil & Maint Fac-Miesau	216	0.9	0.032	1			1	1	0.581	0.387	1	<u> </u>	1	1
Germany	939	Ammo Surv Bldg-Vilseck	216	0.7	0.028		1	<u> </u>	1	+	0.642	0.330	†		1	†
Germany	940	Farklift Chrg Sta-Various	218	0.9	0.078	1	1		1	ţ	0.609	0.313	<u>†</u>			†
Wtrvit Ars	047	Facilities Mod Ph 3	225	1.0		1	1	<u> </u>	1	1	0.262	0.246	, 0.111	0.053	0.170	0.15
Aber Pr Gr.	286	Kinetic Energy Launch Sys	310	0.9		1				1	0.285	0.299	0.028		0.221	0.16
Coldreg Lab	008	Frost Effects Res Fac	310	0.5		1	1	1		1	0.156	0.242	0.111	0.167	0.108	0.21
Ft Manmouth	140	Modernize R&D Bldg	310	0.4		1	1		<u>+</u>	1	0.197	0.197	0.145	0.145	0.158	0.15
Koree	689	Pol Pipeline Stg-Kunsen	411	0.9		1	†	1		†	1	1	1		0.529	0.47
Japan	176	Ammo Stg Fac Kawakami	421	0.8		†	<u> </u>	†	1	1	†	<u> </u>	1	<u> </u>	0.556	0.44
Germany	277	Besic Load Site-Henau	422	0.9	 	<u>†</u>		t	†	1	0.797	0.203	<u>†</u>		<u> </u>	1
Germany	414	Igloo Stg-Various	422	1.0		†	1	t	†	t	0 714	0 286	t		<u>† – – – – – – – – – – – – – – – – – – –</u>	+

Ř

A STATEMENT

٠,

4.

Figure 11. Median value of project relevance to readiness and normalized median values of project relevance to readiness subobjectives.

					DISTRIBUTION OF PROJECT BENEFITS AMONG SUBOBJECTIVES FOR ARMY MISSION: BE READY TO WIN LAND BATTLES IN:											
					P	resent C	onflicts	(Within	5 Year	s)	1	Future C	onflict	(After	5 Years)
					T/0	EUR	T/0	USA	T/0	OTH	T/0	EUR	T/0	USA	T/0	OTH
Lacation	Project Number	Description	Category	Rel. tø FR	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST
Kwajalein	218	Live Explosive Storage Fac	422	0.9			<u> </u>		<u>†</u>			0.359		0.210	0.144	0.287
Coldreg Lab	006	Vehicle Storage Bldg	441	0.4	<u>†</u>				<u> </u>		0.158	0.149	0.065	0.389	0.189	0.050
Turkey	204	Sup Office/Whse-Det 67/168	441	0.7	<u> </u>		1	<u> </u>		<u>├</u>	0.594	0.406			ļ	
Redriver Ad	070	Add & Ait Depot Opms Bldg	442	0.5	<u> </u>						0.077	0.462	0.077	0.205	0.064	0.115
Turkey	206	Dispensary-Det 67/168	550	1.0	0.054		<u>†</u>			<u>+</u>	0.514	0.432				
Ft Leaven	075	Renovate Admin Bldg	610	0.2	<u> </u>				1		0.103	0.276	0.207	0.310	0.069	0.034
Rk Isl Ars	081	Alt Bidgs for Hg Fac-Ph II	610	0.4	†						0.178	0.238	0.178	0.238	0.109	0.059
Turkey	203	Admin Bldg-Det 67/168	610	0.7	ļ	ţ	<u> </u>				0.526	0.474				
Turkey	302	Admin Bldg-Det 74	610	0.7	[0.526	0.474				
Turkey	402	Admin Bldg-Det 155	610	0.7	1						0.526	0.474				
Ft Detrick	172	Barracks Modernization	721	0.7							0.151	0.170	0.094	0.132	0.075	0.377
Germany	798	Barracks W/Facs-Bamberg	721	0.9	1						0.717	0.283				-
Korea	701	Barracks-Yongsan	721	0.8											0.738	0.262
Turkey	201	Barracks W/Dng-Det 67/168	721	0.9	0.054				Ī		0.541	0.405				
Turkey	301	Barracks-Det 74	721	0.9	0.054						0.541	0.405				
Turkey	401	Barracks-Det 155	721	0.9	0.054						0.541	0.405		i — — —		
Germany	925	Dining Facility-Bamberg	722	0.9	0.059						0.706	0.235	ĺ			
Ft Myer	112	Alter Barracks	723	0.7									0.474	0.526	[
Germany	784	Banking Fac-Frankfurt	740	0.1							1.000					1
Turkey	205	Cmunity Act Fac-Det 67/168	740	0.7							0.556	0.444			1	
Turkey	303	Counity Act Fac-Det 74	740	0.7	[0.556	0.444	i 1		ļ	
Turkey	403	Cmunity Act Fac-Det 155	740	0.7	[0.556	0.444	1			
Pres San Fr	110	Emerg Generator	811	0.8									0.396	0.604		
Not Bayonne	052	Exterior Lighting	812	0.8							0.182	0.818	I I	i i		
Turkey	207	Utilities Upgrd-Det 67/168	812	0.8	0.054						0.541	0.405	•			
Luc 276	140	Water Purification Plant	831	1.0							0.600	0.400	1		,	
Loc 276	136	Hvac Upgrade	890	1.0							0.625	0.375		1	1	
USMA	123	Improve Utility Systems	890	0.5							0.130	0.260	0.091	0.260		0.260
Ft Carson	281	Land Acquisition	911	1.0							0.281	0.281	0.125	0.125	0.063	0.125
				r _j	b ₁	b2	b ₃	b4	b5	^b 6	b ₇	^b 8	bg	b ₁₀	b ₁₁	b ₁₂

Figure 11. (Cont'd).

Facility Group	Subobjective	Description of Maximum Contribution Project
Group A	P-E-I	Air Defense Command Center in Europe
(Operations; Training;	P-U-I	BMD site in United States
Research, Development,	P-U-S	Tactical Satellite Commo Facility
and Test Facilities)	P-O-I	Intelligence gathering site
	P-O-S	Aerial/sea ports; POL lines
	F-E-I	Air Defense Command Center
	F-E-S	Anti-armor training ranges
	F-U-1	Renovate BMD facilities
	F-U-S	Renovate Tac Satellite Commo Facility
	F-0-1	Staging areas
	F-O-S	Aerial/sea ports; POL lines
Group B	P-E-I	Tactical equipment shop (Germany)
(Maintenance and	P-O-1	Tactical equipment shop
Production Facilities)	P-O-S	Depot maintenance and/or production
	F-E-I	DS/GS maintenance facility in Germany
	F-É-S	Depot maintenance and/or production
	F-U-I	Tactical equipment shop (Civil Defense)
	F-U-S	Tactical equipment shop (Civil Defense)
	F-O-I	DS/GS maintenance facility
	F-O-S	Depot maintenance and/or production
Group C	F-E-I	WRS storage sites
(Supply and	F-E-S	Depot storage
Administration	F-U-I	WRS storage sites
Facilities)	F-U-S	Depot storage
	F-O-1	WRS storage sites
	F-O-S	Depot storage
Group D	P-E-I	Hospitals
(Hospital, Medical,	F-E-I	Hospitals
Housing and Community	F-E-S	Hospitals
Facilities)	F-U-I	Hospitals
	F ·U·S	Hospitals
	F-O-I	Hospitals
	F-O-S	Hospitals
Group E	P-E-I	Utilities (all)
(Utilities and Grounds	F-E-I	Utilities (all)
Improvements and Real	F-E-S	Port utilities
Estate)	F-U-I	Emergency power
	F-U-S	Emergency power
	F-O-1	Utilities (all)
	F-O-S	Utilities (all)

いたしたい

.

100

Figure 12. Initial working definitions of maximum contribution projects.

				FOR ARMY MISSION: BE READY TO WIN LAND BATTLES IN:											
				P	resent C	onflicts	(Within	5 Years)		Futur	Confli	cts (Afe	er 5 Yer	brs}
	0 i6			T/0	EUR	T/0	USA	T/0	OTH	T/0	EUR	T/0	USA	T/0 :	OTH
Location	Number	Description	Category	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST
Total Worth of	i Maximun	n Contribution Project, per subc		20.41	8.16	5.72	3.81	19.05	9.52	12.12	4.54	3.09	2.47	8.33	2.78
Korea	654	Airfld Fac Upgrade-Cp Hump	111					1.000						0.900	0.900
Okinawa	712	Pol Line Modifications-Var	125					0.800			1			0.900	0.900
Ft Campbeil	252	CIDC Field Operations Bldg	141				<u> </u>					0.150	0.200		
Ft Hood	380	Div Hq & Opns Bldg	141		[0.200	0.300	1		0.240	0.280	0.300	0.300		
Korea	650	Mono Buoy System-Pohang	163		1			0.800	0.900				1	0.800	0.900
Ft Eustis	303	Gen Instruc Bidg Addn	171				1	†		0.300	0.300	0.300	0.300	0.800	0.500
Germany	923	Bn Hq & Clasrms-Bamberg	171	0.400			1			0.480	0.400			1	
Germany	391	Simul City Mount-Hohenfels	179	0.800		•		1		0.700	0.780				
Germany	594	Subcal Tank Rg-Bad Hers	179	0.800		1	1	1		0.700	0.830			1	1
Germany	931	Surv Test Range-Weilerback	179	0.450				1		0.500	0.450				
Ft Riley	117	Acft Mnt Hangar Shop Addn	211							0.750	0.700				
Loc 177	029	Aircraft Maint Hangar	211					0.900	0.800		1			0.930	0.750
Schofid Bks	103	Aircraft Hanger-Wheeler	211	[[1						0.900	0.850
Kwejalein	222	Rkt Assem Bldg-Roi Namur	212			1		1		0.650	0.580	0.280	0.300	0.700	0.760
Kwajalein	217	Marine Shop	213			!				0.600	0.400	0.200	0.360	0.730	0.800
Ft Benning	342	Tactical Equip Shops	214			1				0.730	0.500	0.830	0.900	0.600	0.600
Ft Hood	358	Tact Equip Shop	214							0.800	0.500	0.830	0.900	0.550	
Germany	423	Maint Facs Mod-Hohenfels	214	0.900						0.900	0.800				
Germany	600	Tac Eq Shop-Bremerhaven	214	0.900						0.900	0.850				
Germany	924	Vehicle Maint Shop-Bamberg	214	0.900						0.900	0.800				
Kores	690	Tact Equip Shop-Taegu	214					1.000		}				0.900	0.900
Germany	339	Surveil & Maint Fac-Miesau	216	0.650						0.800	0.600				
Germany	939	Ammo Surv Bldg-Vilseck	216	0.600						0.630	0.500				
Germany	940	Forklift Chrg Sta-Various	218	0.500						0.580	0.400				
Wtrvit Ars	047	Facilities Mod Ph 3	225							0.710	0.800	0.400	0.500	0.500	0.800
Aber Pr Gr	286	Kinetic Energy Launch Sys	310	L						0.800	0.830	0.280		0.500	0.300
Coldreg Lab	008	Frost Effects Res Fac	310	L	L				L	0.700	0.740	0.200	0.430	0.280	0.230
Ft Monmouth	140	Modernize R&D Bldg	310	L	L	L	L		L	0.380	0.450	0.200	0.380	0.200	0.300
Karea	689	Pol Pipeline Stg-Kunsan	411			L	L	l	L					0.800	0.950
Japan	176	Ammo Stg Fac Kawakami	421	L			L	1				ļ		0. 800	0.900
Germanu	277	Basic Load Site-Hanau	422				1		[1.000	0.800	[1 -	1
Germany				+				+				+			

Ë,

A DESCRIPTION OF THE OWNER OF THE

÷i,

Figure 13. Median estimates of relative project worths within each subobjective.

				FOR ARMY MISSION: BE READY TO WIN LAND BATTLES IN:														
				Present Conflicts (Within 5 Years)									Future Conflicts (After 5 Years)					
	Project			T/0	EUR	T/0	USA	T/0	OTH	T/0	EUR	T/0	USA	T/0	OTH			
Location	Number	Description	Category	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST	INIT	SUST			
Total Worth a	f Meximu	m Contribution Project, per sub	objective: a _i =	20.41	8.16	5.72	3.81	19.05	9.52	12.12	4.54	3.09	2.47	8.33	2.78			
Kwajalein	218	Live Explosive Storage Fac	422								0.500		0.400	0.730	0.700			
Coldreg Lab	006	Vehicle Storage Bldg	441							0.150	0.100	0.100	0.100	0.100	0.110			
Turkey	204	Sup Office/Whse-Det 67/168	441							0.460	0.350							
Redriver AD	070	Add & Alt Depot Opns Bldg	442							0.350	0.775	0.500	0.500	0.310	0.680			
Turkey	206	Dispensary-Det 67/168	550	0.800						0.713	0.488				—			
Ft Leaven	075	Renovate Admin Bldg	610		[0.040	0.030	0.010	0.010	0.020	0.100			
Rk Isl Ars	081	Alt Bldgs for Hq Fac-Ph II	610							0.100	0.130	0.160	0.450	0.030	0.500			
Turkey	203	Admin Bldg-Dat 67/168	610							0.310	0.130							
Turkey	302	Admin Bldg-Det 74	610							0.310	0.200							
Turkey	402	Admin Bldg-Det 155	610							0.310	0.200							
Ft Detrick	172	Barracks Modernization	721							0.430	0.400	0.500	0.430	0.330	0.330			
Germany	798	Barracks W/Facs-Bemberg	721		1					0.530	0.450							
Kores	701	Barracks-Yongsan	721											0.760	0.380			
Turkey	201	Barracks W/Dng-Det 67/168	721	0.500					1	0.530	0.500							
Turkey	301	Barracks-Dat 74	721	0.500			[0.530	0.500							
Turkey	401	Barracks-Det 155	721	0.500	1		1		-	0.530	0.500							
Germany	925	Dining Facility-Bamberg	722	0.430				<u> </u>		0.500	0.440							
Ft Myer	112	Alter Barracks	723		1		<u> </u>					0.380	0.200					
Germany	784	Banking Fac-Frankfurt	740		1		1		<u> </u>	0.060			<u> </u>					
Turkey	205	Cmunity Act Fac-Det 67/168	740				ļ	1		0.300	0.200		<u> </u>	 	ļ			
Turkey	303	Cmunity Act Fac-Det 74	740			!				0.300	0.200							
Turkey	403	Cmunity Act Fac-Det 155	740]		1 -	0.300	0.200	<u> </u>			<u> </u>			
Pres San Fr	110	Emerg Generator	811						-			1.000	1.000					
Mot Bayonne	052	Exterior Lighting	812		1		†		<u> </u>	0.600	0.900	<u> </u>	<u> </u>		 			
Turkey	207	Utilities Upgrd-Det 67/168	812	1.000	1	 	1	†	<u> </u>	0.850	0.750	<u> </u>		<u> </u>				
Loc 278	140	Water Purification Plant	831		1		<u>†</u>		<u> </u>	0.800	0.850			<u> </u>				
Loc 276	136	Hvac Upgrade	890				1	t	<u> </u>	0.700	0.680	[f					
USMA	123	Improve Utility Systems	890		1		<u> </u>		<u> </u>	0.150	0.110	0.460	0.490		0.230			
Ft Carson	281	Land Acquisition	911		<u> </u>			†		0.280	0.400	0.200	0.350	0.140	0.350			
				·		L	L	<u> </u>	<u>المنابعة</u>	L		L	<u> </u>	L	<u>. </u>			

Figure 13. (Cont'd).

								Relative	
Project			Subol Vi	ojective olue		Subobjective Relevance		Project Warth	Project Subobjectiv
Number	Description	CAT	(;	n _i)	×	(b _i)	x	(w _i)	= (8 _R /C _R)
414	Igloo Stg-Various	422	FEI:	12.12		0.714		1.000	8.65
			FES:	4.54		0.286		0.800	1.04
							Sum	= Overall B _R /C _R :	9.69
206	Dispensary-Det 67/168	550	PEI:	20.41		0.054		0.800	0.88
			FEI:	12.12		0.514		0.713	4.44
			FES:	4.54		0.432		0.488	0.96
							Sum	= Overall B _R /C _R :	6.28
047	Facilities Mod PH3	225	FEI:	12.12		0.262		0.710	2.25
			FES:	4.54		0.246		0.800	ú.89
			FUI:	3.09		0.111		0.400	0.14
			FUS:	2.47		0.053		0.500	0.07
			FOI:	8.33		0.170		0.500	0.71
			FOS:	2.78		0.158		0.800	0.35
							Surr	n = Overall B _R /C _R	4.41
281	Land Acquisition	911	FEI:	12.12		0.281		0.280	0.95
			FES:	4.54		0.281		0.400	0.51
			FUI:	3.09		0.125		0.200	0.08
			FUS:	2.47		0.125		0.350	0.11
	•		F01:	8.33		0.063		0.140	0.07
			FOS:	2.78		0.125		0.350	0.12
							Surr	i = Overall B _R /C _R :	: 1.84
140	Modernize R&D Bldg	310	FEI:	12.12		0.380		0.197	0.90
			FES:	4.54		0.450		0.197	0.40
			FUI:	3.09		0.200		0.145	0.10
			FUS:	2.47		0.380		0.145	0.13
			FOI:	8.33		0.200		0.158	0.27
			FOS:	2.78		0.300		0.158	0.13
							Sun	n = Overall B _R /C _R	1.93
784	Banking Fac-Frankfurt	740	FEI:	12.12		1.000		0.060	0.70
	Project Number 414 206 047 281 281	Project NumberDescription414Igloo Stg-Various206Dispensary-Det 67/168047Facilities Mod PH3281Land Acquisition140Modernize R&D Bldg784Banking Fac-Frankfurt	Project NumberDescriptionCAT414Igloo Stg-Various422206Dispensary-Det 67/168550047Facilities Mod PH3225281Land Acquisition911140Modernize R&D Bldg310784Banking Fac-Frankfurt740	Project NumberDescriptionCATSubol Vi (i414Igloo Stg-Various422FEI: FES:206Dispensary-Det 67/168550PEI: FEI: FES:047Facilities Mod PH3225FEI: FES: FUI: FOS:281Land Acquisition911FEI: FES: FUI: FOS:140Modernize R&D Bldg310FEI: FES: FUI: FUS: FOI: FOS:784Banking Fac-Frankfurt740FEI:	Project Number Description CAT Subobjective Value (a) 414 Igloo Stg-Various 422 FEI: 12.12 FES: 4.54 206 Dispensary-Det 67/168 550 PEI: 20.41 FEI: 12.12 FES: 4.54 047 Facilities Mod PH3 225 FEI: 12.12 FES: 4.54 047 Facilities Mod PH3 225 FEI: 12.12 FES: 4.54 047 Facilities Mod PH3 225 FEI: 12.12 FES: 4.54 281 Land Acquisition 911 FEI: 12.12 FES: 4.54 FUI: 3.09 FUS: 2.47 FOI: 8.33 FOS: 2.78 140 Modernize R&D Bldg 310 FEI: 12.12 FES: 4.54 FUI: 3.09 FUS: 2.47 FOI: 8.33 FOS: 2.78 784 Banking Fac-Frankfurt 740 FEI: 12.12	Project Number Description CAT Subobjective Value (aj) × 414 Igloo Stg-Various 422 FEI: 12.12 FES: 4.54 206 Dispensary-Det 67/168 550 PEI: 20.41 FEI: 12.12 FES: 4.54 047 Facilities Mod PH3 225 FEI: 12.12 FES: 4.54 FUI: 3.09 FUS: 2.47 FOI: 8.33 FOS: 2.78 281 Land Acquisition 911 FEI: 12.12 FES: 4.54 FUI: 3.09 FUS: 2.47 FOI: 8.33 FOS: 2.78 140 Modernize R&D Bldg 310 FUS: 2.47 FOI: 8.33 FOS: 2.78 784 Banking Fac-Frankfurt 740 FEI: 12.12	Project Number Description CAT Subabjective Value (a) X Subabjective Relevance (b) 414 Igloo Stg-Various 422 FEI: 12.12 FES: 4.54 0.714 0.286 206 Dispensary-Det 67/168 550 PEI: 20.41 FES: 4.54 0.054 0.514 FEI: 12.12 047 Facilities Mod PH3 225 FEI: 12.12 FES: 4.54 0.286 0.286 281 Land Acquisition 911 FEI: 12.12 FES: 4.54 0.281 0.158 281 Land Acquisition 911 FEI: 12.12 FES: 4.54 0.281 0.125 140 Modernize R&D Bldg 310 FEI: 12.12 FES: 4.54 0.380 FOI: 8.33 0.125 784 Banking Fac-Frankfurt 740 FEI: 12.12 1.000	Project Number Description CAT Subbijetive Value (a,) Suboljective × Suboljective Relevance × × 414 Igloo Stg-Various 422 FEI: 12.12 FES: 0.714 0.286	Project Number Subobjective Value Subobjective Relevance Subobjective Worth 414 Igloo Stg-Various 422 FEI: 12.12 0.714 1.000 414 Igloo Stg-Various 422 FEI: 12.12 0.714 1.000 206 Dispensary-Det 67/168 550 PEI: 20.41 0.054 0.800 Sum = Overall B _R /C _R : 206 Dispensary-Det 67/168 550 PEI: 20.41 0.054 0.800 Sum = Overall B _R /C _R : 206 Dispensary-Det 67/168 550 PEI: 20.41 0.054 0.800 Sum = Overall B _R /C _R : 207 Pacilities Mod PH3 225 FEI: 12.12 0.262 0.710 0.500 FUI: 3.09 0.111 0.400 FUI: 3.09 0.111 0.400 FUI: 3.09 0.111 0.400 Sum = Overall B _R /C _R 281 Land Acquisition 911 FEI: 12.12 0.281 0.400 FUI: 3.09 0.125 0.200 FUS: 2.78 0.125 0.350 Sum = Overall B _R /C _R 4140 Modernize R&O Bldg 310 FEI: 12.12 0.380 0.197 FES: 4.54 0.450 0.197 FUI: 3.09 0.200 0.145 F

And the Party of the

Figure 14. Examples of Step 7 calculations.

Location	Project Number	Project Description	CAT	Bp / Cp	Group Merge Factor
	Group A:	: (Base Group) Uperations. Tr	10102.	RDAT	
Ft. Campbell	252	CIDC Field Operations Bldg	141	0.3	
Ft. Hood	380	Div Hq & Opne Bldg Medannian BiD Bldg	141	1.2	
Coldreg Leb	008	Frost Effects Res Fac	310	1.9	
Ft. Eustia	303	Gen Instruct Bidg Addn	171	3.0	
Korea	650	Mono Buoy System-Pohang	163	4.5	fa =
Germany	923	Bn Hq & Clasrms-Bamberg	171	4.7	<u> </u>
Germany	931	Surv Test Range-Weilerbach	179	5.0	
Aber Pr Gr	286	Kinetic Energy Launch Sys	310	5.0	
Okinawa	712	POL Line Modifications-Var	125	5.9	
Germany	594	Subcal Tank Rg-Bad Hers	179	7.4	
Korea	654	Airfld Fac Upgrade-Cp Hump	111	7.7	
Germany	391	Simul City Mout-Hohenfels	179	8.0	
	<u>G</u>	roup B: Maintenance and Produ	ction		
Kwajalein	217	Marine Shop	213	2.9	
Kwajalein	222	Rkt Assen Bldg-Roi Namur	212	3.1	
WERVIE ARS	047	Facilities mod Ph J	225	4.4	
schofld Bkg	103	Aincraft Unner-Wheeler	214	4./	
Germany	940	Forklift Chrs Ste-Various	218	5.0	
Ft. Hood	358	Tact Equip Shop	214	5.7	fa a
Germany	939	Ammo Surv Bldg-Vilseck	216	6.0	1.0
Ft. Riley	117	Acft Mnt Hangar Shop Addn	211	6.1	••••
Kores	690	Tact Equip Shop-Taegu	214	6.7	
Germany	339	Surveil & Maint Fac-Miesau	216	7.1	
Loc 177	029	Aircraft Maint Hangar	211	7.1	
Germany	423	Maint Facs Mod-Hohenfels	214	9.6	
Germany	600	Tac Equip Shp-Bremerhaven	214	9.6	
Germany	924	Vehicle Maint Shop-Bamberg	214	9.8	
		Group C: Supply & Administra	tion		
Ft. Leaven	07 p	Renovate Admin Bldg	610	0.1	
Coldreg Lab	006	Vehicle Storage Bldg	441	0.8	
Rk Isl Ars	081	Alt Bldgs for Hq Fac-Ph II	610	0.8	
Turkey	203	Admin Bidg-Det 6//108	610	2.3	
Turkey	402	Admin Bldg-Det 155	610	2.4	6
Kwajalejn	218	Live Explosive Storage Fac	472	2.4	· · · ·
Redriver Ad	070	Add & Alt Depot Opns Bldg	442	2.8	
Turkey	204	Sup Office/Whse-Det 67/168	441	4.3	
Korea	689	POL Pipeline Stg-Kunsaw	411	4.8	
Japan	176	Anno Stg Fac Kawakami	421	4.9	
Germany	414	Igloo Stg ~ Various	422	9.7	
Germany	277	Basic Load Site - Hanau	422	10.4	
	Group I	D: Hospital, Medical, Housing	Commun	<u>ity</u>	
Germany	784	Banking Fac-Frankfurt	740	0.7	
Ft. Myer	112	Alter Barracks	723	0.9	
Ft. Detrick	172	Barracks Modernization	721	2.0	
Turkey	303	Community Act Fac-Det 74	740	2.4	
Turkey	403	Community Act Fac-Det 155	740	2.4	
Turkey	205	Counity Act Fac-Det 6//108	740	2.4	tD =
Turker	401	Berrecks-Tongsen Berrecks-Det 155	721	5.0	0.9
Turkey	301	Barracka-Det 74	721	5.0	
Turkey	201	Berracks W/Dng-Det 67/168	771	5.0	
Germany	798	Barracks W/Facs-Bambers	721	5.2	
Germany	925	Dining Facility-Bamberg	722	5.2	
Turkey	206	Dispensary-Det 67/168	550	6.3	
	Grou	up E: Utilities, Grounds, Res	<u>L Estate</u>		
USMA	123	Improve Utility Systems	890	1.0	
Ft. Carson	281	Land Acquisition	911	1.9	
Pres San Fr	110	Emerg Generator	811	2.8	f _E =
Mot Bayonne	052	Exterior Lighting	812	4.6	1.0
Loc 276	136	HVAC Upgrade	890	6.5	
Loc 276	140	Water Purification Plant	831	7.4	
Turkey	207	Utilities Upgrd-Det 67/168	81Z	8.0	

and the South of the second

5

Figure 15. Group merge factors used in Step 8.

Location	Project Number	Description	САТ	B _B /C _B	×	Group Adjust Factor (f;)	x	C _R /C _T	2	B _n /C ₇
		·		n' n		. 1.				n' 1
Germany	414	Igloo Stg-Various	422	9.69		1.0		1.0	=	9 .7
Turkey	206	Dispensary-C et 67/168	550	6.28		0.9		1.0	=	5.7
Wtrvit Ars	047	Facilities Mod PH3	225	4.41		1.0		1.0	=	4.4
Ft. Carson	281	Land Acquisition	911	1.84		1.0		1.0	=	1.8
Ft. Monmouth	140	Modernize R&D Bldg	310	1.93		1.0		0.4	z	0.8
Germany	784	Banking Fac-Frankfurt	740	0.70		0.9		0.1	=	0.1

Figure 16. Examples of Step 9 calculations.

were used as in the field test to show a project's relevance to force readiness. However, the b values, which show how much a project contributes to each mission subobjective, were determined by using the field test values only on the "Future Conflicts" side of Figure 11. Then, where necessary, those values were factored upward so the sum of the b values for each project was equal to 100. The results are shown in Figure 22. No new maximum contribution projects were defined. Rather, it was assumed that the project worths were the same under the new grouping scheme as they were under the grouping scheme used in the field test. However, only project worth values on the "Future Conflict" side of Figure 13 were used. These values are shown in Figure 23. The computational process used to determine the intermediate B_R/C_R ratio is the same as that described in Chapter 3, except there are no "Present Conflict" entries. The adjustment factors shown in Figure 24 were derived by regrouping the projects and assigning them, where possible, the same factor as generated in the field test. This was possible in all cases except those projects for which the Corps of Engineers was proponent. Seven of the Corps projects had field test merge factors of 1.0; eight had field test merge factors of 0.9. The 0.9 value was used for the analysis. Although the single project in The Surgeon General's (TSG's) group had a field test factor of 0.9, this was probably due to being grouped with housing and community projects. Under the new grouping scheme, it is likely that its merge factor would also have been 1. Regardless, the 0.9 value was used in this analysis. Note there is only a 10 percent spread in the merge

factor values. This is not surprising since facilities are functionally a fairly homogeneous group when compared to total defense needs. The real utility of the merge factor would be in determining the relative worth of procuring main battle tanks, to procuring Research and Development, to procuring Military Construction. etc.

Results of Revising the Pilot Model

The final results of the revised model, shown in the "new ranks" column of Figure 25, were compared with the field test results by showing the "old rank" for each project as determined in the field test. Only two provranks changed significantly; the POL Line Module clons project in Okinawa dropped in rank from 19 to 30, and the Mono Buoy System in Pohang, Korea, dropped in rank from 20 to 34. A glance at Figures 9 and 11 explains why. In the field test, both projects were rated as contributing a significant portion of their overall worth to winning the "Initial Battle" in "Other Theaters" in "Present Day Conflicts." That particular mission node had a weight of 19.05, the second highest mission node weight. When the present side of the mission tree was eliminated, that benefit stream was shifted to the "Future Conflict" side of the mission tree which had mission weights (relative to 19.05) of 8.33 and 2.78. Although the highest $B_{\rm R}/C_{\rm T}$ ratio jumped from 9.7 to 29.1, this has no significance in itself since the B/C scale is relative and can be factored up or down without changing the relative value of one project to another. However, comparing the ratio of the sixteenth (first quartile) project's B/C ratio and the forty-eighth

Location	Project Number	Project Description	CAT	PRO	НАСОН	CT = SPA(SK)	Bg/CT	Facilities Readiness Rank
Germany	414	Igloo Stg-Various	422	LOG	USAREUR	1,700	9.7	1
Germany	600	Tac. Eq. Shop-Bremerhaven	214	LOG	USAREUR	2,050	9.6	2
Germany	277	Basic Load Site-Hansu	422	LOG	USAREUR	2,700	9.4	3
Germany	924	Vehicle Maint Shop-Bamberg	214	LOG	USAREUR	7,900	8.8	4
Germany	423	Maint Facs Hod-Hohenfels	214	LOG	USAREUR	4,000	8.6	5
Germany	391	Simul City Mout~Boneurels	179	OFS	USAREUR	4,450	8.0	6
Germany	374	- Subcal lank Ru-bad mers	1/7	OFS	USARLUR	1,200	1.4	,
LOC 270	029	Water Furilication Flant	211	100	INSCON	5,400	7.4	8
LOC 1//	654	Airfld Fee Upgrede-CP Hump	111	000	FUSA	4,100	1.1	10
Loc 276	136	WAC Hogesde	890	OCE	INSCOM	700	6.5	10
Turkey	207	litilities linerd-Det 67/168	817	001	IISARFILE	510	6.4	12
Comerce	207	Summil (Maint Fac Mission	014	100	UGAREUR	510	0.4	12
Rt Riley	117	Acft Not Renner Shop Adda	210	106	FORSCOM	7,000	6.4	13
Kores	690	Tact Equip Shop-Taegu	21.6	LOG	EUSA	1,000	6.0	15
Turkey	206	Dispensary-DET 67/168	550	TSG	USAREUR	510	5.7	16
Ft. Hood	358	Tact Equip Shop	214	LOG	FORSCOM	7.300	5.1	17
Germany	940	Forklift Chrg Sta-Various	218	LOG	USAREUR	530	5.1	18
Okinawa	712	Pol Line Modifications-Var	125	LOG	USARJ	610	4.7	19
Kores	650	Mono Buoy System-Pohang	163	LOG	EUSA	350	4.5	20
Aber Pr Gr	286	Kinetic Energy Launch Sys	310	RDA	DARCOM	2.800	4.5	21
Germany	931	Surv Test Range-Weilerbach	179	OPS	USAREUR	350	4.5	22
Schofld Bks	103	Aircraft Hangar-Wheeler	211	LOG	WESTCOM	9,900	4.5	23
Wtrvlt Ars	047	Facilities Mod Ph 3	225	RDA	DARCOM	10,400	4.4	24
Korea	689	Pol Pipeline Stg-Kunsan	411	LOG	EUSA	4.750	4.3	25
Germany	925	Dining Facility-Bamberg	722	LOG	USAREUR	2,850	4.3	26
Germany	923	Bn Hq & Clasrms-Bamberg	171	PER	USAREUR	1,250	4.2	27
Germany	798	Barracks W/Facs-Bamberg	721	PER	USAREUR	20,000	4.2	28
Ft. Benning	342	Tactical Equip Shops	214	LOG	TRADOC	4,150	4.2	29
Germany	939	Amo Surv Bldg-Vilseck	216	LOG	USAREUR	410	4.2	30
Turkey	201	Barracks w/Dng-Det 67/168	721	PER	USAR EUR	4,000	4.0	31
Turkey	301	Berracks-Det 74	721	PER	USAREUR	1,900	4.0	32
Turkey	401	Barracks-Det 155	721	PER	USAREUR	1,900	4.0	33
Japan	176	Ammo Stg Fac Kawakami	421	LOG	USARJ	1,950	3.9	34
Mot Bayonne	052	Exterior Lighting	812	OCE	MTMC	240	3.7	35
Korea	701	Barracks-Yongsan	721	PER	EUSA	3,400	3.6	36
Kwajalein	222	Rkt Assem Bldg-Roi Namur	212	LOG	BMDSC	1,200	3.1	37
Turkey	204	Sup Office/Whse-Det 0//108	44(LOG	USAREUR	1,000	3.0	38
Kwajalein	217	Marine Shop	422	100	BMDSC	1,600	2.6	39
Kwajalein	218	Live Explosive Storage Fac	444	TEC	BMDSC	550	2.2	40
Pres San Fr	110	Emerg Generator	011	150	FORSCOM	/90	2.2	41
FC. Carson	201	Admin #1ds_Dat 155	610	DED	PORSCOM	20,000	1.0	42
Turkey	402	Admin Bldg-Det 135	610	DED	USAREUR	900	1.7	43
lurkey	302	Admin Bidg-Det 14	410	DER	UDAKLUK	/ 30	1.7	44
Turkey	203	Admin Bidg-Dec 0//100	740	TAC	USARLUR	1,300	1.0	40
Turkey	203	Community Act Pac-Det 0//100	740	TAC	119AD PILD	1,100	1.5	00 4 7
Turkey	303	Computity Act Fac-Det 155	740	TAC	LICADENIE	520	1.5	47
Turkey	303	Con Instauer Blde Adda	171	196	TRADOC	3 850	1.5	40
PC. CUBLIG	070	Add & Alt Denot Onna Bide	447	100	DARCON	1,900	1 4	50
Coldree Lab	008	Troat Effects Las Tac	310	RDA	ENGRS	6,900	1.4	Sĩ.
Fr Detrick	172	Rerracks Modernization	721	PER	HSC	1.450	1.7	52
Fr. Monmouth	140	Modernize R&D Bldg	310	BDA	DARCOM	20.000	0.8	53
Ft. Hood	380	Div He Opns Bldg	141	PER	FORSCOM	9,700	0.6	54
Ft. Hver	112	Alter Barracka	723	PBR	MDW	840	0.5	55
USHA	123	Improve Utility Systems	890	OCE	USHA	3,150	0.5	56
Rk Isl Ars	081	Alt Bldgs for He Fac-Ph II	610	LOG	DARCOM	7,400	0.3	57
Coldres Lab	006	Vehicle Storage Bldg	441	LOG	ENGRS	180	0.3	58
Ft. Campbell	252	CIDC Field Operations Bldg	141	PER	CIDC	1,150	0.1	59
Germany	784	Banking Fac-Frankfurt	740	TAG	USAREUR	480	0.1	60
Ft. Leaven	075	Renovate Admin Bldg	610	PER	TRADOC TOTAL:	<u>7.200</u> \$227,220	0.0	61

and the second second second

4.1

.

Figure 17. Facility projects arranged by force readiness benefit/total cost ratio.

Time ired by CRRC (Hours)	Activity Description
1/3	Define Force Readiness
2/3	Define Mission Hierarchy
1-1/4	Weight Mission Hierarchy (2 passes)
1/4	Group Facility Projects
2-1/4	Decide Project Relevance to Readiness (2 passes)
3-1/4	Decide Project Relevance to Missions (2 passes)
2	Define Standards
2-1/2	Decide Relative Project Worths (2 passes)
0	Compute B _R /C _R
2	Decide Merger Factors (2 passes)
0	Compute B _R /C _{\$PA}
<u>1-1/2</u> 16 Fotal	Review Results

Figure 18. Times required to conduct each step of the field test.

(third quartile) project's B/C ratio for both old and new models shows how the relative shape of the B/C ratio distribution changed. The old ratio is 5.7/1.5 =3.8; the new ratio is 15.4/4.6 = 3.35. Using 3.8 as a reference base, 3.35 represents a 12 percent decrease in the spread of the distribution. Thus, it may be concluded that using six instead of 12 mission objectives causes the model to lose some sensitivity and to be about 12 percent less discriminatory. However, this loss might well be offset if the raters gave more careful attention to fewer rating factors.

Requ

Manual Model Description

By December 1980, the Army had decided to support an evaluation process tied directly to the Army's Mission Area Analysis initiative. CERL. therefore, was directed to revise its model again so it could be used to determine the relative readiness contribution of a *few* marginal MCA projects. This manual version was designed to operate without mainframe computer support. A schematic of the general procedures for the manual version is shown in Figure 26. CERL has developed algorithms that can be used manually. or on programmable calculators, to derive model results without too much computational effort.⁴

⁴ John M. Deponai III, Laure Thomas, Craig Kukielski, and Joe Sheffield, *Facilities Readiness Quantification Model Users Manual*, Technical Report P-124 (U.S. Army Construction Engineering Research Laboratory [CERL], 1982).

1. DEFINE FORCE READINESS (FR):

2. BREAK FR DOWN INTO NON-REDUNDANT, WEIGHTED SUB-OBJECTIVES :

. .

3. GROUP FACILITY PROJECTS :

Salar P.B. And the

4. DECIDE EACH PROJECT'S RELEVANCE TO FR AND TO FR SUB-OBJECTIVES:

5. DEFINE MAX CONTRIBUTION PROJECTS AS STANDARDS :

& COMPARE PROJECT WORTHS TO APPROPRIATE STANDARDS :

7 COMPUTE EACH PROJECT'S INTERMEDIATE BR/CR

$$\left(\sum_{i=1}^{6}a_{i}b_{i}w_{i}\right)_{i} = \left(\frac{2\pi}{C_{R}}\right)_{i}$$

B. MENGE BR/CR RATIOS IN EACH GROUP TO COMMON BASE :

S. COMPUTE FINAL BR/CT FOR EACH PROJECT:

 $(\mathbf{B}_{\mathbf{R}}/\mathbf{C}_{\mathbf{R}})_{j} \times t_{j} \times r_{j} + (\mathbf{B}_{\mathbf{R}}/\mathbf{C}_{\mathbf{T}})_{j} + (\mathbf{B}_{\mathbf{R}}/\mathbf{S}\mathbf{P}\mathbf{A})_{j}$

IG REVIEW AND DISCUSS RESULTS:

RAMK	1/G
1-1-	29.1
2	28.1
3	27.4
• •	•
	,
_	•
	~

Figure 19. Revised model procedures (Version 2).

- MISSION SIGNIFICANCE RATIOS -							
EUR/USA =	3.00	0TH/USA = <u>2.00</u>					
I/S = <u>2.67</u> (EUR)	I/S = <u>1.25</u> (USA)	I/S = <u>3.00</u> (OTH)					

	- DISTRIB	UTION OF 1	00 READINES	SUTILES -			
	-	100 BE READY	.00 TO WIN				
5 <u>1</u>	0.00	1 <u>6</u>	. <u>67</u>	<u>33.33</u>			
In E	urope	In U	SA	In OTHER			
36.38	<u>13.62</u>	9.26	7.41	25.00	8.33		
INITIAL	SUSTAIN	INITIAL	SUSTAIN	INITIAL	SUSTAIN		
(a ₁)	(a ₂)	(a ₃)	(a ₄)	(a ₅)	(a ₆)		

Figure 20. Simplified hierarchy, mission significance ratios, and resulting mission weights.

		AR 415-28
Investment Categories	Group-Proponent	Facility Classes
	Group A-DCSOPS	
Operations & Commo		123, 126, 137, 141-143, 148, 149
Aviation Operations		111-113, 116, 121
Training		171, 179
	Group B-DC\$LOG	
Maintenance		211-219
Waterfront & Harbor		122, 151-155, 159, 161-165, 169
POL Supply/Storage		124, 125, 411, 412
Ammo & Other Supply/Storage		400 Series
	Group C-DCSPER	
Administration		600 Series
	Group D-DCSRDA	
RDT&E		300 Series
Production		221-229
	Group E-ACSAC	
Operations & Commo		131, 132, 135, 138
Aviation Operations		133, 134, 136
	Group F-TAG	
Community		730, 740, 750, 760
	Group G-TSG	
Hospital/Medical	·	500 Series
	Group H-COE	
Family Housing	-	711-714
Bachelor Housing		721, 723-725
Utilities, Roads/Grounds		800 Series
Real Estate		900 Series

۰,

149

Figure 21. Revised project grouping scheme.

				Relevance	For Army Mission: Be Ready to Win Land H				Battles In	:
	Project			Force	T/0	EUR	T/0	USA	т/о	OTH
Location	Number	Description	Cat	Readiness	I(b1)	\$(b2)	I(b3)	S(64)	1(65)	S(66)
Kores	654	Airfld Fac Upgrade-CP Hump	111	0.9					0.778	0.222
Okinawa	712	POL Line Modifications-Var	125	0.8					0.462	0.538
Ft. Campbell	252	CIDC Field Operations Bldg	141	0.3			0.310	0.690		
Ft. Hood	380	Div Hq & Opns Bldg	141	0.5	0.107	0.286	0.107	0.500		
Korea	650	Mono Buoy System-Pohang	163	1.0					0.291	0.709
Ft. Eustis	303	Gen Instruct Bldg Addn	171	0.5	0.264	0.238	0.025	0.090	0.212	0.171
Germany	923	Bo Hq & Ulserms-Samberg	1/1	0.9	0.00/	0.333				
Germany	371	Simul City Hount-Honeniels	1/9	1.0	0.00/	0.313				
Company	374	Supcal lank Kg~Dad ders	179	0.9	0.710	0.310				
St Bilor	117	Acft Mat Hansar Shon Adda	211	1.0	0.500	0.500				
los 177	029	Aircenft Maish Hanne	911	1.0	01500				0 778	0 111
Schfld Bke	103	Aircraft Hangar-Wheeler	211	0.9					0.510	0.490
Kwajalejn	222	Rkt Assem Bldg-ROI Nemur	212	1.0	0.146	0.293	0.073	0.146	0.086	0.256
Kva jalein	217	Marine Shop	213	0.9	0.158	0.283	0.060	0.158	0.060	0.283
Ft. Benning	342	Tactical Equip Shops	214	0.9	0.281	0.259	0.107	0.044	0.202	0.107
Ft. Hood	358	Tect Equip Shop	214	0.9	0.446	0.244	0.175	0.105	0.031	
Germany	423	Maint Face Mod-Hohenfels	214	0.9	0.748	0.25Z				
Germany	600	Tac Eq Shop-Bremerhaven	214	1.0	0.748	0.252				
Germany	924	Vehicle Maint Shop-Bamberg	214	0.9	0.738	0.262				
Kores	690	Tact Equip Shop-Taegu	214	0.9					0.629	0.371
Germany	339	Surveil & Maint Fac-Miesau	216	0.9	0.600	0.400				
Germany	939	Anno Surv Bldg-Vilseck	216	0.7	0.660	0.340				
Germany	940	Forklift Chrg Sta-Various	218	0.9	0.661	0.339				
Wtrvlt Ars	047	Facilities Hod Ph 3	225	1.0	0.262	0.245	0.111	0.053	0.170	0.158
Aber Pr Gr	286	Kinetic Energy Launch Sys	310	0.9	0.263	0.299	0.020	N 147	0.221	0.10/
Colares Las	140	Froat Bilect Kes Fac	310	0.5	0.197	0.242	0.145	0.167	0.100	0.210
FC. Nonmouch	689	HDGernize Kep Sidg	A11	0.9	0.137	V	0.145	0.145	0.529	0.471
lenen	176	Amo Ste Fac-Envelopi	421	0.8					0.556	0.444
Germany	277	Regic Lond Site-Heney	422	0.9	0.797	0.203				•••••
Germany	414	leloo Ste-Variona	422	1.0	0.714	0.286				
Kwajalein	218	Live Explosive Storage Fac	422	0.9		0.359		0.210	0.144	0.287
Coldreg Lab	006	Vehicle Storage Bldg	441	0.4	0.158	0.149	0.065	0.389	0.189	0.050
Turkey	204	Sup Office/Whee-Det 67/168	441	0.7	0.594	0.406				
Redriver Ad	070	Add & Adt Depot Opna Bldg	442	0.5	0.077	0.462	0.077	0.205	0.064	0.115
Turkey	206	Dispensary-Det 67/168	550	1.0	0.543	0.457				
Ft. Leaven	075	Renovate Admin Bldg	610	0.2	0.103	0.276	0.207	0.310	0.069	0.034
Rk Isl Are	081	Alt Bidgs For Hq Fac-Ph II	610	0.4	0.178	0.238	0.178	0.238	0.109	0.059
Turkey	203	Admin Bldg-Det 67/168	610	0.7	0.526	0.474				
Turkey	302	Admin Bidg-Det 74	610	0./	0,526	0.4/4				
Lurkey	402	Admin Bidg-Det 175	721	0.7	0.151	0.170	0.094	0.132	0.075	0.377
Ft. Detrick	1/4	Berracks Modernisation	721	0.9	0.717	0.283	01074	••••	••••	••••
Germany Former	70	Barracka-Yongan	721	0.8	••••	01103			0.738	0.262
Turkey	201	Berrecks w/Dog-Det 67/168	721	0.9	0.572	0.428				
Turkey	301	Barracks-Det 74	721	0.9	0.572	0.428				
Turkey	401	Barracks-Det 155	721	0.9	0.572	0.428				
Germany	925	Dining Facility-Bamberg	722	0.9	0.750	0.25				
Pt. Myer	112	Alter Barracks	723	0.7			0.474	0.526		
Germany	784	Banking Pac-Frankfurt	740	0.1	1.00					
Turkey	205	Cmunity Act Fac-Det 67/168	740	0.7	0.556	0.444				
Turkey	303	Community Act Fac-Det 74	740	0.7	0.556	0.444				
Turkey	403	Community Act Fac-Det 155	740	0.7	0.556	U.444				
Pres Sen Fr	110	Emerg Generator	811	0.8	e 100		0.394	0.604		
Mot Bayonne	052	Exterior Lighting	812	0.8	Z81.U	0.018				
Turkey	207	VELLICIES Upgrd-Det 67/105	831	1.0	0.572	0.400				
LOC 2/0	124	WELT FULLICATION FLADC	800	1.0	0.625	0.375				
10C 2/0	121	Tanvove Utility Systems	890	0.5	0.130	0,260	0.091	0.260		0.260
The Caraca	281	Land Acquisition	911	1.0	0.281	0.281	0.125	0.125	0.063	0.125

14.4

Same and the second

F

Figure 22. Revised median values of project relevance to readiness and revised normalized median values of project relevance to readiness subobjectives.

	Prolone			FOT ATBY N	EUD	De Keady CO	WIR LEBG	DALLIES IN	0714
Location	Number	Description	Cat	I(w)	S(wa)	I(ws)	S(WA)	1(95)	S(we)
Kores	654	Airfld Fac Upgrade-Cp Hump	111					0.900	0.900
Okinawa	712	POL Line Modifications-Var	125					0.900	0.900
Ft. Campbell	252	CIDC Field Operations Bldg	141			0.150	0.200		
Ft. Hood	380	Div Hq & Opns Bldg	141	0.240	0.280	0.300	0.300		
Korea	650	Mono Buoy System-Pohang	163					0.800	0.900
Ft. Eustis	303	Gen Instruct Bldg Addn	171	0.300	0.300	0.300	0.300	0.800	0.500
Germany	923	Bu Hq & Clasrms-Bamberg	171	0.480	0.400				
Germany	391	Simul City Mount-Nohenfels	179	0.700	0.780				
Germany	594	Subcal Tank Rg-Bad Hers	179	0.700	0.830				
Germany	931	Surv Test Range-Wellerback	1/9	0.500	0.450				
It. Kiley	11/	Acrt Mat Hangar Shop Adda	211	0.750	0./00			0 020	0 750
LOC 1//	1029	Aircraft Maint Hanger	211					0.930	0.750
Schorid BKS	103	AITCIAIT Hangar-Wheeler	211	0 6 6 0		0 280	0 300	0.900	0.850
Kwajalein Kwajalain	217	Marine Shop	212	0.650	0.360	0.200	0.300	0.730	0.700
Ft. Benning	342	Tactical Equip Shops	214	0.730	0.500	0.830	0.900	0.600	0.600
Ft. Hood	358	Tect Equip Shop	214	0.800	0.500	0.830	0.900	0.550	0.000
Germany	423	Maint Facs Mod-Hohenfels	214	0,900	0.800		•••••		
Germany	600	Tac Eq Shop-Bremerhaven	214	0,900	0.850				
Germany	924	Vehicle Maint Shop-Bamberg	214	0.900	0.800				
Korea	690	Tact Equip Shop-Taegu	214					0.900	0.900
Germany	339	Surveil & Maint Fac-Miesau	216	0.800	0.600				
Germany	939	Anno Surv Bldg-Vilseck	226	0.630	0.500				
Germany	940	Forklift Chrg Sta-Various	218	0.580	0.400				
Wtrvlt Ars	047	Facilities Mod Ph 3	225	0.710	0.800	0.400	0.500	0.500	0.800
Aber Pr Gr	286	Kinetic Energy Launch Sys	310	0.800	0.830	0.280		0.500	0.300
Coldreg Lab	008	Frost Effects Res Fac	310	0.700	0.740	0.200	0.430	0.280	0.230
Ft Honmouth	140	Rodernize Kap Bidg	310	0.380	0.430	0.200	0.380	0.200	0.300
Korea	057	FUL Fipeline Stg-Kunsan	411					0.800	0.950
Company	277	Amo Sty Fac-Kavekani Benis Lond SitesWeney	421	1 000	0 800			0.000	0.900
Germany	414	Teloo Ste-Verious	472	1 000	0.000				
Kusislein	218	Live Explosive Storage Fac	422	1.000	0.500		0.400	0.730	0.700
Coldree Lab	006	Vehicle Storage Bldg	441	0.150	0.100	0.100	0.100	0.100	0.110
Turkey	204	Sup Office/Whae-Det 67/168	441	0.460	0.350				
Redriver Ad	070	Add & Alt Depot Opns Bldg	442	0.350	0.775	0.500	0.500	0.310	0.680
Turkey	206	Dispensary-Det 67/168	550	0.173	0.488				
Ft. Leaven	075	Renovate Admin Bldg	610	0.040	0.030	0.010	0.010	0.020	0.100
Rk Isl Ars	081	Alt Bldgs for Hq Fac-Ph II	610	0.100	0.130	0.160	0.450	0.030	0.500
Turkey	203	Admin Bldg-Det 67/168	610	0.310	0.130				
Turkey	302	Admin Bldg-Det 74	610	0.310	0.200				
Turkey	402	Admin Bldg-Det 155	610	0.310	0.200				
Ft. Detrick	1/2	Barracks Modernization	/21	0.430	0.400	0.500	0.430	0.300	0.330
Germany	798	Berracks W/Fecs-Bemberg	721	0.530	0.430				
Kores	701	Barracks - 10ngsan	721	0 510				0./60	0.380
Turkey	301	Barracks W/Dng-Det 0//100	721	0.330	0.500				
Turkey	401	Berracke-Det 155	721	0.530	0.500				
Germany	925	Dining Facility-Bemberg	722	0.500	0.440				
Ft. Hver	112	Alter Barracks	723		*****	0.380	0.200		
Germany	784	Banking Fac-Frankfurt	740	0.060		••••			
Turkey	205	Counity Act Fac-Det 67/168	740	0.200					
Turkey	303	Community Act Fac-Det 74	740	0.300	0.200				
Turkey	403	Community Act Fac-Det 155	740	0.300	0.200				
Pres San Fr	110	Emerg Generator	811			1.000	1.000		
Not Bayonne	052	Exterior Lighting	812	0.600	0.900				
Turkey	207	Utilities Upgrd-Det 67/168	812	0.850	0.750				
Loc 276	140	Water Purification Plant	831	0.800	0.850				
Loc 276	136	uvAC Upgrade	890	0.700	0.680				
USHA	123	Improve Utility Systems	690	0.150	0.110	0.460	0.490		0.230
rt. Ustson	10]	raug vednimitiou	AL 1	V.28U	0.400	U. 200	0.350	0.140	0.350

1.00

Figure 23. Revised median estimates of relative project worths within each subobjective.

Group	Proponent	Number of Projects	Merge Factors	
A	DCSOPS	8	1.0	
В	DCSLOG	24	1.0	
с	DCSPER	5	1.0	
D	DCSRDA	4	1.0	
E	ACSAC	0	-	
F	TAG	4	0.9	
G	TSG	1	0.9	
н	CE	<u>15</u> 61	0.9	

Figure 24. Group merge factors used in the revised model.

5 CONCLUSION

ł

h

This report describes three versions of a model concept for quantifying the force readiness contribution of a funding entity relative to the contribution of other funding entities. These versions are all viable solutions to the readiness quantification problem. All versions have six favorable characteristics: they are logically simple; complete; consistent; foster efficient conflict resolution among staff evaluators; enable ratings to be easily adjusted as weighting decisions change at any managerial level; and provide an integrated and dynamic management approach to the quantification of readiness worth. All but the manual version need mainframe support before they can be used efficiently. The manual version of the model uses simple algorithms to quantify the readiness merits of a few marginal MCA facility projects without too much computational effort.

CITED AND UNCITED REFERENCES

Barclay, S., et al., Handbook for Decision Analysis, ADA049221 (Decisions and Designs, Inc., January 1978).

- Barry, F. Gordon, Readiness System Study, Phase II Readiness Indicator Model Prototype Development, ADA044522 (U.S. Army Concepts Analysis Agency, June 1976).
- Barzily, Zeev, W. H. Marlow, and S. Zacks, Survey Approaches to Readiness, Serial T-364/ADA048956 (George Washington University, Institute for Management Science and Engineering, November 1977).
- Beer, Stafford, *Platform for Change* (John Wiley and Sons, 1975).
- Buede, D. M., M. L. Donnell, J. E. Ragland, Application of Decision Analysis to the U.S. Army Affordability Study, Technical Report 78-5-72, ARPA Order 3469 (Decision and Designs, Inc., October 1978).
- Dalhey, Norman C., The Delphi Method: An Experimental Study of Group Opinion, RM-5888-PR (RAND Corporation, June 1969).
- Facility Classes and Construction Categories (Category Codes), Army Regulation [AR] 415-28 (Department of the Army, 1 November 1981).
- Force Stratification Analysis. Volumes I through III (Office of the Chief of Engineers, Engineer Studies Group, May 1974).
- Hammond, K. R., "Externalizing the Parameters of Quasirational Thought," Multiple Criteria Decision Making, edited by Milan Zelery (Kyoto, 1975).
- Kaplan, Seymour, An Approach to the Measurement of the Short-Term Readiness of Military Systems, Technical Report No. 10/ADA012400 (Office for Naval Research, June 1975).
- Keene, L. L., et al., PROBE System Development-Phase 3 (PROBE Interface Study), Interim Report (General Research Corporation, July 1976).
- Keeney, R. L. and Howard Raiffa, Decisions With Multiple Objectives: Preferences and Value Tradeoffs (John Wiley and Sons, 1976).
- Miller, G. A., "The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information," *Psychological Review*, Vol 63 (1956), pp 81-96.

Location	Project Number	Project Description	CAT	PRO	MACOM	PA(SK)	Facilities Resdiness B/C	Facilities Readiness Rank	Facilities Readiness Rank
							<u> </u>		
Germany	414		400	1.00	110 . 0 70.0		AC. 1		
Germany	277	Regic Load Site-Warney	422	106	USAKEUK	1,700	29.1	1	1
Germany	600	Tec Fo Shop-Bromerbauen	442	LUG	USAREUR	2,700	28.1	2	3
Germany	423	Meint, Face Modellohopfela	214	LOG	USAR EUR	2,050	27.4	3	1
Germany	924	Vehicle Neint Chon-Rombone	214	100	USAREUR	4,000	24.3	4	2
Germany	594	Subcel Tank BC-Red Mars	170	100	USAREUR	7,900	24.5	2	4
Germany	391	Simul City Mont-Hoberfale	170	OPS	USAREUR	1,200	21.4	2	
Loc 276	140	Water Purification Plant	831	OFS	TNECOM	4,450	20.0	/	0
Germany	339	Surveil & Meint For-Misson	216	100	TROCUM TROCUM	3,400	17.7	°	
Loc 177	029	Aircraft Maint Hongar	211	100	THECOM	7,000	10./	9	13
Ft. Riley	117	Acft Mnt Hangar Shon Adda	211	100	FORCOM	1,100	10.0	10	14
Loc 276	136	WVAC Upgrade	800	000	INCOM	1,350	10.4	11	14
Kores	654	Airfld Fac UngradesCP Nump	111	ODE	FILCA	6 100	17.5	12	11
Turkey	207	Utilities Ungrd-Det 67/168	A12	OCE	LUDA (ICAD PILD	5,100	17.5	13	10
Turkey	206	Dispensary-DET 67/168	550	TEC	11CAR CUR	510	15.6	14	12
Ft. Hood	358	Tact Equip Shop	214	100	FORECOM	7 200	15.4	15	10
Korea	690	Tact Rouin Shon-Tangu	214	100	FURALUM	7,300	13.4	10	17
Germany	940	Porklift Chre Ste-Verious	218	100	LUSA HCARPHD	1,000	15.2	1/	15
Schofld Bke	103	Aircreft Hangar-Uhoala-	211	100	USAREUR	0.00	14.2	18	18
Aber Pr Gr	286	Kinatic Energy Lounch Sug	310	DD4	DARCOM	9,900	13.5	19	23
Wtrult Are	047	Recilities Mod Ph 3	225	804	DARCOM	2,000	13.4	20	21
Germany	931	Surv Test BangerWeilerhach	170	0.84	UCAROUN	10,400	13.2	21	24
Korea	689	POT Piceline SterVeneer	411	UPA	USAREUR	350	13.0	22	22
Germany	708	Romanska U/PassaBambasa	201	104	LUDA	4,/50	12.9	25	25
St. Benning	342	Tectical Fourie Shane	216	FBR	USAKEUK	20,000	12.6	24	28
Cormany	925	Dining Facility-Rephane	200	100	TRADUC	4,150	12.5	25	29
Cermany	923	Armo Sume \$140-Wilcook	722	LUG	USAREUR	2,850	12.3	26	26
Germany	973	Ru Ha & Classica Rephone	171		USAREUR	410	12.2	27	30
Janan	176	Aumo Sto Fee-Kewskemi	421	PLR	USAREUR	1,250	12.1	28	27
Okinewe	712	POL Line Modifications-Van	441	LOG	USARJ	1,950	11.6	29	34
Turkey	201	Berracke w/Dec.Det 67/169	721	LUG	USARJ	610	11.5	30	19
Turkey	301	Barracks-Det 74	721	PER	USAREUR	4,000	11.3	31	31
Turkey	401	Berracke-Det 155	721	FER DED	USAREUR	1,900	11.3	32	32
Korea	650	MODA BUAN System=Pahana	163	FER LOC	USARLUK	1,900	11.3	33	33
Kores	701	Rerrecks-Yongsen	721	DEB	EUGA	3 400	11.1	34	20
Mot Bayonne	052	Exterior Lighting	913	CCR.	LUSA	3,400	10.7	30	30
Kwajalein	222	Rkt Assem Bldg-Roi Nemus	21.2	LOC	ETTC	240	10.1	30	35
Turkey	204	Sup Office/Whee-Det 67/168	444	100		1,200	9.4	37	37
Kwajalejo	217	Marine Shop	213	100	USAREUR	1,000	0.3	36	38
Kwajalejn	218	Live Evologius Storess Fee	413	100	DADSC	1,600	1.1	39	39
Pres San Fr	110	Emery Constator	911	TEC	FORECOM	300	0.0	40	40
Turkey	407	Admin Bldg-Det 155	610	190		/90	2.9	41	41
Turkey	102	Admin Bldg-Det 74	610	<i>F 6 8</i>	UDAREUR	900	2.1	42	43
Ft Carson	281	Land Acquistion	010	FER	CORRECT	/30	5.1	43	44
Tueben	203	Advis Blds Des 67/160	911	UCE	FURSCOM	26,000	5.0	44	42
Turkey	203	Admin plog-Det 0//100	010	PER	USAREUR	1,300	4.7	45	45
Turkey	403	Commity Act Fac-Det 0//108	740	TAG	USAREUR	1,100	4.6	46	46
Turker	202	Community Act Fac-Det 155	/40	TAG	USAREUR	600	4.6	47	47
Th Russia	303	Communicy Act Pac-Det /4	/40	TAG	USAREUR	520	4.6	48	48
Coldmon Lob	005	Gen Instruct Bidg Addn	171	OPS	TRADOC	3,850	4.5	49	49
Bodeines Ad	000	Add & Alb Desch Come Blie	310	RDA	ENGRS	6,900	4.2	50	51
Reditver Ad	172	Aca a Alt Depot Opns blog	942	LOG	DARCON	1,900	4.1	51	50
TT Monmouth	140	Medernics RUGERNIZELION Medernics Rth Ride	/21	PER	NSC	1,450	3.7	52	52
Ft Nond	140	The Na I Cana Bldg	510	KDA	DARCON	20,000	2.3	53	53
It. Nye-	300	Alter Berracho	141	PER	FORSCOM	9,700	1.7	54	54
118MA	172	Turney Utilies Costan-	/23	PER	NOW .	840	1.5	55	55
Bir Tel Are	081	AIN RING FOR NO ROOTEL TT	610	UCE	USHA	3,150	1.3	56	56
nn ses Alt Caldman Ist	001	nit stug for ny fectra ii Vehiale Sterene Mide	010	106	DARCON	/,400	1.0	57	57
Ft. Cameball	252	CIDC Field Oncomptone Pit-	441	LUG	CAUCIES	180	8.0	58	58
Germany	784	Renting Fac-Frankfurt	141	r sr	CIDC	1,150	0.4	59	59
Ft. Leaven	075	Benovate Ádmin Side	/40	IAG	USAREUR	480	0.Z	60	60
		Nenvyere Aumin Dine	010	ビズ質	TRAINI	/ 200	01	61	£1

A STATE OF A STATE OF

A 14

 014

New

Figure 25. Comparison of facility project ranks from Versions 1 and 2 of the model.

1. USE THE JULY BO FIELD TEST DEFINITION OF FORCE READINESS (FR);

.

2. WEIGHT EXISTING 6-NODE MISSION HIERARCHY :

3. DECIDE EACH PROJECT'S RELEVANCE TO FR AND TO FR SUBOBJECTIVES:

日子を致した

l,

ļ.

4. DEFINE ONE MAX CONTRIBUTION PROJECT FOR EACH OF THE 6 MISSION AREAS :

5. COMPARE PROJECT WORTHS TO APPROPRIATE STANDARDS:

6 COMPUTE THE FINAL BR/CT:

.

$$\left(\sum_{i=1}^{n} a_i b_i w_i\right)_j \times r_j + (B_R/C_T)_j + (B_R/\$PA)_j$$

7. REVIEW AND DISCUSS RESULTS :

BANK.	<u>8/C</u>
1	15
2	12
3	
•	•
•	
•	
•	•
i	2

Figure 26. Procedures for the manual implementation of the model (Version 3).

- Musson, Thomas A., *Readiness Measurement and Reporting Systems*, Research Report No. 429 (Air War College, April 1978).
- Navy Military Construction Programming Procedures, NAVFAC P-907, Second Edition (Naval Facilities Engineering Command, October 1978).
- Seago, W. K. and R. M. Weekley, *Readiness System Management*, ADA041438 (U.S. Army War College, May 1977).

Sherbrooke, Craig C., Resource Allocation Techniques

and the second

for Logistics Management, Report No. P-4139/ ADA690847 (RAND Corporation, July 1969).

- Shreves, Charles L., Maximized Benefits From Military Construction Appropriations (Naval War College Center for Advanced Research, June 1978).
- Wildavsky, Aaron, *The Politics of the Budgetary Process*, Third Edition (Little, Brown, and Co., 1979).
- Zeleny, Milan, "Managers Without Management Science?", Interfaces, Vol 5, No. 4 (August 1975).

Chief of Engineers TACH Monitor DAEN-ASI-1 (2) DAEN-CCP ATTN: ATTN: ATTN: ATTN: UAEN-CH DAEN-CWE DAEN-CWE DAEN-CWN-R DAEN-CWO ATTN: ATTN: ATTH ATTN: DAEN-CHP ATTH UAF N-MPC ATTN: ATTN: DAEN-MPE DAEN-MPO ATTN DAEN-MPR-A DAEN-RD ATTN: DAE N-RD ATTN: DAEN-RON DAEN-RON DAEN-ZC ATTN: ATTN: ATTN: ATTN: DAEN-ZCE ATTN: ATTN: DAEN-ZCH FESA, ATTN: Library 22060 US Army Engineer Districts ATTN: Library Alaska 99501 Al Batin 09616 Albuquerque 87103 Baltimore 21203 Buffalo 14207 8uffalo 14207 Charleston 29402 Chicago 60604 Detroit 48231 Far East 96301 Fort Worth 76102 Galveston 77550 Huntington 25721 Jacksonville 32232 Jacksonville 32232 Japan 96343 Kansas City 64106 Little Rock 72203 Los Angeles 90053 Louisville 40201 Nemphis 38103 Mobile 3628 Nashville 37202 New Orleans 70160 New York 10007 New Orleans 70160 New York 10007 Norfolk 23510 Omeha 68102 Philadelphia 19106 Pittsburgh 15222 Portland 97208 Riyadh 09038 Rock Island 61201 Sacramento 95814 San Francisco 94105 San Francisco 941(Savannah 31402 Seattle 98124 St. Louis 63101 St. Paul 55101 Tulsa 74102 Vicksburg 39180 Walla Walla 99362 Wilmington 28401 US Army Engineer Divisions ATTN: Library Europe 09757 Huncsville 35807 Lower Mississippi Valley 39180 Middle East 09038 Middle East (Rear) 22601 Missouri River 68101 Missouri River 60101 New England 02154 North Atlantic 10007 North Cantral 60605 North Pacific 97208 Ohio River 45201 Pacific Ocean 96858 South Atlantic 30303 South Atlantic 30303 South Pacific 94111 Southwestern 75202 US Army Europe HQ, 7th Army Training Command 09114 ATTN; AETTG-DEM (5) HQ, 7th Army ODCS/Engr. 09403 ATTN: AEAEU-EH (4) Y. Corps 09079 ATTN: AETVDEN (5) VII Comm. 08164 ALIN: ALIVULN 157 VII. Corps 09154 ATTN: AETSDEN (5) 21st Support Command 09325 ATTN: AEREN (5) Berlin 09742 ATTM: AEBA-EN (2) ATTN: ACDALEN (2) Southern European Task Force 09168 ATTN: ACSE-ENG (3) Installation Support Activity 09403 ATTN: ACUES-RP

8th USA, Kores Ith USA, Korea Affin: EAFE (8) 96301 ATTIN: EAFE (8) 96258 ATTIN: EAFE (0) 96224 ATTIN: EAFE (0) 96224 ATTIN: EAFE (0) 96271 ATTIN: EAFE (0) 96259 ATTIN: EAFE (0) 96212 416th Engineer Command 60623 ATTN: Facilities Engineer USA Japan (USARJ) Ch. FE D1v, AJEN-FE 96343 Fac Engr (Honshu) 96343 Fac Engr (Okinawa) 96331 ROK/US Combined Forces Command 96301 ATTN: EUSA-HHC-CFC/Engr ATTN: US Military Academy 10996 ATTN: Facilities Engineer ATTN: Dept of Geography & Computer Science ATTN: DSCPER/MAEN-A Engr. Studies Center 20315 ATTN: Library ANNRC, ATTN: DRXMR-WE 02172 USA ARRCOM 61299 ATTN: DRC1S-R1-1 ATTN: DRSAR-15 DARCOM - Dir., Inst., & Svcs. ATTN: Facilities Engineer ARRADCOM 07001 Aberdeen Proving Ground 21005 Army Matls. and Mechanics Res. Ctr. Corpus Christi Army Depot 78419 Corpus Christi Anny Depot 78419 Harry Diamond Laboratories 20783 Dugway Proving Ground 84022 Jefferson Proving Ground 47250 Fort Nonmouth 07703 Letterkenny Anny Depot 17201 Natick RAD Ctr. 01760 Notick RAD Ctr. 01760 New Cumberland Army Depot 17070 Pueblo Army Depot 81001 Red River Army Depot 75501 Redstone Arsenal 35809 Redstone Arsenal 53009 Rock 131 And Arsenal 61299 Savanna Army Depot 61074 Sharpe Army Depot 14541 Someca Army Depot 14541 Tobyhanna Army Depot 18466 Tooele Army Depot 84074 Watervliet Arsenal 12189 Yuma Proving Ground 85364 White Sands Missile Range 88002 DLA ATTN: DLA-WI 22314 FORSCOM FORSCOM Engineer, ATTN: AFEN-FE ATTN: Facilities Engineer Fort Buchanan 00934 Fort Buchanan 00934 Fort Bragg 28307 Fort Campbell 42223 Fort Carson 80913 Fort Devens 01433 Fort Devens 01433 Fort Drum 13601 Fort Hood 75544 Fort Hood 76544 Fort Indiantown Gep 17003 Fort Inwin 92311 Fort Sam Houston 78234 Fort Levis 98433 Fort McCoy 54656 Fort McCoy 54656 Fort McCharson J0330 Fort George G. Meade 20755 Fort Ord 93941 Fort Richardson 99505 Fort Richardson 99505 Fort Richardson 99505 Fort Riley 66442 Presidio of San Francisco 94129 Fort Sheridan 60037 Fort Stewart 31313 Fort Walnwright 99703 Vancouver Bks. 98660 HSC SL ATTN: HSLO-F 78234 ATTN: Facilities Engineer Fitzsimons Army Medical Center 80240 Walter Reed Army Medical Center 20012 INSCOM - Ch, Insti. Div. ATTN: Facilities Engineer Arlington Hall Station (2) 22212 Vint Hill Farms Station 22186

CERC DISTRIBUTION

DU ATTN: Facilities Engineer Cameron Station 22314 Fort Leslay J. McNeir 20319 Fort Myer 22211 NINC INC. ATTN, MTML-SA 20315 ATTN; Facilittes Engineer Oskland Army Base 94620 Bayonne MUT 07002 94626 Sunny Point MUT 20461 NARADCUM, ATTN: DRUNA-F 071160 TARCON, Fac. Utv. 48090 TECUM, ATTN: DRSTE-LG-F 21005 TRAUCC HU, TRADUC, ATTN: ATEN-FE ATTN: Facilities Engineer Fort Belvoir 22060 Fort Benning 31905 Fort Bliss 79916 Cold the Recent Link Carlisle Barracks Fort Chaffee 72902 17013 Fort Chaffee 7 Fort U1x 08640 Fort Eustis 23604 Fort Gordon 30905 Fort Hamilton 11252 Fort Hamilton 11252 Fort Hamilton 11252 Fort Benjamin Harrison 46216 Fort Jackson 29207 Fort Leavenworth 66027 Fort Leavenworth 66027 Fort McClellan J6205 F TSARCUM, ATTN: STSAS-F 63120 USACC ATTN: Facilities Engineer Fort Huachuca 85013 Fort Ritchie 21719 WESTCOM ATTN: Facilities Engineer Fort Shafter 96858 SHAPE 09055 Survivability Section, LCB-UPS Infrastructure Branch, LAMUA ATTN: HU USEUCON 09128 ATTN: ECJ 4/7-LUE Fort Belvoir, VA 22000 ATTN: ATZA-DTE-EM ATTN: ATZA-DTE-SW ATTN: ATZA-FE ATTN: Engr. Library ATTN: Canadian Liaison Uffice (2) ATTN: LWR Library Cold Regions Research Engineering Lab 03755 ATTN: Library ETL, ATTN: Library 22060 Waterways Experiment Station 39180 ATTN: Library HQ, XVIII Airborne Corps and 28307 Ft. Bragg ATTN: AFZA-FE-EE Chanute AF8, 11 61068 1345 CES/DE, Stop 27 Norton AFB 92409 ATTN: AFRCE-MX/DEE HCEL 93041 ATTN: Library (Code LUBA) Tyndall AFB, FL 32403 AFE56/Engineering & Service Lab Defense Technical Info. Center 22314 ATTN: 00A (12) Engineering Societies Library 10017 New York, NY National Guard Bureau 20310 Installation Division

US Government Printing Office 22304 Receiving Section/Depository Copies (2)

```
Chief of Engineers
ATTN: DAEN-ZCP
ATTN: DAEN-ZCP-P
USA Concepts Analysis Agency
Bethesda, MD 20814
Headquarters, DA
ATTN: SAIL-FM)OASA, I & L)
ATTN: SARD(OASA, R, D & A)
ATTN: DACS-FM
ATTN: DACS-DPM
ATTN: DACS-DPD
ATTN: DACS-DPD
ATTN: DACS-DPA
ATTN: DACS-DPA
ATTN: DACS-DPA
ATTN: DACS-DPA
ATTN: DACA-CAZ-A
ATTN: DACA-CAZ-A
ATTN: DACA-BUR
ATTN: DACA-CAW
ATTN: DACA-CAW
ATTN: DACA-CAW
ATTN: DAPE-ZBB
ATTN: DAPE-ZBB
ATTN: DAPE-ZBR
ATTN: DAPE-ZBR
ATTN: DAMO-ZD
ATTN: DAMO-ZD
ATTN: DAMO-DDR
ATTN: DAMO-ZF
ATTN: DAMO-ZF
ATTN: DAMA-PPR
ATTN: DAMA-PPR
ATTN: DAMA-PPR
ATTN: DAMA-PPR
ATTN: DAMA-PR
ATTN: DAMA-RM
ATTN: DAMA-RM
ATTN: DASG-RM
```

(a)

- ---- 5

Deponai, John H. A concept for quantifying the readiness contribution of proposed Army facilities. -- Champaign, IL : Construction Engineering Research Laboratory ; available from NTIS, 1982. 37 p. (Technical report ; P-123)

1. U.S. Army - military construction operations 2. Force readiness - mathematical models. I. Title. II. Series : U.S. Army. Construction Engineering Research Laboratory. Technical report ; P-123.

DATE ILME