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1. Introduction.

The attention to the problem of fast matrix multiplication hereafter referred to as MM has

remained very high since 1968 when V. Strassen proved that 4.8N 28 1 arithmetic operations rather

than 2N3 suffice to multiply two N X N matrices for all N, see [1). (For comparison, a method

of nonasymptotic acceleration or MM [2] presented in January 1966 at the seminar of Dr. G. M.

Adelgon-Velskii, Dr. A. S. Kronrod, and Dr. Y. M. Landis in Moscow has not been published because

of the lack of interest to that method outside the seminar in 1966.)

The attempts to improve the exponent 2.81 followed. Smaller exponents could automatically

result from any sufficiently fast (in terms of the number of nonscalar multiplications involved)
bilinear algorithm for a MM problem of any specific shape because of the possibility to use

bilinear algorithms recursively. ([Iereafter that number of nonscalar multiplications is called the

multiplicative complexity of a bilinear algorithm.) The design of fast basic algorithms for the

recursion turned out to be a harder problem. The next improvement of the exponent rrom 2.81

to 2.7804 came about in 1978, see [3]. The proof techniques (trilinear aggregating, uniting and
canceling, TAUC) have been sketched in the earlier paper [4]. However the actual potential power of

the TAUC has not been fully appreciated even in 1978. Later another approach to the acceleration
of MM (called the method of APA-algorithms) appeared in [51 and has been justified in [6]. This

reduced the exponent to 2.7799. Then the methods of APA-algorithms and TAUC have been

combined together which led to a more serious asymptotic acceleration of MM, see [7- 10]. On the

other hand, it turned out that the TAUC are closely related to the Direct Sumn Problem (DSP) of

the fast evaluation of (the direct sum of) r independent sets of bilinear forms, r > 1. According to

the Direct Sum Conjecture (DSC), due to [11], the multiplicative complexity of the whole problem
(Direct Sum Problem) is equal to the sum of multiplicative complexities of the r independent
problems of the evaluations of r given sets. On the contrary, the TAUC successfully exploits the

*advantage of simultaneous evaluation of several independent sets of matrix products. In the case

of AI'A-algorithms the TAUC enables us to disprove the )SC. Thd Mr Ts6rfflal.counterexaniple'
to the DSC over the class of Al'A-algorithms appeared in [8, Rcmm rR, 'p, 37ralthoughLh( I)SC'

has not been studied in 181. (See other couniterexamples also based on the 'TAUC in [9,10.) lit the

case or usual algorithms the 1)Si' remains open. This might be due to outi boor knowledge ofr the

lower bounds. For example, no method is known for 10 X 10 MM in h50 foA61... ri: 'P!:.aio.
while two 10 X 10 matrix products can be evaluated using the TAU*C in 1300 m." 'ons.'

(However this does not disprove the DSC because the best known lower bound for M ,,

is only 199 multiplications.) Of course, the latter algorithm for the pair of 10 X 10 MM can be
transformed into a fast algorithm for 10 X 10 by 10 X 20 MM in 1300 multiplications which can

be a)plied as a basis for the recursion to derive an asymptotically fast method for MM. On the

other hand, the recursion based on the method of 10 X 10 MM in 650 would result in a smaller

exponent of MM. Although, as we mentioned, such a method for 10 X 10 MM might not exist it

turned out that practically the same exponent can be obtained as if itexi4 d because the recursion'

can also be used with an algorithm for a direct sum of MM problems as a basis. A similar result

for any hasic algorithm for an arbitrary direct sum of MM problems is due to [10] and is known

as the Ilxponential )irect Sum Theorem, EI)ST; see (9]. It is worth mentioning that historically

the earlier techniques of the TAUC motivated the l'DST as a means to reinforce the power of the
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TAUC.

By combining the new methods of the TAUC and APA-algorithrms with each other, with the
EDST, and with the recursive construction (which is also called the Tensor Product Construction
(TPC)) smaller exponents or MM were obtained in 1979; see [7-10]. (The references to the TAIJC

are omitted in [7, 10] but the reader can easily notice comnon basic elements of the patterns of
17, 10] and or the earlier 2-Procedure of the TAUC of [3, 4, 12]; see also 181, [9, Section 191, an(l

[13, Section 4].) In particular, the exponent 2.522 was obtained by combining the construction of

[8] with the iIDST and was announced on October 26, 1979, at the Conference on the Complexity

Theory in Oberwolfach, October 21 -27, 1979 (see [14]) although only out-of-date 2.548 appeared

as the "world record" in the EATCS report on that conference [15]. Later improvements in 1980

81, see [9, 10, 16, 17], which reduced the exponent to 2.5167, 2.5161, 2.496 also relied on the

combinations of the techniques of the TAUC, APA-algorithms, IDST, TIC, and on some new

elements of the analysis. Hfowever in general the progress seems to go out of power after 1979

because the most natural combinations of that kind have already been explored. (So called Partial

Matrix Multiplication technique, see [7], does not seemi to lead to a serious if any improvement
over the II)ST.)

We believe that the further progress in the acceleration of MM and might be in the solution

or the DSI for usual algorithms depends on the success in the analysis of the methods of trilinear

aggregating (TA) because TA constitutes the basis for the design of the fastest MM algorithms.

This paper is our extensive attempt of such an analysis. Thus we intentionally focus our attention

on TA.

We formally define the process of TA by reducing it to the design of Generating Tables which

in turn are obtai ned from certain partitions of finite sets. Until the last section we do not involve

Al'A-algorithins because we tend to simplify the problem and to understand how successfully TA

can work without them. Our study shows that Lite resulting MM algorithms are quite fast even if

A PA-algorithms are not. used. On the other hand, the structure of our algorithms is miore regular

than the structure of Ow faster algorithms for MM obtained via time APlA-algorithins.

To make the paper self-contained we formally state the problem or MM and of the direct

surn of MM and prove the l)ST iii Sections 2 and 3. In our proof we follow [9] using Theorem

13.1 of [9] as a basis but the successful notation borrowed from [101 helped us to make tIm(! proof

much simpler. (Forinally we prove the I",)ST for usual algorithins. The extension to the case of

APA-algorithnis is well understood now; see [6, 9, 10, 17].) Our proof of the EI)ST urlike the

proofs of [10, 17] is elementary and does not use tensorial calculus. Also in Section 2 we show that
tile asyrmptotic complexity of MM can not depend on the choice of the field or constants unless such

a field is fi ite. II Sec Lionl 4 we revisit tihe TAUIC. We present it more formally than we did earlier

and in a diff'erent version. The procedures of trilinear aggregating (TA) and consequently MM

algorithms are defined by Generating Tables (GT). The resulting algorithms for MM appear as

(tecomn)ositions of special trilinear forms (associated with the given problenms of' MM) into sums of

aggregates andi correction termis obtained from the Generating Tables. The total number of terms

equals tile imult,il)licative conplexity or the algorithms and consequently defi nes the exponents of

MM. Ilence our objec tive is the redution of the total number of terms andI, in particular, of the

numler of the correction terms because the aggregates are nlot numerous.
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In Section 5 we rewrite the GTs so that the design or algorithms for larger problems of MM

appears in a more explicit fashion than in tire cases where it is defined by the recursive process that

starts with the algorithms for small MM problems. Also we define the degree and the dimension

of correction terms of a Generating fable and show why it is desirable that all of or most of the

correction terms have degree 1. In Section 6 we show that the latter property follows if the GTs

are defined by some appropriate partitions of the finite sets. We give two examples of' the GI's (the

First and the Second Constructions of Section 6) where we demonstrate which properties of the
partitions are to be exploited. In Section 7 we describe the method of Implicit Canceling (IC) of

correction terms of degree 1; see [13], to be combined with TA to define Trilinear Aggregating with

Implicit Canceling (TAlC). TAlC is a modification of TAUC. It provides us with an insight into

the techniques of the design of fast MM algorithms. Combining TAIC with the First Construction

or Section 6 gives us a quite regular and homogeneous algorithm that evaluates (the direct sum or)

(2u)!/(u!)2 independent products of n' X n2
, by n 2u X nu matrices in (n+ 1)4' multiplicative steps

for arbitrary natural n and u. This defines the exponents less than 2.67 without the use of auxiliary

APA-algorithms. (The best previous result of that kind was 2.773... ; see [13].) Combining TAlC
with the Second Construction of Section 6 gives a similar method for the direct sum of (3V)!/(v!) 3

independent problems of (n - 1)3, X (n - 1)3' MM involving (n + 1)9' multiplicative steps for
arbitrary natural n and v. This defines the exponents less than 2.7288 (also without the use of

APA-algorithms.) Technically the latter algorithm involves TAUC and a method of Alternating
Summation of Aggregates which is used to cancel the terms of positive codimensions. Finally

in Section 8 we sketch the possible generalizations of our approach. This includes the study of
the partitions of finite sets for GTs (with the First and Second Constructions of Section 6 as

the models) and or the Generating X-Tables. In the latter case the indeterminates appear in the
GTs with some constant coefficients which may depend on a parameter X. This case incorporates

TAUC with a special Canceling Procedure (see [3, 12]) and the design of AI'A-algorithins which

are sometimes also called X-algorithmns (see [8, 9, 171).

We hope that our analysis will help the reader to understand the principles of trilincar

aggregating (which we consider the basic technique for fast MM) and finally will lead to a new

acceleration of MM in the future.

2. Some Basic Notions, Basic Notation, Basic Construction.

Ilereafter uik = (U)ik designates the (i, k) entry of a matrix U, V designates a vector of all
entries of U taken in a fixed order, Tr U = ut is the trace of U. 1, J, K are given natural

numbers, i, j, k are integer parameters.

Definition 2.1. (1,.!, K) the problem of MM. Given a field (of constants) F, an I X .1 matrix

X, and a J X K matrix Y whose entries are indeterminates. Evaluate (the entries of) the product

XY by a straight line arithmetic algorithm using the constants from Y.

(1, J, K) is an example of a bilinear arithmetic computational problem that is the problem

of the evaluation of a given set, of bilinear forms, 8. In the case of (1, .1, K), B is the set or the
entries of XY which are bilinear forms of the entries of X, Y.
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In general, a bilinear problem can be equivalently represented by a set of lilinear forms,

= {I,((XY)}, (2.1)

by a trilinear form
T = 7(X, 12 Z)--- I(, Y_ ,Z)z,, (2.2)

or by a tensor t = (t o the coefficients of T; see [4, 18], for surveys on bilinear problems and

algorithmns, see jig -231.

In the case of (, = Tr(XYZ) = (2.3)

i,j,k

Here X, Y are given matrices to be evaluated (see Definition 2.1) and Z = (zk) is the (auxiliary)

K X I matrix whose entries are irdeterminatcs.

As another example of bilinear problems we mention polynomial multiplication (I'M) also

known as convolution or vectors (see (21, 231). PM is defined by the following trilinear form,

* p-I q-t

T= E XiY zi+. (2.4)
i=0 j=O

Bilinear algorithms for bilinear problems can be equivalently represented as the following

bilinear, trilinear or tensorial identical decomposi tions.

M

V,7: ,(X, K) = q q L(X) L' (_), (2.5)
q=1

M

T(, Y, L) = E Liq(X) I,'(E) V' (Z_), (2.6)
q=1

M

tq.qq= E for all p, V,17. (2.7)
q=1

Here
Vq: Lq(X) = fq X, , !,(Y_) f f s, ,, Y ."(I ) = f Z (2.8)

fqp"f'," E iF for all q,1, v, 1. (2.9)

Hlereafter the reader may identify a bilinear algorithm with either of its three representations

but actually the evaluation of B proceeds by irst computing the M products 7rq(X, Y) = Lq(X)lq(y)
for all q, and then comp,,ting 11,(X, Y) = rq_=, f ,w~q(X ',Y) for all qj. llereafter MW is called the

rank ora bilinear algorithm.

In the case of MM the subscripts it, v, and q/ are represented by the pairs of (i, j), (j, k), and

(k,i) respectively (for example, in such a case y, = y2k, f,, - I'qk).
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We will refer to the tensorial representation (2.7) in Remark 2.1 but otherwise the reader may

skip (2.7). In fact, we presented the tensorial representation only for the sake of completeness

because of its wide use in tile literature on MM. Furthermore we will need only the trilinear

representation after Section 3.
The equivalence of (2.5), (2.6) and (2.7) is easily verified. For instance, for the transition from

(2.6) to (2.5) equate the coefficients of each indeterminate z7 in the left and right sides of (2.6).

Equating tile coefficients of all xA or of all y,, rather than z,, we obtain tile two (dual) bilinear
algorithms of the same rank M for the two dual bilinear problems {IJ,(Y,Z)} and {Bk(_,X)}.

For example, if the original algorithm of rank M solves (I, J, K) then the dual ones solve
(J, K, 1) and (K, J, /) and have the same rank, M. In fact, such algorithms can be also trans-

formed into ones of the same rank, M, for the problems (J, I, K), (1, K, J), and (K, J, I). (Indeed,

substitute uji, Vik, Wkj for 'ij, Zki, and Yjk respectively in (2.3) and (2.6).) The study or the
asymptotical time-complexity of bilinear algorithms for MM relies on the next definition and

theorem.

Definition 2.2. /3 = 3(F) is an exponent of' MM (over P) if there exists a positive constant
c = c(13) associated with that exponent /3 such that cNP arithmetic operations are sufficient to

solve (N, N, N) for all N by straight line algorithms (with the constants from F). /* is a limiting

exponent of MM if for all c > 0, P* + c is an exponent of MM.

Theorem 2.1; see [I. if ror some natural numbers f, ,J, K, M there exists a bilinear algorithm

(2.5) (2.9) of rank M for (1,J,K) then 63 = 3log M/iog(!.JK) is an exponent of MM.

Outline of Proof. The basic observation for the proof is that in the case of MM the identities

(2.5) (2.9) remain true if the entries of X, Y, Y are replaced by the ' x J', J' X K' and K' X '

matrices respectively (for arbitrary I, J', K'). Then ,q(X), Ii(Y), /,q(Z) for all q are also
1' x J, J' X K' an( K' X 1' matrices respectively and Tr(XYZ) represents (11', JP', KK'). If
I = J = K we write P' = -= K' = I and apply the original algorithm to multiply Lq(X) by

Lq(Y) for all q. This defines the transition from a bilinear algorithm of rank M for (1, 1, 1) to the
one of rank M 2 for (12, 12 , 12). Continuing this process and counting the number of arithmetic

operations we obtain the desired upper bound in the cases N = Ih for all h and then easily

extend the bound to the case of arbitrary N. If (!,J, K) is an arbitrary triplet we come back to

the square MM by writing I = .1, j = K, K' = I and then I = K, J = I, K' = J for

the first two recursive steps. This gives an algorithm of rank M 3 for tile square MM problem,

(IK, IJK, IJ K). I

Tile proof of Theorem 2.1 is constructive. he coefficients of the resulting bilinear algorithm
for (N, N, N) can be explicitly expressed through the coefficient of the original one givn for

(1,J,K).

Remark 2.1. More precisely, the tensor of the coelicients of the resulting algorithm is the

tensorial power of the tensor of the coefficients of tile original algorithm if I = J = K. If
1, J, K are arbitrary, the former tensor is tile tensorial power or the tensor of the algorithm
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ror (IJK, IJK, IJK). The latter tensor is the product of the three tensors of the three dual
algorithis that include tile original one. We will not use this easily verified fact but we will apply
the name Tensor Product Construction (TPC) to the recursive process or the proof of Theorem 2.1.

Theorem 2.1 leads to tile problem of the design of bilinear algorithms for (!,J, K) where
log M/log(IJK) is as small as possible. Before involving ourselves with that main problem we
would like to warn the reader that we do not mean to defline tile smallest exponent of MM in
this way. To be formal, we introduce the following delinition which will also be used in the next
sections.

Definition 2.3. Let a bilinear arithmetic computational problem be defined by a set of bilinear
forms B, or by a trilinear form T(X,yz), or by its tensor t. Then p(B) = p(T) = p(t), tile71 rank of the problem, of its tensor t, and of the trilinear form 7'(,K, Y, Z) is the minimum rank
of all bilinear algorithms that solve this problem. For arbitrary natural numbers I, J, K, the
rank of (1, J, K) is designated by p((!, J, K)). (Tile rank may depend on the choice of the field of
constants F so that strictly speaking we have to write PF rather than p. Usually we will omit tile
subscript F assuming that " is fixed; see also Theorem 2.3 below.)

Using the tensor product construction we obtain (p((1, J, K)))k > p((Jl, jh, Kh)) for all

natural h. On tile other hand, it is known (see [24, 251) that

p(([, J, 1)) _ fJ, p(' J, K (- 1)J + 1) + 1K ir K > 1 (210)

In particular, p((2,2,2)) > 7 and in fact, p((2,2,2)) = 7, see [I]. If we choose I = J = K = 2
and apply Theorem 2.1 then we only obtain the estimate p((2h, 2 h, 2 h)) < 7 h while it is known
that p((2 , 2 h, 2h)) < 7h for all h > 5; see [9]. Combining the two techniques based on the concept
of Al'A-algorithrns (see [5, 6]) and on the 2-Procedure or trilinear aggregating (see [3, 4, 9, 12]) it

is easy to prove more general results or this kind; see [171 and compare [13.

Theorem 2.2. For arbitrary 1, .1, K, p((l,.J, K))h > p((Ih,.Ih, Kh)) for all sufficiently large h.

Notice that Theorem 2.2 (toes not lead to any improvement or the lower bounds (2.10). The

meaning of Theorem 2.2 is that any given exponent or MM associated with constant c I can be
further reduced. It is not clear ir there exists the minimum exponent of MM. (/3 - 2 could be a
candidate.) Ilowever certainly the asymptotic arithmetic complexity or MM can be represented by

8m in , , 0 ("), the smallest limiting exponent or MM which is, or course, unique ir the field of
constants P is given. Morcovr, it is easy to prove a stronger statement on the uniqueness.

Theorem 2.3. The smallest limiting exponent of MM over F does not depend on the choice of
an infinite ield of constants F so that for any infinite field F

- /3, 1.(F') = #,,..( ) =fiJ,,;(G)

where Q, C are tile fjiels of rational and complex nmnbers respectively.
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Proof. It is known that any infinite field is isomorphic to an infinite subfield of C (arid such a
subfield always contains Q). Thus we can assume that all constants from F are complex numbers.
Then for arbitrary E > 0 there exist integers I -= I(E), J = J(c), K = K(c) such that

log P((I, J, K))/ Iog(!JK) < /min("') + e. (2.11)

As is easy to verify (see [4]), the existence of a bilinear algorithm for (1, J, K) of a fixed rank
M, in particular of the rank M = .pF((l, J, K)) is equivalent to the existence of a solution of a

system of algebraic equations with coefficients 0 and 1. It follows that

pF((I, J, K)) = PE(V, J, K)) (2.12)

where E = E(Q) is an algebraic extension of Q. (2.11) and (2.12) imply that &ni,(F') + C is an
exponent of MM over E so that

6* (E) < /O(F) + e. (2.13)

Theorem 2.3 follows from (2.13) for e --+ 0 if we recall that

flmin(E) = m*.o(Q);

see, for instance, [9, Theorem 3.2]. 1

rhroughout the paper our results do not, depend on the choice of F unless it is stated otherwise.

3. The Direct Sum of Problems and the Direct Sum Problem. Tensor Product
Construction for Direct Sums.
In this section we generalize Theorem 2.1 and apply it to the case where several independent

matrix products are to be evaluated. We will define this problem as a particular case of direct sum
of r bilincar problems.

Definition 3.1. Given a field F of constants and r sets of bilinear forms BM,..., B(r) such that

B -) = {B(,)(X(a), Y(')) , 8 = 1,..., r , (3.1)

X = (X(c),...,X(?)), y = (yl(),...,y(r)), (3.2)

and the entries of the vectors X, Y are indeterminates. (The latter condition implies that the sets
B(0,..., B(r) are disjoint, that is, the sets of their input variables are independent each of others.)
The problem of simultaneous evaluation of the set BB(), ... ,() over Is is called the direct sum
of the r bilincar problems BM,..., B(') and is designated by

B B(a) (3.3)
8=1

8



In particular, if r products X(8)Y(8) of i(s) X J(s) by J(s) X K(s) matrices X ( ) and
y(W) respectively are to be evaluated over F for s = 1,...,r and the entries of all matrices

X(), y(") are indeterminates then such a direct sum of r problems of MM is designated by

" (f(s), J(s), K(s)).

The direct sum of r problems, B (see (3.1)- (3.3)) can be equivalently represented by the set

I{B(,..., B(r)} of bilinear forms, by the tensor of their coefficients, and by the following trilinear

form,
T(X, Y, Z) TO T8(X(a), Y (a), Z(8)), (3.4)

T(B)(X(s), 0 Z(')) - B(')X(A, Y(), ,(" (3.5)

'1

Here
€(S) = (z(B)) 7 = (7),...,Z(8)) (3.6)

are vectors of indeteririnates, z( ) and T y(s) Z(a)) are triline-r problerns that define the

bilinear problems B('); see (3.1)--(3.3).

I In the case of (D(I((s), J(s), K(s)),

r

TT(X.,1 , ) = orr(X(s)Y(s)Z(3)) (3.7)

where Z(W) is the K(s) X 1(s) matrix whose entries are indeterminates, s I,...,r.

As is obvious, the solution of an arbitrary direct sum of r bilinear problems can be obtained if

each of the r problems is solved independently of other r - I ones. Such a solution is represented

by the following r decompositions,

M(8)

T(c )(xc~, ys), ,_Y)) = 1 .qs(X .)L,(y(3))L'4 8(KCO1) for s , ... ,r. (3.8)
q=1

An algorithm defined by (3.8) is called a direct sum algorithn, and has rank M -- Al(s).

However we might hope to take advantage by solving the r problems simultaneously. Such a

solution is defined by the more general decomposition, (2.6) and consequently gives (bilinear)

algorithm of a more general class.

In the case of direct sums of several bilinear problems, the Lq(X), q(K), 1,'(Z) in (2.6) can

be defined by the following identities (rather than by (2.8), (2.9)).
V,,: ,.iqX) _ ~ xa) Y)f I = S (a :. ,': ," L:(Z_') = F E 1

f P q q L' , q" (3. ! (&)
JA,e J, Y,

fqpsaf ,flqpa7 E le for all q, pv (3.10)

(On the other hand, (3.9), (3.10) can be represented as a particular case of (2,8), (2.9).)

Again in the case of MM, IA, v, 71 are defined by the pairs (i, j), (j, k), and (k, i) respectively.

Notice that Chij, v, 77 (and in the case of MM also the i, j, k) range in ti domains Chat dependon a.



Now the problem arises if there exist algorithms (2.6), (3.9), (3.10) that are indeed faster than
the best direct sum algorithms (3.8)? In particular, does there exist r disjoint biliear problems
B M,..., BM such that

p ( ( '  < p(B (.,) ) ? (3.11);/7

The latter problem is called the Direct Sum Problem (DSP). The Direct Sum Conjecture (DSC) is

that (3.11) never holds. We are interested in the DSP and DSC for the class of MM algorithms.

Let us assume for a while that the DSC for MM is true. Then Theorem 2.1 can be generalized
in the following straightforward manner.

Proposition 3.1. Given a bilinear algorithm (2.6), (3.9), (3.10) of rank M for the direct sumI of r disjoint problems of MM, (1(s),J(s), K(s)), s = 1,...,r where M, r, i(s), J(s), K(s) for
s = 1,...,r are arbitrary, M > r. Let T = T* be the real solution to the following equation,

r ([(s)J(s)K(s))- -=- M. (3.12)

Then the DSC implies that 3* - 3r* is an exponent or MM.

Definition 3.2. The equation (3.12) is called the equation associated with a bilinear algorithm or
rank M for ( ((s), J(s), K(s)).

Proof. Let real r(s) satisfy the following equations

p((Is), J(s), K(s))) = (I(s).J(s)K(s)yr(s)  (3.13)

where s 1,...,r. Using the DSC we obtain

p(I(s), J(s), K(s)) =p E®((s,), J(,), K(s)) < M. (3.14)

Combining (3.13) and (3.14) gives

7 r

M > (l(s)J.()K(s))r(8) > (l(s)J(s)K(s))""" (3.15)

where 7min = 8nin. T(s). By virtue of Theorem 2.1, 3r(s) for all s and hence 3Tmin are exponents
of MM. Comparing (3.12) and (3.15) gives r_, r*. I

Proposition 3.1 motivates Definition 3.2, but we could apply that Proposition only if the DSC
is proven to be true for MM. This is still an open problem (see the Introduction).

Fortunately a generalization of the Tensor Product Construction (TPC) enables us to save the
most essential part of the result of Proposition 3.1.

Theorem 3.1 (Exponential Direct Sum Theorem, EDST). Under the conditions or Proposi.
tion 3.1, the P - 3r ° is a limiting exponent of MM (even if the DSC is false).

10



To prove Theorem 3.1 we first generalize the TPC.

Hereafter we designate

r

rO(,J,K) = (D(I,J,K), rr'((,J,K) = rOr'Ot(,J,K) (3.16)

for arbitrary natural r, r', 1, J, K.
Using this notation we represent a bilinear algorithm (2.6), (3.4) (3.7) as the following nmapping,

S (!(s),Js(), K(s)) M- ( (1, 1, 1). (3.17)

The right side of (3.17) represents the right side of (2.6) where each product 1,q(X)tI,(Y_)II' (Z)
is represented as (1, I, 1).

We recall the basic observation of the proof of Theoem 2.1 (which has led us to the T'C) that

the substitution of I X J, .1 X K and K X I matrices for the entries of X, Y, Z respectively

preserves (2.6). Such a substitution turns the direct sun of the left side of (3.17) into the direct

sum O(I(s)I, J(s), K(s)K). Also it turns each of the products Lq(X)I'.(y)h(M) into the

, product of I X J by .1 X K by K X I matrices. Ilence the substitution turns (3.17) into an
algorilhm that can be represented by the following mapping,

SO(f(s) (f, J(., K (s)K) +-M (1, J, K). (3.18)
55=1

We will state the latter result formally as Lemma 3.2 using the following definition.

Definition 3.3. A mapping B +- B' is valid if there exists a bilinear algorithm that is represented
by such a mapping. Then we write B +-: B'. (In this paper we use the notation +-: B' mostly

in the cases where B' = A4 (D (1, 1, 1).)

Lemma 3.2. I1 (3.17) is valid then (3.18) is valid.

Equation (3.18) can be interpreted as the product of (3.17) by the trivial mapping

(1,J,K) +--([,J,K) (3.19)

for aribtrary natural 1, J, K.

Similarly we can define the valid trivial meapping

5 ,1, K1) Ul- I', K') (3.20)

for arbitrary natural r', I', .I, Kt, t = I,..
Multiplying (3.17) and (3.20) we obtain the following mapping,

r r 0 .I,..',, K.K') +- M K'). (3.21)
i 8 1--- et=t t=+

II



The meaning of the direct sum in the left side is obvious. The M terms of the direct sum in the
right side of (3.21) represent the M sets each consisting or r' products _t(7,

t = 1,... ,r', q = 1,..., M, where X (l), y(') Z(t) are I' X J', J' X K', and KI X 11 matrices
respectively.

To justify the validity of (3.21) (assuming the validity of (3.17)), apply Lemma 3.2 for I
J = J', K = K', I = I,...,r'. Then apply the following simple lemma.

Lemma 3.3. B : B' and B : imply

We have proven the following generalization of Lemma 3.2 and of the basic observation for

the tensor product construction.

Lemma 3.4. If mapping (3.17) is valid then mapping (3.21) is valid.

We also need the two following simple lemmas.

Lemma 3.5. B --: B' and B' --: B" imply B 4--: B".

Lemma 3.6. The mapping

r

t'(q) G) (!(q), J(q), K(q)) -- t i(s) ) (I(s), J(s), K(s))

is valid for arbitrary natural q, i'(q), r, I(s), I(s), J(s), K(s), a = 1,... ,r if I < q _ r, f'(q) <
1(q).

Now we are ready to prove the main lemma of this section.

Lemma 3.7. Given arbitrary natural numbers t, I, J, K, r. Let

r (f, J, K) +-: & 0 (1, 1, 1). (3.22)

Then the mappings
® (h hKh) ,_ lr (D (1,1, t) (3.23)

are valid for h = 1,2,3, .

Proof (by induction in h). Let (3.23) be valid for h = h*. Then by virtue of Lemma 3.2,

r 0D (th'+ , Jh*+, K'+') ._: th" (D (r D (1,., K)). (3.24)

(See the notatio,, of (3.16).) Applying Lemma 3.5 to (3.22) and (3.24) we obtain that (3.23) is valid
for h = h + 1. Observe that (3.23) for h I is the given valid nma))ing (3.22). *

12



Next we restate Theorem 3.1 in the following obviously equivalent form and then prove it.

Theorem 3.1. Let for some natural numbers M, r, 1(s), J(s), K(s), a =- I,...,r, r < M, the

mapping (3.17) be valid and r = r* be the real solution of the associated equation (3.12). Then

X3" = 3T* is a limiting exponent of MM.

Proof. Observe that Theorem 2.1 and Lemmas 3.5--3.7 imply Theorem 3.1 in the case where

the valid basic mapping (3.17) takes the form (3.22). (Indeed, consider valid mapping (3.23) where

h is sufficiently large, apply Lernmas 3.5, 3.6 in order to delete r in the left side, and then apply

'rheoremn 2.1.)

Finally consider the general case of arbitrary valid basic mapping (3.17). Recursively applying

Lemmas 3.4, 3.5 to (3.17) we obtain the following sequence of valid mappings for h = 1,2, 3,

@ ®c(a) ( ([(a), .1(g), K(a)) -Mh ( (1, 1, 1). (3.25)
aEQ(h,-)

|lere Q(h,r) is the set of r-diniensional vectors a = (a 1 ,... ,) with nonnegative integer

entries a I,..., a such that

a, +-..+of, =- h, (3.26)

•Wh < r h (3.27)
a t !a 2 ! ... at.! - (

r r

()J(a) =1 (J(s)) , K 11 . (K (3.28)
s=I a1 8=1

Mapping (3.25) (3.28) can he considered the h-th power of (3.17). We used the well known formula
of rnultinomnial expansion to represent the terms in the left side of (3.25). The mapping (3.17)

coincides with the mapping (3.25) (3.28) for h = 1.
Simultaneously with the sequence of mappings (3.25) (3.28) we define the folowing sequence

of the associated eqluations in r.

E c(q)(1(a)J(q)K(z))T = Mh, h = 1,2,3, ..... (3.29)
,EQ(h,r)

We observe that for all T and for all h

l ~~~~~ c(a)(lWa) .1(a) K (,e)" = ((.).,())

aEQ(h,r)

It follows that the equations (3.29) have the same (real) solution for all h which coincide with

the solution r r" of the equation (3.12).

Let qk(h) be a vector from Q(h, r) such that

c(a')(i(')J(')K('))'"= max c(q)(I(a),.(a) K(!t))" Mh/IQ(h,r)l (:3.30)
• C-Q(hv)

13



where IQ(h, r)1 = (r + h)!/h! is the cardinality of the set Q(h, r).
As follows from the validity or mapping (3.25)-(3.28) and from Lemmas 3.5 and 3.6,

cQ (J(c*), J(a*), K(!a*)) -: M'h ( (1, 1, 1)

for all c < c(!_*). We choose c = M g where g is the natural number such that Mg < c(g*) <
M g+l. Then we come to a valid mapping which can be represented in the form (3.22). Hence the
real solution T = r(h) to the associated equation

M,(f') J( ') K(!_*))' = MA (3.3)

is a limiting exponent of MM.
On the other hand; since the cardinality of Q(h, r) is equal to (r + h)!/h!, (3.29), (3.30) imply

the next relations,

c( *)((q_) J(a*) K(')) > (r + h) c()(() J(a) K(q))r = M h!
_ ~,) (r + h)! " r )

Since Mg > c(a*)/M and since (I( *)J(_)K(*))c > M h-)- for all c > 0 and for all sufficiently

large h (see (3.27), (3.30) and recall that M > r), it follows that for arbitrary c > 0
M9(1(q*)> M" (3.32)

if h = h(E) is chosen sufficiently large.
Comparing (3.31) for -r = Tjh) and (3.32) we obtain for arbitrary c > 0

T* + C > (h(c)).

Hence T* + ( is an exponent of MM for any c > 0. I

4. Trilinear Aggregating Generated by Tables.
In this section we introduce the techniques of trilincar aggregating, TA, in new modified

versions and describe the method in a more formal and more general way than we did earlier. We
start with an illustrative example of TA.

Example 4.1. (2-Procedure.)

Tr(XYZ) + Tr(UVW) - (X + ujk)(yjk + Vki)(zk, + wi) - X r(Yjk + Vki)Wij
i,j,k i,j k

E Ujk~jk (Zki + Wi)- E(;Xj+ ?1k))VkiZki .
j,k i ' 3

To simplify the formula we have slightly deviated from our previous notation writing X, Y,
Z, U, V, W rather than X 0'), y(l), Z('),X(2), y(2), Z(2) respectively. Let X, Y, Z, U, V, W
be I X J, J X K, K X 1, J X K, K X I, I X J m:trices respectively and let i, j, k in the above
identities range from 0 to I - 1, J - I and K - 1 respectively. Then the 2-Procedure implies that
for arbitrary natural 1, .1, K:

(I, J, K) (D (J, K, 1) 4-: (IJK + IJ + JK + KI) 0(D,1, 1).

The 2-Procedure of TA can be deduced from the following table.

14



Table 4.1.

xij Yjk zki

Ujik Vki Wij

We will explain how to define TA by the following more general tables.

Table 4.2.

i(W)O~) 1(1)k() Zk()I)i(t)
x j(2) ( 2) (2)
Si( 2 ),( 2 ) Ij(2)k(2) Zk( 2 )i(2 )

. [ (r) (r) (r)
X(,)j( ) Yj(r)k(,) Zk(,)i,)

Definition 4.1. Given an r X 3 table (Table 4.2) whose entries (s, I), (s, 2), (s,3) are filled with
the indeterminates x()j( 5 ), Yj (s)k( 5 ), Zk(,)l(), respectively. Then the table is called Generating

Table, CT. The product
7r ~(., .(tt) xq)Z,t) i(q)j(q) 'J,(s)k(s) Zk(t)i(t)

is called either the s-th principal term of the GT if q = s = t or the correction term (q, s, t) of

the GT otherwise. The product -_(qq) E () I ( ie

of the table.

Table 4.1 is an example of CT where r = 2, i(l) = i, j(i) = j, k(l) = k, i(2) = j, j(2) = k,

k(2) = i.

The next result is easy to verify.

Lemma 4.1. Given Generating Table 4.2 then its aggregate is identically the sum of all its

principal and correction terrns.

iereafter we assume that the 3r subscripts i(s), j(s), k(s), s = I,..., r in the CT are integer

variables that independently or each other range from 0 to some fixed bounds I - t, J - I, K - 1.

We designate that

11 = IJK. (4.2)

Remark 4.1. We will not use the obvious possibility to generalize our construction to the case

where I = I(s), .1 = .(s), K = K(s) depend on s but 11 = I(s).1(s)K(s) does not depend on a.

Then there exist II instances of such a GT and therefore II instances of each principal term,

of each correction term, and or the aggregate of that GT. The next simple fact is important for

us.

Lemma 4.2. The sum of the ii instances of the s-th principal terms of Generating Table 4.2 is

identically the 'r(X(a)Y(a)z( )) where X(') =( °)(, y(S) = (Y) () (S) ar
I X J, J x K, K X I matrices respectively.I1



Corollary 4.1. Given 11 instances of GCencrating TFable 4.2 (where (4.2) holds). Then

0 (1, J, K) 4-: (11 + pe) 0 (1, 1, 1) (4.3)

where pc is the rank of the sum of the II instances of all correction terms of the G'. (See Definition

2.3 about the ranks of trilincar forms.)

Indeed, the sum of the 11 instances of the aggregates gives 11 (D(,1, 1). Subtracting the sum
of all instances of all correction terms gives(4.3) by virtue of Lemmas 4.1 and 4.2. |

In the sequel we combine Corollary 4.1 with the techniques or Implicit Canceling or correction

terms of Table 4.2, see Section 7.

5. Generating Tables with Vectors as Subscripts.
In this section we combine the TIPC and TA. Let m, n be natural numbers. Consider the

nm-dimensional vector h = (h(1), ... , h(m)) where h(g) are independent integer parameters that

range from 0 to n - 1. Consider also r different partitions of the vector h into i(s), i(s), k(s),
I - 1,.., r, its three disjoint subvectors or dimensions I, 1', t" respectively where t, t', I", r are

fixed natural numbers such that

t + t' + t" = m, r < m!/(t! t'! t"!). (5.1)

Remark 5.1. Here and hereafter we assume that the order or the entries or a vector is preserved
for its subvectors.

We will use the following notation to represent the s-th partition of the vector h,

h =i(s)(s)k(s) for s= ,...,r. (5.2)

(.)= (i ( I,.,..i(Ii, s)) , i(t, s) = h(q(t, s)) , t = 1,..., t, (5.3 )

(s) = (j(l, s),...,'(e', s)), j(t', s) = h(q'(t', ) t' = 1,...,' , (5.4)

k(s) =(k(l, s), . . . , k(f", s)) , k(t", s) = h(q"(t", s)) , e= e,...,l", (5.5)

Since for all s the entries of i(s), j(s), k(s) coincide with some entries of h, they are also integer
parameters that range from 0 to n - 1.

Now we establish the following obvious one-to-one correspondence between the triplets of
vectors (i(s), j(s), k(s)) and integers (i(s),j(s), k(s)),

elf
i(s) = j i(t, s)n,'-, j(s) E j(t', s)n '- , k(s)= k(t", s)nt"-. (5.6)

t=1 t'=1 t=1

This implies that i(s), j(s), k(s) range from 0 to I - 1, J - 1, K - I respectively where

I n4k, J n", K-= n"' , JK=nm = H. (5.7)
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(Compare (4.2).)

Now we can rewrite Generating Table 4.2 in the following equivalent form.

Table 5.1.

(1) (1) (1)
i(I)$_'i) '1 t6*(l) Zk~l)i

X(2) (2) (2)
1(2)j(2) yj(2)k(2) k(2)i(2)

(r) W (r)
,(r)It(r) 1-(,)k(,) z ,)i(r)

We will consider Tables 4.2 and 5.1 identical assuming that

(a (.,) (a) Y (a) ) . ,z(a) - (a)(58Xi(S)(S) X(S),(a) ' j(.)k() = Yj(a)k(), M-ki(s) - Zk(3)() •

(See (5.2) (5.6).) Consequently we will designate (compare (4.1))

s, t) = (q) ( )  (5.).i(q)(q) YskS) W)i(t )

and also extend the definition ofr the principal and correction terms and of the aggregate of Table 4.1

as well as Corollary 4.1 to the case of Table 5.1. On the other hand, we will exploit the vector

structure of the subscripts of the indeterminates of Table 5.1 in our next definition.

Remark 5.2. lecause of the identities (5.8) we will not distinguish between the two bilinear

problems associated with Tables 4.2 and 5.1. In particular, we substitute (5.7) in (4.3) and obtain

rQ (nt,nt',nt") -: (n'm + pc) 0 (1, 1, 1). (5.10)
' (q) (rs~ciey (a ( )  dg (t)

Definition 5.1. (deg9 x(q(q) (respectively )(a)k(a)' degqZt)j(t)), the degree of ' (q)

(rspctvey f(a) Wf.t
(respectively of' or)k() , ( )in h(g) is the number or occurrences of the h(g) among the
entries of vectors i(q), j(q) (respectively i(s), k(s) or k(t), i(t)) where I < g _ m, I < q, a, t < r.

If ir(q, s, t) (see (5.0)), is a principal or correction term of Table 5.1 then

degg 7r(q, s, t) d egg - (q) + dea ) + deg t)

%(q)j(q) j Yj(o)k(3 )

ir(q, s,t) is a product oF degree I if it has degree I in h(g) for at least one value g, I < g < m.

The dimnension of 7r(q, s, t) is the number of (ilTerent g such that the degree of the 7r(q, s, t) in the

h(g) is positive.

The next simple estimates follow from the fact that all of the entries of the three vectors its),

j(s), k(s) are different parameters.

Lemma 5.1. Each principal term or Table 5.1 has degree 2 in all h(g), g = I,..., m. The degree

or each correction term or a'hle .5. t in any h(g) is at most 3.
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The nrext result follows front )cfinition 5.1 (see in particular (5.11)). It is important for our

designs of fast MM algorithms in the next sections.

Lemma 5.2. Let iw(q, s, t) (see (5.9)), a correction term of Table 5.1 have degree I in h(g) for

some 9, q, .,t, 1 < g I < q,s,t <r. Then the sum

83f(q,s, t) - Z7 r(q, s, t) (5.12)
h(9)=O

has rank 1 and, more specifically,

n-1

-(q, 8, t) W( Zq)j(q)) )k(.) Z)i(t) if degg x() 1 (5.13)

# q, ), t) =i q (8 ) if deg, 1
(q)j (q)i y(ak(a) .*C)) _t) / Zd ),_t)i "h(g)=0

fig,(q, s, t) x -(q)  o i°)  deg AO 1, (5 t 5)
, 'i~~~q) _(Wq) Zi*-ks/ l (t)t)0 if egg (t)) 1.5. )

- x(g)= 0

lit fact, in Example 4.1 we have already exploited the advantages given by Lemma 5.2 by

uniting the correction terms of Trable 4.1 into the sum of only IJ + JK + KL products. In

Section 7 we will see some additional reasons to seek for Tables 5.1 whose correction terms have

degree 1.

S. How to Design Generating Tables with Correction Terms of Degree 1?
In this section we define two constructions of large Generating 'ables 5.1 with correction terms

of degree 1. In Section 7 we will exploit the latter property. We hope that our constructions will

be eventually generalized and improved. We will use the following notation and definition.

Notation 6.1. A is the empty (0-dimensional) vector. Let , be subvectors of a given vector

h. Then U O and o n 0, the two subvectors of h are the union and the intersection of and 0

respectively. (Then u @ = to if n e = A; see Remark 5.1 and Equation (5.2).) h(g) is the

g-th entry of h, h(g) E h.

Definition 6.1. The partitions of two D-dimensional vectors k and 0 into x disjoint subvectors

and , are isomorphic if C(g) E (,, implies O(g) E 0& r g = 1,..., D, ,,, =

Now we are ready to describe our First Construction. Let. i natural m be a multiple of 4,

m 4,, (= .)
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and let hl, h 2 be the two (2u)-dimensional subvectors of the vector h that consist of tie first 2u

and the last 2u entries or h respectively. Then write

r = (2u)!/(u!) 2 . (6.2)

Let V(s), O(s) for s = I,...,r partition h, into pairs of disjoint u-dimensional subvectors.

Let V'(s), 0 '(s) ror s ,...,r be the isomorphic partitions of h 2 . Then we deine i(s), i(s),
k(s), the vectors-subscripts of Table 5.1 as follows.

i(s) = 5(s), ji(s) = (s)'(s), k(s) = 0_(s), s = 1,...,r. (6.3)

Now Table 5.1 is defined by the vector h and by its r partitions into the triplets or disjoint
subvectors (i(s), j(s), k(s)) such that (6.1) (6.3) hold. This is our First Construction. We call it

also the r-Procedure of TA for r = (2u)!/(,u!) 2 .

We will use thc following result.
'I

Lemma 6.1. Let Table 5.1 be defined by the r-Procedure of TA for r = (2u)!/(u!) 2 where
(6.1) (6.3) hold. Then each correction term 7r(q, s, t) of Thble 5.1 has degree 1,

Vq Vs Vt 3 g: degg r(q, s,t) = 1 unless q = s = t. (6.4)

Furthermore for each correction term ir(q, s, t) of Table 5.1 (scc (4.1), (5.9)), and for each g, I <

g < rn either

h(g) E A1 , deg, x_)j(q) =1 (6.5)

or

h(g)E h 2 , degg yj)k( 8 ) 1. (6.6)

Proof. E'lquations (6.5), (6.6) immediately follow if one examines the next combination of (5.9)

and (6.3),
7r(q, s, t) = ( q

) (t) q, s, I = 1.I r (6.7)

We recall (see Notation 6.1) that

VS: A,, =

and that this exhausts all r possible partitions of h, into the disjoint pairs of u-dimensional

subvectors and also all r isomorphic partitions of h 2 . ilence

VqVsVI: O(;) l (t) = A ira $ , '(q)ln0'(t) , A ifq 4t.

It follows that the dimensions of the vector I(s) U V(1) (respectively P'(q) U V'(t)) is at most

2u- I and such a vector is a proper subvector or the (2u)-dimensional vector hi = v(q)-O(q) unless
S = t (respectively of the h 2 =-- 's)3'(s) unless q = t). This proves (6.4). 3
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Now we present our Second Construction. Let m be divided by 9,

m = 9V (8.8)

and let hi, h2, hA3 be the three (3v)-dimensional subvectors of h that consist of the first 3v, the

next 3v, and the last 3v entries of the vector h respectively. Then write that

r = (3v)!/(v!)3 . (6.9)

Consider all r possible partitions of the vector h, into the triplets of disjoint v-dimensional
subvectors a(s), 1_(s), -7(s), s 1,..., r. Let a'(s), 13'(s), 2y(s) and a"(s), gI(s), y"(s) be partitions

of h2 and h3 respectively that are isomorphic to the partition a., P-, -y of h, s 1,...,r.

Then define i(s), j(s), q(s), the vectors-subscripts of Table 5.1 as follows.

j(s) = a()'(s) 9"(s), i(s) = 9(s)-'(s)a"(s), k(s) = 1(s) 3'(s) 2"(s), 8 l,...,r. (6.10)

This is our Second Construction of Generating Tables 5.1 or the r-Procedure of TA for r =

(3v)!/(v!)3 . Substitute (6.10) in (5.9). Then we obtain

(q) Ma a
rq ,t) = X-(q)g,(g) _.(q),O(q)l,(g)!_,,(q ) Y- ( ORS~ WY ()

Here 1 < q, s, t < r. Equations (6.11) will help us to follow the proof of the next result.

Lemma 6.2. Let 'rable 5.1 be defined by the r-Procedure of TA for r = (3v)!/(v!)3 ; See (6.8)-

(6.10). Then each correction term of dimension m of that table has degree 1.

Proof. Let 7r(q, s, t), a correction term of 'rable 5.1, have dimension m and not have degree

1. Then the v-dimensional vectors 2(q), a(s), A(t) are to be disjoint. Indeed, if h(g) E 'y(q) n a(s)
then h() M(q) U NO(q) U /_(s) U _Y(s) U h2 U h3. Ilence the degrees of x() and of Y in

h(g) are equal to 0 (see (6.11) and recall that a(b), 1(b), 2(b) are disjoint for all b, in particular,.(a)
for b = q, b - s). 11' the degree of A(t)i(t) in the h(g) is zero then the dimension of 7r(q, a, t) is at
most m - 1, otherwise the degree of 7r(q, s, t) in the h(g) is one. Hence -(q) and a(s) are disjoint.
Similarly we verify that a(s) l (t) = (t) n- 2(q) = A. Hence

(q)a(s) (t) ----h . (6.12)

Similarly we obtain
/'(q) q(s) '(t) = h2 , 9"(q) e"(.)c"(t) = h. (6.13)

Since the partitions ( (a), a2(o ) of hl, a'(o), /_'(a), .2'(a) of h2 and 2"(u), /_"(u), 2
1 ()

of ha. are isomorphic, (6.13) implies that

i_(q) a(s)-2 (t) = A1, (6.14)

p(t) = A,. (6.15)
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Combining (6.12) and (6.14) implies that

2(q) /3(t) = /_(q) 2(t). (6.16)

Since for all a the vectors fl(u), 2(Y) are disjoint and have dimension v, (6.16) implies that

g(q) / (t), 2(q) = 2(t). (6.17)

Similarly (6.12) and (6.15) imply that a(s)_(t) = q(s)q(t) and hence

_(a) = _(t), /3(s) = _(t). (6.18)

Since a(c)/3(a)(a) = for all a, we obtain from (6.17), (6.18)

(A(q) t (s) _.t), /3(q) - 1_(s) =/(t), y(q) = 2(s) -2(t). (6.19)

As follows from the isomorphism of our partitions of h1 , h2, h3 and from (6.19), ir(q, s, t)
a(s,s,,s) is a principal term of Table 5.1. This contradicts our assumption that 7r(q, s,t) is a

correction term. I

7. Implicit Canceling of Correction Terms of Degree 1 and Resulting Algorithms.

In this section we show how to cancel the correction terms or degree I of ''able 5. I defined in
the two (Construcetions or the previouis section.

At first, we consider the following class of linear transformations of bilinear problems and
algorithms.

Definition 7.1. Let

T(X,_E, Z) = 1,(X,Y)z,, '(XY,') = Ihi.(X*,I')Zi., (7.1)

two trilinear forms in X, Y, Z and in X*, Y*, Z respectively define two bilinear problems,

B = {(W,Y), B = {H.(xY)} (7.2)

respectively. Let a linear transformation

x=XI(X_), Y= (r'), Z'= Z(') (7.3)

transform ' into T*, that is

T(x~(X_), Y(Y'), X(',)) T"(,Yi', Z*) (7.4)

identically in X1, , hen we write

S= B(B), T= T('I') (7.5)
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and call B and T linear images of B* and T* respectively.

The next illustrative result will not be used in this paper.

Lemma 7.1. Let (7.1)-(7.5) hold so that B - B(B*) is a linear image of B*. Then (see

Definition 2.3)
p(B) > p(B*). (7.6)

Proof. Substitute (7.3) in a bilinear algorithm (2.6) of rank M for the problem B. Then (see

(7.4))
M

T(X__,Y,7) = T*(X*,Y*,Z*) = E La(X( (*))L'(Y(Y*)) L"(Z(Z*)).

q=l

This (constructively) defines a bilinear algorithm of rank M for B*. Choose M = p(B) to obtain
(7.6). |

It is tempting to apply Lemma 7.1 if one seeks upper estimates for p(B*). Then it would
suffice to choose a bilinear problem B of small rank such that B is a linear image of B*. lowever

in the general case we do not have a regular way for the solution of the latter problem. (To
appreciate its difficulty, try, for instance, to find a linear transformation which would show that

B = B(B*) in the case B* = (m,m,m), B is the I'M problem defined by (2.4) where p = q = m
p(B) = p+q- I - 2m 2 - 1. If, contrary to our intuition, such a transformation existed then (7.6)
would imply that p((m,m,m)) = 2m 2 - 1, see (2.10).)

Thus we prefer not to use Lemma 7.1. Instead, we will seek for linear transformations that
reduce the rank of the original algorithms generated by Table 5.1 by canceling the correction terms
of degree I. We call such transformations by Implicit Canceling (IC) and the whole process that
consists of the choice of 'Fables 5.1 and of IC by Trilinear Aggregating with hnplicit Canceling

(TAIC); see [131.
Transformation (7.3) can be considered a triplet of transformations applied to X, Y, Z

separately of eacti other. In the sequel we apply the transformation (7.3) to the problems B =

E'=t ®(I(s),.1(s), K(s)). In such cases we compose (7.3) of r triplets of linear transformations
of X*(&) , Y'('), Z *(J) into X ( ), Y.a), Z(") for all s, s = 1,...,r. To simplify the notation, we
delete the superscripts s and consider transformations of the triplets (X,Y, Z*) into (X, K,Z)

and of the trilinear form

T(X,Y,Z) = Tr(XYZ)= _ _YkZ (7.7)
(Ci,!)E o

into another one,
= (7.8)

~(i,,k)ED.

(Recall Remark 5.2.)
Sllere i = (i(l),... ,i(f)), j = (j(l),... ,j(e')), k = (k(1),..., k(")) (compare (5.2) (5.4)).' The

relation (i,j,k) E D (respectively (i,j,k) E D*) under the sign designates the summation in
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i(l),... ,i(t), j(l),... ,j(), k(l),...,k(e") from 0 (respectively 1) to n- 1. The latter comments

also define two domains, D and D* where the i, ", k range.

The trilinear forms of (7.7), (7.8) define the problems (I, J, K) and (I*, J, K*) respectively
where I = n, J = n', K = nt" H = IJK = n n . (7.9)

I* =(n- i)E, J" =(. j)f, K" =(n- l) ', 1" = rs'I" = (n- )'. (7.10)

lfere is one of possible linear transformations of (7.7) into (7.8).

=i = 1 , Y!_ =7/;, ,k = zk for (iJk)E D*, (7.11)

n-I

Zki =0 if k(t #) = 0 ,  0 jk , (7.12)
k(t") O

n-A

Yjk=0 ifj(t)=O, E z 0=0 , (7.13)

n-i
zk, =0 if i(t)=0 XE 0 , (7. t4)

i(t)=o

We assume that all unbounded entries of j, j, k that are used in (7.12)-(7.14) range in the domain

D and that t, t', t" range as follows, t" = 1,..., in (7.12), t' - 1,..., I in (7.13), and t =

l,...,t in (7.14).

Equations (7.1l)-(7.14) contain sone implicit expressions of xz and yjk as linear functions

or X*, Y*. To make them explicit, rewrite the second equations of (7.12) (7.14) so that for each

triplet t, t', t" all indeterminates are moved to the right sides except the following ones which

remain in the left sides,

yik where k(t") = 0 in (7.12),

xi where j(t') = 0 in (7.13),

x j where i(t) = 0 in (7.14).

Then substitute (7.11) in the right sides.

Now appiy a variation of the linear transformation (7.11) (7.14) to each of the r triplets

X = X (S) , Y - y(a) Z = Z() I a = l1 ... , r of indeterminates of Table 5.1 defined by our First

Construction of Section 6. In that variation preserve (7.1l) (7.14) for all t, t" and also for all

t' < u (then j(t') E hi). If t' > u (then j(i') E h2) substitute the following equations for (7.13),

n-1zjj_ = o ir i(e') -- o, Y--- =o, t' > ,.
j(t,)=o

Notice that, by virtue of Lemmas 5.2, 6.1, the above transformation applied to the First

Construction of Section 6 cancels all correction terms of Table 5.1. This gives us the following

estimate; see (5.10), (6.2), (7.9), (7.10).
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Theorem 7.1. For arbitrary natural numbers u and n,

[(2u)!/(u!)2 1 0 ((n - 1)',(n - 1) 2
,, (n - 1)') - n4 0 (1, 1, 1) (7.16)

We will call the transformation (7.1l)-(7.15) the First Transformation for Implicit Canceling.

The associated equation of (7.16) for a fixed n and sufficiently large u implies the following estimate
(see Theorem 3.1).

Corollary 7.1. For arbitrary natural n, 6(n) = 3(2 log n - log 2)/2 log(n - 1) is a limiting
exponent of MM, in particular, #3(9) < 2.67 is a limiting exponent of MM.

Next we define our second linear transformation which also transforms (7.7) into (7.8) and
enables us to cancel all correction terms of degree I in any Table 5.1.

We define this transformation recursively in ?n steps. With each step we associate a new value
of t", t' or t. For instance, we can successively choose t" = I,..., f, then t' i .... I , I then

t = l,...,t.

Here is the first step or the transformation in the case t" = I where we designate k - k(l)
k.

ViVj: z 1 ==zj. (7.17)

VjVk (k 0): V ,k=yk. (7.18)

n-I n-I

ViVj: E t= zhi =0. (7.19)
h=O h=O

n-I

ViVk (k =/ 0): Zki + E Zhi = z4,i. (7.20)
~~~~~~h=1,_ ~ l.,n I

Equations (7.19) contain implicit expressions or y,,, zoi through {Ylk, z, kn, - I
which can be easily turned into explicit ones. Similarly Equations (7.20) implicitly express Zkj as

linear function of z~i for k = I,..., n - 1. To obtain the explicit expressions, we have to solve

(7.20) over F for each " as a system of linear equations in zki, k = 1,...,n- I. The next simple

result shows that the solution exists if n $ 0 in F.

Lemma 7.2. For each i the determinant or the system or Rquations (7.20) in zi, . -. ,i is
equal to n.

Next we examine how tile transformation (7.17)- (7.20) change the trilinear form 7'(X, Y, Z).
We write that

T =T(X, Y, ) , E xjjyj

- i -I +
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Substitute Yjo --- - 1 y.k (gee (7.19)) and obtain
i-f n--!

T = jj V jk(zkic- zoi).
i,' k=1

Then substitute zo, --- zhi (see (7.19)). This gives

4 n-I n

T= F + E .' (7.21)

Substitute (7.17), (7.18), (7.20) in (7.21) and obtain

n-I

T = T(X , YX) , 'kZk " T(x*, Y*Z).
i-, k=t

We come to the following result.

Lemma 7.3. Ior arbitrary t, t', n (n $0 in F) the linear transformation (7.17)-(7.20) transforms
Wn, n', n) in to (n*, ne, n- 1).

In the case I" > 1 we can generalize (7.17) (7.20) using the following notation.

Notation 7.1. Delete the entry k(t") or the vector k. Designate the resulting vector by k(t").

I)esignate k = k(t")k(t") in the case where all entries or k are considered integer parameters. If

the value of k(t") is fixed, k(t") = h and if other entries of k are parameters, designate k = k(t")h.
Then the transformation (7.17) (7.20) can be generalized to the case t" > I where t" is Iixed,

I < t" < t". Let (7.17) be preserved and the following equations substitute for (7.18) (7.20).

VjVk(t")Vk(t") (k(t") - 0): yi = Y,. (7.22)

n-I n-I

SViVj Vk(t"): E Y,,,k(t")h E Zk(t,)h, 0. (7.23)
h=O h=O

n-I

Vi Vj Vk(t") (k(t") =/ 0): zk~i + E zk(,,),,i --= z. (7.24)
h=1

Remark 7.1. If h-- 4
(q (),i = 0 and (7.24) holds then , h=0 k(q,)hi 0 for any q", I <

q" t,.

Then similarly to Lemma 7.3 the following result can be obtained.

Lemma 7.4. For arbitrary 1, t', t", n (n $4 0 in F) the linear transformation (7.17), (7.22)- (7.24)

transforms (n, ne', n ' ) into (nt, ne, nt ' (n- I)). Similarly (n t , e', n ") can be transformed into
(,t, ne - (n- 1), ne ) and into (nt-'(n - 1), ,e, n"').
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Recursively applying the three latter transformations we obtain the desired lincar functions

(7.3) that for arbitrary n 6 0, t, 1', t" transform (nt, nt', n" ' ) into ((n - I)t, (n - 1)", (n- I)').

We call such a process the Second Transformation for Implicit Canceling. Its efficiency stenis from

the frllowing fact which can be easily verified ising Remark 7.1 and similar observations.

Lemma 7.5. Let functions (7.3) define the Second Transformation for Implicit Canceling. Then

(7.23) holds for all t", t" = I,..., " as well as the following equations.

VJVkW(t): Z Xi()h,, = = 0, t = 1, .,t, (7.25)
h=O h=O

n-I n-I

Vk ViVj(t'): F _ = Xij('),__ = 0, t' = 1, .t. , (7.26)
h O h=O

Corollary 7.2. let the Second Transformation for IC be applied to an arbitrary "lable 5.1 then

Equations (7.23), (7.25), (7.26) cancel all correction terms of degree !.

(Corollary 7.2 follows from lemmas 5.2, 7.5.)

In particular, if Table 5.1 is defined by the First Construction of Section 6 then all correction

terms of Table 5.1 are canceled. This gives another proof of (7.16) (for n = 0 in F). If Table 5.1

is defined by the Second Construction of Section 6 then only the correction ternis of dimensions at

most m - I are not canceled by the Second Transrormation for IC. This gives the following result.

Corollary 7.3. For arbitrary field F and natural v, n (n = 0 in P)

(:IV)!
(V!)3 -) 3 , ( 1) (n -()3n) -- : (n)' + pc')Q(, I, I).

where pc* is the rank of the sum of all instances of all correction terms of Table 5.1 transrorned

by the Second Transformation for IC. hlere T.ble 5.1 is defined by the Second Constructi.: of

Section 6.

Our next objective is the rollowing estimate.

Lemma 7.6. Under the conditions of Corollary 7.3,

n9" + pc. _< (n + )9. (7.27)

Proof. Iet Table 5.1 be defined by the Second Construction or Section 6. Let the Second

Transformatinn for IC be applied. Then for all it consider all possible sets of It different integers

G = {g,...,Y}, I < g, _< o, 1= 1,..., ,4, s= 0, 1,...,OV. (7.28)

I,et one of such sets be fixed. Substitute zeroes for each indeterminate x(a) (a)• !(s)j (a) I .y (s)k(s) I " -(s)i.o)'

in Table 5.1 unles such an indeterminate has degree zero in h(g,,) for 1/ 1-, i.... Call the
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resulting table by the Auxiliary Table associated with the set {gj,...,g,.}. (Ta,,e 5.1 itself is
associated with the empty set.) Notice that for it I all principal terms of all Auxiliary Tables

are zeroes.

Multiply the aggregate of the Auxiliary Table associated with the set {gj,...,g,} by (-n).

Sum the results for all values of all entries h(g) E h such that g i {gj,..., g } and for all possible
sets {gl,...,g9p}, A p 0, I,...,9v. As can be verified, no correction terms of dimensions less

than m remain in the resulting total sum. Hence the sum is identically T(, Y, Z) because the

correction terms of dimension m are canceled, by virtue of Lemmas 5.2, 6.2, 7.5. It remains to

e~timate n9" + pc*, the rank of the sum of all instances of all aggregates in all of our Auxiliary

Tables in order to prove (7.27). (This whole procedure for canceling the terms of dimensions less
than m is general. It can be called the Alternating Summation of Aggregates.)

The desired upper estimate (7.27) can be obtained from the next two simple lemmas.

Lemma 7.7. For a natural it, 0 < it < 9v, and for an Auxiliary 'lhlble associated with a set

{gil,..., g,.} (see (7.28)) there exist at most n 9' - P instances of the aggregate of that table.

Lemma 7.8. For an arbitrary natural /4, 0 < ti Ov, there exist at most (') = (9v)/(tL(9v-1)!)

different sets {gi,...,g,} where g,1 are natural numbers, I < g, :5 9v.

Corollary 7.4. For arbitrary field of constants F and for all natural v, n, (n # 0 in F), the

following mapping is valid.

(3v)!( 3 ) ! ( D (( n - 1) 3 ,,  ( n - 1) 3 v,  ( n - t) 3 )  _- ( n + I) v G ) ( 1, 1, 1) .

The associated equations for a fixed n and for v -- oc define the limiting exponents of' MM,

#'(n) = log((n + )3:i)/ log(n - 1), (7.29)

in particular,

/*(20) < 2.7288.

8. Conclusions.

low can the techniques or the previous sections be improved? One of the natural ways is to

improve the Constructions of Section 6.

Corollary 7.2 enables us to cancel all correction terms of degree 1. The method of the

Alternating Summation of Aggregates (see the proof of lemma 7.6) can be generalized for canceling

the terms of dimensions less than m. It remains to design Generating Table 5.1 where all correction

terms of dimension m would have degree I in some of the h(g). We proved such a property for the

Second Construction of Section 6. The proof and hence the result itself can be extended to any
Table 5.1 such that the vectors of subscripts k(q), i(s), i(t) are disjoint only if q = i t.
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Is it possible to ob~tain Trable 5.1 with r rows where the latter property holds arnd where
3(m log n - log r)/rn log(n - 1) is sutbstantially less th anl 0* (n) ini (7.29)? (Sec (5.1), (7.9), (7.10),
(7.29).)

Hlere is another way that seemis to be more promising. One canl generalize Trables 5.1 by
turning themn into the following ones which wc call Generating X-T7ables. (We represent only Lte
s-tb row of the tables, assuming that s =I .

Table 8. 1.

Q(S X) ")X~y(a) )kj 18 )(a)

Here a(s, X), 13(s, X), yX)are constants of F such that

Vs: ce4s, X) 0J(s, X) 'Y(S, X) = I

Weassuite that the aggregates ofrTable 8.1 arc to be summenid for all valuies of X. (In particular,
if x is a constant and a(s, X) = fl(s, X) = -1(s, X) = I for all s, then we come back to TIable
5. 1.) The coeoricients a(s, X), 13(s, X), -y(s, X) can be chosen such that several correction terms are
canceled in the result of the summation in X. More precisely, it is surncient to satisfy the equation

ar(q, X) P(s, X) -(t, X) =--0(8)

in ordler to cancel the correction term rx,(q 8 ),

71'>.(q,, t)=0 . (8.2)

In particular, in some cases this observation enables is to cancel even thre correction terms whose
degrees in all h(g) are greater than I (if such terms appear in 'Fable 8.1).

In fact, suich a trick was successhilly applied in [3, 121 un rder the name Trriliricar Canceling

(see ,also [9)]). Onl the other hand, the Generating X-Tables canl he usedl to dlefine X-algoritmms
for MM which turn out to coincide with AlPA-algrorithims if a(s, X), fi(s, X), -y(.i, X) are rational
functions of X and if the consideration is moodulo X . In such a setting the application of (8.1),

* (8.2) as a mecans of canceling is generally efficient. Trhis is formally proven in the basic threoremr
* on the relations between usual algorithms and APA-algorithins. (Stich anl interpretatio)n of the

theorem can be seen fromt the original illuminating proof given in 16] and repeatedl in neither of
the papers 17 10, 17].) D~uring the study of AI'A-algorithins this direction has remnained in the
shadows. H owever regarding tire relationship between APIA-algoritims andl X-Trables thle ap~proach
of [6] seems iminportant an(I iight b~ecomne fruitful in the futrc.

In particular, it is important to understand the most cilicient ways of canceling the correction
terms of Generating X-Tables. It might happen that the existent methods already rely on nearly
optimuitm ways of sitch a canceling. tiowever because of the extreme irregmlarilty of the asymptoti-
cally fastest known algorithms for MM we might be far fromrtimnderstanding the successful methods
of canceling hiddenI in those algoriths Then fr-ther elrorts in the analysis of the best existent

methods of mm Can hecome fruitful.
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