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Abstract. The method of trilinear aggregating with implicit canceling lor the design of fast matrix
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, 1. Introduction.

The attention to the problem of fast matrix multiplication hereafter refcrred to as MM has
remained very high since 1968 when V. Strassen proved that 4.8 N2-8! arithmetic operations rather
» than 2N3 suffice to multiply two N X N matrices for all N, sce [1]. (For comparison, a method
of nonasymptotic acccleration of MM [2] presented in January 1966 at the seminar of Dr. G. M.
Adel$on-Velékii, Dr. A. S. Kronrod, and Dr. Y. M. Landis in Moscow has not been published because
! of the lack of interest to that method outside the seminar in 1966.)

_;' The attempts to improve the exponent 2.81 followed. Smaller exponents could automatically
E resull from any sulliciently fast (in terms of the number of nonscalar multiplications involved)
-'-i bilinear algorithm for a MM problem of any specific shape because of the possibility to use
l bilincar algorithms recursively. (ITercafter that number of nonscalar multiplications is called the
multiplicative complexity of a bilincar algorithm.) The design of fast basic algorithms flor the
recursion turned out to ‘be a harder problem. The next improvement of the exponent from 2.81
Lo 2.7804 came about in 1978, sce [3]. The proof techniques (trilinear aggregating, uniting and
. canccling, TAUC) have been sketched in the carlier paper [4]. [fowever the actual potential power of
. the TAUC has not been fully apprecialed even in 1978. Later another approach to the acceleration
; of MM (called the mcthod of APA-algorithms) appeared in [5] and has been justified in [6]. This
reduced the exponent to 2.7799. Then the methods of APA-algorithms and TAUC have been
| combined together which led to a more serious asymptotic acceleration of MM, sec [7-10]. On the bl |
other hand, it turncd out that the TAUC are closely refated to the Direct Sum Problem {(DSP) of :
the fasl evaluation of (the direct sum of} r independent scts of bilinear forms, r > 1. According to
the Direct Sum Conjecture (DSC), due to [11], the multiplicative complexity of the whole problem
(Direct Sumn Problem) is cqual o the sum of multiplicative complexities of the 7 independent
problems of the evalualions of 7 given sels. On the contrary, the TAUC successfully exploits the
advantage of simullancous evalualion of several independent sets of matrix products. In the case
of APA-algorithms the TAUC enables us to disprove the DSC. Thtfh'r'sT"T()rm.ll counterexample”
Lo the DSC over the class of APA-algorithms appeared in [8, Roma}rE ‘p. 371 although; the DSC*
l has not. been studied in {8]. (Sce other counterexamples also based on the TAUC in [9,10}) i the
case of usual algorithms the DSI> remains open. This might be due to out poor knowlodgo of the
lower bounds. For example, no method is known for 10 X 10 MM in 650 nonbcalar mu “'p ~alions ‘
while two 10 X 10 malrix products can be evaluated using the TAUC in 1300 o ‘ons. ;
(LHowever this does nol disprove the DSC because the best known lower bound for 14 ,. ‘M '
is only 199 multiplications.) Of course, the fatter algorithm for Lthe pair of 10 X 10 MM can be
transformed into a fast algorithm for 10 X 10 by 10 X 20 MM in 1300 multiplications which can
‘N be applied as a basis for the recursion to derive an asymptotically fast method lor MM. On the
other hand, the recursion based on the melhod of 10 X 10 MM in 650 would result in a smaller !
exponecnt of MM. Although, as we mentioned, such a method lor 10 X 10 MM might not cxist it
turned out that practically the same exponent can be obtained as if itvexisted because the recurston
can also be used with an algorithm for a direct sum of MM problems as a basis. A similar result
for any basic algorithin for an arbitrary dircct sum of MM problems is duc to [10] and is known ‘
as the Ixponential Direct Sum Theorem, EDS'T; see [9]). It is worth mentioning that historically
the carlier techniques of the TAUC motivated the KDST as a means to reinforce the power of the !
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TAUC.
By combining the new mcthods of the TAUC and AP’A-algorithms with cach other, with the .
EDST, and with the recursive construction (which is also called the Tensor Product Construction
(TPC)) smaller exponents of MM were obtained in 1979; see [7--10). (The references to the TAUC
are omitted in {7, 10] but the reader can easily notice common basic clements of the patterns of
i [7, 10} and of the carlicr 2-Procedure of the TAUC of [3, 4, 12]; see also [8], [9, Scction 19], and
[13, Section 4].) In particular, the exponent 2.522 was obtained by combining the construction of

[8) with the EEDST and was announced on Oclober 26, 1979, at the Conference on the Complexity i
Theory in Oberwolfach, October 21-27, 1979 (sce [14]) although only out-of-date 2.548 appeared
‘ as the “world record” in the EATCS report on that conference [15]. Later improvements in 1980 -
} 81, sec [9, 10, 16, 17], which reduced the exponent to 2.5167, 2.5161, 2.496 also relied on the !
! combinations of the techniques of the TAUC, APA-algorithms, EDST, TPC, and on some new
L elements of the analysis. However in general the progress scems to go out of power after 1979
because the most nalural combinations of that kind have already been explored. (So called Partial
A Matrix Multiplication technique, sce [7], does not scem to lead Lo a serious if any improvement
‘ over the EDST.)

‘4‘ We believe that the further progress in the acceleration of MM and might be in the solution 1
- of the DSP for usual algorithins depends on the success in the analysis of the methods of trilinear
aggregaling (‘TA) beeause TA constitutes the basis for the design of the fastest MM algorithms.
This paper is onr exlensive attempt of such an analysis. Thus we intentionally focus our atlention
on TA.

We lormally define the process of TA by reducing it to the design of Generating Tables which :
. in turn are obtained from certain partitions of finite sets. Until the Iast section we do not involve
. APA-algorithms beeause we tend to simplify the problem and to understand how successfully TA
can work without them. Qur study shows that the resulting MM algorithms are quite fast even if
APA-algorithms are nol used. On the other hand, the structbure of our algorithms is more regular
than the structure of the faster algorithms for MM obtained via the APA-algorithms.

To make the paper sclf-contained we formally stale the problem of MM and of the direet
sum of MM and prove the EDST in Scctions 2 and 3. In our prool we follow [9] using Theorem
13.1 of [9] as a basis but the successful notation borrowed from [10] helped us to make the proof
much simpler. (Formally we prove the EDST for usual algorithms. The extension to the case of

APA-algorithms is well understood now; sce [6, 9, 10, 17).) Our prool of the EDST urlike the i
: proofs of [10, 17] is clementary and does not use tensorial caleulus. Also in Section 2 we show that
the asymplotic complexity of MM ean not depend on the choice of the ficld of constants unless such
a ficld is finite, In Seelion 4 we revisit the TAUC. We present it more formally Lhan we did earlier
and in a different, version. The procedures of trilinear aggregating ('FA) and consequently MM
algorithms are defined by Generating Tables (GT). The resulting algorithms for MM appear as

decompositions of special trilinear forms (associated with the given problems of MM) into sums of
aggregates and correction terms obtained from the Generating Tables. The total number of terms
cquals the multiplicative complexity of Lhe algorithins and consequently defines the expenents of

MM. llenee our objeclive is the reduction of the total number of terms and, in particular, of the

number of the correction Lerms beeause the aggregales are not numerous,
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In Scclion 5 we rewrite the GTs so that Lthe design of algorithms for larger problems of MM
appears in a more explicit fashion than in the cases where it is defined by the recursive process Lhat
starts with the algorithmms for small MM problems. Also we define the degree and the dimension
i of correction terms of a Generaling Table and show why it is desirable that all of or most of Lhe
; correclion terms have degree 1. In Section 6 we show that the latter property follows if the GTs
are defined by some appropriate partitions of the finite sets. We give two examples of the GTs (the
First and the Second Constructions of Section 6) where we demonstrate which propertics of the

partitions are to be exploited. In Section 7 we describe the method of Implicit Canceling (IC) of
i". corrcction terms of degree 1; sec [13], to be combined with TA to define Trilinear Aggregating with
- Implicit Canceling (TAIC). TAIC is a modification of TAUC. It provides us with an insight into
the techniques of the design of fast MM algorithms. Combining TAIC with the irst Construction
of Scction 6 gives us a quite regular and homogencous algorithm that evaluates (the dircet sum of)

il

LRSS

(2u)!/(")? independent products of n* X n2* by n2* X n* matrices in (n+1)** multiplicalive steps
for arbitrary natural n and «. This defines the exponents less than 2.67 without the use of auxiliary
APA-algorithms. (The best previous result of that kind was 2.773...; sec [13].) Combining TAIC
with the Second Construction of Scction 6 gives a similar method for the direct sum of (3v)!/(!)3

| independent problems of (n — 1)3” X (n — 1)3¥ MM involving (n + 1)% multiplicative steps for

arbitrary natural n and v. This defines the exponents less than 2.7288 (also without the use of
APA-algorithms.) Technically the latter algorithm involves TAUC and a mecthod of Alternating

' Summation of Aggregates which is used to cancel the terms of positive codimensions. Finally
in Scction 8 we sketch the possible geacralizations of our approach. This includes the study of
the partitions of finite sets for GTs (with the IMirst and Second Conslruetions of Section 6 as
the models) and of the Generaling A-Tables. In the latler casc the indelerminates appear in the
GTs with some constani coellicients which may depend on a paramecter A. This case incorporates
TAUC with a special Canccling Procedure (see {3, 12]) and the design of AP’A-algorithms which
are sometimes also called M-algorithms (sce (8, 9, 17]).

We hope that our analysis will help the reader to understand the principles of trilincar
! aggregaling (which we consider the basic technique for fast MM) and finally will lead to a new |
| acceleration of MM in the future.

2. Some Basic Notions, Basic Notation, Basic Construction.

Hereafter uix = (U)ix designates the (2, k) entry of a matrix U, U designates a vector of all {
entries of U taken in a fixed order, Tr U = 3, uge is the trace of U. I, J, K arc given natural
numbers, €, j, k are inleger paramcters.

Definition 2.1. (/,./, K) the problem of MM. Given a field (of constants) I, an [ X .J matrix
X, and a J X K matrix Y whose entries are indeterminates. Iivaluate (the entries of) the product
XY by a straight line arithinetic algorithm using the constanls from .

(I,J,K) is an example of a bilinear arithmelic computational problem that is the problem
of the evaluation of a given set of bilincar forms, B. In the casc of (I,J,K), B is the sel of the
entries of XY which are bilinear furms of the entries of X, Y,

1
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In general, a bilincar problem can be equivalently represented by a set of bilinear formns,

STV P B e b 4, e

’ B = {B,(X,Y)}, (2.1)
: by a trilinear form
g T=T(XY,Z Z By(X,Y, Z)zy, (2.2)
|
.- | or by a tensor t = (t,.,) of the coefficients of T; sce [4, 18], for surveys on bilinear problems and
' { algorithms, see [19 -23]. '
';i In the case of {/,J, K),
’ T="T(XYZ)= Z Tij Yik 2ki - (2.3)
. ‘ ) l"
e Here X, Y are given matrices to be evaluated (see Definition 2.1) and 7 = (2;) is the (auxiliary)
. ! K X I matrix whose entries arc indeterminates.
; As another example of bilinear problems we mention polynomial multiplication (PM) also
? known as convolution of veetors (sce (21, 23]). PM is defined by the following trilinear form,
!
i pot ot ;
| . T= Z Z TiYj Zigg - (2.4)
1=0 j=0
Bilinear algorithms for bilinear problems can be equivalently represented as the following :
bilinear, trilinear or {cnsorial identical decompositions. :
! |
: M 3
Vi By(X,Y) =Y fa, LX) Ly{Y), (2.5) |
q=1 .
! M ‘
| T(X,Y,Z) = Z Lo(X) Li(Y) 11(Z), (2.6) :
a=1 i
» I :
| tuvy = Z Joulqfqn Torall p,v,q. (2.7) 5
q=1 ‘
! Here
1 Vg Ly(X) = Z JauTur Lg(Y) = E fabv, lq(Z)= Z an?n s (2.8) 1
| g "
Jowr Lowr [qn € F Tor all g, p,v,7. (2.9)
Hercalter the reader may identify a bilincar algorithm with cither of its three representatlions

but actually the evaluation of 8 procecds by first computing the M products mo( X, Y} = Le( X)1((Y)
for all ¢, and then computing B,(X,Y) = E:L wTe(X, Y) for all . Hereafter M is called the
rank of a bilinear algorithm.

v In the case of MM the subscripts g, v, and 7 arc rcprcqont(vd by the pairs of (s, 5), (7, k), and

tm gk

- (k, ) respectively (for example, in such a case y, = yy«, = f")
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We will refer to Lthe tensorial representation (2.7) in Remark 2.1 but otherwise the reader may
skip (2.7). In fact, we presented the tensorial representation only for the sake of completeness
because of its wide use in the literature on MM. Furthermore we will need only the trilinear
representation after Section 3.

The equivalence of (2.5), (2.6) and (2.7) is easily verified. For instance, for the transition from
(2.6) to (2.5) equate the coeflicienls of cach indeterminate z, in the left and right sides of (2.6).
Equating the coeflicients of all z, or of all y, rather than z, we obtain the two (dual) bilinear
algorithms of the same rank M for the two dual bilinear problems {B,(Y, Z)} and {B.(Z, X)}.

For example, if the original algorithm of rank M solves (/,J, K’} then the dual ones solve
{(J,K,I) and (K,J,!) and have the same rank, M. In fact, such algorithms can be also trans-
formed into ones of the same rank, M, for the problems {J, I, K}, (I, K, J}, and (K, J, I}. (Indecd,
substitute ujs, vik, wi; for =i, zki, and yjix respectively in (2.3) and (2.6).) The study of the
asymptotical time-complexily of bilincar algorithms for MM relies on the next definition and
theorem.

Definition 2.2. 8 = B(F) is an exponent of MM (over F) if there exists a positive constant
¢ = ¢(B) associated with that exponent B such that ¢N# arithmetic operations are suflicient to
solve (N, N, N) for all N by straight line algorithms (with the constants from I'). 8* is a limiting
exponent of MM if for all ¢ > 0, 8* + ¢ is an exponent of MM.

Theorem 2.1; sce (I[. If for some natural numbers [, J, K, M therc exists a bilincar algorithm
(2.5) (2.9) of rank M for {I,J,K) then f = 3log M[log(IJK) is an exponent of MM.

Outline of Proof. The basic observation for the proof is that in the case of MM the identities
(2.5)-(2.9) remain true if the entries of X, Y, Z arc replaced by the I’ X J/, J' X K' and K' X I'
matrices respectively (for arbitrary I, J', K'). Then Lg(X), LL(Y), LU(Z) for all q arc also
I'x J', J' X K' and K" X I' matrices respectively and Tr(XY Z) represents (I1',JJ', K K'). If
I[=J =K wewrite I'=J" = K' = I and apply the original algorithm to mulliply /4(X) by
L,(Y) for all . This defines the transition from a bilinear algorithin of rank M for (1,1, 1) to the
one of rank M2 for (I%,1%,1%). Continuing this process and counting the number of arithmelic
operations we obtain the desired upper bound in the cases N = I* for all h and then casily
extend the bound to the case of arbitrary N. If (/,J, K) is an arbitrary triplet we come back to
the square MM by writing I' = J, J' = K, K' =T and then I' = K, J' = I, K' = J for
the first two recursive steps. This gives an algorithm of rank M? for the squarc MM problem,
(IJK,IJK,IJK). B

The prool-of Theorem 2.1 is constructive. The coeflicicnls of the resulting bilincar algorithm
for (N, N, N} can be explicitly expressed through the coefficient of the original onc given for
(1,J,K).

Remark 2.1. More precisely, the tensor of the cocflicients of the resulting algorithm is the
tensorial power of the tensor of the coeflicicnts of the original algorithm it { = J = K. If

1, J, K are arbitrary, the foriner tensor is the Lensorial pchr of the Lensor of the algorithm

]
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for (IJK,IJK,IJK). The latter tensor is the product of the three tensors of the three dual
algorithms that include the original onc. We will not use this easily verified fact but we will apply
the name Tensor Product Construction (TPC) to the recursive process of the proof of Theorem 2.1.

Theorem 2.1 leads to Lhe problem of the design of bilinear algorithms for {I,J, K) where
log M /log(IJK) is as small as possible. Before involving ourselves with that main problem we
would like to warn the reader that we do not mean Lo define the smallest exponent of MM in
this way. To be l'(;rmal, we introduce the following definition which will also be used in the next
sections.

Definition 2.3. Let a bilinear arithmetic computational problem be defined by a set of bilincar
forms B, or by a trilincar form T(X,Y,Z), or by ils tensor ¢t. Then p(B) = p(T') = p(t), the
rank of the problem, of its tensor t, and of the trilinear form T(X,Y, Z) is the minimum rank
of all bilinear algorithms that solve this problem. For arbitrary natural numbers I, J, K, the
rank of (I, J, K) is designated by p({/,J, K)). (The rank may depend on the choice of the ficld of
constants I so that strictly speaking we have to write pp rather than p. Usually we will omit the
subscript I* assuming that I is fixed; sce also Theorem 2.3 below.)

Using the tensor product construction we obtain (p((I,J,K)))h > p({I", J*, K*) for all
natural A. On the other hand, it is known (sce [24, 25]) that

(LS, G = 1S, p((1,J,K}) > ([ = 1)(J+ 1)+ JK itK > 1. (2.10)

In particular, p((2,2,2)) > 7 and in fact, p((2,2,2)) = 7, sce [1]. If we choose [ = J = K =2
and apply Theorem 2.1 then we only obtain the estimate p({2%,2%,2%)) < 7% while it is known
that p({2*, 2R, 2")) < 7% for all k > 5; see [9]. Combining the two techniques based on the concept
of APA-algorithimns (sce [5, 6]) and on the 2-Procedure of trilincar aggregating (see [3, 4, 9, 12]) it
is easy to prove more general results of this kind; sce [17] and compare [L3].

Theorem 2.2. [For arbitrary I, J, K, p({I,J, K))* > p((I*, J", K*)) for all sufliciently large h.

Notice that Theorem 2.2 does not lead to any improvement of the lower bounds (2.10). The
meaning of Theorem 2.2 is that any given exponent of MM associated with constant ¢ = ( can be
further reduced. It is nol clear if there exists the minimum exponent of MM. (8 = 2 could be a
candidate.) Tlowever certainly the asymptotic arithmelic complexity of MM can be represented by

min = Bria(IF), the smallest limiting exponent of MM which is, of course, unique if the ficld of

constants I is given. Morcover, it is easy to prove a stronger statement on the uniqueness.
) p

Theorem 2.3. The smallest limiting exponent of MM over I does not depend on the choice of
an infinite field of constants F so that for any infinite ficld #

ﬂ:nin(p) = ﬂx‘nin(Q) = ﬂl.nin(c)

where Q, C are the fields of rational and complex numbers respectively.
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Proof. 1t is known that any inlinite ficld is isomorphié to an infinite subfield of C (and such a
subficld always contains Q). Thus we can assume that all constants from F* are complex numbers.
Then for arbitrary € > 0 there cxist integers [ = I(e), J = J(c), K = K{(c) such that

& log pr({I, J, K))/ log(IJK) < Blin(#) + €. (2.11)
As is easy to verily (see [1]), the existence of a bilincar algorithm for (7, J, K) of a fixed rank

M, in particular of the rank M = pg({I,J, K)) is equivalent to the existence of a solution of a
system of algebraic equations with coefficients 0 and 1. It follows that

-". . PF((j’J)K))sz((IrJi K)) (2’12)

where E = E(Q) is an algebraic extension of Q. (2.11) and (2.12) imply that 8%. (F) + ¢ is an
“ exponent of MM over E so that

- ,B:nm([g) S ﬂ:n’m(F)+€' (2'13)

[ Theorem 2.3 follows from (2.13) for € — 0 if we recall that

{ | ﬂ:mn(E) = ﬂ:nin(Q);

o see, for instance, {9, Theorem 3.2]. g

Throughout the paper our results do not. depend on the choice of F' unless it is stated otherwise.

. 3. The Direct Sum of Problems and the Direct Sum Problem. Tensor Product
Construction for Direct Sums.
In this section we generalize Theorem 2.1 and apply it to the case where several independent
; matrix products arc Lo be evaluated. We will define this problem as a parlicular case of dircct sum

' of r bilincar problems.

. Dehuition 3.1. Civen a field I of constants and r sets of bilinear forms 8M, ..., 8™ such that
l BO = (BO(X), Y}, s=1,...,r, (3.1)
t’ J_(_=(&(l)’_._’x_('))’ X=(K“),---,K(')), (3.2)

and the entrics of the vectors X, Y are indelerminates. (The latter condition implics that the sels
8M, ..., B arc disjoint, that is, the sets of Lheir input variables are independent cach of others.)
The problem of simultancous cvaluation of the set {8(1, ..., B(')} over I' is called the direct sum
of the r bilinear problems B(1),... B8(") and is designated by

8= @8, (3.3)

=1

8
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In particular, if r products XY of I{s) X J(s) by J(s) X K(s) matrices X(*) and
Y(®) respectively are Lo be evaluated over F for 8 = 1,...,7 and the entrics of all matrices
X, Yy are indeterminates then such a direct sum of r problems of MM is designated by
T ®(l(s), J(s), K (o).

The direct sum of r problems, B (sce (3.1)-(3.3)) can be cquivalently represented by the sct
{B('), ..., B} of bilinear forms, by the tensor of their coefficients, and by the following trilinear

form,

T(X,Y,Z2) = E T(’)(LY_(’),_K(’),Z(’)), (3.4)
L]
T(’)(l(’),)_’_("),l(’)) = ZBS’)(X.(‘);K(’))ZS;) . (3.5)
n

Here

29 = (), z=(20,...,29) (3.6)
)

are veclors of indct(‘.rmin.atcs, zf,,’) and T(")(_X_("),L(" ,_&(’)) are trilinesr problems that define the
bilinear problems B(*); sce (3.1) (3.3).

In the casc of X _, ®((s), J(s), K(s)),

(X, Y, 2) =Y To(xPy ) ze) (3.7)
s=1

where Z(9) is the K(s) X I(s) matrix whose entrics are indeterminates, s = 1,...,r.

As is obvious, the solution of an arbitrary dircct sum of 7 bilincar problems can be obtained if
each of the r problems is solved independently of other r — 1 ones. Such a solution is represented

by the following » decompositions,

M(s)
TE(X®, ¥y 7)) = Z Lgs(X ) ’/:,,(.K(’)) I,;'a('/_,(’)) fors=1,...,r. (3.8)
q=1

An algorithm defined by (3.8) is called a direct sum algorithm and has rank M = 377 | M(s).
However we might hope to take advantage by solving the r problems simultancously. Such a
solution is defined by the more general decomposition, (2.6) and conscquently gives (bilincar)
algorithm of a more general class,

In the case of direct sums of several bilinear problems, the Ly(X), Ly(Y), L3(Z) in (2.6) can
be defined by the following identities (rather than by (2.8), (2.9)).

Vi Lo(X) = fouszl®, 14(¥) = S S, Lz = POV RS (3.9)
: e v,s n,9
Jopsr fopar Fons € for all q,p,v,m, 8. (3.10)

(On the other hand, (3.9), (3.10) can be represented as a particular case of (2.8), (2.9).)

Again in the case of MM, g, v, 5 are defined by the pairs (1, 5), (5, &), and (&, 1) respectively.
Notice that the g, v,  (and in the ease of MM also the 1, 7, k) range in the domains that depend
on 8.
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Now the problem arises il there exist algorithms (2.6), (3.9), (3.10) that arc indeed faster than

the best direct sum algorithms (3.8)? In particular, does there exist r disjoint bilinear problems
BM, ..., B such that

r

p(i @B“’) < Y (89 (3.11)

a=1 =1
The latter problem is called the Dircct Sum Problem (DSP). The Direct Sum Conjecture (DSC) is
that (3.11) never holds. We are interested in the DSP and DSC for the class of MM algorithins.

Let us assume for a while that the DSC for MM is true. Then Theorem 2.1 can be generalized
in the following straightforward manner.

Proposition 3.1. Given a bilinear algorithm (2.6), (3.9), (3.10) of rank M for the dircet sum
of r disjoint problems of MM, (I(s), J(s), K(s)), s = 1,...,r where M, r, I(s), J(s), K(s) for
s=1,...,r arc arbitrary, M > r. Let 7 = 7* be the rcal solution to the following equation,

D (I(s)(s)K(s)) = M. (3.12)
s=1
Then the DSC implies that 8* = 37* is an exponent of MM.

Definition 3.2. The equation (3.12) is called the equation associated with a bilincar algorithm of
rank M for 3, D{I(s), J(s), K(s)).

Proof. Let real 7(s) satisfy the following cquations

pl(15), J(s), K(s)) = (I(s) (s)K(5))""" (3.13)

where 8 = 1,...,r. Using the DSC we obtain

3= A1) S (6D = o 32 @19, I(6) K (o)) < M (3.14)

a=1 s=1

Combining (3.13) and (3.14) gives

M > Y (1(s)0(s)K(s))"® > 3 (1) () K () (3.15)

s=1 s=1

where Tmin = min, 7(s). By virtue of Theorem 2.1, 37(s) for all s and hence 37yin are cxponents
of MM. Comparing (3.12) and (3.15) gives Tmin < 7*. 1

Proposition 3.1 motivates Definition 3.2, but we could apply that Proposition only if the DSC
is proven to be true for MM. This is still an open problem (see the Introduction).

Fortunalely a gencralization of the Tensor Product Construction ('T'PC) cnables us to save the
most essential part of the result of Proposition 3.1.

Theorem 3.1 (Exponential Direct Sum Theorem, EDST). Under the conditions of Proposi-
tion 3.1, the p* = 3r* is a limiting exponent of MM (even if the DSC is false).

10
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To prove Theorem 3.1 we first generalize the TPC.
Iereafter we designate

rQ(LJ,K)y=Y ®,J,K), r"OLJ,K)=1OrO(l,J,K) (3.16)
a=1
for arbitrary natural r, ', I, J, K.
Using this notation we represent a bilinear algorithm (2.6), (3.4) (3.7) as the following mapping,

ST ®(I(s), J(s), K(s)) = MO {1,1,1). (3.17)
s=1

The right side of (3.17) represents the right side of (2.6) where cach product Lo(X)Li(Y)17(Z)
is represented as {1, 1, 1).

We recall the basic observation of the proof of Theoem 2.1 (which has led us to the TI’C) that
the substitution of I X J, J X K and K X [ matrices for the entries of X, Y, Z respeclively
preserves (2.6). Such a substitution turns the dircct sum of the left side of {3.17) into the direct
sum 3. @I(s)],J(s)J, K(s)I). Also it turns cach of the products Lo( X)Ly (Y)5(Z) into the
product of [ X J by J X K by K X I matrices. llence the substitution turns (3.17) into an
algorithim that can be represented by the following mapping,

i DU, S(8), K(5)K) — M O (I, 1, K). (3.18)

s=1

We will siate the latter result formally as Lemma 3.2 using the following definition,

Definition 3.3. A mapping B « B’ is valid il there exists a bilinear algorithm that is represented
by such a mapping. Then we write B +-: B’. {In this paper we usc the nolation B «: B’ mostly
in the cases where B’ = M (O (1,1,1).)

Lemma 3.2. If (3.17) is valid then (3.18) is valid.
Ilquation (3.18) can be interpreted as the product of (3.17) by the trivial mapping
(1,J,K)— (1,J,K) (3.19)

for aribtrary natural 7, J, K.
Similarly we can define the valid trivial mapping

N DU T K = D DLy, Jh K (3.20)
=1 =1

for arbitrary natural ', I}, J,, K, E=1,...,7".
Multiplying (3.17) and (3.20) we obtain the following mapping,

Y DUy Jed o KKy = MDY Ol d5 K. (3.21)

a==1 E=1 t=
11

w



The meaning of the direet sum in the lelt side is obvious. The M terms of the dircct sum in the
right side of (3.21) represent the M sets each consisting of 7' products l.qt()_(“))llzt(l{(‘))LZ,(Z_(‘)),
t=1,...,7",q=1,..., M, where X9, YO z® are 1, X J}, J}, X K}, and K, X I}, matrices
respectively. '

To justify the validity of (3.21) (assuming the validity of (3.17)), apply Lemma 3.2 for [ = {},
J=J, K=K} £=1,...,7. Then apply the following simple lemma.

Lemma 3.3. B8 «: B’ and B «: B’ imply
BB —: 8 8.

We have proven the following generalization of Lemima 3.2 and of the basic observation for
the tensor product construction.

Lemma 3.4. [f mapping (3.17} is valid then mapping (3.21) is valid.
We also need the two following simple lemmas.

Lemma 3.5. B «: B’ and B’ «: B" imply B ~: B".

Lemma 3.6. The mapping

(q) O (1(g), I (a), K(q)) — D Us) O (I(s), J(3), K(s))

s=1

is valid for arbitrary natural q, €'(q), 7, £(s), I(s), J(s), K(s), s=1,...,7rif1 < q<r, ¥(q) <
#q)-

Now we are ready to prove the main lemma of Lhis sectlion.
Lemma 3.7. Given arbitrary natural numbers €, I, J, K, r. Let
rQ(,J,K) —: tr O (1,1,1). (3.22)

Then the mappings
rQ UM IR KM — O (1,1,1) (3.23)

are valid for h = 1,2,3, ....
Proof (by induction in h). Let (3.23) be valid for A = h*. Then by virtuc of Lemma 3.2,
rQ(IFHLIMFL KM M O (r O, LK) (3.24)

(See the notalion of (3.16).) Applying Lemma 3.5 to (3.22) and (3.24) we obtain that (3.23) is valid
for h = h* + 1. Obscrve that (3.23) for & = 1 is the given valid mapping (3.22). &
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Next we restale Theorem 3.1 in the following obviously cquivalent form and then prove it.

Theorem 3.1. Lel for some natural numbers M, v, I(s), J(s), K(s), s=1,...,r, r < M, the
mapping (3.17) be valid and 7 = 7" be the real solution of the associated cquation (3.12). Then
B7 = 3r* is a limiting exponent of MM,

Proof. Obscrve that Theorem 2.1 and Lemmas 3.5--3.7 imply Theorem 3.1 in the case where
the valid basic mapping (3.17) takes the form (3.22). (Indeed, consider valid mapping (3.23) where
h is sufficiently large, apply Lemmas 3.5, 3.6 in order to delete r in the lefl side, and then apply
Theorem 2.1.)

Finally consider the general case of arbitrary valid basic mapping (3.17). Recursively applying
Lemmas 3.4, 3.5 to (3.17) we obtain the following scquence of valid mappings for h = 1,2,3, ...,

Y. ®cla) O (H(a) J(a), K(a)) — M* O (1,1,1). (3.25)
g_GQ(h,f)
Here Q(h,7) is Lthe set of 7-dimensional vectors @ = (ay,...,a,) with nonnegative integer
entries ay,...,q, such that
al+...+a’=h, (326)
f'(g) = m _<_ T, (3.27)

a)_H(I() , Ja) = H(J(s))"' K(a) = f[(K(s))"‘. (3.28)

s=1 s=1 a==1

Mapping (3.25) (3.28) can be considered the h-th power of (3.17). We used the well known formula
of multinomial expansion to represent the terms in the left side of (3.25). The mapping (3.17)

coincides with the mapping (3.25) (3.28) for A = 1.
Simultancously with the sequence of mappings (3.25) (3.28) we define Lhe folowing sequence

of the associated equations in 7.

Y. )l (e)K(@) =M, h=1,23,.... (3.29)
a€Q(h,r)

We observe that for all 7 and for all A
3 el)(f(a) J(a) K () (Z(l(s)J(s)K(s)) )
a€Q(h,r) : a==1

It follows that the equations (3.29) have the same (real) solution for all h which coincide with

the solution 7 = 7° of the equation (3.12).
Let a*(h) be a vector from Q(h,r) such that

ela”) (o) (a*)K (o )) rgnx e(e)(Ie) J (@) K () " > M*/|Q(h,7)| (3.30)

13




where |Q(h,7)| = (r + h)!/h! is the cardinality of the sct Q(h, 7).
As follows from the validity of mapping (3.25)-(3.28) and from [Lemmas 3.5 and 3.6,

c@® (I(e*), J('), K(a")) «: M* O (1,1,1)

for all ¢ < ¢(a*). We choose ¢ = M9 where g is the natural number such that M? < ¢(a*) <
M9+, Then we come to a valid mapping which can be represented in the form (3.22). Hence the
real solution 7 = 7(h) to the associated equation

M¥(1(a*) J(a’) K(a'))" = M* (3:31)
is a limiting cxponent of MM.

On the other hand, since the cardinality of Q(k, ) is equal to (r + k)!/A!, (3.29), (3.30) imply
the next relations,

cle*)(I(a*) J(a*) K (a )) —f—‘). Z c(g)(l(g)J(g)K(g))r'=Mh h!

e
el (7 + h)!

Since M? > ¢(a”)/M and since (I{a*)J(a*)K (a*))® > ML M('+h) for all ¢ > 0 and for all sufliciently
large h (scc (3.27), (3.30) and rccall that M > r), it follows that for arbitrary ¢ > 0

MI(I(e) J(a*) K(a™))" ¢ > M* (3.32)
il h = h(e) is chosen sufficiently large.
Comparing (3.31) for 7 = (k) and (3.32) we obtain for arbitrary € > 0
™ +e > 1(h(e)).
Hence 7* + ¢ is an exponent of MM for any e > 0.

4. Trilinear Aggregating Generated by Tables.

In this scction we introduce the techniques of trilincar aggregating, TA, in new modilied
versions and describe the method in a more formal and more general way than we did carlier. We
start with an illustrative example of TA.

Example 4.1. (2-Procedure.)

Te(XYZ) + Te(UVW) = Z(Iu + w5k )y + vei)(2ki + wis) — E Ty Y(yak + i) wy;
0,5k W

= D uivie 3 (2ke + wij) — Z(Z(""i + '“'jk))'vkizki .
7k 3 PN

To simplily the formula we have slightly deviated from our previous notation writing X, Y,
Z,U, V, W rather than X(V, y(D 7z() x@) y@ 7z regpectively. Let X, YV, Z, U, V, W
be IXJ,JXK,KXI,JXK,KXI,IXJ mrtrices respectively and let 7, §, k in the above

identities range from 0 to I —1, J ~ 1 and K — 1 respectively. Then the 2-Procedure implies that
for arbitrary natural I, J, K:

(LJ,KYD(J, K, 1) = (IJK + 1] + JK + KI) O (1,1,1).

The 2-Procedure of TA can be deduced [rom the following table.

14
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Table 4.1.
Ty Yik Zky

Ujk Vks Wy
We will explain how to define TA by the following more genceral tables.

Table 4.2.

(1) (1) )
Ti()s(1) Yikw) Zk(1)i(1)

(2) @) (2)
Ti(2)5(2) Yi@)k(2) 2k(2)i(2)

(r) () (r)
Ti(r)i(r) Yji(ryk(r) Zk(rYi(r)

Definition 4.1. Given an r X 3 lable (Table 1.2) whose entrics (s, 1), (s,2), (s, 3) are filled with
the indeterminates zgiz)j(s)’ yg?s)k(a), sz()s)‘»(a), respectively. Then the table is called Generating
Table, GT. The product

— {9 {s) t)

70, 9,8) = 2{{1 () Y5 iok(e) k(i (4.1)
is called cither the s-th principal term of the GT if ¢ = 8 = t or the correction terin (q,s,t) of
the GT otherwise. The product Z;=‘ 1’;"8),‘(4) > yg‘;‘)’)k(_,) )V zg()!)‘.(t) is called the aggregate
of the table.

Table 1.1 is an example of G where r = 2, i(1) = ¢, (1) = 7, k(1) = &, i(2) = j, j(2) = &k,
k(2) = 1.
The next result is easy to verily.

Lemma 4.1. Given Generating Table 4.2 then its aggregate is identically the sum of all its
principal and correelion lerns.

[lereafter we assume that the 3r subseripis i(s), 7(s), k&(s), s =1,...,r in the GT arc integer
variables that independently of cach other range from 0 to some fixed bounds I' -1, J -1, K —1.
We designate that

H=I1JK. (4.2)

Remark 4.1. We will not use the obvious possibility to generalize our construction to the case
where I = I(s), J = J(s), K = K(s) depend on s but 1 = I(s)J(8)K () docs not depend on 3.

Then there exist T instances of such a GT and therefore /1 instances of cach principal term,
of each correction term, and of the aggregate of that GT. The next simple fact is important for
us.

Lemma 4.2, The sum of the Il instances of the s-th principal terms of Generating Table 4.2 is
identically the Tr(X (Y @) 20)) where X9 = (:zszz)j(,)), Y@ = (yg-?,)k(,)), 70 = (355().).‘(,)); are
I'XJ,J XK, KXI matrices respeetively.
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Corollary 4.1. Given Il instances of Generating Table 4.2 (where (4.2) holds). Then

rO(LJ,K)—: (H+ pc) O({1,1,1) (4.3)

where pe is the rank of the sum of the II instances ol all correction terims of the GT. (See Definition
2.3 about the ranks of trilincar forms.)

Indeed, the sutn of the /T instances of the aggregates gives [7 (O (1, 1, 1). Subtracting the sum
of all instances of all correction terms gives(4.3) by virtue of Lemmas 4.1 and 4.2. §

In the sequel we combine Corollary 4.1 with the techniques of Implicit Canceling of correctlion
terms of Table 4.2, see Section 7.

5. Generating Tables with Vectors as Subscripts.

In this section we combine the TPC and TA. Let m, n be natura! numbers. Consider the
m-dimensional vector A = (h(1),..., h(m)) where h(g) are independent integer parameters that
range from 0 to n — 1. Consider also 7 different partitions of the vector h into i(s), j(s), k(s),
s=1,...,r, its three disjoint subvectors of dimnensions £, £, ¢ respeclively where £, &, €7, r are
fixed natural numbers such that

L+ 0+ =m, r<mijaeren. (5.1)

Remark 5.1. Here and hereafter we assume that the order of the cntries of a veetor is preserved
for its subvectors.

We will use the following notation Lo represent the s-th partition of the vector A,

f

h = i(s)j(s)k(s) fors=1,...,r. (5.2)

i(s) = (i(1,9),...,1(¢, 8)), i(t,s) = h(q(t,8)), t=1,...,¢, (5.3)
i(8)y = (31, 8),...,5(¢,s)), 3t ,s)=n(d(t,s), t'=1,...,¢, (5.4)
k(s) = (k(1,8),...,k(£",8)), K(t",s) = h(q"(t",8)), t"=1,...,¢", (5.5)

Since for all s the entrics of #(s), j(s), k(s) coincide with some entrics of h, they arc also integer
paramcters that range from 0 to n — 1.
Now we cstablish the following obvious one-to-onc correspondence between the triplets of

vectors (i(#),i(ﬁ), k() and integers (i(s), 7(8), k(s)),

/] 4

t"
i(8) =Y ilt,a)n*~", j(s) = D i(t',s)nt' Y, k(s) = D K(t",s)n""". (5.6)

t=1 ¢ =1 ¢ =1

This implics that i(s), j(s), k(s) range from 0 to I -1, J — 1, K — 1 respectively where

I=n', J=af, K=n", IUK=n"=1. (5.7)




(Compare (4.2).)
Now we can rewrite Generating Table 4.2 in the following equivalent form.

Table 5.1.

) (1) (1)
Zi()z(1) Y5(0)k(1) Z(1)i(1)

(@) @ (2)
Zi(2)4(2) ’J;(%)m) Zk(2)i(2)

(r) {r) (r)
Linit)  Yimk  ZMie)
We will consider Tables 4.2 and 5.1 identical assuming that
(s) — (3 )] ) (2) — (%)
Zila)s(e) = Fi()ils) ? Yi(ake(e) = Ys(s)k(a)? Zh(a)iCe) = Zk(oi(e) ° (5.8)
(See (5.2)-(5.6).) Consequently we will designate (compare (4.1))
( t
7(q,5,t) = {050 V5cork(s) 2k(rico (5.9)

and also extend the definition of the principal and correction terms and of the aggregate of Table 4.1
as well as Corollary 4.1 to the casc of Table 5.1. On the other hand, we will exploit the vector
structure of the subscripts of the indeterminates of Tabie 5.1 in our next definition.

Remark 5.2. Bececause of the identitics (5.8) we will not distinguish between the two bilinear
problems associated with Tables 4.2 and 5.1. In particular, we substitute (5.7) in (1.3) and obtain

r @ (nf,nf 0ty —: (n™ + pc) O (1, 1,1). (5.10)

Definition 5.1. dcg, zg‘(")i)i(‘l) (respectively deg, y.(i?s)k(a)' deg, zg()t)‘_-(t)), the degree of zm)zj(q)

(respeetively of yﬁl)k_(,), of zg()t)i(”) in h(g) is the number of occurrcnces of the h(g) among the
entrics of vectors 3(q), 3(q) (respectively j(s), k(s) or k(t), i(t)) where 1 < g <m, 1 < ¢q,5,t < 7.
If n(q, s,t) (sec (5.9)), is a principal or correction term of Table 5.1 then

dcgg 7[((’, 8, t) = dcg’ xi(qz)l(q) + ngg y;zl)l_c(s) + degg zg()t)l(l) . (5.‘ l)

7(q, 8,t) is a product of degree 1 if it has degree 1 in h(g) for at lcast one value g, 1 < g < m.
The dimension of w(q, 8,t) is the number of dilferent g such that the degree of the =(g, 3,¢t) in the
h(g) is positive.

The next simple estimates follow from the fact that all of the entries of the three vectors i{s),
J(8), k(s) arc different paramcters.

Lemma 5.1. [Sach principal term of Table 5.1 has degree 2 in all h(g), g = 1,...,m. The degree

of cach correction term of Table 5.1 in any h(g) is at most 3.
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The next result follows from Definition 5.1 (sce in pzirticular (5.11)). 1t is important for our
designs of fast MM aigorithms in the next scctions.

Lemma 5.2. Let n(q, 8,t) (sec (5.9)), a correction term of Table 5.1 have degree 1 in h(g) for
someg,q,8,t1<g<m,1<qs,t <r. Then the sum

n-—-1
ﬂg((lr 8, t) = Z "(q’ 8, t) (5'12)
: h(g)=0
has rank 1 and, more sbeciﬁca"y,
= o (a)
_ q s t . q .
Bolg: 5,t) = ( 2 ’s(q)g(q)) Ysok(o) Zhitritey I 408 Tiqryi =1 (5.13)
: h{g)=0
(@) = @ ()
s t » s
Bo(a,3,t) = za;'('q);'(q)( > yi(S)k(a)) Zieyitey  iF deBg Y j(ay(e) = 1 (5.14)
h(g)=0
) (o) = .0 ®)
y s t . t
ﬂg(q’ 8} t) = Ii‘(’q)l(q) yl(,)k(a)(h(; o Zk(t)l(t)) lf ngg zk(t)g(t) = 1 . (5.[5)
g —

In fact, in Example 4.1 we have alrcady exploited the advantages given by Lemma 5.2 by
uniting the correction terms of Table 4.1 into the sum of only IJ + JK + KL products. In
Section 7 we will sece some additional reasons to seek (or Tables 5.1 whose correction terms have
degree 1.

6. How to Design Generating Tables with Correction Terms of Degree 1?

In this scction we define two constructions of large Generating Tables 5.1 with correction terms
of degree 1. In Scction 7 we will exploit Lthe lalter property. We hope that our constructions will
be eventually gencralized and improved. We will use the following notation and definition.

Notation 6.1. A is the empty (0-dimensional) vector. Let £, © be subvectors of a given vector
h. Then £U O and £N O, the two subvectors of & are the union and the intersection of £ and ©
respectively. (Then U O = €8 il £N O = A; sec Remark 5.1 and Equation (5.2).) h(g) is the
g-th entry of h, h(g) € h.

Definition 6.1. The partitions of two D-dimensional veclors £ and © into z disjoint subvectors
€--»§, and 8,,...,8_ arc isomorphic if €(g) € §, implies B(g) €8, forg=1,...,D,v =
1,...,2.

Now we are ready to describe our First Construction. Let a natural m be a multiple of 4,

m = 4u, (6.1)
18
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and let Ay, hy be the two (2u)-dimensional subvectors of the vector A that consist of the first 2u
and the last 2u entries of h respectively. Then write

r = (2u)!/(u!)?. (6.2)

Let o(s), ¢(s) for s = 1,...,r partition k, into pairs of disjoint u-dimensional subveetors.
Let ©'(s), ¥'(s) for s = 1,...,7 be the isomorphic partitions of hy. Then we define 1(s), i(3),
k(s), the vectors-subscripts of Table 5.1 as follows.

i(s) = pls), i(s) = P()e(s), k() = W(s), s=1,...,r. (6.3)

Now Table 5.1 is defined by the vector A and by its r partitions into the triplets of disjoint
subvectors (2(s), j(s), &(s)) such that (6.1) (6.3) hold. This is our First Construction. We call it
also the r-Procedure of TA for r = (2u)!/(u!)?.

We will use the following result.

Lemma 8.1. Let Table 5.1 be defined by the r-Procedure of TA for v = (2u)l/(u!)? where
(6.1) (6.3) hold. Then each correction term =n(q, s,t) of Table 5.1 has degree I,

VqVsVitig: deg,n(q,s,t) =1  unlessq=3s=1t4. (6.4)

Furthermore for cach correction term =(q, s,t) of Table 5.1 (sce (1.1), (5.9)), and for cach g, 1 <
g < m cither

h(g) € by, degy z{(h () =1 (6.5)
or
h(g) € h,, deg, ygi)k(,) = 1. (6.6)

Proof. Equations (6.5), (6.6) immediately follow if one examines the next combination of (5.9)
and (6.3),

(@) 6] t)
(1 3,8) = 2500, wiare(a) Ylohpr (1,89 F 1) DO E= Loneyr. (6.7)
We recall (see Notation 6.1) that

Va: pla)p(s) = by, ©(o)¢'(s) = by

and that this exhausts all 7 possible partitions of h; into the disjoint pairs of u-dimensional
subvectors and also all » isomorphic partitions of hy. Ience

VaVsVt: P(s)Np(t) # A iTa£t, o@)NyP' (L) # A fq#t.

It follows that the dimensions of the vector ¥(s) U p(t) (respectively '(q) U 9'(t)) is at most
2u—1 and such a veelor is a proper subvector of the (2u)-dimensional vector &y = p(q)¢(q) unless
8 =t (respectively of the by = p'(s)y’(s) unless g = t). This proves (6.4). @
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Now we present our Sccond Construction. Let m be divided by 9,

m =9y (6.8)

and let h;, hy, hy be the three (3v)-dimensional subvectors of A that consist of the first 3v, the
next 3v, and the last 3v entrics of the vector A respectively. Then write that

r = (30)l/(v!)3. (6.9)

Consider all r possible partitions of the vector h; into the triplets of disjoint v-dimensional
subvectors a(s), B(8), 1(s), s =1,...,r. Let &/(s), B'(s), 7'(s) and a"(s), B"(s), 1"(s) be partitions
of hy and hg respectively that are isomorphic to the partition a,, 8., 7, of &y, s=1,...,r.

Then definc #(s), j(s), q(s), the vectors-subscripts of Table 5.1 as follows.

i(s) = afs)(s) B"(s), j(s) = B(s) ¥'(s) 2" (s), k(s) = 2(s) B'(5)1"(8), s =1,...,r.  (6.10)
This is our Second Construction of Generating Tables 5.1 or the r-Procedure of TA for r =
(3v)!/(v!)3. Substitute (6.10) in (5.9). Then we obtain
— o (3) (2)
(4, 5, t) = Zagar (18" (). 8017 (@12 (0) YB(2) (e (s), 3(2)8! ()" (2) 208 (17" () (g (e) - (6-11)

Here 1 < ¢,3,¢t < 7. Equations (6.11) will help us to follow the proof of the next result.

Lemma 6.2. Let Table 5.1 be dcfined by the r-Procedure of TA for r = (3v)!/(v!)3; secc (6.8)-
(6.10). Then each corrcction term of dimension m of that table has degree 1.

Proof. Let 7(q, s,t), a correction term of Table 5.1, have dimension m and not have degree
1. Then the v-dimensional vectors 4(q), a(s), B(t) are to be disjoint. Indeed, if h(g) € 7(q) N «(s)
then h(g) € alq) U B(q) U B(s) U v(s) U hg U k3. Ience the degrees of zgz)j(q) and of yg.?),)k(s) in
h(g) arc cqual to 0 (sce (6.11) and recall that afb), B(b), y(b) are disjoint for all b, in particular,
for b=gq, b = s). If the degree of zg()t)!.(t) in the h(g) is zero then the dimension of n(g, 8,t) is at
most m — 1, otherwise the degree of n(q, 3,t) in the h(g) is one. Ilence 7{(q) and a(s) are disjoint.
Similarly we verify that a(s) N A(t) = B(t) N 7(q) = A. Ilence

Aa)als) B(¢) = &, . (6.12)

Similarly we obtain
B(a) ()Y (t) = ha, 2"(q) B"(5)2"(t) = hy. (6.13)
Since the partitions a(0), B(0), 7(0) of hy, «’(0), B'(¢), ¥'(0) of hy and a"(c), 8"(c), 7"(0)
of h3 are isomorphic, (6.13) implies that

B(g) a(s) o(t) = (6.14)

1(q) B(s) a(t) = b, . (6.15)
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Combining (6.12) and (6.14) implies that

2(q) B(t) = Bla) A(¢). (6.16)

Since for all o the veetors B(v), 4(0) are disjoint and have dimension v, (6.16) implies that

Bla) = B(t), alg)=1(t). (6.17)
Similarly (6.12) and (6.15) imnply that a(s)B(t) = B(s)a(t) and hence
| als) =a(t), Als) = B0)- (6.18)

Since a(o)B(0)y(0) = hy for all ¢, we obtain from (6.17), (6.18)
ol) = als) = alt), fla)=ps) = B(H), la) = 1(s) = (1) (6.19)

As follows from the isomorphism of our partitions of Ay, kg, hy and from (6.19), n(q,s,t) =
#{s,8,8) is a principal term of Table 5.1. This contradicts our assumption that #(q,s,t) is a

correction term, §

7. Implicit Canceling of Correction Terms of Degree 1 and Resulting Algorithms.
In this scction we show how (o cancel the correction terms of degree [ of Table 5.1 defined in
the two Constructions of the previous section.
At first, we consider the following class of linear transformations of bilinear problems and

algorithms.
Definition 7.1. Let

T(X,Y,Z) =) Bo(X,Y¥)zn, T(X',Y",2°)= Bpe(X',Y ")z, (7.1)
n n°

two trilincar forms in X, Y, Z and in X*, Y*, Z* respectively define Lwo bilinear problems,

B={By(X,Y)}, B"={B,.(X",Y")} (7.2)

respectively. Let a linear transformation

X=X(X"), Y=Y(Y"), Z=2Z(Z") (7.3)
transform 7" into T, that is
T(X(X) YY), 2(2°) = T'(X", X, Z°) (7.4)
identically in X*, Y, Z*. Then we write
B=B(8*), T=T1(T) (7.5)
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and call B and T linear images of B* and T respectively.

The next illustrative result will not be used in this paper.

Lemma 7.1. Let (7.1)-(7.5) hold so that B = B(B*) is a linear image of B*. Then (sce
Definition 2.3)

p(8) > p(B7). (7.6)

Proof. Substitute (7.3) in a bilinear algorithm (2.6) of rank M for the problem 8. Then (sce

(7.4))
M
TLY,Z)=T(X" X4, 2°) = 3 L(X(X) KX (X)) £(2(2").
g=1

This (constructively) defines a bilinear algorithm of rank M for 8*. Choose M = p(8) to obtain
(76). ®

It is tempting to apply Lemma 7.1 if one secks upper estimates for p(8*). Then il would
suflice to choose a bilincar problem 8 of small rank such that B is a lincar image of B*. Ilowever
in the gencral case we do nol have a regular way for the solution of the lalter problem. (To
appreciate its difficulty, try, for instance, to find a linear transformation which would show that
8 = B(B*) in the case B* = (m, m, m), B is the PM problem defincd by (2.4) where p = q = m?,
p(B) = p+q—1=2m? — 1. If, contrary to our intuition, such a transformation existed then (7.6)
would imply that p({m,m,m)) = 2m? — 1, see (2.10).)

Thus we prefer not to use Lemma 7.1. Instecad, we will seek for linear Lransformations that
reducc the rank of the original algorithms generated by Table 5.1 by canceling the correction terms
of degree 1. We call such transformations by Implicit Canceling (IC) and the whole process that
consists of the choice of Tables 5.1 and of IC by Trilincar Aggregating with [mmplicit Canceling
(TAIC); sce [13].

Transformation (7.3) can be considered a triplet of transformations applied to X, Y, Z
separalely of cach other. In the sequel we apply the transformalion (7.3) Lo the problems B =
w1 D{1(8), J(s), K(s)). In such cases we compose (7.3) of r triplets of lincar transformalions
of X", v @ 7 into X, ¥ 2 for all 5, s = 1,...,r. To simplify the notation, we
delete the superseripis s and consider transformations of the triplets (X*,Y*, Z%) into (X, Y, Z)
and of the trilinear form

T(X,Y,Z)=To(XYZ)= ) vz (7.7)
(i,4,k)eD
into another one,
TXYNZ2)=T{X V"2 )= 3 z}yjzi- (7.8)
(i.5,k)eD* -

(Recall Remark 5.2.) _
Here ¢ = (i(1),...,4(8), 1 = G(1),...,5(¢)), k= (K(1), ..., k(€")) (compare (5.2) (5.4)). The
relation (4,7, k) € D (respectively (4,4, k) € D*) under the sign Y, designates the summation in
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i(1),...,%(8), 5(1),...,5(¢), k(1),...,k(£") from 0 (respeclively 1) to n — 1. The latter comments
also define two domains, D and D* where the ¢, j, k range.

The trilincar forms of (7.7), (7.8) dcfine the problems (/,J, K) and (I*,J*, K*) respectively
where

I=nt, J=n, K=n%, H=IJK=n™. (7.9)
==, Ir=n-1), K'=@0-1)¢, H'=I')'K*'=@®n-1)". (7.10)

Iere is one of possible linear transformations of (7.7) into (7.8).

Ty =5, Yik=Vjkr %= zg lor (i,5,k) € D*, (7.11)
n—1
=0 iCk(")=0, > =0, (7.12)
k(t")=0
n—1
ye =0 ifj(¢)=0, Y a;=0, (7.13)
i(e)=0
n—1
=0 ifi(t)=0, ) z;=0, (7.14)
i(t)==0

We assume that all unbounded entries of 2, j, k that are used in (7.12)-(7.14) range in the domain
D and that ¢, #, ¢ range as follows, t” = 1,...,£" in (7.12), t' = 1,...,¢ in (7.13), and t =
I,...,¢0n (7.14).

Equations (7.11)-(7.14) contain some implicit expressions of z;; and y;, as linear functions
of X*, Y*. To make them explicit, rewrite the sccond equations of—(7.l2) ('—7.14) so Lhat for each

triplet ¢, ¢, " all indeterminates are moved to the right sides except the following oues which
remain in Lhe left sides,

Yk where k(t”) = 0 in (7.12),
z;; where j(t') = 0 in (7.13),
z;; where i(t) = 0 in (7.14).

Then substitute (7.11) in the right sides.

Now appiy a variation of the linear transformation (7.11) (7.14) to cach of the r triplets
X=X®y=Y®, z=2®, s=1,...,r of indeterminates of Table 5.1 defined by our First
Construction of Scclion 6. In that varialion preserve (7.11) (7.14) for all ¢, ¢ and also for all
¢/ < u (then j(¢') € hy). Il ¢ > u (Lthen F(¢') € hy) substitute the following equations for (7.13),

. n—1
zi; =0if j(¢) =0, D yx=0, ¢>u. (7.15)
i(t)=0

Notice that, by virtue of Lemmas 5.2, 6.1, the above transformation applied to the First
Construclion of Section 8 cancels all correction terms of Table 5.1. This gives us the following
cstimate; see (5.10), (8.2), (7.9), (7.10). -
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Theorem 7.1. [For arbitrary natural numbers u and n,
[2u)/ )] O ((n = )% (n — 1)**,(n = 1)*) =1 2 O (1,1,1) (7.16)

We will call the transformation (7.11)-(7.15) the First Transformation for Implicit Canccling.
The associated equation of (7.16) for a fixed n and sufficiently large u implies the following cstimate
(sec Theorem 3.1).

Corollary 7.1. For arbitrary natural n, B(n) = 3(2log n — log 2)/2log(n — 1) is a limiting
exponent of MM, in particular, §(9) < 2.87 is a limiting exponent of MM.

Next we definc our sccond linear transformation which also transforms (7.7) into (7.8) and
enables us to cancel all correction lerms of degree 1 in any Table 5.1.

We define this transformation recursively in m steps. With cach step we associate a new value
of ¢t", ' or t. For instance, we carn successively choose t” = 1,...,€", then ¢/ = 1,...,¢, then
t=1,...,¢L

Here is the first step of the transformation in the case £’ = 1| where we designate k = k(1) =

k.

ViVy: i =z;. (7.17)

n—1 n—1
ViVii Y win= ) 2 =0. (7.19)

A=0  h=0

n—1
ViVk (k £ 0): 2z + Z 2R = z,'“;. (7.20)

h=1

Fquations (7.19) contain implicit expressions of Yj0, 20; through {yj., 2k, k=1,...,n~1}
which can be casily turned into explicit ones. Similarly Equations (7.20) tmplicitly express zi; as
lincar function of zj; for £ = I,...,n — 1. To obtlain the explicit expressions, we have to solve
(7.20) over [ for cach ¢ as a system of linear cquations in zx, K = 1,...,n — L. The next simple
result shows that the solution exists if n % 0 in F.

Lemma 7.2. For cach i the determinant of the system of IEquations (7.20) in z14,...,2n—1,5 is

equal to n.
Next we examine how the transformation (7.17)-(7.20) change the trilinear form 7'(X, Y, Z).
We write that .
n—
T=TX,Y,2) =) 3 zujnzm

ili k=0

n-—1
=2 Zs‘:_'( 2 Vik 2k + U0 201) :

3 k=1
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Substitute yj0 = — Yo r_} Y;k (sec (7.19)) and obtain

n-—1
T=3 2 ) ysuloni = 20)-

Then substitute zg; = — Y n ), 2a; (see (7.19)). This gives

‘ ; n—1 n—1

_',‘. T = Z Tij Z yik(zki + Z zhi) . (7.21)
,_: !.).1 k=1 h=1
2 |

» Substitute (7.17), (7.18), (7.20) in (7.21) and obtain
K i
2
" N n—1

- T=T(X,Y,2) = Y zvjezis=T(X",Y",Z").
B~ i k=1
‘ ‘ We come to the following result.
j— , Lemma 7.3. Lor arbitrary ¢, ', n (n 5 0 in I') the lincar transformation (7.17)-(7.20) transforms
i (nt,nf,n) into (n¢,n%,n—1).

In the case € > 1 we can generalize (7.17)-(7.20) using the following notation.

' Notation 7.1. Dclete the entry k(") of the vector k.

Designate k& = k(t")k(t”) in the case where all entrics of k£ are considered integer parameters. If

Designate the resulting vector by k(t").

. the value of k(") is fixed, k(t”) = h and if other entrics of k are paramcters, designate k& = &(t")A.
Then the transformation {7.17) (7.20) can be generalized to the case €7 > 1 where t” is lixed,
1 <" <. Let (7.17) be preserved and the following equations subslitule for (7.18) (7.20).

V3 VE(E")VE(E") (k(t") £ 0): yje = yjk- (7.22)
| n—1 n—1
. ViVIVE("): Y i ken = O Zkenhi =0. (7.23)
h=0 h=0
| n-1
g ViV V(") (k(E") % 0): zks + D Zk(emphi = Zis - (7.24)
h=1

‘ Remark 7.1. I E,':____lo Zi(gyhs = 0 and (7.24) holds then E:;lo 2k(g)h,i = 0 for any ¢”, 1 <
q” -<_ t”, qll #'t”.

Then similarly to Lemma 7.3 the following resull can be obtained.

Lemma 7.4. For arbitrary £, €', &, n (n 3£ 0 in ") the lincar transformation (7.17), (7.22)- (7.24)

. transforms (n‘,n",n‘”) into (n‘,n",n‘"‘"(n— 1)}. Similarly (n‘,ul',n‘") can be transformed into
(nt,nf = (n—1),nt") and into (n*='(n — 1),nf,n?").
25
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Recursively applying the Lhree latter transformations we obtain the desired linecar functions
(7.3) that for arbitrary n 3£ 0, £, &, &' transform (n%,n%, 2%} into ((n — 1)%,(n — 1)¥,(n — 1)¥").
We call such a process the Second Transformation for Implicit Canceling. Its efficiency stems from
the following fact which can be easily verified asing Remark 7.1 and similar obscrvations.

Lemma 7.5. Let lunctions (7.3) define the Second Transformation for Implicit Canceling. Then
(7.23) holds for all t", ¢ = 1,...,€" as well as the following cquations.

n—1 n—1

VIVEVi(t): Y Zyons = O zkiwh =0, t=1,...,¢, (7.25)
h=0 h=0
n—1i n—1

VEVIVi(E): Y miiem = D vieme =0, t'=1,...,¢, (7.26)
h==0 h=0

Corollary 7.2. Let the Second Transformation for IC be applied to an arbitrary Table 5.1 then
Equations (7.23), (7.25), (7.26) cancel all correction terms of degree 1.

(Corollary 7.2 follows from l.emmas 5.2, 7.5.)

In particular, if Table 5.1 is defined by the First Construction of Section 6 then all correction
terms of "I'able 5.1 are canceled. This gives another proofl of (7.16) (for n 3£ 0 in ). If Table 5.1
is defined by the Second Construction of Scction 6 then only the correction terms of dimensions at
most m — | are not canceled by the Second Transformation for IC. This gives the following result.

Corollary 7.3. [For arbitrary field F and natural v, n (n 5% 0 in F)

%:)))”1' Of(n— 1)*, (n— 1>, (n = 1)3) —: (n™ + pc) O {1, 1,1).

where pe* is the rank of the sum of all instances of all correction Lerms of Table 5.1 transformed
by the Scecond Transformation for 1C. Here Table 5.1 is defined by the Sccond Constructica of
Section 6.

Our next objective is the lollowing estimate.
Lemma 7.8. Under the conditions of Corollary 7.3,
n% 4+ pe* < (n+1)%. (7.27)

Proof. lLet Table 5.1 be defined by the Sceond Construclion of Seetion 6. Let the Second
Transformatinn for [C be appliesl. Then for all g consider all possible sels of g different integers

G={g1,... 9.}, 1S9 <O, n=1,...,8, p=01,...,9. (7.28)

. Let one of such sets be fixed. Substitule zeroes for cach indeterminate 1:58)1-(”), -'/g';l)k(.-)' zi"()a)l.('),

in Table 5.1 unless such an indeterminate has degree zero in A{g,) for 4 = t,..., 4. Call the
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resulting table by the Auxiliary Table associated with the set {gy,...,9,}. (Tabw 5.1 itself is
associated with the empty sct.) Notice that for g > 1 all principal terms of all Auxiliary Tables
are zeroes,

Multiply the aggregate of the Auxiliary Table associated with the set {gy,...,g,.} by (—n)*.
Sum the results lor all values of all entries h(g) € h such that g & {g,,...,g,} and for all possible
sets {g1,...,9.}, # = 0,1,...,9v. As can be verilied, no corrcclion lerms of dimensions less
than m remain in the resulting total sum. Ifence the sum is identically T(X, Y, Z) because the
correction terms of dimension m are canceled, by virtue of Lemmas 5.2, 6.2, 7.5. [t remains to
estimate n% 4+ pc*, the rank of the sum of all instances of all aggregates in all of our Auxiliary
Tables in order to prove (7.27). (This whole procedure for canceling the terms of dimensions less
than m is general. It can be called the Alternating Summation of Aggregates.)

The desired upper estimate (7.27) can be obtained from the next two simple lemmas.

Lemma 7.7. For a natural n, 0 < pu < 9v, and for an Auxiliary Table associated with a set
{g1,--.,9u} (sce (7.28)) there exisi at most n®~# instances of the aggregate of that table.

Lemma 7.8. For an arbitrary natural p, 0 < p < 9v, there exist at most (%) = (9v)/(n!(9v~p)!)
different sets {g1,...,9,} where g, are natural numbers, 1 < g, < 9v.

Corollary 7.4. For arbitrary field of constants F and for all natural v, n, (n 3£ 0 in F), the
following mapping is valid.
(3v)!

g @l = 1%, n = 1%, (n = %) = (n + )™ O {1, 1,1).

The associated equations for a fixed n and for v — 0o define the limiting exponents of MM,

B*(n) = log((n + 1)3/3)/ log(n — 1), (7.29)

in particular, :
B°(20) < 2.7288.

8. Conclusions.

How can the techniques of the previous sections be improved? One of the natural ways is to
improve Lthe Constructions of Scction 6.

Corollary 7.2 enables us to cancel all correction terms of degree 1. The melhod of the
Alternating Summation of Aggregates (sce the proof of Lemma 7.6) can be generalized for canceling
the terms of dimensions less than m. It remains Lo design Gencerating Table 5.1 where all correction
terms of dimension m would have degree 1 in some of the h(g). We proved such a property for the
Sccond Cunstruction of Section 8. The prool and hence the result itself can be extended to any
Table 5.1 such that the veclors of subscripts k(q), i(s), j() arc disjoint only if ¢ = s = ¢.

27




Be:
¥

",

[s it possible to obtain Table 5.1 with r rows where the latter properly holds and where
3{mlog n — log r)/mlog(n — 1) is substantially less than B8*(n) in (7.29)? (See (5.1), (7.9), (7.10),
(7.29).)

Ilere is another way that scems to be more promising. One can gencralize Tables 5.1 by
turning them into the following ones which we call Generating \-Tables. (We represent only the
s-th row of the tables, assuming that s = 1,...,7.)

Table 8.1.
als, e BNk AN i

Here a(s,)), B(s,2), v(s,\) arc constants of F such that
Vs: ) afs,\) B(s,\) 9(s, ) = L.

Y
We assume thal the aggregates of Table 8.1 arc Lo be summed for all values of . (In particular,
if X is a constant and ofs,A\) = f(s,\) = v(s,A\) = 1 for all s, then we come back to Table
5.1.) The cocflicients «(s,\), B(s,7), ¥(s, ) can be chosen such that several correction terms are
canceled in the result of the summation in A. More precisely, it is sufficient Lo satisly the equation

Z”‘(qr >‘)ﬂ(sr At N) =0 (8.1)

by

in order to cancel the correction term 7y (q, s, t),
. > mlg, 5t =0. (8.2)
by

In particular, in some cases Lhis observation enables us to cancel even the correction terms whose
degrees in all A{g) are greater than t (if such terms appear in Table 8.1).

In fact, such a trick was successfully applied in [3, 12] under the name Trilinear Canceling
(see also [9]). On the other hand, the Generaling A-Tables can be used to define X-algorithms
for MM which turn out Lo coincide with APA-algorithms if a{s, X}, (s, A}, 7(s,2) arc rational
functions of X and if the consideration is modulo M. In such a setling the application of (8.1),
(8.2) as a means of canceling is generally eflicient. This is formally proven in the basic theorem
on the relations between usual algorithims and APA-algorithins. (Such an interpretation of the
theorem can be scen from the original illuminaling proof given in [6] and repeated in neither of
the papers {7 10, 17).) During the study of APA-algorithms this direction has remained in the
shadows. However regarding the relationship between APA-algorithms and A-"Pables the approach
of {6] sccms important and might beeome fruitful in the future.

In particular, it is important to understand the most cflicient ways of canceling the correction
terms of Generating X-Tables. 1t might happen that the existent methods already rely on nearly
oplimum ways of such a canccling. Ilowever because of the extreme irregularity of the asymptoti-
cally fastest known algorithms for MM we might be Far from understanding the successful methods
of canceling hidden in those algorithms. Then further efforts in the analysis of the best existent
methods of MM can become fruitful. ' '
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