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MULTI-SAMPLE CLUSTER ANALYSIS
WITH VARYING PARAMETERS USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Il1linois at Chicago Circle

ABSTRACT

Multi-sample cluster analysis, the problem of grouping samples, is studied

from an information-theoretic viewpoint via Akaike's Information Criterion
(AIC). This criterion combines the maximum value of the likelihood with the
number of parameters used in achieving that value. The multi-sample cluster
problem is defined, and AIC is developed for this probiem. The form of AIC is
derived in the univariate model with varying means and variances, and in the
multivariate model with varying mean vectors and variance-covariance matrices.
Numerical examples are presented and results are shown to demonstrate the

utility of AIC in identifying the best clustering alternatives.

Key Words and Phrases: Multi-sample cluster analysis; Akaike's Information
Criterion (AIC); Univariate model with varying means and variances,
Multivariate model with varying mean vectors and variance-covariance

matrices; maximum 1ikelihood.

*presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, University of
Massachusetts, Amherst, MA, October 16-18, 1981.




MULTI-SAMPLE CLUSTER ANALYSIS
WITH VARYING PARAMETERS USING AKAIKE'S INFORMATION CRITERION*

Hamparsum Bozdogan and Stanley L. Sclove
University of Il1linois at Chicago Circle

1. Introduction

In a previous paper, we introduced and developed Akatke's Information
Criterion (AIC) for multi-sample cluster analysis, the problem of grouping
samples. We derived the form of AIC in both univariate and multivariate
analysis of variance models, where the assumptions of independence, univariate
and multivariate normality, equal variances and varfiance-covariance matrices
were fundamental to the analysis. We gave numerical examples and results which
demonstrated the utility of AIC in identifying the best clustering alterna-
tives. (See, Bozdogan and Sclove [5]).

In this paper, we shall continue to study the multi-sample cluster
problem. However, here we shall develop Akaike's Information Criterion (AIC)
for multi-sample cluster analysis with varying means and variances in the uni-
variate model, and with varying mean vectors and variance-covariance matrices
in the myltivariate mocdel, since often in practice the assumption of equal
parameters within the model is a rather dubious requirement.

Many practical situations require the presentation of multivariate data
from several structured samples for comparative purposes and the grouping of
the heterogeneous samples into homogeneous sets of samples in which parameters
might vary. For this reason it is reasonable to provide a practically useful
statistical procedure that would use some sort of statistical model to aid in
comparisons of varfous collections of samples, identify homogeneous groups of

samples, and tell us which should be clustered together and which samples

*presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meeting, American Mathematical Society, Unfversity of
Massachusetts, Amherst, MA, October 16-18, 1981.
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should not. For examples of multi-sample clustering situations, we refer the
reader to Bozdogan and Sclove [5].

In the statistical literature several conventional test procedures are
available for testing whether or not several populations have equal variances,
as required by the analysis of variance (ANOVA) model. If we have a reason to
doubt this is the case, then we may first want to test the equality of
variances. In the multivariate case the equality of covariance matrices is
certainly more hazardous. Therefore, for this reason we may want first to
test the equality of variances in the univariate case, and the equality of
covariance matrices in the multivariate case. This is an important option to
use in clustering groups or samples, and in general.

In the literature, however, there are several test procedures for testing

the equality of variances, and covariance matrices. For example, in the
multivariate case, the most commonly used test is Box's M test despite the
fact that it is very expensive to compute it on a high speed computer, even on
an IBM 370. Moreover, as in the case of MANOVA, these test procedures are not
revealing or informative in multi-sample clustering problems. Therefore, in
this paper we shall propose again Akaike's Information Criterion (AIC) as a
new procedure for comparing the clusters, and use it to identify the best
clustering alternatives.

In 1971, Akaike first introduced an information criterion, referred to as
an Automatic (Model) Identification Criterion or Akaike's Information
Criterion (AIC), for the identification and comparison of statistical models
in a class of competing models with different numbers of parameters. It is

defined by
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(1.1) AIC = -2 loge (maximized likelihood)

+2 (number of independently adjusted parameters within the model).
It was obtained with the aid of an information theoretic interpretation of the
method of maximum l1ikelihood by Akaike ([2], [3]). It estimates minus twice
the expected 1og likelihood of the model whose parameters are determined by the
method of maximum 1ikelihood. When several competing models are being compared

or fitted, AIC i1s a simple procedure which measures the badness of fit or the

discrepancy of the estimated model from the true model when a set of data is
given.

The first term in (1.1) stands for the penalty of badness of fit or

downward bias when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other hand,

stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters. If more
parameters are used to describe the data, it is natural to get a larger
likelihood, possibly without improving the true goodness of fit. The AIC

avoids this spurious improvement of fit by penalizing the use of additional

parameters.

Thus, when there are several competing models, the parameters within the
models are estimated by the method of maximum 1ikelihood and the AIC-values are
computed and compared to find a model with the minimum value of AIC. This

procedure is called the minimum AIC procedure. The model! with the minimum AIC

is called the minimum AIC estimate (MAICE) and is designated as the best model.

In Section 2, we shall define the general multi-sample cluster problem,

and in Section 3, we shall briefly discuss the number of clustering alterna-

tives for a given K groups or samples into k nonempty clusters. In the

o - _— ..J»
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subsequent sections, that is, in Section 4 and in 5, we shall derive the AIC
procedure for the univariate model with varying means and variances, and for
the multivariate model with varying mean vectors and covariance matrices. In
Section 6, we shall give numerical examples for both univariate and multi-
variate multi-sample cluster analysis on the same real data set to demonstrate
our results of AIC and minimum AIC procedures obtained from different computer

analyses.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has been measured on p response
or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

(2.1) X(nxp)=|7

X
X2
X
X
I _l

be a single data matrix of K groups or samples, where Xg (ngxp) represents the
K

observations from the g-th group or sample, g=1,2,...,K, and n = 7§ Ng. The
goal of cluster analysis is to put the K groups or samples into kg;émogeneous
groups, samples, or classes where k is unknown, but k<K.

O0ften individuals or objects have been sampled from K>1 populations. For
multi-samples or multiple groups of individuals or objects the data matrix may

be represented in partitioned form as above. Let ng represent the number of

individuals in the g-th (random) sample, g=1,2,...,K. The ng are not
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restricted to being equal or proportional to other ng's. The total number of 3
K

observations is n = J Nge Let Xgi be the pxl vector of observations in group
=1

g
9=1,2,...,K, and for individual 1=1.2,...,ng.

3. The Number of Clustering Alternatives for a Given K
Samples into K Nonempty Clusters

In this section, we shall just briefly mention how to obtain the total

number of clustering alternatives for a given K, the number of groups or

samples. For details we again refer the reader to Bozdogan and Sclove [5].

In general, the total number of ways of clustering K groups or samples

into k clusters is given by

K
(3.1)  S(KK) = 4y 920(5)(-1)9(k-g)"

which is known as the Stirling Number of the Second Kind (see, e.g., Abramowitz

and Stegun [1]) and also called the number of clustering alternatives.

If k, the number of clusters of groups or samples, is known in advance,
then the total number of clustering alternatives is given by S(K,k). However,
if k is not specified a priori and varies, then the total number of clustering

alternatives for a given K, the number of groups or samples, is given by

K
(3.2) T OS(K.k) .
k=1

For example, K=4 samples, if k is not specified a priori and varies, then
there are in total 15 possible clustering alternatives to cluster K=4 groups or
samples first into k=4 groups or samples, then k=3 groups or samples, k=2

groups or samples, and k=1 group or sample by using the equation (3.1)
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respectively, and summing the results by using the expression (3.2) to obtain
15 as the total number of possible clustering alternatives.
Therefore, the total number of ways of clustering K groups or samples into

k homogeneous groups or samples is given by equation (3.1), and the total

number of possible clustering alternatives is given by the expression (3.2).

4., AIC For The Univariate Model

We now turn our attention to consider situations with several univariate
normal samples. For example, we may have multi-sample data with samples of
sizes "1’"2""’"K which are assumed to have come from K populations, the first

with mean pu. and variance 02

\ 1 the second with mean M, and variance qi,..., the

Kth with mean uK and variance oi. We may want to decide in this case if the
variances of these K samples will be treated as equal or not, given no
restriction on the population means. In terms of the parameters the univariate

model is ¢ = (ul,uz,...,uK,of,ai,...,ai) with m=2k parameters, where k is the

number of groups.

Recall the definition of AIC from Section 1,

AIC = -2 loge L(8) + 2m

= -2 loge (maximized likelihood) + 2m ,

where m denctes the number of independently adjusted parameters within the
model.
Suppose there are K independent samples of independent observations, with
K

ng, g=1,2,...,K, observations in the g-th group and n = Zlng. Denote the
gl

unknown means of the groups by M oM ,...,uK, and the unknown varfances of the

2

2
groups by of,az,....o;. Assume that the samples (211’212""’21n1; . e e}
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2
zK ,...,an ) are drawn randomly from K populations which are N(ug,og). The
t K

basic null hypothesis of interest is given by

4.1 H:t 0° =0° = 4o s =0,
( ) g (o] OK

The alternative hypothesis is given by

HI: Not all K variances are equal.

In the statistical literature, this is also known as the test of homogeneity of

variances or Bartlett's test.

To derive the form of AIC subject to this constraint, we call the common

unknown value of variances ¢°. The likelihood function in this case is given

by

2 -n/2 K ,.=n /2 K 1. Mg 2
. s 5 = g - P - .
(4.2)  L({ugagdsz) = (2n) gzl(og) exp{ 921(3;§)1Z1(291 ug)

The Tog likelihood is

Hi

(8.3)  1({u +0°}) = log L({u ,o°};2)
g 9 9 -~

. K . K
- 7 log(2r) - 1/2 ;ln log og - Z

and the MLE's of y and az are given by
9 9

9

.4) sl 92 i
ng j=1 g g.




-8-
and

£2 1 79 - 2 2
(4.5) o == Y (2qi - Z JJoo=s, 9=1,2,...,K.
g N2 9 g g

Substituting these back into (4.3) and simplifying, the maximized log

1ikelihood becomes

-~ a2 -~ a2
] ’ s 1 » M
(4.6) (tugsogys2) = Tog L(fugsoy32)

K
_n 2 . n
= - §-1og(2n) - 172 gzlng log Sg° 7

Since
(4.7) AIC = -2 loge L(6) + 2m,

where m is the number of parameters, and since

N K
(4.8) -2 log L({n ,6%}) = n log(2r) + ] ng log s* + n,
9 g g=1 9

then AIC becomes
2 K 2
(4.9) AIC (varying u and ¢°) = n log(2r) + | ng 109 sg +n + 2(2k).
g=1
Since the constants do not affect the result of comparison of models, we
could ignore them and use the simplified version

K
(4.10) AIC* = (varying u and oz) = 21 ng 1oge SZ + 2(2k)
g=

21 Qg - 2
where Sg = ;E-igl(zgi - zg.) y 931,2,000,K,
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k = number of groups or samples compared, or the number of
independently adjusted parameters within the model,
However, for purposes of comparison we retain the constants and use AIC given

by (4.9).

5. AIC For the Multivariate Model

As we mentioned in Section 1, that the assumption of equality of variances
in one-way ANOVA, causes serious problems when we are testing the equality of
several means. Parallel to this assumption, in the multivariate case the
equality of covariance matrices even causes more serious problems. For this
reason we may want first to test the equality of covariance matrices against the
alternative that not all covariance matrices are equal. Therefore, throughout
this section we shall suppose that we may have independent data matrices
X, ,X EK' where the rows of Xg (ngxp) are independent and 1dent1ca1iy
distributed (i.1.d.) Np(gg,gg), g=1,2,...,K. In terms of the parameters the

multivariate model we shall consider is

2= lypngaee stk aLynee el )
with m = kp + kp(p+1)/2 parameters, where k is the number of groups, and p is
the number of variables.

Thus, the basic null hypothesis we usually are interested in testing fis

given by
(5.1) Hy: 2, 2L, =, . .= Ex'

The alternative hypothesis is given by

HI: Not al) K covariance matrices are equal.
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In multivariate analysis this is known as the test of homogeneity of

covariance matrices.

To derive Akaike's Information Criterion (AIC) in this case the log

likelihood function is given by
(5.2) 1({ugsZg}:Z) = log L{{ugsZg};Z)

K 1
yntrzs A

K
n
B - - ] 2 -
—5 log(2s) - 1/2 Zlng oglt | - 1/2 "

g= g
K
- 172 gzlng(gb - ug)' (g - uq) -

The MLE's of Hg and‘g_g are

(5.3) u 2,5 ¢ L2ieensks

9

and

a

(5.8)  Ig = Ag/ng.

Substituting these back into (5.2) and simplifying, the maximized log

likelihood becomes

log L({ug:Zg};Z)

(5.5) 1({ugsZg}iZ)

K 21
- ﬂg lTog(2r) - 1/2 ] ng log|ng Ag| - ﬂ% .
g=1
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Since
(5.6) AIC = -2 logelL(8) + 2m ,
where m = kp + kp(p+1)/2 is the number of parameters, then AIC becomes
K 1
(5.7) AIC(varying u and £) = nplog(2r) + | ngloglng' ﬂg' + np
1

gl
+ 2[kp + kp(p+l)/2].

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(5.8) AIC*(varying y and ) = gglng1ogelﬂg| + 2[kp + kp(p+l1)/2],
where ng = sample size of group or sample g=1,2,...K,
IAQI = the determinant of sum of squares and cross-products (SSCP)
matrix for group or sample g=1,2,...,K,
k = number of groups or samples compared, and
p = number of variables,
However, for purposes of comparison we retain the constants and use AIC given

by (5.7).

6. Numerical Examples of Multi-Sample Cluster Analysis on Fisher Iris Data

In this section we shall give numerical examples of both unfivariate and
multivariate multi-sample data, and cluster the groups or samples, and choose
the best clusterings by using Akaike's Information Criterion (AIC) as derived
in Sections 4 and 5.

Our computations were carried out for all the examples we shall present

here on an IBM 370, using various statistical software packages such as
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MINITAB, SPSS, and SPEAKEASY (VM/CMS version).

6.1. A Univariate Examples

For the univariate numerical examples we shall iliustrate our results on

Fisher [6] iris data.

Example 6.1. Clustering of Irises by Groups: The iris data set is composed

of 150 iris species belonging to three groups or species, namely Iris setosa

(S), Iris versicolor (Ve), and Iris virginica (Vi) measured on sepal and petal

length and width. Each group is represented by 50 plants. The data set for
the 150 irises are given in Table 6.1.

This data set has been quite extensively studied in classification and
cluster analysis since it was published by Fisher [6], and still today, is
being used as a "testing ground" for classification and clustering methods
proposed by many investigators such as Friedman and Rubin [7], Kendall [8],
Solomon [10], Mezzich and Solomon [9], and many others, including the present
authors,

For each of the 150 plants we already know the group structure of the
iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his
Tinear discriminant analysis the separation of I. setosa completely from I.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.
With this in mind, let us take K=3 groups or species on each of the

variables separately and cluster them into k=1,2, and 3 homogeneous groups.

Since we are dealing with K=3 groups, by using equation (3.1) and the
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expression (3.2) in Section 3, we obtain in total 5 possible clustering alterna-
tives. Denoting I. setosa by S, I. versicolor by Ve, and I. virginica by Vi, we
have (S) (ve) (Vi), (S, Ve) (vi), (S, Vi) (Vve), (Ve, Vi) (S), and (S, Ve, Vi) as

all the possible clustering alternatives of three iris species. In terms of the
parameters, using the univariate model ¢ = (ul,uz,...,uK,af,ag,....oi) as our
underlying model with varying means and variances for clustering the iris groups,
from a simple run on the computer by :sing MINITAB package, we obtained the AIC's
for each of the 5 clustering alternatives of each of the four variables separate-
ly. We report our results on each of the four variables, respectively, as

follows.

TABLE 6.2. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL LENGTH

' K 2
Alternative Clustering nloge(2r) ) nglogeSq n k | 2(2k) AIC
g=1
1 (S) (ve) (Vi) 275.681 -218.710 150 | 3 12 218.9712
2 (S, Ve) (vi) 275.681 -136.019 150 | 2 8 297.662
3 éS, Vi) (Ve 275.681 - 79.394 150 | 2 8 354,287
4 Ve, Vi) (S 275.681 -188.536 150 | 2 8 245.145b
5 (S, Ve, Vi 275.681 - 57.603 150 | 1 4 372.078
TABLE 6.3. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE SEPAL WIDTH
K 2
Alternative | Clustering nloge(2r) 1_NglogeSq n k | 2(2k) AIC
g=1 ‘
1 (S) (Ve) (Vi) 275.681 -329.102 150 | 3 12 108.5792 ‘
2 (S, ve) (Vi) 275,681 -262.503 150 | 2 8 171,178 '
3 iS, Vi) (Ve; 275.681 -292.416 150 | 2 8 141.265b
4 Ve, Vi) (S 275.681 -319,093 150 | 2 8 114,588
5 (S, Ve, Vi) 275.681 -250.132 150 | 1 4 179.549
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TABLE 6.4. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL LENGTH

K 2
Alternative Clustering nloge(2n) I nglogeSq n k | 2(2k) AIC
g=1
1 (S) (ve) (Vi) | 275.681 -313.055 | 150 | 3 12 | 124.6262
2 (S, Ve) (Vi) | 275.681 12.795 | 150 | 2 8 | 446.476
3 (s, vi) (ve) | 275.681 70.394 | 150 | 2 8 | 504.075
4 (Ve, Vi) (S) 275.681 -215.414 150 | 2 8 218.267b
5 (S, Ve, Vi) 275.681 169.888 150 | 1 4 599,569
TABLE 6.5. THE AIC'S FOR IRISES BY GROUPS ON VARIABLE PETAL WIDTH
K 2
Alternative | Clustering nloge (2n) L nglogeSq n k | 2(2) AIC
g=1
1 (S) (ve) (vi) | 275.681 -519.344 | 150 | 3 | 12 -81.6632
2 (S, ve) (vi) | 275.681 -245.374 | 150 | 2 | 8 | 188.307
3 (S, Vi) (Ve) 275.681 -181.176 150 | 2 8 252.505
4 (ve, Vi) (S) | 275.681 -398.271 | 150 | 2 8 35.410P
5 (S, Ve, Vi) 275.681 - 82.454 150 | 1 4 347.227

K 2

AIC(varying u and o) = nloge(2r) + 7§ ngloge Sg + n + 2(2k)
g=1

3First Minimum AIC

bsecond Minimum AIC

Looking at each of the tables above, we see that on each of the variables
the first minimum AIC occurs at the alternative submodel 1, namely (S) (Ve) (Vi).
That is, the MAICE is submodel 1 indicating that indeed there are three types of
species across all the variables. But the second minimum AIC is at the alterna-
tive submodel 4 again across all the variables indicating that if we were to

cluster any iris species, we should cluster 1. versicolor and I, virginica

together, as one homogeneous group.
Thus our minimum AIC results for each of the variables confirm other investi-

gators' findings, including Fisher's results on the iris data. Moreover, if we
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were to choose among the submodels then we would choose the one with smallest
minimum AIC as the best submodel. Examining the Tables 6.2, 6.3, 6.4, and 6.5,
we see that the smallest minimum AIC occurs at the submodel 1 in Table 6.5 on
variable petal width. This indicates that petal width alone separates the
three iris species with virtual certainty, confirming again Fisher's results
(see, e.g., Fisher [6]).

Hence, we note here that we are clustering the irises by groups or species
under a more general model rather than using the ANOVA model as our underlying
model which we cosidered in a previous paper on multi-sample cluster analysis.

6.2. A Multivariate Example

Now we consider Fisher iris data again and this time we cluster K=3 groups
or species into k=1, 2, and 3 homogeneous groups on the basis of all the four
variables, assuming the multivariate model given in terms of the parameters
g = (“1’“2""’24’52”"’£K) as the underlying model for clustering these three
iris groups or species. On the iris data, running SPSS MANOVA program, we
obtain the following sum of squares and products (SSCP) matrices for each of

the clustering alternatives. These are:

(1) (s) (ve) (vI)
6.0882 4.8616 .8014 .5062
4.8616 7.0408 .5732 .4556
A =
=s) .8014 5732 1.4778 .2974
.5062 .4556 .2974 5442

-1
50 A = 1.949E-6
loge (1.949E-6) = -13.148
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13.561 4.362 9.066 2.7436

4-362 40825 4005 2.019 l ‘1 I

A = 50 A = 1,8053E-5
=(VE) 9.066 4.05 10.82 3,582 =(VE)

loge (1.8053E-5) = -10.922

2.7436 2.019 3.582 1.9162

19.813 4.5944 14.861 2.4056
4,5944 65.0962 3.4976 2.3338 -1
50 A

A =
=(VI) 14.861 3.4976 14.925 2.3924 (V1)
loge (1.2244E-4) = -9.0079

| = 1.2244E-4

2.4056 2.3338 2.3924 3.6962

(2) (s, VE) (VI)

40,901 -5.9433 74.361 28.144

-5.9433 22,69 -41.404 -15.291 1

A = |100 A | = 3.3118E-4
=(s, VE) 74.361 -41.404 208.02 79.425 (S, VE)

loge (3.3118E-4) = -8.0128
28.144 -15.291 79.425 31.62

(3) (s, vI) (VE)

88.469 -8.4997 177.42  73.311
-8.4997 17.29  -42.351 -17.414 -1

A - [100 A | = .0025193

(S, VI) 177.42 -42.351 434,61 184.69 (S, VI)

loge (.0025193) = -5.9838
730311 -17.414 184059 83045




(4)

(5)

(VE, vI) (S)

A =
=(VE, VI)

(S, VE, VI)

A =
=(S, VE, VI)

44,264
12.322
45.245
16.699

102.6
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12.322

10.962

14,137
7.9228

-6.0197

189.78

-6.0197 28.307
-49.119
76.884 -18.124

45,245 16.699

14,137  7.9228
67.476 28.584

28.584 17.862

189.78 76.884
-49.119 -18,.124
464.33 193.05

193.05 86.57

-1
{100

A
=(VE, VI)

| = 3.1476E-4

loge (3.1476E-4) = -8.0637

|150 A

1
=(S,VE,VI)

| = .0018787

loge (.0018787) = -6.2772

After carrying out all our computations for each of the clustering alternatives

(using the Matrix Algebra Routines in the SPEAKEASY interactive computer package), we

obtain the AIC's from (5.7).

The results are shown in Table 6.6.

TABLE 6.6. THE AIC'S FOR IRISES BY GROUPS ON ALL VARIABLES
K -1
Alternative| Clustering nploge(2r) 1 nglogelng Agl | np k | 2m AIC
g=1
1 (S) (ve) (vi){ 1,102.724 -1,653.89 5 600 | 3 | 84 | 132,829
2 (S, ve) (vi)| 1,102.724 -1,251.675 600 | 2 | 56 | 507.049
3 S, vi) (ve)| 1,102,724 -1,144,480 600 | 2 | 56 | 614,244
4 Ve, Vi) (s)| 1,102.724 -1,463.770 600 | 2 | 56 | 294,954
5 (S, ve, Vi){ 1,102,724 - 941,580 600 | 1 | 28 | 789,144
n = 150 plants, p = 4 variables
m = kp + kp(p+1)/2 parameters
K -1
AIC(varying y and £) = nploge (27) + [ nglogg|ng Agl + np + 2m
g=1

aFirst Minimum AIC

bsecond Mintmum AIC
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Hence, looking at the Table 6.6, we see that, using all four variables
simultaneously the first minimum AIC occurs at the alternative submodel 1,

that is, when (S) (Ve) (Vi) are all clustered separately. This indicates

: again that indeed there are three types of species. Therefore, the MAICE is
| submodel 1. Not surprisingly, the second minimum AIC occurs at the
alternative submodel 4 telling us that if we were to cluster any one of the

two iris groups, we should cluster I. veriscolor and 1. virginica together as

one homogeneous group, and we should cluster I. setosa completely separate as
one heterogeneous group.

Here, it is important to note that we obtained also the same results when
we used the four variables separately in our computation of AIC in the

previous section, which is encouraging.

7. Conclusions and Discussion

From our numerical results in Section 6, we see that AIC and consequently
minimum AIC procedures can successfully indeed identify the best clustering
alternatives when we cluster samples into homogeneous sets of samples both in
the univariate and the multivariate models with varying parameters.

In our previous paper on multi-sample cluster analysis (Bozdogan and
Sclove [5]), we considered ANOVA and MANOVA as our two underlying models where
the assumption of equal variances and covariances were used to cluster the
groups or samples for multi-sample data. There, we used AIC also in
i identifying the best clustering alternatives in clustering the iris groups or
species. We obtained the same results in determining the three types of iris
species and that if we were to cluster any one of the two iris groups, we

should cluster I. versicolor and 1. virginica together as one homogeneous
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group, and we should cluster 1. setosa completely separate as one

heterogeneous group.

e e het e e e o ——tin . o n ks

In summarizing the results of AIC-values for the multivariate case only

from the previous and this paper, we obtain the following table.

TABLE 6.7. THE AIC'S FOR IRISES BY GROUPS ON ALL
VARIABLES UNDER TWO MULTIVARIATE MODELS

Alternative Clustering AIC(varying u and L) AIC(common I)

1 (S) (Ve) (Vi) 132.8292 242,5242
2 (S, Ve) (Vi) 507.049 652.824
3 (s, Vi) (Vve) 614.244 750.334
4 (Ve, Vi) (S) 294,954 439,124b
5 (s, Ve, Vi) 789.144 788.994

AFirst Minimum. AIC [

bsecond Minimum AIC

Comparing the AIC's in Table 6.7 above, we see that AIC(varying y and )
values are much less than the AIC(common £) values for each of the clustering

alternatives except for the last clustering alternative (i.e., alternative 5)

in clustering the iris groups or species. Since according to the definition

of AIC, the model with the minimum AIC is chosen to be the best model, then

[

the above results suggest that when we are clustering iris data, and in

general, we should use different covariance matrices rather than using equal
covariance matrices in data analysis.
As we mentioned in the {ntroduction of this paper, in practice the

assumption of equal covariance matrices within the model is a rather dubious

requirement.,
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Thus, in concluding, we see that the use of AIC shows how tao combine the
information in the likelihood with an appropriate function of the number of
parameters to obtain estimates of the information provided by competing
alternative models. Therefore, the definition of MAICE gives a clear
formulation of the principle of parsimony in statistical model building or
comparison as we demonstrated by numerical examples. And MAICE provides a
versatile procedure for statistical model identification which is free from
the ambiguities inherent in the application of conventional statistical

procedures.
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