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MULTI-SAMPLE CLUSTER ANALYSIS
WITH VARYING PARAMETERS USING AKAIKE'S INFORMAfION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinois at Chicago Circle

ABSTRACT

Multi-sample cluster analysis, the problem of grouping samples, is studied

from an information-theoretic viewpoint via Akaike's Information Criterion

(AIC). This criterion combines the maximum value of the likelihood with the

number of parameters used in achieving that value. The multi-sample cluster

problem is defined, and AIC is developed for this problem. The form of AIC is

derived in the univariate model with varying means and variances, and in the

multivariate model with varying mean vectors and variance-covariance matrices.

Numerical examples are presented and results are shown to demonstrate the

utility of AIC in identifying the best clustering alternatives.

Key Words and Phrases: Multi-sample cluster analysis; Akaike's Information

Criterion (AIC); Univariate model with varying means and variances,

Multivariate model with varying mean vectors and variance-covariance

matrices; maximum likelihood.
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MULTI-SAMPLE CLUSTER ANALYSIS
WITH VARYING PARAMETERS USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Illinois at Chicago Circle

1. Introduction

In a previous paper, we introduced and developed Akaike's Information

Criterion (AIC) for multi-sample cluster analysis, the problem of grouping

samples. We derived the form of AIC in both univariate and multivariate

analysis of variance models, where the assumptions of independence, univariate

and multivariate normality, equal variances and variance-covariance matrices

were fundamental to the analysis. We gave numerical examples and results which

demonstrated the utility of AIC in identifying the best clustering alterna-

tives. (See, Bozdogan and Sclove [5]).

In this paper, we shall continue to study the multi-sample cluster

problem. However, here we shall develop Akaike's Information Criterion (AIC)

for multi-sample cluster analysis with varying means and variances in the uni-

variate model, and with varying mean vectors and variance-covariance matrices

in the multivariate model, since often in practice the assumption of equal

parameters within the model is a rather dubious requirement.

Many practical situations require the presentation of multivariate data

from several structured samples for comparative purposes and the grouping of

the heterogeneous samples into homogeneous sets of samples in which parameters

might vary. For this reason it is reasonable to provide a practically useful

statistical procedure that would use some sort of statistical model to aid in

comparisons of various collections of samples, identify homogeneous groups of

samples, and tell us which should be clustered together and which samples

*Presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, University of
Massachusetts, Amherst, MA, October 16-18, 1981.
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should not. For examples of multi-sample clustering situations, we refer the

reader to Bozdogan and Sclove [5].

In the statistical literature several conventional test procedures are

available for testing whether or not several populations have equal variances,

as required by the analysis of variance (ANOVA) model. If we have a reason to

doubt this is the case, then we may first want to test the equality of

variances. In the multivariate case the equality of covariance matrices is

certainly more hazardous. Therefore, for this reason we may want first to

test the equality of variances in the univariate case, and the equality of

covariance matrices in the multivariate case. This is an important option to

use in clustering groups or samples, and in general.

In the literature, however, there are several test procedures for testing

the equality of variances, and covariance matrices. For example, in the

multivariate case, the most commonly used test is Box's M test despite the

fact that it is very expensive to compute it on a high speed computer, even on

an IBM 370. Moreover, as in the case of MANOVA, these test procedures are not

revealing or informative in multi-sample clustering problems. Therefore, in

this paper we shall propose again Akaike's Information Criterion (AIC) as a

new procedure for comparing the clusters, and use it to identify the best

clustering alternatives.

In 1971, Akaike first introduced an information criterion, referred to as

an Automatic (Model) Identification Criterion or Akaike's Information

Criterion (AIC), for the identification and comparison of statistical models

in a class of competing models with different numbers of parameters. It is

defined by
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(1.1) AIC = -2 loge (maximized likelihood)

+2 (number of independently adjusted parameters within the model).

It was obtained with the aid of an information theoretic interpretation of the

method of maximum likelihood by Akaike ([2], [3]). it estimates minus twice

the expected log likelihood of the model whose parameters are determined by the

method of maximum likelihood. When several competing models are being compared

or fitted, AIC is a simple procedure which measures the badness of fit or the

discrepancy of the estimated model from the true model when a set of data is

given.

The first term in (1.1) stands for the penalty of badness of fit or

downward bias when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other hand,

stands for the penalty of increased unreliability or compensation for the bias

In the first term as a consequence of increasing number of parameters. If more

parameters are used to describe the data, it is natural to get a larger

likelihood, possibly without improving the true goodness of fit. The AIC

avoids this spurious improvement of fit by penalizing the use of additional

parameters.

Thus, when there are several competing models, the parameters within the

models are estimated by the method of maximum likelihood and the AIC-values are

computed and compared to find a model with the minimum value of AIC. This

procedure is called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and is designated as the best model.

In Section 2, we shall define the general multi-sample cluster problem,

and in Section 3, we shall briefly discuss the number of clustering alterna-

tives for a given K groups or samples into k nonempty clusters. In the
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subsequent sections, that Is, in Section 4 and in 5, we shall derive the AIC

procedure for the univariate model with varying means and variances, and for

the multivariate model with varying mean vectors and covariance matrices. In

Section 6, we shall give numerical examples for both univariate and multi-

variate multi-sample cluster analysis on the same real data set to demonstrate

our results of AIC and minimum AIC procedures obtained from different computer

analyses.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response

or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

X,

X2

(2.1) X (n x p)

be a single data matrix of K groups or samples, where Xg (ngxp) represents the
K

observations from the g-th group or sample, g=1,2,...,K, and n 1 1 ng. The
gul

goal of cluster analysis is to put the K groups or samples into k homogeneous

groups, samples, or classes where k is unknown, but k<K.

Often individuals or objects have been sampled from K>1 populations. For

multi-samples or multiple groups of individuals or objects the data matrix may

be represented In partitioned form as above. Let ng represent the number of

individuals in the g-th (random) sample, gil,2,...,K. The ng are not
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restricted to being equal or proportional to other ngts. The total number of
K

observations is n I ng. Let Xgi be the pxl vector of observations in group
g.I

g-l,2,...,K, and for individual i-1,2,...,ng.

3. The Number of Clustering Alternatives for a Given K

Samples into k Nonempty Clusters

In this section, we shall just briefly mention how to obtain the total

number of clustering alternatives for a given K, the number of groups or

samples. For details we again refer the reader to Bozdogan and Sclove [5].

In general, the total number of ways of clustering K groups or samples

into k clusters is given by

1 k

(3.1) S(Kk) Z I g () (-1)gkg)K

which is known as the Stirling Number of the Second Kind (see, e.g., Abramowitz

and Stegun [1]) and also called the number of clustering alternatives.

If k, the number of clusters of groups or samples, is known in advance,

then the total number of clustering alternatives is given by S(K,k). However,

if k is not specified a priori and varies, then the total number of clustering

alternatives for a given K, the number of groups or samples, is given by

K
(3.2) 1 S(Kk)

k-1

For example, K=4 samples, if k is not specified a priori and varies, then

there are in total 15 possible clustering alternatives to cluster K-4 groups or

samples first into k-4 groups or samples, then k-3 groups or samples, k-2

groups or samples, and k-1 group or sample by using the equation (3.1)
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respectively, and summing the results by using the expression (3.2) to obtain

15 as the total number of possible clustering alternatives.

Therefore, the total number of ways of clustering K groups or samples into

k homogeneous groups or samples is given b, equation (3.1), and the total

number of possible clustering alternatives is given by the expression (3.2).

4. AIC For The Univariate Model

We now turn our attention to consider situations with several univariate

normal samples. For example, we may have multi-sample data with samples of

sizes n1In 2 ...,nK which are assumed to have come from K populations, the first

2 2with mean p and variance a, the second with mean V and variance a 2 9_9 the

2Kth with mean PK and variance aK , We may want to decide in this case if the

variances of these K samples will be treated as equal or not, given no

restriction on the population means. In terms of the parameters the univariate
2 2 2

model is 8 = (P1IU29...,4KOlso2,...90K) with m=2k parameters, where k is the

number of groups.

Recall the definition of AIC from Section 1,

AIC - -2 loge L(e) + 2m

- -2 loge (maximized likelihood) + 2m,

where m denc-tes the number of independently adjusted parameters within the

model.

Suppose there are K independent samples of independent observations, with
K

ng, g-1,2,...,K, observations in the g-th group and n - 1 ng. Denote the
g1

unknown means of the groups by pI,29,,uK, and the unknown variances of the

2 2 2
groups by aa 2.so K . Assume that the samples (zl1 ,z12 ,...,zz; . ;

in



-7-

'2

z ,...,z ) are drawn randomly from K populations which are N(pgag). The
KI KnK

basic null hypothesis of interest is given by

(4.1) HU: al = Oz " " " K"

The alternative hypothesis is given by

H1: Not all K variances are equal.

In the statistical literature, this is also known as the test of homogeneity of

variances or Bartlett's test.

To derive the form of AIC subject to this constraint, we call the common

unknown value of variances a'. The likelihood function in this case is given

by

2n/2K - n/2 K n
(4.2) L({ug, 2};z) = (2w) g1 (a 2 g exp{- I ( 1) 1 (Zgi - Ug)

g g=1 g g=1 2a,

The log likelihood is

(4.3) l(UP ,a 2) log L((i ,a ;z)g g g-

K 2 K ng- - nlog(21) - 1/2 K ng log a Z 1 (Zgj - 2

glg=1 2ag 1=1 g

g g

(4.4) "gng g

J1 i Zgl Zg

a9

2A
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and

(4.5) = 1 , g=1,2,...,K.
g n= 1  g

Substituting these back into (4.3) and simplifying, the maximized log

likelihood becomes

(4.6) 1 (9g9 ,};Z) log L({IIa 1 ;z)

K 2 n
T log(2n) - 1/2 1 ng log sg 7

Since

(4.7) AIC = -2 loge L(e) + 2m,

where m is the number of parameters, and since

K 2
(4.8) -2 log L({i ,a2}) = n log(2-,) + I ng log s + n,

gg g=1 g

then AIC becomes

2 K 2(4.9) AIC (varying P and a ) = n log(2w) + I ng log s + n + 2(2k).
g=1 g

Since the constants do not affect the result of comparison of models, we

could ignore them and use the simplified version

K 2
(4.10) AIC* = (varying p and a) = ng loge S + 2(2k)g=l g

2 1 ng 2
where S = 7g I (z g i  "g

-gi - g ,.



k = number of groups or samples compared, or the number of

independently adjusted parameters within the model.

However, for purposes of comparison we retain the constants and use AIC given

by (4.9).

5. AIC For the Multivariate Model

As we mentioned in Section 1, that the assumption of equality of variances

in one-way ANOVA, causes serious problems when we are testing the equality of

several means. Parallel to this assumption, in the multivariate case the

equality of covariance matrices even causes more serious problems. For this

reason we may want first to test the equality of covariance matrices against the

alternative that not all covariance matrices are equal. Therefore, throughout

this section we shall suppose that we may have independent data matrices

Sx,...,X(, where the rows of !g (ngxp) are independent and identically

distributed (i.i.d.) Np(ug,eg), g=1,2,...,K. In terms of the parameters the

multivariate model we shall consider is

2 -1*.2 K -

with m - kp + kp(p+1)/2 parameters, where k is the number of groups, and p is

the number of variables.

Thus, the basic null hypothesis we usually are interested in testing is

given by

(5.1) HO: El a L2  K

The alternative hypothesis is given by

H1 : Not all K covariance matrices are equal.
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In multivariate analysis this is known as the test of homogeneity of

covariance matrices.

To derive Akaike's Information Criterion (AIC) in this case the log

likelihood function is given by

(5.2) l((jg..g~ log L((Ijg.Lgl;Z)

K K
-p.log(27) 1/2 1 n loglz 1 1/2 In trz- A

gal 9g a 1 9 -g

K
-1/2 1 fg(T3 U (- g - g)

gai

The MLE's of ugand.E are

(5.3) Mg a !g , gl2.*

and

(5.4) j.g a Aging.

Substituting these back into (5.2) and simplifying, the maximized log

likelihood becomes

(5.5) l({Yg9.Egli log L( W.~g;Z)

-.. log(2ir) -1/2 K1 fg logIn- 1 gj

gal
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Since

(5.6) AIC = -2 logeL(e) + 2m

where m = kp + kp(p+1)/2 is the number of parameters, then AIC becomes

K
(5.7) AIC(varying j and E) = nplog(2r) + I ngloglng'Agl -np

g=1

+ 2[kp + kp(p+l)/2].

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

K
(5.8) AIC*(varying U and E) - I nglogeA II + 2[kp + kp(p+l)/2],

gui

where ng = sample size of group or sample g=1,2,...K,

jIgI - the determinant of sum of squares and cross-products (SSCP)

matrix for group or sample g-1,2,...,K,

k - number of groups or samples compared, and

p = number of variables.

However, for purposes of comparison we retain the constants and use AIC given

by (5.7).

6. Numerical Examples of Multi-Sample Cluster Analysis on Fisher Iris Data

In this section we shall give numerical examples of both univariate and

multivariate multi-sample data, and cluster the groups or samples, and choose

the best clusterings by using Akaike's Information Criterion (AIC) as derived

in Sections 4 and 5.

Our computations were carried out for all the examples we shall present

here on an IBM 370, using various statistical software packages such as
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MINITAB, SPSS, and SPEAKEASY (VM/CMS version).

6.1. A Univariate Examples

For the univariate numerical examples we shall illustrate our results on

Fisher [6] iris data.

Example 6.1. Clustering of Irises by Groups: The iris data set is composed

of 150 iris species belonging to three groups or species, namely Iris setosa

(S), Iris versicolor (Ve), and Iris virginica (Vi) measured on sepal and petal

length and width. Each group is represented by 50 plants. The data set for

the 150 irises are given in Table 6.1.

This data set has been quite extensively studied in classification and

cluster analysis since it was published by Fisher [6], and still today, is

being used as a "testing ground" for classification and clustering methods

proposed by many investigators such as Friedman and Rubin [7], Kendall [8],

Solomon [10), Mezzich and Solomon [9], and many others, including the present

authors.

For each of the 150 plants we already know the group structure of the

iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his

linear discriminant analysis the separation of I. setosa completely from I.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, let us take K-3 groups or species on each of the

variables separately and cluster them into k-1,2, and 3 homogeneous groups.

Since we are dealing with K-3 groups, by using equation (3.1) and the
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TABLE 6.1 ME;SUREMETS ON ThRES TYPES OF IRIS
IAZ AetIV ZW•Ci, I IAZ .,t~I

Sapal Se:a1 Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal
length wiath Tength width length width length widtN length width length width

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5
4.9 3.0 1.4 0.2 6.4 3.2 4-.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4.0 1.3 6.3 2.9 5.6 1.8
5.0 3.5 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 2.2
5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3. 2.9 6.3 1.8
4. 4 2.9 1.4 O.Z 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 O.Z 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3.0 1.4 0.1 6.0 Z.2 4.0 1.0 6.8 3.0 5.5 2.1
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2
5.7 3.a 1.7 0.3 6.2 2.2 4.5 1.5 7.7 Z.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 5.0 2.2 5.0 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 Z.8 4.9 2.0
4.6 3.6 1.0 0.Z 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0
5.1 3.3 1.7 0.5 6.1 z.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8
5.0 3.4 1.6 0.4 6.8 Z.8 4.8 1.4 6.2 2.8 4.8 1.8
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 Z.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3. 1.0 7.2 3.0 5.8 1.6
4.8 3.1 1.6 0.z 5.5 2.4 3.8 1.1 7.4 2.8 6.1 !.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0
5.Z 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2. 1.4 0.2 6.0 2.7 5.1 1.6 s.3 2.5 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4
5.0 3.2 1.2 0.2 5.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3.0 1.3 0.2 S.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 5.9 3.1 5.- Z.,
5.0 3.5 1.3 0.3 5.5 2.5 4.4 I.2 6.7 3.1 9.5 2.4
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 O.Z 5.8 2.6 4.0 1.Z 3.8 2.7 5.1 1.9
5.0 3.5 1.A 0.6 5.0 Z.3 3.3 1.0 6.8 3.Z 5.9 2.3
5.1 3.8 1.9 0.. 5.6 2.7 .4.2 1.3 6.7 3.3 5.7 2.5
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3
5.1 3.8 1.6 Q.2 5.7 2.9 4.2 1.3 5.3 2.3 5.0 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.z.O
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.Z 3.4 5.1 2.3
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8

| I • •A
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expression (3.2) in Section 3, we obtain in total 5 possible clustering alterna-

tives. Denoting I. setosa by S, I. versicolor by Ve, and I. virginica by Vi, we

have (S) (Ve) (Vi), (S, Ve) (Vi), (S, Vi) (Ve), (Ve, Vi) (S), and (S, Ve, Vi) as

all the possible clustering alternatives of three iris species. In terms of the

parameters, using the univariate model e - ,...,Pa 2 .. ,2 as our

underlying model with varying means and variances for clustering the iris groups,

from a simple run on the computer by Aing MINITAB package, we obtained the AIC's

for each of the 5 clustering alternatives of each of the four variables separate-

ly. We report our results on each of the four variables, respectively, as

follows.

TABLE 6.2. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL LENGTH

K 2
Alternative Clustering nloge (2r) I nglogeSg n k 2(2k) AIC

1 (S) (Ve) (Vi) 275.681 -218.710 150 3 12 218.971 a

2 (S, Ve) (Vi) 275.681 -136.019 150 2 8 297.662
3 (S, Vi) (Ve) 275.681 - 79.394 150 2 8 354.287
4 (e Vi) (S 275.681 -188.536 150 2 8 245.145b

5 (S, Ve, Vii 275.681 - 57.603 150 1 4 372.078

TABLE 6.3. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL WIDTH

K 2
Alternative Clustering nloge(2w) gjfnglogeSg n k 2(2k) AIC

1 (S) (Ve) (Vi) 275.681 -329.102 150 3 12 108.579a

2 (S, ve) (Vi) 275.681 -262.503 150 2 8 171.178
3 (s, Vi))(Ve, 275.681 -292.416 150 2 8 141.265
4 (Ve, Vi ( 275.681 -319.093 150 2 8 114.588b
5 (S, Ve, Vi) 275.681 -250.132 150 1 4 179.549
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TABLE 6.4. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL LENGTH

K 2
Alternative Clustering nloge(2w) jjnglogeSg n k 2(2k) AIC

1 (S) (Ve) (Vi) 275.681 -313.055 150 3 12 124.626a
2 (S, Ve) (Vi) 275.681 12.795 150 2 8 446.476
3 (S, Vi) (Ve) 275.681 70.394 150 2 8 504.075
4 (Ve, Vi) (S) 275.681 -215.414 150 2 8 218.267b
5 (S, Ve, Vi) 275.681 169.888 150 1 4 599.569

TABLE 6.5. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL WIDTH

K 2
Alternative Clustering nloge( 2w) ilnglogeSg n k 2(2k) AIC

1 (S) (Ve) (Vi) 275.681 -519.344 150 3 12 -81.663a

2 (S, Ve) (Vi) 275.681 -245.374 150 2 8 188.307
3 (S, Vi) (Ve) 275.681 -181.176 150 2 8 252.505
4 (Ve, Vi) (S) 275.681 -398.271 150 2 8 35.410
5 (S, Ve, Vi) 275.681 - 82.454 150 1 4 347.227

K 2
AIC(varying p and o) = nloge( 2w) + n nglOge Sg + n + 2(2k)

gul
aFirst Minimum AIC

bSecond Minimum AIC

Looking at each of the tables above, we see that on each of the variables

the first minimum AIC occurs at the alternative submodel 1, namely (S) (Ve) (Vi).

That is, the MAICE is submodel 1 indicating that indeed there are three types of

species across all the variables. But the second minimum AIC is at the alterna-

tive submodel 4 again across all the variables indicating that if we were to

cluster any iris species, we should cluster I. versicolor and I. virginica

together, as one homogeneous group.

Thus our minimum AIC results for each of the variables confirm other investi-

gators' findings, including Fisher's results on the iris data. Moreover, if we

---I I I I III .1
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were to choose among the submodels then we would choose the one with smallest

minimum AIC as the best submodel. Examining the Tables 6.2, 6.3, 6.4, and 6.5,

we see that the smallest minimum AIC occurs at the submodel 1 in Table 6.5 on

variable petal width. This indicates that petal width alone separates the

three iris species with virtual certainty, confirming again Fisher's results

(see, e.g., Fisher [6]).

Hence, we note here that we are clustering the irises by groups or species

under a more general model rather than using the ANOVA model as our underlying

model which we cosidered in a previous paper on multi-sample cluster analysis.

6.2. A Multivariate Example

Now we consider Fisher iris data again and this time we cluster K=3 groups

or species into k=1, 2, and 3 homogeneous groups on the basis of all the four

variables, assuming the multivariate model given in terms of the parameters

-a (U ,U, ...,K ,,...,K ) as the underlying model for clustering these three

iris groups or species. On the iris data, running SPSS MANOVA program, we

obtain the following sum of squares and products (SSCP) matrices for each of

the clustering alternatives. These are:

(1) (S) (VE) (VI)

6.0882 4.8616 .8014 .5062

4.8616 7.0408 .5732 .4556 -1
A 150 A I - 1.949E-6
"(S) .8014 .5732 1.4778 .2974 _(S)

I loge (1.949E-6) - -13.148
.5062 .4556 .2974 .5442
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13.561 4.362 9.066 2.7436

4.362 4.825 4.05 2.019 -1A u150 A = 1.8053E-5
A'(VE) 9.066 4.05 10.82 3.582 1 (VE)

2.7436 2.019 3.582 1.9162 1 (1.8053E5) -10.922

19.813 4.5944 14.861 2.4056

4.5944 5.0962 3.4976 2.3338 -'
A(VI) 14.861 3.4976 14.925 2.3924 150 -(VI)I

log0 (1.2244E-4) = -9.0079

2.4056 2.3338 2.3924 3.6962

(2) (S, VE) (VI)

40.901 -5.9433 74.361 28.144

-5.9433 22.69 -41.404 -15.291 -1
A 1100oA I = 3.3118E-4
A'(S, VE) 74.361 -41.404 208.02 79.425 --(S, VE)

loge (3.3118E-4) =-8.0128

28.144 -15.291 
79.425 31.62

(3) (S, VI) (VE)

88.469 -8.4997 177.42 73.311

-8.4997 17.29 -42.351 -17.414 -1
A 1100 A - .0025193
-(S, VI) 177.42 -42.351 434.61 184.69 (S, VI)

loge (.0025193) - -5.9838
73.311 -17.414 184.69 83.45
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(4) (VE, VI) (S)

44.264 12.322 45.245 16.699

12.322 10.962 14.137 7.9228 -1A 1 100 A j - 3.1476E-4
-(VE, VI) 45.245 14.137 67.476 28.584 --(VE, VI)

16.699 7.9228 28.584 17.862 lge (3.1476E4) -8.0637

(5) (S, VE, VI)

102.6 -6.0197 189.78 76.884

-6.0197 28.307 -49.119 -18.124 -1
A(S, VE, VI) 189.78 -49.119 464.33 193.05 1150 A (SVEVI)I - .0018787

76.884 -18.124 193.05 86.57 e (.0018787) -6.2772

After carrying out all our computations for each of the clustering alternatives

(using the Matrix Algebra Routines in the SPEAKEASY interactive computer package), we

obtain the AIC's from (5.7). The results are shown in Table 6.6.

TABLE 6.6. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES

K -1
Alternative Clustering nploge(2w) I nglogejng AgJ np k 2m AIC

g-1 ...... __

1 (S) (Ve) (Vi) 1,102.724 -1,653.89 5 600 3 84 132.829a
2 (S, Ve) (Vi) 1,102.724 -1,251.675 600 2 56 507.049
3 S, Vi) (Ve) 1,102.724 -1,144.480 600 2 56 614.244
4 ve, Vi) (S) 1,102.724 -1,463.770 600 2 56 294.954b
5 (S, Ve, Vi) 1,102.724 - 941.580 600 1 28 789.144

n - 150 plants, p - 4 variables

m - kp + kp(p+l)/2 parameters
K -1

AIC(varytng V and E) - nplog e (2w) + I nglogelng Agl + np + 2m
g-1

aFirst Minimum 
AIC

bSecond Minimum AIC
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Hence, looking at the Table 6.6, we see that, using all four variables

simultaneously the first minimum AIC occurs at the alternative submodel 1,

that is, when (S) (Ve) (Vi) are all clustered separately. This indicates

again that indeed there are three types of species. Therefore, the MAICE is

submodel 1. Not surprisingly, the second minimum AIC occurs at the

alternative submodel 4 telling us that if we were to cluster any one of the

two iris groups, we should cluster I. veriscolor and I. virginica together as

one homogeneous group, and we should cluster I. setosa completely separate as

one heterogeneous group.

Here, it is important to note that we obtained also the same results when

we used the four variables separately in our computation of AIC in the

previous section, which is encouraging.

7. Conclusions and Discussion

From our numerical results in Section 6, we see that AIC and consequently

minimum AIC procedures can successfully indeed identify the best clustering

alternatives when we cluster samples into homogeneous sets of samples both in

the univariate and the multivariate models with varying parameters.

In our previous paper on multi-sample cluster analysis (Bozdogan and

Sclove [51), we considered ANOVA and MANOVA as our two underlying models where

the assumption of equal variances and covariances were used to cluster the

groups or samples for multi-sample data. There, we used AIC also in

identifying the best clustering alternatives in clustering the iris groups or

species. We obtained the same results in determining the three types of iris

species and that if we were to cluster any one of the two iris groups, we

should cluster I. versicolor and I. virginica together as one homogeneous

L , i, . . .. . .... ... .
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group, and we should cluster I. setosa completely separate as one

heterogeneous group.

In summarizing the results of AIC-values for the multivariate case only

from the previous and this paper, we obtain the following table.

TABLE 6.7. THE AIC'S FOR IRISES BY GROUPS ON ALL
VARIABLES UNDER TWO MULTIVARIATE MODELS

Alternative Clustering AIC(varytng 1. and Z) AIC(comnon z)

1 (S) (Ve) (Vi) 132.829a 242.524a
2 (S, Ve) (Vi) 507.049 652.824
3 (S. Vi) (Ve) 614.244 750.334
4 (Ve, Vi) (S) 294 .954b 439.124
5 (S, Ve, Vi) 789.144 788.994

aFirst Minimum. AIC

bSecond Minimum AIC

Comparing the AIC's in Table 6.7 above, we see that AIC(varylng V and Z)

values are much less than the AIC(common r) values for each of the clustering

alternatives except for the last clustering alternative (i.e., alternative 5)

in clustering the iris groups or species. Since according to the definition

of AIC, the model with the minimum AIC is chosen to be the best model, then

the above results suggest that when we are clustering iris data, and in

general, we should use different covariance matrices rather than using equal

covariance matrices in data analysis.

As we mentioned in the introduction of this paper, in practice the

assumption of equal covariance matrices within the model is a rather dubious

requi rement.
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Thus, in concluding, we see that the use of AIC shows how to combine the

information In the likelihood with an appropriate function of the number of

parameters to obtain estimates of the information provided by competing

alternative models. Therefore, the definition of MAICE gives a clear

formulation of the principle of parsimony in statistical model building or

comparison as we demonstrated by numerical examples. And MAICE provides a

versatile procedure for statistical model identification which is free from

the ambiguities inherent in the application of conventional statistical

procedures.
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