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CONFLICT AMONG TESTING PROCEDURES IN A

LINEAR REGRESSION MODEL

1. INTRODUCTION

Savin [6] and Berndt and Savin [2] have shown that an inequality relation

exists between different test statistics used for testing hypotheses of the

form r- RO - 0 . They found that the value of the likelihood ratio test

statistic (LR - -2logX) , the Wald test statistic (W), and the Lagrange

multiplier test statistic (LM) are always such that

(1) W LR > LM

This result has been generalized by Breusch'['.] who showed that the

only necessary assumption for this inequality to hold is, that the

disturbances follow a distribution which allows may4mum-likelihood estimation.

However, neither Breusch nor any of the authors before him were able to

conclude anything about the power of the different tests. In this paper it

will be shown that for finite but large samples a similar inequality relation

to (1) exists between the powers of the three tests. The Wald test is

uniformly more powerful than either of the other two tests, and the

likelihood ratio test is more powerful than the Lagrange multiplier test

for very large samples and for mderate-to-large differences between the null

hypothesis and the true value of the tested parameters.' T7

cop't
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The assumption of a scalar covariance matrix is made to simplify the

exposition. The results can probably be generalized to hold for any

disturbance vector which allows maximum-likelihood estimation.,

2. THE MODEL

Consider the model:

(2) Y - XP+E

(3) 6 N(0,02 I)

Let P and Y2 be the maximum-likelihood estimators obtained by

unconstrained maximization of the likelihood function, and 1 and j2 the

corresponding constrained estimators. Furthermore we shall need an

estimator for the Lagrange multiplier (11) and the ratio of the constrained

to unconstrained maxima of the likelihood function (X). The three test

statistics can be written as:

(4) LR - -2logX

(5) W -n I[(r-RjbI(R(X'XY_'R!)- (r-Ro)]/&

(6) LK n ( X'X 1f) ;

To simplify the notation let A - R ( X rxj W. From the first-order

conditions for maximizing the likelihood function subject to the constraint

we can obtain an expression for g:



-3-

(7) -

We can now rewrite (5) and (6) as

(8) W =a rR A1(-a2

(9) LM - n1rR0'A'rR 6

If the null hypothesis is true and the disturbances are normally

- distributed, we have

(10) 'vn1(r-R 0) - N(0,0 2 A)

Furthermore, &2 is a consistent estimator for 02 if the null hypothesis

holds. P2 is a consistent estimator regardless of whether the null hypothesis

is true or not.

It follows that under the null hypothesis, W and IM converge to the

same limiting Chi-square distribution with k degrees of freedom, where k

is the rank of R . Independently it can be shown that LR also converges to

the same Chi-square distribution. Combined with the inequality relation (1)

this gives rise to possibly conflicting test results.
1

3. APPROXIMATE RELATIVE POWER OF THE THREE TESTS

It is possible to evaluate the power functions in the case of finite but

large samples.2  When the null hypothesis is not true,we have:

(11) r-RP - a

therefore,

4•.
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(12) r/n (r-R) ~ s{ -a, C72A)

For large samples we have approximately

(13) vrn(r-RPj) / & " N(/rna/QA)

If a is different from zero and n is large, the quadratic form W

(see 8) follows approximately a noncentral Chi-square distribution3 with k

degrees of freedom and non-centrality parameter

(14) c(n) - -[a/o]'A'[a/] 4

Let f(W) be the density function of the Wald test statistic and under the

alternative hypothesis and X~2O,k} the critical value based on a central Chi-

square distribution with k degrees of freedom. Thepower of the Wald test is then:

(1) P(W) f(W)dW(i_ )  p~w) = 0,k} r

For large samples we can approximate the density function f(W) by a

non-central Chi-square density function with non-centrality parameter c(n).

As n increases, c(n) grows without limit, and the distribution of W

explodes. From (15) we see that the asymptotic power of the Wald test is

therefore equal to one. A similar expression can be constructed for the

* likelihood ratio test (21) and the Lagrange multiplier test (18). Their

asymptotic power is also equal to one.

This is a common feature of all point hypotheses tests based on a

consistent parameter estimate. It is, though comforting to the theoretician,
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of little help to the practitioner trying to decide which test to use. It

says, if anything, that if we had a truly infinite sample, it would not

matter which test we applied, as long as it was based on a consistent

parameter estimate.5  It definitely does not imply that the tests are of

equal power for finite but large samples, which is, alas, the best we can

do in the real world. From (8) and (9) we can obtain an expression for L1.

jj

(16) LM - ( 2 / o 2) W

(17) f(LH) - f(; *fi

Given our definition of "large but finite samples," we can set

62/&1.C 2 /plim ;2 . p < 1 . It follows that the power of the Lagrange

multiplier test is equal to

(18) P(LM) - f (p W) dpW
2(0,k)

I' f (W) -dW

p- Xa(O,k1 d

Given that p-1 > 1 if the null hypothesis is not true, we can conclude

from (15) and (18) that P(LH) < P(W)

A similar argument can be made for the relative power of the Wald and

likelihood ratio tests. Consider P2 - (Y-Xj)'(Y-Xj)/n and

-+ a ('X) "' A1 (r-KR) . Then, letting a - y- X ,we get by substitution:
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- /n(e'e - 2[X(1/n X'X) 4 A 1 3'(-R3

+ (r-RO)'A 1 n[R(X'X) 1 X'X(X'X) 1 R']A1 (r-R13))

-a' + (r-R A)' A1 (r-R~3

We can, therefore,express (8) as

(19) W - n~Qi a2/

Making use of the fact that X-(j2f /a)-n , we can write

(22) W - n(;j2/ 1)

LR - -2logX - n-log[(W/n) +1)]

The power of the likelihood ratio test is

(21) P(LR) - J a(Ok f(LR)*dLR

J f(W)dW

Consider the lover limit of integration in (21):

(22) n[-l+exp(X2(Ok)/n)] - n[1 +. I(x /n)/i]

a n[X,2/n + ;ZX n'i

- ; + O(n)
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From (22), (21) and (15) it follows that P(LR) < P(W) . Also note

from (22) that the difference between P(LR) and P(W) decreases, as the

sample size increases.

Consider the relative power of the LR and LM tests. From (21) and

(18) we see that the only difference in power between the two tests must

come from the difference in the lower limit of integration. For the

likelihood ratio test this limit is:

(23) n (X/n )/i! = X- + (X2/n)i/(i+l) :
i-2 i-i a

the corresponding limit for the Lagrange multiplier test (see 18) is:

(24) (pliM 510 )X 2  [1+a- a Y].

Where we have made use of the fact that 52.. a+ (r-R3)'A71 (r-RO) and

plim (r-R) = a . For a given sample size there exists an a , say a° , for

which the Lagrange multiplier test and the likelihood ratio test are equally

powerful, i.e., (23)- (24).

2

(25) Z +-x/)/il! Xla'_a/Y

;Xl+/n)i/(i+l) - XA-l/ a ay

From (25) we see that the lower limit of integration in (18) becomes

relatively larger than the corresponding limit in (21) when a increases

above a@ This means that the likelihood ratio test becomes more powerful,
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as the difference between the null hypothesis and the true value of the

tested parameter grows. In other words, the power function of the

likelihood ratio test must intersect the power function of the Lagrange

multiplier test from below, as depicted in Figure 1.

This result, however is only an outflow of our incongruous assumption

about the sample size. Note that the left-hand side of (25) is of order 1/n

so that for very large samples it must be practically zero. This implies that

a must be practically zero as well. In the limit it must be exactly zero.

We can also consider (25) under a somewhat different aspect. Holding

constant we can determine the effect of an increase in the sample size.

If n is large enough so that [X'X]n -1  has already attained it's limit, or

is close to it, an increase in n would not have any noticeable effect on

the right-hand side of (25). The left-hand side would become smaller however,

leading us to conclude, that the likelihood ratio test would become more

powerful.

4. RELAXING THE ASSUMPTIONS ABOUT SAMPLE SIZE

The comparison of the relative power of the Lagrange multiplier test

and the Wald test in (18) depended heavily on our convenient definition of

large but finite samples. But it is not certain that there exists a sample

size for which the conditions of our definition hold. The difference between

;2 and 03 is of order l/n and c(n) is of order n , so that strictly

speaking a' approaches a' at the same speed as c(n) approaches infinity.

If we are prepared to set a2. 02 for a very large n , which is what we are

doing when we use the asymptotic distribution to test hypotheses based on

finite samples, we should apply the same standards and set c(n) equal to

infinity. Under these circumstances all the tests are of power one.

h6

.. . . .. . .. . . ..... . . . .. .. . . ... I / l . . . . . . . . . . . . . . i H l/ a . .. .. ". . - . j
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FIGURE 1 -- Relative Power of the Three Tests for a Finite Sample
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In order to be able to say something about the relative power of the

Lagrange multiplier test and the Wald test for finite samples we must treat

02 and 62 as stochastic. We can define a critical value d > 0 of the

random variable 2/62 such that

(26) Pr{6'/a > l+d } "

Then we can rewrite (18) as

i0.

Z) Pr f(LM) < fW)" dW- P(W
om 

(l+d )X2 {0,k}

As y approaches unity, d approaches zero so that we have

(28) Pr P(LM)( < dW -P(W) i

fXa2{0,k)

or P(LM) < P(W)

This comparison of P(LM) and P(W) no longer relies on any special

assumptions about the sample size. It applies to any sample size for which

the Chi-square distribution adequately describes the distribution of W

i.e., a Chi-square is justified.

Qualitatively our results have changed little. Because a and 62

are stochastic,we have to allow for the possibility that they may be equal

by a fluke, even if the null hypothesis is not true. In this case all three

test statistics take on the value zero and commit a type two error. This is

the main reason why the strict inequality derived from (18) has to be changed

to 4 . However,with any probability of less than one, d in (27) is > 0

and the strict Inequality still holds.

rx
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5. A NUMERICAL EXAMPLE

A small Monte-Carlo experiment was conducted to determine the extent

to which the power of the different tests varies. The model was simply

Y - a+6 with , distributed normally and independently with mean zero and

variance one. The null hypothesis was that a - 0 . Table I summarizes

the results for the tests using 100 samples of size 100 each.

The results are not very surprising. Indeed, the Wald test is more

powerful than the other two tests. As a increases, the power of all three tests

goes to one. The relative advantage of the Wald test is strongest for

small a's.

6. CONCLUSIONS

It is true that both the likelihood ratio test and the Lagrange

multiplier test have asymptotically the same power as the Wald test. For

the likelihood ratio test this is primarily due to the fact that the difference

in power between the two tests vanishes, as n goes to infinity (see (21)).

However, the Lagrange multiplier test has asymptotically the same power as the

Wald test,only due to the fact that the limiting distribution of both tests

is not defined. The difference between the lower limits of integration in (18)

and (15) converges to a number different from zero. Loosely speaking,one

could state that if the limiting distribution of W under the alternative

hypothesis was defined, the likelihood ratio test would still be asymptotically

of equal power as the Wald test, while the Lagrange multiplier test would be

uniformly less powerful.
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TABLE I

NUMBER OF REJECTIONS PER HUNDRED

True
Parameter Wald Test LR Test LM Test

Value

a .225 21 20

a-.3 51 50 48

ain.4 88 86 85

a-598 98 98

a-1 100 100 100

Significance level: 5%.



-13-

It is trivial to note that two tests have the same asymptotic power, if

this statement depends on the fact that the limiting distribution explodes.

We must instead consider the relative power for sample sizes short of infinity.

In this paper-it was shown that there exists an inequality relation similar

to (1) between the power of the three tests for large but finite samples.

The Wald test is uniformly more powerful than either of the other two tests

if we accept the stated definition of "large but finite" samples. If we

are not able to set P2 - O and i2- plimG 2 for a given sample size, the

strict inequality relation has to be modified to P(LM) (P(W) . However,

P(LR) < P(W) apparently still holds, because this comparison does not depend

on setting 2 - C.

It follows that for finite samples the Wald test is at least as powerful

or more powerful than the other two tests. If it is no more difficult or

costly to compute, then there appears to be little justification for using

either the Lagrange multiplier test or the likelihood ratio test for the

purpose of testing linear restrictions in a linear regression model.
6

We could view the problem as one of misspecification of the critical

region. If the different tests are proportional to each other (e.g.,

LM [(d2/i2 )oW] (see expression (16)), they should not have the same

critical values. If we define the critical value of LM test as (6 2 /a')

times the critical value of the W test, the two tests are,of course,equally

powerful for all sample sizes. A similar argument applies for the critical

value of the LR test.
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FOOTNOTES

'It has to be pointed out, that,of course,no conflict arises if the

Wald test accepts the null hypothesis or the Lagrange multiplier test

rejects it.

2 "Finite but large" samples are small enough so that 1/n is still

different from zero, but the limiting distribution is an adequate apprgxi-

mation to the sampling distribution. This is the way in which we always use

limiting results in practice.

3 For small samples, the appropriate statistic to use would,of course,be

F ( 2/ks2 )- , where s2 is the (unbiased) least squares estimator for 02

4 See Kendall and Stuart [5], p. 237-41.

$Under these circumstances,hypothesis testing becomes trivial, because

in the limit there are no 'unknown parameters'.

OThere exist situations when the unrestricted model cannot be estimated,

but we nevertheless wish to test linear restrictions (e.g., identifying

restrictions). Under these circumstances, the LM test is the only feasible

procedure.
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