
AD-A13 415 NAVAL RESEARCH LAB WASHINGTON DC F/G 9/2
SOFTWARE ENGINEERING PRINCIPLES 3-14 AUGUST 1981.(U)
AUG 81 L J CHMURA, P C CLEMENTS

UNCLASSIFIED N

mmmmmhhmmiihu,
EElllllEEllllE
EIIIIIIIIIIIII
IEEEEEIIEIIII

:77 11,LI

+, 1111"2---- II1111III -2
1.

.1.

A MICROCOPY RESOLL)rION TEST CHART
NA1I0NAl BULREAll (If iANDAHD[) I14 AA

5OFTWARE'

ENG INEE NG-
PRINCIPLE S

I 3 --14 August 1981

Infannation Teehnoloy W meo -.71_;7

LLJ

W..

pA

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Doa Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER [2. GOVT ACCESSION NO. I. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

1981 Course Notebook
SOFTWARE ENGINEERING PRINCIPLES *. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMERe)

L. J. Chmura, P. C. Clements, C. L. Heitmeyer,
K. L. Britton, D. L. Parnas, J. E. Shore,
D. M. Weiss

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA a WORK UIMT NUMBERS

Computer Science and Systems Branch
Naval Research Laboratory O&MN, NPS
Washington, DC 20375 NRL Problem 75-MO01-X-1

Ii. CONTROLLING OFFICE NAME AND ADDRESS t2. REPORT DATE

Computer Science and Systems Branch August 1981
Naval Research Laboratory 13. NUMBER OF PAGES

Washington, DC 20375 614
14. MONITORING AGENCY NAME & ADDRESS(I dillerent from Controllind Ofice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1S. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release and sale; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

Prepared in cooperation with Office of Continuing Education

Naval Postgraduate School
Monterey, CA 93940

Computer ,

Software
Computer Programming
Training A

20. ATRACT (Continue on rovete side If necessary nd Identify by block number)

This is the notebook from the updated edition of the well-received course
originated by the Naval Research Laboratory and taught annually for the past
six years. It is a two-week technical course for personnel managing a soft-
ware project or designing software. The purpose of the course is to improve
the participant's ability to evaluate software requirements, specifications,
design, correctness, and maintainability. Its purpose is not to transform
the participant into an expert software designer. - (continued)

DD JAN73 1473 EDITION OF I NOV65 IS OBSOLETE UNCLASSIFIED
A S/N 0102-014- 6601 1 SECURITY CLASSIiFICATION OF THIS PAOE (STAR Daea uIMe

UNCLASSIFIED

.Lt_.JRITY CLASSIFICATION OF THIS PAGE(When Dote Entered)

'The course concentrates on technical problems of software design. It
7 introduces generally accepted design practices, as well as software design

research that may result in practical design applications in the near future.
Design for ease of maintenance is emphasized. All course material is
unclassified. Topics covered include information-hiding modules (modules

that isolate the effects of changes), abstract interfaces (3 technique for
designing the interfaces of information-hiding modules), responses to
undesired events, cooperating sequential processes (in real-time systems,
software tasks in which scheduling and resource allocation decisions are not
embedded), disciplined documentation techniques, techniques for formal

specification, and designing systems with useful subsets.,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGfIkofe Date Enter**

Contents

Preface v
Schedule vii

Section 1 GENERAL

GEN.1 Course Overview 1-1
GEN.2 Personal Experiences 1-9
GEN.3 The A-7 Project 1-13
GEN.4 The MK(S Project 1-19
GEN.5 Pseudo-Code Language Description 1-25
GEN.6 Course Review 1-39

Section 2 PROGRAM FAMILIES

PF.1 Program Families: What and Why 2-1
PF.2 MP as a Family of Programs 2-9
*PF.3 MP as a Family of Programs 2-13
PF.4 A Minimal Member of the MP Family 2-15
*PF.5 A Minimal Member of the HP Family 2-19
PF.6 Family Development by Stepwise Refinement 2-21
PF.7 Applying the Program Family Principle 2-37
PF.8 Design Decisions in HAS Requirements 2-47
*PF.9 Design Decisions in HAS Requirements 2-49

Section 3 UNDESIRED EVENTS

UE.1 Desired Responses to Undesired Events 3-1

UE.2 MP and UEs 3-11
*UE.3 HP and UEs 3-13
UE.4 Intermodule Interfaces and UEs 3-15
UE.5 MP Intermodule Interfaces and UEs 3-21
*UE.6 MP Intermodule Interfaces and UEs 3-23
UE.7 The Uses Hierarchy and UEs 3-25 -

*Distributed during course loo

SOFTWARE ENGI.XEERING PRINCIPLES
3-14 August 1981

CONTENTS

Section 4 INFORMATION-HIDING MODULES

MOD. Dccomposition into Modules 4-1
MOD.2 Change and the Original MP Modular Structure 4-11
*MOD.3 Change and the Original MP Modular Structure 4-13
MOD.4 Modular Structure of Complex Systems 4-15
MOD.5 MP Secrets 4-21
*MOD.6 MP Secrets 4-23
MOD.7 Change and the Improved MP Modular Structure 4-25
*MOD.8 Change and the Improved MP Modular Structure 4-27
MOD.9 Identifying HAS Modules 4-29

Section 5 SPECIFICATIONS

SPEC.l What Are Specifications? 5-1
SPEC.2 Using an Informal Functional Specification 5-11
SPEC.3 Formal Functional Specifications 5-13
SPEC.4 Coding Specifications 5-21

Section 6 ABSTRACT INTERFACE MODULES

ABS.1 Abstract Interface Modules and Their Value 6-1
ABS.2 Using the MP Abstract Interface 6-15
*ABS.3 Using the MP Abstract Interface 6-19

Section 7 HIERARCHICAL STRUCTURES

HIE.1 Hierarchy Survey 7-1
HIE.2 Designing a Uses Hierarchy 7-13
HIE.3 Uses Hierarchy for an Address System 7-29

*HrE.4 Uses Hierarchy for an Address System 7-33

Section 8 LANGUAGE CONSIDERATIONS

LANG.1 Language Selection 8-1
LANG.2 Ada 8-11

*Distributed during course

ii SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Contents

Section 9 PROCESS STRUCTURE

PROC.1 Process Structure of Software Systems 9-1
PROC.2 MP Process Structure 9-13
*PROC.3 MP Process Structure 9-17

PROC.4 Process Synchronization 9-19

Section 10 DOCUMENTATION

DOC.1 Documentation Guidelines 10-1

Section 11 MESSAGE PROCESSING (MP) SYSTEM

MP.1 The UGH Message Processing (MP) System 11-1
MPZ MP Basic Modular Structure 11-7
MP.3 MP Detailed Modular Structure 11-13
*MP.4 MP Improved Modular Structure 11-33
*MP.5 HP Message Holder Module 11-37
*MP.6 1P Abstract Interface Module 11-49

Section 12 MILITARY ADDRESS SYSTEM (MADDS)

2fADDS.l The Military Address System (MADDS) 12-1
MADDS.2 Input and Output Formats 12-5
HADDS.3 MADDS Modular Structure 12-9
*HADDS.4 MADDS Modular Structure 12-11
MADDS.5 Using the Computer System 12-13
*MADDS.6 Informal Functional Specifications for MADDS Modules 12-23
*MADDS.7 MADDS Program Listings 12-45

Section 13 HOST-AT-SEA (HAS) SYSTEM

9AS.1 The Host-At-Sea (HAS) Buoy System 13-1
HAS.2 HAS Data Acquisition and Transmission

Software: Program Design Specification 13-5
*HAS.3 WAS Improved Modular Structure 13-37
HAS.4 A Structured View of HAS 13-43
HAS.5 Academic Poppycock 13-65
HAS.6 ' Separation of Concerns 13-71
HAS.7 Implementing Processes in HAS 13-77

*Distributed during course

SOFTWARE ENGINEERING PRINCIPLES iii
3-14 August 1981

-1

CONTENTS

Section 14 EVALUATIONS

EVAL.1 Comment Sheets 14-1
EVAL.2 Course Evaluation 14-11

Section 15 GLOSSARY

GLOS.1 Glossary 15-1

Section 16 BIBLIOGRAPHY

BIB.1 Bibliography 16-1

iv SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Preface

Since 1973, the Computer Science and Systems Branch at the Naval Research
Laboratory (NEL) has studied many of the managerial and technical problems
connected with Navy software acquisition, development, and maintenance. One
observation has been that persons responsible for software could benefit
greatly from training in state-of-the-art software engineering technology.
Another has been that a better job of software design is essential if software
is to meet requirements and be maintained inexpensively. These two
observations have led to the course "Software Engineering Principles," which
addresses some of the important technical problems concerning software
design. First taught in 1976 by NRL, the course is now presented annually by
NRL in cooperation with the Naval Postgraduate School (NPS).

In "Software Engineering Principles," we introduce several important
design principles that encourage production of correct, understandable, and
easily changed software products. We also examine some software engineering
research that may result in valuable design principles in the near future.
The course will not transform the student into an expert designer, but should
improve his ability to evaluate software proposals, progress, and products.
He should also better appreciate design approaches, design problems, and
ongoing research.

Coverage of each course topic typically involves lectures, examples,

exercises, sample solutions, and exercise discussions. The schedule is
rigorous; therefore, we recommend that the student summarize the major points
raised in each lecture and exercise discussion. We encourage him to ask
questions if he is having trouble isolating the major points of a topic or if
he is confused by details. The student should also challenge statements or
sample exercise solutions that seem in error or that do not agree with his
experience. In the past, student questions have led to many lively
discussions, cleared up some hidden confusions, and sometimes resulted in
changes to course materials.

The following persons have prepared this year's materials.

Kathryn Heninger Britton
Louis Chmura
Paul Clements
Constance Heitmeyer
David Parnas
John Shore
Janet Stroup
David Weiss

SOFTWARE ENGINEERING PRINCIPLES v
3-14 August 1981

... 1 *

PREFACE

Much of the material derives from earlier versions of the course. Kathryn
Heninger Britton, Louis Chmura, Paul Clements, David Parnas, John Shore, and
David Weiss, together with the following persons, developed those versions.

Honey Elovitz
John Guttag
Richard Hamlet
Cynthia Irvine
Rodney Johnson
Rudolph Krutar
Michael McClellan
Pam Mayo
Lee Nackman
Barbara Trombka
Helen Trop

Dean W. M. Woods and Ms. Ruby Kapsalis of NPS's Department of Continuing
Education have handled many of the administrative details associated with the
course and were responsible for making the local arrangements for its
presentation in Monterey. Professor Gordon Bradley, Colonel Roger Schell, Lt.
Commander Ronald Modes, and Mr. William Faulkner of the Computer Science
Department were responsible for providing computer services and support for
the course programming assignment.

Preparation of the notebook has been in the general charge of Janet
Stroup. Her work was facilitated by the use of previous versions of the
materials prepared by Ms. Stroup, Georgine Spisak, and Sarah McCray.

"Software Engineering Principles" originated as part of the NRL's Software
Engineering Project, which the Naval Electronic Systems Command originally
funded under Program Element 62721N, Task XF21-241-021.

vi SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Schedule

DaZ 1, Monday, 3 August 1981

Kind of Relevant Session

Time Topic Session Material Leaders*

0800-0830 Registration JS

0830-0930 Course Overview Lecture GEN.1 DP

0930-0945 Break

0945-1015 Personal Experiences Exercise GEN.2 LC

1015-1045 Results of Exercise Discussion LC

1045-1100 Break

1100-1130 The A-7 Project Lecture GEN.3 DP

1130-1200 The MM(S Project Lecture GEN.4 CH

1200-1315 Lunch

1315-1415 Program Families: Lecture PF.1 CH

What and Why

1415-1430 Break

1430-1530 The UGH Message Processing Reading and MP.1 CH, FR

(MP) System discussion

1530-1545 Break

1545-1615 NP as a Family of Programs Exercise PF.2 CH

1615-1645 Results of Exercise Discussion PF.3 CH

Pseudo-Code Language Homework GEN.5
Description

*CH: C. leitmeyer DP: D. Parnas DW: D. Weiss EN: E. Newhire

FR: F. Rat JS: J. Stroup KB: K. Heninger Britton LC: L. Chmura
OD: 0. U. DeZeeman PC: P. Clements

SOFlWARE ENGINEERINiG PRINCIPT.ES vii
3-14 August 1981

V-

Schedule

Day 2, Tuesday, 4 August 1981

Kind of Relevant Session

Time Topic Session Material Leaders

0800-0830 A Minimal Member of the Exercise PF.4 CH
MP Family

0830-0900 Results of Exercise Discussion PF.5 CH

0900-0930 Pseudo-Code Language Discussion GEN.5 LC
Description

0930-0945 Break

0945-1045 Desired Responses to Lecture UE.1 LC
Undesired Events

1045-1100 Break

1100-1130 MP and UEs Exercise UE.2 LC

1130-1200 Results of Exercise Discussion UE.3 LC

1200-1315 Lunch

1315-1445 Family Development by Lecture PF.6 CH
Stepwise Refinement

1445-1500 Break

500-1530 Applying the Program Lecture PF.7 CH
Family Principle

1530-1630 Decomposition into Modules Lecture MOD.1 DP

MP Typical Modular Homework MP.2

Structure MP.3

viii SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

SCHEDULE

Day 3, Wednesday, 5 August 1981

Kind of Relevant Session
Time Topic Session Material Leaders

0800-0830 MP Typical Modular Discussion MP.2 DP
Structure MP.3

0830-0900 Change and the Original Exercise MOD.2 DP

MP Modular Structure

0900-0930 Results of Exercise Discussion MOD.3 DP

0930-0945 Break

0945-1045 Modular Structure of Lecture MOD.4 DP
Complex Systems

1045-1100 Break

1100-1130 HP Secrets Exercise MOD.5 LC

1130-1200 Results of Exercise Discussion MOD.6 LC

1200-1315 Lunch

1315-1345 HP Improved Modular Reading MP.4 DP
Structure

1345-1415 Change and the Improved Exercise MOD.7 DP
MP Modular Structure

1415-1430 Break

1430-1500 Results of Exercise Discussion MOD.8 Dp

1500-1530 The Military Address Reading and MADDS.I LC
System (MADDS) discussion MADDS.2

1530-1545 Break

1545-1615 MADDS Modular Structure Exercise MADDS.3 LC

1615-1645 Results of Exercise Discussion MADDS.4 LC

Using the Computer System Homework MADDS.5

SOFTWARE ENGINEERING PRINCIPLES ix
3-14 August 1981

Schedule

Day 4,.Thursday, 6 August 1981

Kind of Relevant Session

Time Topic Session Material Leaders

0800-0900 Intermodule Interfaces Lecture UE.4 DP
and UEs

0900-0915 Break

0915-0945 .P £ntermodule Interfaces Exercise UE.5 LC
and UEs

0945-1015 Results of Exercise Discussion UE.6 LC

L015-1030 Break

1030-1130 What are Specifications? Lecture SPEC.1 DP

1130-1200 An Informal Functional Exercise SPEC.2 LC
Specification for the MP.5
M I Message Holder Module

1200-1345 Lunch (Guest Speaker)

1345-1415 Results of Exercise Discussion SPEC.2 LC
MP.5

1415-1430 Break

1430-1600 Formal Functional Lecture SPEC.3 DP
Specifications

1600-1615 Break

1615-1730 Using the Computer System Terminal MADDS.5 PC

x SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

SCHEDULE

Day 5, Friday, 7 August 1981

Kind of Relevant Session

Time Toic Session Material Leaders

0800-0900 Abstract Interface Modules Lecture ABS.1 DP
and Their Value
(Part 1)

0900-0915 Break

0915-1015 Abstract Interface Modules Lecture ABS.1 DP

and Their Value
(Part 2)

1015-1030 Break

1030-1130 Using the .P Abstract Exercise ABS.2 DW
Interface MP. 6

1130-1200 Results of Exercise Discussion ABS.3 DW

1200-1315 Lunch

1315-1415 Informal Functional Reading and MADDS.6 LC
Specifications for discussion
MADDS Modules

1415-1430 Break

1430-1530 Coding Specifications Lecture SPEC.4 DW

1530-1545 Break

1545-1700 The Military Address Programming MADDS.l- PC
System 41DDS.7

Host-At-Sea (HAS) System Homework HAS.1

SOFTWARE ENGINEERING PRINCIPLES xi
3-14 August 1981

Schedule

Day 6, Monday, 10 August 1981

Kind of Relevant Session

Time Topic Session Material Leaders

0800-0900 Host-At-Sea (HAS) System: Reading and HAS.1 DP
Requirements Summary discussion PF.8

0900-0915 Break

0915-1015 HAS Data Acquisition Reading HAS.2 DP
and Transmission Soft-
ware: Program Design

Specification

1015-1045 Evaluation of the Proposed Discussion HAS.2 DP
HAS Modular Structure

1045-1100 Break

1100-1200 Identifying HAS Modules Exercise MOD.9 DW
RAS.1
HAS.2

1200-1315 Lunch

1315-1415 Results of Exercise Discussion HAS.3 DW

1415-1430 Break

1430-1530 Hierarchy Survey Lecture HIE.1 DP

1530-1545 Break

1545-1700 The Military Address Programming MADDS.l- PC
System HADDS.7

xii SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

SCHEDULE

Day 7, Tuesday, 11 August 1981

Kind of Relevant Session
Time Topic Session Material Leaders

0800-0930 Designing a Uses Hierarchy Lecture HIE.2 KB

0930-0945 Break

0945-1015 Uses Hierarchy for an Exercise HIE.3 KB
Address System

1015-1045 Results of Exercise Discussion HIE.4 KB

1045-1100 Break

1100-1200 The Uses Hierarchy and UEs Lecture UE.7 DW

1200-1315 Lunch

1315-1415 Language Selection Lecture LANG.1 DW

1415-1430 Break

1430-1700 The Military Address Programing MADDS.1- PC

System MADDS.7

A Structured Viev of HAS Homework HAS.4
pp. 13-43
thru 13-47

SOFTWARE ENGINEERING PRINCIPLES xiii
3-14 August 1981

t

Schedule

Day 8, Wednesday, 12 August 1981

Kind of Relevant Session
Time Topic Session Material Leaders

0800-0930 Process Structure of Lecture PROC.1 KB
Software Systems

0930-0945 Break

0945-1015 MP Process Structure Exercise PROC.2 DW

1015-1045 Results of Exercise Discussion PROC.3 DW

1045-1100 Break

1100-1200 A Structured View of HAS Reading and HAS.4, DW
discussion pp. 13-43

thru 13-47

1200-1345 Lunch (Guest Speaker)

1345-1515 Process Synchronization Lecture PROC.4 KB

1515-1530 Break

1530-1600 Academic Poppycock Reading and HAS.5 DW
discussion

1600-1730 The Military Address Programming MADDS.1- PC
System MADDS.7

A Structured View of HAS Homework HAS.4
HAS.5

xiv SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

SCHEDULE

Day 9, Thursday, 13 August 1981

Kind of Relevant Session
Time Topi€ Session Material Leaders

0800-0845 A Structured View of HAS Debate HAS.4 EN, OD
HAS.5

0845-0930 A Structured View of HAS Discussion HAS.4 KB, PC

HAS.5

0930-0945 Break

0945-1045 Separation of Concerns Reading HAS.6 KB

1045-1100 Break

1100-1200 Ada Lecture LANG.2 DW

1200-1315 Lunch

1315-1415 Implementing Processes Reading HAS.7 DW
in HAS

1415-1430 Break

1430-1700 The Military Address Programming MADDS.1- PC
System MADDS.7

Implementing Processes Homework HAS.7
in HAS

SOFTWARE ENGINEERING PRINCIPLES xv
3-14 August 1981

Schedule

Day 10, Friday, 14 August 1981

Kind of Relevant Session

Time Topic Session Material Leaders

0800-0830 Implementing Processes Reading HAS.7 DW
in HAS

0830-0930 Implementing Processes Discussion HAS.7 DW

in HAS

0930-0945 Break

0945-1115 Documentation Guidelines Lecture DOC.1 KB

1115-1130 Break

1130-1230 Course Review Lecture GEN.6 KB

1230-1300 Course Evaluation Evaluation EVAL.2 iS

xvi SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

GEN. 1 Course Overview

LECTURE

I. What is Software Engineering?

A. You already know programming?

B. You already have languages?

C. What then are the special characteristics of software?

1. Multiperson involvement

2. Multiversion production and maintenance

3. Handling of undesired events (UEs)

4. Usual comon additional properties

a. Machine "near" - machine dependent

SOFTWARE ENGINEERING PRINCIPLES I-I
3-14 August 1981

SEC. 1 / GENERAL

b. Large size

c. Efficiency, reliability important

d. Robustness important

I. Characteristics of well-structured software

A. Can be verifi.d one part at a time

B. Can be changed one part at a time

C. Can be read one part at a time and each part only once -

characteristics of both program and documentation, not just
documentation

D. Subsets work - ability to tailor to actual needs

1-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Overview /Doc. GEN.l

E. Meaningful error messages

P. Effective utilization of resources

G. Extensibility from outside

t1. Characteristics of badly structured software

A. In one eye and out the other (smart people)

B. Must remember many arbitrary facts to understand code changes

C. Modification requires changes in unpredictable places

D. System integration a real effort

TV. Various times at which decisions are made, e.g.,

A. Early design time

SOFTWARE ENGINEERING PRINCIPLES 1-3
3-14 August 1981

SEC. 1 / GENERAL

B. Program writing time

C. Compile time

D. Load time

E. Run time

V. Decision postponement

VI. Three software structures

A. Module structure

B. Program-uses structure

C. Process structure

1-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Overview / Doc. GEN.l

VII. The meaning of abstract and the use of abstractions

VIII. Goals of this course: After you finish, you should

A. Be better able to recognize bad software design

B. Be able to recognize good software design

C. Be able to recognize contractor BS, snow, run-around, incompetence,

etc.

D. Be able to evaluate contractor performance

E. Have a sense of the state of the art in software engineering

IX. Non-goals of this course

A. You will not be a system designer

B. You will not be a super programmer

SOFTWARE ENGINEERING PRINCIPLES 1-5
3-14 August 1981

SEC. i / GENERAL

C. You will not be a philosopher about software methodology

X. Discussion of contents and schedule

A. Contents (pp. i-iv)

1. Nine topics, three examples

2. Document IDs (e.g., GEN.l)

3. Materials to be handed out during course (e.g., MADDS.7)

4. Pseudo-code language description (GEN.5)

5. Course evaluations

a. Coment sheets (EVAL.l)

b. End of course (EVAL.2)

6. Glossary (GLOS.l)

7. Bibliography (BIB.l)

a. Articles available

b. References for each section

B. Schedule (pp. vii-xvi)

1. Full days

2. Sessions

a. Lectures

1-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Overview /Doc. GEN.l

b. Case studies

c. Exercises (collected)

d. Discussions

3. Relevant materials

4. Session leaders (e.g., DP)

5. Programming assignment (time allocated)

6. Guest speakers

S

SOFTWARE ENGINEERING PRINCIPLES 1-7
3-14 August 1981

GEN.2 Personal Experiences

EXERCISE

Name:

This exercise gives you a chance to relate the topics mentioned in the
overview lecture to your own experiences in software development.

3riefly describe your experiences, if any, for the situations listed below.
Attached at back of this exercise, you will find some sample experiences of
former students. We will ask a few students to relate their "war stories"
duing the upcoming discussion period.

1. Describe a situation in which a small change in the requirements
resulted in many changes all over a system.

2. Describe a situation in which a subset of an existing system was
needed, but it was not possible simply to remove the unneeded parts -
rewriting was necessary.

SOFrWARE ENGI'EERING PRINCIPLES 1-9
3-14 August 1981

SEC. I/ GENERAL

3. Describe a situation in which the information that you needed in order
to understand one module in a system was finally found somewhere else
in the system documentation.

4. Describe a situation in which a decision that was made when a system
was specified could and should have been postponed until assembly time
or run time.

1-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Personal Experiences /Doc. GEN.2

SOME PAST ANSWERS TO GEN.2

Question 1. Describe a situation in which a small change in the requirements
resulted in many changes all over a system.

1. "In 1976, it was requested that the Order of Merit System (at USMA) be
dropped in favor of an alphabetical graduation scheme. This seemingly
simple administrative decision required not only a complete overhaul of
the term end processing system, but also impacted many seemingly unrelated
areas - such as the Army promotion list for the new graduates which was
found to be based on the order of merit, also the branch drawing system -

based on order of merit."

2. "Requirement to utilize an optional H/W control selection to compensate
for system level malfunction needed only single bit manipulation in H/W to
effect. Result was 9 S/W module changes, some redesign in S/W because -
some S/W hard coded element not expecting it to ever change, some S/W read
data base item and then overwrote it in S/W, some S/W got data base item
from wrong place - this was found 3 years after deployment and was costly
to correct - large documentation cost incurred."

3. "This example perhaps describes the converse of the question, i.e., a
small change was not done because the overall impact was too costly. The
simple change was to 'hard copy' upon operator command the results of menu
changes on a CRT-like device. The program was designed such that the
change required a pulling apart of the display code and restructuring it
to accomplish the desired result."

Question 2. Describe a situation in which a subset of an existing system was
needed, but it was not possible simply to remove the unneeded
parts - rewriting was necessary.

I. "USMA wanted to implement the Air Force 'CTAPS' system of providing
procurement support to HQ's local procurement division. The 'AF' CIAPS
system consisted of approximately 167 programs of which 'we' needed 16.
Resulting problem was that CLAPS was developed for their base level
Burroughs 3500 - we were configured on 16000 - and planning a conversion
to Univac 1110. Rewrite was decided upon - using the CIAPS programs as a
basis."

2. "It was desired to update a sequential file using tape, as well as cards.
However, because the formats of the input cards and tapes differed so
greatly (several tape records - I card record) it was simpler to write a
whole new program rather than try to incorporate the new requirement into
the existing program."

SOFTWARE ENGINEERING PRINCIPLES 1-11
3-14 August 1981

SEC. 1 / GENERAL

3. "In developing a program for an agency which must comunicate on TADIL-B,
it was not possible to use an existing module which does TADIL-B
processing for another agency. This has happened repeatedly. For every
type agency which uses TADIL-B, there is a unique TADIL-B processor."

Question 3. Describe a situation in which the information that you needed to
understand one module in a system was finally found somewhere
else in the system documentation.

1. "Such a situation occurred in an EW system where parameters required by a
controlling program which interacted with a number of distributed original
processors were not specified in the documentation of the main control
program. All of the distributed programs had to be examined to understand
all the parameters being used and what the specific functions of the
controlling program were."

2. "System documentation included a statement that read 'S+A=P pg 33Wrth'
which meant page 33 in Wirth's book, Structure Plus Algorithms Equals

Programs."

3. "Involved Navy personnel strength projections performed with a simulation
model. Model was written to perform certain processes sequentially, and
the processes shared comon routines, i.e., rounding routines, random
number generator, etc. In documentation, the descriptions of the co mon
routines were spread out throughout system's description."

Question 4. Describe a situation in which a decision that was made when a
system was specified could and should have been postponed until
assembly time or run time.

1. "A data reduction system for handling A-7 flight data had to be able to
handle flight recorder outputs from several different OFPs (Operational

Flight Programs). The same variables were often in different positions on
the different tapes. The programer introduced an ungodly number of flags
and complicated branching logic in order to handle all the 'special

cases.'

2. "Memory size of TRIDENT Command and Control system has grown throughout

system development with impact on the executive and in many cases on the
subsystem modules. It would appear that memory allocation could have been
generalized in the development process and then after total requirements
were known, memory allocation could have been determined."

3. "Because hardware must be procured at the beginning of development, no one
can tell if it is sufficient for the job. Only after compilation (just

how efficient is that compiler anyway?) should the exact amount of
hardware be gotten. At the very least, some experimental coding must be
done."

1-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

GEN.3 The A-7 Project

LECTURE

I. Problems with tactical software for DoD aircraft as seen by Navy's A-7
maintainers

A. Mostly unstructured assembly language code

B. Little documentation

1. Design and analysis documents were not purchased from the
contractor or have not been maintained

2. The reasons for doing things have been lost

C. Additions and deletions are risky

1. Almost impossible to assess impact or magnitude of a change

2. Ripple effect

SOFTWARE ENGINEERING PRINCIPLES 1-13
3-14 August 1981

SEC. 1 / GENERAL

3. Personnel making a change must understand entire program

4. Total program must be retested

D. Difficult to validate

1. No independent statement of the requirements except the code

2. Reliability always unknown

E. Training of personnel is difficult, requiring about 1 year before a
significant contribution can be made

ZI. Claimed benefit of software engineering principles is well-structured

software

- Can be verified one part at a time

- Can be changed one part at a time

- Can be understood one part at a time

1-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The A-7 Project /Doc. GEMN.3

III. Questions

A. Why doesn't the DoD use software engineering principles?

1. No convincing test

2. No models to emulate

B. Would the DoD benefit from well-structured programs? How can we
find out? - By building and using one.

C. Is it feasible to follow software engineering principles while
building embedded systems with tight memory and time constraints?
How can we find out? - By building an operational system and
following the principles.

D. How much memory and execution time does good structure cost? How
can we find out? - By comparing two equivalent programs, one with
good structure, one without.

E. What if we fail?

1. Learn why

SOFTWARE ENGINEERING PRINCIPLES 1-15
3-14 August 1981

SEC. 1 / GENERAL

2. Stop preaching non-truth

IV. The A-7 Project

A. Redeveloping the operational flight program for the Navy's A-7
aircraft using the following principles

PROBLEMS

Low Valida- Train- Require-
Level Poor Change tion ing ments

PRINCIPLES Code Doc. Risky Hard Hard Change

Requirements Definition X X X x
Techniques

Information Hiding X X X x xModules

Abstract Interfaces X X X x X

Cooperating Sequential X X X X
Processes

Process Synchronization X X X
Primitives

Uses Hierarchy X X X

Resource Monitor Modules X X X

Formal Specifications x

Disciplined Programming X X X X

Program Verification X x

1-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The A-7 Project / Doc. GEN.3

B. Stages

1. Define requirements, August 1978

2. Redesign program, November 1980

3. Rebuild program, July 1982

4. Undergo Naval Weapons Center (NWC) acceptance tests, November
1982

5. Compare new program to old, January 1983

C. Status

1. Software requirements specification for the A-7E aircraft

SO7!ARE ENGINEERING PRINCIPLES 1-17
3-14 August 1981

SEC. 1 / GENERAL

2. Publication of specification methodology

3. High-level design documentation for new A-7E program

4. Interface specifications for device modules: Model of abstract
interface methodology

5. Specifications for virtual machine

D. Influence on this course

V. References

Heninger, K. L. 1980. "Specifying Software Requirements for Complex

Systems: New Techniques and Their Application." Trans. on Software

Engineering, vol. SE-6, no. 1, pp. 2-13.

Heninger, K. L.; Kallander, J.; Parnas, D. L.; and Shore, J. E. 1978.
Software Requirements for the A-7E Aircraft, Naval Research
Laboratory Memorandum Report no. 3876.

1-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

GEN.4 The MMS Project

LECTURE

1. History of message system development in DoD

A. Military crises in late 1960s led to several Congressional
investigations into military communications

B. Problems of military message systems uncovered by Congress

1. Delayed message delivery

2. Human errors

3. Lack of standardization

4. Duplication of effort

SOFTWARE ENGLNEERING PRINCIPLES 1-19
3-14 August 1981

SEC. 1 / GENERAL

C. Congressional directives regarding future message system development
in DoD

1. Centralized approach

2. Greater standardization

D. Areas of expected cost savings

1. Development

2. Maintenance

3. Documentation

4. Training

1-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The MMS Project /Doc. GEN.4

II. The Military Message Systems (MKS) Project

A. One message system will not suffice for DoD

1. Some organizations require special functions

2. Varying organizational procedures and preferences

3. Different computer hardware

4. Different terminals

5. Different incoming message volumes

6. Different message storage requirements

SOFTWARE ENGINEERING PRINCIPLES 1-21
3-14 August 1981

SEC. 1 / GENERAL

B. In future years, DoD will need several message systems with many
common features but many differences as well

C. Project goal: Develop a family of military message systems using
current software engineering principles

1. Provide useful product to DoD

2. Demonstrate the application of software engineering principles
to a complex problem area in DoD

a. Family methodology

b. New techniques for specifying requirements

c. Abstract data types

d. Information-hiding modules

1-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The MKS Project / Doc. GEN.4

e. Abstract interfaces

D. Stages

1. Requirements specification for family

2. Design specification for family

E. Status

1. Investigation of existing family members (HERMES, SIGMA, NMIC-SS)

2. Requirements analysis

a. Functions

b. Primitive operations

SOFTWARE ENGIEERING PRINCIPLES 1-23
3-14 August 1981

SEC. 1 / GENERAL

c. Impact of multilevel security

I1. Questions

A. Is it feasible to follow software engineering principles when
building a set of systems with a wide range of characteristics?

B. Do the claimed benefits apply to large, complex systems or are they
confined to small, simple programs?

IV. Reference J
Heitmeyer, C. L.; and Wilson, S. H. 1980. "Military Message Systems:

Current Status and Future Directions." IEEE Trans. on Comunications,
vol. COM-28, no.9, pp. 1645-1654

1-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

GEN. 5 Pseudo-Code Language Description

READING

I. Introduction

Algorithms sometimes appear in this notebook to illustrate concepts
being introduced. The algorithms are presented as abstract programs
written in a programming language similar to ALGOL and FORTRAN. This
document briefly sketches the pseudo-code language constructs and their
meanings.

II. Character Set and Basic Constructs

The character set used to construct pseudo-code constructs comprises
the 26 letters, both upper and lower case, the 10 decimal digits, the
space character, and the following special characters.

o () * + , . / : ; - _ I I

There are six elementary language constructs: identifiers (such as
Alpha, sensor reader), numbers (such as 1, 32.4), strings (such as "I am
a string."), 'elimiters (such as ;), keywords (such as begin, for), and
operators (such as or, +).

Identifiers must start with an uppercase or lowercase letter but
then may contain any character and may be of any length. Numbers may be
integers, which contain no decimal point, or reals, which do. Strings
are characters enclosed in quotation marks. The primary delimiter is
the semicolon, which terminates declarations and statements. Tables 1
through 3 following this description list all keywords and operators.
Keywords are always underlined.

Variables, or data objects, are provided identifier names, data
types, and other attributes in declarations and are manipulated in
statements. Expressions consist of variables and numbers strung
together by appropriate operators.

1II. Statements

Statements manipulate variables and control the order of execution
of other statements. All statements terminate with a semicolon.
Statements can appear anywhere on a line.

SOFTWARE ENGINEERING PRINCIPLES 1-25
3-14 August 1981

..

SEC. 1 / GENERAL

A. Assignment statement

Example: x :- e;

Explanation: :- is the assignment operator. The variable x is
assigned the value represented by expression e.

B. Comment statement

Example: comment This is a comment statement;

Explanation: A coment starts with the keyword comment. All text
between the keyword and the next semicolon is assumed
to be the Qomment text. A comment may be longer than
one line.

C. Statement label

Example: labelname: x:- y; coment any statement may have a label
associated with it;

Explanation: A statement label is an identifier followed by a colon
appearing before the statement being labeled. Note:
Because this language does not have a "go to", labels
serve only as convenient markers.

D. Compound statement

Example: begin
comment All the statements enclosed between begin and end

make up a compound statement;
x:= y;
y:= z * 3;
label: temp:- y + 5 * x;
first:- I; second:= 2; comment three statements on one

line;
end;

Explanation: A compound statement is a way of grouping several
statements together; each statement is then executed
sequentially. This is accomplished by enclosing the

statements between begin and end. Any legal statement
may appear within the begin-end pair.

1-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Description /Doc. GEN.5

General form:

stm 1;
stm 2;

stm n;
end;

where each stm i is a legal statement.

E. If statement

Example: if x gt y
then x:= Y;
else y:= x;
end-if;

Explanation: The if statement is used to test for a specified
condition. In the above example, this test is for x
greater than y. If the condition is true, the then
part of the statement is executed. If the condition
is false, the else part of the statement is executed.
The else part is optional; if this part does not
appear, execution continues with the statement
following the if statement.

General form:

if logical expression
then statement sequence
else statement sequence
end-if;

where logical expression is any expression resulting in a true or
false evaluation.

F. While statement

Example: while x le y do

z:- A(I);
x:- x + 2;
i:= X;

end;
end-while;

SOFTWARE ENGINEERING PRINCIPLES 1-27
3-14 August 1981

SEC. 1 / GENERAL

Explanation: The while statement is a looping construct. As long
as the expression following the while is true, the
compound statement is executed.

General form:

while logical expression do statement sequence end-while;

where logical expression is as previously defined.

G. Case statement

Example: case getmsgtype(message) of

//ship//
begin comment This compound statement is executed

when the value of getmsgtype(message)
is ship;

shiprec:= shiprec + 1;
reportrequest:= true;
end;

I/air//
begin comment This compound statement is executed

when the value of getmsgtype(message)
is air;

airrec:= airrec + 1;
report request:- true;
end;

I/history//
begin comment This compound statement is executed

when the value of getmsgtype(message)
is history;

historyrec:= historyrec + 1;
report.request:= true;
end;

end-case;

Explanation: In the above example, identifiers enclosed in double
slashes (//) are used to name different situations and
their values. The statement following the matched

I/name// field is then executed.

1-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Description / Dec. GEN.5

General form:

case arithmetic expression of
//expression I//

statement
//expression 2//

statement

//expression n//
statement

end-case;

where the value of arithmetic expression matches one of the
expressions enclosed in slashes. When there is no match, execution
continues after the end-case.

H. For statement

Example: for I:- J step K until N do
A[I]:- I + 1;
s[l]:- A[I + 1];

end-fon;

Explanation: The for statement is a looping construct with
parameterized step size. The loop variable I is
initialized to J and incremented once for each
traversal of the loop by the step value K until I is
greater than the upper bound variable N. Each
execution of the loop executes the two assignment
statements. Note: This statement is equivalent to

I:- J;
while I le N do• . A(T.:- zITl

A[I), A[I+];

I:- I + K;
end-while;

General form:

for var:- expression step expression until expression do
statement sequence end-for;

where var is a variable and expression is an arithmetic expression.

SOFTWARE ENGINEERING PRINCIPLES 1-29
3-14 August 1981

SEC. 1 / GENERAL

IV. Data Types and Declarations

All variables must be declared. A declaration provides a variable
with an identifier name and identifies the variable's type and scope
(see section V). A variable may also be declared to be private to the
routine where it is used, global, or a parameter to the routine.

A. integer, real, and array

Example: integer x;
real y;
real reell, real2;
integer array z[l:lO];
comment The following decl'aration defines a two-

dimensional array of real values. The index for
the first dimension may take on values from 1 to
15, for the second dimension from 0 to 30;

real array two dimensions[l:15, 0:30];
integer intl, int2, int3;

Explanation: integer indicates that the variable or variables
following may assume only integer values.
real indicates that the variable or variables
following may assume only real values.
integer array declares an array variable to be an
array of integers. The array's dimensions are
enclosed in brackets; lower bounds and upper bounds
must both be indicated for all dimensions. All bounds
must be integers. Arrays may be of any legal type:
integer, real, boolean, character, string, semaphore
(see below). Multidimensional arrays are declared by
separating the dimensions by comas.

B. boolean

Example: boolean x;
boolean x, y, z;

Explanation: boolean variables are variables tiat may have only one
of two possible values - true or false. Boolean is
synonomous with FORTRAN LOGICAL.

C. string and character

Example: string str;
character char;

1-30 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Description / Doc. GEN.5

Explanation: Statements such as str:- "THIS IS A STRING
ASSIGNMENT"; are permitted provided str is declared a
string. Character variables are string variables of
length one

D. buffer

Example: integer buffer buf;
real bufferbuf 2;
string buffer bufstr;
integer buffer array buf[l:5];
real buffer arrax buf[5:121;

Explanation: Buffer variables hold information of a specified data
type. For example, integer buffer buf; means that buf
holds integers. The only legal operations on buffers
are accept and deposit. The operator accept removes
one unit of information from the buffer specified;
deposit places one unit of information into the buffer
specified. The unit of information is determined by
the buffer's type. After an accept operation, the
buffer has one fewer item; a deposit operation causes
the value to be copied into the buffer. A buffer is a
first-in first-out storage device. The number of
spaces actually available in a buffer are specified at
system generation time (details of the specification
are not relevant here). Buffer space management is
handled by the accept and deposit operations and is
transparent to the buffer user. An accept (deposit)
operation may result in delays of the programs using
it when a buffer is empty (full).

Examples of the use of accept and deposit follow. Assume that
buffer buf has previously had a value deposited.

integer buffer buf;
integer item;
accept (item, buf);

end;

The above example causes one integer from buffer buf to be removed
from buf and placed into item; buf contains on, less integer.

SOFI WARE ENGINEERING PRINCIPLES 1-31
3-14 August 1981

SEC. 1 / GENERAL

character buffer array buf[l:5];
integer int;
character char;
int:- 2;
char:- "a";
deposit (char, buf(int]);

end;

This example causes the character in char to be placed in the second
buffer of the buffer array buf. The contents of char are unchanged.

E. program and procedure

Example: procedure proc(x,y,z);
program proc2(synch);
reentrant procedure reentproc(a);
integer procedure intproc(x,y,z);

Explanation: A procedure is a means of grouping together often-used
code (sometimes called a subroutine); each time the
procedure is called, the code is executed. If the
procedure is a function (i.e., it returns a value),
its declaration specifies the type of the returned
value.

A program is used to specify the sequence of events
within a process, i.e., the program defines the
process. Several processes may be controlled by the
same reentrant program (see below).

Reentrant procedures (reentrant programs) are
procedures (programs) written in such a way that
several processes may use the procedure (program)
simultaneously. To accomplish this, the code must be
separate from all data that is changed during
execution. The code is shared but each process has
its own copy of changeable variables.

Parameters to procedures and programs are enclosed in
parentheses and separated by comas. Parameters must be declared
within the procedure or program body to be of type parameter.

All declarations within a procedure or program must precede the
compound statement that makes up the executable portion of the
procedure or program.

1-32 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Description /Doc. GEN.5

Example: procedure proc(x,y,z);
parameter integer x;
parameter real y;
parameter string z;

end;

Procedures are called as in ALGOL by using the procedure name
and a list of parameters enclosed in parentheses.

Note that there is no restriction on the data types of
parameters so procedure names may be passed as parameters to other
procedures. Consequently, the following declarations may occur:

procedure proc(parproc, x,y);
parameter procedure parproc;

F. semaphore

Example: semaphore seml;
semaphore array ten-sem[l:lO];
semaphore array five-sem[1:51;

Explanation: Semaphore is a variable type designed for the
synchronization of processes that are proceeding in
parallel at unknown speeds. Just as semaphores in
railway systems are used to inform one train of the
activities of another, semaphores in computer systems
are used to inform one process of the activities of
another.

There are only two legal. operations on semaphores possible - P
and V; they are invoked in the same way as procedures are called:

P(seml);
V(seml);

P and V are operators defined by Dijkstra for the data type
semaphore. A V operation on a semaphore allows exactly one more P
operation on the same semaphore to complete. This may cause a
waiting process to continue.

A semaphore array is a set of semaphores with the same name;
they are distinguished by an integer subscript, e.g., ten sem[l],
just as array elements. Semaphore arrays may only have one
dimension unlike integer, real, or other kinds of arrays.

SOFTWARE ENGINEERING PRINCIPLES 1-33
3-14 August 1981

SEC. 1 / GENERAL

V. Scope of Variables

The scopes of all variables must be declared. There are three
possible scope declarations.

1. parameter

2. global
3. private

Examples: procedure proc(x);
parameter integer x;
global integer y;
private integer z;

Explanation: parameter indicates that the variable is a parameter
to the procedure; global indicates that the variable
is global to the procedure; private indicates that the
variable is private (local) to the procedure.

1-34 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Description /Doc. GEN.5

Table 1. STATEMENT-RELEVANT KEYWORDS

KEYWORD USE

begin indicates start of compound statement

end indicates end of compound statement

case indicates start of case statement

//item// marks compound statement in a case statement that should
be executed if the arithmetic expression matches the item

of part of case statement

end-case indicates end of case statement

comment starts comment statement

for starts for statement

step indicates the step value in for statement

until indicates the upper bound in for statement

end-for ends for statement

if starts if statement

then starts the part of if statement to be executed if the
expression is true

else starts the part of if statement to be executed if the
expression is false

end-if ends if statement

infinite used for the largest number that can be represented

null used to represent a null value, nothing (different from zero)

true logical value (type boolean)

false logical value (type boolean)

while starts while statement

do part of while statement

end-while ends while statement

SOFTWARE ENGINEERING PRINCIPLES 1-35

3-14 August 1981

SEC. I /GENERAL

Table 2. DECLARATION-RELEVANT KEYWORDS

KEYWORD USE

array declares a variable to be an array

boolean declares a variable to be a logical variable that may
take on the values true or false

buffer declares a variable to be a buffer

buffer array declares a variable tn be an array of buffers

character declares a variable to be a character

global declares a variable to be global

integer declares a variable to be an integer

parameter declares a variable to be a parameter to a procedure

private declares a variable to be local to procedure or program

procedure procedure heading declaration

program program heading declaration

real declares a variable to be a real

reentrant declares a procedure to be reentrant

semaphore declares a variable to be a semaphore

semaphore array declares a variable to be a vector of semaphores

string declares a variable to be a string

1-36 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Pseudo-Code Language Descrip-tion /Doc. GEN.5

Table 3. OPERATOR SYMBOLS

OPERATOR SYM1BOL MEANING

or logical operator or

and logical operator and

not logical operator not

not equal logical operator not equal

logical operator equal

it logical operator less than

gt logical operator greater than

le logical operator less than or equal to

Se logical operator greater than or equal to

assignment operator
*multiplication operator

+ addition operator

subtraction operator

/ division operator

*exponentiation operator

statement terminator

statement label terminator

() used in expressions or to enclose parameter lists
or to group subexpressions

used to separate identifiers in declarations or
parameter lists

[1 used to enclose array indexes and semaphore vector

indexes

starts and stops a string constant

P semaphore operator to request a "pass"

V semaphore operator to permit a "pass"

accept buffer operator to remove one item from a buffer

deposit buffer operator to put one item into a buffer

SOFTW..%RE ENGINEERING PRINC1PLES 1-37
3-14 August 1981

L-

GEN.6 Course Review

LECTURE

1. Characteristics of veil-structured software

A. Can be written one independent part at a time

1. Writing later parts doesn't require rewrizing earlier parts

2. Writing based on fixed, written specifications and assumptions
- reduces need to communicate or negotiate

B. Can be verified one part at a time

C. Can be changed one part at a time

D. Both program and documentation can be read one part at a time

SOFTWARE ENGINEERILG PRINCIPLES 1-39
3-14 August 1981

4 t[

SEC. 1 /GENERAL

E. Subrets give ability to tailor software according to needs and
resources

F. Effective utilization of resources

II. Groundwork for a flexible design - describe more than functional
requirements

A. Possible changes - systems can't be flexible in every way

B. Desired response to undesired events - part of desired behavior but
it helps to think about it separately

C. Useful subsets

III. Dividing the system into modules

A. Review of modules

1-40 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Review / Doc. GEN.6

B. Hiding secrets based on expected changes

C. Finding good york assignments

D. Iterating for submodules

E. Other benefits of modularity

F. Examples from HAS

IV. Identifying and specifying the access programs far modules

A. Review of interfaces

B. Abstract interface modules

SOFTWARE ENGINEERING PRINCIPLES 1-41
3-14 August 1981

SEC. I GENERAL

C. General module interfaces

D. Examples from HAS

V. Identifying internal programs

A. Part of the work assignment

B. Internal programs may be functions or process definitions

C. Examples from HAS

V'E. Designing the uses hierarchy

A. Based on expected subsets

B. Based on implementation and testing considerations

1-42 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Review / Doc. GM.6

C. Based on degradation considerations

D. Example from HAS - see diagrams (pp. 1-46 to 1-48)

VII. Expressing module interfaces and program designs

A. Informal specifications

B. Formal specifications of module interfaces

C. Abstract programs for functions and process definitions

D. Examples

VIII. Processes

A. Could be executed in parallel

SOPTWARE ENGINEERING PRINCIPLES 1-43
3-14 August 1981

Leo.. lillllllllllll

SEC. 1 / GENERAL

B. Capture major sequencing decisions

C. Allow changes in configuration

IX. Review in terms of basic priciples

A. Information hiding

B. Separation of concerns

C. Being explicit about design decisions

D. Deferring design decisions

E. Program families

1-44 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Reviev /Doc. GEN.6

F. Discipline in design

Discipline in documentation

Discipline in programng

SOMrIARE ENGIN4EERING PRINCIPLES 1 -45
3-14 August 1981

SEC. I / GENERAL

Level

4 roundrobin

(Sd)

3 accept, deposit desk clerk
(MO) (TIM)

V P
(Mo) (MO)

make ready processor

(SCH) allocate
(PA)

0 front, rear, successor priority insertp removep
(BUF) (SCH) (SCd) (SCH)

A

1-46 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

t . . .I I .. . I " I i I - I I

Course Review / Doc. GEN.6

Level

4 sensor reader intermediate averager
(Ct) (IG)-

IF
3 desk clerk deposit accept

(OTM) (1M) (MO)

2 P V
(MO) (MO)I I

I I
I I
I I

0 fetfcn okfcn
(Sc) (SC)

SOFTNARE ENGNREERING PRINCIPLES 1-47
3-14 August 1981

SEC. 1 / GENERAL

Level

4 rcvr message_interpreter

(CC) (MI)

3 releasercvr, accept,
obtainrcvr deposit

(Mo) (MO)

2 P V
(MO)

0 tune signal_ eom, fetmsgtvpe,
(RC) decected, char findloc

receive (MF) (MF)
(RC)

C

1-48 SOFTARE ENGINEERING PRINCIPLES
3-14 August 1981

PF. 1 Program Families: What and Why

LECTURE

I. Definition: A set of programs will be called a program family if they
have so much in common that it pays to study their common character-
istics before investigating the special properties of individual
programs.

II. Hardware analogy: System/370.

III. Typical program family: The various versions and releases of a
manufacturer's operating system.

IV. Why do large organizations so often have sets of programs with similar
functions?

A. Different parts of an organization develop programs with similar
purposes without knowledge of each other.

B. A program developed on the basis of one set of constraints turns out
to perform poorly under other conditions and is too hard to adjust.

SOFTWARE ENGINEERING PRINCIPLES 2-1
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

C. The general program is late in development; emergency project
produces special case for immediate use. Incompatibilities result
in long-term existence of system intended only as a temporary
measure.

D. A program developed for a large installation turns out to be
impractical or even unusable for a small one.

E. A program developed for a small installation turns out to be unable
to make effective use of the resources of a large installation.

F. One user wants services which were not anticipated by the developers
of an earlier system.

G. Different computers.

H. "I can do it better."

2-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Program Families: What and Why / Doc. PF.1

V. What are the disadvantages to an organization of having a set of
similar, independently developed systems?

A. Incompatibilities lead to duplication of interfacing programs.

B. Maintenance personnel get confused by false similarities and
misleading or superficial differences.

C. Organization-wide changes must be incorporated in each system.

D. Increased costs for storage, documentation, etc.

E. Effort to improve must be distributed and cannot be shared.

VI. What are the disadvantages to an organization of having programs which
were not designed to change?

A. Some changes are made poorly.

SOFTWARE ENGINEERING PRINCIPLES 2-3
3-14 August 1981

SEC. 2 / PROGRXM FAMILIES

B. Some changes cannot be made at all.

C. Maintenance and improvement costs are higher.

D. Readiness is impaired because of long completion times.

VII. Solution: Simultaneous dovelopment of a set of programs (Program Family
Development).

A. Maximize what they have in common.

B. Minimize the differences.

C. Localize the differences.

D. Reduce development costs by sharing among versions.

2-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Program Families: What and Why / Doc. P7.1

E. Reduce maintenance costs by sharing among versions.

F. Reduce documentation costs, training costs, etc.

VIII. How can the members of a program family vary?

A. Programs can be functionally identical but make different resource
trade-offs.

B. Programs can be identical except for size parameters.

C. Programs can be subsets of the same super program.

D. Programs can be built on a common "base" (kernel) but provide

different user interfaces to meet varying needs.

E. Programs can have a common "facade" but a different base.

SOFTWARE ENGINEERING PRINCIPLES 2-5
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

IX. Sequential completion versus abstract design.

A. What are design decisions?

B. Why is the order of design decisions significant?

2-6 SOFrWARE ENGINEERING PRINCIPLES
3-14 August 1981

Program Families: What and Why / Doc. PF.1

C. Decision trees.

Start Root

0

1

2

3

5 4

9 8

1 2 3 4 5

Figure I - Representation of develop- Figure 2 - Representation of program
ment by sequential completion. Note: development using "abstract
Nodes 5 and 6 represent incomplete decisions."
programs obtained by removing code
from program 4 in preparation for
producing programs 1, 8, and 9.

Symbols: is the set of initial possibilities;

Q is the incomplete program;

X is the working program.

SOMTWARE ENGINEERING PRINCIPLES 2-7
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

C. What possible orders have been proposed?

1. Outside in (top down).

2. Bottom up.

3. Most solid first.

D. Implications of thinking about the family - how to tell good design
decisions from bad ones.

X. Reference

Parnas, D. L. 1976. "On the Design and Development of Program Families."
IEEE Trans. on Software Engineering, vol. SE-2, no. 1, pp.1-9.

2-8 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

PF.2 MP as a Family of Programs

EXERCISE

Nae:_____________

Based on your understanding of MP.1, briefly answer each of the following
questions.

1. Why might different versions have different memory requirements?

2. a. List some reasons why we cannot assume that the same type of terminal
will be usjd in all MP installations.

b. List several properties that we can assume will be true of all
terminals used.

SOFrW.'aE ENGINEERING PRINCIPLES 2-9
3-14 August 1981

....EI I-L. , , , I~ l •

SEC. 2 / PROGRAM FAMILIES

3. Why might we have to use different programming languages for different
versions?

4. Why might the information included in the logs be different in different
versions?

2-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MP as a Family of Programs / Doc. P1.2

5. Why might the operator interface on some versions of MP differ from the
operator interface on others?

SOFNARE ENGINEERING PRINCIPLES 2-11
3-14 August 1981

PF.3 MP asaFamilyof Programs

EXERCISE SOLUTION

The following answers are just some of the possibilities.

1. Why might different versions have different memory requirements?

* Different numbers of users to be served.

• Different response characteristics (dependent on miniawa acceptable
response time, AUTONOYS message load).

* Different rates of incoming and outgoing message volumes.

• Retention time for messages.

• Functional capabilities chosen.

• Internal message conventions.

2.a. List some reasons why we cannot assume that the same type of terminal

will be used in all MP installations.

• Mobile terminals must be special ruggedized versions.

o Some users may want inexpensive terminals.

* Some users may want quiet terminals.

* Some users may want sophisticated terminals.

• May be required to use terminals already on ships.

• Different print speeds.

* Some users may require secure terminals.

SOFTWARE ENGINEERING PRINCIPLES 2-13
3-14 August 1981

Le

SEC. 2 / PROGRAM FAMILIES

b. List several common properties, i.e., universal properties, that we can
assume will be true of all terminals that will be used.

• Accept characters one at a time and display them.

* Send characters one at a time.

* Will have letters A-Z and numbers 0-9 and no others can be assumed;
cannot assume a character encoding.

3. Why might we have to use different programming languages for different
versions?

The CPU's specified may not have any one language in coon; writing
a compiler is considered too expensive.

4. Why might the information included in the logs be different in different

versions?

Different user requirements.

Different number of entries in the log.

* Different methods of operation for the organization accessing the
logs.

5. Why might the operator interface on some versions of 4P differ from the

operator interface on others?

Different operator terminals (i.e., CRT or hard copy).

Different standard manual operator procedures that-are useful to
preserve.

Different levels of operator skills (sophisticated, naive).

Different captains on board may require tailored interface.

2-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

PF.4 A Minimal Member of the MP Family

EXERCISE

Name:

Document MP.1 described a "family" of full service message processing
systems designed to be useful in demanding situations. The task of producing
family members is inherently difficult and the programs are inherently large.

Examine the list of design decisions below and describe the smallest
member of the family, Small MP (SMP), that could operate with reduced computer
facilities and still provide some useful services. Describe the situations in
which SMP could be used. Assume the AUTONOYS message conventions will be used.

The minimal, useful member of a family is not necessarily more powerful
than previous manual procedures. Think of it in terms of:

a. a trivial software system that can gradually be extended to a more
powerful version by adding programs, and

b. a backup capability in case a large part of the computer goes down,
making it impossible to run the full version.

By looking for such subsets, you can avoid an all-or-nothing approach during
both development and operation.

1. The MP software can produce messages in the following formats: (The MP
alternative is marked by "**".)

a. simple formats incompatible with existing ones,
**b. AUTONOYS,

c. AUTONOYS plus error-correcting codes,
d. any format, because there is general message-definition facility.

2. Because some AUTONOYS channels are noisy, an MP does the following:

a. nothing, it accepts anything it sees (hears?),
*b. checks for errors and notifies operator,

c. checks for errors and makes "likely" corrections,
d. uses formal error-correcting codes for all single, double, ..., errors,
e. checks for errors and initiates auto retransmit when they are found.

SOFTWARE ENGINEERING PRINCIPLES 2-15
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

3. An MP "screens" incoming messages as follows:

a. it does not screen incoming messages but merely accepts all,
b. accepts only messages that match a built-in set of addresses,

**c. accepts only messages that match a watch list (the watch list can be

updated),
d. accepts messages based on interactions with a centralized system that

locates persons.

4. An MP routes messages as follows:

a. the operator supplies routing information for each message,
b. the operator-supplied routing information is checked against internal

constants,
**c. the software automatically supplies routing indicators using an

indicator list that the operator can update,
d. the software automatically supplies routing indicators using an

indicator list that is updated by AUTONOYS.

5. Possible processor configurations for supporting an HP are:

a. no processors are used; there are only teletypes and hard-wired
recognizers,

**b. a single UGH-20,

**c. a single UGH-VAN,
**d. a single UGH-2PIE,

e. combinations of b, c, and d.

6. An MP handles message traffic as follows:

a. serially, one message at a time,
b. in parallel, with many messages stored in core,

**c. in parallel, using both core and mass storage to prevent loss of any
message.

7. An NP retains messages as follows:

a. not at all, no messages are retained,
b. core copies are retained until space is needed,

**c. all messages are retained for a fixed period of time,
d. all messages, old ones are archived.

2-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

A Minimal Member of the MP Family / Doc. PF.4

8. An operator can get information about messages as follows:

a. by requesting a dump of core and mass memory,
b. by supplying a special code or message ID,
c. by supplying content information in a rigid format,

**d. by using a flexible query language.

9. Software support for the operator interface consists of the following:

a. minimal, the operator simply reads information printed at the console
and types in complete messages,

**b. there is a prompting package for message input by the operator, and

there is the RMD option,
c. there is a general text processing package usable for all aspects of

system operation.

10. There is the following capability for on-line testing of an MP:

a. none, any testing of an MP must be done off-line,
**b. there is test generation and transmission controllable by the operator,

c. there is auto test and evaluation,
d. there is auto test and fault correction.

SOFTWARE ENGINEERING PRINCIPLES 2-17
3-14 August 1981

PF.5 A Minimal Member of the MP Family

EXERCISE SOLUTION

SMP, the new, small member of the HP family, prints any messages it

receives on a terminal, buffering messages if necessary.

SMP does not

1. provide redundancy checks or error correction,

2. screen messages for relevant ones,

3. check or add any routing information,

4. assist in preparation of messages,

5. retain messages after printing them,

6. provide any information retrieval or automatic logging, or

7. perform any self checking.

SMP is useful for producing hard copies of messages that were received at
a relay point connected by high quality transmission facilities to the
sender. The hard copy can be manually scanned, distributed, and logged.

SMP is useful in developing and testing MP. It provides minimal service
in the event of a casualty to part of the computer.

SOFTWARE ENGINEERING PRINCIPLES 2-19
3-14 August 1981

PF.6 Family Development by Stepwise Refinement

LECTURE

1. Review of the decision tree representation of the family development
process

II. Dijkstra's Prime Number Program Development*

A. Decisions: one thousand primes, compute before print

begin variable table p;
fill table p with first thousand prime numbers;
print table p;

end;

B. Debate about the order of decisions - should one design "table" or
an algozithm "fill with first thousand prime numbers"

III. Wulf's KWIC Index Program*

A. Stage 1 PRINTKI C

Design decisions:

* The original notation of this algorithm has been changed slightly in order

to be consistent with the abstract programing language presented in GEN.5.

SOMT'ARE ENGINUERING PRINCIPLES 2-21
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

B. Stae 2

PRINTKWIC:

generate and save all interesting circular shifts;
alphabetize the saved lines;
print alphabetized lines;

end;

Design decisions:

C. Stage 3

PRIN TKWIC:

coment generate and save all interesting circular shifts;
for each line in the input do

generate and save all interesting shifts of this line;
end;

end-for;
alphabetize the saved lines;
print alphabetized lines;

end;

Design decisions:

2-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Family Development by Stepwise Refinement / Doc. PF.6

IV. Development of the memory allocator family of programs by stepwise
re finement

A. Stage 1
begin
typel BEST YET, CANDIDATE;
t ACTUAL;
boolean NOT ALL SPACES CONSIDERED, BETTER SPACE MIGHT EXIST;
BEST YET:- null;
whili NOT A-SPACES CONSIDERED and BETTER SPACE MIGHT EXIST do

..i.n
CANDIDATE:- FIND NEXT ITEM FROM FREE SPACELIST;
BEST YET:- BEST OF(BEST YET,CAN-DIDATE) ;

end;
end-while;
if (BESTYET a null) then ERROR-ACTION end-if;
ACTUAL:- FRAGMENT(BEST YET);
ADJUST (BEST YET ,ACTUAL);
ALLOCATE (ACTUAL);
end;

Note: typel and type2 are ways of declaring variables without
actually specifying the type. See section on design
decisions not made in Stage 1.

1. Assuptions made to verify that the above is correct

a. The memory is initially divided into frames of different
sizes. A request is always for an amount of memory no
greater than one frame. When memory areas are returned to
the list of free spaces, adjacent sections of the same frame
will be coalesced. The amount of space requested will be
known to the program.

b. BESTYET is a variable that indicates an item from the list
of free spaces. Null, a possible value of BESTYET,
indicates no item.

SOFTWARE ENGINEERING PRINCIPLES 2-23
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

c. BETTER SPACE MIGHT EXIST is a boolean variable that is true
as long as it is p-ossible that a "better" space can still be
found. The criteria for "better" have not yet been
specified.

d. NOT ALL SPACESCONSIDERED is a boolean variable that is true
until the loop has checked each free space once.

e. CANDIDATE is a variable of the same type as BESTYET.

f. FIND NEXT ITEM FROM FREE SPACELIST is a function that
returns a value that indicates one of the items on the free
space list. If there are n items on the list, a sequence of
n function calls of the procedure will deliver each of the n
items once.

g. Adding new items during program execution will not occur.

h. BEST OF is a procedure that takes two variables of the same
type as BEST-YET (i.e., typel) and returns the better of the
two according to some unspecified criterion. If neither is
suitable, null is returned.

2-24 SOTI'WARE ENGINEERING PRINC7!PLES
3-14 August 1981

Family Development by Stepwise Refinement / Doc. 1F.6

i. ERROR ACTION is a procedure that performs the action that
should be performed if no suitable space can be found.
ERROR ACTION does not return control to this program except
at thte beginning.

j. type2 is a class of variables that can describe a storage
area.

k. FRAGMENT is a procedure that returns a variable of type2
after the procedure determines which part of the free space
should be allocated. The free space is identified by the
parameter.

1. ADJUST is a procedure that adjusts the list of free spaces
to reflect the allocation. The parameter BEST YET indicates
which item is to be removed from the list. ACTUAL describes
the amount of space to be allocated in case the unused

fragment of the original space is to be left on the list.

m. ALLOCATE is a procedure that gives the storage area to the
requesting program.

SOFTWARE ENGINEERING PRINCIPLES 2-25
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

2. Stage 1 design decisions

a. No items will be added to or removed from the free space
during execution of the program until the final selection
has been made.

b. Once execution of the program begins, no other execution of

it will begin until the executing program is completed
(critical section).

c. The only other program that might change the data structures
involved is one that adds items to the free space list when
space is returned.

d. The program that adds free spaces to the list compacts two

or more contiguous free spaces that are part of a frame into
one space represented by a single item on the list.

e. A candidate is not removed from the list while it is being
considered.

f. Before the search begins, there is no check to determine if

allocation is possible (e.g., check for empty free space
list, check for size of largest available space).

2-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

TA

Family Development by Stepvise Refinement /Doc. P7.6

3. Design decisions not made in Stage 1

a. The representation of the free space list.

b. The type of the variables BEST YET, CANDIDATE and ACTUAL.

c. The order in which the free spaces are stored on the list.

d. The order in which the items on the free space list are
searched.

e. The criteria used in BEST-OF.

f. The decision to allocate all of the space found or allocate
only that part needed, (i.e., the action taken in FRAGMENT).

g. The ERROR ACTION that will be taken.

SOFTWARE ENGINEERING PRINCIPLES 2-27
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

B. Stage 2

begin
integer BEST-YET, CANDIDATE, N;
boolean BETTER SPACE MIGHT-EXIST;
type2 ACTUAL;
BEST YET:- 0;
CANDIDATE:- 0;
while (CANDIDATE It N) and BETTERSPACE MIGHT EXIST do

be.in
CANDIDATE:- CANDIDATE + I;
BEST YET:- BESTOF(BESTYET,CANDIDATE);

end;
end-while;
if BEST YET - 0 then ERROR ACTION end-if;
ACTUAL:7 -FAGMENT BEST YETT;
ADJUST (BEST YET ,ACTUAL);
ALLOCATE (ACTUAL);
end;

1. Stage 2 design decisions

a. The list of free spaces is represented by a table with N
entries. Each entry represents a valid free space. The
first space searched is identified by entry I and the last
space searched is identified by entry N.

b. The variables BEST YET and CANDIDATE are integers (that will
be used as array indi ces) so that the test for NOT ALL
SPACES CONSIDERED can be an integer test on the value of
CANDIDIATE.

2-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Family Development.by Stepwise Refinement /Doc. PF.6

c. BETTER SPACE MIGHT EXIST is a boolean variable that is true
as long as it is p7ossible that a"better" space can still be

found. If it is set to false, that will be done by BEST OF.

2. Design decisions not made in Stage 2

a. The characteristics that describe an item in the free space

list (e.g., starting address and length, or starting address

and end address).

b. The order in which the entries are stored on the list.

c. The relation of the variables CANDIDATE and BEST YET to the

items in the free space list.

d. The policy or selection criteria in BESTOF.

e. The decision to allocate all of the space found, or allocate

only that part needed and leave the rest on the free space

list.

SOFTWARE ENGINEERING PRINCIPLES 2-29
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

C. Stage 3

begin integer BEST YET, CANDIDATE,N, T, REQUIRED LENGTH, OLD.T, I;
integer array LAST[l:N], START[I:N];

BEST YET:- 0;
CANDIDATE:- 0;
OLDT:- infinite; comment infinite stands for the largest integer

that can be represented;
while (CANDIDATE It N) do

begin
CANDIDATE:- CANDIDATE + 1;
T:- LAST[CANDDATE] - START[CANDIDATEI + I;
if (T ge REQUIREDLENGTh) and (T It OLD T) then

BEST YET:- CANDIDATE;
OLD T:- T;

end;
end-if;

end;
end-while;
if BEST YET - 0 then ERROR ACTION end-if;
ACTUAL:- (START[BEST YET],OLDT); coent the single variable ACTUAL

is represented as two
integers that are always
used together;

N:- N - I;
comment close up the gap caused by removing that element;
for I:- BEST YET step 1 until N do

begin
LAST[]:- LAST[I.+];
START[:- START[1+l];

end;
end-for;
ALLOCATE (ACTUAL);
end;

2-30 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Family Development by Stepwise Refinement / Doc. PF.6

ADDITIONAL ASSUMPTION

The length of the requested space, REQUIRED LENGTH, is input to the
program. It must be known by BESTOF.

1. Stage 3 design decisions

a. Each item in the free-space table has the starting address
(STARTfitem]) and the ending address (LAST[item]) of the
free space identified by the item in the arrays START and
LAST.

b. The entire free space that is selected will be allocated,

not just the part of the space that is needed.

c. The integer values of CANDIDATE and BEST YET are indices
into the table containing free space information.

d. A policy of "best fit" is used to select the smallest free

space with a length greater than or equal to REQUIRED LENGTH.
The boolean variable BETTER SPACE MIGHT EXIST is true until
"all spaces considered" is false,-so that it need no longer
be included as one of the loop termination conditions. If
the policy "first fit" were used, BETTER SPACE MIGHT EXIST
would become false as soon as the first "suitable spaice were
found.

SOFTWARE ENGINEERING PRINCIPLES 2-31
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

2. Design decisions not made in Stage 3

a. The order in which the entries are stored in the list.

b. The ERROR ACTION that will be taken.

c. Implementation of ALLOCATE.

V. Another member of the memory allocator family

A. Design decisions and assumptions

1. All the assumptions made for Stage 1.

2. There is a list of free spaces represented by two arrays. Each
can be accessed by an index into the array identifying the free
space. Each free space is represented by its starting address
(START(item]) and its length (LENGTH(item]).

3. Both free space arrays have at least N entries and all entries
between I and N represent valid free spaces. The first space
searched is identified by the first entry, and the last space
searched is identified by the Nth entry.

2-32 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Family Development by Stepwise Refinement / Doc. PF.6

4. During execution of the memory allocator program, no items will
be added to or removed from the free space list by other
programs.

5. The only other program that might change the free space list is
one that adds items to the list. This program compacts two or
more contiguous free spaces into one space represented by a
single entry on the list so that the list will never contain two
contiguous areas.

6. Once execution of the program begins, no other execution of it
will begin until the executing program is completed.

7. Before the search begins, there is no check to determine if
allocation is possible (e.g., check for empty free space list).
After the search is performed, if no suitable free space was
found, a subroutine ERRORACTION is to be called.

8. The length of the requested space, an integer called
REQUIRED LENGTH, is input to the program.

9. A policy of "best fit" is used to select the smallest free space
whose length is greater than or equal to REQUIRED LENGTH.

SOFTWARE ENGINEERING PRINCIPLES 2-33
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

10. While a candidate is being considered, it is not removed from
the free space list.

11. The space that is allocated is equal in length to REQUIRED LENGTH
and is taken from the beginning of the free space selected-by
the "best fit" algorithm.

12. The free space list is adjusted tc reflect the allocation of the
necessary part of the selected free space.

13. A procedure named ALLOCATE is supplied with information about
the space to be allocated and gives the space to the requesting
program.

14. The variables BEST YET and CANDIDATE are integers, so that the
test for NOT ALL SPACES CONSIDERED can be an integer test on the
value of CANDIDATE. The value null indicates no item on the
list.

B. Comparison of the two family members

1. Same assumptions and design decisions as Stage 2.

Z-34 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

lAD-A113 415 NAVAL RESEARCH LAB WASHINGTON DC F/6 9/2
SOFTWARE ENGINEERING PRINCIPLES 3-114 AUGUST 198I.tU)

UNLSIID AUG 81 L J CHMURA, P C CLEMENTS

ENCLASSIFIEDhhu2EEEhh~E

EhmhhMENNENu

11111 1.0 1.f4 2

N111 1111 111 l10 "'

Family Development by Stepwise Refinement /Doc. P1.6

2. Differences in Stage 3 design decisions.

C. Alternative ways to develop the program

1. Start from scratch.

2. Start with Stage 3. Scan line by line and make required changes.

3. Go back to Stage 2. Develop new program from there.

SOFTWAR ENGINEERING PRINCIPLES 2-35
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

D. Abstract program for another member of the memory allocator family

begin integer BEST YET, CANDIDATE, N, T, REQUIRED LENGTH, I;
integer array LENGTH[l:N], START(1:NI;

BEST YET:- 0;
CANDIDATE:- 0;
T:- infinite;
while (CANDIDATE It N) and LENGTH [CANDIDATE] ne REQUIRED LENGTH do

CANDIDATE:- CANDIDATE + 1;
if (LENGTH[CANDIDATE] ge REQUIRED-LENGTH) and

(LENGTH[CANDIDATE] it T)
then

BEST YET:- CANDIDATE;
T:- ENGTH(BESTYET];

end;
end-if;

end;
end-while;
if BEST YET - 0 then ERROR ACTION end-if;
ACTUAL: m (START[E STYET] ,REQUIRED7 LENGTH);
if (REQUIRED LENGTH it T) then

START[BEST YET] :- START[BEST YET] + REQUI.REDLENGTH;
LENGTH[BEST YET] :- T - REQIREDLENGTH;

end;
else-- ka

N:- N-1;
for I:- BEST YET ste 1 until N do

START[I] :- START[I+l];
LENGTH(I] :- LENGTH[I1];

ead;
end-for;

end;
end-if;
ALLOCATE (ACTUAL);
end;

2-36 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

.-

PF. 7 Applying the Program Family Principle

LECTURE

I. Steps of thefamily methodology

A. Identify the characteristics shared by family members

I. Example of feature coimon to all: Capability of --ers to
display a received message.

2. We may need to identify a larger set of characteristics than
that required by any single member.

B. Identify and encapsulate the differences among family members

1. A software structure suitable for all family members is
formulated.

2. In that structure, Lhc software is partitioned into molu)
encapsulate the various distinguishing characteristics.

SOFTWARE EN14GMERING PRINCIPLES 2-37

3-14 Auvust 1981

SEC. 2 / PROGRAM FAMILIES

Ir. Application of the family methodology to military message systems

A. To identify commonalities and differences among members, a model,
based on a series of nested machines, was developed to represent
each member of the family.

1. Four machines

2. The data objects and operations of each extended machine are
constructed from the data objects and operations of another
machine.

2-38 SCFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

Applying the Program Family Principle /Doc. PF.7

3. Examples of each machine's data objects and operations.

Machine Objects Operations

Hardware registers; load, store;
memory words move

Operating System processes; createprocess, destroy-process;
segments move segment, copy segment

Message Core messages; create message, setfield message,
getfield message;

message files create msgfile, addmsg msgfile,
rmvmsgmsagfile, destroymsgfile

User Coumand Lang. messages; COMPOSE MESSAGE, DELETE MESSAGE,
PRINT MESSAGE, SEND MESSAGE;

message files CREATE FILE SECRET,
PRINT FILE, DESTROY FILE

4. Difference between message core machine and user command
language machine.

a. Message core operations are typically less powerful than
user command language statements.

b. To the extent feasible, all message core data types are
specified independently of one another; i.e., an operation
on a data object of a given type affects only that object
and no others.

SOFTWARE ENGINZERING PRINCIPLES 2-39
3-14 August 1981

i
L

SEC. 2 / PROGRAM FAMILIES

5. Examples of user coand language statements and the different
data objects each affects.

a. User Comand: CREATE MESSAGE AUTODIN SECRET CHINA
Message System: SIGMA
Operations: Create an AUTODIN message at Secret

and insert it in a message..file
named CHINA

Date Objects Affected: message, message-file

b. User Command: CREATE FILE USSR CONFIDENTIAL
Message System: SIGHA
Operations: Create a message file named USSR at

Confidential and insert an entry for
it in the user's directory of
messago files

Data Objects Affected: message file, message file directory

c. User Command: PRINT SEQUENCE.S TEMPLATE.T
Message System: HERMES
Operations: Print every message in SEQUENCE.S

using the display format defined by
TEMPLATE .T

Data Types Affected: message, message file, sequence,
template

2-40 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Applying the Program Family Principle /Doc. PF.7

B. Step 1: Identify the characteristics shared by family members

1. Family members differ.

a. User command languages

- different organizational procedures

- different habits and preferences

b. Physical hardware

- special requirements aboard ships

- different processing speeds and/or memory requirements

c. Operating systems

- different hardware has different operatinig system

- same hardware supports more than one operating system

2. The significant shared characteristics of military message
systems are functional capabilities.

a. Create, coordinate, send, distribute, display, and delete
messages

SOFTWARE ENGIEERING PRINCIPLES 2-41

3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

b. Create, destroy, add messages to, and delete messages from
message files

3. Shopping list of message core data types and operations.

SIGMA HERMES

message X X
create message X X
delete message X X

send message X X
setfield message X X
getfield message x x

messagefile X
create messagefile X X
destroy messagefile X x
addentry messagefile x x
rmventry message file _ X

filter x x
create filter X X
destroy filter x x
modify filter x

template X
create template - X
destroy template x
update temp late -

userprofile create profile - -•

addterm profile

2-42 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Applying the Program Family Principle /Doc. P.7

C. Step 2: Identify and encapsulate the differences

1. Every user command language statement can be expressed as a
sequence of message core operations.

2. Similarly, every message core operation can be translated into a
sequence of operating system calls and/or machine instructions.

3. The message core insulates the operating system/hardware from
changes in the user command language.

a. When the user command language changes, the sequence of
message core operations that implements each user command
language statement will require change.

b. The lower level code that supports each message core

operation will not require revision.

4. The message core also insulates the user command language from
changes in the operating system/hardware characteristics.

a. Each message core operation must be reimplemented using the
new operating system calls and/or new machine instructions.

SOFTWARE ENGINEERING PRINCIPLES 2-43
3-14 August 1981

SEC. 2 / PROGRAM FAMILIES

b. The translation of each user command language statement into
a sequence of message core operations will remain unchanged.

III. Lessons learned

A. We developed sets of shared features. Each family member is
associated with some subset of each set.

1. Shopping list of message core data types and operations

2. Shopping list of semantics of user command language statements:
Examples

a. CREATE TEMPLATE T

b. EDIT FILTER F

c. PRINT MESSAGE id [print-template]

d. CREATE MESSAGE [type] [security-level] [message-file]
[compose-template]

2-44 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Applying the Program Family Principle /Doc. P.7

B. We limited the range of family members.

1. Examples

a. Number of message core machines

b. Semantics of user command language

2. These are examples of early design decisions. In making these
decisions, we had to confirm that we didn't rule out any
features that would be needed later on.

C. We studied existing family members in detail. It is helpful if some
family members already exist, since it is easier to determine the
requirements of existing systems than systems that will be built at
some future date.

SOFTWARE ENGDMEERING PRINCIPLES 2-45
3-14 August 1981

PF.8 Design Decisions in HAS Requirements

EXERCISE

Name__

In the HAS requirements sumary (AS.1), many decisions are already made
that implicitly rule out family members that might be useful later. Because
these are early decisions, they are likely to permeate the design and be very
difficult to change later.

For example, the Navy may eventually require large, moored, repairable
buoys to collect weather data in key locations. If US software designers
consider the decisions "drifting buoy" and "disposable" absolutely fixed, the
software may be designed so that it is not reusable in the new buoys, even
though the functions are similar.

Study HAS.1, looking for four or five software-related design decisions
that have already been made. List each decision, along with several
reasonable, but rejected, alternatives. Indicate the alternative that was
chosen for HAS. You may want to format your answers as multiple choice
questions, as shown in the example below.

EXAMPLE

1. The 1AS software transmits the following information: (the alternative
chosen in HAS.1 is marked with "**".)

a. No information,
b. A summary at fixed intervals,
c. A suary when requested,
d. A small set of predefined reports on request,

** e. A sumary at fixed intervals and a small set of predefined reports on
request,

f. Answers to specific queries.

SOFTWARE ENGINEERING PRINCIPLES 2-47
3-14 August 1981

PF. 9 Design Decisions in HAS Requirements

EXERCISE SOLUTION

Listed below are some of the software-related design decisions implicit in

HAS.l, along with some reasonable alternatives.

i. The software will operate on the following hardware:

**a. BEEN computer

b. NOVA computer
c. a microprocessor

d. PDP-11 computer

e. any of the above

NOTE: Choice of computer can profoundly affect software construction; for

example, consider availability of support software.

2. The software designer should assume the sensor quality will be:

**a. poor, because HAS will use the cheapest sensors available

b. variable, depending on accuracy required at a particular location
c. consistently good

NOTE: Assumptions about sensor quality affect decisions about frequency
of reasonableness checks and the complexity of filtering algorithms.

3. The data retained in the system will be:

a. none - no data retained

b. most recent data only
**c. most recent data with a limited history
d. extensive history data

4. The various deployed buoys may or may not be connected as follows:

a. master/slave mode where several buoys in predefined area collect
data but only one transmits

**b. no connection
c. sophisticated network with cooperation and comparison

SOFTWARE ENGINEERING PRINCIPLES 2-49
3-14 August 1981

=, - A MMO , nbl tid laiBI. .

SEC. 2 / PROGRAM FAMILIES

5. The communications system will consist of:

a. wires with low data rate
b. transmitter only, for regular broadcasts
c. transmitter and receiver, for operating in broadcast burst mode

on request
**d. transmitter and receiver, for broadcasting regularly and

responding to requests
e. multiple transmitters for broadcasting reports simultaneously on

different channels

6. Geographic location will be determined:

a. never - geographic location information will not be available
b. by initialization on deployment - for moored buoys

**c. by Omega fix

d. by NAVSAT fix

7. The message format is:

**a. RAINFORM

b. determined by the HAS system designer

c. flexible - must change to meet varying user requirements

2-50 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

UIE. 1 Desired Responses to Undesired Events

LECTURE

I. Introduction

A. Murphy's Law: If anything can go wrong, it will

B. In the technical description of a system or subsystem, there is the
useful dichotomy of wanted and unwanted inputs and outputs (Hall
1962)

C. Built-In Test (BIT) (Coppola 1979)

D. Definitions

1. Undesired Situation: a condition that is unfortunately true.
Examples of undesired situations are: (1) data was not received
when expected, (2) data was received when not expected, (3) data
does not meet specifications, and (4) a device or function has
malfunctioned.

2. Undesired Event (UE): the moment in time that an undesired
situation arises. A UE (indeed any event) may or may not be
detected (i.e., noticed) by a system, or it may be detected
sooner or later. Sometimes the functioning of a system is
interrupted by a UE. Sometimes a system datects a UE by
examining a condition.

E. Our contention: The behavior of a system in the face of UEs is a
specification, not implementation, issue.

SOFTWARE ENGINEERING PRINCIPLES 3-1
3-14 August 1981

- Ia

SEC. 3 / UNDESIRED EVENTS

I. The existenca of alternatives when something goes wrong

A. Example: A garbled address is found on an input tape

1. Alternatives

a. Skip it

b. Print it with known errors - no change

c. Print it with erroneous parts missing

d. Print it with erroneous parts replaced by "?"

e. Print it with erroneous parts marked

f. Use minimal correction methods to correct errors

g. Search for "closest" address in files

2. For each alternative, there is an appropriate situation

3. In practice, decision often not made in specifications -

although it is visible behavior

3-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Desired Responses to Undesired Events / Doc. UE.1

B. Example: A memory bank in a multiprograuing system fails - no
data lost - insufficient memory available

1. Alternatives

a. Kill the job(s) that were currently using that memory bank
allowing the others to continue normally

b. Use swapping to allow all o! the jobs to continue more slowly

c. Pick the newest (most recently started) job and kill it,
continuing with this procedure until those remaining
function normally

2. All alternatives technically feasible if expected and planned for

3. Should and can be part of system specifications

C. Example: Message system operator types date of 1781 on message

1. Alternatives

a. System rejects the message because year is "out of range"

b. System files the message as the most recent message in its
loss

c. System queries the operator, accepts message if he insists

SOT WARE ENGINEERING PRINCIPLES 3-3
3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

d. System files the message as the oldest message in its logs

2. All alternatives easily achieved technically

3. Each useful in some situation

111. The existence of UE alternatives when designing the system

A. What, me worry?

B. Maintain redundant information necessary to detect UEs

C. Maintain redundant information needed to recompute state

1. Spend the time in recovery actions if something occurs

2. Maintain information necessary to restore state "immediately"

TV. Cost factors associated with Es

A. Cost of preparation for recovery whether or not a UE occurs

B. Cost of no recovery and no recognition if a UE occurs

3-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

' , i

Desired Responses to Undesired Events /Doc. UE.1

C. Cost of recognition but no recovery if a UE occurs

D. Cost of actual recovery if a UE occurs

E. Frequency of UEs must be a deciding factor

V. Incidents and crashes (Kaiser and Krakoviak 1974)

A. Incident: expected UE; system action depends on occurrence;
presumably system recovers without significant long-range cost

B. Crash: unexpected UE; system fails to perform intended effect;

presumably a high penalty is paid

C. Computer system example

1. Incident: most recent version of file lost; reconstructed from
old copy and activity log

2. Crash: file lost

D. Incidents and crashes, reexamined

1. Incidents with higher costs, crashes of little significance

SOFTWARE ENGINEERING PRINCIPLES 3-5

3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

2. Incident: UE resulting in something unfortunate
Crash: UE resulting in something catastrophic

3. Successful UE handling

4. Two of Gilb's Laws (Bloch 1977)

a. Undetectable errors are infinite in variety, in contrast to
detectable errors, which by definition are limited.

b. Investment in reliability will increase until it exceeds the
probable cost of errors, or until someone insists on getting
some useful work done.

VII. Classes of UEs - guide to error anticipation

A. Resource failure

I. Detectable by examining input only

2. Detectable by comparison with internal data

3. Detected externally

3-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Desired Responses to Undesired Events /Doc. UE.1

4. Reported to user by means of incorrect output

5. Two considerations

a. With information loss vs. without information loss

b. Temporary vs. long term

B. Incorrect input data

1. Detectable by examining input only

2. Detectable by comparison with internal data

3. Detected externally (after input)

4. Reported to user by means of incorrect output

C. incorrect internal data

1. Detected by internal inconsistency

2. Detected by comparison with input data

SOFTWARE ENGINEERING PRINCIPLES 3-7
3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

3. Reported to system in terms of incorrect output data

4. Uncertain data (e.g., after reporting of hardware parity error)

VII. Strategies (conclusions)

A. Above list provides an approach to listing of classes of UEs,

appropriate responses should become part of'specification

B. External interfaces suggested by above list must be present

C. Tests on internal and external data, as well as resources, that are
to be performed by the software must be specified. Both exits must
be shown.

IX. References

Bloch, A. 1977. MurZhy's Law and Other Reasons Why Things Go 8uo-I!
Los Angeles: Price/Stein/Sloan.

Coppola, A. 1979. A Design Guide for Built-In-Test (BIT). Report

RADC-TR-78-224. Available as DTIC Document ADA069384.

Hall, A. D. 1962. A Methodology for Systems Engineering. Princeton:
D. Van Nostrand.

Ieninger, K. L.; Kallander, J.; Parnas, D. L.; and Shore, J. E. 1978.
Software Requirements for the A-7E Aircraft. Naval Research
Laboratory Memorandum Report no. 3876.

Kaiser, C.; and Krakowiak, S. 1974. "An Analysis of Some Run-Time Errors
in an Operating System." IRIA Rapport de Recherche, no. 49.

3-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Desired Responses to Undesired Events / Doc. UE.l

Parnas, D. L. 1975. "The Influence of Software Structure on
Reliability." Proceed. of the 1975 International Conf. on Reliable
Software, pp. 358-362.

Parnas, D. L.; and Wurges, H. 1976. "Response to Undesired Events in
Software Systems." Proceed. of Second International Conf. on
Software Engineering, pp. 437-446.

Randell, B.; Lee, P. A.; and Treleaven, P. C. 1978. "Reliability Issues
in Computer System Design." Computing Surveys, vol. 10, no. 2,
pp. 123-165.

f

SOFTWARE ENGINEERING PRINCIPLES 3-9
3-14 August 1981

UE.2 MP and UEs

EXERCISE

Name:

Introduction

The description of the HP system (MP.1) generally fails to mention the
behavior desired of the system in the event that something goes wrong. One
exception is the frequently occurring undesired event, noisy message data.
There are, however, many other IEs that should be mentioned in a system
specification. Examples:

1. What services should be provided if the disk fails? Full service is
obviously impossible, but partial service can be expected. What
services have priority?

2. What services should be provided to assist in the event that messages
that were thought to have been transmitted were not transmitted
because of a failure beyond the scope of MP. HP's data structures now
contain incorrect data.

3. How should the system react if an obviously incorrect date is inserted
in a message being composed (e.g., 1781)?

Assignment

Think about the functions provided by HP and try to supplement the above
list. The UE classification scheme in the lecture outline should provide some
help in organizing your efforts.

SOFTWARE ENGINEERING PRINCIPLES 3-11
3-14 August 1981

UJ&3 MPandUEs

EXERCISE SOLUTION

The following list of possible UEs is not complete. It merely illustrates
the kinds of things that must be considered when defining the desired behavior
of the MP system.

1. Resource failures

a. What services can be provided if the operator's console fails?

b. What should the system do if the UGHTRANS equipment fails to respond?
Should the system detect this or wait for external notification?

c. What services should be provided if a bank of memory goes down?

2. Incorrect input data

a. What should the system do if the operator reports an incorrect
destination during the time that the message is being transmitted?

b. What should the system do if it does not receive a response within the

required response time, for a message that requires a response (e.g.,
an emergency command precedence message)?

c. What should the system do if the operator tells it that the date on
all of the last 20 messages (Feb. 30) is incorrect?

3. Incorrect internal data

a. What should the system do if it discovers that there are parity errors
in the Watch List?

b. What should the system do if it discovers that its internal directory

used to find log data contains an impossible disk address?

c. What should the system do if two messages being composed have grown so
large that deadlock prevents either from being finished before the
other finishes?

SOFTWARE ENGINEERING PRINCIPLES 3-13
3-14 August 1981

U.4 Intermodule Interfaces and UEs

LECTURE

I. Introduction

A. UE handling can result in an order of magnitude decrease in the
frequency of crashes

B. UE handling tends to introduce interprogram dependence

C. Preparation for UEs can avoid this

11. Probability considerations and UE handling

A. Need for redundant information - information that would not be
needed if no UE occurs

3. Decection vs. correction

SOFTWARE ENGMEERING PRINCIPLES 3-15
3-14 Auust 1981

SEC. 3 / UNDESIRED EVENTS

C. Number of simultaneous errors

1. Example: Warning lights in automobiles

2. Example: Archive files on different devices

D. No error-free system - probability of error can be arbitrarily
reduced

E. Extra complication - situations in which multiple errors are highly
probable

it. The effect of structure on UE handling

A. Proper response to an error requires efforts from various modules

1. Example: Unreadable block on a tape file.
Detected by tape handler.
Attempt to correct by tape handler.
File system knows which file, location of other data.
Data system knows how to reconstruct data.

3-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Intermodule Interfaces and U.s / Doc. UE.4

2. Example: Part of memory becomes error prone (no parity).
User program detects inconsistent data.
Memory allocator must not assign this area.
Deadlock prevention must know of reduced resources.
Background memory system must attempt to restore data.

B. Conventional response: Write a program that uses all relevant
tables for common cases. introduce "connections between modules."

C. Conclusion - interface must include UE communication possibilities

Examples:

1. Tape handler reports nature of error to file system in terms of
block number and tape - not: file system reads bits

2. File system reports to data system in terms of file/line

3. Data system knows file/line - storage of redundant data

4. Memory user has "complaint box"

5. Banker can be informed of catastrophe, bad loans

6. Banker needs interface to "job killers"

7. Banker needs alternate entry to recompute deadlock danger

SOFTWARE ENGINEERING PRINCIPLES 3-17
3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

IV. Abstractions that interface with error recovery

A. Useful information can be presented abstractly - not likely to
change

B. Hiding too much can prevent recovery

1. Example: "parallel changes" to a file

2. Example: indistinguishable error classes in hardware

V. Software traps as an error reporting mechanism

A. Reduce code complexity by separating normal behavior, detection, and
response

B. Decrease likelihood of undetected errors

C. Ease the removal of detection code when not needed

3-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Intermodule Interfaces and UEs /Doc. UE.4

D. Four possibilities for actions after UE detection

1. continue

2. retry

3. clean up

4. give up - only if no higher level remains

VI. Classes of UEs to report

A. Incorrect call

B. Incorrect results

C. Report earlier incorrect call

SOFTWARE ENGINEERING PRINCIPLES 3-19
3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

D. Resource failure

E. Unlikely actions

VII. "Impossible" vs. possible states after a UE

VIII. Example of abstract reporting of defects - tree specification

IX. Sunary - to make the modular concept work, all communication must be
over the predefined interface - UEs included

1. Reference

Parnas, D. L.; and Wuerges, H. 1976. "Response to Undesired Events in
Software System." Proceed. of Second International Conf. on
Software Engineering, pp. 437-446.

3-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

I

UE. 5 MP Intermodule Interfaces and UEs

EXERCISE

Name:

In the improved MP system (document MP.4), recovery from mishaps will
often require the cooperation of several modules. A program of one module may
discover and handle the problem initially, but programs of other modules must
be informed to take appropriate action. Example: If a message is so badly
garbled that a program of the external interface module (El) assigns a low
probability of its being correct, this should be noted in the logs by some
program of IR/LOG. The interface between programs of the modules must provide
for communication that will allow this. Examine the description of the
improved MP. For each UE listed below, explain which modules are affected and
describe the information that must be communicated between their programs.-

1. Persistent errors in output buffer.

2. Persistent high rate of errors in part of memory.

SOFTWARE ENGINEERING PRINCIPLES 3-21
3-14 August 1981

SEC. 3 / UNDESIRED EVENTS

3. Operator's console is no longer functioning; repair will take some
time.

4. For several messages under composition, an operator has indicated
desire to use an UGHTRANS channel that does not exist.

5. All available disk space is allocated; freeing of space is not
immediately likely.

3-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

UIE. 6 MP Intermodule Interfaces and UEs

EXRCISE SOLUTION

1. Parity errors in output buffer.

The CM module requests the El to rewrite the same information into other
core locations.

2. High rate of errors in a part of memory.

The MH module requests the AL not to allocate the error-ridden area unless
no alternative exists. It requests DS to report the problem to the operator.

3. Operator's console is no longer functioning.

TC detects that an operator's console is no longer functioning. The
assignments for that console must be reassigned. (Resources allocated by AL
to users of that console can be temporarily reassigned.) Partially processed
messages must be either finished or removed from the system.

4. An operator tries to use an UGHTRANS channel that does not exist.

EC must inform 14H to correct messages containing that channel number. El
informs the operator who has been using that channel.

5. All available disk storage space is allocated.

PS must inform the AL and the system operator. Space should likely be
freed by putting old logs or messages in archival storage off-line. Message
archiving must be done by use of MH and log archiving by IR.

SOFTWARE ENGINEERING PRINCIPLES 3-23
3-14 August 1981

UF. 7 The Uses Hierarchy and UEs

LECTURE

I. Introduction

A. UEs correspond to the violation of a specification

B. Uses hierarchy as the key to understanding UEs

II. The problem of designing for UEs

A. Characteristics of UEs

1. Relatively infrequent

Z. Often caused by higher levels in uses hierarchy, detected by
lower levels

3. Recovery best performed at the higher levels

SOFTWARE ENGINEERING PRINCIPLES 3-25
3-14 August 1981

.. . i

SEC. 3 / UNDESIRED EVENTS

B. UE detection and handling should not be afterthoughts in the design

C. How can we incorporate UE comunication in such a way that
appropriate (application dependent) recovery techniques can be added?

D. Problem - UE handling requires efforts of several modules and levels

E. Result - potential program interdependence that violates design
principles

III. Criteria of successful design for UE's

A. UE comunication doesn't violate information hiding

B. UK handling doesn't interfere with subsettability

C. Design permits change in UE handling without change in system
structure

3-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

I

The Uses Hierarchy and UEs /Doc. UE.7

D. New levels in the uses hierarchy can be added (with UE handling)
without changing the lower levels

IV. Review of the uses hierarchy

A. Given program A with specification Sa and program B, we say that A
uses B if A cannot satisfy Sa unless B is present and satisfies
some non-trivial specification $b. The assumed specification Sb
may differ for different users of B.

B. If A doesn't care about any Sbq a call on B is not a use of B

V. The problem of UE communications in a uses hierarchy

A. "Uses" provides a means for co-municating downiwards in the hierarchy

B. Since recovery possibilities are usually at higher levels, lower
levels need to co-mmunicate UE detection upwards

C. Lower levels can make no assumptions about upper levels (i.e., they
can call programs at higher levels, but they can't use programs at
higher levels)

SOFTWARE ENGINEERING PRINCIPLES 3-27
3-t4 August 1981

SEC. 3 / UNDESIRED EVENTS

VI. Using "traps" to communicate upwards in the uses hierarchy

A. The analogy with hardware

B. Consider each uses hierarchy level as a virtual machine with traps
for the UEs detectable by the virtual machine

C. Hardware trap - branch to fixed trap location;
virtual machine trap - call (not use) of routine with reserved name

D. Actual trap routines CUE handlers) provided by users of virtual
machine; can change dynamically

E. Virtual machine traps provide upwards UE comunications without
violating uses hierarchy, make no assumptions about who will receive
information and what will be done with it

VII. Problems in designing the virtual machine traps

A. Can be advantageous to report on a class of UEs with a single trap

3-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The Uses Hierarchy and UEs / Doc. UE.7

B. Further information about the U! can be passed by parameters

C. Information reported upwards must be in terms of appropriate
abstraction - must respect information hiding

I. No references to internal data structures or programs

2. No references to partially computed results

3. Information only in terms of specification of the virtual machine

4. Different versions of the same module must provide same Ue
reports

D. Trade-offs

1. Amount of information in UE handler name and parameters vs. ease
of analysis at user level

SOFTWARE ENGINEERING PRINCIPLES 3-29

3-14 August 1981

SEC. 3 / UNDESIRZD EVENTS

2. Number and detail of virtual machine traps vs. diagnostic
programs at the user level

E. UE information may also be reported "sideways" - reports to the
programmer

VTI. Classes of UEs to consider

A. Parameter values

B. Capacity limits

C. Uniefined information requests

D. Operations in certain order (e.g., open before read)

E. Detecting actions likely to be unintentional

3-30 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The Uses Hierarchv and UEs / Doc. UE.7

IX. Sufficiency

X. Trap priority - call only one at a time

XI. Detecting errors - redundancy vs. ef iciency - early development

XII. Summary in terms of criteria for success (see section I')

A. Respect information hiding by communicating UE . in terms of suitable
abstractions

B. Maintain subsettability by using traps that don't violzte uses
hierarchy

C. Software traps allow changes in UE handling without changes in
system structure

D. UE detection based on specifications permits addition of higher
levels without change

SOFTWARE ENGINEERING PRINCIPLES 3-31
3-14 August 1981

MOD. 1 Decomposition into Modules

LECTURE

I. Limitations of stepwise refinement

A. Level of detail (assumptions must be stated) - intuitive

understanding assumed

B. Sequencing decisions are implied

C. Postponement principle: Postponement of sequencing decisions

D. Size of programs expands - more people, work involved

II. What else can we decide besides the order of events?

A. The design of data structures

i!

SOFTWARE ENGINEERING PRINCIPLES 4-1
3-14 August 1981

SEC. 4 1 INFORMATION-HTDING 10DULES

B. Interfaces

C. Work assignments -modules

D. Parameters that characterize the program family

III. History of modul-r decomposition

A. Unit of measure - 3.27 square meters

B. Parts to be put together

IV. Modules of hardware: How you put them together is obvious; there are
well-known physical constraints. Hardware is a physical object.

4-2 SOTWARE ENfGINEERING PRINCIPLES
3-14 August 1981

Decomposition into Modules /Doc. MOD.1

V. Modules of software w- hen are parts put together?

A. Write time

B. Assembly time

C. Memory load time

V1. The three (or more) meanings must not be confused

A. Constraints different

1. Write time - intellectual coherence for programmer

2. Assembly time - name conflicts

3. Memory load time - fitting into core things needed at same time

SOFTWARE ENGINEERING PRINCIPLES 4-3
3-14 August 1981

SEC. 4 / INFORMATION-HIDING MODULES

B. Myth of overmodularization: Modules should be as small as possible

C. Inefficiency results from forcing coincidence

VII. In this course, modules are always design-time or change-time entities

A. Units of change

B. Redesign - throw away

C. So small that changing does not help

VIII. The KWIC INDEX example

A. Conventional structure

1. Input Module

2. Circular Shift Module

SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Decomposition into Modules /Doc. MOD.1

3. Alphabetizing Module

4. Output Module

5. Master Control Module

B. Decisions likely to change

1. Input format

2. How stored in memory

3. Output table sorted completely before output

C. Alternative structure

1. Line Holder Module - special purpose memory to hold lines of
KWIC index

GET CHA(lineno, wordno, charno)
SET CHAR(lineno, wordno, charno, char)
CHA S (lineno, wordno)
LINES
WORDS(lineno)
DELETE LINE (lineno)
DELETE-WORD(lineno, wordno)

SOFTWAL ENGINEERING PRINCIPLES 4-5
3-14 AugusC 1981

SEC. 4 / fINPORMATION-HIDING MODULES

2. Input Module - reads from cards; calls line holder programs to
store in memory

INPUT

3. Circular Shift Module - uses line holder programs to get data
from memory; may make table, may not

CS SETUP
CS-CHAR(lineno, wordno, charno)

4. Alphabetizer Module

ALPH
ITH(lineno)

5. Output Module - calls ITH and circular shift programs

OUTPUT

6. Master Control Module - calls INPUT, CS.SETUP, ALPE, and OUTPUT

4-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Ii

Decomposition into Modules / Doe. MOD.1

D. Claim

1. Not getting any really different program

2. Different way of cutting up - so that change is confined in one
person's work (recall module definition)

3. System organized into set of modules so that it is clearly seen
what needs to be changed

4. Not necessarily better algorithms or data structures

5. Simplifies interfaces

IX. Terminology

A. Information-hiding modules

- identify the design decisions that are likely to change

- have a module for each changeable design decision

-- each changeable decision is a "secret" of a module

SOFTWARE ENGIEERING PRINCIPLES 4-7
3-14 August 1981

SEC. 4 / INFORMATION-HIDING MODULES

B. The secret of a module

Exactly the one design decision that might change - only the
implementor knows

I. Line holder - how lines are represented in memory

2. Input - input format

3. Circular shift - how circular shifts are represented

4. Alphabetizer - time in which alphabetization is done and
sorting method used

5. Output - output format

C. Structure redefined - terms of modular structure

1. Connections between modules are assumptions that they make about
each other (interface)

4-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Decomposition into Modules /Doc. MOD.l

2. Mistake - flowchart boxes become modules

D. Frequency of switching from module to module

1. Steps-in-processing approach - low frequency of switching

2. Information-hiding - has many separate, callable routines

3. Macros - after expanded may be same mesa but to change the
software, one looks at the information-hiding representation

X. Hiding information about the design at write-time and not information at
run-time - reduce the connectivity between the modules at write-time
and not at run-time

Run-time information versus design-time information

SOFTWARE ENGINEERING PRINCIPLES 4-9
3-14 August 1981

SEC. 4 / INFORMATION-HIDING MODULES

XI. References

Parnas, D. L. 1971. "Information Distribution Aspects of Design
Methodology." Proceed. of IFIP Congress 71, pp. 339-344.

Parnas, D. L. 1972. "A Technique for Software Module Specification with
Examples." Commr. ACH, vol. 15, no. 5, pp. 330-336.

Parnas, D. L. 1972. "On the Criteria To Be Used in Decomposing Systems
into Modules." Comm. AQ1, vol. 15, no. 12, pp. 1053-1058.

Linden, T. A. 1976. ',The Use of Abstract Data Types to Simplify Program
Modifications." Proceed. of Conf. on Data: Abstraction, Definition
and Structure, SIGPLAN Notices, Special Issue, vol. 11, pp. 12-23.

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1976. "Abstract Data Types
Defined as Classes of Variables." Proceed. of Conf. on Data:
Abstraction, Definition and Structure, SIGPLAN Notices, Special
Issue, vol. 11, pp. 149-154. Also Naval Research Laboratory Report
no. 7998

Parnas, D. L. 1977. "The Use of Precise Specifications in the
Development of Software." Proceed. of the IFIP 1977, pp. 861-867.

4-10 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

MOD.2 Change and the Original MP Modular Structure

EXERCISE

Name:

1. (Hardware change) Suppose that a bulk core device were added to the
optional hardware in the UGH 2PIE system. The device has roughly the capacity
of the small disk used (but rot that of the extended mass storage or large
disk option); it is very fast (about 1/5 the speed of the primary memory,
where the disk was 1/10000 for access); and code may be executed from bulk
core. If MP is to make the best use of such a device, what modules must be
changed? Explain why the change is not confined to one or two modules.

2. (Message format change) Suppose that a message format change is announced
in which Format Line 5 may be entirely omitted from a message of the lowest
security class. What modules will be affected by this change? Explain why
the change is not limited to one or two modules.

SOFTWARE ENGINEERING PRINCIPLES 4-Il
3-14 August 1981

MOD.3 Change and the Original MP Modular Structure

EXERCISE SOLUTION

1. The bulk core can replace small disks, but it canfiot replace large disks.
This means that logs, if kept, will still be on disk, but that all other data
can now be in the bulk core. Unfortunately, this could change every module in
the system, some substantially, others only slightly (but the slight changes
might still be hard to make).

In practice, DK would probably be left in place, modified to use the
core. This shouldn't really be considered a triumph for modularization,
because it will multiply the overhead by perhaps a factor of ten. Any module
that uses DK will now sacrifice a lot of the hardware performance available by
not directly using the bulk core.

Changes to EX and DC and DK cannot be avoided, and they are substantial.
EX and DC must now choose whether to use main memory or leave the data in bulk
core, and they have no algorithms to do anything like this. The complex inter-
action between DK and EX is no longer required (indeed, since most executions
might be done in bulk core, only the scheduling and interrupt service of EX
will be required). DC now has little reason to allocate main memory at all
and thus may acquire a third class of "disk" allocation for which it is
unprepared.

Of course, if IR and LX are included in the system with bulk core, they
will profit greatly by using it, and will require large changes to do so. The
changed modules will be inappropriate to use on a system with only disk (the
UGH-VAN and UGH-20 do not have the bulk core possibility).

Two mistakes in MP are shown here. The first is that disk addresses are
used throughout the system, on the assumption that DK would always be present
to handle reads/writes. The other was that the core/disk distinction was an
early one, which was reflected in the module structure and hence hard to
reverse.

2. Certainly CO, SC, and MA will be affected by this change. (SC, even
though it doesn't use FL5, because it must skip over it to find the addressee
list.) But there will be smaller changes in OP, IR, L, and even DC and
perhaps TO to deal with the changed messages.

The mistake is an obvious one: too many modules duplicate the process of
pulling a message apart, using slightly different algorithms, but making a
common set of assumptions about message format. Finding all the places where
these assumptions enter into code is liable to be very difficult in the
completed system.

SOFTWARE ENGINEERING PRINCIPLES 4-13
3-14 August 1981

MOD.4 Modular Structure of Complex Systems

LECTURE

I. Review: Information hiding as a criterion

A. What is a secret?

B. What are some typical secrets?

(See Figure 1, p. 4-19, and Figure 2, p. 4-20)

11. What is different about large complex systems?

A. How do we deal with unstructured lists of modules?

B. How can we tell when we have them all?

C. How does everyone remember the names?

SOFTWARE ENG INEIRING PRINCIPLES 4-15
3-14 August 1981

SEC. 4 / INFO MATION-HIDING MODULES

D. How do we avoid duplications?

III. Why should we group modules into classes?

A. Put some structure in the list

B. Help to check for completeness

C. Leads to more helpful naming conventions

D. Makes duplications less likely

IV. What are some possible classification criteria for modules?

A. By level in hierarchy

B. By similarity of interface

4-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Modular Structure of Complex Systems / Doc. MOD.4

C. By type of function served or service provided

a. By nature of the secret

E. Similar programing problems

V. What are the classes of modules in the A-7?

A. The Extended Computer class of modules

Secrets: Implementation of common data types, I/O, etc.

Characteristics of TC-2 computer such as registers, memory

structure, etc.

B. The Device Interface Modules

Secrets: Device characteristics

C. The Physical Model Modules

Secrets: Models of physical phenomena

SOFTWARE ENGINEERING PRINCIPLES 4-17
3-14 August 1981

' 1

SEC. 4 / INFORMATION-HIDING MODULES

D. The Data Banker Modules

Secrets: Source and updating policies for camon data

E. The System Status Modules

Secrets: How the program keeps track of the status of the system
and detects state changes of interest to the system

F. The Function Driver Modules

Secrets: Algorithms for performing requirements functions

G. The System Generation Modules

Secrets: Implementation of the tools used to assemble the system
from the library of components

VI. Concluding dilemma:

How do you deal with the fact that large systems divided into modules
that are small enough to be understood have confusingly many modules?

4-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Modular Structure of Complex Systems / Doc. MOD.4

Figure 1*: Comon Secrets in Data Processing Systems

Secret Typical Reasons for Changes

Data base structure (logical) - New fields in records

- Field sizes changed

- More records required

- Faster access required for particular fields

Algorithms - Different time-space tradeoffs required

- More accurate or efficient algorithms invented

Data storage (physical) - Size of available storage changed

- Type of available storage changed (e.g., from
one tape drive model to another, or from tape
to disk)

- Faster access required

Input - Input medium changed (e.g., from cards to OCR)

- Fields rearranged within records

- More extensive error-checking required

- Input sequence changed (e.g , from unsorted

to sorted)

Output - Change in output device (e.g., from printer
to computer-output microform)

Operating system interface - Manufacturer issues new release
(e.g., JCL)

Software functions - New types of reports required
as seen by user - Client requires changes in report formats

* Frrm Kathryn Reninger and John Shore, "Designing Modular Programs -

Methodology," Auerbach Portfolio 14-01-11.

SOFTWARE ENGINEERING PRINCIPLES 4-19
3-14 August 1981

I,

SEC. 4 / ITNFORATION-HIDf.NG MODULES

Figure 2*: Common Secrets in Real-Tijae Systems

Secret Typical;Change

Computer characteristics - Computer replaced by faster, larger, or
cheaper model

- Computer replaced by standard model (e.g.,
military standard)

Peripheral devices - Sensors replaced by more accurate, more

reliable, or faster models

- Displays replaced by more flexible or more
reliable models

Resource allocation - Relative priorities or activities changed
(e.g., scheduling) - Single computer replaced by set of micros

- Capacity of resources changed, e.g.,
additional memory added

Algorithms - More accurate or faster algorithms invented

- More general algorithm invented that can
replace several more specialized algorithms

Software functions - User preferences changed, including
New modes needed
Transition between modes changed
New responses required to user inputs
New displays needed

- Computer-driven devices used for different

purposes

* From Kathryn Heninger and John Shore, "Designing Modular Programs -

Methodology," Auerbach Portfolio 14-01-11.

4-0 SOFrWARE ENGINEERING PRINCIPLES
3-14 August 1981

MOD.5 MP Secrets

EXERCISE

Name:

The modular structure of a system should be based on the aspects of the
system that are likely to change. Each changeable aspect should become the
secret of a module. Thus it is important during requirements definition and
during design to list the changeable aspects of a system. Referring to the MP
documents MP.l, MP.2, and MP.3, make a list of the changeable aspects of the
MP system. Hint: Some areas of possible change are algorithms, data
structures, formats, strategies, and hardware characteristics.

Example:

1. The internal representation of a message.

SOFTWARE ENGINEERING PRINCIPLES 4-21
3-14 August 1981

MOD.6 MP Secrets

EXERCISE SOLUTION

Listed below are some aspects of the MP system that are likely to change

and therefore are secrets to be hidden in modules.

I. The internal representation of a message.

2. The external message format(s).

3. The protocol(s) of the comunication device(s).

4. The WATCH LIST of messages of interest.

5. The method of controlling UGHTRANS devices.

6. The format of terminal commands and displays.

7. The terminal characteristics.

8. The commands needed to compose and edit a message.

9. The organization of log data.

10. The paging and backup-store system.

11. The resource allocation strategy.

12. The interrupt handler.

13. The organization of WCB queues.

14. The format of the WCBs.

15. The search algorithm for the WATCH LIST.

16. The configuration of the system.

17. Message analysis.

SOFTWARE ENGINEERING PRINCIPLES 4-23
3-14 August 1981

MOD. 7 Change and the Improved MP Modular Structure

EXERCISE

Name:

1. (Hardware change) Suppose that a bulk core device were added to the
optional hardware in the UGH 2PIE system. The device has roughly the capacity
of the small disk used (but not that of the extended mass storage or large
disk option); it is very fast (about 1/5 the speed of the primary memory,
where the disk was 1/10000 for access); and code may be executed from bulk
core. If MP is to make the best use of such a device, what modules must be
changed? Explain why the change is not confined to one or two modules.

2. (Message format change) Suppose that a message format change is announced
in which Format Line 5 may be entirely omitted from a message of the lowest
security class. What modules will be affected by this change? Explain why
the change is not limited to one or two modules.

SOFTWARE ENGINEERING PRINCIPLES 4-25
3-14 August 1981

• ,r e

SEC. 4 / INFORMATION-HIDING MODULES

3. (Message format change) As a result of the Freedom of Iniormation Act,
every message must include a declassification date in both FL4 and FL12.
Which modules will require a change?

4. (Hardware change) A microfilm printer has been added to produce hard
copy. This device contains two rolls of film, one for unclassified messages,
the other for classified. Which modules will require a change?

4-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MOD. 8 Change and the Improved MP Modular Structure

EXERCISE SOLUTION

I. This change can be confined to the paging module (PS) because it is the
only one that "knows" the nature of the storage devices. Some performance
improvement might be obtained by examining other parts of the system, which
make a choice about when they request pages be removed or brought in. The
optimum choice is a function of the speed of access. Nevertheless, it is
possible to use the system initially without such improvements.

2. Only the E1 module is affected by this change.

3. This change requires a change in the information supplied by the 1M
module. The new format violates the assumptions that went into the design of
the module (namely, that no such information was present or relevant). The
danger exists that every function that uses the functions in MH may have to be
changed. For example, the programs that display messages to the operator must
be altered to include the new information in the display. Similarly, such
information must be included in logs, so that the programs that store messages
in logs may also be subject to change. The El module will also have to change
to accoamodate the new format.

4. None of the modules requires a change. The control of the new device is
done by a new program that can obtain all of the information that it needs
from XH. If these microfilm files are considered "logs," the program can be
considered part of the log module. The system must consider this new storage
as "write only" memory.

SOFTWARE ENGINEERING PRINCIPLES 4-27
3-14 August 1981

MOD.9 Identifying HAS Modules

EXERCISE

Name:

The RAS modular structure given in HAS.2 is sensitive to specification
changes such as adding a CPU and second transmitter, changing the time interval
between sensor readings, or eliminating history report transmissions by

storing them internally on a floppy disk (to be picked up by passing ships or
by trained dolphins). Propose an improved modular structure for HAS based on
the system description given in HAS.1. Use the information-hiding principle
to organize the system into modules. Guide your design by using the table
below, first filling in the secrets column, and then the module that hides
each secret. Derive the secrets from consideration of possible changes
described or implied in HAS.1. Give a short description of each module,
including its functional capabilities. Recall that secrets include items such
as algorithms, data structures, formats, and hardware characteristics. An
example entry has been included.

PROPOSED HAS MODULES

Secret Module Name Module Capabilities

Sensor Characteristics Sensor Control Hidden in this module are the
sensor characteristics that might
change if we replaced one sensor
with another that delivers the
same information. The programs

that take readings from sensors
are in this module; they know the
HAS-BEEN instruction sequences
that perform sensor input and the
hardware defined memory location
corresponding to each device.

SOFTWARE ENGINEERING PRINCIPLES 4-29
3-14 August 1981

SEC.4 / INFORMATION-HIDING MODULES

Secret Module Name Module Capabilities

4-30 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

. -- - .- .. -.

SPEC. 1 What Are Specifications?

LECTURE

I. What are "specifications"?

A. General definition of specification

Specific information about the object

B. Engineering definition

Specific information about the requirements the object must meet

(I

C. We will use it in the engineering sense

tI. Why do we need specifications?

A. Multiperson projects

B. Multiversion projects

SO7TWARE ENGINEERING PRINCIPLES 5-1
3-14 August 1981

SEC. 5 / SPECIFICATIONS

C. "Our inability to do much" (E. W. Dijkstra)

Each subtask should have a definition independent of the rest of the
job

D. Making early decisions explicit and precise

1. Intramodule assumptions

2. Decision postponement

II. Why must specifications be precise?

A. Early, distributed design decisions are hard to correct

B. Prevent incompatibility between parts

I
C. Remove the need for excessive information distribution

5-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

.. " m l
i

i i i N N E

What Are Specifications? /Doc. SPEC. I

D. Minimize forbidden assumptions

IV. Why must specifications be abstract?

A. Abstraction - one model, many realizations

B. Must allow many versions

C. State only requirements

Example: fictitious sort

D. Less information to comprehend

E. User only concerned about that which he could eventually discover

for himself

SOFMARE ENGINEERING PRINCIPLES 5-3
3-14 August 1981

SEC. 5 / SPECIFICATIONS

V. What do we mean by formal?

A. Not "superficial"

B. Based on forms and rules

1. No chance of misinterpretation

2. Conceivably interpretable mechanically

VI. Why not English (German, French, Dutch, ... ?)

A. Interpretation may (often does) require an elaborate legal system

B. Examples of subtle ambiguities

1. Delivers the top of the stack

2. Delivers the address of the new PSW

5-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

What Are Specifications? /Doc. SPEC. I

3. Removes the top element from the stack

4. The date three months from today

VII. Stating the visible effects of functions on each other

A. The basic technique of formal specifications

B. Refusal to mention internal or invisible effects

The way to abstract specifications

A

C. Leaving some externally visible values undefined

The way to restrict statements to requirements

VIII. Stating the "synractic" properties of functions

A. Does the function have a value? What is its type?

SOFTWARE ENGINEERING PRINCIPLES 5-5
3-14 August 1981

SEC. 5 / SPECIFICATIONS

B. Input parameters: How many? What type?

C. Output parameters: How many? What type?

1. This information specifies the syntactically allowed calling
combinations

2. More information can be added by defining more types

IX. Stating the semantic properties of functions

A. The immediately visible effects

B. Relations among functions (Fl + F2 - 3)

C. Equivalent sequences - enough to define all the effects

D. Effect after a sequence

5-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

What Are Specifications? I Doc. SPEC. 1

E. References to "history"

1. Dascribing "don't cares"

XI. Describing forbidden or undesired actions

A. Stating the allowed actions

B. Stating the effects of restriction violations

C. Specifying conventions for reporting internal errors

XII. Example: Stack with limitations

XIII. Example: Stack without limitations

SOFMARE ENGINEERING PRINCIPLES 5-7
3-14 August 1981

SEC. 5 / SPECIFICATIONS

XIV. Example: Tree

XV. Example: Queue

XVT. Example: Sorting queue

XVII. Completeness and consistency

A. Derivation of value or "undefined" for all sequences

B. Only one va.lue derivable

XVIII. Important vs. notational aspects

A. Rules about content important

B. Syntactic invention still needed

5-S SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

What Are Specifications? /Doc. SPEC. I

C. Don't let syntax control content

XIX. References

Parnas, D. L. 1972. "A Technique for Software Module Specification with
Examples." Comm. ACM, vol. 15, no. 5, pp. 330-336.

Guttag, J. V. 1975. The Specification and Application to Programming of
Abstract Data Types. University of Toronto Computer Systems Research
Group Technical Report CSRG-59.

Parnas, D. L.; and Up1.dzel, G. 1975. More on Specification Techniques
for Software Modules. Fachbereich Informatik, Technische Hochschule
Darmstadt.

Guttag, J. V. 1977. "Abstract Data Types and the Development of Data
Structures." Comm. ACH, vol. 20, no.6, pp. 396-404.

Parnas, D. L. 1977. "The Use of Precise Specifications in the
Development of Software." Proceed. of the IFIP 1977, pp. 861-867.

Liskov, B.; and Zilles, S. 1975. "Specification Techniques for Data
Abstractions." IEEE Trans. on Software Engineering, vol. SE-i,
no. 1, pp. 7-19.

Bartussek, W.; and Parnas, D. 1977. Using Traces to Write Abstract
Specifications for Software Modules. University of North Carolina
Report no. TR 77-012.

SOFTWARE ENGINEERING PRINCIPLES 5-9
3-14 August 1981

SPEC.2 Using an Informal Functional Specification

EXERCISE

Name:_

Using the informal functional specification of the message holder module

given in document MP.5, answer the following questions. Quotes enclose a
character string. Thus, "RUSSIA" represents the six-character string RUSSIA.

1. What is the value of GET ROUTING INDICATOR after executing
SET ORIGINATOR ROUTING INDICATOR7(RUSS IA") ?

2. After executing SET TEXT(25,30,"tricky"), what is the value of
GETTEXT(30,30)?

3. What is the effect of SET TEXT(25,25,"tricky")?

4. The original text is "HAPPY BIRTDAY"; what command will correct it?

SOFTWARE ENGINEERING PRINCIPLES 5-I1
3-14 August 1981

SEC. 5 / SPECIFICATIONS

5. The original text is "%APPY BIRTHDAY"; what is the text after executing
BLANKIT(4)?

6. If the message already contains an addressee, what is the effect of
SET ADDEE("SECNAV")?

7. We have executed BIND(47), stored some text in the message, and then
executed NEW MESSAGE(47); what happens as a result?

8. What will happen if a program executes SETSERIAL("serial")?

9. How long is the string GETTEXT(30,30)?

10. If the text of a message currently contains 35 characters, what is the
effect of SETTEXT(50,71,'"P SOFTWARE")?

5-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

I m i i II i

SPEC.3 Formal Functional Specifications

LECTURE

t. Purpose: Stating requirements that an implementation of an information-
hiding module must satisfy

A. State everything that is required

B. State nothing that is not required

C. Leave no room for doubt

tI. Three views about showing internals

A. Hention no internals

Why:

Why not:

SOFTWARE ENGUEERING PRINCIPLES 5-13
3-14 August 1981

SEC. 5 /SPEC IFICATIONS

B. Mention hypothetical "r.diculous internals"

Why:

Why not:

C. Mention hypothetical "suggested internals"'

Why:

Why not:

111. Syntax in a specification

A. What i.s a type?

B. "Presentation" presents type information

5-14 SOFIWARE ENGINEERING PRINCIPLES
3-14 August 1981

Formal Functional Specifications /_Doc. SPEC.3

LV. What is a trace?

A. Execution history of a module from creation

B. A subtrace is part of a trace

C. Notation for describing traces and subtraces

1. F(a, b, c)

2. F(a, b, c).Y(2, 3, 4)

3. L.j

4. V(T)

5. sn

SOFTWARE ENGINEERING PRINCIPLES 5-15
3-14 August 1981

SEC. 5 / SPECIFICATIONS

V. What kinds of assertions can be made about traces?

A. Which traces must be legal?

B. When are two traces equivalent?

1. Equivalent traces must be indistinguishable from outside the
module

2. Two traces are not equivalent unless shown to be equivalent

C. Values of traces in terms of previously defined "ypes

VI. Specification of an unbounded stack

A. Syntax:

PUSH: (integer) x (stack) -> (stack)
POP: (stack) -> (stack>
TOP: (stack> -> (integer)
DEPTH: (stack> -> (integer>

B. Semantics:

1. Legality:

a. X(T) -> X(T.PUSHCa))
b. X(T.TOP) - X(T.POP)

5-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Formal Functional Specifications /Doc. SPEC.3

2. Equivalences:

c. T.DEPTH - T
d. T.PUSH(a).POP B T
e. A(T.TOP) -> T.TOP H T

3. Values:

f. X(T) -> V(T.PUSH(a).TOP) - a
g. XCT) -> V(T.PUSH(a).DEPTH) - I + V(T.DEPTH)
h. V(DEPTH) - 0

The above specification ass..es that only one stack exists and omits
the stack parameter in the trace assertions.

VII. Specification of an unbounded queue

A. Syntax:

ADD: <integer) x <queue) -> (queue)
REMOVE: (queue)-> (queue)
FRONT: (queue)-> (integer)

B. Semantics:

1. Legality:

a. A(T) "> A(T.ADD(a))
b. ACT) "> A(T.ADD(a).REMOVE)
c. X(T.REHOVE) - A(T.FRONT)

2. Equivalences:

d. X(T.FRONT) > T.FRONT - T
e. A(T.REMOVE) => T.ADD(a).REXOVE B T.REMOVE.ADD(a)
f. ADD(a).REMOVE - ..

3. Values:

g. V(ADD(a).FRONT) - a
h. A(T.FRONT) -> V(T.ADD(a).FRONT) = V(T.FRONT)

The above specification assumes that only one queue exists and omits
the queue parameter in the calls on the access programs.

SOFTWARE ENGINEERING PRINCIPLES 5-17
3-14 August 1981

SEC. 5 / SPECIFICATIONS

VIII. Specification of a sorting queue

A. Syntax:

INSERT: (integer) x (squeue) -> (squeue)
REMOVE: (squeue) -((squeue)
FRONT: (squeue) ->(integer)

B. Semantics:

1. Legality:

a. X(T) -> X(T.INSERT(a))
b. AT) -> X(T.INSERT(a).REMOVE)
c. X(T.FRONT) - X(T.REMOVE)

2. Equivalences:

d. X(T.FRONT) -> T.FRONT T
e. T.INSERT(a).INSERT(b) T.INSERT(b).INSERT(a)
f. INSERT(a).EEMOVE - .j
g. X(T.FRONT) cand (V(T.FRONT) -< b) => T.INSERT(b).REOVE T

3. Values:

h. V(INSERT(a).FRONT) a a
i. X(T.FRONT) cand V(T.FRONT) -< b -> V(T.INSERT(b).FRONT) - b

NOTE: The value of X cand Y is false if X is false, and the value of X
cand Y is the value of Y is X is true. Y need not have a defined value
=LX is false.

5-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Formal Functional Specifications / Doc. SPEC.3

IX. Specification of a stack that overflows at the bottom

A. Syrtax:

PUSH: (stac) x (integer> -> (stac>
Pop: (stac) -> (st.c)
VAL: (scac) -> (integer)

B. Semantics:

1. Legality:

For all T, X(T)

2. Equivalences:

0 < N 5 124 -> PUSHN(ai).POP PUSHN-I(ai)
PUSH(aO).PUSHl24(ai) E PUSH 124 (ai)

T.VAL T
N : 0 -> POPN.PUSH(a) B PUSH(a)

3. Values:

V(T.PUSH(a).VAL) - a mod 255

X. When is a specification complete? Do we always want completeness?

XI. When is a specification consistent?

XII. Effect of programming languages

A. Lack of choices in some languages leads to simplification

SOFTWARS ENGINEERING PRINCIPLES 5-19
3-14 August 1981

SEC. 5 I SPECIFICATIONS

B. Lack of "functions" leads to mit.or complication

C. User-defined types can simplify specifications

XIII. Dealing with nonsequential systems

XIV. Three heuristics

A. Minimal subset approach

B. Looking for sequences that make the system "forget"

C. Canonical forms for showing completeness

XV. Open problems

5-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

SPEC.4 Coding Specifications

LECTURE

I. Motivation

A. It is sometimes useful to have a level of documentation between
module interface designs and module implementation code

1. Can ease maintenance (code is sometimes hard to read)

2. Can provide a useful form for reviewing module implementation
design decisions

3. Can enable the design of module implementations valid for more
than one language

B. Such documentation can ease problems that sometimes occur with
p-ogramers responsible for implementing modules or parts of modules

1. May not have "big picture"

2. Will (naturally) optimize locally

SOFTWARE ENGINEERING PRINCIPLES 5-21
3-14 August 1981

SEC. 5 / SPECIFICATIONS

3. May not have much experience

4. May misinterpret requirements

11. What are coding specifications?

A coding specification for a given program is a document in which
pseudo-code or abstract programs are used to constrain the selection of
algorithms and data structures or to specify them completely. Whatever
the extent of the constraints imposed, the coding specification should
contain all information (or references) required to write complete and
correct code for the program.

III. Why not just write programs?

A. The programing language may not be well-suited to comunicating
algorithms to people

Examples: use of case, while, if ... then ... else.

if flag I (FLAG) GO TO 10
then actionI; action_2
else action 2; GO TO 20

end-if-, 10 action 1
20 CONTINUE

5-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

i " ' " '- .. . ' il -

Coding Specifications / Doe. SPEC.4

B. Since constraints imposed on different code may vary, we need a

degree of informality

Example: "sort A"

vs.

"sort A using algorithm efficient for N less than 15"

Vs.

"bubble sort A"

vs.

"for 1:- 1 step 1 to N do ...

C. Often desirable to introduce special notation to aid in

specification, communication, or maintenance

1. Example: Physical field references

R[5:9] or R["opfield"]

VS.

RSHIFT(LSHIFT(R,4), 28)

2. Example: names instead of values

if I gt SYSWM then error(TOOBIG); end-if;

Vs.

if I gt 796 then error(3); end-if;

SOFTWARE ENGINEERING PRINCIPLES 5-23

3-14 August 1981

SEC. 5 / SPECIFICATIONS

IV. Selecting a code specification "language"

A. The actual programuing language might be a suitable base

B. It should be straightforward to translate to the progra Lng
language - don't use a base like APL or LISP for coding
specifications if the system will be written in FORTRAN

C. Balance formality and informality

1. Formality can facilitate automatic indexing, cross-referencing,
and checking

2. Informality provides the advantages discussed in section III

V. Using coding specifications

A. Have module designers write them and other designers review them

B. Have author and coder collaborate on necessary changes

5-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Coding Specifications /Doc. SPEC.4

C. Rave author review resulting code

D. Use in designing and analyzing system tests

E. Hay be appropriate to keep them current and use as long-term
documentation (depends on readability of code)

F. Keep on-line

G. Use utility programs

VI. Summary

SOFTWARE ENGINEERING PRINCIPLES 52
3-14 August 1981

SEC. 5 / SPECIFICATIONS

CODING SPECIFICATION EXAMPLE

Interface Specification

)CLWTCT(

FUNCTION: Clears the contents of the write access counters (WCOUNT) for ATRTAB
entries other than labels, procedures, or constants.

COMENTS AND DESCRIPTION: Counters can be incremented or cleared but not set

to a specific value.

CALLING SEQUENCE: CALL CLWTCT(ERRCODE)

'PARAMETERS:

ERRCODE INT;R + or - the function identifier of caller
(ERRINC) Codes:

OK)
NOBIND) B no ATRTAB entry bound
(ILLTYP) - label, procedure, or

constant bound

Tables Referenced Entry Types Referenced Logical Components Referenced

ATRTAB ARRAY WCOUNT
REG WCOUNT
TREG WCOUNT
TILAG WCOUNT

5-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Coding Specifications / Doc. SPEC.4

Interface Specification

)INWTcT(

FUNCTION: Conditionally increments the write access counter (WCOUNT) for
ATRTAB entries other than labels, procedures or constants. If the
STATUS field indicates that counting is enabled, counting is
performed.

COMMENTS AND DESCRIPTION: Counters can be incremented or cleared but not set
to a specific value.

CALLING SEQUENCE: CALL INWTCT(ERRCODE)

PARAMETERS:

ERRCODE INT;R + or - the function identifier of caller
(ERRINC) Codes:
(OK >
(NOBIND) E no ATRTAB entry bound
(ILLTYP) S label, procedure or constant

bound

Tables Referenced Entry Types Referenced Logical Components Referenced

ATRTAB ARRAY WCOUNT
REG WCOUNT
TREG WCOUNT
TFLAG WCOUNT

SOFTWARE ENGINEERING PRINCIPLES 5-27
3-14 August 1981

SEC. 5 / SPECIFICATIONS

Coding Specification

Routines to clear access counters

ROUTINE [PHYSICAL FIELD]

>CLRDCT([READ COUNT]
)CLWTCT([WRITE COUNT]
) CLMOCT([MONITOR COUNT]

Routines to increment access counters

ROUTINE. [PHYSICAL FIELD]

SINRDCT [REAL# COUNT]
)INWTCT([WRITE COUNT]
) INMOCT([MONITOR COUNT]

PARAMETER FILES:

ACERRI.REQ (ERRINC) Codes for calling)ERR (
ACNAM.REQ Parameter definitions for routine name codes used for

callin&)ERR (function
ACATIP.REQ ATRTAB entry type codes
ARFSIZ.REQ Parameters for array size declarations and table entry

size definition

COMiON BLOCK DEFINITION FILES:

ACSTOR.REQ Primary data structure for support of table access

routines

EXTERNAL REFERENCES:

ERR for error reporting
(Byte and As required to extract table entries
Halfword (See references (c), (d), and (e))
routines)

5-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

A|

Coding Specifications /Doc. SPEC.4

ALGORIThM

/* (ROUTINE) is the parameter containing the name of the routine being
coded. */

!if !DEBUG
!then /* code the following with 'D' in column 1 */

if ATRBD {ACSTOR} = -1
then

call ERR(ERRCODE, (NOBIND) + (ERRCSZ) * (ROUTINE))
return

end

if ATRTP (ACSTOR} is not appropriate for the desired (PHYSICAL FIELD]
then

call ERR(ERRCODE, (ILLTYP) + <ERRCSZ) * <ROUTINE>)
return

end

lend /* !DEBUG */

!if routine being coded clears a counter
! then

[PHYSICAL FIELD]:= 0

!else /* routine must increment a counter */

if CTSTAT (ACSTORI
then /* counting will be effective */

[PHYSICAL FIELD]:- [PHYSICAL FIELD] + I

end

lend

return

SOFTWARE ENGINEERING PRINCIPLES 5-29
3-14 August 1981

ABS. 1 Abstract Interface Modules and Their Value

LECTURE

I. introduction - review

A. The value of being explicit about design decisions and assumptions

i. Example - the "fundamental assumptions" list for the A-7

2. Program families - choosing the order of decisions

Difficulties:

3. Modules and information hiding

Difficulties:

B. What is an interface?

I. More than just syntax or format

2. An interface between two programs is defined by the set of
explicit and implicit assumptions they make about each other

SOFTWARE ENGI.IEERING PRINCIPLES 6-1
3-14 August 1981

SEC. 6 / ABSTRACT INTERFACE MODULES

II. What's special about DoD software interfaces?

A. Not just a question of size or real-time demands

B. Definition - an embedded computer system is considered a module in
some larger system

C. Some distinguishing characteristics of embedded computer systems

1. Designer not free to define interface

2. Interface constraints may be strict and arbitrary, but we can't
ignore them

3. Several similar interfaces may ba involved

4. interface will change during development

6-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

i m[]ni Ii iBi i Ili I... ' I 't

FAD-AI13 415 NAVAL RESEARCH LAO WASHINGTON DC F/6 9/2
SOFTWARE ENGINEERING PRINCIPLES 3-114 AUGUST 1981.4U)
AUG SI L J1 CHMURA. P C CEET

UNCLASSIFIED N

~3 6

1.1 1.8

11125l J1114 .

AMI(ROOP RI MMU1ON TSI CHAlRI

Abstract Interface Modules and Their Value / Doc. ABS.l

5. Cost of changing computer system not considered seriously when
changes in total system are made

6. Comercial contrasts

D. A contractual dilema

1. Contract must constrain contractor by providing testable
specifications

2. For above reasons, final interface must be considered unknown

3. System for "wrong" interface will be hard to change

4. Lack of competition makes changes afterward unreasonably
expensive

SOFTWARE ENGINEERING PRINCIPLES 6-3
3-14 August 1981

SEC. 6 / ABSTRACT INTERFACE MODULES

E. Preponderance of embedded systems - a partial explanation for the
high cost of DoD software

1. Reason may not be functional complexity, programming tools,
programmers' abilities

2. Technical advances can help

I1. Examples of embedded systems

A. The address holder system (our programing problem)

Constraints that may change:

B. HP

Constraints:

C. Radar data analysis systems

Constraints:

6-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

a. .i I

Abstrac, Interface Modules and Their Value /Doc. ABS.1

D. Computers in weapons systems - e.g., TC-2 computer in the A-7

Constraints:

IV. Examples of implicit assumptions in an interface and their effects on
application programs

A. Address holder

B. A-7

V. Applying "information hiding" to solving the interface problem when
externals will change

A. Review of information hiding

B. Use an "abstract interface" to "hide" the actual interface

SOFTWARE ENGINERING PRINCIPLES 6-5

3-14 August 1981

• ,t .

SEC. 6 / ABSTRACT INTERFACE MODULES

VI. Abstract interface modules

A. What do we mean by abstract?

1. Do not mean vague or highly mathematical; abstract means
conceived apart from special cases

2. Abstract implies a many-to-one mapping that models some aspects
but not all

3. Examples of abstractions

a. Circuit diagrams

b. Address holder assumptions

c. Graphs

d. Algorithms

6-6 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

, , J ,0 -

Abstract Interface Modules and Their Value /Doc. ABS.I

e. Data types

B. Why are abstractions useful?

1. If all properties of the abstract system correspond to
properties of the real system - we can learn about the real
system by studying the abstraction

2. Abstraction is simpler (in principle, but abstract thinking may
be unfamiliar)

3. Results about abstraction may be "reused"

C. What is an abstract interface?

1. Represents many possible actual interfaces

2. Models some properties of actual interface but not all

SOFTWARE ENGIMIURING PRINCIPLES 6-7
3-14 August 1981

VJ

SEC. 6 / ABSTRACT INTERFACE MODULES

3. All things true of the abstract interface are true of actual
interfaces

VII. How can abstract interface modules help?

A. Define the abstract real-world interface

B. Procure applications programs based on abstract interface,
preventing exploitation of facts that happen to be true of today's
actual interface

actual real-world interface

abstract inter- interface porm
face moduleII

abstract real-world interface

applications programs

Figure 1. Abstract Interface Module.

The interface programs implement one instance of the many-to-one mapping
between the actual real-worLd interface and the abstract real-world interface.

6-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

' , t

Abstract Interface Modules and Their Value / Doc. ABS.l

C. When actual interface is fixed, build interface programs

D. "Real-World" changes that affect actual interface should only affect
the interface programs

E. Simple example - a date interface. Possible formats in actual

interfaces:

February 10, 1941 (month day-in-month, year),

10 February 1941 (day-in-month month year),

10 February 41 (day-in-month month last-two-digits-of-year),

10.2.1941 (day-in-month. integer-encoded-month.year),

2/10/1941 (integer-encoded-month/day-in-month/year),

41.2.10 (last-two-digits-of-year. integer-encoded-month.
day-in-month),

41 February 10 (last-two-digits-of-year month day-in-month),

41,41 (day-in-year, last-two-digits-of-year).

15015 (days since the first day of 1900)

VIII. How to design an abstract interface module

A. Prepare a list of assumptions about properties of all the possible
real-world interfaces to be encountered - have this list reviewed

SOFTWARE ENGINESRING PRINCIPLES 6-9
3-14 August 1981

"SEC. 6 / ABSTRACT INTERFACE MODULES

B. Express these assumptLons by defining a set of "functions"
representing possible system inputs and outputs and by stating
relations between these functions

C. Perform consistency checks

1. Verify that any property of the function set is implied by the
assumptions

2. It should be possible to write bulk of system in terms of these
functions; if not, return to A

D. Contractor is required to write bulk of system in terms of the

functions defined in B, and programs must be correct for any
implementation of those functions that satisfies the description B

6-10 SOFWARE ENGINEERING PRINCIPLES
3-14 August 1981

Abstract Interface Modules and Their Value / Doc. ABS.l

E. Illustration of this procedure for the address holder (programing
example)

1. Initial assumptions

The folloving items of information will be contained in
addresses and can be identified by analysis of the input data;
this information is the only information that will be relevant

for our computer programs:

Last name
First name
Organization
Street address
City, state and zip code (single line vith a coma betveen

city and state)

2. Objections

3. Refined assumptions

F. Another example - abstract interfaces for the A-7 Device Interface
Module

IX. Refining/extending the interface for a subset of the interfaces

A. Some useful applications programs may not be generally applicable

SOFTWARE ENGINEERING PRINCIPLES 6-11
3-14 August 1981

SEC. 6 / ABSTRACT INTERFACE MODULES

B. Confinement of the specialized program

C. Specialization (refinement) by adding functions not generally
implementable

D. Specialization (refinement) by stating additional properties of
functions

E. Deviant actual interfaces

F. The family tree again

X. When won't it york?

A. Success depends on our ability to predict change (oracle assumption)

B. Success depends on existence of cam onality between actual
interfaces (interface programs smaller than applications programs)

6-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Abstract Interface Hodules and Their Value / Doc. ABS.l

XT. $ Smary

A. An interface is equivalent to a set of assumpcimo s

B. The abstract interface is a precise, formally specified interface

C. The abstract interface is a model of all "expected" actual interfaces

D. Contractor is more tightly constrained than in conventional
procedure - his program is not allowed to make assumptions that
limit applicability

E. Actual interface is met by writing additional programs - not by
modifying programs that were written based on the abstract interface
de finitions

XII. Abstract interface module as an application of fundamental principles

A. Being explicit about assumptions and design decisions

SOFTWARE ENGINERING PRINCIPLES 6-13
3-14 August 1981

SEC. 6 / ABSTRACT INTERFACE MODULES

B. Encapsulation of likely changes

C. Abstract interface modules can solve the embedded computer system
problem by hiding the embedding from the computer!

D. Abstract interface modules are just a special case - use same
method for other information-hiding modules

XIII. Reference

Parnas, D. L. 1977. Use of Abstract Interfaces in the Development of
Software for Embedded Computer Systems. Naval Research Laboratory
Report no. 8047.

6-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

ABS.2 Using the MP Abstract Interface

EXERCISE

Name:

The message on page 6-18 has been assembled according to the message
format rules in the original MP design (MP.3). These rules are summarized on
pages 6-16 and 6-17 of this exercise.

Your job is to use the abstract interface functions in MP.6 to assemble
the same message. To do this, complete the list of function calls started
below.

CREATE (bdaymsg)

SET ORIGINROUTE.PART(bdaymsg, DB)

SETCHANNELID (bdayms g, 3)

SETTIMECREATED(bdaymsg, CLOCK24(12, 00))

O57r'dARE ENGINEERING PRINCIPLES 6-15
3-1I August 1981

I

Using the MP Abstract Interface / Doc. ABS.2

MESSAGE FORMAT FROM ORIGINAL MP DESIGN

To sumn-arize the original MP message format, we provide a few general
rules, a message template, and a list of the fields in the template.

General rules

A message consists of a number of Format Lines numbered beginning with one
(these are abbreviated FLl, FL2, etc.). Capital letters represent themselves,
and where given, must appear exactly. Where information is to be supplied, a
lower-case name will appear, explained in the list below. Where items are
optional, they are enclosed in square brackets; where a choice of items is
permitted, these are shown one above the other. The spaces shown are
nonrepresentative: the characters begin in the first column, and continue to
the end of the format line without spacing unless explicit spaces are indicated
by the symbol b. Each line ends with a sequence of two-carriage-returns-and-a-
line-feed, not shown. When an item is superscripted, it is repeated that many
times; superscript n means an indefinite repeat (but at least once).

Fields in the message template

The following list describes the form and content of the fields in the
template, given on the next page.

"origin-route-part": 2-letter part of the originating routing code (the
3rd-last and 2nd-last letters of the code),

"channel": 3-digit number identifying the channel,
"precedence": 1-letter code from a standard list,
"origin-media": 1-letter language media code from a standard list,
"dest-media": 1-letter language media code from a standard list,
"classification": 1-letter security classification letter from a

standard list,
"content-action": 4-letter identifier from a standard list,
"sender-orig-route": 7-letter routing indicator of the sender,
"serial": 4-digit number supplied by the sender,
"day-in-year": 3-digit Julian day-of-the-year, for date when message

created,
"time": 4-digit GCT at which the message created,
"addressee-route": 7-letter routing indicator for the addressee,
"year": 2-digit year when message created, e.g., 76 for the

bicentennial year,
"originator": either "sender-orig-route" or plain text,
"addressee": the plain text corresponding to the routing indicator

it follows. (In the final addressee item the period
replaces the comma, and similarly in FL8, 9.)

"subj-code": 6-character code composed of the letter N and 5 digits
"text": the message text,
"null": an empty line (but with the usual ending),
"If": line-feed,
"day-in-month": 2-digit day in month.

SOFTWARE ENGINEERING PRINCIPLES 6-16
3-14 August 1981

Using the MP Abstract Interface / Doc. ABS.2

Message template

FLI: VZCZC origin-route-part channel

FL2: precedence origin-media dest-media classification

content-action b sender-orig-route serial b date

time b classification4 addressee-route

FL3: DE b sender-orig-route serial date time b year

FL4: ZNR b classification5 T [addressee-route]

JAN
FLS: precedence b day-in-month time Z b ... b year b

DEC

FL6: FM b originator

FL7: TO b [routing / addressee,]n.

FL8: [INFO b [routing / addressee,]n .]

FL9: [.MTr b [routing / addressee,]n .1

FLI: BT

FLL: classification //subj-code// text

FL13: BT

FL15: # serial

FL16: null lf7 NNNN

SOFrWARE ENGINEERING PRINCIPLES 6-17
3-14 August 1981

Using the MP Abstract Interface /Doc. ABS.2

MESSAGE TO BE REASSEMBLED

Format Line
(not part of message)

VZCZCDB003 FLi

RTTUZYUW RUCLDBA2355 1861200 UUUURIUHHLFA FL2

DE RUCLDBA23551861200 76 FL3

ZNR UUUUU FL4

R 041200Z JUL 76 FL5

FM COMNAVTELCOM WASHINGTON DC FL6

TO RUHHLFA/ALCOM. FL7

BT FL11

U//N09999// FL12

HAPPY BIRTHDAY FL12

BT FL13

#2355 FLI5

(8 blank lines) FL16

NNNN FL16

SOFWAR-E ENGINEERING PRINCIPLES 6-18

3-14 August .981

ABS .3 Using the MP Abstract Interface

EXERCISE SOLUTION

CONSTRUCTING MESSAGES WITH THE MP ABSTRACT INTERFACE

CREATE (BDAMSG)

SET-ORIGIN ROUTE PART (bdayusg, DX)

SET CHANNEL ID (bdaymsg, 3)

SET TIM-CREATED (bdayug, CLOCK24(12, 00))

SETPRECEDENCE (bdaymsg, R)

SET ORIGIN MEDIA(bdaymsg, T)

SET DEST MEDIA (bdaymsg, T)

SET CLASSIFICATION (bdaywsg, U)

SET CONTENTACTON(bdayasg, ZYUW)

SETSENDER ORIG ROUTE (.bdaymg , RUCLDBA)

SETSERIAL(bdayusg, 2355)

SET DATE CREATED (bdaysg, JULIAN(76, 186))
or SET DATECREATED(bdaymsg, DAYMOYR(4, JULY, 76))

SET ADDRESSEE-ROUTE bdaymg, RUHRLFA)

SET ORIGINATOR(bdaymag, COMNAVTELCOM WASHINGTON DC)

sET TO LIST (bdaymsg, RUHHLFA, ALCOM)

SET SUBJECT CODE(bdaymsg, N09999)

SET TEXT(bdaymsg, HAPPY BIRTHDAY)

SOTTWARE ENGINEERING PRINCIPLES 6-19
3-14 Au gt 1981

I_

SEC. 6 / ABSTRACT INTERPACE MODULES

COMMENTS

1. The "SET" functions may be called in any order; the abstract interface
programs arrange the information in the order required by the message format.

2. No function calls are needed for control characters such as "VZCZC"; these
are inserted by the abstract int .-face programs.

3. A given "SET" function need be called only once, even if the information
appears in the message several times. For example, even though "precedence"
is inserted in both FLI and FL5, "SET IPRECEDENCE" need only be called once.
The abstract interface programs take care of the repetition.

4. Even though the date appears in two forms (see FL3 and FL5),
"SET DATE CREATED" need only be called once. The abstract interface programs
can compute the information required for both forms from the date variable it
receives as the "SET DATE CREATED" parameter. It doesn't matter which "date"
function (JULIAN or DAYHOY-R) is used to create the date variable.

6-20 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

SHIE. 1 Hierarchy Survey

LECTURE

1. Introduction

A. Much disagreement about benefits and disadvantages of hierarchical
structures for computer software

B. Many different things meant by "hierarchical structure"

C. Nontrivial hierarchical structures always imply restrictions placed
on the programmer

1. Restrictions may result in disciplined prograning and a quality
product

2. A given set of restrictions may not be appropriate for all
situations

D. Purpose of lecture: Survey of several well-known hierarchical
structures

SOFTWARE ENGINEERING PRINCIPLES 7-1
3-14 August 1981

' V

SEC. 7 / HIERARCHICAL STRUCTURES

I. Definition of structure

A. Division into parts

B. Relation between parts

C. Structure graphs

III. Definition of hierarchical structure

A. A structure with no loops in its relation

hierarchy not hierarchies

/ A\
A

\ I i

B. Before you know what someone means by a hierarchical structure, you
must know the parts and the relation

7-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

h.V

Hierarchy Survey /Doc. HIE.1

C. Hierarchies not necessarily trees

IV. The uses hierarchy

A. Parts: programs

Relation: uses

Time: late design time

B. Definition of uses:

Given program A with specification Sa and program B, we say that A

uses B if A cannot satisfy Sa unless B is present and satisfies
some nontrivial specification Sb. The assumed specification Sb
may differ for different users of B

C. Differences between call and use

1. Calls that are not uses

2. Uses that are not calls

SOFTWARE ENGINEERING PRINCIPLES 7-3
3-14 August 1981

SEC. 7 / RIERARCHICAL STRUCTURES

3. Example: hardware for division

uses power supply

but calls divide by 0 routine

D. Virtual-machine analogy

E. Found in T.H.E., also in many examples of structured programing

F. Advantages

1. Availability of tailored subsets

2. Fail-soft capabilities when UEs occur

3. Incremental development

Counter example: Multics file system

7-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Hierarchy Survey /Doc. HIE.I

4. Code duplication avoided

V. The Gives Work Hierarchy

A. Parts: processes

Relation: gives an assignment to

Time: run time

B. Found in T.H.E.

C. Useful in guaranteeing termination and preventing deadlock; neither

necessary nor sufficient

D. In T.H.E. system uses and gives work hierarchies coincide

SOFTWARE ENGINEERING PRINCIPLES 7-5
3-14 August 1981

.I V

SEC. 7 / HIERARCHICAL STRUCTURES

VI. The Resource Allocation Hierarchy

A. Parts: processes

Relation: allocates a resource to, or owns the resources of

Time: run time

B. Applicable with dynamic resource administration only

C. "Allocates to" vs. "controls": The question of preemption

D. Advantages

1. Interference reduced or eliminated

2. Deadlock possibilities reduced

E. Disadvantages ,

1. Poor utilization when load unbalanced

7-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Hierarchy Survey / Doc. HIE.l

2. High overhead when resources are tight (especially with many
levels)

VII. The Courtois Hierarchy

A. Parts: operations

Relation: takes more time and occurs less frequently than

Time: run time

B. Economics analogy

C. Approximately decomposable systems

D. T.R.E. comparison

SOFTARE ENGLNEERING PRINCIPLES 7-7
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES

VII. The Module Decomposition Hierarchy

A. Parts: modules

Relation: part of

Time: early design time

B. All of a module's functions are not on the same level of the uses
hierarchy. Not all functions need be offered in all system subsets.

C. Never a loop in "part of" - module decomposition always a hierarchy

IX. The Created Hierarchy

A. Parts: processes

Relation: created

Time: run time

B. Must be a hierarchy (father is older than son)

7-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Hierarchy Survey / Doc. HIE.I

C. Why a tree? - Cerm work in creating progeny is accepted practice

D. Sometimes implies unnecessary restrictions

1. Father cannot die until all progeny die

2. Progeny die when father dies

X. The Protection Hierarchy (Multics)

A. Parts: systm components

Relation: can access the data of

Time: design time and run time
(decisions made at design time, enforced at run time)

B. Disadvantage: Violate need to know principle

SOFTWARE ENGIERING PRINCIPLES 7-9
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES-

XI. Conclusions

A. When someone tells you "the software is hierarchically structured"

1. Find out what they mean (What are the parts? What is the
relation?)

2. Evaluate appropriateness for particular application

B. Forcing different structures to coincide may lead to an unrealistic
design

XII. References

A. General:

Parnas, D. L. 1974. "On a 'Buzzword': Hierarchical Structure."
Proceed. of IFIP Congress 74, pp. 336-339.

B. Uses:

Dijkstra, E. W. 1968. "The Structure of the 'T.H.E.' Multiprograming
System." Comi. AQ1, vol. 11, no. 5, pp. 341-346.

Parnas, D. L. 1976. Some Hypotheses About the "Uses" Hierachy for
Operating Systems. Technical Report. Darmstadt, W. Germany:
Technische Hochschule Darmstadt.

Parnas, D. L. 1979. "Designing Sof;ware for Ease of Extension and
Contraction." IEEE Trans. on Software Engineering, vol. SE-5,
no. 2, pp. 128-137.

7-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Hierarchy Survey /Doc. HIE.1

C. Gives Work:

Habermann, N. A. 1969. "Prevention of System Deadlocks." Comm. ACM,

vol. 12, no. 7, pp. 373-377.

Dijkstra, E. W. 1968. "The Structure of the 'T.H.E.' Multiprograming
System." Comm. ACM, vol. 11, no. 5, pp. 341-346.

D. Owns Resources:

Brinch Hansen, P. 1970. "The Nucleus of a Multiprogramming System."

Comm. ACM, vol. 13, no. 4, pp. 238-241, 250.

E. Shorter Duration - Higher Frequency:

Courtois, P. J. 1975. "Decomposability, Instabilities and Saturation

in Multiprogramming Systems." Comm. ACM, vol. 18, no. 7,

pp. 371-377.

Courtois, P. J. 1977. Decomposability: Queuing and Computer System
Aoplications. New York: Academic Press.

F. Module Decomposition:

Parnas, D. L. 1972. "On the Criteria to be Used in Decomposing

Syqtems into Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058.

C. Created:

Brinch Hansen, P. 1970. "The Nucleus of a Multiprogramnming System."

Comm. ACM, vol. 13, no. 4, pp. 238-241, 250.

SOFTWARE ENGINEERING PRINCIPLES 7-11

3-14 August 1981

HIE.2 Designing a Uses Hiearchy

LECTURE

I. Goals

A. Program families: Different installations require different

capabilities

1. Systems with different capacities

2. Systems with different degrees of flexibility

3. Spectrum: ONE to FIXED to VARYING

B. Adjustable systems: Easy to extend or subset

I. Ability to remove functions to make room for other functions

SOFTWARE ENGINEERING PRINCIPLES 7-13
3-14 August 1981

1~ mJ

SEC. 7 / HIERARCHICAL STRUCTURES

2. Fail-soft response to undesired events

II. Alternatives available to the software procurer

A. The super system: Generality costs!

B. A system for the "average" user

C. A set of independently developed systems

-*- D. A subsettable super system - each family member offers a subset of
the services provided by the largest member

1. Individual installations only pay for what they need

7-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 Aug'tst 1981

I I I ie lee e . ih i l ,, -- -

Designing a Uses Rierarchy / Doc. HIE.2

2. Ability to extend by adding programs, without changing existing
program

3. Incremental implementation possible

III. Uses hierarchy, reviewed

A. Parts: Program, not modules

B. Relation: "Requires correct operation of"

C. When defined: Late design time

D. Purpose: Additional specifications for programers

SOFTWARE ENGIMEERING PRINCIPLES 7-15
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES

E. Result: A heirarchy representing controlled interdependencies among
programs

F. Why important

1. Determines possible subsets

2. Determines possible fail-soft modes

3. Affects order of program integration

7-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Designing a Uses Hierarchy /Doc. HI.2

G. Design error: Loops in uses hierarchy

request and release
memory for tables

PROGRAMS ALLOCATOR

use tables to keep track
of memory assignments

Two dangers:

1. Memory allocator and table generator use each other

- Neither works until both work

- If either is removed, system no longer works

2. Memory allocator builds own tables

- Code duplication

SOFIWARE ENGI:'EERING PRINCIPLES 7-17
3-14 August 1981

ILm

SEC. 7 / HIERARCHICAL STRUCTURES

IV. Basic steps in the design of a subsettable system

A. Requirements definition: Identify the subsets first

B. List programs belonging to each module

1. Access programs

2. Internal programs - cannot be used directly by programs outside
the module

3. Main programs - cannot be used - top level in uses hierarchy

7-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

I"

Designing a Uses Hierarchy /Doc. HIE.2

C. For every pair of programs, three possibilities

A may use B

B may use A

Noither may use the other

D. List programs at level 0: Programs that use no other programs

E. Work up from there

- Level 1 programs use only level 0 programs

- Level 2 programs use only level 0 or level I programs, etc.

SOFTWARE ENGINEERING PRINCIPLES 7-19
3-14 August 1981

. , w

SEC. 7 / HIERARCHICAL STRUCTURES

F. Four conditions for allowing program A to use program B

1. A is simpler because it uses B

- Information Retrieval programs in MP simpler because they
use Page Storage programs: Don't have to know details of
memory handling

2. B is not much more complex because it is not allowed to use A

- Page Storage programs: Wouldn't be simpler if they used
Information Retrieval programs

3. There is a useful subset containing B and not A

- Page Storage programs useful for other purposes besides
Information Retrieval, e.g., for implementing Message Holder
programs

4. There are no useful subsets containing A and not B

- No reason to have Information Retrieval without memory (Page
Storage)

7-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Designing a Uses Hierarchy /Doc. HIE.2

G. Often not clearcut: Must make tradeoff decisions

H. Refinement through sandwiching - what to do if the four conditions
don't hold

- If A and B use each other, can one be split into two parts,
i.e., a simple version and a complex version?

TABLE HANDLING

Prequest and release memory for
tables that vary in size

store and retrieve
data in previously MEMORY
created tables ALLOCATOR

keep track of memory assignment -

in fixed size tables

TABLE ACCESS

PROGRAMS

SOFTWARE ENGINEERING PRINCIPLES 7-21
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES

V. Result: Layers of virtual machines

A. Definition: A set of objects and operations, implemented in
software, that could conceivably be provided by hardware

B. Applications programs are simpler because they use virtual machine
programs

C. Resources used to implement a virtual machine not available to a
program that uses it

7-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Designing a Uses HIierarchy /Doc. HIE.2

D. Example from the MADDS example: Layered virtual machines

Example features:

/ Postal address Ioriented memory-----
-- - - - -ETBOC

String oriented memory--------- -- STREQ

Character oriented memory-- ---- ------ GETCIIR, CHREQ

FORTRAN---- --- ------ len~string)

assembly language--- ----- - --- HVI instruction

JIV Deriving subsets from a uses hierarchy

A. Rules

1. Can leave out upper levels

SOFNWARE ENGINEERING PROCIPLES 7-23
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES

2. Can leave out parts of levels

3. If program A left out, must leave out all programs that use it

B. Example: Part of hierarchy for family of systems with different
capacities

ASH: ADDRESS STORAGE MODULE

ASH oprtosvarying number of entries

S(GET SET)

ASH operations, Create ASH entry Delete ASH entry
ixdnumber of entries

(GET SET) \

Note: The number of entries must be parameterized even for the simple ASH, so
that the variability can be added easily. For systems with only the
simple ASH, the capacity can be a system generation parameter that
doesn't change at run-time. Thus different installations can trivially
have different capacities.

Key: Anticipate future extension.

7-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

________Designing a Uses Hierarchy / Doc. HIE.2

C. Example: Part of hierarchy for family of systems with different
degrees of flexibility

Format swapper /Iput, fixced format Input format generator

SoFTWARE ENGINEERING PRINCIPLES 7-25
3-14 August 1981

SEC. 7 / HIERARCHICAL STRUCTURES

D. EnamLe: Part of hierarchy for single system that can be subsetted
easily

Airborne Full Partial SINS alignment
: alignment navigation naVigi /

Doppler-
damped
inertial
velocity

/ .. t

Doppler 1 1nertial . SINS
* interface / platform interface

/ interface" I
" I ."

SArithmetic data types ;
• -,--.-------- --

7-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Designing a Uses Hierarchy /Doc. HIE.2

VII. Evaluation criteria for a uses hierarchy: What are the goals?

A. Elegance and simplicity

B. Avoid duplication

C. The existence of an appropriate subset for each application
situation ("without consideration of subsets, anything goes")

VIII. Observations

Uses hierarchy as a compromise between

A. Letting any program use any other - excessive dependencies

B. Not letting anything use anything - duplication

SOFTWARE ENGINEERING PRINCIPLES 7-27
3-14 August 1981

SEC. 7 / HIERARCHICAL STR.UCTURES

IX. References

Parnas, D. L. 1976. Some Hypotheses about the "Uses" Hierarchy for
Operating Systems. Technical Report. Darmstadt, W. Germany:
Technische Hochachule Darmstadt.

Parnas, D. L. 1979. "Designing Software for Ease of Extension and
Contraction." IEE Trans. on Software Engineering, vol. SE-5, no. 2,
pp. 128-137.

Heninger, K. L., Kallander, J., Parnas, D. L., and Shore, J. E. 1978.
Software Requirements for the A-7E Aircraft. Naval Research
Laboratory Memorandum Report no. 3876. See Chapter 8, entitled
"Required Subsets."

7-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

' " - i ii

HIE.3 Uses Hierarchy for an Address System

EXERCISE

Name:

The diagram on the next page shows the uses hierarchy for a hypothetical
family of address systems. By selecting components from this hierarchy,
several different address systems can be constructed. These systems range
from a system with a fixed, in-core memory allocation to the most flexible
system, which can both vary its in-core allocation and swap entries in and out
of back-up storage.

The components in the uses hierarchy are building blocks from which these
systems can be made. GET and SET functions read and fill in fields of already
existing address entries. CREATE and DELETE functions change the number of
available address entries. SAVE and RETRIEVE swap entries in and out of
back-up storage. ALLOCATE and FREE change the amount of in-core strrage
available to the address system.

Remember that programs on the higher levels use, rather than duplicate,
the code in the lower level programs. For example, component 3 assumes that
it has a fixed memory space, but the size is either a global or system-
generation parameter. If higher level components of the uses hierarchy are
not available and the memory allocation is already full when CREATE is called,
an undesired event occurs. If this occurs in a system that includes component
7, component 7 uses component 4 to get additional space, then changes the
parameter value, and then calls component 3 to create the new entry.

Note: We have combined the pairs GET/SET, SAVE/RETRIEVE, etc. into single
components in order to make the example simpler. This is not necessary, since
there may conceivably be systems in which only one member of the pair is
needed. For example, if the address file is treated as a read-only data
structure, GET functions will be needed but SET functions will not.

Study the diagram and answer the questions that follow.

SOFTWARE ENGINEERING PRINCIPLES 7-29
3-14 August 1981

Uses Hierarchy for an Address Syster. / Doc. HIE.3

CREATE and DELETE LEVEL 2

Address entries
variable-sized in-core storage up to a limit;

backup storage for overflows
8

I I
SET and GET CREATE and DELETE CREATE and DELETE LEVEL 1
Address fields, Address entries, Address entries,
where entry may fixed in-core stor- variable-sized in-core
be in core or on age; backup storage storage up to a limit;
backup storage for overflows no backup storage

5 6 7

SET and GET SAVE and CREATE and ALLOCATE LEVEL 0
Address RETRIEVE DELETE and FREE
Fields, Address Address in-core
assuming Entries Entries storage
entry in from fixed-size 4
core backup in-core

1 storage storage;
2 no backup

storage
3

SOFTWARE ENGINEERING PRINCIPLES 7-30
3-14 August 1981

Uses Hierarchy for an Address System /Doc. HIE.3

Part I: Subsets with Different Capabilities

For each of the systems described below, figure out which components are
required. Circle or underline all the numbers below each description
corresponding to required components for that system.

Example

An address system with a fixed number of entries, all in main storage.

0 2 3 4 5 6 7 8

System A: An address system with a varying number of entries, all in main
storage. The table size, and therefore the amount of storage allocated to the
system, is fixed at system initialization.

1 2 3 4 5 6 7 8

System B: An address system with a varying number of entries, all in main
storage. Main storage space is dynamically allocated and freed as the number
of entries changes. The amount of memory available to the system may not
exceed some limit.

1 2 3 4 5 6 7 8

System C: An address system with a varying number of entries. The main
storage allotment is fixed at system initialization, so that when it is full,
overflow entries must be stored in backup storage.

1 2 3 4 5 6 7 8

System D: An address system with a large constant number of entries which do
not all fit in the main storage allotment at once. The overflow entries are
stored in backup storage.

1 2 3 4 5 6 7 8

System E: A very large capacity address system, with a varying number of
entries. Main storage is dynamically allocated as the number of entries
changes. When the number of entries exceeds a certain number, the overflow
entries are stored in backup storage.

1 2 3 4 5 6 7 8

SOFTWARE ENGINEERING PRINCIPLES 7-31
3-14 August 1981

. , , i

Uses Hierarchy for an Address System /Doc. RIE.3

Part 2: Degraded Modes

Which of the above systems (A, B, C, D, or E) would still operate fully if
the backup device went down?

Which of the above systems (A, B, C, D, or E) would still operate fully if
a large area of core went down so that the program can no longer be allocated
additional memory for address entries? (Assume the area occupied by the
program and the current address file has not gone down.)

Which systems (A, B, C, D, or E) would still operate fully if both these
UEs occurred?

SOFTWARE ENGINEERING PR:NCIPLES 7-32
3-!4 August 1981

HIE.4 Uses Hierarchy for an Address System

EXERCISE SOLUTION

In part 1, first pick all of the components at the highest levels needed
for the specified system. At the very least, each system must include a way
to read and write fields in the addresses. Therefore either component 5 or
component I will be the highest-level component required from that branch of
the hierarchy, depending on whether the system includes back-up storage.
Which CREATE/DELETE component, if any, is the highest-level component required
from the other part of the hierarchy depends on the flexibility requirements
of the system.

Once you have selected the highest-level components, you must also include
all the lower level components that they use, either directly or indirectly.

The solutions for systems A, B, C, D, and E are given on the next page.

SOFTWARE ENGINEERING PRINCIPLES 7-33
3-14 August 1981

SEC. 7 / HIERARC uCAL STR1ICTUIES

Part 1: Subsets with Different Capabilities

System A: An address system with a varying number of entries, all in main
storage. The size of the in-core storage, and therefore the table size, is
fixed at system initialization.

Answer:

03 2 ()4 5 6 7 8

System B: An address system with a varying number of entries, all in main
storage. Main storage space is dynamically allocated and freed as the number
of entries changes.

Answer:

2 0 6 8

System C: An address system with a varying number of entries. The main
storage allotment is fixed, so that when it is full, overflow entries must be

stored in backup storage.

Answer:

0 0 @ 4 7 8
System D: An address system with a large fixed number of entries which do not
all fit in the main storage allotment at once. The overflow entries are
stored in backup storage.

Answer:

c1~3 4 6 7 8

System E: A very large capacity address system, with a varying number of
entries. Main storage is dynamically allocated as the number of entries
changes. When the number of entries exceeds a certain number, the overflow
entries are stored in backup storage.

Answer:

7-34 SOFTMARE ENGINEERING PRINCIPLES
3-14 August 1981

Uses Hierarchy for an Address System /Doc. HIE.4

Part 2: Degraded Modes

Which of the above systems would still operate fully if the backup device
went down?

None of the systems that use component 2 could be included.
Therefore only system A and system B could continue to operate.

Which of the above systems would still operate fully if a large area of
core went down so that the program can no longer be allocated additional
memory?

If a large area of core went down, the system is essentially
restricted to a fixed area. Therefore only system A, system C, and system
D would continue to work, since they do not use component 4.

Which systems would still operate fully if both these UEs occurred?

Only systems using neither component 2 nor component 4 would continue
to work - system A.

Comment

In each of these UE situations, some capability is left, even though it
may be very restricted. For example, if system E were in operation when the
backup store went down, an appropriate UE response might be to continue
operation using system B. System B could process the addresses that were in
core when the UE occurred, and print a message whenever requested to access an
address not in core.

Thus, this software allows for fail-soft operation when resources go down.

SOFTWARE ENGINEERING PRINCIPLES 7-35
3-14 August 1981

LANG. 1 Language Selection

LECTURE

I. Introduction

A. Most of ideas discussed in this course are independent of language

B. But languages can help or hurt; the choice is significant

11. Four views of a programming language

A. A notation for describing classes of computations

B. A convenient way to instruct computers

C. "VIGILANTE"; an enforcer of rules of good practice

D. An efficient mechanism for invoking special, previously written
programs

SOFTW4ARE ENGINEERING PRINCIPLES 8-1
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

I1. Four corresponding language evaluation criteria

A. How easy is it to tell which computations are possible
(verification)?

B. How well can you control the machine?

C. How "structured" (restrictive) is it? Does it allow bad practices?

D. How "rich" is it?

IV. The four views and evaluation criteria conflict

A. Examples

B. Many choose one view and ignore all others

C. Choosing is reasonable for R&D (separation of concerns)

8-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Language Selection /Doc. LANG.I

D. But system developers must resolve the conflicts

1. All views have some validity and should be weighed

2. Sometimes one can accomplish an objective with a non-language
means

Example: Allow designers to determine coding restrictions

Example: Obtain an efficient library mechanism

Example: Put machine dependent "features" in library

V. System designers and developers have additional evaluation criteria

A. In what ways does the language help the designer?

I. Be free of surprises

2. Allow straightforward translation to efficient code

SOFTWARE ENGINEERING PRINCIPLES 8-3
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

3. Help the designer enforce his information-access policies

4. Make it easy and efficient to use program written by others

5. Make no assumptions about the desired response to run-time errors

6. Don't constrain implementation of parallel processes

7. Provide nonrestrictive looping structures

8. Help in confining assumptions and decisions

9. Facilitate user-defined data types and abstract data types

8-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

• ', t

Lanzua&e Selection / Doc. LANG.l

B. In what ways do the translator and related support help the
designer/developer?

1. Give user-level diagnostics in terms of "vrite-time" structure

2. Debugging aids

3. Preprocessor systems

a. Advantages

b. Disadvantages

4. Library of useful programs

5. System management and integration tools

6. Manuals, texts, etc.

SOFTWARE ENGINEERING PRINCIPLES 8-5
3-14 August 1981

SEC- 8 / LANGUAGE CONSIDERATIONS

VI. What to do if no supportive language is available?

A. Use naming conventions in place of scope rules

B. Include run-time access-restriction code that can be removed later

C. Use the surprise-free subset

D. Use the efficient subset

E. Use the transportable subset

F. Postpone coding and debugging; spend more time on detailed design
and evaluation

G. Use coding specifications

8-6 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

C' I

Language Selection /Doc. LANG.1

H. Write support software - see section V.B.

VII. General remarks about the selection process

A. Look at all of the code that will be in the system

B. List the implied design decisions explicitly

C. Beware of productivity arguments

D. How well is the language supported?

VIII. Conclusions

A. "Right language" is not possible, necessary, or sufficient

B. Some help more than others

SOFTWARE ENGINEERING PRINCIPLES 8-7
3-14 Kugust 1981

n l .. .,. in i I I m !

SEC. 8 / LANGUAGE CONSIDERATIONS

C. Some hurt more than others. Language designers make assumptions on
how their language will be used. Check the implicit assumptions.

D. Discipline in program design is what matters

IX. References

Parnas, 1). L. 1971. "Information Distribution Aspects of Design
Methodology." Proceed. of IFIP Congress 71, pp. 339-344.

Parnas, D. L. 1972. "On the Criter.a to be Used in Decomposing Systems
into Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058.

Brinch Hansen, P. 1975. "The Programming Language CCNCURRENT PASCAL."
IEEE Trans. on Software Engineering, vcl. 1, no. 2, pp. 199-207.

Parnas, D. L.; Shore, J. E.; and Elliot, W. D. 1975. On the Need for
Fewer Restrictions in Changing Compile-Time Environments. Naval
Research Laboratory Report no. 7847.

Linden, T. A. 1976. "The Use of Abstract Data Types to Simplify Program
Modifications." Proceed. of Conf. on Data: Abstraction, Definition
and Structure, SIGPLAN Notices, Special Issue, vol. 11, pp. 12-23.

Parnas, D. L. 1976. "On the Design and Development of Program Families."
IEEE Trans. on Software Engineering, vol. SE-2, no. 1, pp. 1-9.

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1976. "Abstract Data Types
Defined as Classes of Variables." Proceed. of Conf. on Data:
Abstraction, Definition and Structure, SIGPLAN Notices, Special
Issue, vol. 11, pp. 149-154. Also Naval Research Laboratory Report
no. 7998.

Parnas, D. L.; and Wuerges, H. 1976. "Response to Undesired Events in
Software Systems." Proceed. of Second International Conf. on
Software Engineering, pp. 437-446.

Dijkstra, E. W. 1977. A Discipline of Prog ainz. Englewood Cliffs:
Prentice Hall.

8-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Language Selection / Doc. LANG.l

Wirth, N. 1977. "MODULA: A Language for Modular Multiprogramming."
Software - Practice and Experience, vol. 7, no. 1, pp. 3-35.

Wirth, N. 1977. "The Use of MODULA." Software - Practice and
Experience, vol. 7, no. 1, pp. 37-65.

Wirth, N. 1977. "Design and Implementation of MODULA."
Software -- Practice and Experience, vol. 7, no. 1, pp. 67-84.

Wirth, N. 1977. "Towards a Discipline of Real-Time Programming."
Comm. ACM, vol. 20, no. 8, pp. 577-583.

Liskov, B.; Snyder, A.; Atkinson, R.; and Schaffert, C. 1977.
"Abstraction Mechanisms in CLU." Comm. ACM, vol. 20, no. 8,
pp. 564-576.

Dahl, 0. J.; Dijkstra, E. W.; and Hoare, C. A. R. 1972. Structured
Programming. London: Academic Press.

Liskov, B.; and Zilles, S. 1974. "Programming with Abstract Data Types."
SIGPLAN Notices, vol. 9, no. 4, pp. 50-59.

Elson, M. 1973. Concepts of Programming Languages. Chicago: Science
Research Associates.

SOFTWARE ENGINE-RING PRINCIPLES 8-9
3-14 August 1981

.

LANG.2 Ada

LECTURE

1. Ada history

A. Calendar of events

Strawman Requirements June, 1975

Steelman Requirements June, 1978

Preliminary Design Competition February, 1978

Selection of "Green' Language April, 1979

Test & Evaluation of Design November, 1979

Compiler Development Start January, 1980

Language Reference Manual July, 1980

MIL-STD-1815 December, 1980

B. Pascal based (Jensen and Wirth 1974) - many features added

1. Separation of specification and implementation

2. Multitasking

SOFTWARE ENGINEERING PRINCIPLES 8-11
3-14 August 1981

SEC. 8 /LANGUAGE CONSIDERATIONS

3. Machine-dependent coding

4. Representation specifications

5. Generics

Etc.

I.I. Ada basics

A. Programs as collections of Ada modules

B. Module organization

1. Specification

2. Body

8-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Ada D Doc. LANG.2

C. Packages and tasks

1. Package - information-hiding module

2. Task - process

D. Package specification a information-hiding module interface

package Chu is

- The specification contains all package entities Lhat the user
- has access to, including procedures, functions, t-es,
- variables, and constants.

function CharEq (Chli, Ch2 : Character) return Boolean;

function CharLt (Chi, Ch2 : Character) return Boolean;

end Chu;

E. Types

1. A type defines value space and operations

a. Numeric

Integer, Real builtin

type I is range 0..100;

FieldLength: constant :a 30;

SOFT04ARE ENGINEERING PRINCIPLES 8-13
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

b. Enumeration

Boolean, Character builtin

type Field is (Boc, Cit, Coa, Gn, Gal, Sop, St, Tit, Zip);

type MaddsModules is (Sam, Asm, Apm, Ipm, Opm, idm, Odm,
Chm, Mcm, Ueh);

c. Array

type Table is array(l..1O) of integer;

type Address is array(l..NumFields) of string(FieldLength);

type Modu~.e.Names is array(MaddsModules) of string(l..3) :

("SSW', "ASM", "APMe ' , "IPM", "OPM", "IDM"1 "O1)14
"Ca1", '1CK11", 'EHi");

Num Errors: constant :- 23;

type MsgLength is range l..61;

type Msgs is array(l..NumErrors) of string(MsgLength);

8-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Ad& /Doc. LANG.2

d. Record

type StatusValue is (Undefined, Defined);

type StatusArray is array(1..NumFields) of StatusValue;

type Addr.Form is

record

Status: StatusArray;

Value: array(l..NumFields) of string(FieldLength);

end record;

2. Distinguishing among types

a. Textual distinction

type Selector is (Boc, Cit, Zip);

type Field is (Boc, Cit, Zip);

b. Derived types

type Addr is nev integer;

F. Variables and constants

MaxAds: constant integer :- 100;

Addresses: array(1..MaxAds) of Addr.Form;

SOFTWARE ENGINEERING PRINCIPLES 8-15
3-14 August 1981

.........................

SEC. 8 / LANGUAGE CONSIDERATIONS

G. Procedures and functions

procedure SetBoc(A: Addr; S: string) is

if A not in AddressNumber then Ueaida("ASM", "BOC");

else

Addresses(A).Status(l) : Defined;

Addresses(A).Value(l) :- S;

end if

end SetBoc;

function GetBoc(A: Addr) return string is

if A not in AddressNumber then Ueaida("ASH", "BOC");

else

return Addresses(A).Value(l);

end if;

end GetBoc;

8-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Ada /Doc. LANG.2

H. Example - the address storage module as an Ada package

package ASH is

- Specifications for procedures, types, variables, constants,
-- etc. needed by users.

end ASH;

separate package body ASH is

- Implementation of procedures, types, variables, constants,

- etc. declared in package specification.

end ASH;

1. Tasks

1. Task specification defines comunication and synchronization
operations

2. The rendazvous

SOFTWARE ENGINEERING PRINCIPLES 8-17
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

3. Specifying entry points

task semaphore is

entry P;

entry V;

end;

task body semaphore is

begin

loop

accept P;

accept V;

end loop;

end;

4. Entry calls and procedure calls

8-18 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Ada/ Doc. LANG.2

5. HAS location calculator as an Ada example

task buffer is

entry withdrav(Data: out Item);

entry deposit(Data: in Item);

end buffer;

task Location-Calculator;

task body Location-Calculator is

- Calculate location from an Omega reading

temp, location: integer;

procedure OmegaCalculation(Reading: in integer) is separate;

loop

- Obtain Omega reading, calculate location, and

- deposit location in the location update buffer.

Omobsbuf.withdraw(temp);

location :- OmegaCalculation(temp);

Locupbuf.deposit(location);

end loop;

end Location-Calculator;

6. Task proliferation

a. One task per buffer monitor, one task per semaphore

SOFTWARE ENGINEERING PRINCIPLES 8-19
3-14 August 1981

' I

SEC. 8 / LANGUAGE CONSIDERATIONS

b. cannot pass tasks as parameters when desired

111. Ada and software engineering

A. Information-hiding modules

1. Direct correspondence to packages

2. Peepholes into the interface

3. Abstract interfaces: Can be represented as package

C. Processes

1. Process representable as task

2. Process synchronization based on semaphores, task synchroniza-
tion based on rendezvous

8-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

* r

Ada /Doc. LANG.2

D. Undesired events

1. Sufficient freedom to define and access appropriate procedures
and packages when necessary

2. Situations not requiring parameter passing can make use of
exceptions

IV. Ada evaluation (LANG.1 criteria)

A. Help the designer

1. Moderately surprise free

2. Probably will not allow very efficient translation

3. Information access enforceable

4. May allow ease and efficiency of use of programs by others

SOFTWARE ENGINEERING PRINCIPLES 8-21
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

5. Some assumptions about desired response to run-time errors are
built-in

6. Parallel process implementation is constrained

7. Nonrestrictive loops are provided

8. Facilities for confining assumptions and decisions are provided

9. Facilities for user-defined types and abstract types provided
moderately well

B. Translator and related support

???????

8-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

+ , , e

Ada / Doc. LANG.2

V, The Address Storage Module (ASM) as an Ada package

package ASH is

- The ASH consists of all address storage and retrieval routines.
- It hides the representation used to store the addresses. For
- each routine, the parameter A indicates the address whose field
- is being stored or retrieved. GetNca returns the number of
- complete addresses.

use SSM; - need definition of strings

MaxAds: constant integer :- 100; - maximum allowable addresses

type Addr is private; - give users access to type Addr

procedure InitAs;

procedure VerAds;

function GetNca return integer;

function GetBoc(A: Addr) return string;

procedure SetBoc(A: Addr; S: string);

function GetCit(A: Addr) return string;

procedure SetCit(A: Addr; S: string);

function GetCoa(A: Addr) return string;

procedure SetCoa(A: Addr; S: string);

function GetGn(A: Addr) return string;

procedure SetGn(A: Addr; S: string);

function GetGsl(A: Addr) return string;

procedure SetGsl(A: Addr; S: string);

function GetLn(A: Addr) return string;

procedure SetLn(A: Addr; 9: string);

function GetSer(A: Addr) return string;

SOFTWARE ENGINEERING PRINCIPLES 8-23
1-14 August 1981

' ', 0

SEC. 8 / LANGUAGE CONSIDERATIONS

procedure SetSer(A: Addr; S: string);

function GetSop(A: Addr) return string;

procedure SetSop(A: Addr; S: string);

function GetSt(A: Addr) return string;

procedure SetSt(A: Addr; S: string);

function GetTit(A: Addr) return string;

procedure SetTit(A: Addr; S: string);

function GetZip(A: Addr) return string;

prucedure SetZip(A: Addr; S: string);

private
type Addr is new integer;

end ASM;

package body ASM is separate;

restricted(Main, SSM);

separate package body ASM is

use SSM, UEH;

type Selector is (Boc, Cit, Coa, Gn, Gsl, Ln, Ser, Sop, St, Tit, Zip);

- Addresses are expected to have all fields either defined or
- undefined. The type StatusArray provides an easy way to mark
- fields of an address as either defined or undefined.

type StatusArray is arrav(Boc .. Zip) of (Undefined, Defined);

- The type Addr .Form provides the storage representation for
- addresses.

type Addr Form is

record
Status: StatusArray;
Value: array(Boc .. Zip) of string;

end record;

8-24 SOFTWARE ENGINEERING PRINCIPLLS
3-14 August 1981

Ads / Do J4G.2

- The variables All Undefined and All Defined provide convenient
- arrays for finding out if addresses are either all defined or all
- undefined.

All.Undefined: constant StatusArray :- (Boc .. Zip a] Undefined);

All Defined: constant StatusArray :- (Boc ..Zip a] Defined);

type AddressNumber is range 1 .. MaxAds;

- Variable Addresses is the array used to store addresses.

Addresses: array(AddressNumber' first .. AddressNumber' last);

Last: integer range 0 .. MaxAds;

procedure InitAs is

Last :- 0;
for I in AddressNumber loop

Addresses(I).Scatus :0 All-Undefined;
end loop;

end InitAs;

procedure VerAds is

begin
Last :a 0;
for I in AddressNumber loo

ext when Addresses(l).Status /a All Defined;
Last : I;

end1=
for I in Last + 1 .. MaxAds loop

if Addresses().Status /Z All Undefined then
Ueasmi("ASM ", "VERADS"T;

end if;
end l

and VerAds;

SOFTWARE ENGINEERING PRINCIPLES 8-25
3-14 August 1981

SEC. 8 / LANGUAGE CONSIDERATIONS

function GetNca return integer is

begin

return Last;

end GetNca;

procedure SetBoc(A: Addr; S: string) is

if A not in AddressNumber then Ueaida("ASM", "BOC");
else

Addresses(A).Status(1) : Defined;
Addresses(A).Value(Boc) : S;

end if

end SetBoc;

function GetBoc(A: Addr) return string is

if A not in AddressNumber then Ueaida("ASM", "BOC") ;
e1se

return Addresses(A).Value(Boc);
end if;

end GetBoc;

- Other Set and Get function implementations are similar to SetBoc
- and GetBoc and are not included.

end ASM;

VI. References

Jensen, K.; and Wirth, N. 1974. Pascal User Manual and Report. 2nd ed.
New York: Springer-Verlag.

ACM SIGPLAN. 1979. "Preliminary Ada Reference Manual." SIGPLAN Notices,
vol. 14, no. 6, part A.

8-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

PROC. 1 Process Structure of Software Systems

LECTURE

I. The problem: Imposing structure on run-time events

A. Examples of run-time events

1., Real-time

read value from angle of attack sensor
calculate new system velocities
output new heading value to display
aircraft becomes airborne
pilot keys in a number

2. Data processing

read new record from tape
extract key
print out a line
disk unit raises interrupt

SOFTWARE ENGINEERING PRINCIPLES 9-1
1-14 August 1981

V-

SEC. 9 / PROCESS STRUCTURE

B. Two ways to view events on a time-shared computer system

1. chaotic unrepeatable sequences

...read line typed on terminal by user A
fetch FORTRAN compiler into core for user B
compute value for user C
start compiling for user B
decode line typed by user A
output value computed for user C
respond to decoded command from user A

2. Set of user jobs proceeding independently

A B

read line typed on terminal .. fetch Fortran compiler into core
decode line start compiling...
respond to decoded command ...

9-2 SOTWARE ENGINIMRING PRINCIPLES
3-14 August 1981

Process Structure of Software Systems /Doc. PROC.1

C. Two ways to view a real-time system on a dedicated computer

1. First page from A-7 math flow

initialize navigation, if needed
calculate magnetic heading

calculate ground speed and total velocity from inertial north

and east velocities
determine whether aircraft airborne, landbased, or seabased
determine if inertial platform ready and reliable

format horizontal velocity and total velocity for panel
output zero to ground track needle

if ground align just selected, zero panel clock and turn on light

compute true heading

2. Single train of thought

set scale for inertial platform accelerometer pulse p. N-2
read in accelerometer pulses and calculate N and E vel p. WD-2

calculate inertial groundspeed from N and E velocities p. N-1

damp inertial groundspeed with system doppler groundspeed p. N-12

D. Processes as subsets of events occurring in a system

I. In general purpose systems, each subset is a user's job

2. In real-time systems, determining best subsets is a major design
problem

SOFTWARE ENGINEERING PRINCIPLES 9-3
3-14 August 1981

L

SEC. 9 / PROCESS STRUCTURE

I1. Three aspects of process design

A. Deciding on the right subsets (processes), i.e., grouping the events
into processes - subject of this lecture

- What are the parts of the structure?

B. How subsets cooperate and communicate - subject of next lecture

- What is the relation between parts?

C. Determining actual run-time order, i.e., scheduling

Scheduling for Single Processor

Process A:
Al, A2, A3, A4...

Process B: Sceuln Al, C1, C2, Blp B2, B3...*
B11 B2, B3... ~Decisionsj

Process C:
CI, Cz, C3, C4 ...

*One of several acceptable orders.

When scheduling decision made: Alternatives

- Manually, by programmer

- Automatically, at system generation

- Automatically, at run time

9-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Process Structure of Software Systems /Doc. PRDC.1

I1. Sequential processes

A. Operational definition: a unit for processor allocation - i.e., a
unit competing for CPU time

B. Sequencing decisions made here

1. Sometimes order of events matters

Example: read value
smooth value

2. Sometimes order of events does not matter

Example: compute magnetic heading
determine whether aircraft airborne

3. When order matters, events belong in same process

4. Order of events in a process is always unambiguously determined

SOTTARE ENGINEERING PRINCIPLES 9-5
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

5. Order of events in different processes not well defined

a. Processes executed on one processor: Interleaved execution

b. Processes executed on several processors: Depends on speed
of processors, allocation strategy, etc.

c. Unpredictability of interrupts

C. Implications of definitions

1. Process executing on 0 or I processor at a time, never more

- cannot be worked on simultaneously by more than one CPU

2. Two events in same process can never occur simultaneously

- parallelism restricted

3. Speeds of processes unknown, i.e., time between events within a
process unknown

- rate of one process affected by other processes

9-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Process Structure of Software Systems /Doc. PROC.1

IV. Advantages of a well-designed process structure

A. Each process makes sense by itself

B. "What" a process does is separated from "when" it does it

1. "What" is simpler: Can be done by less experienced programers

2. "When" determined by scheduler: Major timing problems are
isolated

C. Easier to make effective configuration changes

1. Each process can be written as if it runs on its own machine

2. Scheduler takes care of interleaving them on the available
machines

3. Can add or remove processors without changing anything but
scheduler

SOFWARE ENGINEERING PRINCIPLES 9-7
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

V. Rules for designing a good process structure

A. Initially divide system into maximum number of processes

1. Two events in the same process if they could never overlap in
time, i.e., must occur in a particular order

2. Two events in different processes only if they could conceivably
overlap or if the order is irrelevant

B. Decide on right granularity based on tradeoff between cost and
benefit

1. Cost of smallest division
- maintaining process records
- creating and destroying short-lived processes
- communication between processes

2. Benefits of smallest division
- no potential parallelism ruled out
- no potential configuration ruled out
- programs extremely simple to understand

C. If granularity too fine, combine strongly related processes into one
process

i. Still easy to understand

9-8 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

Process Structure of Software Systeps /Doc. PROC.1

2. Arbitrary sequencing - rules out some parallelism

3. Reduces cost of process switching and comunication

D. Separate out extremely time-critical events

Example:

read Angle of attack
filter sensor value and stale value to produce new value

- must read before filtering, but reading may get ahead
- first step time-critical, second not
- allow second step to get behind

71. Example: A-7 process structure

A. One process for each requirements function

- as if each executed independently on own microprocessor

3. Processes to track mode transitions, history conditions

SOFTWARE ENGINEERING PRINCIPLES 9-9
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

C. Processes to keep shared data up-to-date

- avoid duplication of effort

D. Processes to hide device characteristics

E. Sample A-7 process

program control Magheading display;

begin
comnent this process executes periodically. The desk clerk process

signals the event "update time" whenever it is time for this
process to run;

event update time occurs freq times per second
while true do

wait(updatetime); comment process suspended until it
receives signal to run;

if magnetic heading sensor turned off
then output 0
else begin

read value from magnetic heading sensor;
calculate magnetic heading from sensor reading;
output magnetic heading;
end;

end-if;

end;end-while;
end*

9-10 SOFTWARE ENGIIEERING PRINCIPLES
3-14 August 1981

Process Structure of Software Sstemq / Doc. PROC.1

VII. Examples of poor process structure

A. Time cycle organization - events organized by how often they must
occur

1. extremely sensitive to small changes

2. hard to follow

3. can be thought of as manual scheduling

B. Processes with internal scheduling

- Sign of design error if every time a process runs it must spend
several instructions figuring out what to do next

VIII. Reminder: A system has many structures which do not have to coincide
with each other

A. Module structure (early design-time)

B. Uses structure (late design-time)

SOFTWARE ENGIEERING PRINCIPLES 9-11

3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

C. Process structure (run-time)

IX. Research area, deterministic scheduling: Scheduling performed at system
generation

A. Retain ease of comprehension

B. Avoid overhead of separate processes

X. eferences

Dijkstra, E. W. 1968. "Co-operating Sequential Processes." Programming
Languages, ed. F. Genuys, New York: Academic Press, pp. 43-112.

Dijkstra, E. W. 1968. "The Structure of the 'T.H.E.' Multiprogramming
System." Com. ACX, vol. 11, no. 5, pp. 341-346.

9-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

PROC.2 MP Process Structure

EXERCISE

Name:

The original and alternative MP systems have different process

structures. In the original MP structure, most modules are also processes.
Most HP modules described in MP.3 are the units of processor allocation, and

the executive module is the scheduler. In the aew MP structure, the modules
only provide operations that are executed by the processes at run-time; the

modules themselves are not the units of processor allocation.

Pages 9-15 and 9-16 of this exercise illustrate the difference between the
two process structures. Listed on page 9-15 are the events occurring in the
message analysis module of the original HP structure. These events were taken

from MP.2 and MP.3. Listed on page 9-16 are the events occurring in the
incoming message process and outgoing message process in the new MP structure.

Evaluate the two different NP process structures, based on the
considerations outlined in lecture PROC.l. in particular, consider the

questions below. Be sure to give reasons or examples to support your opinions.

1. Which structure will have more inter-process comunication overhead?

SOFTWARE ENGINE2RING PRINCIPLES 9-13
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

2. Which structure could take better advantage of a multiprocessor
configuration with shared memory?

3. Which structure causes processes to spend more time figuring out what to
do next?

9-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MP Process Structure /Doc. PROC.2

PROCESS FROM THE ORIGINAL MP PROCESS STRUCTURE

In the original MP structure described in MP.2 and MP.3, there is one
process for each module. Thus there is a process to analyze messages (HA),
another to screen messages (SC), another to assemble a message to be
transmitted (CO), etc. To illustrate these processes, we list below the
events occurring in the message analysis module.

Review the common characteristics of MP modules in document MP.2, page
11-7. There are interrupts, but the RUNNING module is always resumed as soon
as the interrupt housekeeping is completed. Since the message analysis module
requires long processing time, it releases control of the processor after
analyzing every six lines of the message, in order to allow other modules to
proceed. When it does this, it sends itself a WCB to tell itself where to
pick up. Whenever a process releases control of the processor, the executive
must determine which process runs next.

Step Message Analysis Module

1 get next WCB out of message analysis WCB queue
2 analyze WCB to determine a) which message to work on, and b) what to do

next (whether to branch to Step 3, 5, 7, or 9)
3 for lines 1 through 6, analyze line, subtracting points for errors and

correcting errors where possible
4 queue WCB to self and give up processor
5 for lines 7 through 12, analyze line, subtracting points for errors and

correcting errors where possible
6 queue WCB to self and give up processor
7 for lines 13 through 16, analyze line, subtracting points for errors and

correcting errors where possible
3 queue WCB to self and give up processor

9 if remaining points It 80% of total points then message failed

10 prepare MDB for message
11 queue CB to DC to store MDB
12 queue WCB to L4 module to log message status

13 if message failed then a) queue WCB to DC to remove failed message from

storage, and b) terminate process

14 queue WCB to DC to store message on disk

15 if incoming message then queue WCB to SC module, nocifying it message is

ready to be screened

16 if outgoing message and channel available queue WCB to TO module,
notifying it message is ready to be transmitted

17 wait until WCB queue not empty; then start over with step 1

SOFTWARE ENGINEERING PRINCIPLES 9-15
3-14 August 1981

I

SEC. 9 / PROCESS STRUCTURE

PROCESSES FROM THE NEW MP PROCESS STRUCTURE

In the new MP structure, there is one process for each active message that
is being worked on at a time. A single process may use programs from many
different modules, and different processes may all use programs from the same
module. The following informal descriptions of two of these processes show
the sequence of operations and the programs they use from the HP.4 modules.

Note that these processes can be suspended during any step, either because
they request unavailable resources or because a hardware interrupt such as a
clock interrupt occurs. Unlike the original HP structure, an interrupted
process may not necessarily resume immediately after the interrupt housekeeping
is completed. The scheduler may choose to start another process instead.

Since the programs provided by the modules are reentrant, they can be used

by more than one process simultaneously.

INCOMING MESSAGE PROCESS

Step Using programs in:

1 Input a string Communications
& Equipment Control

2 Analyze string, storing it in the message holder External Interface
& Message Holder

3 Register message in log Information
Retrieval/Log

4 Check message against the watch list Screening Module &
Message Holder

5 IF any addressees in the message are in watch list, Terminal Control
notify operator on terminal

ELSE delete message from storage Paging Module

6 TERMINATE

OUTGOING MESSAGE PROCESSES

Step Using programs in:

1 Help the operator create a message, storing the Text Editor &
data he types in the message holder Message Holder

2 Register message in log Information
Retrieval/Log

3 Transform message into the AUTONOYS format External Interface
getting data for fields from message holder & Message Holder

4 Transmit the message Comunications
& Equipment Control

5 TERMINATE

There might be other processes to retrieve and display messages,'edit old
messages, etc.

9-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

r(

PROC.3 MP Process Structure

EXERCISE SOLUTION

1. Which structure will have more inter-process comunication overhead?

The original MP structure (MP.2)

The original structure uses control block queuing and scheduling to switch
between the activities associated with a single message, where the new
structure uses subroutine calls. Control block queuing is considerably more
time-consuming than parameter passing. The inter-process overhead must be
paid in the original structure even if only one message is processed at a time.

2. Which structure could take better advantage of a multiprocessor

configuration?

The new MP structure (MP.4)

Consider a multiprocessor configuration. with several processes in the
middle of message analysis and no other work to be done. In the original
structure, only one processor would be used because there is only one MA
process; the other messages would have to wait, and the other processor would
be idle. Use of a single MA process introduces an artificial bottleneck into
the system. With the new structure, each processor could be busy analyzing a
different message, sharing the reentrant programs in the External Interface
and Message Holder modules.

3. Which structure causes processes to spend more time figuring out what to

do next?

The original MP structure (MP.2)

When a process in the original structure resumes running, it must analyze
a Work Control Block (WCB) to determine what to do next. The decision can be

arbitrarily complex: which message to work on, which step to do next, whether
the message is in core, etc. In contrast, a process in the new MP structure
can continue as if it had not been interrupted. What to do next is determined
by the next instruction in the process.

Note that the same work must be done in both structures to cause a process
to resume running: the registers must be restored and the processor instruc-
tion counter must be loaded with the address of the next instruction in the
process.

SOFTWARE ENGINEERING PRINCIPLES 9-17
3-14 August 1981

PROC.4 Process Synchronization

LECTURE

1. Introduction

A. System of cooperating sequential processes

B. Not totally independent

1. Different processes use same resources

Example: Line printer

2. Production and use of information may be in different processes

Example: One process polls sensor and puts data in a buffer
Another process uses this data to control output device

3. ,Detection and response to an event may be in different processes

Example: One process detects the event target designation
Four other processes respond:

two display:, Lurned on
ballistics calculations started

radar sampling started

SOFTWARE ENGINEERING PRINCI?LES 9-19
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

I. Three classes of synchronization problems

A. Mutual exclusion problem

1. Example: airline reservation system

locall:- numseats; local_22= numseats;

(if local I It total seats)
then 3umseats: = local 1 + 1;
else refuse reservation

end - f--
if local 2 It total seats

then 7,umseats:- local_2 + I;
else refuse reservation

end-if;

2. Character of solution: Explicitly prevent improper

interleaving, i.e., restrict scheduling decisions

Correct Interleaving Incorrect Interleaving

A X A A X X
B Y X X A A

x A B Y Y B
Y B Y B B Y

B. Reader-writer problem

1. Example: Interactive data base
Readers do not interfere with each other
Writers must have exclusive access

9-20 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

AD-A113 415 NAVAL RESEARCH LAS WASHINGTON DC F/G 9/2
SOFTWARE ENGINEERING PRINCIPLES 3-14 AUGUST 1981.1U)
AUG 81 L J CHMURA. P C CLEMENTS

UNCLASSIFIED Mmmhmhmhhhhh l

ElhhlEEEEEEllE
IIIEIIEEEIIEEE

1. , 112

3 e,

Process Synchronization / Doc. PROC.4

2. Character of solution: Less restrictive than mutual exclusion

C. Signalling problem

1. Example: The event "target designation"

wait (@T(IDesigl)) detect target designation
proceed signal (T(.Desig!))

proceed

2. Character of solution: All processes that execute "wait" are
suspended until another process executes "signal"; all waiting
processes become ready simultaneously

III. The need for special synchronization operators

A. Synchronization problems difficult to solve - prone to subtle errors

B. Goal: To solve synchronization problems in a general way, rather
than allow each programmer to solve them his own ad-hoc way

SOFTWARE ENGINEERING PRINCIPLES 9-21
3-14 August 1981

.JL i III I 1 I I i - . - ,

SEC. 9 / PROCESS STRUCTURE

C. Uses hierarchy

Process definitions

Synchronization operators

Hardware synchronization features

1. Machine-dependent operations used for synchronization (e.g.,
disabling interrupts) - confined to the implementation of
synchronization routines

2. Synchronization routines: Crucial code. Very carefully
programed and tested - must be correct and fast

D. Choice of right synchronization operations: Design problem

1. Several mentioned in literature

9-22 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Process Synchronization /Doc. PROC.4

2. Choice may depend on

- application

- configuration

- language

- synchronization problems to be solved

IV. The rules of the Same

A. No assumptions about the relative speeds of processes

1. Cannot solve synchronization problems by assuming

"This takes longer than that"

2. Train analogy: Why we need explicit synchronization

B. Minimize interrupt-disabled time

C. Avoid "busy form of waiting" - vaste of CPU and memory cycles

label: if (busy a true) then Zo to label; end if;
busy :s true;

busy*:- false;

SOFTWARE ENGINEERING PRINCIPLES 9-23
3-14 August 1981

- V, i

SEC. 9 / PROCESS STRUCTURE

V. Synchronization operators change the set of processes eligible for
scheduling

A. Process states:

Running - currently allocated a processor

Ready - eligible for scheduling

Waiting - not eligible for scheduling

B. Synchronization operator may cause a process to change state

VI. Example: Classic semaphore variables, with P and V operations -

Dijkscra

A. Semaphore variable

1. Only accessed by P and V operations

2. Usually implemented as a counter and a list of waiting processes

B. P(semaphore) - "try" in Dutch

1. Process asks for permission to proceed

9-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Process Synchronization /Doc. PROC.4

2. P-operation may affect state of process that calls it: Change
state from "running" to "vaiting"

3. When process resumes, there is no record of interruption

4. Example implementation for P(semaphore)

indivisible semaphore.ctr:
= semaphore.ctr - 1;

if senaphore.ctr It 0 then
begi
process status changed to "waiting";
process put in the waiting list for the semaphore;
end;

end-if;
end;

C. V(semaphore) - "increase" in Dutch

1. Running process may change state of another process from
"waiting" to "ready"

2. Example implementation for V(semaphore)

indivisible r semaphore.ctr:- semaphore.ctr + 1;
if semaphore.ctr le 0 then

one process removed from vaiting list;
status of that process changed to ready;
end;

end- ;

SOFTWARE EINGINEERING PRINCIPLES 9-25
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

VII. Solving synchronization problqms with P and V

A. Mutual exclusion problem (initial value of mutex.ctr - 1)

begin begi
seahore mutex; global semaphore mutex;

local l:- numsets
P1(mutex);

if local1 I. t total-seats then
numseats:-l ocal 1.1; end-if;

V(mutex);

end; local 2:- numseats;
if local 2 It total seats then
3i-mseatsT.-Iocal_2.1;- end-if;
y(utex);

end;

B. Signalling events (initial value of desig.ctr - 0)

j~e iu begi
glba semaphore desig; global semaphore desig;
P(desig);

detect target designation;
vC desig);

start radar sampling;
end; end;

- only one process started

- not really
suitable

for broadcast

9-26 SOFTARE ENGINEERING PRINCIPLES
3-14 August 1981

Process Synchronization / Doc. PROC.4

VIII. Coordinating access to resources using P and V

A. Monitors

1. Set of functions assuring resources accessed correctly,
according to a particular set of rules

2. Resource can only be accessed through monitor functions

B. Uses hierarchy

Process definitions

I
Reso montors

Resource access Synchronization
functions operators

C. Monitor for a transmitter (see HAS.4, p. 13-60)

1. Uses hierarchy

Resource monitor: obtainxmitr(freq)
releasexiitr

I I
Resource access function: Synchronization: P, V
tune transmitter to freq

SOFrWAR ENGINEERING PRINCIPLES 9-27
3-14 August 1981

I

SEC. 9 / PROCESS STRUCTURE

2. lules: To avoid interleaved transmission, mutually exclusive
access to a particular transmitter

3. Monitor: Only program that knows how many transmitters

4. Processes: Written as if each has own transmitter

5. if transmitters added, only monitor needs to change

D. Example: Monitor controlling access to a buffer

I. initial condition - buffer empty

counter of semaphore "data" - 0 (no data available)

counter of semaphore "space" = size-of-buffer
(all spaces in buffer available)

2. No access to buffer allowed except through monitor programs
"accept" and "deposit"

9-28 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

I. e I

q

Process Synchronization /Doc. PROC.4

VIII. Coordinating access to resources using P and V

A. Monitors

1. Set of functions assuring resources accessed correctly,
according to a particular set of rules

2. Resource can only be accessed through monitor functions

B. Uses hierarchy

Process definitions

I
Reso~zc monitors

I I
Resource access Synchronization

functions operators

C. Monitor for a transmitter (see UAS.4, p. 13-60)

1. Uses hierarchy

Resource monitor: obtainxmitr(freq)
reloasemitr

I ' I
Resource access function: Synchronization: P, V
tune transmitter to freq

SOMrVAh S ENGINZRRING PRINCIPLES 9-27
3-14 August 1981

SEC. 9 / PROCESS STRUCTURE

2. Rules: To avoid interleaved transmission, mutually exclusive
access to a particular transmitter

3. Monitor: Only program that knows how many transmitters

4. Processes: Written as if each has own transmitter

5. If transmitters added, only monitor needs to change

D. Example: Monitor controlling access to a buffer

1. Initial condition - buffer empty

counter of semaphore "data" * 0 (no data available)

counter of semaphore "space" - size-of-buffer
(all spaces in buffer available)

2. No access to buffer allowed except through monitor programs
"accept" and "deposit"

9-28 SOFTWAR ENGINURING PRINCVIPES
3-14 August 1981

Process Synchronization /Doe. PROC.4

3. Rules implemented by monitor

- Only one deposit at a time on a particular buffer

- Only one accept at a time on a particular buffer

- accept and deposit may occur simultaneously, so long as they
are not operating on same buffer slot

- deposit: process must wait if buffer full

- accept: process must wait if buffer empty

4. Deposit: Function that puts an item in the buffer
waits - if another process putting an item in the

buffer
waits - if buffer full

P(in);

!(space);

put item in buffer; coment call buffer access fcn;

V(data);

V(in);

end;

SO WARE ENGIIEERING PRINCIPLES 9-29
3-14 August 1981

V

SEC. 9 / PROCESS STRUCTURE

5. Accept: Function that takes an item out of a buffer
waits - if another process taking an item out of the

buffer
waits - if buffer empty

P(out);
_(data);
take item out of buffer; comment call buffer access fcn;
V(space);
V(out);

end;

VIII. References

Courtois, P. J.; Heymans, F.; and Parnas, D. L. 1971r "Concurrent
Control with 'Readers' and 'Writers."' Comm. ACM, vol. 14, no. 10,
pp. 667-668.

Habermann, A. N. 1972. "Synchronization of Communicating Processes."
Com. ACM, vol. 15, no. 3, pp. 171-176.

Cooprider, L. W.; Heymans, F.; Courtois, P. J., and Parnas, D. L. 1974.
"Information Streams Sharing a Finite Buffer: Other Solutions."
Information Processing Letters, vol. 3, no. 1, pp. 16-21.

Shaw, A. C. 1974. The Logical Design of Operating Systems, Chap. 3.
Englewood Cliffs: Prentice Hall.

Parnas, D. L. 1975. "On the Solution to the Cigarette Smoker's Problem
(Without Conditional Statements)." Comm. ACM, vol. 18, no. 3,
pp. 181-183.

Reed, D. P.; and Kanodia, R. K. 1979. "Synchronization with Eventcounts
and Sequences." Con. ACM, vol. 22, no. 2, pp. 115-123.

Belpaire, C.; and Wilmotte, J. P. 1974. "A Semantic Approach to the
Theory of Parallel Processes." International Computing Symposium
1973, A. Guenther, et al. (eds.). New York: N. Holland Publishing Co.

Britton, K. Heninger; and Weiss, D. 1981. Interface Specifications for
the A-7E Extended Computer Module, Parallelism section. Naval

Research Laboratory Memorandum Report in publ'cation.

9-30 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

DOC. 1 Documentation Guidelines

LECTURE

PART I: GENERAL R-MARKS

1. Why documentation is so important

A. Uses during development

1. Comunication among designers, users, programmers, etc.

2. Training- makes personnel turnover less disruptive

3. Prevents duplication of effort - if reasons for design
decisions recorded, reduces need to rethink them later

4. Basis for design reviews

5. Quality assurance - standard against which software can be
judged

SOIFTWARE ENGINEERING PRINCIPLES 10-1
3-14 August 1981

a V

SEC. 10 / DOCUMENTATION

B. Uses during maintenance

1. Training

2. Reduces labor of evaluating feasibility of changes

3. Guides programers as they find and correct errors

4. Repository of design information, which even the original
programers often forget

5. Preservation of program conceptual integrity - maintenance
programers have a way to check consistency of proposed change

II. Common problem with documentation - why is it hard to use?

A. Difficult to understand - assumes reader knows more than he does

B. Difficult to find answers to specific questions

10-2 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

Documentation Guidelines /Doc. DOC.1

C. Difficult to maintain - gets out-of-date all too soon

D. Wordy, repetitive, and boring

E. Confusing, inconsistent terminology

111. Remedy

A. View documentation as the important product of design, not as a
by-product of coding

B. Design the documentation - objectives, contents, organization,
format

1. To be a convenient format for designers to record and exchange
ideas

2. To serve as ready reference tools

3. To be maintained - controlled and kept up-to-date

SOFTWARE ENGINEERING PRINCIPLES 10-3
3-14 August 1981

SEC. 10 / DOCUMENTATION

4. To explain reasons for decisions since reasons cannot be
inferred from code

C. General principles for documentation design

1. Determine objectives

- Who will need it?

- What should they already know?

- What should they be able to find out?

2. State questions before trying to answer them

3. Separate concerns

4. Documentation should consist of mutually supportive formal and
informal parts

- Informal - easy for anyone to understand; useful for
reviewers who are not programers

- Formal - precise, concise, unambiguous

10-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

L ,,, t V

Documentation Guidelines /Doc. DOC.l

5. Involve maintainers early - to find out what they need

D. Documentation design techniques

1. Decide what information belongs

2. List questions to be answered

3. Organize into sections according to who needs to know answers,
for what purpose

4. Determine units of discourse

5. Design forms, tables, notation, templates

- Use English only for overviews, narratives, and explanations

- Use abstract Programs (otherwise known as PDL or coding
specifications) for documenting algorithms

6. Plan to revise forms several times as documentation is written

SOFTWARE ENGINEERING PRINCIPLES 10-5
3-14 August 1981

SEC- 10 / DOCUMENTATION

7. Define terms precisely; provide glossary

E. Design documentation reviews and configuration control procedures

1. Design reviews: What questions should reviewers ask themselves
to determine if document meets its objectives?

2. Configuration control procedures

- How are changes reported?

- Who decides whether to make them?

- Who reviews them?

- How are updates distributed? To whom?

- What tools are needed? - word processing support invaluable

IV. Three types of documentation

A. Software requirements specification (e.g., Program Performance

Specification)

1. Product of overall system design - represents agreement among

- User representatives

- Builders of interfacing equipment or software

- Software builders

10-6 SOFTWARE ENCINEERING PRINCIPLES
3-14 August 1981

Documentation Guidelines /Doc. DOC.I

2. Questions answered

- What role does the software play in the whole system?

- What constraints are placed on the software?

3. Reference document for software designer and programers, i.e.,
overall problem statement

4. Guidebook for maintenance programers

- Constraints on future improvements

- Conceptual integrity of software

B. Overall design document (e.g., Program Design Specification)

1. Agreement between designer and programers about system structure

2. Questions answered

- Row is the software divided into modules?

- Now do the modules work togetner to meet the overall
requirements?

- Specifications for the module interfaces

- Overall systm tradeoffs

SOFTWARE ZNGINURING PRINCIPLES 10-7
3-14 August 1981

SEC. 10 / DOCUMENTATION

3. Reference document for programmers, i.e., their individual
problem statements

4. Guidebook for maintenance programmers - where to make changes

C. Detailed design document (e.g., Program Description Document)

1. Program-by-program description

2. Questions answered

- What algorithms and data structures were selected? Why?

- What program implementation tradeoffs were made?

3. First product from programmers, i.e., the algorithms they choose

and why

4. Guidebook for maintenance programmers - hov to make changes

5. Appropriate place for Abstract Programs or PDL

10-8 SOFTWARE ENGNIERING PIINCIPLES
3-14 August 1981

t .,;• e

Documentation Guidelines /Doc. DOC.I

PART 2: AN EXAMPLE OF CAREFUL REQUIREMENTS SPECIFICATION

I. Background: A-7 Project

A. Purposes

1. To evaluate usefulness of modern software technology for
real-time systems with tight constraints

2. To provide an engineering model

B. Basis: Existing flight software for Navy's A-7 aircraft

C. First step: Document requirements of existing system

1. Implementation-independent description of current system

2. Problem statement for NRL A-7 project

SOTWRE ENGINEERING PRINCIPLES 10-9
3-14 August 1981

SEC. 10 / DOCUMENTATION

II. Documentation objectives

A. Specify external behavior only - everything one needs to know to

design and program the software

- If less, software may not fill purpose in larger system

- If more, software personnel constrained unnecessarily - may not
be able to use best approach

B. Specify constraints on implementation

-e.g., timing, accuracy, algorithms, and response time, etc.

C. Be easy to change

D. Serve as a reference tool for experienced designers and maintainers

E. Specify expected changes to software

F. Specify desired responses to undesired events

10-10 SOFTWARE ENGINEERMG PRINCIPLES
3-14 August 1981

Documentation Guidelines / Doc. DOC.1

III. Does NOT contain programs, data structures, flowcharts

IV. Table of contents

CHAPTER 0 INTRODUCTION (DEFINITIONS, CONVENTIONS)

CHAPTER 1 COMPUTER CHARACTERISTICS

CHAPTER 2 HARDWARE INTERFACES

CHAPTER 3 SOFTWARE FUNCTIONS

CHAPTER 4 TIMING CONSTRAINTS

CHAPTER 5 ACCURACY CONSTRAINTS

CHAPTER 6 RESPONSE TO UNDESIRED EVENTS

CHAPTER 7 SUBSETS

CHAPTER 8 TYPES OF CHANGES

CHAPTER 9 GLOSSARY

CHAPTER 10 SOURCES OF INFORMATION

INDICES

V. Hardware interface documentation

A. Unit of discourse: Data item

B. Design standard forms

SOTWABZ ENGINRING PRINCIPLES 10-11
3-14 AuSus 1981

SEC. 10 / DOCUMENTATION

C. Describe input data items as resources -- no mention of how used

D. Describe output data items in terms of effects on hardware - no
mention of purpose

E. Formal notation for data items

1. Bracketed names

inputs: /RADALT/, /IMSMODE/
outputs: //STERROR//, //HUDSCUE//
values: On, Off

2. Expressions

comparison /ADALT/ lseq 3000 ft
change value //HUDSCUE// : Off

10-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 Auguat 1981

Documentation Guidelines /Doc. DOC.1

F. Example of hardware interface description

Input Data Item: 1MB Mode Switch

Acronym: /IMSMODE/

Hardware: Inertial Measurement Set

Description: /IMSMODE/ indicates the position of a six-position rotary switch

on the IMS control panel.

Characteristics of Values
Value Encoding: $Offnone$ (00000)

$Gndal$ (10000)
$Norm$ (01000)
$Iner$ (00100)
$Grid$ (00010)
$Magsl$ (00001)

Instruction Sequence: READ 24 (Channel 0)

Data Representation: Bits 3-7

Coments: /IMSMODE/ - $Offnone$ when the switch is between two positions.

VI. Software function interface

A. Unit of discourse: Function

B. Distinguish periodic and demand functions

1. Periodic functions: Occur at regular time intervals

SOFrWARE ENGINEERING PRINCIPLES 10-13
3-14 August 1981

SEC. 10 / DOCUMENTATION

2. Demand functions: Occur in response to specific events

C. Output values based on conditions, events, and modes

1. Conditions as predicates

2. Events as changes in condition values

3. Modes as classes of system states

D. Notation

1. Text macros: !Ground range to target!

2. Conditions: /IMSMODE/=$Gndal$

3. Events: @T(/lMSMODE/=$Gndai$)
@F(Ground range to target! - 30 nmi)

4. Modes *DIG*

10-14 SOFrWARE ENGINEERING PRINCIPLES
3-14 August 1981

Documentation Guidelines / Doc. DOC.l

E. Example of a special table

Condition Table: Magnetic heading (//MAGHDGR//) output values

MODES CONDITIONS

DIG, *DI*, *I* Always X
Mag sl,*Grid*

IMS fail (NOT /IMSHODE/-$Offnone$) /IMSmOD/-$Offnone$

//MAGHDGH// angle defined by 0 (North)
value /MAGHCOS/ and /MAGHSIN//

SOTARE ENGINEERING PRINCIPLES 10-15
3-14 August 1981

SEC. 10 / DOCUMENTATION

F. Example of function description

Periodic function name: Update Flight Path Marker coordinates

Modes in which function required:
DIG, *DI*, *1*, *Mag Sl*, *Grid*, *IMS fail*

Output Data Items: //FPMAZ//, //FPMEL//

Initiation and Termination Events:
Start: @T(/IIUDVELII - $0n$)
Stop: @T(//HUDVEL/I - Off)

The flight path marker shows the direction of the aircraft velocity vector.

The azimuth displacement from HUD center shows the lateral velocity component
and elevation displacement shows vertical velocity component.

If the components are calculated from !System velocities!,
!System velocities! are first resolved into forward, lateral and vertical
components, that is, components along the aircraft Y, X, and Z axes.
From these, the HUD coordinates are calculated in the following manner:

//FPMAZ// shows Lateral velocity //FPMEL// shows Vertical velocity
Forward velocity Forward velocity

Condition Table: Coordinates of the Flight Path Marker

MODES CONDITIONS

DIG, *DI* X Always X

I /ACAIU/ n No /ACAIRB/ w Yes X

!ADC Up! 1ADC Down!i
Mag sl, *Grid* /ACAIIB/=No AND /ACAIRB/-Yes AND /ACAIRB/=Yes

IMS fail /ACAIRB/No X /ACAIRB/-Yes

FFN COORDINATES //FPMAZ//: based on ISyste/ //FPN&Z//:- 0
//FMHL/f: 0 velocities! //FPMEL//:/AOAI

10-16 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Documentation Guidelines / Doc. DOC.1

VII. References

Heninger, K. L.; Kallander, J.; Parnas, D. L.; and Shore, J. E. 1978.

Software Requirements for the A-7E Aircraft. NRL Memorandum Report
no. 3876. See readers' guide in preface.

Reninger, K. L. 1980. "Specifying Software Requirements for Complex
Systems: New Techniques and their Application." Trans. on Software

Engineering, vol. SE-6, no. 1, pp. 2-13.

MIL-STD-1679. 1978. Weapon System Software Development.

Parker, R. A., Heninger, K., Parnas, D. L.; and Shore, J. 1980. Abstract

Interface Specifications for the A-7E Device Interface Module. Naval
Research Laboratory Memorindum Report no. 4385.

SOFTWARE ENGINEERING PRINCIPLES 10-17
3-14 August 1981

MP. 1 The UGH Message Processing (MP) System

EXAMPLE DESCRIPTION

Fapsan Rat
Cognizant Engineer
UGH Corporation

Introduction

The UGH Message Processing System (MP) may use a variety of UGH computers
from the large 2PIE to the small UGH-20 to provide an integrated support
system for any organization requiring rapid and widespread distribution of
messages to organizational units in geographically distributed locations. The
UGH MP is designed to assist in every stage of message distribution beginning
with the input of the draft message into the system, including automatic
control of the coamunications equipment, the production of periodic reports
about the status of the system and the messages that it has processed, and
including (optional) an interactive information retrieval facility to allow
managers to check on the status of the system or any message that has been
submitted to it in the recent past. The UGH MP is highly modularly structured
and can be tailored to meet the needs of any organization. As a result, its
adaptability to changing needs is assured.

Interfaces and Functions

The UGH MP is designed to interface with and utilize the services of the
world-wide AUTONOYS comunications network. This network includes direct RF
ship-to-shore comuunications, satellite relayed comsunications, and high
capacity overland channels and is-continually being expanded to include the
most modern comunications techniques. AUTONOYS is an existing comunications
network which has evolved over the years, starting from a fully manual system

using very noisy (error-prone) coumunications channels, but has been adapted
to take advantage of computer control as well as improved comunications
equipment. Because some of the low-traffic nodes on the AUTONOYS network are
still manually controlled and some of the channels are still quite unreliable,
all changes to the original AUTONOYS comunications conventions have been made
upwards-compatible. This has resulted in a rather complex comunications
protocol. The MP is designed to produce messages in any of the AUTONOYS
formats and is designed to be adaptable to the new formats which are expected
to be introduced as AUTOWOYS is improved.

It is expected that the organizations which UGH MP will serve will
each have their own internal message conventions and guidelines. The MP
adjustable user interface is designed to assist an operator with converting
internal messages to external messages. MP can even assist with internal

SOFTVARE ENGINURING PRINCIPLES 11-1
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

message handling by producing the copies of outgoing messages to be sent to
various "in house" addressees for information and retention. HP will
automatically put addresses on these copies.

A special feature of MP is its ability to interface with UGHTRANSR
computer-controlled comunications equipment. This highly sophisticated
equipment is designed to eliminate the need for a radio operator except for
routine maintenance and emergency repairs. The "normal" functions of the
operator such as antenna selection, tuning, connecting transmitter to
antennae, etc., are all performed by electronically controlled switches and
servomechanisms progra-mable in UGH hardware. The UGH MP software includes an
option that will examine the "routing indicators" and select the appropriate
c munications setup.

An additional feature of MP is its ability to adjust to the security and
privacy needs of its users and its ability to make use of the special AUTONOYS
message security conventions. AUTONOYS offers a variety of communications
channels ranging from "broadcast" (which is easily intercepted) to highly
secure narrow beam communications. AUTONOYS communications conventions
include highly redundant security codes designed to minimize the probability
of a sensitive message being transmitted over an inappropriate channel. MP
provides the necessary software and formatting to take advantage of these
features. It also checks all input carefully to make sure that the security
classifications are legitimate and consistent.

When used in connection with the broadcast channels of AUTONOYS, MP
will receive many messages that are not intended for its user organizations.
HP can "screen" these messages and select only those which its users are
interested in. To prevent lost messages caused by incorrect screening, typing
errors, or transmission errors, mP will (if requested) produce a list of
rejected messages for operator review.

One of the special features of MP in this regard is its dynamic watch
list. Every incoming message has a list of addressees. To screen these
incoming messages, MP uses a list of "addressees of interest" or a "watch
list." The message is selected if one of the addressees is on the watch
list. MP allows the operator to alter this list so that messeges for guests
may also be received. This is also useful if one unit must temporarily
support or replace another and must receive its messages.

The AUTONOYS system requires that each addressee be further identified by
a routing designator which allows AUTONOYS to select the intermediate relay
stations to be used. This has been a major source of costly errors and lost
messages in manual system . An error in one character of this routing
indicator can cause a message to reach an unintended destination. In some
organizations, where the addressees are "mobile" (e.g., ships or traveling
salesmen), routing indicators must be updated frequently, which results in
still more possibilities for making errors. MP automatically supplies the
routing indicators for outgoing messages, using an internal routing indicator
list. An optional feature is its ability to monitor incoming messages and

11-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The UGH Message Processing (HP) System / Doc. MP.1

report any incensistencies between the routing indicators on these messages
and its own list to the operator. This feature leads to greatly increased
reliability if the routing designators change frequently.

Increased communications reliability is in fact one of the major advant-
ages of using HP. Checking for errors and inconsistencies is performed at
every stage of message processing. HP really "knows" the AUTONOYS coasuni-
cations conventions and checks more carefully than any human operator would.
An incorrectly formatted message, a message with inconsistent descriptors,
WILL NTOT BE ISSUED. Many transmission errors on incoming channels will be
detected. Such messages will be brought to the operator's attention so that
the appropriate corrective measures may be taken. It is known to be
mathematically impossible to detect all errors in messages over noisy
channels, but checking is so widespread in the HP software that the
probability of error is reduced to a lower point than with any alternative
system.

Naturally HP supports a variety of input devices ranging from basic
teletypes and paper tape readers to the most modern of character-oriented
graphics consoles. An interactive option provides the most modern prompting
and computer support of message input. With this option, the operator will be
"prompted" for each item of format information which AUTONOYS requires. He
can't forget anything and need not constantly refer to the AUTONOYS operator
manuals. This can greatly increase the productivity of the operator and make
him feel "supported."

Another option available is called the remote message drafting option

(RD). This allows the individual responsible for composing the text of the
message to do so at a terminal with the aid of an advanced text editor.
Individuals authorized to release a drafted message are given passwords and/or
key controlled terminals so that they can authorize release without the
existence of a hard copy which is transmitted to the operator with signature.
As soon as release is obtained, the text is already in the system and can be
composed and transmitted almost instantaneously. Possible errors in entering
the text are eliminated by this option.

UGH HP FAMILIES

The UGH HP software is actually a "family" of system, formed by the
inclusion of optional features (some of which are mentioned above). The
hardware support available is also a family, in two senses. First, the
permanently located "base" versions of HP are designed to run on the UGH 2PIE
computer family, which provides a wide range of upwards-compatible processors
that share peripherals. MP requires a certain minimum hardware configuration
depending on the supported options, but it will run on any of the 2PI range,
although larger processors are recomended for the base systems to realize
the best MP performance. The 2PIE range was not designed for rugged mobile
installations, and since HP is of extreme value in this setting, the system is
also supported on the large UGH-7 (UGH-VAN) computer and on the smaller UGH-20
minicomputer. Although the full software system is available on UGH-7, the

SOITWAR VNGJUMRING PIZNCIPLES 11-3
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

incorporation of some features of the software family is of doubtful value.
Only a subset of features is available on UGH-20. (Neither of these hardware
systems is compatible with UGH 2PIE hardware.)

There is a complex interaction between the hardware required to support a
given UGH MP feature, other features necessarily included with it, and the
capabilities 1of the resulting system. Some examples will make this inter-
action clear.

UGH MP can be configured with optical character readers (OCR) for input
text. Of course, the software support for this feature is useless without the
OCR peripheral device itself. This device is available only on the 2PIE series

as a standard option. (Although offered as a field-modification item for
UGH-7, no such modifications exist at the present time.) Furthermore, the OCR
is used by the system only in connection with the operator's console station.

It is assumed that the operator will use the OCR for the input of authorized
text which he receives in hard-copy form. This usage therefore alters the
remote message drafting option, if it is selected. The hard-copy message is
scanned only for comparison with the internal file copy that was created
earlier with R10, and the operator advised of any inconsistencies. Since some
machine printing facility is required for OCR, it is likely that the remote
message drafting options should be specified whenever OCR is specified.

The test generation and transmission option allows the complete hardware-
software system, along with the crucial data stored within it, to be auto-
matically given a real test and its performance evaluated. A message is
generated, and addressed to the same unit which originates it. Using the
complete facilities of the system with regard to the watch list, automatic
routing of internal messages, etc., the message is sent and (if all is well)
received. However, the message is flagged so that upon receipt, a complete
description of the system performance is created and made available to the
operator. In conjunction with another MP system, this testing can actually
involve two or more distinct units, but the external system can also be tested
by routing an internal message over an arbitrary route and checking it
specially when it arrives in the specified way. MP creates such test messages
on command without any operator control except the request to perform the
test. The selection of this option evidently requires the complete

UGHTRANSR hardware interface, and the additional features of automatic
selection of comunications setup from routing indicators, and monitoring of
incoming routing for consistency. Although this enabling capability is
available on UGH-20, the test option is not recomended for this small machine
because it would degrade other functions.

Although the following table is not complete, it does include all
MP options mentioned in this brief description, and gives an idea of the
relationship between the hardware and software families according to the
capabilities selected. As an example of the use of the table, capability "A",
the information retrieval option, requires at least an UCH-VAN hardware system
with extended mass storage ("Z") and memory ("YV), and cannot be selected
without also selecting the message retention capability ("B").

11-4 SOFTWARE ENGINURING PRINCIPLES
3-14 August 1981

The UGH Message Processing (MP) System /Doc. MP.1

Table 1. UGH HP lAR1DWARE AnD SOFTWARE FAMILIES

Hardware and

Capability UGH-2PIE UGH-VAN UGH-20 Other Caoabilities

A Information retrieval * * ZYB

B Message retention(l) * * * z

C Automatic selection * * X
of communications

D Verify incoming * * *
routing indicators

E Operator prompting * *

F Remote message * *
drafting

G OCR input * *(2) WAF

H Test generation * * * XABCD
and transmission

Hardware codes:

Z Extended mass storage (large disk)
Y Extended memory
X UGHTRANS interface

W OCR peripherals

Notes: "

(1) Retention period is 1, 3, or 6 months. Only the first is available for
UCE-20, and the longer periods require further mass storage extensions.

(2) Requires a field modification to install OCR peripherals.

DELIVERY

UGH MP will be delivered 2-1/2 years after receipt of the first signed
purchase con-tract. Later versions will be available with shorter delivery
times.

SOFTWARE ENGINEERING PRINCIPLES 11-5
3-14 August 1981

MP.2 MP Basic Modular Structure

EXAMPLE DESCRIPTION

Introduction

The UGH MP is designed to be a highly modular piece of software that can
be easily adapted to meet the needs of individual users as well as to changing
AUTONOYS conventions.

To meet the needs for adaptability, the system is divided into a number of
modules each of which has a precisely defined task. Communication between
modules has been limited to well-defined data structures stored on disk and a
sophisticated intermodule comunication facility implemented as part of a
system "kernel."

This document is designed to provide an overview of the basic system
structure together with a brief introduction to the function of each module.
Detailed functional specifications of each module as well as interface
definitions will be provided in separate documents.

Common Characteristics of Modules and Intermodule Communication

Each module is designed to perform a given step in the processing of a
message. Each one is designed to function independently of the others,
starting its processing of a message and carrying this processing through to
completion. Work is sent to a module through the system kernel in the form of
a Work Control Block (WCB). Modules are called READY when they have one or
more WCB's waiting for them. At any one time, one module at most is RUNNING.
The RUNNING module is allowed to execute until it releases control because it
has completed its work or for some other reason (see below). There may be
brief periods of interruption of the RUNNING module to handle machine
interrupts, but the RUNNING module is always resumed and is not cognizant of
the pause. Some modules that require long processing times will relinquish
the processor before finishing with a message in order to allow other messages
to be processed. In such cases, the module sends itself a VCB before releas-
ing the processor. This WB contains the information necessary to allow the
module to pick up where it left off.

The other form of comunication between modules is through data kept on
disk. For example, the text of the message being processed and a Message
Description Block (MB) containing the primary information about the message
are stored on disk. The DC module will bring these data into core for
processing when it receives a request (by means of a WCB).

SOFTWAUE ENGINEERING PRINCIPLES 11-7
3-14 August 1981

SEC. 11 / MESSAGE PRDCESSING (MP) SYSTEM

Overview of the System Modules

The following are the main software components of the system.

1. The System Executive (EX)

The EX controls the scheduling and communication between the remaining
modules of the system. When one module wishes to coumunicate with another, it
does so by preparing a WCB for the other module. It does this in a predefined
core location. It then calls the EX routine Send Work Control Block (SWB),
which queues the WCB against the recipient. If the recipient's queue was
previously empty, it marks the recipient module READY and enters it in the
queue of modules waiting for scheduling. EX is also called whenever a module
signals completion. If the module still has WCBs in its input queue, it is
placed in the list of waiting modules. If not, it is marked NOT READY. EX
then determines which module will run next.

2. Message Analysis (MA)

The primary task of MA is to examine the raw message text (incoming
and outgoing) identifying the principal message components and detecting
format errors in the message. During this process, key information is

extracted from the message and stored in the MDB. At the same time, a record
of message received and channel is made. MA is also responsible for recording
the status of channels and will not release a message to a channel that cannot
handle it.

3. Screening Module (SC)

Primary purpose of SC is the detection of messages of interest. To
this end, SC examines the list of message addressees and compares it with the

WATCH LIST (made available by Data Control Module (DC)). SC also adds routing

indicators to outgoing messages and can check incoming message routing
indicators. Messages that are not of interest are sent by means of a WCB to
the terminal control module (TC). Accepted messages result in a WCB being
sent to the Log Maintenance Module (LX).

4. Message Composition Module (CO)

This module is responsible for assembly of the complete message as it
is to be transmitted. Information is received from the other modules (e.g.,
routing indicators from screening) and the completed message is then sent to
MA where it is checked as if it were an incoming message. The optional prompt-
ing package is part of this module if purchased. CO provides text editing
facilities allowing modification of text previously input. These facilities
keep control until the operator indicates that he is done editing and asks for
composition of the final message.

11-8 SOFTWARE ENGIIEERNG PRINCIPLES
3-14 August 1981

MP Basic Modular Structure / Doc. MP.2

5. Terminal Control (TC)

TC is responsible for all direct comunication with consoles,
including teletype, printers, and CRT devices. Terminal Control neither

interprets the input nor decides what to output - it is simply a standard

interface between the other modules and the terminal.

6. Equipment Control (EC)

This module is responsible for control of the UGHTRANS devices. It
receives its WCBs from OP.

7. Operator Control (OP)

This module implements the interfaces to the system control officer.
It allows him, for example, to request reports, change circuit connections,
verify connections, request tuning, and define available frequencies. This
module implements a user-oriented interface with mnemonic commands, but relays
all commands to other modules for execution.

8. Traffic Outout (TO)

Traffic output is in control of a message during its actual trans-
mission. It retrieves portions of the message from disk and causes them to be
sent to the i/O devices. It verifies that no line contains more than 69
characters.

9. Data Control (DC)

This module is responsible for the maintenance of various lists of

data used by other modules. For example, DC finds and allocates disk storage
for the WATCH LIST, MDBs, and routing indicators. START and END addresses for
the working disk storage areas of other modules are also kept by this module.

DC does not issue control commands to the disk, but simply sends requests to

DK (in terms of track and sector) where the actual I/O commands are generated.

10. Disk Control (DK)

All requests to use the disk are queued as WCBs for DK, thus making

sure that the disk is not requested to carry out two access requests at once.

SOFTWARE ENGINEERING PRINCIPLES 11-9

3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

11. LOG Maintenance (LM)

This module is responsible for updating all lists used in the
information retrieval and report generation functions. Space is allocated by
DC and actual data transfers by call to DK. Among the logs kept are:

a. list of all messages received;
b. list per channel of all messages received;
c. list of messages originated;
d. list of messages sent; and
e. list of messages rejected (optional).

All entries in these logs are complete MDBs that include the address of the

full text on disk.

12. Initialization (IN)

This module performs all actions needed at system start. It is
normally only called at that time.

13. Information Retrieval Module (IR)

This module allows officials to obtain information such as:

"What message came in on channel 3 at 1500?"
"Was message originated here?"
"Was message transmitted?"

11-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

M1P Basic Modular structure Doc. MP.2

1-4

0

p-4

0

SOFNwARZ ENGINEERING PRINCIPLES1-1
3-14 Auagust 1981

SEC. 11 / MESSAGE PROCESSING (IMP) SYSTEM

(EX not shown) IN 0 UGH Hardwar~e

ZMP Software Module
Terminals

Interaction Path

O

MA

BLOCK DIAGAM OF UGHP MODULES

11-12 SOTWAZZ ENGCINERIlNG PRINCIPLES
3-14 August 1981

Disk

• ' • .K

IR !

MP.3 MP Detailed Modular Structure

EXAMPLE DESCRIPTION

Functional descriptions are attached for some of the primary modules of
the UGH HP system. Only the "message-processing" group KA, SC, CO, and the
"executive group" EX, DK, DC are included. For other modules the capsule
descriptions of HP.2 are sufficient. Following the module descriptions are
details of the Work Control Block by which modules communicate with each
other. A useful stmmary of module functions is given below:

The Modules of MP: A Summary

CO: Message Composition - Editing and assembly of messages to be transmitted.
DC: Data Control - Storage allocatic for data, both core and disk.
DK: Disk Control - Controls disk access.
EC: Equipment Control - Controls UGHTRANS devices.
EX: Executive - Handles scheduling, intermodule communication, and

interrupts.
IN: Initialization - Initializes system at start.
IR: Information Retrieval - Retrieves information of interest from logs.
124: Log Maintenance M- aintains logs of MDBs.
A: Message Analysis - Analyzes potential messages to see if they are real

messages.
OP: Operator Control - Handles operator interface.
SC: Screening - Examines incoming traffic for messages of interest.
TC: Terminal Control - Handles communication with system consoles.
TO: Traffic Output - Controls transmission of messages.

MESSAGE FORMAT FOR MP

The description below supplies enough information to understand the
actions of HP modules that deal with the headers of messages. It ignores some
message features (such as multiple pages), and simplifies some others.

A message consists of a number of Format Lines numbered beginning with one.
(These are abbreviated FLI, FL2, etc..) In specifying these, we will use a
notation drawn from computer language and control-card manuals.

Uppercase letters represent themselves, and where given, Maus%. appear

exactly as written. Where information is to be supplied, a lowercase name
will appear, to be explained subsequently. Where items are optional, they are
enclosed in square brackets; where a choice of items is permitted, these are
shown one above the other. The spaces shown are nonrepresentative: the

characters begin in the first column and continue to the end of the format
line without spacing unless explicit spaces are indicated by the symbol b.

Each line ends with a sequence of two-carriage-returns-and-a-line-feed, not

SOFIWARE ENGIEERING PRINCtPLES 11-13

3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

shown. When an item is superscripted, it is repeated that many times;
superscript n means an indefinite repeat (but at least once).

FLl:

VZCZC origirn-route-part channel

where "origin-rote-part"' is a two-letter part of the originating routing code
(the 3rd-last and 2nd-last letters of the code), and "channel" is a
three-digit channel number.

FL2:

precedence origin-media dest-media class content-action b
sender-orig-route serial b date time b class 4 routing

where "precedence" is a single letter from a standard list, "origin-media" and
"dest-media" each 1-letter language media codes from a standard list, "class"
is the security classification letter from a standard list, "content-action"
is a four-letter identifier from a standard list, "sender-orig-route" is the
seven-letter routing indicator of the sender, "serial" is a four-digit number
supplied by the sender, "date" is the three-digit Julian date and "time" the
four-digit GCT at which the message was received for transmission, and
"routing" is the seven-letter routing indicator for the addressee.

FL3:

DE b sender-orig-route serial date time b year

FL4:

ZNR b class5 T [routing]

ZNY

11.5:
JAN

precedence b date time Z b ... b year b
DEC

where "year" is a two-digit value, e.g., 76 for the bicentennial year.

FL6:

IN b origin

where "origin" may be a routing indicator "sender-orig-route" or may be in
plain text.

11-14 S0.T-*D ENNGINEERING PRINCIPLES
3-14 August 1981

MP Detailed Modular Structure /Doc. MP.3

FL7:

TO b (routing / addressee ,n In.

where "addressee" is the plain text corresponding to the routing indicator it
follovs. (In the final addressee item, the period replaces the comma, and
similarly in FL8, 9.)

FL8:

[INFO b [routing / addressee,]n .]

1.9:

(XMT b (routing / addressee,]n .]

FL 1:

BT

FL 12:

class sub j-code text

vhere "subj-code" is a six-character code composed of the letter N and five
digits, surrounded by double slashes, and "text" is the message text.

FL13:

BT

FL15:

serial

FL16:

null If 7 M

where "null" is an empty line (but with the usual ending), "If" is a line-feed.

SOFTAREZ MGI=ZRInG PRINCIPLES 11-15
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

A sample message in this format:

VZCZCDB003

RTUZYUW RUCLDBA2355 1861200 UUUURUBELFA

DE RUCLDBA23551861200 76

ZLR UUUU

R 1861200Z JUL 76

PH CONNAVTELCOK WASHINGTON DC

TO RUEHLFA/ALCOM

BT

U//N09999//

HAPPY BIRTHDAY

BT

#2355

(8 blank lines)

11-16 SOFTWARE ENGINERING PRINCIPLES
3-14 August 1981

2

MP Detailed Modular Structure /Doc. MP.3

THE MESSAGE ANALYSIS MODULE (MA)

FUNCTION

The function of the MA module is to analyze a message to make sure that it
is a message in the sense of the AUTONOYS standard message syntax rules.
Before an incoming message is processed by the rest of the UGH MP system, MA
is called upon to make certain that the string being processed is indeed a
complete message and not a message fragment or some portion of more than one
message. All of the remaining modules in UGH MP may proceed on the assump-
tion that the text that they are processing is indeed a message and they need
not perform error checking. To increase reliability, MA is also used to check
outgoing messages. Y-A performs exactly the same analysis on an outgoing
message that it performs on incoming messages. This provides an additional
check that the other modules and the operator have done their work properly.
If MA finds that a message does not conform to the AUTONOYS :onventions, it
does not release it for transmission.

Non-messages are rejected by MA and then discarded from the system, unless
the message retention option with rejected-message log is included.

METHOD

The basic approach is to identify the components (format lines) of a
message, thereby making sure that all required components are present and
that each contains the information required. The possibility of transmission
errors on AUTONOYS channels, together with the redundant nature of the
AUTONOYS message conventions, makes it inadvisable and unnecessary to demand
that a message be perfect. The MA module uses a sophisticated point system to
determine the acceptability of messages. Every time that a message passes a
certain requirement, it receives a certain number of points. Potential
messages which receive at least 80Z of the required points are considered to
be messages and are passed on for further processing. MA may also improve a
message by making certain obvious corrections.

The message is first checked to determine that it contains Format Line 1,
which is required in all messages. In a perfect message, FLI begins with
"VZCZC". MA first checks for the first character being a "V". If the first
character is not a 'Y', it checks to see that the second character is a ""
if so, the checking continues, but if the first character is not "V" and the
second chareter is not "Z", MA checks to see if the second character is a '
or the first character is a "Z', which would mean that either the first
character of a message was lost or the second character of the message was the
actual first character. If either of those conditions are mot, the characters
in the message are renumbered; otherwise, the checking proceeds as if the
first character really was the first character but it is incorrect. In a
similar way, KA then goes on to check for the presence of "C", "Z", and "C".
Because these characters repeat themselves in this code, no check for
misalignment is made. If all five characters are present where expected, the

SOFTWARE ENGINEERING PRINCIPLES 11-17
3-14 August 1981

SEC. 11 /"MSSAGE PROCESSING (MP) SYSTEM

message is given five points. If by renumbering the characters one can find
at least four of the five characters on the proper positions, then four points
are given. If only three of the characters can be found, two points are
given; in all other cases zero points are computed.

The next component of 1 should be the 5th and 6th letter of the orig-
inator's routing designator. There are only 42 possible combinations in the
list of AUTONOYS routing designators, so a check is made to see if ti.e two
characters found are on that list of 42 combinations. If so, the message is
given two points; if not, it is given no points for this test. The last three
characters of FL1 are a three-digit channel designator. A check is performed
to make certain that the three digits found here designate one of the channels
being used by the system. If so, two points are given. If all the characters
are digits but the number is not a possible channel designator, one point is
given. If a non-digit is found, no points are given. The remainder of FLl is
spaces.

A search is next made for the beginning of FL2. This must be the message
precedence. There are six possible AUTONOYS precedence codes. If the first
non-blank character after the end of FLI is one of these six characters, that
position is assumed to be the start of 712 and two points are given. If the
first non-blank character is not a legal precedence code, a search is made for

the next non-blank character. If that is a legal precedence code, then it is
assumed that FL2 begins at that point (the message is corrected), and one
point is credited. If not, 12 is assumed to be missing and a search is made
for the start of FL3. One point is subtracted from the score of the message
if this occurs. The next two characters after the precedence are media
indicators. These are not checked. The third character, however, is a
security class indicator. If this indicates one of the five allowed security
classes, three points are given. If not, the two neighboring positions are
checked to see if they could be a security class. A match in either position
results in one point for the message, and message correction. Four spaces
after the security class, a routing indicator for the message originator is
expected. This is seven characters long and begins with "R". If the "" is

not present in the expected position, a check is made for the previous or
following character being an "W". If so, it is assumed that the routing
indicator has been found. Seven points are given for the routing indicator
being found where expected, five points if it is found one position off. A
check is now made to make sure that characters five and six are on the list of
42 possible 5th and 6th characters for routing indicators. If so, three
points accrue. If not, a check is made to see whether the 6th and 7th
characters of I% passed the test. If so, they are substituted for the
corresponding characters at this point. If these characters passed the test,
but were not the same as those in 71i, one point is subtracted from the score
and the FLl characters are substituted. The next four characters are a serial
number provided by the sending station. If these are all numeric, two points
are given. The following three characters must be a Julian date. A possible
Julian date receives two points, and today's date one more point. The next
four characters represent "time filed"; if all are numeric and a possible
time, two points are given. The following four characters must be the

11-18 SONARS EGIHZMRING PRINCIPLES
3-14 August 1981

HP Detailed Modular Structure / Doc. HP.3

security code repeated four times. If the same character is present four
times, and it is the same as the security found on position four of FL2, 10
points are- given. If the same character is present four times, but it is not
a legitimate security code, then two points are given and the FL2 code is
substituted. If it is present four times, is a legitimate code, but is not
the same as that found earlier, then (a) seven points are given, and (b) the
earlier security code is replaced. If the character is only present three
times, but it is a legitimate code, then six points are given. if this
character is not the same as that found earlier, the earlier one is replaced
and one point is substracted from the score. The next seven characters are
intended to be the addressee's routing indicator and must begin with "'. If
it is correct, 10 points are given. If the 'T' is incorrect, but the
remainder is correct, then nine points are given. If the "I" is present, but
the remaining code is incorrect in one or more positions, eight points minus
the number of incorrect positions are accumulated.

Format Line three is identified by the string "DE", followed by a space,
followed by the routing indicator of the originator. If this can be found,
the message is given 10 points. If a routing indicator can be found, but it
is not that which was found earlier, then seven points are given. If the
routing indicator is found, but the "DE" is missing, then six points are
given. The next four characters must be the sender's serial number again. If
this is found and matches that found earlier, then five points are given. If
four numeric characters are found but they do not match those found in FL2,
then three points are given. If any non-numeric characters are found, then no
points are given. The next characters must be a repeat of the Julian date.
A legal date which matches that found earlier brings seven points. A legal
date which does not match that found earlier brings four points. The
following four characters must be a filing time. If they are all numeric,
then three points are credited; if they are not numeric, no points are given.

Format Line four must begin with "ZNR" or :zNY". If this is found, eight
points are. cxdited. If it is found with one or two errors, four points are
credited. A search is then made for the classification repeated five times.
If the previously determined classification is found five times, 10 points are
credited. If it can be found three or four times, five points are credited.
If a legitimate code is found five times, but it is not the same as that
determined earlier, then five points are credited and the higher
classification is used. The other occurrences of the security code are
replaced by this higher classification.

MA continues in this fashion until the entire message has been processed.

After determining whether or not the message passes the tests (by
obtaining at least 80Z of the possible points), WCBs are prepared and sent to
other modules. A WCB is sent to the screening module. If this is an outgoing
message, a WCB is sent to the TO module. If the message has failed, WCBs are
sent to DC to remove the message from the system. In all cases, WCBs are sent
to the LM module to record the disposition of the message. A WCB is then sent
to the DC module requesting that it allocate disk space to store the corrected

SOFTUAI £NGIIUM IG I MCIPLS 11-19
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

message text. (DC will eventually do so and by a WCB will cause the DK module
to transfer the message to disk. DK will, on completion of this transfer,
send a WCB to DC which can then release the core space for the storage of an
incoming future message.) Before terminating itself, MA prepares an 14DB for
the message. This is allocated space by DC and stored by DK. The disk
address of the MDB for a message is always given in fields 15-17 of a WCB.

11-20 SOFTWARE, INGIN12RING PRINCIPLES
3-14 August 1981

S VS

MP Detailed Modular Structure /Doc. MP.3

THE SCREENING MODULE (SC)

FUNCTION

Once a string of characters, whether incoming or outgoing, has been
accepted by MA as an acceptable message, it must be screened to see if it is
intended for a recipient served by the installation. Outgoing messages must
be screened as well as incoming messages because messages may have multiple
addressees and some of those addressees may be at a location served by the
installation. The message text, as stored on the disk, is searched for the
addressees, and when they are found, a list is prepared in core. This is then
compared with the WATCH LIST obtained from the DC module. SC produces an
internal routing list, which is the intersection of the two lists (addressees
and WATCH). If this intersection is empty, and the message is incoming, SC
takes no action. Otherwise, WCBs causing further processing of the message
are prepared.

MTHOD

Since the addressees are to be found in Format Line seven and Format Line
eight, the first step is to find the starting location of Format Line seven.
This is done by proceeding stepwise through the message. The start of FL1 is
identified by the string "VZCZC". if this string cannot be found anywhere in
the first 20 characters, it is assumed to have been destroyed by noise. To
assist future modules in their processing, SC corrects the start of the
message by inserting VZCZC. The end of FLl is identified by the three digit
channel number. The start of FL2 is identified by searching for the
precedence code. The precedence code can be found in field 9 (Byte 27) of the
WCS. As a further check that FL2 has been found, the classification code is
checked for two characters after the supposed precedence code. The end of FL2
is identified by searching for the four occurrences of the classification code
and then the routing indicator. When these are found, it is assumed that we
are at the end of FL2 and the search for "DE" which indicates the start of
FL3, is begun. Having found this "DE", the end of FL2 is signaled by the
occurrence of seven digits in a row. FL4 is identified as the string "ZB" or
"ZNY", followed by five occurrences of the security class. Because FL5 is so
short, we search for the end of it as indicated by the clear-text month and
date. L6 must be clearly and certainly identified snce the information that
we are looking for begins in 1L7o FL6 contains "FM" allowed by a seven
letter routing indicator beginning with ft", or the originator in plain text.
The next non-blank character is assumed to be the start of 7n7.

The start of 1n7 is marked by a "TO", followed by a list of addressees
separated by comas. Each addresse consists of a routing code, followed by a
"I", followed by the identifier of the addressee. The program searches for
the "/", then writes in its working list all characters until it finds a ",".
It then searches for the occurrence of either a "/" or a ".". A "." indicates
the end of the TO list and 117. The start of FL8 is indicated by the string
"INFO". The addressees which are listed after this are listed in the same

SOMMVAZE ENGINNURIM PRINCIPLES 11-21
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

format. Hence, the same algorithm is applied, search for the "", copy the
addressee until "," or "." . The SC module handles information and action
(to) addressees identically.

After composing the list of addressees, SC sends a WCB requesting that DC
bring the WATCH LIST into its core area. It then terminates until it receives
a WCB, which informs it that the WATCH LIST is now in core. It then proceeds
to search for each of the addressees in the WATCH LIST. Each one that is
found is copied into a list. If this list is empty, then processing of
incoming messages stops, unless rejected message retention or the routing
indicator check option has been selected. For outgoing messages (and for
incoming messages, if one of these options has been chosen), the module next
requests that the routing indicator directory be brought into core. This is
done by means of a WCB to DC. The routing indicator directory contains a
routing indicator for all addressees of interest to the installation. Each
addressee is looked up in this directory, and the routing indicator is
compared with that found in the message. If it is different, the discrepancy
is reported to the operator who is given the opportunity to correct either the
message or the directory. An additional option allows the SC module to simply
add the routing indicator found in the directory to an outgoing message on the
assumption that the routing indicator in the directory is the correct one.

11-22 SOFTWARE EN EhRING PRINCIPLES
3-14 August 1981

MP Detailed Modular Structure /Doc. MP.3

THE MESSAGE COMPOSITION MODULE (CO)

FUNCTION

The Message Composition Module (CO) is one of the most significant new
features and innovations of MP. It is designed to take most of the drudgery
out of AUTONOYS communication. The characters in an AUTONOYS message can be
divided into three categories:

(1) Format characters (e.g., "VZCZC", "TO"), which are present in every
message and serve primarily to clearly identify message components.

(2) Redundant characters (e.g., nine repetitions of classification code,
second insertion of station serial number, etc.)

(3) Information characters: characters such as the message text, the
addressees, etc., which could not be deduced from the remaining text.

The purpose of the CO module is to spare the operator the work of typing
in anything but "real" information characters. The format characters are
automatically supplied by the CO module; the redundant characters are inserted
in the proper portions of the text as soon as the first piece of information
has been supplied. For example, once the message classification has been
input to the system, it can be inserted in the text automatically wherever the
AUTONOYS conventions require it. Even the routing indicators are redundant
information; CO requests the routing indicator directory and adds this infor-
mation to the message as soon as the addressee has been named.

METHOD

OP sends CO a WCB indicating that the operator is ready to input a
message. CO's first action is to send a WCB to DC requesting that core space
for message composition be supplied. Upon receipt of the WCB from DC, which
indicates where this core area is, CO initializes the message by writing the
characters "VZCZC" at the start of the core area. It also writes the 5th and
6th characters of the installation's own routing designator in core. It then
sends a VCB to the OP module requesting that the operator be prompted to state
the channel designator. The response WCB from OP should contain the three-
digit channel. If this is not on the list of possible channels, the operator
is prompted again (through OP, of course). A proper channel completes Format
Line 1 (nLl).

Next, a WCB is sent to OP which requests OP to prompt the operator for
message precedence. When this information is received, it is stored in the
MDS as well as inserted in the message being composed. Next, the operator is
prompted for a media code and this one byte code (either 'T', 'C', 'P', or 'Q')
is inserted twice in the message. Similarly, the operator supplies the
content-action code and the classification code. A direct request to EX
obtains a four-digit station serial number, which is then inserted in the

SOFTWARE ENGINEERING PRINCIPLES 11-23
3-14 August 1981

- It

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

message text as well as the MDB. The next step is to prompt the operator to
supply Julian date and filing time. This information is also checked to make
certain that it is feasible (possible date, time less than 2400, etc.), and
then inserted in the message text as well as the MDB. CO then goes on to
insert the message classification code four times in the text. The operator
is then prompted for the name of the first addressee. When this is received,
a WCB is sent to DC to bring the routing directory into a specified core area.
The addressee is looked up in the routing directory, and the routing indicator
(seven characters) is inserted in the text as well as stored in the MDB.

CO now is able to supply FL3 completely automatically, since it consists
of format information (DE), the originator's routing indicator (constant for
the system and already inserted in FL2), the station serial number, filing
date and time, which can be obtained from the MDB, having been supplied
earlier, and year. To obtain FL4, the operator is prompted for a three-
alphabetic-character t.ansmission (which must be "ZNR"), and then the

classification is inserted five times. FL5 is composed of the precedence,
date, and time once more, and then the month and year in clear text together
following a "Z". This is all supplied on the basis of previously stored
information (once a month the system must be reloaded with a new month and
year). FL6 is also supplied without bothering the operator since it consists
of the format information "FM" together with the name of the originating
station and/or its routing indicator.

CO continues in a similar way using information stored inside the system
together with a knowledge of the format to produce the message with the
minimum amount of operator intervention. Text editing facilities are provided
for the message text itself, but not for the fixed format information.

When the message has been completely composed, the operator is prompted

for a release number. When this is supplied and verified, a WCB is sent to MA
to check the message. Release by MA will result in a WCB to TO which will
control the actual transmission. WCBs are also sent to DC (to release storage
areas no longer needed), to LM (to make the appropriate journal entries), and
to SC, which checks the message to see if there are internal addressees.

VCTIVZ GROUP (EX, DK, DC)

These modules (along with TC and EC, not described here) are responsible
for control of UGH hardware devices. The primary device is the UGH processor,
which EX schedules; DK and DC wmage disk operations and allocation of disk
and core.

11-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MP Detailed Modular Structure /Doc. MP.3

THE SYSTEM EXECUTIVE (EX)

FUNCTION

The System Executive Module (EX) is central to the UGH MP system, yet
itself takes only a supporting role in that system. EX arranges for the
proper functioning of the modules that actually carry out the MP tasks.
Several MP resources are controlled by EX and dispensed as needed. Among the
EX resources, the UGH memory and logical and arithmetic processing units are
primary, and all others are of secondary importance. Examples of secondary
resources are the system clock and other centrally stored values such as the
date, and unique sequence numbers. In controlling the UGH processors, EX also
has control of hardware interrupts, and may itself perform a small amount of
processing as the initial part of interrupt service. An important special
class of interrupt service is response to software-initiated interrupts from
other modules requesting service.

METHOD

Nothing happens within the UGH MP system until an interrupt occurs. Then
EX takes control, and deals with the situation directly, or arranges that it
will be handled by another module, which EX schedules with a proper Work
Control Block (WCB).

The simplest kind of interrupt is a request from a running module. In
each such case, a code is provided to describe the necessary action. Simple
requests (such as for the time, or a unique sequence number) are handled and
dismissed imediately. The requesting module resumes as if it had merely
called a subroutine. Of course, the effect of the request often extends
beyond the requesting module; for example, the sequence number is updated.
More complex requests result in EX passing work to another module (not EX
itself). This is accomplished by generating an appropriate WCB, queuing it
against the aecessary module, and returning to the requesting module. If the
requestor must await the completion of the other module's work, it must
request termination (an iimediate EX service) following return from sending
the WCB; when the other module is done, it must send another WC to restart
the original requestor.

The MP modules operate as independent processes, but they differ from
arbitrary processes in a general-purpose operating system in that EX has full
information on each one and can predict the resource needs of each. This
information makes many of EX's tasks easier to perform. Further, preemption
of the processor is usually difficult, but EX never preempts a running process.

EX uses a first-come-first-served (FCFS) queuing scheme, with emergency
override. The queue order is determined by the list of pending WCB's, which
are kept in the order of request. When one module requests work from another,
a new WCB is appended to the end of this list. When a module terminates, the
first WCB in the list is examined, and if the needed module is in core, it

SOFTWARE ENGINEERING PRINCIPLES 11-25
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (P) SYSTEM

assumes control. If not, the queues of pending WCBs are examined, and the
core resident module which will be invoked last is removed from core. There
is one exception to FCFS queueing. A module may request "priority" service,
and have a WCB placed at the very head of the queue.

11-26 SOFITWA ENGINEEIING PRINCIPLIS
3-14 August 1981

HP Detailed Modular Structure / Doc. MP.3

THE DISK CONTROL MODULE (DK)

FUNCTION

Whenever a module requires the use of UGH mass storage (typically disk
packs, although this is dependent on the configuration), it sends a WCB to the
disk control module (DK), specifying the track and sector, the length (in
sectors), and read/write. DK does not check the address for validity for the
requesting module because addresses are obtained from the data control module
which verifies them (DC is the primary source of work for DK in any case).
Two modes of DK operation are available. First, the request can be an 1/O and
wait. The operation is started, and EX terminates the requesting module.
When the completion is signaled to DR, it sends a WCB to the requestor to
continue. Second, the request can merely start the disk operation by sending
a WCB to DK, but the requesting module continues to be READY. Later, the
module may ask EX if the request is yet finished and itself take appropriate
action. Use of the second kind of operation realizes a considerable saving
when a module can start its requests ahead of time or has other work to do
while the request is honored.

METHOD

DK uses the "scan" technique to manage multiple requests and minimize
positioning contention. While one request is in progress on the disk, a
number more may be queued. DK accepts their WCBs and forms a list of the
needed addresses in order of arm position. It then freezes this list
(additional arriving requests start a new one) and makes a "scan" across the
disk servicing the requests as their addresses pass under the heads. This
operation may reorder the requests slightly, but DK takes care to treat
multiple requests from the same module in the order they arrive.

SOMYRA ENGINERING PRINCIPLES 11-27
3-14 August 1981

SEC. II / MESSAGE PROCESSING (MP) SYSTEM

THE DATA CONTROL MODULE (DC)

FUNCTION

The Data Control Module (DC) has two related functions. First, it
allocates space on the disk for all modules. In this, it is something like
part of a general-purpose file system, although the spaces are not named
permanently. To obtain space, a module requests the size needed, and DC
returns the address of such a block. Deallocation of the space requires
another request. Similarly, DC allocates core memory for data. (EX allocat.
core for module code.)

The second DC function is also similar to part of a file system: DC knows
about certain data sets which are important to all phases of MP operations,
and aids modules in accessing these data sets. For example, the WATCH LIST is
a permanent part of any MP installation, and DC allocates the space for it.
But DC also allows modules to use the WATCH LIST without knowing its format or
disk address, as if it were a sort of "file" with variable blocking. A module
can thus simply "read" WATCH by sending a WCB to DC, and receive a buffer of
data in response. In a sense, each message within the system is a "file" of
this kind, since DC will access it for a module from its MDB.

METHOD

Space allocation on disk is done in variable-size segments that are a
multiple of a minimum unit. DC controls the available space by keeping a list
of addresses of the beginning and size of all in-use space. When a request is
made for space DC returns the first block (or part thereof) which is large
enough to meet the request. Although this operation can cause disk "checker-
boarding," the transient requests for space are not a significant fraction of
the total space in use and are of short duration. The space allocated to
longer-lasting items like the WATCH LIST, message texts, and logs is allocated
contiguously to avoiO, "holes." The two kinds of space work towards each other
from opposite ends of the address space - temporary allocations from the low
end, permanent allocations from the high end.

DC may also be called upon to allocate core memory for purposes that are
not clearly connected with a particular module (otherwise the core &s part of
the module itself, allocated by EX). The primary such usage is the memory for
messages themselves, allocated frou main memory in a manner similar to that of
temporary disk allocation. For the "permanent" data sets such as the WATCH
LISt, DC does not allocate tne memory Lnco which they are read. That is the
function of the module requesting the data, and DC merely calls upon DK to
perform the transfer. The requesting module must verify that the memory area
provided is adequate.

No actual disk operations are performed by DC, but rather by DK upon
receipt of a WCB containing a description of the operation. However, DC does
call itself to obtain memory space for buffers, and to allocate temporary disk
space (in particular to hold the available space list itself).

11-28 SOFTWARE NGINRItNG PRINCIPLES
3-14 August 1981

MP Detailed Modular Structure / Doc. MP.3

WORK CONTROL BLOCKS (WCBs)

The comunication mechanism between modules is the Work Control Block,
which any module can pass to any other (including itself) by means of an EX
request.

FORMAT OF A WCB (WORK CONTROL BLOCK)

WCBs are the primary means of co-mmunication between the modules of MP.
All requests from one module to another are made by composing a WCB in a
predetermined core area, then calling EX to send it to the recipient. Each
WCB concerns a specific message, and the WCB identifies the messagL of concern
both by means of the message identifier and by means of the disk address of
the message text.

In the following, the length of each WCB field is given in bytes.

FIELD # NAME LENGTH PURPOSE

0 SIZE 2 Size in bytes of this WCB

I SENDER 2 Identifies the sending module

2 RECIP 2 Identifies the intended recipient

3 REQ 3 Identifies the function requested of recipient

4 DSKTR 4 Determines the track # on disk where message is

5 DSKST 2 Determines position on track where message starts

6 DSKLN 3 Length of message text in sectors on disk

7 INNO 4 Serial number of message

8 CLASS 6 Classification # of message

9 PREC 1 Message precedence

10 ABOUT 7 Routing indicator of originator

11 SEC I Security code of message
12 DIRECT I I - incoming, 0 - outgoing
13 IRDSUTC 4 Starting position of internal routing list on disk

14 DSULN 2 Length of internal routing list in sectors

15 MDBTR 4 Disk address of MDB (track)

16 MDBST 2 Track position of MDB

17 MDBLN I Length of MDB in disk sectors

18 PRO I Queue priority of VCB

19 SEQ 4 Sequence number of WCB

20 REQDAT 0-10 Request-dependent data

SOTFTARE ENGINURI1G PRINCIPLES 11-29
3-14 August 1981

SEC. 11 / MSSAGE PROCESSING (MP) SYSTEM

?EI Description REQDAT Contents

1 Response to a previous WCB request SEQ of request and response data

2 Create new message None

3 Request core Size

4 Request temporary disk space Size

5 Request permanent disk space Size

6 Prompt operator Prompt query

7 Test and verify message None

8 Release core Address

9 Release disk Address

10 Transmit message None

11 Log data Log identification and data to
logged

12 Screen message None

13 Direct EX request Desired information

14 Disk operation (wait) Description of operation

15 Disk operation (proceed) Description of operation

16 "Read" permanent data set Data set identification and
buffer to use

17 "Write" permanent data set DaLa set identification and
buffer to use

18 Drive UGHTRANS UGETRANS function

19 Retrieval request None

20 Terminal read/vrite Data or pointer to it
on temporary disk

21 Terminal attention request None

11-30 SOFTWARE ENGINEERING PRINCIPL9S
3-14 August 1981

HP Detailed Modular Structure /Doc. 4P.3

x
CO DC

1)C 3 Al DK
1 4 -J 3 X sends WCB to Y
1_8 cype 3 REQ

DK 14EC

15 -- - -49 Y sends WCB toX

EC I_ I type 5 REQ

3 14 15
IR 1 . _jL

5 14 15

M 7J J_ oP

1 14 19 11 S

-p 6-- SC~i
16 14

Sc 124-j 1-i j - 12+~J TC

15 211

TC A TO

o ,-7 -20 ,-)
TO 1i-I-J

The REQ functions are listed below by number.

MP WCB ROUTING DIAGRM

SOFTWARE ENGINEERING PRINCIPLES 11-31
3-14 August 1981

MP.4 MP Improved Modular Structure

EXAMPLE DESCRIPTION

Introduction

The original modular structure of the MP demonstrates a number of serious
and fundamental violations of the information-hiding criterion for dividing
systems into modules. This results in the excessive complexity of the system,
as well as the fact that changes tend to involve many modules. Among the most
significant errors are:

1. Far too many modules are sensitive to changes in the external message
format. The descriptions of CO, MA, SC and TO all show a dependence
on the AUTONOYS conventions; these conventions are both complex and
subject to change.

2. Several modules have direct knowledge of di, '. characteristics and use
disk addresses. This makes it difficult to mse another type of -
storage device, should a better one become available.

3. Two different modules must know the data organization used in the
logs. Changes in the queries possible can have major effects on the
log maintenance required, and changes in the log organization will in
turn have major effects on the IR module.

4. The fact that resources are allocated by several modules without
comounication will make deadlock recognition and prevention quite
difficult.

5. The fact that the incoming data is modified by several modules during

their attempts to analyze it may result in subtle, hard-to-find errors..

The following is a proposal for an improved structure.

Modules

MR: Message Holder

This module is responsible for storage and retrieval of all messages.
All direct accesses to the internal representation of a message are serviced
by functions belonging to this module. The original storage of the message
and any subsequent modifications are performed by the functions belonging to
this nodule. The interface to this module is a set of functions allowing
other programs to store and access elements of a message, e.g., ST CHASEL
and GT CEhINEL to store and read the channel number in the message. The
special character sequences at the start of various format lines are no longer
considered part of the message and are not made available. Additioually, from

SOTWNRh EIWURING PRINCIPLES 11-33
3-14 August 1981

LI

SEC. 11 / MESSAGE PROCESSING (xP) SYSTEM

the set of functions available on the interface, one can no longer recognize
the order in which the various components appeared in the original text.

Further, one cannot test to see if a given item was present several times to
provide redundancy.

If messages must be stored on backup-score devices, the data is organized
in "pages" that are then stored and retrieved by PS.

El: External Interface Module(s)

This module is responsible for conversions between the actual message
format and the abstract format. If there are several external message formats
in use, there will be separate versions or subuodules for each one.

Programs in this module analyze the incoming text, which they find stored
in buffers, identify the components of the message and call programs in the

message holder module to store the information, making it available to other
modules.

When a message is being output, programs in this module call the functions

of the message holder module to get the contents of the message fields and

then arrange the information in the proper order with the appropriate
delimiters, storing the completed message in an output buffer.

If the transmission is noise free, the input programs and the output
programs are essentially complementary and have the same "secret". If the
input data is noisy, then the input programs require additional information

that is not needed by the output programs. The input programs must know the

expected frequency and nature of errors, in order to detect and correct errors

on the basis of redundancy.

CM: Comunication Modules

These modules know the communication protocols, including handshaking aM4
timing. Although they control transmission of messages on devices, they know
neither the structure of messages nor the details of device control. Incoming
messages go to, and outgoing messages come from, the external interface (II)
module. Programs in the equipment control (EC) module are called to tune the

device, change the frequency, etc.

SC: Screenins

This module fulfills the same function as the SC module in the old MP
structure, but it no longer requires detailed knowledge of the format, since
it uses the message holddr to get the contents of the addressee lists of
incoming messages.

The "watch list" is a secret of a submodule of this module. The submodule

contains programs to insert and delete watch list entries and to search the
watch list for a specific entry.

11-34 SOFTWARE EGINERRING PRINCIPLES
3-14 August 1981

MP Improved Modular Structure / Doc. MP.4

EC: Eqttipment Control

Controls UGHTIRANS devices.

TC: Terminal Control

This module controls the terminal devices. It knows how to read and write
characters, how to generate line feeds, etc. The module includes separate
submodules for each terminal type.

DS: Display Module

This module displays messages for the operators. A message can be either
received over the UGTRANS device or created with the text editor module. The
module knows how the fields of a message should be arranged in the display,
and it uses the message holder interface to get the contents of the fields.
It uses a terminal control module to write the characters to the device.

The module includes a separate submodule for each different display
format. The display formats will probably be quite different from the format
known by the external interface module.

TE: Text Editor

This module implements the comand language the operator uses to create
messages. It recognizes comands and generates prompts. When the operator
inputs a message field, the text editor stores the contents using the message
holder interface.

IR/LOG: Information Retrieval and Los Storage

We have combined the information retrieval and log modules into a single
module that understands the organization of the data that has been stored
about incoming and outgoing messages. This module does not deal directly with
background mmory but uses pess that are stored and retrieved by PS.

PS: Pae Storage

All memory and backup-store access is centralized in this module. It
keeps files in terms of pages.

*IC: Intermodule Comunication

This module is responsible for keeping the queues of ICBs betveen
components as they are needed. It was formerly a part of EX.

* These modules will be discussed in more detail later in the course.

SOTWhIE VGIURIWI PRINCIPLIS 11-33
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

*AL: Allocator and Scheduling

This module is the central allocator of all resources including core and
processors. It includes a "banker" to help prevent deadlocks.

*IH: Interrupt Handler

This module translates interrupts into signals for the various system
components.

Relation between the "old" modules and the new

1. The work of EX has been divided among IC, AL and IM.

2. MA work is now done by EI, using MH SET functions to store the resulting
information.

3. SC work is still done by SC, but the new SC is considerably simpler
because it uses the MR GET functions.

4. CO work is now done in the output submodules of El, which use the GET
functions of ME to get the information to put in the messages. The text
editor is now separate (TE).

5. TC's duties are carried out by the DS module, which uses the new TC module
to write the characters. Thus, the display format is separated from the
device characteristics. DS is simpler than the old TC because it gets
information for the display using the GET functions of MR.

6. EC now receives commands from the CQ module. The new EC is simpler than
the old because it knows nothing about when and why things are done, only
how they are done.

7. The duties of OP are divided among several modules, including DS, C1, and

TZ.

8. The work of TO is now performed by parts of MR, El and CH.

9. DC has been subsumed in PS and AL.

10. DK is now in PS.

11. LX and IR are now the single module IR/LOG, which uses PS.

12. Initialization is not a separate module, but
is performed by the

initialization routines for the individual modules.

* These modules will be discussed in more detail later in the course.

11-36 SOI'ARE ICOMING PRINCIPLES
3-14 August 1981

MP. 5 MP Message Holder Module

EXAMPLE DESCRIPTION

The following is an informal functional specification of the message
holder module.

Index of Function Descriptions

Function Page

BIND(mn) 11-38
BLANXIT (i) 11-38
GETACTIONORINFO 11-39
GET_ADDEE 11-39
GET CHANNEL 11-39

GET CLASS IFICATION 11-40
GETDAY 11-40
GET ORIGINATOR 11-40
GET ORIGINATOR ROUTING INDICATOR 11-41
GET PRECEDENCE 1.-41

GET ROUTING INDICATOR 11-41
GETSERIAL 11-42
GET TEXT(i,j) 11-42
GET TDME 11-42
E-WESSAGE (-n) 11-43

SET ACTION OR INFO(biJt) 11-43
SET ADDER (ad.T 11-43
Se-CAR () 11-44
SET-CLASSIFICATION(€) 11-4
SE DAY(d) 11-44

SET ORIGINATOR (c) 11-45
SET ORIGINATOR ROUTIGINDICATOR(r) 11-45
SEcT-PRECEDEncETP) 11-45
SET ROUTING INDICATOR(s) 11-46
ST- SERI.AL (G) 11-4

SET TEXT(i,js) 11-46
SET-TIME (c) 11-47

SOFI'T EGINEERiNG PRNmCIPUS 11-37
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

1UNCTION CALLING FORM: BIN(mn)

INPUT ?PARMETERS:

Name Type Description

mn message message to be accessed next
identi-
fication

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: message designated by mn is bound. Future calls of message
information functions refer to this message

FUNCTION CALLING FORM: SLANKIT(i)

INPUT PARAMETERS:

Name T1ye Description

i integer position to be blank

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: the ith character is removed

11-38 SOFTWMAR KUI12NIM F CIPIES
3-14 Auguat 1981

MP Message Holder Module / Doc. MP.5

FUNCTION CALLING FORM: GET ACTION OR INFO

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: 0 = action required
I - information only

EFFECTS: none

FUNCTION CALLING FORM: GET ADDEE

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string - 6 characters

FUNCTION VALUE: message addressee

EFFECTS: none

FUNCTION CALLING FORM: GET CEAN~NE

INPUT PARAMETERS:

Name Type Description

noue

FUNCTION VALUE TYP: integer

FUNCTION VALUE: channel on which message was received viii be sent

EFFECTS: none

SOTARK 9=11URI G PRINCIPLES 11-39
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORLM: GET CLASSIFICATION

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: charac ter

FUNCTION VALUE: classification of message ("T" TOP SEC,
"S" - SEC, etc.)

EFFECTS: none

FUNCTION CALLING FORM: GET DAY

INPUT PARAMETERS:

Name Type Desiription

none

FUNCTION VALUE TYPE: date

FUNCTION VALUE: day message was received for transmission as indicated
in message text

EFFECTS: none

FUNCTION CALLING FORM: GET ORIGINATOR

INPUT PARAMKETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string

FUNCTION VALUE: code of originating organization in message

EFFECTS: none

11-40 SOTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MP Message Holder Module / Doc. MP.5

FUNCTION CALLING FORM: GET ORIGINATOR ROUTING INDICATOR

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string - 7 characters

FUNCTION VALUE: routing indicator for originating organization in message

EFFECTS: none

FUNCTION CALLING FOLM: GET PRECEDENCE

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: precedence of message

EFFECTS: none

FUNCTION CALLING FORM: GET ROUTINGINDICATOR

INPUT PARAMETERS:

Nm TYe Description

none

FUNCTION VALUE TYPE: string - 7 characters

FUNCTION VALUE: routing indicator in message

EFFECT S: none

SOFIArE EnGI RIn PRINCIPLES 11-41
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: GET SERIAL

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: serial number in message

FECTS: none

FUNCTION CALLING FORM: GET_TEXT(i,j)

INPUT PARAMETERS:

Name Type Description

i integer starting location
j integer ending location

FUNCTION VALUE TYPE: string

FUNCTION VALUE: the string of characters between positions i and j in text

EFFECTS: error call if no such characters in text

FUNCTION CALLING FORM: GET TIME

INPUT PARANMTERS:

Nam Type Description

none

FUNCTION VALUE TYPE: time of day

FUNCTION VALUE: time at which message was received and filed according

to message

EFFECTS: none

11-42 SOFTWARE UG INMRING PRINCIPLES
3-14 August 1981

MP Message Holder Module /Doc. MP.5

FUNCTION CALLING FORM: NEWMESSAGE (mri)

INPUT PARAMETERS:

Name Type Description

mn integer unused integer identifier to be associated with
new message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: bound message is now mn - all functions are reset

FUNCTION CALLING FORM: SET ACTION OR INTO(bit)

INPUT PARAMETERS:

Name Tpe Description

bit boolean type of addressee to be stored in message
0 - ACTION
I - INFORMATION

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: ACTION ORINFO - bit

FUNCTION CALLING FORM: SET ADDEE(ade)

INPUT PARAMETERS:

Same Type Description

ads string addressee to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: addressee is added to message stored

SOITWRZ ENGINEERING PRINCIPLES 11-43
3-14 August 1981

SEC. 1 / MESSAGE PROCESSING (4P) SYSTEM

FUNCTION CALLING FORM: SETCHAIEL(c)

INPUT PARMETERS:

Name Tye Description

C integer channel # to be stored in the message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: channel stored in the message

FUNCTION CALLING FORM: SETCLASSIFICATION(c)

INPUT PARAMETERS:

Name Type Description

c character security classification to be assigned
to message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: security classification c is stored in message text

FUNCTION CALLING FORM: SET DAY(d)

INPUT PARAMETERS:

Name Type Description

d date date to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: day of filing is stored in the message

11-44 SOFTARE ENGINEERING PRINCIPLES
3-14 August 1981

MP Message Holder Module /Doc. MP.5

FUNCTION CALLING FORM: SET ORIGINATOR(c)

INPUT PARAMETERS:

Name Type Description

c string originator to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: originator c is stored in message

FUNCTION CALLING FORM: SET ORIGINATORROUTING INDICATOR(r)

INPUT PARAMETERS:

Name Type Description

r string routing indicator of originator to be stored in
message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: the routing indicator is -iored in the message

FUNCTION CALLING FORM: SET PRECEDENCE(p)

INPUT PARAMETERS:

Name Type Description

p integer precedence to be assigned to message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: message precedence is set

SOFTWARE ENGINERIN PRINCIPLES 11-45

3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (HP) SYSTEM

VUNCTiON CALLING FOLM: SETROUTINGINDICATOR(s)

INPUT PARAMETERS:

Name Type Description

s string-7 characters routing indicator to be in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: routing indicator is inserted in message

FUNCTION CALLING FORM: SET.SERIAL(n)

INPUT PARAMETERS:

Name Type Description

n integer serial number to be set in message

FUNCTION VALUE TYPE: none

FUNCTIOW VALUE: none

EFFECTS: serial number is inserted in message

FUNCTION CALLING FORM: SET TEXT(i,j,s)

INIPUT PARAMETERS:

Nme Type Description

i integer starting point for insertion of new textj integer end point of new text
9 string text to be inserted in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: 9 will be inserted between the ith and jth character of TEXT

11-46 SOFWARZ ENGINNERING PRINCIPLES

3-14 August 1981

MP Messaze Holder Module /Doc. XP.5

FUNCTION CALLING FORK!: SETTIME(t)

INPUT PARA,.EETERS:

Name TyeDescription

t time of day time to be stored in messag-e

FUNCTION VALUE TYE: none

FUINCTION VALUE: none

EFFECTS: time of filing is stored in message

SOFTWARE ENGINEERING PRINCIPLES 11-47
3-14 August 1981

MP.6 MP Abstract Interface Module

EXAMPLE DESCRIPTION

Introduction

This paper describes an abstract interface module for the MP system. The
format of messages transmitted over the AUTONOYS communications network is
defined by the AUTONOYS designers; the HP implementors will probably not be
consulted about future format changes. The abstract interface module is
intended to insulate the rest of the MP system from format changes: if the
message format chanLes, only the code in the abstract interface module should
need to change.

Designing an abstract interface module consists of two phases:

(1) compiling a list of assumptions about the information that w - be
transmitted through the interface, and getting the list reviewed;

(2) designing the access programs provided by the abstract interface
module.

The access program provide a syntax for comunication based on the
assumptions. Since the two are closely related, a change in the assumptions
will require a corresponding change in the access programs.

The abstract interface module for MP should be based on assumptions that
are not likely to change. Consequently it should not be based on specific
characteristics of AUTONOYS, such as the order of message fields, the control
characters separating fields, or redundancy included for error checking. The
interface should be sufficiently general to apply to any message transmission
protocol that might reasonably be used to transmit messages to and from the HP
system. Care must also be taken that each assumption on the list is both a
necessary requirement for the interface and not unduly restrictive.

SOlNAI 110INURIM PRINCIPLS 11-49

3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

Description of the MP Abstract Interface Module

Figure 1 shows how an abstract interface module is used in the MP system.

The applications programs in node A construct a message by calling SET access

functions provided by the HP abstract interface module. Programs within the

abstract interface module in node A arrange the fields in the correct order,

duplicate fields that appear more than once in the message, insert control

characters, etc. After the message has been transmitted to node B, programs

wichin the abstract interface module in node B extract the fields from the
stream of characters received over the communications line. Node B
applications programs can read fields in the message by calling GET access

functions provided by the abstract interface module.

Figure 1. Flow of Information Between MP Modes

Node A of MP System ;- 'ode B of MP System

Creates Message Receives Message

ABSTRACT Tunl- ABSTRACT UITZR-
FACE MODIX FACE MODULe

Applications essage Extern4l External Message IApplicatiolol
Programs Holdet interface Interface Holder Programs

program Programs Coinication Programs Programs
line

SKT Store GET Extract Store GET

fields W fields 40fields; informa- fields fields
format tion;
message S ET

fields-

11-50 SOmI'R UGnmERLo PRIIUPLES
3-14 August 1981

. I . . . [. I l I I I mi..

MP Abstract Interface Module /Doc. MP.6

As shown in figure 2, the two applications programs can be written as if
they could exchange information directly; the fact that the information must
be formatted into AUTONOYS messages, sent over a communications line, and
extracted from the message is hidden from them.

Figure 2. Message Communication as it Appears to Applications Programs

Applications Applications
Programs at SET GET Programs at
Node A: fields fields Node B:
Create Message Receive Message

The same abstract interface module is used to format outgoing messages and
to extract information from incoming messages, since both activities need the
same secret; i.e., the message format. This module contains two submodules:
the message holder (MR) and external interface (El). Both submodules are
described in the paper about the improved MP module structure (MP.4).

SOARZ MMURING PRINCIPLES 11-51
3-14 August 1981

SEC. II / MESSAGE PROCESSING (MP) SYSTEM

Semantic Information in the Assumution List

Semantic knowledge about messages should be an agreement between the
applications programs that put information into the message and the
applications programs that take information out of the message. However, the
semantics of the message are of no concern to the implementor of the abstract
interface module; he should not infer any additional assumptions by believing
he understands message semantics. Therefore there should be two assumption
lists, a semantic list for the applications programs, and a syntactic list for
both the abstract interface module and the applications programs. For
example, the following assumption is not a proper assumption for the
implementor to make, even though it must appear in the semantic list:
"Messages may contain declassification information that indicates when the
message should be downgraded." The fact that the declassification information
states when the message should be downgraded is not a concern of the abstract
interface module implementor; he need only know whether his module needs to
enforce any restrictions on the declassification values. Leaving the
semantics out of the assumption list for implementors will discourage them
from inferring such assumptions as:

declassification information is represented as dates
and all such dates will be future dates.

However, if it is a requirement that the interface module verify that all
declassification dates are in the future, then an assumption to that effect
should be explicitly included in the assumption list for the implementor.

Semantic information should be included in a separate assumption list
meant only for the applications programs; this list defines terms, relates the
assumptions to the environment of the applications programs, and shows how
each field should be interpreted. The semantic assumption list is omitted
from this document.

11-52 SOFMWAZE EUGnIURING PKINCMPLU
3-14 August 1981

MP Abstract Interface Module /Doc. MP.6

Use of Data Types to Simplify Specifications

To specify access functions provided by a module, it is often necessary to
place restrictions on the variables that are passed as parameters to or
returned by access functions. We define a set of data types in order to
express these restrictions concisely and precisely. By associating each value
with a data type, we can define the set of legal and meaningful access
function calls in a simple and compact manner. For example, the MP abstract
interface specifications refer to variables that have the data type time.
Restrictions on variables of type time are defined in one place; all ariables
of type time that are passed as parameters or returned as function values must
conform to these restrictions.

If the module is implemented in a modern prograuing language with
user-defined data types, data types used in the specifications can also be
used in programs so that the programmer can take advantage of type-checking
capabilities in the compiler. If we use a more conventional language such as
FORTRAN, we can rely on the programmers or we can provide type-checking by
means of preprocessing and/or run-time checking with calls to error routines.

The use of data type references in specifications does not imply an
implementation requirement.

The data type definitions must provide a way for the applications programs
to create and refer to variables of specific types. These are simple for
conventional data types: character strings are represented by strings of
characters and integers by integers. For more novel data types like date and
time, we provide functions that convert integers or character strings into
variables of these types.

The three functions in figure 3 are provided to create date and time
variables from integers and strings. Note that two date conversion functions
are provided; if the parameters represent the same date, the two date
functions produce variables with the same value. Thus a date variable
representing July 4, 1916 can be produced either by calling JULIAN (76, 186)
or by calling DAVMOYR (4, July, 76).

SOFTWARI ENGUIURING PNC'IPL 11-53
3-14 August 1981

SEC. 11 MESSAGE PROCESSING (MP) SYSTEM

Figure 3. Data Type Function Specifications

FUNCTION CALLING FORM: JULIAN (year, day)

INPUT PARAMETERS:

Name Type Description

year integer year in the 20th century

day integer day in year

FUNCTION VALUE TYPE: date

FUNCTION VALUE: date represented by the two input parameters

FUNCTION CALLING FORM: DAYMOYR (day, month, year)

INPUT PARAMETERS:

NLaM Type Description

day integer day in month

month string name of month

year integer year in 20th century

FUNCTION VALUE TYPE: date

FUNCTION VALUE: date represented by the three input parameters

FUNCTION CALLING FORM: CLOCK24 (hour, =in)

INPUT PARAMETERS:

am Type Description

hour intezer hour of day in 24-hour clock

sin integer minutes after the hour

FUNCTION VALUE TYPE: time

FUNCTION VALUE: time represented by the two input parameters

11-54 SOFTARZ ENGn RING PRINCIPLES
3-14 August 1981

MP Abstract Interface Module /Doc. MP.6

The table below lists the data types used in the abstract interface
specifications that follow.

Type Meaning Example

integer a conventional integer 3

boolean variable which can take TRUE, FALSE
two values: TRUE and FALSE

character an alphanumeric character c, xt z9 I, p

time variable from which hour, CLOCK24(13,15)
minute can be determined

date variable from which day, month JULIAN(76,186)
and year can be determined DAYMOYR(4,JULY,76)

string string of characters birthday_message,
congratulations,
please send money

ARchar single character, two legal A, R
values: A and R

SOFTWARE ENGnEERZING PRINCIPLES 11-55
3-14 August 1981

iL~~- - _ _- 1 _ _-

SEC. 11 I MESSAGE PROCESSING (MP) SYSTEM

MP ABSTRACT !NTELVACE MODULE: ASSUMPTION LIST

In the assumption list that follows, various parameters are used in order
to defer decisions that are better made during implementation or at system
generation time. These parameters characterize the message holder in a
particular node of the MP system; the parameters may take different values in
different nodes. These parameters are:

AXmsg the maximum possible number of messages in the
message holder

MAXline the maximum number of lines in a message

MAXchar the maximum number of characters in one line of a
message

MAXaddressee = the maximum number of addressees in a message

MAXto list - the maximum number of addressees that the message
may contain in a TO line

MAXinfo list the maximum number of addressees that the message
may contain in an INFO line

MAXxnt list the maximum number of addressees that the message
may contain in an XMT line

11-56 SO AR ENGINEERING PRINCIPLES
3-14 Augst 1981

MP Abstract Interface Module / Doc. MP.6

ASSUMPTIONS

1. The message holder can contain both received messages and created
messages. Received messages arrived over the communications line;
created messages are being contructed at this node. It will be
possible to distinguish between them. (A node may transmit a message
to itself; the message will be treated as if it were received. The
created version of the message will also be accessible until it is
destroyed (see assumption 5).)

2. After starting to create a message and before the message is
destroyed, other messages may be ;reated or received. There will be a
maximum of MAmXag messages in the messaqe holder at a time.

3. Information in received messages cannot be altered (only GET functions
are permitted).

4. Information in created messages may be read or written (both GET and
SET functions are permitted).

5. Message information is accessible until the message holder module is
given a command to destroy the message. (The message holder makes no
assumptions about how long to retain messages or whether to delete
messages when they are transmitted.)

6. Received message information is not accessible from the message holder
until the message holder is given a name to associate with the
message. The message holder indicates whether or not there are any
received messages waiting to be named.

7. Each message contains at most MAXline number of lines.

8. Each message line has at most MAXchar items of type character.

SOFTWARE ENGINEERING PRINCIPLES 11-57
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

9. The following information may be found or placed in a message.

Item name. Number in completed message Type

addressee at least one string

at most 1Waddressee

origin route part exactly one strial

channel id exactly one integer

precedence exactly one string

origin media exactly one strina

dest media exactly one srinl

classification exactly one string

content action exactly one string

senderorigroute exactly one string

serial exactly one integer

date received exactly one date

time-received exactly one time

addressee-route exactly one string

to-list at least one string
at most MA.Xto list

info list at most M"info list string

mt list at most MA nt list string

subject-code exactly one string

text evea-el"v Q-0 string

originator exactly one string

11-58 SOFTWARI ENIMRING PRINCIPLS
3-14 August 1981

MP Abstract Interface Module /Doc. MP.6

MP ABSTRACT INTERFACE MODULE: ACCESS FUNCTION SPECIFICATIONS

This section specifies the access functions provided by the HP abstract
interface module. The function specifications will require alteration if the
assumption list is changed.

Undesired events are handled in the following specifications via calls to
user-supplied trap routines. The routine names suggest the nature of the
undesired event that occurred. This mechanism allows us to delay specifying
the action that should be taken in exceptional circumstances until the trap
routines are designed.

FUNCTION CALLING FORI4: GETNUMBEROF MESSAGES MODULE: MR

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: Number of messages currently in the message holder. This
number is at most Msg-

INITIAL VALUE: 0

EFFECTS: None

FUNCTION CALLING FORM: ISCREATE!)_STATUS(msg) MODULE: MR

INPUT PARAMETERS:

Name Tye Description

meg string an identifier associated with a message

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: TRUE if msg is a created message; FALSE if mag is a received
message

EFFECTS: If mg is not associated with a message in the message holder then
UE NO MSG is called.

SOTIWADZ ENGINEERING PRINCIPLES 11-59
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: CREATE(msg) MODULE: MH

INPUT PARAMETERS:

Name Tye Description

msg string an identifier to be associated with the newly
created message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If GET NUMBEROF MESSAGES - MAXmsg then UE TOO MANY MSG is
called.

Otherwise, a new message is created and associated with the string
msg. GET NUMBEROF MESSAGES is incremented by 1.
IS CREATED STATUS (ms g)-TRUE

FUNCTION CALLING FORM: IS WAITINGMESSAGE MODULE: MR

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: TRUE if any messages have been received but not named.
FALSE if no messages are wait:ing to be named.

EFFECTS: None

11-60 SOFTAR INE=RI= PRINCIPLES
3-14 August 1981

MP Abstract Interface Module / Doc. MP.6

FUNCTION CALLING FORM: NAME MESSAGE(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

mag string an identifier to be associated with the newly
received message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If GET NUMBEROF MESSAGES - MAXmsg then UE TOO MANY MSG is
called. If IS WAITING MESSAGE = FALSE thin U-ENOAITINGMESSAGE
is called

Otherwise, a received message is associated with the name msg.

GET NUMBEROF MESSAGES is incremented by 1.
IS CREATED STATUS(msg)-FALSE

FUNCTION CALLING FORM: DESTROY(msg) MODULE: MH

INPUT PARAMETERS:

Nme Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If msg is not associated with a message in the message holder then
UER10MSG is called.

Otherwise, mg is no longer associated with a message in the

message holder. GET NUMBEROF MESSAGES is decremented by 1.

SOFWNAR ENGINEEING PRINCIPLES 11-61
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

The notation GET-@ and SET @ denotes a set of access functions where each
string in the following list may be substituted for @ to obtain a particular
function. Additionally, the parameter type for each access function may
differ depending on the value of @. These differences are indicated in the
#-type list below.

In the following function specifications substitute the following alues
for @ and #. Whenever @ is used and a # symbol appears in the specification,
substitute the corresponding type. For example, in SET @(msg,parm), if @ is
SERIAL, then # is integer; the resulting function is SET.SERIAL(msg,parm) and
parm must be an integer.

@ #-type

ORIGIN ROUTEPART string

C ANNELID- integer

PRECEDENCE string

ORIGINMEDIA string

DEST MEDIA string

CLASSIFICATION string

CONTENT ACTION string

SENDER ORIGROUTE string

SERIAL integer

DATE CREATED date

TIM- CREATED time

ADDRESSEE ROUTE string

SUBJECT-CODE string

TEXT string

ORIGINATOR string

11-62 SOFTWAR ENGINEIRING PRINCIPLES
3-14 August 1981

MP Abstract Interface Module / Doc. MP.6

FUNCTION CALLING FORM: SET.@(msg,parm) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

parm # the item to be stored in the @-field of msg

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If mag is not associated with any message in the message holder,
then UE NO MSG is called. If IS CREATED STATUS(msg) - false, then
UEGET ACCESSONLY is called. -

Otherwise, the @-field of msg is set to parm. If the @-field has
previously been set then the @-field is overwritten with the new
value.

FUNCTION CALLING FORM: GET @(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: #

FUNCTION VALUE: the @-field of the message associated with mg

EFFECTS: If mag is not associated with a message in the message bolder then
U NO MSG is called. If this field has not been set in the message
associated with mg then UOCO.. is called.

SOFTWAE ENGINEERING PRINCIPLES 11-65
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

In the following function specifications substitute the following values
for $. Each list contains up to MAX$ pairs of variables; one variable is
the routing indicator, the other an addressee identifier.

_-

INFO LIST

XMTLIST

TO LIST

FUNCTION CALLING FORM: GET NUMBEEOF_$(msa) MODULE: MR

INPUT PARWETERS:

Name Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: the number of $-list pairs in msg. This number is at most

MAX$.

EFFECTS: If msg is not associated with a message in the message holder, then

UENO MNSG is called

11-64 SOTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MP Abstract Interface Module / Doc. MP.6

FUNCTION CALLING FORM: SET_$(msg,route,addressee) MODULE: MR

INPUT PARAMETERS:

Name Type Description

meg string the identifier of a message in the mesage holder

route string the routing indicator to be stored in the next $
pair of the message

addressee string the addressee identifier to be stored in the next
S pair of the message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If mseg is not associated with any message in the message holder,
then UE NO MSG is called. If IS CREATED STATUS(msg) FALSE, then
TM GET ACCESS ONLY is called. IT GET NUMEEROF $(msg) M HAX$,
then lIE TOO MANY_$ is called.

Otherwise, route and addressee are set in a pair appended to the
contents of the $-field of meg and GET NUMBEROF $(msg) is
incremented. If there were no previous items in the $-field, then
this pair is the first.

t4..

SO7WARI E3GIURi',C PIIWCIPLES 11-65
3-14 August 1981

SEC. 11 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: GET$(msg,infotype,i) MODULE: MH

INPUT PARAMETERS:

Name Type Description

mag string the identifier of a message in the message holder

infotype ARchar whether addressee or route component of the pair

integer the number of the pair in $-list

FUNCTION VALUE TYPE: strin

FUNCTION VALUE: if infotype - A then the ith addressee in the $-list
if infotype = R then the ith route in the $-list

EFFECTS: If msg is not associated with any message in the message holder,
then UE NO MSG is called. If i it 0 or i gt GETNUMBEROF_$(msg),
then UE..BAD_$NO is called.

11-66 SOFTWARE ENGINERIN PRINCIPLES
3-14 August 1961

MADDS. 1 The Military Address System (MADDS)

EXAMPLE DESCRIPTION

MOTIVATION

Many organizations maintain lists of names and postal addresses in a

computer. In simple applications, the whole list is used to generate a set of
mailing labels or "personalized" letters. In other applications, a subset of
the list is selected according to criteria believed to identify individuals
most likely to be interested in the contents of certain mailings. For
example, a publisher who wishes to offer a new magazine called Tax Loopholes
might want to select addresses for persons with medical degrees. Others might
want to select all persons within a particular geographic area (consider a
magazine like Southern Living, for example), while still others might be
interested in persons with specific first or last names.

The address lists can be obtained from various sources, such as magazine
subscription departments, and are generally delivered on a medium such as
magnetic tape. Data from different sources are likely to appear in different
record formats.

The general task for any software system that processes such a list is to
read the input data in a specified format, extract the desired subset of the
list according to specified criteria, and print that subset in a spacified
format.

A general address-list-processing system is an example of an embedded
system; that is, one which is subject to arbitrarily changing constraints,
outside the designer's control. The input format is determined by the
designers of the system that produced the tape, and the output format is
constrained by the requirements of the postal system in which the mail will be
deposited.

THE MILITARY ADDRESS SYSTEM (MADDS)

MADDS is a simple address-processing system. MADDS has three sys:em
interfaces pictured below:

SOFTWARE ENGINEERING PRINCIPLES 12-1
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MWADDS)

' ~~~~~~User '[D aln

Address list
generator

An important element in understanding MADDS functioning is the data object
ADDRESS STORAGE. It is a data base of addresses that MADDS processes. MADDS
builds this data base by reading a list of addresses supplied by the address
list generator.

User Interface

Inputs. None.

Outputs. There is one possible output from MADDS to the user - a warning
that the system has terminated execution because an undesired event (UE) was
detected. The warning message will identify the UE and where it was detected
in the MADDS software.

Address List Generator Interface

Inputs. There is only one input to MADDS - a file or list of addresses
of high-ranking DoD civilian personnel and military officers. (See MADDS.2.)
Currently, there are at most 30 addresses in the list. MADDS reads this file
into ADDRESS STORAGE prior to producing any mailing lists.

Outputs. None.

Mailing System Interface

Inputs. None.

Outputs. There are two outputs: a list of addresses of persons within
the ZIP-code area 203 _, and a list of addresses of persons at or above the
O-grade 6. The follo-ng table explains DoD O-grade levels.

12-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The Military Address System (MADDS) /Doc. MADDS.1

O-GRADE LEVELS

Service: USA USN Civilian
USAF
USMC

O-grade Title Title GS Level

01 2LT ENS 07
02 ILT LTJG 08, 09
03 CAPT LT 10, 11
04 1W LCDR 12
05 LCOL CDR 13, 14
06 COL CAPT 15
07 BG RADM 16
08 MG RADM 16
09 LG VADM 17
10 GEN ADM 18

The format of both output lists is described in MADDS.2. MADDS generates the
lists from addresses in ADDRESS STORAGE whenever requested by the user. There
is no requirement on which list is output first; that is, there is no

requirement that the O-grade application be done after the area application.
Indeed, there is no requirement that there be separate applications.

Likely Changes

1. The format of the address list input from the address list generator can
change (see MADDS.2).

2. The format of the address lists output to the mailing system can change
(see MADDS .2).

3. The actual ZIP-code area and 0-grade limit used in producing the address
lists output to the mailing system can change.

4. The maximum number of addresses in the addre;s list input from the address
list generator can increase or decrease.

5. The input and output devices can be replaced by ,imilar devices.

6. The order in which the output lists are produced may become important.

SOFTWARE ENGINEERING PRINCIPLES 12-3
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

THE MADDS PROGRAMING ASSIGNMENT

There are four things that will happen.

i. First, you will identify the modules of MADDS.

2. After that, you will be given a set of informal interface specifica-
tions for the MADDS modules identified by us. You will study these
specifications and satisfy yourself that they are complete. All
questions should be resolved before you continue.

3. The class will be divided into two-person teams. Each team will be
assigned the responsibility of implementing one of the modules of the
system, as defined in its interface specifications. Implementation
information and documentation conce-ning the local programming
environment will be distributed.

4. Finished modules will be chosen in various combinations to create a
running MADDS system, demonstrating the value of carefully chosen and
properly specified modules.

12-4 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

7 AD-AI13 415
NAVAL RESEARCH

LA WASHINGTON DC
F/6 9/2

S3iOFTWARE ENGINEERING PRINCIPLES 3-14 AUGUST 1981.1U)
AUG 81 L J CHNURA. P C CLEMENTSUNCLASSIFIED NL

1 11112.0

1321

M f RI '41 JIII1N 114 hlfARI

MADDS.2 Input and Output Formats

EXAMPLE DESCRIPTION

M%1ADDS INPUT FORMATS

The list of addresses input to HADDS can be read in character by
character. Addresses follow directly after one another without intervening
characters. Each address consists of 11 fields. The fields follow directly
after one another without intervening characters. The order of the fields is
still uncertain at this point. The most likely order is specified by the
following table.

Field Size
(Number of

Field Name Characters) Content(l)

I Title 4 E.g., "Mr.", "Ms.", "Dr.",
"CAPT", "capt"(2)

2 Last Name 15
3 Given Names 20 Two strings separated by at

least one blank; first string is
first name, second is middle

4 Branch or Code 20
5 CoIand or Activity 20
6 Street or P.O. Box 20 E.g., "P.O. Box 208"
7 City 20
8 State Abbreviation 2
9 Zip Code, APO code, 7 Contiguous decimal digits

or FM0 code
10 GS Level 2 "01", "02", ... , "18"(3)
11 Branch of Service 4 "USA", "USMC", "USN", "USAF" or

an upper-lowercase variant

The last address of the file is fake, having only a title field consisting
completely of asterisks. It is an end-of-file marker.

(1) The value of any field can be an all-blank string. If the value of a
field is not an all-blank string, then its first character will be
non-blank (i.e., values are left Justified). Any example field value
shorter than the field size should be considered to be padded on the right
with blanks.

(2) An officer rank appears when and only when the Branch of Service field is
non-blank.

(3) Field is blank when Branch of Service field is non-blank and is non-blank
only when Branch of Service field is blank.

SOFTWARE ENGINRING PRINCIPLES 12-5
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

Another likely order of the input fields is specified by the table below.
The last address of the file is still fake, having only a command or activity
field consisting of asterisks.

Field Name

1 Command or Activity

2 Street or P.O. Box

3 City

4 State Abbreviation

5 Zip Code, APO code, or FPO code

6 Title

7 Given Names

8 Last Name

9 Branch or Code

10 GS Level

11 Branch of Service

12-6 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

S' I

Input and Output Formats /Doc. MADDS.2

M-JDS OUTPUT ?ORMATS

The specifications for the MADDS output format are not fixed. It is
likely that each address produced by I4ADDS should adhere tc the following:

Line 1: Title
single blank
Given Names
single blank
Last Name

Line 2: Branch or Code (BOC)

Line 3: Comnand or Activity (COA)

Line 4: City
coama
single blank

State Abbreviation
single blank
Zipcode

Trailing blanks in a field should not be printed. Addresses are separated
from one another by five blank lines. Each output line is to begin in the
first column.

But, it is also possible that the output format specified below will be

required:

Line 1: Command or Activity (COA)

Line 2: City
comma

/ single blank
State Abbreviation

Line 3: Street or Post Office

Line 4: Last Name

Trailing blanks in a field should not be printed. Addresses are separated
from one another by three blank lines. Each output line is to begin in the
first column.

SOFTWARE ENGINEERING PRINCIPLES 12-7
3-14 August 1981

MADDS0 .3 ADDS Modular Structure

EXERCISE

Name:

Consider the Military Address System described in MADDS.1 and ULDDS.2.
Identify the main modules of the system and describe the information that each
module hides.

Module Name Secret

SOPWARE E1GINEERING PRINCIPLES 12-9
3-14 August 1981

MADDS.4 MADDS Modular Structure

EXERCISE SOLUTION

The system consists of nine modules. In addition, there is an undesired
event handler.

Module Name Secret,

Applications Program Module (APM) The APH consists of all applications
programs, that is, all programs that
perform end-user specified operations on a
database of addresses. There are at least

two applications programs. One finds and
outputs addresses with a specific ZIP-code
area. Another outputs addresses with
0-grade level less than or equal to a

specific value. The AP hides selection
algorithms and the order of address entries
output.

Address Storage Module (ASH) The ASH consists of all address storage and

retrieval routines. It hides the structure
used to store addresses.

Character Module (CHM) The CHM consists of all character
manipulation routines. It hides the

internal representation of characters.

Input Device Module (IDM) The IDM consists of all routines that
comunicate directly with the physical
input device. It hides knowledge of the
type of device, the device's representation

of characters, the length of input lines,
and the protocol used to read input from
the device.

Input Module (IPM) The IPM analyxes the input data and stores
the addresses for the ASH. It hides the

format (e.g., number, order, and length of
the fields) of the input.

SOTWAMX IGIUMING PRINCIPLES 12-11
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

Output Device Module (ODM) The ODM consists of all routines that
comunicate directly with the physical
output device. It hides knowledge of the
type of device, the device's representation
of characters, the length of output lines,
and the protocol used to write output to
the device.

Output Module (OPM) The OPM determines the format in which the
address entries are to be output. It
hides, for example, order of fields as well
as number and content of output lines.

String Storage Module (SSM) The SSM consists of all string manipulation
routines. It hides the internal representa-
tion of strings.

Master Control Module (MCM) The MCM determines the sequence in which
applications programs and other programs
will be called. Its secret is the way that
the functions of other modules are put
together to perform useful tasks.

Undesired Event Randler (UEH) The UER is a collection of UE handling
functions that any module can use to report
a UE.

12-12 SOFTWARE EbGINEuRING PINCIPLES
3-14 August 1981

MADDS. 5 Using the Computer System

LECTURE

Table of Contents

I. Introduction 12-13

II. Beginning a Session 12-14

III. Creating/Editing a File: the XEDIT Editor 12-14

A. Identifying a file 12-14
B. Creating a new file 12-15
C. Entering data into a file 12-15
D. Editing a file 12-15

1. Screen editing 12-15
2. Prefix subcommands 12-15
3. Other XEDIT co- ands 12-16
4. Leaving XEDIT 12-17

IV. Examining Your Directory: FLIST 12-18

V. Printing a File 12-18

VI. Running a Program 12-18

VII. Running MADDS Programs 12-19

VIII. Logging Off 12-19

IX. Sample C0S Session 12-20

I. Introduction

During the MADDS exercise, you will be using the IBM Conversational
Monitor System (CHS). This tutorial gives you a brief overview of how
to use 01S to manipulate files and to compile and execute programs. By
treating only a small subset of C1, we hope to keep the tutorial
simple. We also hope to focus your attention on the questions posed by
MADDS, rather than on idiosyncrasies of CS.

Software Engineering Principles 12-13

3-14 August 1981

•-, ,

SEC. 12 / MILITARY ADDRESS SYSTEM (KADDS)

In this document, special terminal keys are parenthesized and
underlined. For instance, (ENTER) means that you should press the key
labeled ENTER, as opposed to typing the five letter word E-N-T-E-R.
Also, references will be made to FF keys. To enter PFl-PFl2, hold the
(ALT) key down and press the key with the appropriate PF number on the
front.

If a bold X ever appears in the bottom left corner of the screen,

press (RESET). If the X remains, wait a few seconds and press (RESET)
again. ITfthe X still remains, ask for assistance.

II. Beginnina a Session

A. Locate an IBM screen terminal that is not marked APL. Turn the
terminal on by setting the red switch on the lefthand side to 1.
The terminal will take about 20 seconds to warm up; when it does,
the screen should show the large NPS logo. If this doesn't happen,
press the (RESET) key. If the logo still doesn't appear, try
another terminal, or ask for assistance. Otherwise, press (RESET),
then (ETER).

B. Type your logon number: L ????P (ENTER)

C. Type your password, followed by (ENTER). The password will not
appear on the screen.

D. If you make a mistake, try again.

I1. Creating/Editing a File: the XEDIT Editor

You will use the ZEDIT editor under CMS to create and handle files.
The file you wish to manipulate must be identified when XEDIT is
invoked, and no other file m~y be edited without leaving and re-invoking
the UEDIT editor.

A. Identifyins a file: All files in CMS are identifed by two things:

1. filename (fn) - any name you choose; up to 8 characters. A

good convention is to choose your filename to
match the name of the program it contains.

2. filetype (ft) - if the file contains FORTRAN statements to be
compiled, the filetype will be WATFIV.

12-14 Software Engineering Principles
3-14 August 1981

I I

Using the Computer System I Doc. .ADDS.5

B. Creating a new file: Type

XEDIT fn ft (ENTER)

where fn is the name of a new file and ft is the appropriate
filetype. A new and empty file now exists in your directory (i.e.,
the list of files that CMS has attributed to you; see section IV for
further information).

C. Entering data into a file: After invoking the XEDIT editor, type

INPUT (ENTER)

You are now in input mode, and may begin typing lines into the file,

one at a time. Should you make a mistake while typing a line, use
the cursor keys (marked with arrows) to move back and correct the

error. When the line is correct, press (ENTER). Now type the next

line. Do not try to change a line after it has been entered.

When you have entered all the lines you want, enter a null line (by
pressing (ENTER) twice in a row) to leave input mode. You may now

make further changes to the file if you wish.

D. Editing a file:

You may edit a file you just created (by leaving input mode) or

edit an old file (by invoking XEDIT and naming the old file).
Either way, the contents of the file will be displayed on your
screen.

1. Screen editing: The simplest way to change part of a line is to

move the cursor (using the arrow keys) to the line and position
on that line that you wish to change. Change the line by typing
over the old characters; press (ENTER).

2. Prefix subcomands: To make a change involving an entire line

or several lines in your file, the simplest method is to invoke
XEDIT subcomands. Note that each line on the screen begins
with a blank area. To issue a subconand for a particular line,

move the cursor to the blank space (prefix) preceding that line,
enter the subcoimand, and press (ENTER).

A brief description of a few important XEDIT subcomands follows.

In the descriptions, n stands for an integer of your choice.

Software Engineering Principles 12-15

3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

Prefix Subcoinand Effect

An Add n blank lines following this line. After
the lines are added, you may use the screen
editing technique to fill them in.

Du Delete the next n lines, including this one.

Cn Copy the next n lines, including this one, to
somewhere else in the file. Specify that
destination by using the P or F subcommand
before pressing (ENTER).

Mn Move the next n lines, including this one, to
somewhere else in the file. Specify that
destination by using the P or F subeommand
before pressing (ENTER).

P or F Marks the destination location for a move or
copy operation. Place the moved or copied
block of text preceding or following the line
where the P or F subcommand was entered.

Makes this line the "current" line. XEDIT
always recognizes one line as the current line;
it will be displayed on the screen brighter
than the rest. Some XEDIT subconands always
have their effect on the current line, and this
lets you specify which line that is. The
current line is 'lways displayed (along with a
screen's worth of surrounding lines) and so
redefining the current line also affects what
portion of your file is displayed.

3. Other XEDIT comands: To invoke these comands, move the cursor
to the bottom of the screen (the "command line").

GET fn ft nl n2 Appends or inserts file fn after the current
line in the file your are now editing.
Omitting ni and n2 brings in all of fn;
otherwise, il is the beginning line number in
fn and n2 is the number of lines you want to
move. Before using this subcomand, make sure
the current line in the file being edited is
the one you want.

TOP Makes the current line the top of the file;
moves the display to the top of the file.

12-16 Software Engineering Principles

3-14 August 1981

Using the Computer System /Doe. MADDS.5

BOTTOM Makes the current line the bottom of the file;
moves the display to the end of the file.

Un Moves the current line up n lines. This can be
used to make the display back up through your
file.

Dn Moves the current line down n lines. This can
be used to display lines farther down in your
file.

LOCATE /string/ Makes the next line containing the specified
string of characters the current line. The I
marks are delimiters; they may be any character
that does not appear in the string, except @,
#, ", €, or blank.

CHANGE /sl/s2/ Changes the next occurrence of the string si to
string s2; the line where sl was found becomes
the current line. Note that Lhe command

CHANGE Isl//
has the effect of deleting the next occurence
of string si.

ERASE fn ft Deletes file fn from your dire:tory. You
shouZd erase any file you no longer need, but
make sure that it's not useful anymore.

RECOVER In many cases, undoes the last change to the
file being edited.

4. Leaving XEDIT:

To leave XEDIT and keep all the changes you made to the file,
type:

FILE (ENTER)

To leave XEDIT and cancel all the changes you made to your file
(that is, keep your file exactly as it was before you began your
XEDIT session), type:

QUIT (ENTER)

ZEDIT will ask you if you're sure you want to throw away all the
work done in this session. If you are, type

QQUIT (ENTER)

Software Engiveering Principles 12-17
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

IV. Examining Your Directory: FLIST

When you are not using XEDIT, you may see a list of all of the files
that belong to you. Type:

FLIST (ENTER)

You may use FLIST to view (but not change) the contents of any file in
your directory. This will be especially helpful when you wish to
examine the results of a program execution stored in a LISTING file
(explained in section VI). Move the cursor to the line containing the
name of the file you wish to examine. Type (PF2). You may page back
and forth through the file by typing (PF7) or (PF). To leave a file,
type (P•3).

To leave FLIST, type (PF3).

V. Printing a File

When you are not using XEDIT, you may have the contents of a file
printed on a line printer. Type:

PRINT fn ft (ENTER)

where fa and ft are the name and type of the file you wish printed.
Output from the printer is placed on the counter or in the pigeonhole
boxes outside Ingersoll 147 (the Computation Center) in the section
marked VM OUTPUT. Help yourself. The output will have your user number
printed in large block letters at the beginning, and END in large block
letters at the end.

VI. Running a Program

To compile and execute a FORTRAN program, type:

WATPIV fn (ENTER)

where fn is the WATFIV-type file that you wish to have compiled and
executed. Sometimes it may be more convenient to have your source code
distributed in more than one file. If that is the case, type WATFIV
followed by each filename you wish included (filenames separated by a
single blank), followed by (ENTER). The WATFIV FORTRAN processor reads
all of the named files as a single continuous file, concatenated in the
order they were named.

After execution is complete, you will get a short acknowledgement from
CMS. The file(s) you executed will not have changed.

12-18 Software Engineering Principles
3-14 August 1981

I

Using the Computer System /Doc. MADDS.5

The results of the execution will be placed in a new file created by MS
and placed in your directory. The name of the file is

fn LISTIAG

where fn is the name of the single file you executed, or the first in
the list of files you executed. To view your results, invoke the XEDIT
editor on this new LISTING file, or use FLIST as explained in section
IV. It will contain a copy of all of the program source code, along
with warning/error messages and execution results. If you wish a hard
copy of the listing, use the PRINT command as explained in section V.

VII. Running MADDS Programs

You will find that your file directory already contains several files of
type WATFIV. You will need these files in order to program and test
your MADDS module. Every directory contains the file MADDS. This file

consists of the source code for the "rest" of the MADDS system; that is,
the system that includes everything except the module that you are
writing.

The rest of the files contain lists of sample input data that you can

use to test your programs.

File name File contents

DAT1ADR Test data file with 1 address
DAT3ADR Test data file with 3 addresses
DAT7ADR Test data file with 7 addresses
DATUE Test data file that will cause a UE
DAT26ADR Test data file vith 26 addresses

To run the complete MADDS system, issue the following command:

WATFIV MADDS yourmodule datafile (ENTER)

where youraodule is the name(s) of the file(s) containing the module you
have written, and datefile is the name of one of the test data files
listed above. The results of the run will appear in the file
MADDS LISTING.

VIII. Loggina Off

To end a terminal session, type:

LOG (ENTER)

Software Engineering Principles 12-19
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

IX. Sample CMS Session

Below is a script of the co-mands and operations that make up the
system demonstration held in class. We recommend that you familiarize
yourself with CMS by repeating the demonstration on your own.

* Begin session by preparing terminal and logging on.*

Turn terminal on; wait for NPS logo.
(RESET) (ENTER)
L ????P
Enter password when prompted.

* Create a new file; enter a sample FORTRAN program. *
"AAAAAAAAA A :.AA . AAA- I. AAAA A A .AAAAAAA AAA AAAAAJ.JJ

XEDIT EXAMPLE WATFIV
INPUT
$JOB
C
C Read, store, and print a series of five character strings.
C

INTEGER I,J
CHARACTER*10 WORD, WLIST(5)

C
DO 10 I1-,5

READ (5,30) WORD
WLIST(I) - WOOF

10 CONTINUE
C

DO 20 J1,I
WRITE(6,40) WLIST(I)

20 CONTINUE
STOP

C
30 FORMAT(AO)
40 FORMAT(' ', A0)

C
END

$ENTRY
FIRSTWORD
SECONDWORD
THIRDWORD
FOURTHWORD
FIFTHWORD

(null line)
FILE

12-20 Software Engineering Principles
3-14 August 1981

Using, the Comouter System /Doc. MADDS.5

* Run the program; examine the listing.

WATFIV FXAMPLE
FLIST
Move cursor to file EXAMPLE LISTING; type (PF2).
Use (PF7) and (PF8) to examine the listing.
Locate error(s) and diagnose.
Type (PF) to leave FLIST.

* Edit the source code file to fix errors. *

XEDIT EXAMPLE WATFIV
TOP
LOCATE/WOOF/
Move cursor to error; re-type; (ENTER)

* Re-run the program, and examine the new listing. *

WATFIV EXA.MLE
FLIST
Move cursor to file EXAMPLE LISTING; type (PF2).
Use (PF7) and (PF8) to examine the listing.
Type (PF3) to leave FLIST.

* Listing is satisfactory; print it. End session. *

PRINT EXAMPLE LISTING
LOG
Turn terminal off; retrieve printed listing.

Software Engineering Principles 12-21
3-14 August 1981

MADDS. 6 Informal Functional Specifications for
MADDS Modules

EXAMPLE DESCRIPTION

TABLE OF CONTENTS

Module and Function Names Page

Applications Program Module (APM) 12-25

AREA
RANK

Address Storage Module (ASM) 12-27

INITAS
MAXADS
VERADS
GETNCA
SET@
GET@

Character Module (CHM) 12-32
CHAREQ
CHARLT

Input Device Module (1DM) 12-34
OPENID
CLOSID
RDCUM

Input Module (IPM) " 12-35
RDADS

Master Control Module (MCM) 12-36

MAIN

Output Device Module (ODM) 12-37

OPENOD
CLOSOD
WRCEAR
NEWLIN

SOP"TA/E NGzNcUMING P3XNCIPLS 12-23

3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

TABLE OF CONTENTS (concluded)

Module and Function Names ?age

Output Module (OPM) 12-39
WRADR

String Storage Module (SSM) 12-40
SETCHR
GETCHR
SUBSTR
STREQ

Undesired Event Handler (UEH) 12-43
UE$

INTRODUCTION

This document describes the functions offered by each MADDS module, how to
invoke them, and what each does. It does not set performance constraints.

The description of each function has a standard format that is largely
self explanatory. The EFFECTS section describes what a function does. The
EFFECTS sections of many function descriptions mention the testing for and
signaling of undesired events. The function does these UE tests, not the
calling program.

The function descriptions are not tied to any one programming language
(e.g., FORTRAN, ALGOL, PL/I, or COBOL). In FORTRAN, a function described as
returning a value (e.g., GETNCA of the Address Storage Module) could be
implemented as a function subprogram and invoked by function reference. A
function described as not returning a value could be implemented as a
subroutine and invoked by a CALL statement.

12-24 S07TVARZ ZfGINUXXNG PRIZNCIPLES

3-14 Auat 1981

Informal Functional Specifications for MADDS Modules / Doc. HADDS.6

APPLICATIONS PROGRAM MODULE (APM)

FUNCTION CALLING FOLM: AREA(prezip) MODULE: APM

INPUT PARAMETERS:

Name Type Description

prezip string a string whose first three characters
are digits dld 2 d3 , giving the
area part (first three digits) of a set
of ZIP-codes, and whose remaining
characters are blanks

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: AREA selects and writes out all complete addresses with dld 2d3
as the area part of their ZIP-code fields. If no addresses are
selected, then no output occurs. A set of complete addresses (for
searching and selection) exists after RDADS of the IPM has been
called; hence, AREA assumes that RDADS has been called since the
last INITAS. AREA also assumes that the output device is open for
output.
If dld2 d is not a three-digit sequence representing an
integer i : 0 S i : 999,

then UEZIP is called.

/f

SOITVARZ NGIEERIW PRINCIPLES 12-25
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

FUNCTION CALLING FORM: RANK(oglim) MODULE: APM

INPUT PARAMETERS:

Name Type Description

oglim string a string whose first two characters are
digits dld2 giving an O-grade
level, and whose remaining characters
are blanks

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: RANK selects and writes out all complete addresses with
O-grade : dld7. The O-grade is determined by the following
table. A set of complete addresses (for searching and selection)
exists after RDADS of the IPM has been called; hence, RANK assumes
that RDADS has been called since the last INITAS. RANK assumes
that the output device is open for output.
if dld2 is not a two-digit sequence representing an integer

i: 1 : i 5 10,
then UEOGL is called.

Table: O-Grade Levels

Service: USA USN Civilian
USAF
USMC

O-grade Title Title GS Level

01 2LT ENS 07
02 lLT LTJG 08, 09
03 CAPT LT 10, 11
04 MAJ LCDR 12
05 LCOL CDR 13, 14
06 COL CAPT 15
07 BG RAM 16
08 MG RAM 16
09 L VADM 17
10 GIN ADM 18

12-26 SOFTWAU INGINIRING PRINCIPZS
3-14 Agust 1981

Informal Functional Specifications for MADDS Modules / Doc. MADDS.6

ADDRESS STORAGE MODULE (ASH)

An address is simply a set of strings. If one, but not all, of the fields
is undefined (i.e., has not been assigned a string value), then the address is
partially defined, and if all fields are undefined, then the address is
undefined. If all fields of an address are defined, then the address is

complete. An address identifier is a positive integer no larger than maximum

address storage capacity MiAXADS and is "absurd" if not in this range. Once
the number of complete address n: 0 <_ n s MAXADS has been determined (by
VERADS of the ASM), subsequently giving GETNCA - n, we may say that an address

identifier adr is assigned if and only if I s adr GETNCA, and unassigned
otherwise. There are no operations on addresses as such; only the setting of
and retrieving from their fields is allowed. Multiple ownership of addresses

(e.g., several instances of the sane identifier value occurring in the system)

is permitted; therefore, caution must be exercised because changes to an

address by one owner, of course, affects the other owners - possibly
adversely.

FUNCTION CALLING FORM: INITAS MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: INITAS initializes the ASM for the storage of addresses. That is,

it sets up the data structures and places the ASH in the initial
state (i.e., capable of address storage but with no addresses

presently existing and all fields undefined). It must be called
prior to any calls to other ASH functions to assure that the ASM

operates correctly in all cases. A call to INITAS automatically
destroys any currently existing addresses and returns the ASM to

maximun address storage capacity available./ F

FUNCTION CALLING FORM: MAXADS MODULE: ASK

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: maximum address storage capacity

EECTS: None

SOFTWARE EMINGlERI PRNCIPLES 12-27
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

FUNCTION CALLING FORM: VERADS MODULE: ASM

INPUT PAR.AMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: VFERADS determines the largest integer n: 0 : n MAXADS, for which

all address identifiers adr: 1 5 adr 5 n have all fields defined by
previous call to set, and sets an internal counter in the ASM to
n. The value of this counter is considered to be the number of
complete addresses stored and is returned as the value of GETNCA of

the ASH. The ASH is in a correct state only if all fields of all

address identifiers adr are undefined, for n < adr < MAXADS.

If there is a defined field for an adr: n < adr <_ MAXADS (i.e., an

incorrect state for the ASM),
the.. UEASMI is called.

- -------------

FUNCTION CALLING FORM: GETNCA MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: The number of complete addresses stored

EFFECTS: GETNCA returns the value of an internal counter in the ASM giving

the number of complete addresses stored.
If VERADS hasn't been called since the last INITAS,

then UENCAU is called.

12-28 SOT UAEE K EERI.N PRINCIPLES
3-14 August 1981

Informal Functional Specifications for MADDS Modules / Doc. HADDS.6

Below is a table of field mnemonics @, their corresponding descriptive
phrases #, and the lengths of their string parameters $. For each, there is a
field setting (i.e., insertion) and a field getting (i.e., extraction)
function in the ASM.

Table: Field Mnemonics for Addresses

___ _$

BOC Branch-Or-Code 20
CIT City 25

COA Command-Or-Activity 30
GN Given Names 20
GSL GS Level 2
LN Last Name 25
SER Service 5
SOP Street-Or-Post-Office-Box 30
ST State Abbreviation 2
TIT Title 10
ZIP ZIP-Code 9

For the field insertion functions, a single informal specification schema
suffices, which is identical for each field except for the field mnemonic @,
its descriptive phrase #, and its string parameter length $. The same is true
for field extraction. Below are given the field insertion and extraction
schemas, each followed by an example obtained in this case by substituting
"BOC" for @, "Branch-Or-Code" for #, and "20" for

Field Insertion Function Schema

FUNCTION CALLING FORM: SET@(adr,str) MODULE: ASM

INPUT PARAMETERS:

Name Type Deskription

adr inteser identifier of an address

str string a string

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The first $ characters of the string str are stored as the new
value of the # field of the address adr. If the length of str is
less than $, then the # field is set to str followed by blanks. In
either case, the previous value is lost.
If adr is < I or > MAXADS,

then UKAIDA is called.

SOFTAIR ELG NURING FIINCIPIU 12-29

3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

Samole Field Insertion Function

FUNCTION CALLING FORM: SETBOC(adr,str) MODULE: ASM

INPUT PARWHETERS:

Name Type Descriotion

adr integer identifier of an address

str in a string

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The first 20 characters of the string str are stored as the new
value of the Branch-Or-Code field of the address adr. If the
length of str is less than 20, then the Branch-Or-Code field is set
to str followed by blanks. In either case, the previous value is
lost.
If adr is < 1 or > MAXADS,

then UEAIDA is called.

Field Extraction Function Schema

FUNCTION CALLING FORM: GET@(adr) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE: string with length $

FUNCTION VALUE: the string stored in the # field of address adr.

EFFECTS: If adr is < I or > MAXADS,
then UEAIDA is called.

If the # field of address identifier adr is undefined but adr has a
defined field (i.e., partial address),

then UEADRP is called.
If all fields of address adr are undefined,

then UEADRU is called.

12-30 SOTIAR ENGINEERING PRINCIPLES
3-14 August 1981

''' I

Informal Functional Specifications for MADDS Modules / Doc. MADDS.6

Sample Field Extraction Function

FL-NCTION CALLING FOKI: GETBOC(adr) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE. string with length 20

FUNCTION VALUE: the string stored in the Branch-Or-Code field of address adr.

EFFECTS: If adr is < I or > MAXADS,
then UEAIDA is called.

If the Branch-Or-Code field of address identifier adr is undefined
but adr has a defined field (i.e., partial address),

then UEADRP is called.
If all fields of address identifier adr are undefined,

then UEADRU is called.

/

SOFTARZ BUGI RDI G PRINCIPL9S 12-31
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

CHARACTER MODULE (CMI)

The character module supports an abstract data type character. Much of
the module is provided by the local FORTRAN system. For example:

1. The following character constants are provided:

1/1, or, 1 1, 1: , 1 , 1<
1= ', >1 ', 1 @,''A', II, '' , 'S', 'F', 3U', '5i V, 'W1, 'J:,
K' ', i, ?NO 101, 1, 'Q' 'R' 'S', 'T', 'U' ' ' 'W', 'X,

lye IV T l t, III 1\ , I-I I I @ t $i g ' lI dt le I Ift,1 I ' ti I l , '' , e, i # t t, Ib P' Id i $sue 'h', 'I t oI' , I Yk t o' 01' 1 111 1 o' 1 p1 1q 1r 's.t

2. The assignment operator is the FORTRAN character assignment operator B.

3. Charactet variables are declared as follows:

CHARACTER X, Y, Z

4. Character variables can be initialized in data statements as follows

DATA X / 'A' /

Two new functions or operators, CHAREQ and CHARLT, should be used in place of
the standard FORTRAN relational operators .EQ. and oLT.. They are defined as
follows:

FUNCTION CALLING FOR': CHAREQ(chl, ch2) MODULE: CHM

INPUT PARAMETERS:

Name Type : Description

chl char first character to be compared

ch2 char second character to be compared

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if chl a ch2 then true else false

EFFECTS: Equality (-) is defined as equality of the internal integer
character codes, except in the following cases: upper and lower
case alphabetic characters are considered equal (e.g., *a' I 'A'l

e B t -e F t.* I I *

12-32 SOFTWAR ENGINEIRING PRINCIPLES
3-14 August 1981

Informal Functional Specifications for MADDS Modules / Doe. MADDS.6

FUNCTION CALLING FORM: CHARLT(chl, ch2) MODULE: CIDM

LNPUT PARAMETERS:

Name Type Description

chl char first character to be compared

ch2 char second character to be compared

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if chl < ch2 then true else false

EFFECTS: The relation is-less-than (<) is defined by the following:

(a) SPACE < ('A' 1< 'B'< < 'Z' < '0' < '11 < < '91

(blank) 'a,' ' 'z'a '' 9

(b) is restricted to this subset of characters and hence is a
partial function.

If chl or ch2 is not a blank, a digit, or a letter,
then UECHLT is called.

SOlTWA3RUG IN MURING PRINCIPLES 12-33
3-14 Auiut 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

INPUT DEVICE MODULE (IDM)

FUNCTION CALLING FORM: OPENID MODULE: IDM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: OPENID "opens", or initializes, the input device and the buffers,
etc., to enable reading. The input device is initially in the
closed state. Whenever it is in the closed state, it must be
opened by OPENID, prior to reading characters via EDCAR.
If the input device is open and OPENID is called,

then UEROPN is called.

FUNCTION CALLING FORM: CLOSID MODULE: IDM

INPUT PARAMENTERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: CLOSID "closes" the input device to reading. For each OPENID there
must be a corresponding CLOSID.
If the input device is closed and CLOSID is called,

then UERCLS is called.

FUNCTION CALLING FORM:. RDCHAR /Mt$ULE: DM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: char

FUNCTION VALUE: the next character from the input device

EFFECTS: If the input device is closed,
then UEWRCL is called.

If no characters are available on the input device,
then UENOCH is called.

If a device error occurs during the read,
then UEDVER is called.

12-34 SOF1TARE aGl RiNG PRINCIPLES
3-14 August 1981

Informal Functional Specifications for MADDS Modules /Doc. MADDS.6

INPUT MODULE (IPM)

FUNCTION CALLING FORM: RDADS MODULE: 1PK

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The input addresses are read from an external storage medium or

device accessed by the UKN. These addresses are in external form
as sequences of characters, which are partitioned into strings
according to an input format known to the IPM. DADS by means of
the IDM causes these strings to be read in character-by-character
and stored as the fields of a set of addresses. The reading of
this set of addresses is terminated at the first "address" whose
first field consists of all end-of-file marker characters; this
"address" is not stored. No input validation is performed on the
input field values. After all input has been read, IDADS calls
VZADS of the ASK to verify the addresses as complete and to set
the number-of-complete-addresses counter in the ASM. DADS uses
functions of the ID14 to open and close the input device (file).
If the umber of addresses read exceeds MAZADS of the ASK,

then UEADOV is called.

SOFARS ENGINEING PRINCIPLES 12-35
3-14, August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

MASTER CONTROL MODULE (MCM)

FUNCTION CALLING FORM: MAIN MODULE: MEQ

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: MAIN is the main driver program. It perform all module
initializations by invoking initialization functions of the
modules. Thus, no other program should perform initializations.
The central task of MAIN is to specify a particular sequence of
input, output, and computation actions for which MADDS is
designed. Thus, it will typically use the IPM, the APK and
possibly the ODM; however, the capabilities of all the modules are
available to MAIN, subject only to use rules stated in their
interface specifications.

12-36 SOFTWARE ENGINEERING PRINCIPLES
3-14 Augusc 1981

Informal Functional Specifications for MADDS Modules / Doc. MADDS.6

OUTPUT DEVICE MODULE (ODM)

FUNCTION CALLING FORM: OPENOD MODULE: ODM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: OPENOD "opens," or initializes, the output device and buffers,
etc., to enable writing. The output device is initially in the

closed state. Whenever it is in the closed state, it must be
opened by OPENOD prior to writing characters via WUCHAR.
If the output device is open and OPENOD is called,

then UEROPN is called.

FUNCTION CALLING FORM: CLOSOD MODULE: ODK

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: CLOSOD "closes" the output device to writing. For each OPENOD
there must be a corresponding CLOSOD. The output device is
initially in the closed state.
If the output device is closed and CLOSOD is called,

then UERCLS is called.

SOYTWAIZ ENGINEERING PRINCIPLES 12-37
3-14 August 1981

SEC. 12 MILITRY ADDESS SYSTEM (ADDS)

FUNCTION CALLING FORM: WRCAR(chr) MODULE: ODK

INPUT PARAMETERS:

Name Type Description

chr char a character to be written

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The character chr is written on the output device.
If the output device is closed,

then UZEVCL is called.
If a device error occurs during the write,

then UED R isL called.

FUNCTION CALLING FORM: NEWLIN MODULE: OM

INPU PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: NEWLIN undertakes device-dependent actions which have the effect of
writing an end-of-line character for the device (via WRCHAR). No
printable character is actually written on the devir t. Subsequent
writes by WRCHAR start on the next line, unless the current line
has not had any printable characters written to it, in which case
subsequent writes are to the current line.
If the output device is closed,

then UEWRCL is called.
If a device error occurs during the write,

then UEDVER is called.

12-38 SOFTWAR ENGINEERING PRINCIPLES

3-14 August 1961

Informal Functional Specifications for MADDS Modulas / Doc. MADDS.6

OUTPUT MODULE (oPM)

FUNCTION CALLING FORM: WRADR(adr) MODULE: OPw

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The address adr is written out to an external device used by the
01. Certain fields of the address are written character-by-
character according to an output format known to the OPW. This
format specifies at least the order and identity of fields,
spacing, and line contents. It is assumed that TDADS of the IPM(
has been called since the last INITAS.
If adr < I or > NAZADS,

then UTADA is called.
If GETUCA < adr ! MAXADS,

then UZEIDU is called.

SOFTWARE ENGINEERING PRINCIPLES 12-39
3-14 August 1981

SEC. 12 /)MIITARY ADDRESS SYSTEM (MAWS)

STRING STORAGE MODULE (SSM)

The string storage module supports an abstract data type string. Much of
the module is provided by the local FORTRAN system. For example:

1. String constants are characters enclosed in quotes, e.g., "This is a
string.".

2. The assignment operator is the FORTRAN assignent operator =.

3. String variables are declared as follows:

CARACTER * 10 X, Y, Z

which declares variables X, Y, Z to be string variables of length 10.

4. Character variables can be initialised as follows:

DATA X /"EZxmple"/

Besides this capability, the following functions can be used to manipulate
strings.

FUNCTION CALLING FORK: SETCUR(str, poe, chr) NDULE: SSM

INPUT PARAMETERS:

Name TYPe Description

str string a string

po integer a character position in str

chr char a character to be inserted

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: STCUI replaces the character at position pos of string str by the
character chr.
If poe < 1 or pos > length of str,

then UESPOS is called.

12-40 SOyTABE ED INEE ING PRINCIPLES

3-14 August 1961

informal Functional Specifications for MADDS Modules / Dc. MADDS.6

FUNCTION CALLING FORM: GETCHR(sir, pes) MODULE: 8SM

INPUT PABAMETERS:

Name Type Description

str strina a string

pe inteser a character position in str

FUNCTION VALUE TYPE: char

FUNCTION VALUE: the character at position pe of string str

EFFKCTS: If pea < 1 or pos length of str,
then UESPOS is called.

FUNCTION CALLING PORM: SUBSTR(str, pes, len) NODULE: SSM

INPUT PARAMETERS:

lame We Description

str string a string

pe integer a character position in str

len integer the length of the substring to be
extracted

FUNCTION VALUE TYPE: string

FUNCTION VALUE: a string whose first len characters are the len characters
of the string str, beginning with position por, and whose
remaining characters are blanks

EFFECTS: If poe < 1 or pos > length of str,
then UESPOS is called.

If len < 0 or ps + len - 1 > length of str,

then U1SLEN is called.

SOFTWIARE ENGINEERING PRINCIPLES 12-41
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSM (l(ADDS)

FUNCTION CALLING FORM: STQ(strl, str2) On'LE: SSK

INPUT PARAMETERS:

Name Type Description

strl string a string

str2 string a string

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if strl - str2 then true else false

EMECTS: Let c€ and c'i denote the characters at position i of strings
strl and str2, respectively. Let L be the length of the shorter of
the two strings. Then strl and str2 are equal (-) if and only if,

a) for 1 S i : L, CHARZQ(ci, c'i), and

b) all remaining characters of the longer string are blanks.

If both stri and str2 are the same length, then the second
condition is, of course, unnecessary.

12-42 SOFTWARE ENCINEERING PRINCIPLES
3-14 August 1961

Informal Functional Specifications for MADDS Modules / Doc. MADDS.6

UNDESIRED EVENT HANDLER (DUE)

The UEN consists of the UE handling functions, one for each DE. The list
of UEs that can occur are sumarized in the following table, where $ is the UE
mnemonic and € is the corresponding UE description.

Table: Undesired Events (Us)

ADOV Address storage capacity overflow
ADRP Partially defined address (at least one field undefined)
ADRU Undefined address (no fields defined)
AIDA Absurd address identifier (i.e., < I or > max capacity)
AIDU Unassigned address identifier (i.e., > GETNCA and S MAZADS)
ASiI State of the ASM incorrect (i.e., defined fields beyond GETMCA)
CHLT Undefined character comparison
DVER Device error
MIDU Non-existent module identifier
NCAU Undefined number of complete addresses
NOCK No characters available on input device
OGL O-grade level is < I or > 10
RCLS Redundant device closing
ROIP Redundant device opening
SLEN Substring length is < 0 or too large
SPOS Character position in string is < I or > string length
WRCL Writing or reading on closed device
ZIP ZIP-code area part not three decimal digits

All of the UE handling functions can be represented by a single function
schema. This is given below, using UE mnemonic $ and description €, and is
followed by a sample UE function. Note that there is a US handler for UEs in
the UE handlers (i.e.,)OU; see next page).

The module identifiers used as arguments in the UE handler calls are
simply the module abbreviations, "AI', "ASW", "CHM' The function
identifiers are the full function names, e.g. "AREA".

SoTWARZ ENGINEERING PRINCIPLES 12-43
3-14 August 1981

SEC. 12/ KILIThRY ADDRESS SYSTEM (HADDS)

UZ Function Schema

FUNCTION CALLING FORM: UE$(mdid,faid) MODULE: UEH

INPUT PARAMETERS

Name Te Description

adid string module identifier

fnid strinp function identifier

FUNCTION VALUE TYPE: None

FUNICTION VALUE: lone

EFFECTS: A message is written out to the effect that the Us "4" has been
detected in function fnid of module adid and the run is aborted.
Then execution is terminated.
If madd is not the identifier of a known module,

then UZI7DU is called (except when $ is MIDU; that is, UEMIDU
will not call itself).

Sample UE Function

FUNCTION CALLING FORM: UIDU (did, fnid) MODULE: UE

INPU PARAMETERS:

Name Me Description

adid string module identifier

fnid stri function identifier

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: A message is written out to the effect that the UE "Unassigned
address identifier" has been detected in function fnid of module
rdid and the run is aborted. Then execution is terminated.
If adid is not the identifier of a module,

then UEfIDU is called.

12-44 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS. 7 MADDS Program Listing

EXAMPLE DESCRIPTION

Table of Contents

Modulie Page

APM 12-46

ASH 12-49

CHM 12-63

1DM 12-64

1PM 12-66

MCM 12-67

0DM 12-68

OPM 12-70'

SSH 12-71

UEH 12-73

SOFTWARE ENGINEERING PRINCIPLES 12-45
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C apm
C
C output addresses with zip area part prezip
C

subroutine area(prezip)
implicit complex Ca-z)
character*l digit(10),chr
character*3 prezip,zarea
charac ter*9 nevzip
integer adr, getnca, i, j, n
logical chareqpstreq
data digit/'1 , '2', 13l,141,151,I61,171, '8', 191, l/
do 20 j-1,3

call getchr(chr,prezip,j)
do 10 i=1,10
if (chareq(chr,digit~i))) go to 20

10 continue
call uezip('apm','area')

20 continue
n-getncao)
if (n.eq.0) return
do 30 adrinl,n

call getzip(newzip,adr)
call substr(area,nevzip,1,3)
if (streq(zarea,prezip)) call vradr(adr)

30 continue
return
end

C
C apm
C
C output addresses with 0-grade at most oglim
C

subroutine rank(oglim)
implicit complex (a-z)
character*l chl,ch2,ch3,ch4,ch5,ch6,digit(10)
character*2 oglim,gslev(l0),gsl
character*4 serv,usatit(l0),usntit(10)
character*10 title
integer lim,nca,getnca,adr,j
logical chareq,charlt,streq
data usatit/ '21t' ,'lt' I'at ,ma' ,'lcol', 'col', 'bg', 'mg',

&Ilgl, 'gen'!
data usntit/'ens''tjg','lt','lcdr','cdr','capt','radm',

&'radm' ,'vadm', 'adm'I
data gslev/'07', '09', fill ,'12', '14','15', '16', '16', '17', '18'/
data digit/'l ','2', 131, 141,51,'6', 171,'8', 191,101/
call getchr(chl,oglim,l)
call getchr(ch2,oglim,2)

12-46 SOFTWARE ENGINEERING PRINCIP'LES
3-14 August 1981

MADDS Program Listings IDoc. MADDS.7

if (chareq(chl,'0')) go to 10
if (.not.chareq(chl,'l')) go to 30
if C.not.chareq~ch2,'0')) go to 30
lirn 10
go to 40

10 do 20 liml1,9
if Cchareq~ch2,digit(lim))) go to 40

20 continue
30 call ueogl('apm','rank')
40 nca-getncao)

if (nca.eq.0) return
do 80 adr-l,nca

call getser~serv,adr)
call gettit~title,adr)
if (streq(serv,' ')) go to 70
call getcbr(chl,serv,1)
call getcbr(ch2,serv,2)
call getchr(ch3,serv,3)
call getchr(ch4,serv,4)
if (.not.chareq~chl,'u') *or. .not.chareq~ch2,'s')) go to 80
if (chareq~ch3,'n')) go to 60
if (chareq~ch3,'a')) go to 45
if C.not.chareq(ch3,'m')) go to 80
if (chareq(ch4,'c')) go to 50
go to 80

45 if (.not.Cchareq(ch4,' ').or.cbareq(ch4,'f'))) go to 80
50 do 57 j-l,lim

if (.not.streq~title,usatit(j)))go to 57
call wradr(adr)
go to 80

57 continue
go to 80

60 do 67 j1l,lim
if (.not.streq(title,usntit~j)))go to 67
call vradr(adr)
go to 80

67 continue
go to 80

70 call getgsl~gsl,adr)
call getchr(chl,gsl,l)
call getchr~ch2,gsl,2)
call getchr~ch5,gslev~lim),l)
call getchr(ch6,gslev(lim),2)
if (charlt~ch5,chl)) go to 80
if Ccharlt(chl,ch5)) go to 75
if (charlt(ch6,ch2)) go to 80

75 call wradr(adr)
80 continue

return
end

SOMTARE ENGINEERING PRINCIPLES 12-47
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM CMADDS)

C
C as=
C
C initialize the asm
C

subroutine initas
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit, In
character*20 boc ,gn
character*l0 tit
character*9 zip
character*5 ser
character*2 gsl,st
integer nca,mad,nflds,adr,i,j
logical adflag
parameter (mad-26 ,nfldsinll)
coon /asmblk/nca,sop(mad),coa~mad),cit(mad) ,ln~mald),boc(mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st~mad),
& adflag(mad,nflds)

ncain-l
do 10 j1l,nflds

do 10 iinl,mad
adflag(i,j)-.false.

10 continue
ret urn
end

C
C asm
C
C maximum number of addresses
C

integer function maxads
implicit complex Ca-z)
integer mad,nflds
parameter Cmad26,nfldsfll)
maxad s-mad
return
end

C
C asm
C
C determine number of consecutive complete addresses
C

subroutine verads
implicit complex Ca-z)
charac ter*30 sop, coa
character*25 cit, ln
charac ter*20 boc ,gn

character*1O tit
character*9 zip
character*5 ser
charac ter*2 gol, at
integer nca,mad,nfld,adr,i,j,n
logical ad flag

12-48 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings Doc. HADDS.7

parameter Cmad-26 ,nflds-11)
common /asmblk/nca,sop(mad),coa~mad),cit~mad),ln~mad),boc~mad),

& gn(mad),tit(mad),zip~mad),ser(mad),gsl(mad),st~mad),
& adflag(mad,nflds)

do 20 n1l,mad
do 10 jinl,nflds
if (.not.adflag~n,j)) go to 30

10 continue
20 continue

nca-mad
return

30 nca-n-l
do 50 i-n,mad

do 40 j-l,nflds
if Cadflag(i,j)) call ueasmi('asm', Iverads')

40 continue
50 continue

return
end

C
C
C asm
C
C get number of consecutive addresses
C

integer function getnca
implicit complex Ca-z)
charac ter*30 sop, coa
character*25 cit,ln
charac ter*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
charac ter*2 gal, at
integer nca,mad,nflds
logical adflag
parameter Cmadin26,nfldsinll)
common /asmblk/nca, sop(mad),coa(mad),cit(mad),ln(mad),boc(mad),

& gn~mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag(mad,nflds)
if Cnca.lt.0) call uencau('asml,'getnca')
getncainnca
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-49
3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (MADDs)

C
C s
C
C set branch-or-code field of adr to str
C

subroutine setboc(adr,str)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit,ln
charac ter*20 boc ,gn
character*lO tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter (madin26,nfldsinll)
common /asmblk/ncagsop~mad),coa~mad),cit~mad),ln(mad),boc(mad),

& gn~mad),tit~mad),zip~mad),ser(mad),gsl~mad),st~mad),
& adflag(mad,nflds)
if Cadr.1t.l.or.adr.gt.mad) call ueaidaC'aam','setboc')
boc(adr)-str
adflag(adc,lI)-.true.
return
end

C
C asm
C
C set city field of adr to str
C

subroutine setcit~adr,str)
implicit complex Ca-z)
character*30 sop,coa
character*25 cit,ln
character*20 boc ,gn
character*lO tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter Cmad-26 ,nflds-ll)
common /asmblk/nca,sop(mad),coa~mad),cit~uiad),ln~mad),boc~mad),

& gn(mad), tit(mad),zip(mad),ser(mad),gsl(mad) ,st~mad),
& ad flIag (mad, nf lds)

if (adr.lt.l.or.adr.gt.mad) call ueia's',sti'
cit(adr)-str
adflag(adr,2)-. true.
return
end

12-50 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HADDS Program Listings IDoc. MADDS.7

C
C asm
CI
C set comand-or-activity field of adr to sir
C

subroutine setcoa~adr,str)
implicit complex Ca-z)
charac ter*30 sop, con
character*25 cit,ln
charac ter*20 boc ,ga
character*lO tit
character*9 zip
character*5 ser
character*2 gsl, st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter (madin26 ,nflds-ll)
common /asmblk/nca,sop(mad),coa~mad),cit(mad) ,ln(mad) ,boc(mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag(mad,nflds)
if (adr.lt.1.or.adr.gt.mad) call ueaidaC'asm','setcoa')
coa(adr)-str
adflag(adr,3)-.true.
return
end4

C as=
C
C set given-names field of adr to str
C

subroutine setgn (adr,str)
implicit complex Ca-z)
charac ter*30 sop ,con
character*25 cit, In
charac ter*20 boc ,gn
character*lO tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter (madin26 ,nfldsull)
common /asublk/nca,sop~mad),coa(mad),cit(mad),ln(mad),boc(mad),

& gn(mad),tit(mad),zip(aad),ser(mad),gul(mad),st(mad),
& adflag(mad,nflds)
if Cadr.lc.l.or.adr.gt.mad) call ueaida('aam','setgn')
gn(adr)astr
adflag(adr,4)-.true.
retCurn
end

SOFTWARE ENGINEERING PRINCIPLES 12-51
3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (MAiDS)

C
C asm
C
C set gs-level field of adr to str
C

subroutine setgsl(adr,str)
implicit complex (a-z)
character*30 sop,coa
character*25 cit,ln
character*20 boc,gn
character*lO tit
character*9 zip
character*5 sls
character*5 gsrs
character*(*) str
integer nca,mad,nflds,adr
logical ad flag
parameter (mad-26 ,nflds-ll)
common /asmblk/nca,sop(mad),coa(mad),cit(mad), ln(mad),boc(mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag(mad,nflds)
if Cadr.1t.l.or.adr.gt.mad) call ueaida('asm','setgsl')
gsl(adr)-str
adflag(adr,5)n. true.
return
end

C
C asm
C
C set last-name field of adr to str

subroutine setln (adr,str)
implicit complex Ca-z)
charac ter*30 sop, coa
character*25 cit, ln
charac ter*20 boc ,gn
character*lO tit
character*9 zip
character*5 ser
character*2 gsl, st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter Cmadin26,nfldxinll)
coon /asmblk/nca,sopCmad),coa~mad),cit(mad),ln(mad),boc(mad),

& gn(mad),tit(mad),zip(mad),ser~mad),gsl(mad),st~mad),
& adflag(mad,nflds)

if (adr.lt.l.or.adr.gt..ad) call ueaida('asm','setln')
lnC adr)-s tr
adflag~adr,6)in.true.
return
end

12-52 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HADDS Program Listings /Doc. MADDS.7

C
C arn
C
C set service field of adr to str
C

subroutine setser(adr,str)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit,ln
charac ter*20 boc ,gn
character*1O tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter (mad-26,nflds-ll)
common /asmblk/nca,sop(mad),coa(mad),cit(mad),ln~mad),boc(mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad), 1
& adflag(mad,nflds)

if (adr.lt.1.or.adr-gt.uad) call ueaida('asm','setser')
ser(adr)-str
adflag(adr, 7)-.true.
return

end
C
C as.

C set street-or-post-office-box field of adr to str
C

subroutine setsop(adr,str)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit,ln
charac ter*20 boc ,gn
character*1O tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical adflag
parameter (madin26 ,nfldsll1)
comon /asmbllc/nca,sop(mad),coa(mad),cit(mad), ln(uiad),boc(mad),

& gn(mad),tit(mad.),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag(mad,nflds)
if Cadr.lt.l.or.adr.gt.mad) call ueaida('asm','setsop')
sop(adr)-str
adflag(adr,8)-.true.
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-53
3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (MADDS)

C
C asm
C
C set state field of adr to str
C

subroutine setst (adr,str)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit, in
charac ter*20 boc ,gn
character*lO tit
characuer*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical ad flag
parameter (madin26 ,nfldsll1)
common /asmblk/nca,sop(mad),coa(mad),cit(mad),ln(mad),boc(mad),

&gn~mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
&adflag~mad,nflds)
if Cadr.1t.1.or.adr.gt.mad) call ueaida('asm','setst')

st(adr)'mstr
adflag(adr,9)in.true.
re turn
end

C
C asm
C
C set title field of adr to str
C

subroutine settit(adr,str)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit,in
character*20 boc ,gn
character*lO tit
character*9 zip
character*5 ser
character*2 gsl,st
character*(*) str
integer nca,mad,nflds,adr
logical ad flag
parameter (madin26 ,nflds 11)
coinon /asublk/nca,sop(mad),coa(uad),cit(mad),ln(ad),boc(mad),

& gn(mad) ,tit(mad),zip(mad),ser(mad),gsl(mad),st(uad),
& adflag(mad,nflds)
if (adr.lc.l.or.adr.gc.uad) call ueaida('am','settit')
tit(adr)-str
ad flag(adr, 10 -true.
return
end

12-54 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

C
C asm
C
C set zip-code field of adr to str
C

subroutine setzip(adr,str)
implicit complex (a-z)
character*30 sop,coa
character*25 cit,ln
charac ter*20 boc ,gn
character*1O tit
character*9 zip
character*5 ser
charac ter*2 gs1, st
character*(*) str
integer nca,mad,nflds,adr
logical ad flag
parameter (madin26,nflds-11)
common /asmblk/nca,sop(miad),coa(mad),cit(mad),ln~mad) ,boc~mad),

& gn(mad) ,tit~mad),zip(mad),ser(mad),gsl(mad) ,st~mad),
& adflag~mad,nflds)
if Cadr.lt.l.or.adr.gt.mad) call ueaida('asm','setzip')
zip(adr)-str
ad flag~adr 11)-. true.
return
end

C
C asm
C
C get branch-or-code field from adr
C

subroutine getboc(result,adr)
implicit complex (a-z)
charac ter*30 sop, coa
character*25 cit,ln
character*20 boc ,gn,result
character*10 tit
character*9 zip
character*5 ser
character*2 gal,st
integer nca,mad,nflds,adr, j
logical adflag
parameter (mad-26,nfldsll1)
coon /asmbll/nca,sop(mad),coa~mad),cit(mad),ln(mad),boc(mad),

& gn~mad),tit(mad),zip(mnad),ser(mad),gsl(mad),st(mad),
& adflag(mad,nflds)
if (adr.lt.1.or.adr.gt.mad) call ueaida('asm','getboc')
if (adflag(adr,l)) go to 20
do 10 j1l,nflds
if Cadflag(adr,j)) call ueadrpC'aam','getboc')

10 continue
call ueadru('aam', 'getboc')

20 continue
resultinboc(adr)
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-55
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (HADDS)

C
C asm
C
C get city field froma adr
C

subroutine getcit(result,adr)
implicit complex (a-z)
charac ter*30 sop, coa
cbaracter*25 cit, In, result
character*20 boc ,gn
character*1O tit
character*9 zip
character*5 ser
character*2 gsl,st
integer nca,mad,nflds,adr,j
logical adflag
parameter (madin26,nflds-11)
common /asmblk/nca,sop(mad),coa(mad),cit(mad),ln(mad),boc~mad),

& gn(mad),cit~mad),zip(mad),ser(mad),gsl~mad),st~mad),
& adflag(mad,nflds)
if (adr.lc.l.or.adr.gt.mad) call ueaidaC'asm','getcit')
if Cadflag~adr,2)) go to 20
do 10 j1l,nflds
if (adflag~adr,j)) call ueadrp('aam','getcit')

10 continue
call ueadruC 'asm','getcit')

20 continue
result-cit~adr)
return
end

C
C asm
C
C get comand-or-activity field from adr
C

subroutine getcoa~result,adr)
implicit complex (a-z)
character*30 sop,coa ,result
character*25 cit, ln
character*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
charac ter*2 gal, at
integer nca,mad,nflds,adr,j
logical adflag
parameter (mad-26,nfldinll)
common /asmblk/nca,sop(mad)#coa(mnad),cit(mad),ln(aad),boc(mad),

& gn(mad) ,tit(mad) ,zip(mad) ,aer~mad) ,gal(mad) , atmad),
& adflag(mad,nflda)

12-56 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

if (adr.lt.l.or.adr.gt.mad) call ueaidaC'asm','getcoa')
if (adflag~adr,3)) go to 20
do 10 j1l,nflds
if Cadflag(adr,j)) call ueadrp('asm',getcoa')

10 continue
call ueadru('asm', 'getcoa')

20 continue
resultincoa~adr)
return
end

C
C asm
C
C get given-names field from adr

subroutine getgn~result,adr)
implicit complex (a-z)
character*30 sop,coa
character*25 cit,In
charac ter*20 boc ,gn, result
character*10 tit
character*9 zip
character*5 ser
character*2 gsl, st
integer nca,mad,nflds,adr,j
logical adflag
parameter (mad-26 ,nfldsll1)
common /asmblk/nca,sop~mad),coa~mad),cit(mad),ln(mad),boc(mad),

& gn~mad),tit(mad),zip(mad),ser(mad),gsl~mad),st(mad),
& adflag(mad,nflds)
if Cadr.lt.l.or.adr.gt.mad) call ueaida('asm','getgn')
if Cadiflag~adr,4)) go to 20
do 10 j1l,nflds

'10 if (adflag~adr,j)) call ueadrp('asm','getgn')
10 continue

call ueadru('asm', 'getgn')
20 continue

re s ult-gn Cadr)
return
end

10

SOMARE ENGINEERING PRINCIPLES 12-57
3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (liADDS)

C
C asm
C
C get gs-level field from adr
C

subroutine getgsl(result,adr)
implicit complex Ca-z)
character*30 sop, coa
character*25 cit,ln
character*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
character*2 gsl, st ,result
integer nca,mad,nflds,adr,j
logical adflag
parameter (mad-26,nfldsll1)
common /asmblk/nca,sop~mad),coa~mad),cit~mad),ln~mad),boc~mad),

& gn~mad) ,tit~mad),zip(mad),ser~mad) ,gsl~mad),st~mad),
& adflag~mad,nflds)

if Cadr.lt.1.or.adr.gt.mad) call ueaidaC'asm','getgsl')
if Cadflag(adr,5)) go to 20
do 10 j1l,nflds
if (adflagadr,j)) call utadrp('asm', 'getgsl')

10 continue
call ueadru(asmo, 'getgsl')

20 continue
resultingsl~adr)
return
end

C
C asm,
C
C get last-name field from adr
C

subroutine getln(result,adr)
implicit complex Ca-z)
charac ter*30 sop, coa
character*25 cit, In, result
charac ter*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
character*2 gsl, st
integer ncagmad,nflds,adr,j
logical adflag
parameter Cmadin26,nfldsinll)
common /asmblk/nca,sop~mad),coa~mad),cit(mad),ln(mad),boc(kad),

& gn(mad),tit~mad),zip~mad),ser(mad),gsl(mad),st(mad),
& adflag~mad,nflds)

12-58 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

if (adr.lt.,l.or.adr.gt.mad) call ueaidaC'asm','getin')
if (adflag('itdr,6)) go to 20
do 10 jinl,nflds
if Cadfla.,(adr,j)) call ueadrpC'asm','getln')

10 continue
call ueadru('asm', getln')

20 continue
result-ln(adr)
return
end

C
C asm
C
C get service field from adr
C

subroutine getser(result,adr)
implicit complex (a-z)
charac ter*30 so,-, coa
charac ter*25 ci ,,In
character*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser, result
character*2 gsl,st
integer nca,mad,nflds,adr,j
logical adflag
parameter (madin26,nflds-1l)
common /asmblk/nca,sop~mad),coa~mad),cit(mad),ln~mad),boc(mad),

& gn(mad),tit~mad),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag~mad,nflds)
if Cadr.lt.l.or.adr.gt.mad) call ueaida('asm','getser')
if Cadflag~adr,7)) go to 20
do 10 j1l,nflds
if Cadflag(adr,j)) call ueadrp('asm','getser')

10 continue
call ueadru('asmn' ,'getser')

20 continue
result'mser(adr)
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-59
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C asm
C
C get street-or-post-office-box field from adr
C

subroutine getsop(result,adr)
implicit complex (a-z)
character*30 sop,coa,result
character*25 cit,ln
charac ter*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
character*2 gsl,st
integer nca,mad,nflds,adr,j
logical adflag
parameter (mad-26,nflds-11)
commnon /asmblk/nca,sop(mad),coa~mad),cit~mad),ln~mad),boc(mad),

& gn~mad),tit(mad),zip(mad),ser(mad),gsl~mad),st(mad),
& adflag(mad,nflds)
if Cadr.lt.l.or.adr.gt.mad) call ueaida('asm','getsop')
if (adflag(adr,8)) go to 20
do 10 j31,nflds
if (adflag(adr,j)) call ueadrp('asm', 'getsop')

10 continue
call ueadru('asm', 'getsop')

20 continue
result-sop~adr)
return
end

C
C asm
C
C get state field from adr
C

subroutine getst~result,adr)
implicit complex Ca-z)
character*30 sop,coa
character*25 cit,ln
character*20 boc ,gn
character*10 tit
character*9 zip
character*5 ser
character*2 gsl,st,result
integer nca,mad,nflds,adr, j
logical adflag
parameter Cmad-26,nflds-ll)
common /asmblk/nca,sop(mad),coa(mad),cit(mad),ln(mad),boc~mad),

& gn~mad),tit~mad),zip(mad),ser(mad),gsl(mad),st~mad),
& adflag(mad,nflds)

12-60 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

if (adr.1t.l.or.adr.gt.inad) call ueaida('asm',Igetst')
if (adflag~adr,9)) go to 20
do 10 jinl,nflds
if (adflag(adr,j,) call ueadrp('asm','getst')

10 continue
call ueadru('as.' ,'getst')

20 continue
result-st Cadr)
return
end

C

C as.

CI
C get title field from adr
C

subroutine gettit(result,adr)
implicit complex Ca-z)
character*30 sop, coa
character*25 cit,ln
charac ter*20 bo , gn
character*l0 tit,result
character*9 zip
character*5 ser
character*2 gsl,st
integer nca,mad,nflds,adr,j
logical adflag
parameter Cmad-26,nflds'll)
common /asmblk/nca,sop(mad),coa(mad),cit~mad),ln(mad),boc~mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
& ad flag (mad, nf lds)
if (adr.lt.l.or.adr.gt.mad) call ueaida('asm','gettit')
if (adflag(adr,10)) go to 20
do 10 j1l,nflds
if Cadflag~adr,j)) call ueadrp('s', 'gettit')

10 continue
call ueadruC 'asm', 'gettit')

20 continue
resultintit(adr)
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-61
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C asm
C
C get zip-code field from adr
C

subroutine getzip(result,adr)
implicit complex (a-z)
character*30 sop,coa
character*25 citln
character*20 boc,gn
character*10 tit
character*9 zip,result
character*5 ser
character*2 gsl,st
integer nca,madnflds,adr,j
logical adflag
parameter (mad-26,nflds-ll)
common /asmblk/nca,sop(mad),coa(mad),cit(mad),ln(mad),boc(mad),

& gn(mad),tit(mad),zip(mad),ser(mad),gsl(mad),st(mad),
& adflag(madnflds)
if (adr.lt.l.or.adr.gt.mad) call ueaida('asm','getzip')
if (adflag(adrll)) go to 20
do 10 j1l,nflds
if (adflag(adr,j)) call ueadrp('asm','getzip')

10 continue
call ueadru('asm','getzip')

20 continue
result-zip(adr)
return
end

C
C chin
C
C define internal character comparison code
C

block data
integer mask,intchr
common /chmblk/intchr(128)
data intchr/O,-l,-2,-3,-4,-5,-6,-7,-8,-9,-l0,-ll,

&-12,-13,-14,-15,-16,-17,-18,-19,-20,-21,-22,-23,-24,
&-25,-26,-27,-28,-29,-30,-31,1,-32,-33,-34,-35,-36,
&-37,-38,-39,-40,-41,-42,-43,-44,-45,-46,28,29,30,31,
&32,33,34,35,36,37,-47,-48,-49,-50,-51,-52,-53,2,3,
&4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
&23,24,25,26,27,-54,-55,-56,-57,-58,-59,2,3,4,5,6,7,
&8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
&26,27,-60,-61,-62,-63,-64/

end

12-62 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

C
C chin
C
C character equality test
C

logical function chareq~chl,ch2)
character*l chi ,ch2
integer mask, intchr, intl ,int2, ichar
coon /chmblk/intchr(128)
int lichar~chl)
int2-ichar Cch2)
chareqinintchr(imt 1+1). eq. intchrC int2+1)
return
end

C
C chin
C
C character less-than comparison
C

logical function charlt(chl,ch2)
charac ter*l ch1, ch2
integer mask, intchr, inti, int2, ichar
coon /chmblk/intchrC 128)
intl-ichar(chl)
int2-icharC ch2)
if (intchr~intl+l).le.O) call uechlt('chm','charlt')
if Cintchr~int2+1).le.O) call uechltC'chm','charlt')
charltinintchr(imt 1.1). lt. intchrC int2+1)
return
end

C
C idm.
C
C initialize
C

block data
implicit complex (a-z)
character*60 buffer
integer bufpos, buf siz, unit
logical idop
coon /idublk/bufpo , idop,buffer
data bufpos/60/idop/. false. /
end

SOFTWARE ENGINEERING PRINCIPLES 12-63
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C idm
C
C open input device
C

subroutine openid

implicit complex (a-z)
character*60 buffer
integer bufpos,bufsiz
logical idop

common /idmblk/bufpos,idop,buffer
if (idop)call ueropn('idm','openid')
idop=.true.
return
end

C
C idm
C
C close input file
C

subroutine closid
implicit complex (a-z)
character*60 buffer
integer bufpos,bufsiz
logical idop
common /idmblk/bufpos,idop,buffer
if (.not.idop) call uercls('idm','closid')
idop-.false.
return
end

C
C idm
C
C read character from input stream
C
C this compiler treats an end-of-file condition as an
C device error condition, so there is no implementation
C of the device error ue call.
C

subroutine rdchar(chl)
implicit complex (a-z)
character*l chl
character*60 buffer
integer bufpos,bufsiz,unit
logical idop
parameter (unit-5)
coon /idmblk/bufpos,idop,buffer

12-64 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

if C.not.idop) call uewrcl('idm','rdchar')
if (bufpos.lt.60) go to 10
read (unit,100,err-3O,end-2O) buffer
bufpos-0

10 buf posbuf pos+l
call getchr~chl,buffer,bufpos)
return

20 call uenoch('idm','rdchar')
return

30 call uedverC'idm',Irdchar')
return

100 format (a60)
end

C
C ipm

C read and store input addresses

C subroutine rdads

implicit complex Ca-z)
character*20 coa, rdfld,endstr
integer nads,maxads,mads
logical streq
data ends tr /'**********
call openid
mads-maxads()
nads0O

1 coa-rdfldC20)
if (streq~coa,endstr)) go to 20
nadsinnads+l
if Cnads.gt.mads) call ueadov('ipm','rdads')
call setcoa Cnads,coa)
call setsop (nads,rdfld(20))
call setcit Cnads,rdfldC2O))
call setst (nads,rdfld(2))
call setzip Cnads,rdfld(7))
call settit (nads,rdfldC4))
call setgn Cnads,rdfld(20))
call setln Cnads,rdfld(15))
call setboc (nads,rdfld(20))
call setgsl (nads,rdfld(2))
call setser Cnads,rdfldC4))
go to 1

20 call verads
call closid
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-65
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C ipm
C
C read and create an address field string
C

character *(*) function rdfld(length)
implicit complex (a-z)
character*l chr, rdchar
integer length,i
rdfld=' '
do 10 iul,length

call setchr(rdfld,i,rdcharo))
10 continue

return
end

C
C mcm
C

program mcm
implicit complex Ca-z)
integer i
character *1 chl
character *2 oglim
character *3 prezip
call initas
call openod
call newlin
call wrchar C' ')
call newlin
do 106 i-1,23

call getchr(chl,'starting address input.',i)
call wrchar(chl)

106 continue
call rdads
call newlin
call vrchar(' ')
call newlin
do 107 i-1,25

call getchr(chl,'address reading complete.',i)
call wrchar(chl)

107 continue
prezip - '203'
call newlin
call vrchar(' ')
call newlin
do 108 iul,18

call getchr(chl,'output of area is:',i)
call vrchar(chl)

108 continue

12-66 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

call area(prezip)
oglim = '10'
call newlin
call wrchar(')
call newlin
do 109 i=1,18

call getchr(chl,'output of rank is:',i)
call wrchar(chl)

109 continue
call rank(oglim)
call newlin
call wrchar(' ')
call newlin
do 110 i-1,17

call getchr(chl,'end of madds run.',i)
call wrchar(chl)

110 continue
call newlin
call closod
stop
end

C odm
C
C initialize output device
C

block data
implicit complex (a-z)
character*60 line
integer linlen, linpos
logical odop
common /odmblk/linpos,odop, line

data linpos/1/,odop/.false./
end

C
C odm
C
C open output device
C

subroutine openod
implicit complex (a-z)
character*60 line

integer linlen, linpos
logical odop
common /odmblk/linpos,odop, line
if (odop) call ueropn('odm','openod')
odop. true.
return
end

SOFTWARE ENGINEERING PRINCIPLES 12-67
3-14 August 1981

. - " i.

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C odm
C
C close output file
C

subroutine closod
implicit complex (a-z)
character*60 line
integer linpos, linlen
logical odop
common /odmblk/linpos,odop, line
if (.not.odop) call uercls('odm','closod')
odop, false.
return
end

C
C odm
C
C write character to output stream
C

subroutine wrchar(chr)
implicit complex (a-z)
character*l chr
character*60 line
integer linpos, linlen
logical odop
common /odmblk/linpos,odop, line
if (.not.odop) call uewrcl('odm','wrchar')
call setchr(line, linpos,chr)
linpos-linpos+l
if (linpos.le.60)return
write(0, 100,err20) line
linpos -
return

20 call uedver('odm','wrchar')
return

100 format (x,a60)
end

12-68 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

C
C ada
C
C write current line unless empty and get new line
C

subroutine newlin
implicit complex (a-z)
character*l line(60), chl
integer linpos, linlen, i
logical odop
common /odmblk/linpos,odop,line
if C.not.odop) call uewrcl('odm','wrchar')
if (linpos.eq.l) return
write C0,l00,errW2O) (getchr(line,i),i'ml,linpos-l)
linposl1
return

20 call uedver('odm','newlin')
return

100 format Clx,60a)
end

C
C apa
C
C write address adr
C

subroutine wradr(adr)
implicit complex (a-z)
character*30 getcoa
character*20 getcit,getln
character*20 getgn,getboc
cbaracter*l0 gettit
character*9 getzip
character*2 getst
integer maxads,getnca,mads,adr, i
madsmaxadsoC
if (adr.lt.l.or.adr.gt.mads)

& call ueaida('opm','wrads')
if Cgetncao).lt.adr.and.adr.le.mads)

&call ueaiduC 'opm','wradr')
call newlin
call wrfld~gettit(adr))
call wrchar(6 ')
call wrfld(getgn(adr))
call vrchar(' ')
call wrfld(getln(adr))
call newlin
call wrfld(getboc(adr))
call newlin
call wrfld~getcoa(adr))
call newlin

SOFTWARE ENGINEERING PRINCIPLES 12-69
3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (MADDS)

call wrfld~getcit(adr))
call wrcharC',')
call wrchar(' ')
call wrfld(getst(ad-))
call vrchar(' ')
call wrfld~getzip(adr))
call newlin
do 10 i-1,5

call vrchar(' '
call newlin

10 continue
return
end

C
C opa
C
C write a field
C

subroutine wrfld(str)
implicit complex (a-z)
character *(*) str
character*1 getchr
integer nblank, i,n
n-nblankC str)
if Cn.gt.0) go to 5
do 4 i-1,5

4 call vrchar('*')
return

5 do 10 iinl,n
call wrchar(getchr~str,i))

10 continue
return
end

C Ssm
C
C replace character at position pos of str by chr
C

subroutine setchr(strlpos,chr)
implicit complex (a-z)
character *1 chr
character *(*) str
integer pos,len
if (pos.lt.1.or.pos.gt-len(str)) call uesposC'sou','setchr')
str(pos :pos)inchr
return
end

12-70 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings IDoc. MADDS.7

C get character atposto poo str

character *1 function getchr(str,pos)

implicit complex Ca-z)
character *(*) str
integer len,pos
if (pos.lt.l.or.pos.gt.len(str)) call uespos('sam','getchr')
getchr-str(pos :pos)
return
end

C
C sm
C
C create aubstring of air
C

character *(*) function substr(str,pos,length)
implicit complex (a-:)
character *(*) str
integer pos,length, len, strien, uppos
strien -len(str)
uppos -pos+length-l
if (pos.lt.l.or.pos.gt.strlen) call uespos('ssm','substr')
if (length.le.O.or.uppoa.gt.strlen)

&call ueslei(sm' , 'substr')
substr -'
if Clength.eq.O) return
substrinstr(pos :uppoa)
return
end

C
C sem
C
C string equality test
C

logical function streq(strl,str2)
implicit complex Ca-z)
character*(*) strl,str2
integer l,len,1l,12,min,i
logical chareq
ll'.len~strl)
l2=1en(str2)
linmin(ll, 12)
streq-.false.

SOFTWARE ENGINEERING PRINCIPLES 12-71
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

do 10 iinl,1
if (.not. chareq~strl(i:i),str2Ci:i)))return

10 continue
if (11-12) 100,200,300

100 do 110 i-11+1,12
if (.not.chareq(str2(i:i),' '))return

110 continue
streqn. true.
return

200 streq-.true.
return

300 do 310 i-12+1,11
if (.not.chareq~strl~i:i),' '))return

310 continue
streq= true.
return
end

C
C ueh
C
C data definitions for ue handlers
C

block data
implicit complex Ca-z)
character*3 mids
integer nmods
parameter (nmods-g)
comon /uehblk/mids(nmods)
data mis'p''s',cmi ~ipttcfod''opm',

&' Ssm'/
end

C
C ueh
C
C handler of ue: address storage capacity overflow
C

subroutine ueadov(mdid, fnid)
implicit complex Ca-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j
parameter (nmodain9)
coon /uehblk/mids(nmods)
do 20 jinl,nmods

if Cmdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','adov')
30 write(0,100) fnid,mdid
100 format Wl *** the ue: addresss storage capacity overflow

V' detected in function ',a,' of module ',a,'.'/
V' execution terminated.')

call error C'
stop
end

12-72 SOFEARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings /Doc. MADDS.7

C
C ueh
C
C handler for ue: partially defined address
C

subroutine ueadrp(mdid, fuid)
implicit complex (a-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j
parameter (nmodsf9)
common /uehblk/mids(nmods)
do 20 jil,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh', 'adrp')
30 write(0,100) fnid,mdid
100 format (/' *** the ue: partially defined address '/

&' detected in function ',a,' of module ',a,'.'/
6' execution terminated.')

call error C' ')
stop
end

C
C ueh
C
C handler for ue: undefined address
C

subroutine ueadru(mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j

parameter (nmods-9)
common /uehblk/mids(nmods)
do 20 j-1,nmods

if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh','adru')

30 write (0,100) fnid,mdid
100 format (W' *** the ue: undefined address '/

& detected in function 'a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

SOFTWARE ENGINEERIING PRINCIPLES 12-73
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C ueh
C
C handler for ue: absurd address identifier
C

subroutine ueaida(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer rnmods,j

parameter (nmods=9)
common /uehblk/mids(nmods)
do 20 j1l,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','aida')
30 write (0,100) fnid,mdid
100 format (/' *** the ue: absurd address identifier '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

C
C ueh
C
C handler for ue: unassigned address identifier
C

subroutine ueaidu(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j
parameter (nmods-9)
comon /uehblk/mids(nmods)
do 20 jul,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','aidu')
30 write (0,100) fnid,mdid
100 format (/' *** the ue: unassigned address identifier '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

12-74 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings / Doc. MADDS.7

C
C ueh
C
C handler for ue: state of asm incorrect
C

subroutine ueasmi(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j
parameter (nmods=9)
common /uehblk/mids(nmods)
do 20 j-l,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','asmi')
30 write (0,100) fnid,mdid
100 format (/' *** ue: state of asm incorrect

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

C
C ueh
C
C handler for ue: undefined character comparison
C

subroutine uechlt(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdidfnid
integer nmods,j
parameter (nmods-i9)
comon /uehblk/mids(nmods)
do 20 j-1,nmods

if (mdid.eq.midsj)) go to 30
20 continue

call uemidu('ueh','chlt')
30 write (0,100) fnid,mdid
100 format (/' *** the ue: undefined character comparison '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

SOFTWARE ENGINEERING PRINCIPLES 12-75
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C ueh
C
C handler for ue: device error
C

subroutine uedver(mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j
parameter (nmods=9)
comon /uehblk/ mids(nmods)
do 20 j-1,nmods
if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh', 'dver')

30 write (0,100) fnid,mdid
100 format (/' *** the ue: device error 'V

&' detected in function ',a,' of module 'a,'.'/
&' execution terminated.')

call error (' ')
stop
end

C
C ueh
C
C handler for ue: non-existent module identifier
C

subroutine uemidu(mdid, fnid)
implicit complex (a-z)
character*(*) mdid, fnid

30 write (0,100)fnid,mdid
100 format (' *** the ue: non-existent module identifier '/

&' detected in function ',a,' of module 'a,'.'/
&' execution terminated.')

call error C' ')
stop
end

12-76 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings / Doc. MADDS.7

C
C ueh
C
C handler for ue: number of complete addresses undefined
C

subroutine uencau(mdidfnid)
implicit complex (a-z)
character*3 mids
character*(*) mdidfnid
integer nmodsj
parameter (nmods-9)
comon /uehblk/mids(nmods)
do 20 j1,nmods

if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh','ncau')

30 write (0,100) fnid,mdid
100 format (' *** the ue: number of complete addresses undefined '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

C
C ueh
C
C handler for ue: no chars available on input device
C

subroutine uenoch(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j
parameter (nmods-9)
common /uehblk/mids(nmods)
do 20 j-1,nmods

if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh','noch')

30 write (0,100) fnid,mdid
100 format (/' *** the ue: no chars available on input device '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

SOFTWARE ENGINEERING PRINCIPLES 12-77

3-14 August 1981

SEC. 12 /MILITARY ADDRESS SYSTEM (HAnDS)

C
C ueh
C
C handler for ue: 0-grade level ,1 or 10
C

subroutine ueogl~mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) adid, fnid
integer nmods,j
parameter (nmods-9)
common /uehblk/mids(nmods)
do 20 jinl,nmods
if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh', 'ogl')

30 write (0,100) fnid,mdid
100 format (/' *** the ue: 0-grade level I or *10 '

V' detected in function ',a,' of module 'a''
V execution terminated.')

call error C)
stop
end

C
C ueh
C
C handler for ue: redundant device closing
C

subroutine uercls~mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j
parameter (nmods-9)
common /ueblk/mids Cnmod s)
do 20 jinl,nmods
if (mdid.eq.mids~j)) go to 30

20 continue
call uemidu('ueb','rcls')

30 write (0,100) fnid,mdid
100 format (/P *** the ue: redundant device closing '

V' detected in function ',a,' of module ',a,'.'/
6' execution terminated.')

call error C '
stop
end

12-78 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

MADDS Program Listings / Doc. MADDS.7

C
C ueh
C
C handler for ue: redundant device opening

subroutine ueropn(mdidfnid)
implicit complex (a-z)
character*3 mids

character*(*) mdid,fnid
integer nmods,j
parameter (nmods=9)
common /uehblk/mids(nmods)
do 20 j1l,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','ropn')
30 write (0,100) fnid,mdid
100 format (/' *** the ue: redundant device opening '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error ()
stop
end

C
C ueh
C
C handler for ue: substring length illegal
C

subroutine ueslen(mdid,fnid)

implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j

parameter (nmods-9)
common /uehblk/mids(nmods)
do 20 j=1,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu('ueh','slen')

30 write (0,100) fnid,mdid
100 format (W' *** the ue: substring length illegal '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
stop
end

SOFTWARE ENGINEERING PRINCIPLES 12-79
3-14 August 1981

SEC. 12 / MILITARY ADDRESS SYSTEM (MADDS)

C
C ueh
C
C handler for ue: string character position illegal
C

subroutine uespos(mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid,fnid
integer nmods,j
parameter (nmods-9)
common /uehblk/mids(nmods)
do 20 j1l,nmods

if (mdid.eq.mids(j)) go to 30
20 continue

call uemidu ('ueh', 'spos')
30 write (0,100) fnid,mdid
100 format (' *** the ue: string character position illegal 'I

&' detected in function 'pa,' of module ',a,'.'/
&' execution terminated.')

call error C' ')
Stop
end

C
C ueh
C
C handler for ue: write/read on closed device
C

subroutine uewrcl(mdid, fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j
parameter (nmods=9)
common /uehblk/mids(nmods)
do 20 j-t,nmods
if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh','wrcl')

30 write (0,100) fnid,mdid
100 format (' *** the ue: write/read on closed device '/

&' detected in function ',a,' of module ',a,'.'/
&' execution terminated.')

call error (' ')
stop
end

12-80 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

IL

MADDS Program Listings /Doc. MADDS.7

C
C ueh
C
C handler for ue: zip area part not 3 dec digs
C

subroutine uezip(mdid,fnid)
implicit complex (a-z)
character*3 mids
character*(*) mdid, fnid
integer nmods,j
parameter (nmods=9)
common /uehblk/mids(nmods)

do 20 jil,nmods
if (mdid.eq.mids(j)) go to 30

20 continue
call uemidu('ueh','zip')

30 write (0,100) fnid,mdid
100 format (W' *** the ue: zip area part not 3 dec digs '/

&' detected in function ',a,' of module a,'.'/
&' execution terminated.')

call error (C ')
stop
end

SOFTWARE ENGINEERING PRINCIPLES 12-81

3-14 August 1981

HAS. 1 The Host-At-Sea (HAS) Buoy System

EAMPLE DESCRIPTION

Introduction

The Navy intends to deploy HAS buoys to provide navigation and weather
data to air and ship traffic at sea. The buoys will collect wind, temperature,
and location data, and will broadcast summaries periodically. Passing vessels
will be able to request more detailed information. In addition, HAS buoys
will be deployed in the event of accidents at sea to aid sea-search operations.

Rapid deplovment and the use of disposable equipment are novel features of
HAS. HAS buoys will be relatively inexpensive, lightweight systems that may
be deployed by being dropped from low-flying aircraft. It is expected that
many of the HAS buoys will disappear because of equipment deterioration, bad
weather conditions, accidents, or hostile action. The ability to redeploy
rather than to attempt to prevent such loss is the key to success in the HAS
program. In this sense, HAS buoys will be disposable equipment. To keep
costs down, government surplus components will be used as much as possible.

Hardware

Each HAS buoy will contain a small computer, a set of wind and temperature
sensors, and a radio receiver and transmitter. Eventually, a variety of
special purpose HAS buoys may be configured with different types of sensors,
such as wave spectra sensors. Although these will not be covered by the
initial procurement, provision for future expansion is required.

The HAS-BEEN computer has been chosen for the HAS buoy program. There are
more than 3000 of these available as government-surplus equipment. They were
originally developed as the standard computer for a balloon force (High
Altitude Surveying, or HAS), which is now defunct. Known as the Balloon
Internal Navigator, they were originally called HAS-BIN computers; the
spelling was corrected in 1976 as part of a presidential program to remove
"redneckisms" from government documents.

The HAS-BEEN computer has been found suitable for the new HAS program by
virtue of its low weight, low cost, low power consumption, and nomenclature.
A preliminary study shows that the capacity of a single BEEN computer will be
insufficient for some HAS configurations, but it has been decided to use two
or more BEEN computers in these cases. Therefore, provision for mlti-
processing is required in the software.

The HAS-BEEN computer has a typical complement of full-word integer
instructions. Input is performed by a SNS (SENSE) instruction that selects a
device and stores the contents of its control register at a designated core

SOFTWARE ENGINEERING PRINCIPLES 13-1
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

location. Up to 256 different sensors may be connected, and the first 256 co-e
locations are available for depositing the results. The device and correspond-
ing core location are addressed by an 8-bit field in the SNS instruction.

The temperature sensors take air and water temperature (Centigrade). On
some HAS buoys, an array of sensors on a cable will be used to take water
temperature at various depths.

Because the surplus temperature sensors selected for HAS are not designed
for sea-surface conditions, the error range on individual readings may be
large. Preliminary experiments indicate that the temperature can be measured
within an acceptable tolerance by averaging several readings from the same
device. To improve the accuracy further and to guard against sensor failure,
most HAS buoys will have multiple temperature sensors.

Each buoy will have one or more wind sensors to observe wind magnitude in
knuts and wind direction. Surplus propellor-type sensors have been selected
because they meet power restrictions.

Buoy geographic position is determined by use of a radio receiver link
with the Omega navigation system.

Some HAS buoys are also equipped with a red light and an emergency
switch. The red light may be made to flash by a request radioed from a vessel
during a sea-search operation. If the sailors are able to reach the buoy,
they may flip the emergency switch to initiate SOS broadcasts from the buoy.

Software Functions

The software for the HAS buoy must carry out the following functions:

1. Maintain current wind and temperature information by monitoring
sensors regularly and averaging readings.

2. Calculate location via the Omega navigation system.

3. Broadcast wind and temperature information every 60 seconds.

4. Broadcast more detailed reports in response to requests from passing
vessels. The information broadcast and the data rate will depend on the type
of vessel making the request (ship or airplane). All requests and reports
will be transmitted in the RAINFORM format.

5. Broadcast weather history information in response to requests from
ships or satellites. The history report consists of the periodic 60-second
reports from the last 48 hours.

6. Broadcast an SOS signal in place of the ordinary 60-second message
after a sailor flips the emergency switch. This should continue until a
vessel sends a reset signal.

13-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

The Host-At-Sea (HAS) Buoy SYstem / Doc. HAS.l

7. Accept external update data. Although HAS buoys calculate their own
position, they must also accept correction information from passing vessels.
The software must use the information to update its internal database. Major
discrepancies must cause it to invoke elaborate self diagnostics to attempt to
eliminate the errors in future calculations.

8. Perform periodic built-in test (BIT) checks. The software should be
able to detect and compensate for memory or computer-function failures. Also,
the many sensors of a HAS host are relatively easily damaged and may be
providing erroneous Cata. There should be sufficient sensors to provide
reasonableness checks and to allow compensation for those found to be
inconsistent or biased. Those found to be nonfunctioning can be ignored in
future calculations.

Specifically, the following BIT checks are deemed necessary:

(a) Basic computer function test.

This test is designed to check the most frequently used functions of
the computer. It checks arithmetic and control operations and all fast
registers. It should be repeated every 350 ms.

(b) Extended computer function test.

This program makes more extensive tests on the basic computer, plus
checking less central functions such as 1/O ad shifts. It should be
completed at least once every 5000 as.

(c) Computer memory function test.

Each word in the memory must be checked by storing and reading all
zero, all one, and alternating zero-one bit patterns. A complete check of
a 10000 word memory should be completed every 15 minutes.

(d) Sensor consistency tests.

Although each of the sensors provides data independently, there are
known constraints on the reasonable relationships that they can have to
each other. For example, the many temperature readings can be expected to
remain within a few degrees of each other and not to change by more than
20 degrees in 30 minutes. Other sensors such as wind sensors, contain
provision for calibration readings. Checks of all wind sensors should be
made every 10 minutes. Consistency checks of temperature sensors 'should
be completed every 5 minutes.

Response to Detected Failures

The software is expected to function without noticeable degradation with
damage to up to 20% of the sensors. If more than 20% of the sensors are
improperly functioning, both periodic and request reports should be marked

SOFTWARE ENGIERING PRINCIPLES 13-3
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

"suspect." In the event that the data are considered unusable (e.g., more
than 50% of the sensors found malfunctioning), a "defective" report should be
sent in place of the suspect data.

In the event that BIT detects malfunctioning of a few specific comands,
their simulation by means of sequences of other commands (e.g., simulation of
subtraction using addition and negation) should be attempted.

Where areas of memory are found defective, functioning with reduced memory
should be attempted. If no more than 10Z of memory is defective, relocation
without loss of function can be attempted. If more memory is defective,
deletion of air temperature calculations should be the first step. Relocation
should then allow the performance of the remaining functions.

Software Timing Requirements

In order to maintain accurate information, readings must be taken from the
sensing devices at the following fixed intervals:

temperature sensors: every 10 seconds

wind sensors: every 30 seconds

Omega signals: every 10 seconds.

Since the buoy can only transmit one report at a time, conflicts will
arise.

If the transmitter is free and more than one report is ready, the next
report will be chosen according to the following priority ranking:

SOS 1 highest

Airplane Request 2

Ship/Satellite Request 3

Periodic 4

History 5 lowest

Program Generation

HAS host program will be generated at the HAS Program Generation Center
(NAVHASPGC) located at Chesapeake Beach, Maryland. A MAVHASPGCPAC is also
planned for eventual location in Monterey, California. Since different HAS
buoys may carry different sets of sensors, HAS-BEEN programs may be different.
The software to be procured must include a system generator. To generate a
specific program, a configuration (number of sensors of each type) will be
described and generation of the program should then be automatic.

13-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS.2 HAS Data Acquisition and Transmission
Software: Program Design Specification

EXAMPLE DESCRIPTION

COMPUTER SYSTEMS DISTRIBUTORS, INC.

0. U. DeZeeman R.E. Tired
Cognizant Software Engineer Contract Liaison Officer

Scope

This document is a detailed description of CSD's proposed design for the
HAS system software. The reader is assumed to be familiar with the HAS system
functions as described in The Host-At-Sea System (HAS) Buoy System (Document
HAS.1).

For a variety of reasons, the document does not assume detailed knowledge
of the HAS-BEEN computer, which is FE for this project. CSD has already
expressed its opinion that the HAS-BEEN computer is not ideal for the job.
Working together with one of our sister firms, CHIP Corporation, we have
proposed a specially designed microprocessor that is ideal for the job. In
order to allow the Navy more time for a decision, we have prepared our design O

in a machine-independent form. However, it has been necessary to recognize
two limitations of the HAS-BEEN computer at this early stage of the design
process.

(1) HAS-BUN has no interrupt system. Our design calls for periodic
polling of sensors.

(2) HAS-BUN has no instructions that are particularly useful in sub-
routine calls. For that reason, we have avoided subroutine calls in
many places where we might have used them.

In spite of the effects of these two limitations, we believe that our design
is also applicable to the CHIP computer.

Documentation Approach

"Show me your flowcharts and conceal your tables, and I shall continue to
be mystified. Show me your tables, and I won't usually need your flow-
charts; they'll be obvious." (Brooks 1975, p. 102)

SOFTWARE ENGINEERING PRINCIPLES 13-5
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

Believing that data structure dictates program structure, we frequently
reference a description of the Common Data Base (CDB), the data structure that
keeps track of the state of HAS. A complete description of all of the data
item in the system appears in Appendix I (p. 13-10) of this document. We
find reference to the CDB description to be of great value in understanding
the algorithms used in the system. A representative sample of the algorithms
are documented in Appendix II (p. 13-23), using a self-evident, ALGOL-like
pseudo code that we believe everyone can readily understand.

The proposed design divides the HAS software into functional modules, each
to be constructed by a separate group of programers. The remainder of this
document describes each module separately and then discusses intermodule
cooperation.

Module Overview

For the moment, we will ignore the time constraints on the HAS software
and instead will describe only the system functions performed by each module.
The modules are described below:

Sensor leading

Each sensor attached to the HAS system is controlled by one sensor-
reading module. Whenever the module polls the sensor, the value obtained
is converted to engineering units and stored in a location in the CDB.

Averaging

Unweighted time averages are computed for all sensors that are prone
to large errors. One averaging module exists for each of these sensors.
The averages are stored in the CDB.

ultisensor Averaging

These modules compute averages of readings from more than one sensor.
Depending on the type of the sensors being averaged, the readings used are
either raw sensor readings (after conversion to engineering units) or time

averages. In either case, the readings are obtained from the CDB and the
computed averages are stored in the CDB.

Omega Location Calculator

This module obtains Omega data from the CDB, uses the data to compute

the current location, and stores the location into the CDB for use by
other modules.

13-6 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Software /Doc. HAS.2

Record Updating

This module maintains the 48-hour history in the CDB. Each time it
is started, sensor, location, and time values are copied from their
locations in the CDB into the appropriate history locations in the CDB.

Receiving Module

This module controls the radio receiving equipment. It scans
assigned frequencies for indication of a message transmission, receives
the massage, and stores it into the CDB for later interpretation.

Message Interpretation

Messages stored in the CIB are parsed, and the module responsible for
responding to the message is initiated.

Report Generator

One report generator module exists for each of the five types of
reports. Each module is aware of the priority of its type of report with
respect to the other types and uses this information to ensure that reports
are broadcast according to the prescribed priority ranking. Additionally,
each module is able to access the readings it needs in the CDB and to
control the transmitting equipment used to broadcast the report.

Location Verification

This module is initiated by the Message Interpretation module when a
passing vessel supplies location information. The location information is
used to validate Omega location calculations stored in the CDB. Error
recovery is attempted if any discrepancy is larger than a specified
tolerance.

Buoy Device Control

This module reads any external switch settings on the buoy and
controls the operational emergency beacon.

Interuodule Cooperation

Owing to the limitations of the HAS-BEEN computer, we have designed the
HAS software as a set of cooperative modules. All intermodule coiunication
is through the CDB. Each of the modules keeps track of real time and is aware
of the deadlines of the other modules. They transfer control to each other
according to the urgency of the situation. Where several modules are able to
process data, and none has an urgent deadline, a fair round-robin scheduling
strategy is used. Each module performs this task itself because the HAS-BEEN
computer does not contain the preemption circuitry that the more desirable
CHIP computer would contain.

SOFTWARE ENGINEERING PRINCIPLES 13-7
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

When a module needs data produced by another module (a sequencing require-
ment) or the use of some resource, the requesting module tests a variable in
the CDB to determine the status of the resource (data). If the resource is
not available, the requesting module sety the variable to indicate that it
needs the associated resource and transfers control to another module.

The transfer of control is effected by using Module Control Blocks (MCBs)
that are linked into a set of FIFO queues. The MCB, contained in the CDB,
serves two purposes: (1) it holds state information such as register contents
and the PC, and (2) it contains queue pointers. The module relinquishing
control inserts its MCB into a FIFO queue associated with the resource it
needs, saves its state into its MCB, selects a module to start, and loads the
machine state from the selected module's MCB.

At any given time, it is likely that many modules vill be selectable,
i.e., all of the resources they require will be available. One of these

modules must be selected on the basis of the urgency of the task it performs.
Urgency is represented by a dynamically changing module priority; the more

urgent the task, the higher is the priority. A FIFO queue of MCBs is
associated with each priority level; the selection process is simply to select
the first MCB from the highest priority nonempty queue.

The alert reader now has two questions: (1) how do the MCBs get into the
selection queues in the first place, and (2) what enforces polling and other
real-time deadlines? In order to answer these questions, let us consider a
"snapshot" of the system in action. There is one currently executing module,
a number of modules waiting for a resource to become available, and some
modules that are ready to use the CPU. The MCBs for the resource-blocked
modules are in the queue associated with the resource (as described above);
the MCBs for the modules needing only the CPU are in selection queues. When
the currently executing module makes a resource available (by creating data or
no longer needing an actual resource), it moves the first MCB on the resource
queue to the selection queue for the priority level stored in the MCB and
adjusts the variable associated with the resource to indicate that the
resource is available.

We now consider the enforcement of real-time deadlines. Since the

HAS-BEEN computer has no hardware interrupts with which to signal that an
event needs to occur, the code in each module must frequently read the
real-time clock and determine whether any modules need to be run at that
time. If there are any, those modules' MCBs are moved to the appropriate
selection queues. In any case, the MCB for the currently executing module is
moved to the end of the selection queue that it currently resides in, and the

module transfers control as described above. The movement (deletion and
reinsertion) of the MCI for the currently executing module assures a round-
robin scheduling strategy for equal priority modules since all queues are FIFO.

The CDB includes a Time Control Table (TCT) containing a list of time
deadlines. A queue of MCBs is associated with each deadline. Using these
data structures, each module need only compare the clock time with the TCT

13-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Software / Doc. HAS.2

deadlines, put the associated MCBs on the proper selection queue, select a
module, and transfer control to the selected module.

Reentrant procedures are used to save space by avoiding duplicate code.
Therefore, a mechanism is needed for providing a separate copy of all private
variables for each invocation of a reentrant procedure. The maximum number of
invocations of each procedure is determined when the system is constructed.
Therefore, we will use an array for each private variable; one array element
corresponds to one invocation of the procedure. The invocation number is
assigned by the reentrant procedure call mechanism (by use of a bit string for
each procedure), and is stored in the NV# field of the module's MCB. The
previous value of IMV# is saved in the CINV# array in the Private Variable
Area (PVA) for the procedure; it is restored when the procedure returns.

The modules performing background tasks are given a low priority, and
therefore never execute unless there is extra CPU time. The report priorities
described in the module functional descriptions are enforced by the modules
themselves.

Conclusion

We believe the design presented in this document to be the best possible
design given the constraints imposed by the limitations of the HAS-BEEN
computer. It is also applicable to the more suitable CHIP computer. The
CDB provides a clean, precisely specified intermodule interface that is system
wide.

SOVTWARE ENGINEERING PRINCIPLES 13-9
3-14 August 1981

SEC. 13 / HOST-hi-SEA (,Ws) SYSTEM

APPENDIX 1. Comon Data Base

Contents

Tablez.

Module Control Block Area (MCBA) 13-11

Time Control Table (TCT) 13-14

Average Calculator PVA 13-14

Time Control Table (TCT) 13-15

Intermediate Averager PVA 13-16

Sensor Reader PVA 13-16

Global Area 13-17

Receiver PVA 13-22

13-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

L - ~

HAS Data Acquisition and Transmission Software / Doc. HAS.2

..... .- - -- -- - - ---..............................

Co a I al 0 1 Ca 0#r &.a* Iwo .I WIt I pe ! 2-0.41 1 l M o M to I a 1 1. 1 " " 1. 40
i

w ! I I" I e. I e- 3::Iw I I M

i * i ae aa e ae ae ul uCi.3 us u u nU-. mm p45M-. -l Ml I I I , k 1 -i a ,I o a 1 11 3 a "m 0". S

a a am a a , C 3 'a.3 ,
& C S" I 3 C+ 5 I 3'C I * *"C" i-l

* C S 3 aI I I .| S I S ;j S C

a Ia a I a , a 8 I 3 C 1 3 a a a *

-C. GU It 1 -A It SO* -* - -R a.: .0- .3 . 3, -, -, . 4 ,;. A M;.

I i 1o ,o
-, - - - - .- - - o -- --- ,= - -c -€ -. -P -o Ia -, -o 1 - - - -l I - -,. I - --

3 I • .-8 1 1" I CI I I 0 90
a 1 i u4 I O 1 54 1 14

I an = I I I I I I M U*1 U -# - b4 C4 -

II I p 3, I M I I*C 3I 3 0 b IO 00 I - a 1 IC0 I .3r 4CO I0 a
Is It 3 * C a 1 It 1 *1 1 1. 1

ot to ,6 , , , , , ,

---------7---7------- --

I * 3 I. / a p O a II S I ;C ' 8 3

i I II

Sa M a M 3 3 a a 1 a 1 .s * * N i

C 3 1 " 3 II 3 C 3 " 1 -

U I - I 1 3 m M U I I U U 0U CU 81 " I 33 1 .1 .1 62,

fte: wln lw .i :A l. : ft 1~ 'm :tl 4v. 'U 4m :1 sr IM 5 M,

S0 0 0 0 a,0 0 a M asM 01 a M I M C 0 50 a3 ,w l90 30a ICC 3042 1 %a

I 3 a I I I a I 1. 0 a- p
1 1 I I l I V 1

-- --,-- ------------------ -- -------------

1I 0/ a" 1 a .I 0 0 01 I /144 /! 30- 1 !09

I " 3 C 3 3 m I I go I-;
3 3 3 5' * . . ' 3

96 96 as 00124 kaIa as a, 1, aa ap a Ill 03 I3 as 9C0 1 @ A S O S @ M @ b @

91k lob SO 30 1 9 0 SM aM 1M M CM M 30 0 CC0 a0 C

C. . 1" 1 1 o C o 1 . I o ,. o,-,. -S. o , V, ,

C 3 3 . I
3 3 3 3 C C C C 3 5 15 I

10 It 1 10 1"

I It
.C 0 3. .a .l 0 . a .0 a3 .- 0 0 0 a10 1 1-0 .

x ' I ' as 1 . 1 a I aI I ,1 "

CU ~ ~ ~ ~ 9 CU dig as CUIPU C U C C U C U84 4 01 514

. k 3,4 3 a I no 1 4 31 to. I 3 3I 0M 3* 3*4 M 1M

in I0 10 O C 0 0 Is SM CM aM C M 3 O 3 0 3 0

3 IbCC Z4 1 3 .05 ze C g0 It It 147 43 Re 3 1 :4. G 11 U a.. . z It URI' "70 -.. -- C;T 1, -,1

I IC
I I I I C

SOCCWA C ENGUNCRCNG PRINCIPLES 13-11

3-14 Auglust 1981

314 I 14 4
f3 . 14l84 3 314 3 1 3 34 C C 3- __4 CM M . . 4

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

of f a 1 0 0 1 a a p a 9- p 1 01 a a., I I : ;# I :Is I as * e I I S 6 V 0 a I a 0 V w m
I a 1 0 8 0 o o S .

So V*u I o I I l l 66 No

SN6m41 4 V4 m mu MV **- 4Um am 0 * s mU mI mm V m ma
:I I - I ", Ia a aa 5 I I a a a * S

@' as a:'emI It

Ia I a a: 1 a Im . I it m 0 a a .1 o m 2 1 1 a U I a 4 1 1 4i a 3 aI 4 1 dg a

"" - : I , . 01 ,mu mu mu m4 mu m0 msoma ma a ma ma mm a !ma
I. ~ m* ** m a : -.m Zmu U -;Z aJ ;z mz I. m. U~ r j j u-Z uU a I.mu U m U a :

a n .I a a 1 a a a ar* a a m aI a. a11 * mI4 1

1 m: al al m a f m f m a a o a m mf af 0 $ o f a a aD
,m m a il a a, m m a 1 a U0 IV I ' I j Ueu :J

m , , , ' I as I em m. I I m m 6 e m 1 m m e a a m de I
a4 0 a a m m m a a 0 1 a a

m me I* m T m m m am II U v V I aI mIa I mo m m
A 'i II to N 0 1 t I ? I In r I M 9 in a Ar I I

a -0 -- a- - a -m - - a I a I -
0 * 1 0 1 "" "0' ol 0D" I =I

I I I aI m m m m a a m a a I a a a t a
m I a a m m m m a a a a m m a a m a m a

a1 a : m a a s a 3 o f a N a o a m 0

em a0 1 of em em of am em omefm m e

a m a aa 's a, a u m U m U m

IV I Va

IN I IN!

mu m ms m mu mu ;T ma a . mum aa m I I m a

I I,, I I Ic I m Iis M a a m -

m ,m, a a m a m,

a f a 1 0 1 f 0 1 o a m a a m m m1 m a I
a m a I. UaN Ia m m a a a mI aN m, ai U U a S

of m aI am I m Iff m am aaf am I m am em Gm m as em em am ema a:

%1 I s I "

a a a a ip a m" ar mn I mZ m a u mu m u mmU1 'a c" mm ru AU I iu mu mu 1u mu m m u m u m

a .43a a 1 a a a a a m a I a I a I a mIa a 1. m m C3a a m Ca1mA .S54 a 0

t t I t t G , a Um o7 o1 =G 1. a V a 10U7o~:7 k MZ c lz c

u m mu a u m ma, ma mm ma m ma m" m" m m" "m ma ma

I l :at ,1 = i t M

c. a - C P . 1 0, -

_" .o.f ! ° !
I -,' , I I f

1 .I U j 1

as 0 1 . , - I ,' 1" ._.wW
I a I I a m a m m a - m m - m 5 a 1 .m J I-m .

I a a c I a m I I a

I I c a a a m I : a a a 1 a m

13-12 SOFTARE ENIGINEERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Softare / Do. HAS.2

IP ! I S 0 I I S IV
I s I I S 0 W . SO a 11.

64 I 1 P I Is Al "w :
S 0.5 @5 O p O S 05 Op to o 1 - i o OP @ 0

so p 0 0 1'* go pm 50 5 5 5 S S *I

54 SQ mu AU IO PU SU pm eI *P pm pm em pm

go in as in I= # in I 0 JOE

*U . U- U SU . U P U - Ws '-S1 - 4' M..1. 0.4- 04 -

a - I I I of mg : I S w: I AI 1 1 --1-1

a I I S 5 5 P 5 P 5 IS A
N I I I I 2 6 I I I 3 " I

*Os OS OS 05 Op Os OS OP OP OS OS OS OS Op

t 311 ago a: W- I, I ft1= I a I I4 1 co I

SO 50 50 I0 I0 IC I0 Sm Im Sm mm Sm pm Sm

MWII~a P, o3 lP 43 '3 l U l I p , C, a dc

S U-I U, U U 15p U. U . '
a 1P -5 -p 0I Is -S S 60 It ., -S -S

U P I 5 5 5 P P 5 I S p
- -i I = A -I I 1 - -- - " ------------

O CS OS OP 05 0M 0C 0I OP O O Op
m Im II I n

0U PS 55 SO p0 I O 0 I * o e

S U 11 U E UU S 1 P S '- St - I .P -

I: IoI I l o : I : co: o l I5 0 p
I I I 5 P I I I I P P P p p I
pI I I a I I a I 5 P p

S OI OS OP OS OI oI oI @5 O'l OP OP OP OP 0I

pm PU PU pm pm Sm !a p 5 p p I M

5MI a. o3 M 0: o .I o l p I ml 0u 0p 4o

PS NO 50 51M0 56 M S a 5 pm pm pm Mm pm Sm MM Np s 0113 41V 61

=I z! al 21 1 n 1 =1 Ml .Il ZI z

It I1 It 1 Is

a 0 0 I i o: al o ; 0 DI o

is go Is Is 12 1 to

I1 I I I

cS IarI zi w I "; 1.

------------------------- --------------------------------

SOTWR ENIERN PRNIPE 131

3SS4 Ou O9P1

PU .SC .0 .. ,.o oP °0 50p.i0mp pmp
S~S5MWP'4 SM 5M M 'Ui Im u m igPn

p0' . GINEPRI P ICP45S P13-S13. p S M P

pI -lp i I I . { - S : , P~

SEC. 13 / MOST-AT-SEA (HAS) SYSTEM
"--,- 7,

: a * a I o $.01 .0: 0imo I S I I S I g

Is' I '0 w0 1g I vs I vs , us , in to-,faIa a I I S I 0 I

"; a a a a am a I I : . a I

' 1 0 07 .O "4"1 1 v4" ZzI

o '., mumin I OR own I I
mI"= O I I I I U a

soa nb 14 14 1 g 1s . ma 0 ogo "Ia 1 a 04 1 1 S

04 o Is

i ll

1 0 1 0 S S I m I S gS .I a I I

S (A a gLaglgga a 1 0 0 a I

0 In iC iI :"1

, " I

a I am Im ma N li am a,: I , -, am am

0. S a g @ am I a - M 10 a as I It

me.me mam al ~m u ~m.umug go gar I~

It

-"m T .. m"-=---T g= =-e.mg~ " m- a" g'u i ma ~ ~

It ,I if Iot ao I! o ! .c- 1, a l 1 0 1 0 Is, * 1

gammag. m -m m m m ia :gPm~m~

0 1 mm a I an 1 g, I S I a a a a V 3I I a a = g ft * S a a
b " m g I g a n I g 0.

Id 20 1 3"K!0 I ! 0 O i

-- - - - - ------------------------------------ --- -- -- -- ----- -

af o l o f o I a$ a al g g

:I aaof a a a aI-,- I,.' ,
If us I oI , la a n I a u

m, m n ga mI I muI I mu mu guama a go We I

"- , m..m a M. Ta=

8 I 1 1 a 1m 1 1 g 1 I

1 I a 1 I I1

I - -:- - -, -~ -

a m ano's

T II

a .m so I t m a m m a I a a m

'~a 'a''

mo mC II a: a l Vam a a

0 M
I

2 1 on ft 0 e4C N
mm aa S-

-.e. muauam mu mueI mu mua wall ma m. mIe a

m to I a
6..1 "i a t im a . 1

1. -1 AOTKE GNXICPICPE

a .: : I m a a m I I

a-1 A0 ut18

a 0- am am a a a : a ma -aa m a m a

me. mmmm'muau u~u~. , g e ummE~:gim

1314SOFTWAREENGINRNG P

mu ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 31 auus 1981mecm am mia 1m . e a gm m m

RAS Data Acquisition and Transmision Software Doc. HA.2
......, ,-"--- - --.
* I* I I I . I I I

* I I * mI m *
I , 8 o 1 0 1 0 g a a. a

" I 9 9 0 5 I U W:I. *le * * I *S I I

a, 0. 43. 93 0 1. 1 11 ll 11 al3

vt lo 1 4 116 1 I of- a

I~ Ito, I qI w P

I a 1l 1m *a 84G n m 119 UI
geese'.. CO *a *9 CD it. e1.
m g m -m - I* ft It CS WI *

S I lu "I It I . a,

* I m I m m m -.* ai m t Q 0 I m m .m0 I O=

Co I M. I n I P. I
I ie I I ; W I In I

I mo s m, a, o a a o f of 93
a em em @, em em em em i em 1 em

I ps I 1 0. 1 1 1 I Ia6 *34 a m- S m a

=,#8 I "1 -m a in 1 01 I NI* m I5 I, -, m im 5 I 091 I

m~~~0 -a a m a -m m ,

mo m0 m$ mf a l mf m a$ a

I " I I I I" I I 0 II
* I m i a m F I I 1 gol

1 m I Im m I t l

m1 m1 m 1 m 1 1 a 1 9 34

1 1 a . 4 9 1 4- I 141 14 91 1. 11 145 '1F

MT "Is 1 -,6 -z .T a -m -;v -a

a11 m a a t e a llm
Ia aa I ol a a a m a1 of 0#

I I g " I I m I

SOFTWARE3 mNIERN PRINCIES m.M 13M-1533943

3-14 Augus m1981

m9I Im Iam I I I I.

I 1 1 m I 9 m 9 I 3 a

I "" I ." I m aI .9 e em fI em I m *w

9 , -, ,t -, , ,a ,e ,s m ,=,.a

m I ,,
lie I 1 '4 I I I I I I 34

m Y9 9 -m m ft ft ~I em ai

m m m m m m 9 m a m a I
a m 9 m m 9 I m 9 a I9 I m m ,, m1 m a m m t I9
m mI 9 l 9 / 9 I, 9 ~ ~ I I, , I ,9 1 1o 3

a aa meIa I OC gSI I '. ag ma

1 1 1 I 1 I 1 m - I -

a m I , m .-

I I S I 1 a 9 m a I

I, -f m ll a a I mI aI
-aIIIIIIII m " I I 1~ I ' , -I g -,' a ' a ~

--- IJ
m.1,. 9, . 9 ... , 9 I m-,I e - 9 ~ ~ 9e,, i ae , -. I

a I ' m mI m II m m I a 'I m a m ,
SO"WAR E'lNEReN PINCPE 1'3-15rl 'l II ~ ul l
3-14I AugustI 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

,,8@5 @ @ ' @8 08 ,', i5 @ " 0 ' @5

8 o : o : at 8 1 . , a a: a :,
10 :1I=6 = 1 i 0- i No- toI 'a0 " I -1t m

so. lm loo, 12 o n on, I I I 8
a 1 1-

a . =inS ";7 U" = 01 '3 g It i 0 80g5 U

i0 0 : 0 1 0i,, oi. 0 1l 1 0 0 , 0 , :
I 6 t96 -I I I I I

I 'A I 1 I1

no I I w 0 1 m, o 1 10 .1O a I a 3 0 : 1 I

* I 5
I

5 I I 8 8- 8 .I 5 5 8 I 5I -

as I PC4 3 I1 A

* 8 8 t t

8 3 8 8 1 a 1 8 a on, - .t

Mo I
@1 03 15 an I 21 8 16 1 8 3- 0 8 8

I I

8~~~ II U I S=953 I In .I 8C4 1S3b35

36 0 SD Si Si 5 50 8o to 5o 5

* * S , , S - S * , - - 8 -, S

I o I o I 1 8 8 5 I 1 5 1

° , a, I° 1. 4,, 1a 0 aN, I.. .:-
I a g "-; I g o a 1 't"b4; :01 7 g u I 10

onn

8 0 a 0 5 0- 0 05 a I 1 0 8 0 0 1 5

I , IN NO 4 no I o ,, o-1

sod , mo 1 8 1 a 8 I a I

so a O = I II

5 a, i Sll '. kil 8It a 550 l 0 5 1 5

SM 01 . 80 .n,,n C S4..:, 8 ,, ,= =.,8,-.,- ,= =8

ode aiIi II It ci R 1I 'U OS *U vi "UII

g ,I S18 -I 1 * S 58

1 ':2 1 0 0. I n .0 n I

1= mz 1 1 C, 1 0 g a Z

I la %

5 .5 5o o 8 . o 5 8', o 5,.' .o , 5o 8 8 o.

i3
1

8ug
us 8 198

,6 8 0 lb . . , ,m 8
50 5 1 1 u8 5 5 1 S t1 0 I~E 8 U

I . * 3. ,I . ,

- - - - - - - - - - - - - - - - - - - ---- _ - ,.-,- - - -- -

I 1 1 I I 5

8 0 0 8 05 0 0.8O5 @8 05 08 @ ,8 5

IS 5 8 l Ib I5 Sm . 8 Sm 31 I 5

s3-1 SO=3 5 3 5T0 1 SA * 5(813801350138013 3 6RIP86[6 0 3 1 Sk 5 5 88 6 t 5 5 .
8ki.SM801iS6864'Sk..S.~SS 0-.8Cin wiS-1in 9uls 19

HAS Data Acquiaition and Transision Software / Doc. HAS.2

-.1, I - 5 It 0 IS S m, . - -a ,-.,m.

* .qa u m a S 6 S a ;s a a I a
* g s. aml m o ss s sQ o m mmm gO 6 l O *U4.b am auea 1.~ ., S ma Is 2, S a W a a VIC, ,- s , I u I a 1 . 00 .a lb 20 0 *

s 0 "I * 4 1 .I Sm. m I No a A

*0 a..u au a us 1 a a I m- . Vs6o 15 "On1 403 n, sia I~ a cs ,a

III I soN 62Ia :
i0 Ile Imb- IF- i,- to-$ P!- 0-1 M -K : BE e

1- p "m a. mm h. ,m 116

Sl 1 C 1 0I S S 0a p a a aI,a I a a 3 W a I a O aH a N M 1 s 0 $a I 14 a I*A0 1 241ta1 a 1 0 s1O 4 s =a
10 s a M I I'll Sb Slob S 5b Sb 01, b 1b ab .0 1a

1 s4 s1 . S 1~ 1W S1 50 13 Sb* l SO SO4 "1 ~ SO 1, 50 W 53mmImem

I I In I.I ea

s,,"a m ,. , , ,, , , ,a

to~~~ I to a s 11112 #2 16 ~~s#91-. 4 1 11 lb do 42 , 10 .0 .0 ,. ,. ,. ,
am S, as s I a e" 4 50 S1 So,, 1 .t 1 a 0s . ma mu ... IF. ,I % IgoI.II., .

to a at tu We . s u m I so ~ IS. Wen sa ma 6au 5. s e

I SS I O 1 5 5 a

noa 0 a m S~i S30 1 S : M I e I 5 I C m V I W I " I

s Sa a.- 11 03 a .1 1 08 1 00 1 ON 1 00 1 =4 1 0510 l1

aa a 5. I em g go o go Is go ,o uomao pm so so

AN 0 , 0 ,1. , ,4 '1 f

* I 1 S Sb S1 S. 1O so am 06-ea1 !leM-aO a a a m s

I
a

I I me I .us I
I I I I .; I A

g~e mo u~~e -@e - Tes o 6-- S 605 S 'i m' 'M 's s ' SU 's

So I I I II I I I I

Mel II 1I 0I 1 I 1 "Ia eaI I 11 Cot U t1 11 5 1SU I I 0 s 5- 1U sO I VI I US A0 I M e
a aM I s 1 I a I sb I

"
I So. 1as5l O o a s l l p 1l aa e a :

g0 Sm us 1u a m s a 1 S 04 10 Ic1 I00

S ~ ~ ~ ~ ~ ~ ~ ~ 1- a- a' 1m a= I o m a s u a S. a m m.sa s. s

1 - I 1 lbs I 11 S I 1 1 I 1

1 2. 1 ! 1 3 1 We 1- 1 1 1 vp u I I %M1 toi1,1aS . o11c 1r

I at I W

asa a A be 1 1 1 1 a sN a a . . .

I~ c -l .

b Sb 5 lb Sb Sb S. Sb g) IS b a . fl

04 1 MO WO I I a4 Ile

SM S US SOS 01 5 5

-M .ga~ ~ aa~ IPIms o s o SQ S oS 3 o ,o s-o coa

a b a IN I NO I b. I au b. I ft S SO a.

5 ~ ~ ~ ~~~ 6 Me Sb S S S S S Sap S S S ss.

g 1 0 * a S S On S If g0I m a a1, m S i
bS Sb S a 1 SSi

a . M pea 1 sm a. sn s1 111g g15 0 s b4 0 5 0

'i' M. aI nos 44 ar Sb Not Ro c1g -Np mo mm1 mos; Sow 1-. g~ e~ a", a

ON 160. U 1 P% 1 2Gm. ,l Oa a 19 3 so S sat

S -SM us so. s~i s

b* I %a$ Nm I 53 6 lea o t- S as. 1 u a0 1o mI Iy nson I 1 . to aus a
as 1 a 0. 1~ S 1 a * s Ca 10 1 lo 5 CO I S S0 gaa 1 10,:0 00 0a
a 1l 5 4 puso I of I It a4 1,- 1* OUR "0S a.- aL.

SOM R SNTERN PRISCSPLES 13-Sb
3-14 M Au u 1981 0 0 5 0 om 3 0 5 9 Smo S

lb ' ma a gO sm-g. s m am 0130 ~01903 ms U

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

* = .3 C I 1 : 0 .0 : U0 00 - .0 0 0 1 wo a
we U 0 i n S I0 0 "

0 0 IU o0 so so ma m4 a1=4-: ~ ~ ~ ~ ~ o Zo o1. ,O0 - 4- 610'
0San I I u I

* * 0 I I S 5 0 U 0 s 0 1 1 1 w a 4U I U u u S u S S U C

gI I : i C = a

1 r a u a1 11 aM 0 1.
*

U m o1 1 1 S 0 U 1 U U 0

1. . 1. I I 1 11

I lb I 96 01 6 14 6i 6 tof. 16 oo 01

in 11o o I Ma .0 me :00 0 11 300 3 0 1 n 1 . 0 4 3t 4 0.0 O 0. 04 3 av I as I .. FA 0 to.. t~ .0 .. 1 ~ . 0... 1r 111 1- le". I1 V, I. as No
urn an rn 0 a e an a n I- o fa i 1 rNr g so a Is a I so a rne go a- - ee 10 2. 1r eaw 0 son a-c a. -

0 -0 1 0n rn- i , " 4~- a~ 1 0 0- .4 ~ 1 - b g rn- 119 r -

'i * us iIk i 0-1 i4- 1 0 1-i- -i 1 a.. 6
NI I "b4 I I S U C S U U 1 1 00

o U I 3 0 0 1 31 to n U 0

oI rn 0. 36 5 u . 1 a. I a. I Il . . lb . l U l l S

2", lvi lvi li Sa li Urn '0m 0u ci eo m I. em !m %- ua rn ft3m a!"
s r eAr Iwin fan ea ems10 19 3 '1" t0 eanurs Iaw1 m3 e1 arn 1 US U O n S as 1U CUE .

60 Is 30 0 -, go cm So ga .0 00 30 04 34 3- 0a 54 4 a No 11a I a

1.,. _ to 0r1 u to .- 1 1.g ..

IM s, I I I

I 4 Ot I 1 I1 I.5. urn i e am u lo 33 1092 I S 0

nI IN I i I 0 U I I I I a
I I S. I ft 1 U gI

loc~~~~~, 1- 1-001me . 0 1 .o10 1to 0 1n Iazo 10 o o 0 oS U I u 1 s M I 1 U 1 Ss g i I a Is

li OC i i 3i Ui 3Ci l i ei'm li Si v m un um un C r urn

a in a s" I s m e s a 1 law Is 11 11 SU. U 3 UD U 1U S s

o .0 10, 0 so g ,,oo a I - ,-

0 - Ub '

. ..m. .ai.g. O.r~ O.. O...u.O!. O .. 1....... , "'-,
03P4 1r 0- b 4 u u- 0 3 rnr. 3W21 3341 so M. un i 11 r ~ . S

U I IS I S 0 as .0 l S Us I goU

a U 50 0s I 1 04 18 0 U2 # 0 5 u C

O " I u !a O I l , 3 5 5l I e rn g' I

I I

It n, I Us 04, Mao 20 1.fa I A I , 1 00 1 ti i0 1 I0
1

an I a I UU a,0ll S . I Sb Sb . 3 3

0- - .- ,0 0 Io av-a'1 : I 'c ., ,. ',,t ., .

a a I a m I f : I U I r ,U @ I u

--1 M- -- 0 -1- .-- C)l 0,. -I- .- I

50~ 30 50 30 11

I~ g a-g I No Ica 1 920 1rgoonID'1 00 503 I - 4 . . 1 4 a#A 0 0 V) S - I S, I U " n a 4 c- ao

I S a 23l In I a SI S U so lb. I w a I w I

i I a I O 5 3 1 0 I 0 0 3 , C S I

rn , I u; I ,S U SI S " U I" S , 5 5" 0

S I I 2 St S I I a 3 Q 0 * I I

Sb. lb. sb Sb. lb cb -b Sb. lb. 'Sb o . Ib lb 1 a la c a c i I I I S P

b44 uls 19 1

Sal I *313 1m 3 e . :r earn 1 1 003 1 Di. 1= vi. I as S1i rE 1n r.un U
a0 10 3 o5 o U0~u~ u 5 g 0 o 34 0* 34 3

1 40 1ra S vI o I(I- v 0 1b 1 011 U IV I fb Il 0 ~ rn1 1- rn t n 1 0 1 1 1 1c
iv s- gm 3vi qv 53 c a1 03 3w a1 034 lb lv 3. Sa5 3

S 1 C 9 1 3 6 I t o 3 90 1n 1 1 S i I di a 3 C

1 S 1 S I a I I a I I v :1 C I I I U
lbI . l.lIb b b l. l. b b b b b

SD 3-D18ID 3 D ID 553 3 = 1 SOFWAR E bNGIEb.N I NCLb. ESrnb

umola- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 31 Auus a-m1981Cou aSa U~ mrn~me'eD S 3~Dl 5

EMS Data Acquisition and Traniissiou Software / Doe. HAS.2
ii~ ~~ -i -m -fi -i -i -m -i -m - --m -I -m -I -m -i -

-
-' --- -m -f -* - -l - - -i- -l - -f - -l - - - - - --

to 1: 10 12 1 I am 112 . .! . A 84 6 M I va 4It .4, 1, a-; I C4T
IS I I t

CIO 1010 P o : m aI so us 1p 0 4 M p

a- -P,. U4, 0-1 a. 'a , , m - .',e

Z 10i1 l... Z plo 1

0 I am 1.mo 1. I Z* I a I 01 0,9 o " 0 010 O Z . I a a s 1O

1 0- 1 a-41- W9 1W1 lp I 1 | -1 04 ' , 11 I P.a

I a W I a lnI a "Ia"IaNI m I =7 M7, a W I t tV

Itt1 1 1 W I~ 1 I sI 16' I I --
"

n-- -0a... - -- - - -w - -- - - - ------ ------,

I I a le I1 1 . 106NIIo"IM I
I so a ~ ~ I I I a- a I a- p t -a:- o l V. 4 1 b. 9 1 S. 11 1 u- 0I a- 0 i pa81a I a I a

ft- 0- to - I Us
I

Ia-I'A-0N 0 04 M 'Ia ' - a 0 1' 1 9 6 nIt2a

I am . . .I , z , z - I, 01 1 ga W '1 Mo" 115Z f
_1 04 1 oa o Is " 0N 1 V sM

Cm a I am115AI a- I I I I I

I = 11- Io at . -

s.. 1.. -- , 00 1 l., 1 - o... 0 0 , . 1 .- N O1
1, ,- 1 1 . . . '_.aI 1 1. . , .aI ,a

so I a I P N M ! R 7C IIel:R ;Ro:o .o o2.-. o. oo oo -o o
,-1 A . 0 1s , a Z D, 0 M, a M_ ,K =4 1 ,,1 0 3'1. ,, 04 I '1

ldl 0.4 I th

In a , , I .0,

16f I lb 6. 1 . 16

00 1. . 0 to. to -o ,
M- I o IWI I M -I I' 0e 0- 1 92 p 0-1, aI I

&.- CA I Vs - " -I a.m m I a I 9

SOFM'ARt ENGINMRING PR.INCIPLIS 13-19
3-14 August 1981

SEC. 13 IHST-AT-SEA (HAS) SYSTEM

:b I e I I I e m e~ Ia II I e *I aI mI *D a a
CU lb lb .I S S S 5 b Sb lb Sb Sb 5 1b S
0 Z I b I b S S b S l b C I I U I S S I * Ib

8 S I a 0 aw3 I S 0 a S 3 5as a a* 0 3 0

I I a v I a I fle -eI a I lb I I la a 2 cues w t a * I0 I am .m ao .. aSe S m l b e b 1 b ma am .6m abIDll m~m

It" I I IN I ae a Its a I ItoI I -b 1 1 0 mo m m.

* 1 I l l a. I i I ae e I a I

0 ma 11 lb am 1~ 0 e am m ,0, Diu m pa mm am 1be .S0 1 a

I 'A M I I I0 so a", 00 I ,& I MI I I &oIn I of I fto

*b~0 10 3 m i 0 0 1b 50 lV3S S b S

I I O e

to I I I I f I 0 If pt is- 1I I0 J-4 1 11 1 1 1t4 I 1 0 1 0 1I V I *$ •
* S S I i s . I 1I S S S %a a l.

5 I 3 I * I I I I I I I I I IS-

Sb b lb I S I I I I 5 b lb S lb ,'lb lb lb I lb

am *m a0 aD C lb I m alo ma a=m mm0 mm0 I'm mm0 1a 0 m a tm 90 ma .m

U S e ' a I I e 10 0 0 6I I I I I a6141

ma im Sm Sb Sb 10 em m. am S Ia ID am ma Sb ID em ew SD

Sam lamlou am m. ba u almmmla.rn-u a-ul llmu ems ta lm II 90l. mu

IN *5N SM lb ,I. , ,6 SW C me lb b . lblN~I l IO 0 50

o I I I I I S I I I I Pt of S o I I- w a

' ~ ~~ ~ ft "'':
It I I SMI II I S i I

I I I S S a . I I I a 8 4 1 8 I Sa

"0 1 !": :" "0 T "Ss I I I I 5 a I
S l b I .b S I = 6 bsm i i l

SmI m b l l D l Ib Ia I l D S SD Ia SD am ma

Im l I Dw 1 3 1 S h I% SD I S

Itoe 1 e 11. 1 mu 1 a el am 0. me 1 6. 86 meg me a 1~ m h aM S 15 = bOf co beo 0 :bO

0 0 i I I I I l S a m a I a I SO U

0.4 aeu ca m" a ab0aD mwu 0earn la. 1u 00 S.. 16 a i 0. ig ml~ i-S l m e go I

I I V II m I I a m I I IA Ilb lb l (l , lb l a I6 mm Ig m , , a 0. 'e I 1

Im am Im Sb tm 34 mm Im Im lb I 0 l am pam pm 90 m lb 0 Ig

. 1 - I I I I I I I I I I I, I lb 1 a
C S II S S • I

I I S S I I I SSSb b Sb I= I II 1 = l l I
I : II a l Sb 0 al l 5 % I I 1 I I 4 I a I b .

sm I 11 04 : 1 1 lk I4 Al M lot I n I p I to 1 I 84

mm a. a- ima I to I

SO"O 50% 10 .. S b l S b m sa b SD D Sa I. 1 SC so

ma I a m mI a- I UsS" I a a 5 I N, aI to m 0 Imo iSUI S. SM I S. ,a 1 a m Sb l l lbm
lb 1 IN 1. % It . a . K lb - I m I I a l

l II I SS I I

Ia S2 I a a S * a pa g i i

I I .S I Us S Is

I .1 5 1 . 5 a . .10 1 00 1 1

lb . b I I S I II 5 lb I SbI lb !i lb Sb lb I

S13-20 0 l l b l SO. 1 O aIN a ea

It1 .s1i98

0N 5 53 S I I I I o nI I ga I Sb I C6

I i I l 1 4. a. Is M

so S % I S I S go a a4 go x I I = : S S I
6- 16 lN1a Ia I I 1 S. I. F I

lb I I s b b a I I I . a I I I Sn I o Ia Ie b0 is

10 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 31 Augus Sm1981 b b l b 5 c a p b S a S a Si

HAS Data Acquisition and Transmission Software Doc. HAS.2

;* a a a 1 .3 3 1 Me I im a aQ ~ oi WC 1 C 0

3 I0 I 3 I6 S I . S *

am am am * I . I a I Ia a a o -g a CS m

I I E .;a

A. a 3 aD0 am 1m am mm 0.1 10 000 1m am- 1 .b a m mmm I 1 us m ft m Z. m. I r- It . mm 26a

u mI U m I I a a

a ~ ~ ~ -*3 1 1.1 1- a 41 3 I m in~ ~ *:= ,0, * , ,~3 m a m m m m m ~ m *im a

l 0=4 1

I I I I aa I I a I

A, in 2 0 2 0 , 0 Z , ,1 in. Is ,
a1 a1 a1 a1 a ft em 3 133 5 3 3 1

, ,. , , ,. , :; , ,. , , . ,: C. '1

* 10* m1 emb b I OW I I a. IS a.S
am mm mm of Im A. a1 96 am 1m a ,m M 0b 1b m 11M 1 IH 10 a0Mf m

m I I.- 1 m m & I a I &.
,m 3 mm am 1m a I ow m m a ,1 n , u. ,t- A. ,. 1. . , .mm 3 1 CO 11 CO 33 1 1 Iaai I m I I a a, 4 t I a. I M= a. . i t W

I a Z I

, 0 , 0 ,0 ,. a, 1 , 0

l . W a I C I 1 I0 a a

0 Cm . mM 31 3 32 3 a M a m a a a eS

f a I I 3 3 U I 3 I U I

" I 1 . I Iaa I 1 a a m a a 3 a m 1
1 3 6 m ad 1 2 1 a a a I a a

IN~ ~~~~~~ I
.0 4

I I= I I I H I Of ICl

a I I am i M am l 1 a C 1 a l m 0 m l i 2 m I

33 0 aM 13 3I i3 m m m. mm mm am * a" am 1s a~ a I
t 'a ao I I0i I @m 0 3 OA3CI mm-a*. I. Z. I a. 0 IaN . v I

.1 1b am am Ia. m a 1 a, a a

'W *0 1,0 'd I at I O, ,00 0 1 1I

=a, lo aw 1 , . , 16 h. it a. ,1 . 1 0

mo a0 m am a. m.0m. a a-m Im Om I m mo N am im allS1 m .= i I a

Ub o a I ao IN a mc mI I a*. 03 a I

V . .
0 3 3 I a =a a., m a a a am a a

a m l I a a m

C4 1 C ' I , 1 0 I 0 1 1 cc 0

,3 a 3 a 3 3 C 3 b a m a --- m .m.. mm mt i am mt

!q

,=m m.am.. am m am a am a,, mu. mu. as o . a .m. m .-a m

a m a a a a 1 i 1 I I a a s a

a m aC C C I 1* 1 *
mb a l S m b C C a a a u I I

mmm.m m 3m mm lb3l 3a bmm3 bm mac I I

I TrAR ENGIEERNG PRINCIPLES 13-21
3-14gustc 1981

am a amam m mmam m S mmmm a mmam m mmam m a a

aa . mm m... am am.. .. am a a c u u u a m a 1 g s g
aUC D~C~ Ilug ug UR a am am~am mm.mbama m. as m. m. am33 ,I

SEC. 13 /HOST-AT-SEA (HAS) SYSTEM

I in

Nlk

Il :3d
4 i I

I 1 BU S

60, -

S. I S

ai

M OR I

I+

I I S m

I Pb

II l It

1,4 1I BSU I~ B
S MU I 34,35
SI. *u al

lot maU

IE I

as

" ' I

'41

91'

-- T -

I , a
1- IS

314 Au=s B98I I S

I
*-2 SOTAR 3GNE -G RNIP

IN I

I ! '
- :5. .. 5:I i I l I m d

AD-AIL3 415 NAVAL RESEARCH LAB WASHINGTON DC F/BG 9/2
SOFTWARE ENGINEERING PRINCIPLES 3-I4 AUGUST 1981,(U)
AUG aSI L jI CHMURA , P C CLEMENTS

UNCLASSIFIED NL6,7 fllfllfflffllfllf

HII I-L 1112 .5~'*

1111.8
fL.25 11111__ N1.6

A MI(C OY RiSOW LiION [LSI CHIIRI

N A N~ i A

RAS Data Acquisitiou and Transmission Software / Doc. UAS.2

APPENDI 11 Sample Algoritims

Contents

program Page

sensor reader 13-24

emergency reportjenerator 13-27

transmitter 13-29

SOFTWARE ENGINEHNG PRINCIPLES 13-23
3-14 August 1981

SEC. 13 /HOST-AT-8EA (HAS) SYSTEM

sensor-reader:
reentrant program srdr(sensnum,okfcn, fetfcn,buffer,sem);
coment This program reads a sensor and stores the result

in an observation buffer.

senenum: sensor number
okf on: function to test operation of the sensor
fetfcn: function to retrieve a sample from the sensor
buffer: observation buffer to insert sample into
sem: semaphore to wait on for scheduling

Typical parameter values:
aensni okfcn fetfcn buffer sem
I to 3 okat fetat atobebuf ats
I to 5 okvs fetvs wsobsbuf s
1 to 5 okvd fetwd vdobsbuf wds
1 okom fetom omobebuf oe
I okvtl fetvtl wtlobsbuf vtls
1 okvt2 fetwt2 vt2obsbuf vt2s
1 okwt3 fetvt3 vt3obsbuf vt3s;

parameter integer senanum;
parameter procedure okfcn, fetfen;
Parameter structure buffer of inteaer(fnt,rr,size)

of structure o of integerT, h, t)
of structure r of intoger(i, h, t)
of- structure i of intezer(i, h, t)
oF structure f of integer(i, h, t)
of IGtge (s.buff er) ;I

parameter structure sem of integer i, h, t0;
begin private integer obs;
while true do

begin globa structure sem(sensnum) of integer i, h, t0;
i s"ensn_=7F-.hise(sensnum) - _1;

if iLsem(sensnum) < 0 then
begin global integer can;

begin private integer pri; global integer head ready li.sto
tail-ready list;

pri :- priorit~y(cmn);
removep(cinn,head ready list(pri) ,tail ready list(pri));

end;
insertp(cmn,h.sem(sensnum) ,t.sem(sensnum));
processor-allocate;

end;

end;

13-24 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Software /Doe. HAS.2

begin globalintejer tct, dlist, dtiae;
if diettdlist(l)4l)) > "clock time" then
quick;

end-if;
end;
if okf en then

obs :- fetfcn(senna);

1dtiic tt dlist(l) .1)) > "clock tim" then
quick;

end-if;
end;

begi glbalinteger fnt.buffer(seusnum), s.buffer(sensnum);
global integer buffer(sensnum) (s.buffer(sensnum));
begin global structure i.buffer(sensnum) of integU~, h, t0;

i.i.bufferGensn :'s i.i.buffer(sensauu)- 1;
if i.i.buffer(sennuum) < 0 then
begin global integer cmn;

beg~in private integer pri; global integer head ready_ list,
tail -ready list;

pri :- priorit~y(cun);
reuovep(cun,head readylist(pri) ,tail readylist(pri));

end;
insertp(cmn,h.i.buffer(sensnum),t.i.buffer(sensnua));
processor-allocate;

end;

begin global structure f.buffer(sensnum) of integer(i, h, 0);
i.f.buffer(smT:a i.f.buffer(sensum) - 1;
if i.f.buffer(sensnuu) < 0 then
beink global integer cmn;

begivat~e int44S! pri; global integer bead readyjlist,
tail -ready lit;

pri :- priorit~y(ean);
reaovep(cun,head-ready_list(pri) ,tail-readylist(?ri));

end;
insertp(cun,h. f.buffer(sensnum) ,t. f.buffer(se~xb
processor-allocate;

end;

SOITWAIK ENGINEERING PRINCIPLES 13-25
3-14 August 1981

SEC. 13 / OST-h!-SEA (HAS) SYSTEM

buffer(senna)(fnt-bufier(sensnum)) :*obs;
fut.buffer(sensnum) .- aod(fnt.buffer(sensum) ,s .buffer(seusnuu))*l;
beg~ Ilba structure r.buffer(sensnwa) of intmeer(i, h, t);

xr~ifh~sesnu) :i.r.buffer(sensnu-) + 1;
if i.r.buffer(sensnuu) < 1 then
keis

rmiovep(h.r.buffer(sensnum) ,h.r.buffer(senenauu),
t.r.buffer(sensnum));

begin private inteer pri; global integer head resdy list,
tail-ready list, priority;

pri :0 prioriity(h.r.buffer(sensnuu));
insertp(h.r.buffer(senamu) ,head -ready list(pri),

tail ready list (pri)) ;
end;

binglobal structure i.buffer(sensnuu) of integer(i, h, t0;
iAi.buffer(sensnua :- i.i.buffer(sensnuu) + 1;
if i.i.buffer(mensnuu) < 1 then

begin
reuovep(h.i.buffer(sensnum) ,h.i.buffer(sensnua),

t.i.buffer(snsntm));
begin private inteeer pri; global integer head ready list,

tail ready list, priority;
pri :- priorit~y(h.i.buffer(sensnu.));,
insertp(h. i.buffer(senanum) Ihead ready list(pri),

tail readyl ist(pri));
end;

end;

begin sloal nteer tct, dlist, dtiue;
if dtime(tct(dlist(l)+l)) >"clock tiae" then

quick;
end-if;

end;

end-while;

13-26 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

RAS Data Acquisition and Transmission Software IDoc. KAS.2

smrgencyr.eportjeneratorS
coement'Add. time dependent information to emergency report and

put it in the emergency report buffer;
bei rivate character string;

while true do
begi
bein global structure sosrept of integer(i, h, 0);

i.sosrept :- i.sosrept - 1;
if i.sosrept <0 then
begin alobal integer cmn;

begin private integer pri; global integer head ready_ list,
tail -ready list;

pri ;- priori~y~can);
removep(cmn,had-readyjist(pri) ,tail reedy list(pri));

end;
insertp(cmn,h.sosreptotesarept);
processor allocate;

end;

end;
beink stloba insEr tct, dlist, dtiae;
if dims(tcttdisti(l)+l)) > "tclock time" then

quick;
end-if;

end;
string :format("(93&os from ,AIO)",fotemeport);

if diettdlist(l)41)) > "clock time" then
quick;

end-if;
end;
beink global integer fut.emrptbuf, s.emrptbuf;
global integer emrptbuf(s.earptbuf);
begin global structure i.emrptbuf of integer i, h, t0;

i.i.emrptbu :- r.emrptbuf -1

if i.i.emptbuf < 0 then
bein aglobal integer can;

bgnprivate integer pri; global integer head readylit
tail ready list;

pri :- priorit~y(cm);
removep(can,hesd ready_ list(pri) ,tail ready list(pri));

end;
inertp(canphoi~emrptbuf,t.i.eurptbuf);
processor-allocate;

end;

*nd;

S0 TWARE ENGINEERING PRINCIPLES 13-27
3-14 August 1981

SEC. 13 IHOST-AT-SEA (HAS) SYSTEM

binglobal structure f.emptbuf of integer i, ii, 0);
i.f.emrptbuf U .i.f.earptbuf - 1;
if i.f.earptbuf < 0 then
bein global integr c;

begi private integer pri; global integer head ready list,
tailready list;

pri :- priorit~y(cun);
reuovep(cmn,head ready list(pri) ,tail ready list(pri));

end;
iusertp(cm,h. f.eiaptbusf, t.f.eurptbuf);
processor-allocate;

end;
end-if;

end;
eurptbuf(fnt.eurptbuf) :- string;
fnt.eurptbuf :- uod(fnt.emrptbuf,s.eurptbuf)1,;
begin global structure r.earptbuf of integer i, h, t);

i.-r.eurptbuf :- i.r.eurptbuf.e 1;
if i.r.earptbuf < 1 then

reuovep(h.r.earptbuf,horeemrtbufgtor.eurptbuf);
beink private int44or pri; global integer head readylist,

tail -ready list, priority;
pri :- priorit7y(h.r.earptbuf);
inertp(h.r.earptbaf,head readylist(pri) ,tail readylist(pri));

end;
end;

enx-jLf;
end;
begin global structure i.emrptbuf of integer(i, h, 0);

i.i.eurptbuf :- i.eurptbuf + 1;
if i.i.earptbuf < 1 then

reuovep(h. i.eurptbuf,h.i.emrptbuf,t. i.eurptbuf);
begin vrivte integer pri; alobal integer head ready list,

tail ready list, priority;
pri :- prioriiy(h.i.ertbufT;
insertp(h. L.earptbufpha redy list(pri),tail ready list(pri));

end;
end;

end-if;

end;
endwhle

end;

13-28 SOM~A3Z ENGINEERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Software / Doc. RAS.2

transmitter:
reentrant program x it(freqrptbuf);
coment This program broadcasts a report. The report

contents are obtained from the buffer "rptbuf."

freq: frequency to broadcast report on
rptbuf: buffer containing the report contents

Typical parameter values:
rptbuf frog
prptbuf 5000
arptbuf 161000
erptbuf 5100
srptbuf 300
hrptbuf 5100;

parameter integer freq;
parameter structure rptbuf of inte r(fnt,rr,size)

of structure r of intaegr(i, h, t)
of Structure i of inteser(i, h, t)
of structure f 'o into er(i, h, t)
of i b (s.rptbuf7

begin private character char; private integer xtruum;
while true do

begin global integer rr.rptbuf, s.rptbuf;
global integer rptbuf(s.rptbuf);
bein zlobal structure o.rptbuf of integer i, h,);

L.o.rptbuf :- i.o.rptbuf - 1;
if i.o.rptbuf < 0 then
begin global integr cm;

gin Privte inteser pri; global integer head ready.list,
tail ready listJ

pri :- priority(cmn);
removep(cmn,head ready list(pri), tail ready list (pri)) ;

end;
insertp(cm,h.o.rptbuf,t.o.rptbuf);
processor allocate;

end;

SOFTWARE ENGINEERING PRINCIPLES 13-29
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM!

bejin gtlobal structure r.rptbuf of integer i, ii, 0);
i.r.rptbuf :- i.r.rptbuf - 1;
if i.,r'.rptbuf < 0 then
bokin global integer cm;
beink private integer pri; gz.obal integer head-readylJist,

tail ready list;
pri :- priorit~y(can);
reuovep(cmn,head ready list(pri) ,tail ready list(pri));

end;
i--ertp(cn,h.r.rptbuf,t.r.rptbif);
processor-allocate;

end;

end;
rr.rptbuf :- iod(rr.rptbuf,s.rptbuf)+l;
char := rptbuf(rr.rptbuf);
beink slobal structure f.rptbuf of integer i, h, 0);

i.f.rptbuf :- i.f.rptbuf + 1;
if i.f.rptbuf 1 then

reuovep(h. f.rptbuf,h. f.rptbuf,t. f.rptbuf);
begi private integer pri; global integer head ready list,

tail ready list, priority;
pri :- priorit~y(h.f.rptbuf);
insertp(h. f.rptbuf ,head readylist(pri) ,tail readylist(pri));

Lnd,
end;

end;
bejin global structure o.rptbuf of integer(i, h, t0;

'Leo .r f P i.-o.rptbuf + 1;
if i.o.rptbuf 1 then
begin
reuovep(h.o.rptbuf,hoorptbuftto.rptbuf);

bgnprivate integer pri; global integer head ready list,
tail -ready list, priority;

pri. :- priorit~y(h.o.rptbuf);
insertp(h.o.rptbuf,head-readylist(pri) ,tail ready list(pri));

end;
end;

end-Li;
end;

begin glblitg~ tct, dlist, dtiae;
if dtiue(tct(d4ist(l)+l)) > "clock time" then
quick;

end-if;
end;

13-30 SOFTWARE ENGINE ERING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and.Transsission Software IDoc. HAS.2

binprivate boolean not-found;
not found :- true;

wienot found do

begin global struacture ttablehng of integter i, h, 0);
i..ttablcbng :- i.ttablchng - 1;
if i.ttablchng < 0 then
beg i lobal integer can;

beinh private intimir pri; global integer head-ready_list,
tail-ready list;

pri :- priority(can);
reuovep(cun,head ready list(pri), talready_ Iist(pri));

end;
insertp(cun,h.ttablchng,t-ttablchng);
processor-allocate;

end;
end-if;

end;
begin global structure xmitrtabl of integer(i, h, t0;

Lzuitrtabl :- i.zmitrtabl - 1;-
if i.xmitrtabl <0 then
begin global integer am;
begin private integer pri; global integer head ready list,

tail red lst;
pri :- priorit~y(cmn);
reuovep(cm,headjreadylist(pri) ,tail ready~list~pri));

end;

processor allocate;
end;

end-if;
end;.
coment Look in table for available transmitter of proper type and

set not found;
if not -found then

bezin. aloba structure xmitrtabl of integer(i, h, t0;

if i.initrtabl < I then

beinl private integer pri; global integer head-ready-list,
tail ready list, priority;

insertp(h.zmicrtabl ,head ready list(pri),
tail-readylist(pri));

end;

end;

SOMTADZ ENGINUERING PRINCIPLES 13-31
3-14 August 1981

SEC. 13 /HOST-AT-SEA (HAS) SYSTE

comment Mark selected transmitter as in use;
besin global structure zaitrtabi of integer(i, h, t0;

i.xmitrtabl X173-itrtabl + I;-
if i.xmitrtabl < 1 then

egL2.n
reuovep(h.mitrtabl,h.xmitrtabl, t.mitrtabl);
begin private integer pri; slobal integer head ready list,

tail -ready list, priority;
pri -. priority(h.xmitrtabl);
insertp(h.mmitrtablgheadreadyjist(pri) ,tail readylist(pri));

end;
end;

end-if

inltrnua :"selected transmitter number";
xmitr -tune(xmitrnum, freq);

end;
beink gjbal ino tet, dlist, dtime;
if dtm list(l)*1)) > "clock time" then
quick;

end-if;

sed zitrnum, char);
begin zlba in er tct, dlist, dtiue;
if dt1i(tct(distMi1+M) > "clock time" th
quick;

and-if;
end;
Zile (char us "end of report character") d

eznglobal integer rr.rptbuf, s.rptbuf;

global integer rptbuf(s.rptbuf);
begin sloba structure o-rptbuf of intomor(i, b, C);

i.o.rptb sa -- 2.o*.rptbuf - 1;
if i.o.rptbuf < 0 then
bei global intgler con;
bein private integer pri; global inteiter beed ready list,

tail-ready list;
pri :- priority(cmn);
removep(cm,head ready list(pri) , tailredylist(pri);

and;
Tn-ertp(cmph.o.rptbuf,t.o.rptbuf);
processor-allocate;

end;

end-if

13-32 SOFMWARE ENGINEERING PRINCIPLES
3-14 August 1981

EAS Data Acquisition ad Transmission Software /Doc. 1MB.2

b gi lobal structure r.rptbuf of intexer i.h.t);
i.r.rptbuf :- i.r.rptbuf - 1;
if i.r.rptbuf < 0 then
bei slobal integer c;

bgnprivate integer pri; global integer bead readylist,
tail -ready list;

pri ;- priority(cmn);
remavep(cn,head readyjlist(pri) ,tail ready _list(pri));

end;
Tnsertp(cnth.r.rptbuf,t.r.rptbuf);
processor-allocate;

end;

end;
rr.rptbuf :- mod(rr.rptbuf,s.rptbuf)+l;
char :- rptbuf(rr.rptbuf);
beink global structure f.rptbuf of integer i, h, t0;

i.f.rptbuf -- i.f.rptbuf + 1;
if i.f.rptbuf < 1 then
begin

reuovep(h.f.rptbuf,h.f.rptbuf,t.f.rptbuf);
begin Private integer pri; global integer head ready list,

tail ready list, priority;
pri :- priority(h.f.rptbuf);
insertp(h. f.rptbuf ,head ready list(pri) ,tail ready_ ist(pri));

end;
end;

bezin gtlobal structure o.rptbuf of integer i, h, 0);
i r ptbuf : r.o.rptbuf + 1;
if i.o.rptbuf < 1 then

begi~n
reuovep(h.o.rptbuf,h.o.rptbuf,t.oorptbuf);
begi private integer pri; itlobal integer head readylist,

tail -ready list, priority;
pri :- priority(h.o.rptbuf);
insertp(h.o.rptbuf,head readyl ist(pri) ,tail ready_ list(pri));

end;
end;

end-if;
and;

end;
begin glblits tct, dlist, dtime;
if dtixe(tct(dlist(l)+l)) > "clock tim" then
quick;

and-if;
end;

SOFTWARE ENGINEERING PRINCIPLES 13-33
3-14 August 1981

SEC. 13 / ST-AT-SZA (HAS) SYSTEM

send (xmitrnum, char);
begin slba intjer tct, dlist, dtime;
if dii(tctdist(l)r1)) >"clock time" then
quick;

*nd-if;
end;

end;
edwile;

begi global structure xmitrtabl of intezer i, h, 0);
i.zmitrtablT:- ixtrtabl - 1;_
if i.mitrtabl < 0 theai

beLL global intexer can;
begtin private integer pri; global integter head ready list,

pri :- priorit~y(cmn);
reuovep(cin,head ready_ list(pri) ,tail-ready_ list(priY);

end;

processor-allocate;
end;

end-if;,
end;
coinent Mark transmitter xmitrnum available in transmitter table;
begin global structure xmitrtable of integer(i, h,-t);

i.zmitrtabil-*T:--i-='utrtabl + 1
if i.xmitrtabl < I then

begin
removep(h.mitrtabl,h.xmitrtabl,t.zuitrtabl);
begin private integer pri; global integer head ready_ list,

tail -ready list, priority;
pri :- priority(h.xmitrtabl);
insertp(h.xmitrtabl,head ready list(pri) ,tail ready list(pri));

end;
end;

end-if;
end;
begin global structure ttablchng of integer i, h, t0;

i.ttablchng :- i.ttablchng + 1;
if i.ttablchng < 1 then

removep(h.ttablchng,h.ttablchng,t.ttablchng);
begin private integer pri; global intexer head ready list,

tail -ready list, priority;
pri :- priority(h.ttablchng);
insertp(h.ttablchng~head-readylist(pri) ,tail ready list(pri));

end;
end;

end-i f;
end;

13-34 SOITWAIZ ENGINUZRING PRINCIPLES
3-14 August 1981

HAS Data Acquisition and Transmission Software /Doc. HAS.2

be global integer tet, dlist, dtime;
if dtimeCtct(dist(1)+1)) > "clock time" then
quick;

end-if;
end;
bein global structure bcast of integer(i, h, t);

i.bcast :- i.bcast + 1;
if i.beast < 1 then

begin
removep(h.bcasth.bcast,t.bcast);
bgnprivate integer pri; global integer head -eady list,

tail ready list, priority;
pri :- priority(h.bcast);
insertp(h.bcast,head ready list(pri),tailready_list(pri));

end;
end;

end-if;
end;
begin global integer tct, dlist, dtime;

if dtime(tct(dlist(l)+l)) > "clock time" then
quick;

end-if;
end;

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 13-35
3-14 Aa&ast 1981

HAS.3 HAS Improved Modular Structure

EXAMPLE DESCRIPTION

Einar Newhire
Information System Specialist

Computer Software Division
Naval Electronics Research Laboratory (HERL)

Introduction

Last week, the HAS contractor (CSD) sent a memo warning us against making
any further changes in the HAS configuration. He complained that the recent
decision to use a different kind of transmitter will require such substantial
changes to the Computer Program Design Specification (CPDS) that he is not
sure he can meet the deadline.

In my opinion, the contractor's reluctance to make any changes is a sign
of poorly designed software that will be expensive for the Navy to maintain.
It is inevitable that some changes will be needed during the life cycle of the
system. The system designer can reduce the cost of future modifications by
anticipating areas that are likely to change, and designing the software so
that coding changes will be easy to locate and easy to make.

I propose an alternate design for the HAS system, using Information-Riding
Modules. I identify design decisions that are likely to change and limit the
knowledge of any one decision to a single module. I contend that a system
with this structure will be easier to maintain, since the effects of changes
will not ripple through the programs causing unexpected errors.

My proposed design has 17 modules, which are described on the following
pages.

SOF? AWA ENGINURING PRINCIPLES 13-37
3-14 August 1981

e r

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

BUT: Buffer Maintenance Module

This module knows all the details about the buffers that are used to
communicate information between programs, including the storage represen-
tation, how large they are, and what to do when a buffer is full or empty.

The programs that accept data from buffers and that deposit data in
buffers are part of this module.

If we have several different types of buffers, there may be a separate
submodule for each type, since they may have different sizes and behavior when
filled up.

CC: Communications Control Module

The transmission frequencies for the various reports and the frequencies
to be monitored for incoming massages are secrets of this module.

The module consists of programs that control the transmission and
reception of messages, deciding when to reset frequency or change transmitter
power. These program call the TC and RC programs that actually control the
devices.

The CC programs take characters to be transmitted out of buffers where
they were put by MF programs.

The CC programs put received characters in a buffer for bF programs that
handle incoming massages.

EM; hmorsency Equipment Control Mdule

This module turns the emergency light on or off on demand. Its secret is
the computer action that controls the light.

IG: Information Gathering Module

This module contains programs that compute the values to be stored in the

Record Storage, using data obtained from the Sensor Control Module.

Each type of value is computed by a submodule, whose secret is the
algorithm used in the computation.

13-38 SOFITWARE ENGINEUING PRINCIPLES
3-14 August 1981

HAS Improved Modular Structure / Doc. HAS.3

MDI: Memory Allocator Module

This module knows and enforces the memory usage policy.

It contains a submodule that knows the actual memory size, and how the
memory is allocated. The secret of the submodule consists of tables
indicating the memory access rights of programs and the operating status of
memory areas. The submodule provides programs to obtain or release portions
of memory and to mark portions defective. The MEM module uses these programs
to implement the memory usage policy.

MP: Message Format Modules

There is one Message Format module for incoming messages and one for each
type of report generated by the buoy. All programs that know the structure,
format details and information content of any given message belong to these
modules.

The report-generation modules contain programs that build a message and
put it in a buffer.

The incoming message module consists of programs that determine the
message type and find pertinent information in the message.

N4O: Monitor Modules

Each module allocates the use of one type of resource, such as buffers,
receivers or transmitters. CPU time is not handled by a monitor module.

Monitor interfaces include programs to grant exclusive or shared use of

the resource and to allow programs to relinquish use of the resources.

MI: Message Interpretation Module

This module knows the process that should be started in response to any
type of incoming message. It is notified of the message type by the NP module.

PA: Processor Allocator Module

This module puts a process in control of a processor, i.e., registers are
loaded and control transferred to the task. The secret of the module is the
aspect of the architecture and the data structures relevant to task switching.

SOFTWAR EGI NGERING PRINCIPLES 13-39

3-14 August 1981

SEC. 13 / WHST-AT-SEA (HAS) SYSTEM

RC: Receiver Control Module

The receiver characteristics that are visible to the computer are the
secrets of this module. The RC program. are used by CC programs as they
monitor frequencies and receive messages.

The module includes programs to tune the device to a new frequency, detect
a measage coming in on a specified frequency, and receive a character.

RS: Record Storage Module

This module holds the buoy database. Its secret is the representation of
the recorded values in storage.

This module includes programs used by other modules to update the values
and functions used to retrieve the values.

SC: Sensor Control Module

Hidden in this module are the sensor characteristics that might change if
we replaced one sensor with another that delivers the sme information. The
programs that take readings from sensors are in this module; they know the
HAS-BEEN instruction sequences that perform sensor input and the hardware
defined memory location corresponding to each device.

This module includes programs to get a new value from a sensor and to run
a built-in test if the sensor contains self calibration circuitry. It also
includes programs to set or to check the operating status of a particular
sensor. Programs outside this module refer to sensors by names (e.g., first
air temperature sensor); the correspondence between name and the way the
actual device is addressed is known only inside this module.

SCH: Scheduler Module

This module schedules processes as they request processor time. It knows
processor capacity and the deadlines and priorities associated with different
processes. It uses the Processor Allocator Module to get a particular task
running.

S0K: System Orsnization Module

This module knows all the information needed to generate a working HAS
system. The values of various parametere, such as the number of sensors of
each type, the intervals at which sensor readings are taken, averages
computed, locations determined, reports broadcast, self-tests executed, and
other periodic functions performed, are hidden in this module. The module

13-40 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS Improved Modular Structure / Doc. RAS.3

also contains information such as the number of processes of different kinds
in the system, the number of processors, and the number of sensors of each
type.

The System Organization Module is used to generate specific HAS systems.

TC: Transmitter Control Module

The transmitter characteristics that are visible to the computer are
secrets of this module.

The module includes programs to transmit a character, tune the trans-
mitter to a new frequency, or change the power level.

TIM: Timer Module

This module is responsible for keeping track of events that must occur
regularly. It knows the time interval associated with each periodic task and
how to tell "real time". It notifies the Scheduler when a particular task
should be run.

TST: Performance Testing Module

This module knows the tests that must be performed to determine whether
the equipment performance is acceptable.

It has separate submodules for sensor checking, memory checking, and
computer function checking. Each submodule knows the range of behavior that
is acceptable for the corresponding component.

The sensor testing submodule uses Sensor Control and Record Storage
functions to get the sensor readings and averages used in its tests. Some
sensors have built-in test circuitry that can be activated from the computer
and deliver results that can be read by the computer. The control of these
devices is a device property, and programs that are dependent on the charac-
teristics of the particular device are part of the sensor module. The test
module knows of their availability and uses them, but does so in such a way
that, were the device to be replaced by another that could execute similar
self tests but had a different computer interface, the test module would be
unchanged.

Conclusion

If CSD organizes its documents in accordance with the above structure,
both the documents and the software will be less sensitive to change.

SOFTWARE ENGINEERING PRINCIPLES 13-41
3-14 August 1981

A Structured View of HAS / Doe. HAS.4

Semaphore P Called by V Called by

airrept air report generator report scheduler
ats(i) sensor reader periodic scheduler*
bcast report-scheduler transmitter
eloff emergency light off message interpreter
elon emergencylight on message _interpreter
emoff emergency message reset message interpreter
epb emergency buttonpoller perio4ic scheduler
histrept historyreportgenerator report scheduler
oms sensor reader periodic scheduler
periodicrept periodic reportgenerator regular report starter

reptsched reportscheduler message interpreter
OR regular report starter

rrs regular report starter periodic scheduler
OR emergency button.poller

shiprept ship_reportgenerator report scheduler
sosrept emergencyreport generator report scheduler
synch receiver periodic scheduler
wds(i) sensor reader periodic scheduler
wss(i) sensor-reader periodic scheduler
tis(i) sensor-reader periodic scheduler

wt2s(i) sensor reader periodic scheduler
wt3s(i) sensor-reader periodic scheduler

Buffer Accept called, by Deposit called by

**& obsbuf(i) intermediate.averager sensor reader
omobsbuf location calculator sensor reader
& avbuf(i) average calculator intermediate averager
locupbuf updater location calculator
&_upbuf updater averagecalculator
msgbuf message-interpreter receiver
loccorbuff location corrector message.interpreter
emrptbuf transmit7ter emergency report generator
arptbuf transmitter airreportgenerator
hrptbuf transmitter history.report generator
prptbuf transmitter periodic reportgenerator
srptbuf transmitter ship report generator

* periodic scheduler not described in this document
A& represents at

ws
wd
vtl
wt2
wt3

SOTWARE ENGINEERING PRINCIPLES 13-63
3-14 August 1981

HASA A Structured View of HAS

EXAMPLE DESCRIPTION

Einar Newhire
Information System Specialist
Computer Software Division

Naval Electronics Research Laboratory (NERL)

INTRODUCTION

Since I reported for duty here at NERL six weeks ago, I have been assigned
to review progress on the HAS software procurement. The contractor (CSD) has
submitted a Computer Program Design Specification (CPDS), including a set of
algorithms in ALGOL-like pseudo-code, which is awaiting formal approval.
Because of the length of this approval process, and the short timespan of the
project, they are now starting the detailed design of data structures and
specifications. It seems certain that the design will be approved since they
based it on existing functional aircraft software that CSD developed for the
MDADC (Melamine Desert Air Development Center).

During the review process, I heard many complaints about the complexity of
the documents and the difficulty of keeping track of what is going on as one
traces through the program text. CSD personnel constantly assure us that this
is necessary in real-time software using HAS-BEEN computers. They point out
that all real aircraft software has these characteristics and that no one can
suggest a better way.

The purpose of this memo is to suggest a better way. It is based on a
course I took at New Haven University from Professor E. Seavaller on process
synchronization. It is also based on structuring concepts, such as stepwise
refinement and structured programming.

PROCESSES

Professor Seawaller defines a process as a subset of the events in a

system. He is interested in sequential processes within which the ordering of
the events is obvious and easily deterained.

Seawaller is very fond of trains and often uses the following analogy to
clarify the concept of sequential processes. Consider a large railway switch-
ing yard with several trains entering and leaving at any given time. The
events are cars entering the yard. Since the trains are moving at different
speeds, slowing down, speeding up and stopping, the order of events in the
whole yard cannot be predicted. However, the order of events is easily

predicted for a single trains the first car enters the yard before the second,
the second before the third, and so on. Therefore, a train entering the yard

SOrYA ENGINEERING PRINCIPLES 13-43
3-14 August 1981

SEC. 13 HOST-AT-SEA (HAS) SYSTEM

is a sequential process: it is a subset of the events in the system in which
the order is easily determined.

Writing programs on a "per-train" basis allows us to take advantage of the
ease of predicting the sequence of events. The programs are easy to understand
because the order of events makes sense. Programs written on a "process next
event" basis are hard to understand because we must deal with an unpredictable
sequence of events, where the order is sometimes significant and sometimes not.

The price we pay for the luxury of considering only one process at a time
is that each program must include some commands whose only function is to
ensure that the processes cooperate harmoniously. We must include comands to
make sure that two different processes do not try to update the same variable
at the same time because this could result in an erroneous count. These
commands may cost us a little execution time, but the benefit of easily
understood code is well worth it.

HAS AS A SET o0 PROCESSES

The contractor describes HAS as a single process switching its attention
from looking at a sensor to preparing part of a report to checking the clock
to looking at another sensor to updating an average to It struck me that
this is much the way a railway yard program would look if we did it on a per-
event basis rather than a per-train basis. I think that part of my difficulty
understanding the current HAS description is caused by the program being in
the middle of so many different things at a time. Also, the order of some of
the tests and data modifications is sometimes arbitrary, and sometimes
essential for correct functioning. It is hard to tell which is which without
very careful analysis, making it even harder to understand the program.

If we are to be able to apply the ideas in Seaaller's course, we must
first deal with a problem that he never discussed: we maust divide HAS into
processes before we can worry about their synchronization. Some nf the
processes for HAS are described briefly below, and abstract programs for all
the processes in the system are included in an appendix.

First we have one process to read each sensor. These sensor reader
processes execute the sensing instruction and put the data in core. They
repeat that simple sequence forever. The frequency of repetition depends upon
the nature of the sensor, but in most cases it will be done at regular inter-
vals and must be executed punctually to achieve accurate time averages.

Instead of raw sensor readings, most of the program use averages over
time to minimize errors caused by noisy readings. I would include another set
of processes to read the data stored in core by the sensor readers and compute
the tables of average readings used by other programs. I felt rather uncer-
tain about this second set of processes because it seemed as if the single
process, "read sensor; compute average" would fit the predictable-sequence
criterion for a sequential process: clearly, the sonsor had to be read before
the average could be calculated. I separated the two because I realized that
reading the sensor is time critical, but calculating the average is not. If

13-44 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

A Structured View of RAS /Doc. KAS.4

RAS gets many requests at once, processor time might get short. It would be
important to continue making punctual sensor readings, but it would not be
essential to keep up with computing the averages. Putting both actions in a

proposal, the sensor reader processes will place their readings in core
buffers; the averagers will empty the buffers. In moments of time pressure,
we'll let the averaging processes get behind in their work but keep making the
readings on time.

A process can be assigned to calculate each of the required system values.
By using a separate process for each value, one can treat some as more urgent
than others and avoid making arbitrary sequencing choices when writing the
program.

A single process sends the reports that are due every 60 seconds. Since
all of the data are prepared by other processes, this process is very simple:
it is awakened by the clock, sends its report, and then returns to its resting
state.

For each of the requested reports, we will have a report generator process
waiting for the request. Since reports are needed quickly, we will have
background processes keeping the data up-to-date with whatever computer
capacity is available. The actual report process need only work on demand:
it is awakened, generates the report, and returns to its resting position.

CONCLUS IONS

The above discussion is the basis for the enclosed HAS design. The design
description includes a diagram of processes and buffers and a set of abstract
programs for the individual processes.

As the abstract programs show, the individual processes are controlled
by program that are extremely simple; one might even call them obvious or
trivial. Fine: that increases the likelihood that they are correct or at
least that we will notice errors. All of the synchronization problems are
standard problems dealt with in operating system textbooks (e.g., Shaw 1974).
As a result, we can have faith in their correctness.

In addition to ease of understanding and verification, there is a side
benefit. The design is more easily changed. There are obvious techniques for
adding sensors, reports, etc., without changing the existing programs. For
example, one can easily add or remove sensor-reader processes if the sensor
configuration changes. Seawaller also claims that this type of structure
makes it easy to change the number of central processors in a system.

It is my proposal that CSD's CPDS for HAS be rejected, and that they be
asked to follow the design in the enclosure.

E. Newhire

SOFTWA2R ENGIMERING PRINCIPLES 13-45
3014 August 1981

SEC. 13 / 8OST-ATZ-SA (HU~) SYSUM

updater writes Dste-

Symbol Key:

rocess, or group
of related process..s

on number of sensors -k of related
~J (t): number depends buffers

on number of sensor (s), (t) or I eta,
types (see left)

13-46 SOVWABE KNGIZ4KEIIG PRINCIPLES
3-14 August 1981

A Structured View of IM Doc. HAS.4

report
generators rptbuf(r) > transmitter

(r)

start
e

rep rt
scheduler

Start regular

report read
Data- chooser emergency
base message

indicator

start

write

location message start emergency emergency

corrector loccorbuf inter- button
preter reset potter

mergency
ight con- receiver
troller (f)

SOMARE ENGINEERING PRINCIPLES 13-47
3-14 August 1981

SEC. 13 / HOST-h!-SEA (HAS) SYSTEM

sensor reader:
reentrant program srdr(senenw.,okfcn,jet fcn,buff, scm);
comment This program reads a sensor and stores the result in an observation

buffer.

senanum: sensor number identifying individual sensor of a particular
type

okfcn: function to test operation of the sensor
fetfon: function to retrieve a sample from the sensor
buff: observation buffer to insert sample into
sea: semaphore to wait on for scheduling

Typical parameter values:

senanum okfcn fetfon buff sen sensor type

I to 3 okat fetat atobsbuf ate air temperature
1 to 5 okvs fetwe vsobsbuf was wind speed
1 to 5 okvd fetud wdobabuf wide wind direction
1 okon fetom, omobabuf one Omega
I okwtl fetwtl wtlobsbuf wtls water temperature,

depth 1
1 okwt2 fetwt2 vt2obsbuf wt2s water temperature,

depth 2
1 okvt3 fetwt3 wt3obsbuf wt3s water temperature,

depth 3;

parameter intexer sensnum;
parameter procedure okfcn, fetfen;
parameter buffer array buff [1:5];
parameter seapore array sea [1:5];

begin Crivte integer abe;
while rue do

ig (ezm sensnuuD);
if okfcn (sensnum) then

abs:= fetfcn(senenum);
deposit(obs,buff~senanuuj);

end;
end-if;

end;
end-while;

end;

Note: There is a cross reference table for semaphores and buffers at the end
of the document. The semaphore table shows which processes call P or V
operations for each semaphore. The buffer table shows which processes
call Accept or Deposit for each buffer.

13-48 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

A Structured Viev of HAS /Doc. HAS.4

intermed iate-averager:
reentrant Program ineavg(sensenumgntokfcngobsbuf,avbuf);
comment This program obtains sensor readings from an observation buffer,

computes an average, and puts the average into an avbuf.

seasnum: sensor number
a: number of readings to average
okfcn: function to determine the status of a sensor
obebuf: buffer containing samples
avbuf: buffer to insert average into

Typical parameter values:

senanum n okf on obsbuf avbuf sensor type

1 to 3 4 okat atobsbuf atavbuf air temperature
1 to 5 4 okws vsobsbuf vs avbuf wind speed

to 5 4 okud vdobsbuf wdavbuf wind direction;

parameter inteler sensnum, n;
parameter Procedure okf on;
parameter buffer array obabuf [1:5];
parameter buffer array avbuf [1:5];

begin private integer nextobs, temp, sum;
while true do

if okfcn(sensnum) then

sum:- 0;
nextobs:* 0;
while nextobs lt n do

nextobs:in nextobs 1- 1;
accept(temp,obsbuflsensnum]);
suz:" sum + cemp;

end-while;
deo sit(sum/n,avbufsensnua]);

end;
end-if;

end;
end-while-,

end;

SOFTWARE ENGINEERING PRINCIPLES 13-49
3-14 August 1981

SEC. 13 /HOST-AT-SEA (HAS) SYSTEMI

average calculator:
reentrant proxram avgcal(nuaaenwora ,okfcn,avbuf,upbuf);
coment This programs computes cie average reading over all sensors of a given

type. The sensor readings are obtained from an avbuf and the
averages put into an upbuf.
numsensors: number of sensors
okf on: function to determine if sensor is working properly
avbuf: buffer containing readings
upbuf: buffer to store averages into

Parameter values:
okfcn avbuf upbuf numsensors sensor type

okat atavbuf atupbuf 3 air temperature
okvs wsavbuf woupbuf 5 wind speed
okwd wdavbuf vdupbuf 5 wind direction
okwtl wtlobsbuf wtlupbuf I water temperature, depth 1
okwt2 vt2obsbuf wt2upbuf 1 water temperature, depth 2
okvt3 wt3obabuf vt3upbuf I water temperature, depth 3

Parameter inteaer numensors;
parameter procedure okf on;
Parameter buffer array avbuf 1l:numsensora];
parameter buffer upbuf;

besin private integer nextobs, sum, average, numoba, tamp;
while true do

sum:- 0;
nextobs:n 0;
nuuobs:* 0;
while nextobs It nuasensors do

nextobs:- nextobs + 1;
if okfcn(nextobs) then

numobs:- numobs + 1;
acceqt(temp,avbuf(nextobs]);
sum:- temp + sum;

end;
end-if;

end;
e-while;
if nuuobs Ijt 0 then

begin
averagese sum / numobs;
deposit(average,upbuf);

end;
end-if;

end;
end-while;

end;
1-50 SOFTWARE ENGINEERING PRINCIPLES

3-14 August 1981

A Structured View of HAS /Doc. HAS.4

location calculator:
program loccal;
coment Calculate location from an Omega reading. The reading is obtained

from the Omega observation buffer (omobsbuf) and the calculated
location is put into the location update buffer (locupbuf);

.lobal buffer omobsbuf,locupbuf;
begin private integer tamp, location;

while true do

beini
accept(temp,omobsbuf);
location:- omega..calculation(temp);
deposit(location, locupbuf);

end;
end-while;

end;

updater:
program updr;
coment This program updates the database from updated values obtained from

the update buffers (xxupbuf, where = is at, we, wd, loc, vtl, wt2,
or wt3);

global integer numdepths;
global buffer atupbuf,vsupbuf,wdupbuf, locupbuf,wtlupbuf,vtzupbuf,wt3upbuf;
bezin private integer atval, wsval,wdval, locval, vtval[l:numdepths];

while true do

bgin
accept(atval,atupbuf);
accept(woval,wsupbuf);
accept(wdval,wdupbuf);
accept(locval,locupbuf);
accept(wtval(l),vtlupbuf);
asecept(vtval(2) ,wt2upbuf);
accept(vtval(3) ,wt3upbuf);
addframe(atval,wsval,vdval, locval,wtval);

end;
end-while;

end;

SOFITWAIRE ENGINEERING PRINCIPLES 13-51
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

receiver:
reentrant program rcvr(synch,freq);
comment This program receives messages and inserts themn into the message

buffer.
synch: semaphore to signal that it is time to check for a message
f req : desired monitoring frequency

Typical parameter values:

synchh req

afrcv 160000
sfrcv 300
satfrcv 180000;

conent Note that obtainrcvr and releasercvr are monitors controlling access
to the set of receivers. No other program even knov how many
receivers there are;

parameter semaphore synch;
paramester integer freq;
global buffer msgbuf;
bagin private string mg; private boolean msg detected,

end of message; private char rchar;
private integer rcvrnum;

while true do

P(synch);
rcvrnum:- obtainrcvr(freq);

ass detected:. signal detected(rcvrnum)if Iegdetected then
begin

initang(mg);
end of message:- false;
while not end of message do
bgign

rchar:- receive(rcvrnum);
sot nelt-char(msg, rchar);
if r;char - "eon character" then

end of message:- true;
else end of message:- false;

end-while;
deposit msg,msgbuf);

end;
0 UZ-rTf;
re leasercvr(rcvrnum);

end;
end -whbile;

end;

13-52 SOFTWARE ENGINEERING PRINCIPLES
3-14. August 1981

A Structured View of HAS /Doc. HAS.4

message interpreter:
proarm asgint;
comment Examine incoming message t3 determine desired action. messages are

obtained from the message buffer. If the message is a report
request, the appropriate request variable is incremented and the
report scheduler is signalled. If the message is a location
correction, the location is put into the location correction buffer
(loccorbuf). If the message is a request to change the emergency
light or message, the appropriate process is signalled;

global buffer msgbuf, loccorbuf;
global seMphore elon, eloff, emoff, reptsched;

i in message; private boolean rept request;
global integer ship rept req, airrept.req, hist reptreq;

while true do

reptrequest :- false;
accept(messagemsgbuf);
case fatsgStype(message) of

Ishipreq//

ship rept.req: = ship rept req + 1;
rept_request : true;

end;
//]irreq//

airrept req:- air reptreq + 1;
reptrequest:- true;

end;
//histeq//

hist rept.req:= hint rept req + 1;
rept.reque st :- true;

end;
//emlighton//

V(elon);
//eml'ghtoff//

V(eloff);
//eUmsgof f //

v(moff);
//Ioc-update//

deposit (findloc (message), loccorbuf);

end-case;
if rept request then

-(reptsched);
end-if;

end;
end-while;

end;

SOFTWARE ENGINERING PRINCIPLES 13-53
3-14 August 1981

SEC. 13 I YoAST-A-SEA (IIAS) SYSTEM

regular report starter:
program retsep7tart;
coment Decide whether periodic report or emergency report should be

broadcast based on status of emergency message indicator. Signal the
report scheduler;

lobal semasphore rrs,reptached;
beg1iebl boolean eubc;

while true do
bin lobal integer sos-reptreq, pieriod icreptreq;

iTf eubc then
sos-rept,.reqs sos reptreq + 1;

else
periodic.rept_req:- periodicrept .req + 1;

end-if;
I_ rept ched);

end;
end-while;

end;

13-54 SOFTWARE ENGINEhRING P3MCIPLUS
3-14 August 1961

A Structured View of HAS Doc. RAS.4

report scheduler:
Pro t reportsched;
coinent This program ensures that reports are transmitted in the required

order. When the report scheduler is signalled, each report request
variable is checked and its corresponding report generator is
signalled if a request is outstanding. The semaphore "bcast" should
be initialized to the number of simultaneous broadcasts that can be
made;

begzn global boolean sos rept req, air rept req, shiprept req,
periodic reptreq, hist rept req;

while true do

P(reptsched);P(bcast) ;

if soe rept req gt 0 then

sos rept req:- sosrept req- 1;
!(sosrept);

end;
else if air reptyreq gt 0 then
begin

air rapt req:- air rept req - 1;
!(airrept) ;

end;
else if ship.rept req gt 0 then

ship rept req:s shiprept req - 1;

end;
else i periodic rept.req gt 0 then
be : n

periodic rept req:u periodic rept req - 1;
V(periodicrep7t);

end;
else if hist rept req gt 0 then

begin
hist rpt req:- hist.rept..req - 1;
V(hGstrep t);

end;

end-if;
end-if;

end;

end-while;
end;

SOrTWAZ UNGIUURING PRINCIPLIS 13-55
3-14 August 1981

, , t .

SEC. 13 / HOST-AT-SRA (HAS) SYSTEM

emereucyreportJenerator•
program erseportgen;
coment Add time-dependent information to emergency report and put it in the

emergency report buffer;
global semaphore sosrept;
g buffer erptbuf;
binpriva character string;

while true do

sorept) ;

strins:- format("(9gsos from ,AIO)' ,feteumreport);
deposit(string,erptbuf);

end;
end-while;

end;

air.rept.enerator:
program airreportgen;
coment Generate an air requested report by taking the necessary data from

the database and enclosing it with any required delimiters. Store
strings in arptbuf for the transmitter;

global semaphore airrept;
global buffer arptbuf;
begin private string string;

while true do

Rairrept);
string:a initsg("a");
deposit(string,arptbuf);
string- fomat("9flair tp-,14)",fetatemp);
deposit(string,arptbuf);
string:- format("(llvind dirA30",fetwdir);
deposit (string,arptbuf);
string:- format("(llvind speed-,14)"Ifetvspeed);
deposit string,arptbuf);
string:- end ofmessase;
deposit (string,arptbuf);

end;
end-while;

eind;

13-56 SOFTWAE E CINEERING PRINCIPLES
3-14 August 1981

A Structured View of HAS IDoc. HAS.!.

hi. tory_ reportjgenerator z
prga histreportgen;
coinent Generate a history report by taking the necessary data from the

database and enclosing it with any required delimiters. Store
strings in hrptbuf for the transmitter;

global semaphore histrept;
global buffer hrptbuf;
bezin erivate string string;

while true do

PRhitrept);
string:- initmg("h");
deposit string,hrptbuf);
while not histoomplete do

string:- format("M9air temp-, 4)",histateup);
deposit(string,hrptbuf);
string:-n format("(9Rvind dir'.,A3)",histvdir);
deposit string,hrptbuf);
string:- format("(llflvind speed-,14)",histwope~d);
depoit(string,hrptbuf);
string:- format('(2Olivater temp at depth ,14,lIu',13)",

histdepthl,histvtmpl);
deposit(striug,hrptbuf);
string:- format("(2Olivater temp, at depth 1I4,lIR-,13)",

bistdepth2,histtemp2);
deposit(string,hrptbuf);
string:- format("(2OBvater temp at depth ,14,11m,13)19,

histdepth3 ,histwtemp3);
deposit striag,hrptbuf);

end;
end-while;
sing:in end of message;

deposit(string,hrptbuf);
end;
end-while;

end;

SOPTNARE ENGINEERING PRINCIPLES 13-5 7
3-14 August 1981

SEC. 13 I OST-AT-SEA (HAS) SYSTEM

periodic reportjgenerator:
program perreportgen;
coment Generate a periodic report by taking the necessary data from the

- database and enclosing it with any required delimiters. Store
strings in prptbuf for the transmitter;

global semaphore periodicrept;
global buffer prptbuf;
begin private intexer nexttime; Brivate string string;

while true do

21 Plperiodicrept);

string:.- initmsgQ'p");
deposit string,prptbuf);
string:- format("(9fair tamp., 14)",fetatsmp);
deposit(string,prptbuf);
string:- format("(9vind dirin,h3)",fetwdir);
depouit(string,prptbuf);
string:- format("(lllivind speedin,14)",fetvspeed);
deposit(string,prptbuf);
string:r- formt("(2OBwater temp at depth ,14,lERm T3)",

fetdepthl, fetvtempl);
deposit string,prptbuf);
s.;ring:- format("(2OfBwater temp at depth ,14,IR-,13)",

fetdepth2, fetwtemp2);
deposit(stringpprptbuf);
string:- format(112OHwater temp at depth ,14,IH"',T3)11,

fetdepth3, fetwtemp3);
depouit(string,prptbuf);
string:- end of message;
deposit string,jrptbuf);

end;
en-while;

ead;

13-58 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1961

A Structured View of HAS I Doc. HAS.4

ship report generator:
program shipreportgen;
comment Generate a ship requested report by taking the necessary data from

the database and enclosing it with any required delimiters. Store
strings in srptubf for the transmitter;

global semaphore shiprept;
global buffer srptbuf;
beln private string string;

while true do
bein
Ptshiprept);
string:- initmeg("s");
deposit(string,srptbuf);
string:- format("(gMair tempa,14)",fetatemp);
deposit(string,srptbuf);
string:- format("(9wind dir=,A3)",fetwdir);
deposit (string,srptbuf);

string:- format("(llvind speed =,14)",fetwopeed);
deposit (string,srptbuf);
string:- format("(2Olvater temp at depth ,14,19-,13)",

fetdepthl, fetwtempl);
deposit(string, srptbuf);
string:- format("(20iater temp at depth ,14,19-,13)",

fetdepth2, fetwtempZ);
deposit(string,srptbuf);
string:- format("(201Bwater temp at depth ,14,MU=,13)",

fetdepth3, fetwtemp3);
deposit(string,srptbuf);
string:- format("(6Hdrift-,13)", fetdrift);
deposit(string,srptbuf);
string:- end of message;
deposit(strngsrptbuf);

end;
end-while;

end;

SOFTWARE ENGINERING PRINCIPLES 13-59
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

transmitter:
reentrant program mit(freq,rptbuf);
oment This program broadcasts a report. The report contents are obtained

from the buffer rptbuf.
freq : frequency to broadcast report on
rptbuf: buffer containing the report contents

Typical parameter values:

Sreq report type

prptbuf 5000 periodic report
arptbuf 161000 aircraft report
erptbuf 5100 emergency report
srptbuf 300 ship report
hrptbuf 5100 history report;

parameter integer freq;
parameter buffer rptbuf;
global semaphore bcast;

kegi private char char; private integer xmitrnum;
while true do

accept(char,rptbuf);
iitrnum:- obtainzmitr(freq);

send (zoitrum, char);
while (char ne "end of report character") do
begin ,
acg(char,rptbuf);
snd(zitrum, char);

end;
end-while;
releasxmitr(zmitrnum);
V(bcast);

end;
end-while;

end;

13-60 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

A Structured View of HAS /Doc. HAS.A .

location corrector:
prgrm loccor;
coment Obtain locations from the locorbuf buffer and the history database.

Check to see if the difference is greater than tolerance. If so,
start the diagnostics. Update the location in the history file;

ollobal buffer locorbuf;
euain prvt integer location, dblocation, tol;

tol:- %mx=i acceptable error in location";
while true do

accept(location, locorbuf);
dblocatiou:- fetloc;
if compare(location,dblocation) it tal
then locrec(location); comment diagnostics program

end--if;
set loc(location);

end;
end-while;

end;

emergency..buttonjpoller:
program emibuttonpol;
comment Check to see if the emergency button has been pushed; if so, set

emergency message indicator so future periodic reports are replaced
by emergency broadcasts and signal the regular report starter;

alobal semaphore ebp,rrs;
begi~n global boolean, embc;

while true do

P(.bp);
if fat embutton then

embc:- true;
V(rru);-

end-if;
end;
end-whille;

end;

SOTWARE ENGINEERING PRINCIPLES 13-61
3-14 August 1981

.SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

emergency message reset:
program esmgreset;
coment Turn off emergency mess age indicator;
global semaphore emoff;
beina global boolean eubc;

while true do
bgiii-

!(emoff);
eubc:n false;

end;

en;end-while;

emergency light on:
prgrs emlighton;

coment Turn emergency light on;
begin global semaphore elon;

while true do
begin

P(elon);
set-emlight(on);

end;
end-while;

end;

emergency light opff:
program emlightoff;
comsent Turn emergency light off;
begin Slobal semaphore eloff;

while true do

'R(eloff);
setemplight(off);

end;
end-while;

end;

13-62 SOFTWARE ENGINERING PRINCIPLES
3-14 August 1981

A Structured View of HAS /Doc. HAS.A

Semaphore P Called by V Called by

.airrept air reportgenerator report scheduler
ats(i) sensor-reader periodic scheduler*
bcast report scheduler transmitter
eloff emergency light off message interpreter
elon emergency light on message interpreter
emoff emergency message reset message interpreter
epb emergency buttonpo ller periodic scheduler
histrept history, report generator report scheduler
oms sensor reader periodic scheduler
periodicrept periodic report generator regular report starter
repts ched report scheduler messageinterpre ter

OR regular report starter
rrs regularreport-starter periodic scheduler

OR emergency bittonpo1ler
shiprept ship.report jenerator report scheduler
sosrept emergency reportgenerator report scheduler
synch receirer periodl"c scheduler
vds(i) sensor reader periodic scheduler
vss(i) sensor-reader periodic scheduler
vtls(i) sensor reader periodic scheduler
vt2s(i) sensor reader periodic scheduler
wt3s(i) sensor-reader periodic scheduler

Buffer Accept called by Deposit called by

**&obsbuf(i) intermediate averager sensor reader
omobsbuf location calculator sensor reader
& avbuf(i) average calculator intermediate averager
locupbuf updater location calculator
&.upbuf updater averagecalculator
mgbuf message interpreter receiver
loccorbuff location corrector message interpreter
emrptbuf transmitter emergencyreport generator
arptbuf transmitter air-report_generator
hrptbuf transmitter history.report generator
prptbuf transmitter periodic report_generator
srptbuf transmitter ship. report generator

periodic scheduler not described in this document

4& represents at
ws
wd
wtl

wt2
wt3

SOFITWAE ENGINEERING PRINCIPLES 13-63
3-14 August 1981

HAS.5 Academic Poppycock

EXAMPLE DESCRIPTION

0. U. DeZeeman
Computer System Distributors, INC.

Melamine Desert, California

0. Introduction

Every few years those of us who have been toiling at the production of
real-time software for relatively small and slow computers are attacked by
newly hired youngsters. Still wet behind the ears and fresh from their "alma
mter," they accuse us of producing old-fashioned (now its called unstructured)
software. Annoyed by their inability to comprehend instantly program that
have taken years to develop, they attack rather than waiting to learn. They
interpret the confusion caused by their own lack of experience with real-world
software as a confusion caused by muddy thinking on the part of the people who
made the software work.

Einar Newhire's memorandum, "A Structured View of HAS" is a perfect
example of the phenomenon. Normally, we just ignore such memos and get on
with our work. This one, however, is being taken more seriously than ost
(perhaps because the name Seawaller has become a household word). For that
reason, and because it does happen every year, I have decided thac it is
worthwhile recording the errors in the Newhire paper. This document can be
reissued each time that a new youngster arrives from some ivory tower.

There are three basic faults with the "structured view" which I wiii

discuss in depth:

1. It is an oversimplification - important problems are simply omitted,

2. There are technical problems in implementing the concepts - run-time
and memory usage become excessive,

3. It restricts the designer too much - making his work harder when it
is hard enough alre.idy. Development costs will increase if we go
that route.

SOFIWARZ ENGINEERING PRINCIPLES 13-65
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

1. Oversimplifications

1.1. Omissions

One of the easiest ways of making a computer system or language appear
simple and obviously correct is to leave out the hard parts. I do not mean
eliminating the hard parts by replacing them with a powerful mechanismi I mean
ignoring them in the description. This is a ploy comonly used by professors
who write textbooks or tutorial papers on complex systems. They are often
complimented on their ability to find a simple description of a system pre-
viously thought to be too complex for students to understand. It is only when
one attempts to apply the knowledge that one gets from such papers that one
discovers that essential information has been omitted and that essential
problems have been ignored.

In the case of the Newhire paper, the omission technique has been applied
in spades. The paper is written as if all that HAS software has to do is read
sensors and write reports. The real HAS software is going to be much more
complex because it does ore. Among other things, the real software must:

a. allocate memory,
b. allocate registers,
c. keep track of the real-time clock,
d. estimate processor time for completion of incomplete tasks,
e. calculate deadlines,
f. make priority decisions for processors and data areas.

None of these problems is even mentioned in the "structured view"

document. It is no wonder that the document has an appealing simplicity.

1.2 Unrealistic distribution of emphasis

Another ploy used by academics in the "structured view" game is to
emphasize the simple things. The never operating systems textbooks devote 70%
or 802 of their space t discussing perhaps 20% of the actual code in an
operating system. These books spend most of their time discussing the easier
things in depth (mutual exclusion, producer/consumer) but the actual imple-
mentors spend their time on device handlers, device error analysis, data
organization, directories, file systems, etc. The academic may say fervently,
'e have to stop thinking in terms of unpredictable interrupts and start
thinking in terms of c-yclic processes," but the programer spends a lot of his
time writing the interrupt-handling routines anyway.

The same phenomenon occurred in the HAS-structured view paper. The
HAS-BEEN computer does not have interrupts; if it had, I would have had one
more item for my list of omissions. Because of that, a great deal of code is
going to be devoted to scanning input registers checking for conditions that
would cause interrupts on more modern computers. I am sure that both Seawaller
and Newhire would dismiss this with a "We'll do that in our lowest level," and
then go on to talk about a new problem in asynchronous programing. Meantime,

13-66 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Academic Poppycock / Doe. 1AS.5

we have to write our polling code and make sure that it gets done in all
sections of the program.

1.3 Iaplementation of processes ignored

Another illustration of the fact that "A Structured View" is an over-
simplification is the issue of the processes. The paper is written as though
processes existed already. It ignores the fact that by introducing the
concept of processes one has added an implementation problem to the set of
things to do. Processes have to be represented by data structures; they have
to be synchronized; they have to be scheduled. That doesn't happen by magic;
it happens by code. Some of that code might not even be needed if we did not
think in terms of processes.

1.4 Interprocess interference

Another example of this oversimplification is the way Newhire handwaves
about interference between processes. She blithely has some processes writing
in a data structure while others read from it. She acts as if the problem
with that is easily solved. Here, she is ignoring even those problems that
academics know about. Before I got disgusted with the whole thing, I
remembered that a heated debate appeared in the literature about various ways
of solving just that one problem. If the Government forces us to go the
1structured route" on HAS, they'll discover the reader-writer problem later.
Newhire didn't think it important enough to bring it up now, before the
decision.

2. Technical problems

2.1 Space requirements for many processes

Nehire's approach is based on having many little processes. She
overlooks the fact that, in implementing these processes, she is going to have
to reserve a large block of space for each of them. Each process is repre-
sented by a data structure that describes both the code that controls the
process and the data that the process uses, to say nothing of the data needed
to schedule it. Lots of processes - lots of space. Lots of similar processes
- lots of duplicate data. On a HAS-BEEN computer we can't afford it.

2.2 Unpredictable delays produced by process synchronization

The process synchronization models that Newhire cites were developed for
multiprograming, not real time. Dijkstra clearly considers the speed of a
program to be unimportant. Brinch Hansen has dismissed arguments against his
conditional critical sections because they relate to "extreme real-time"
situations. Well, in our situation, we are in a real-time situation, possibly
even an extreme one, given the incredibly slow speed of HAS-BEEN. The process
synchronization concepts deal with all processes as if they were the same.
They are simple because they do not distinguish between processes. An urgent
process and a normal process might be on the same queue and the urgent one

SOFTWARE NGINING PRINCIPLES 13-67
3-14 August 1961

SEC. 13 / HOST-kT-SEA (HAS) SYSTEK

night then be delayed. If all that you care about is the state at the end of
the computation, that's fine. But that's not all that we care about.

2.3 Process svitchin s time overhead

Every time a process has to be scheduled or rescheduled, time must be
spent in the process scheduler. Because of the slowness of the HAS-BEEN, we
can ill afford such witching overhead.

2.4 Size of the minimal system

Seawaller may be the name most comonly associated with the process
concept, but Brinch Hansen has actually gone such further. He has written a
how-to-do-it book that everyone can follow; he has built system. By looking
at those systems, one can see yet another aspect of the problem. At a recent
meeting in San Francisco, Brinch Hansen admitted that the most trivial system
required 6000-7000 words. To that amount we m=st add all of the real code and
the data structures described above. Perhaps with a large machine like a
PDP-11 that is acceptable, but with the HAS-BEEN computer it is not.

2.5 Procedure call overhead

A general problem with structured approaches to software is their reliance
on procedure calls to keep things simple. Procedure calls require a great
deal of environment changing (register saving and restoring). In real-time
systems with outdated computers we cannot afford that.

2.6 Inability of the program to take actions conditional on real-time

Key to the process concept is that each process continues in its sequence
of actions irrespective of the exact rate of progress. One of the "other
processes" in our situation is the advance of real time. There are numerous
cases in systems like HAS where an action will be taken only if time permits
and will be curtailed when time is scarce. The simplest example is the self-
test code, which Newhire doesn't even bother to describe. We do it whenever
we have spare time. All of the self-test routines check the real-time clock
and relinquish control when time does not permit the test to go on. Programs
written using Newhire's approach could not do that.

3. Increased development costs

Most of the structured programing missionaries imply or claim that
development costs may be reduced by such methods. Strangely enough, there is
no solid experimental evidence in that direction. People have published data,
but it's like comparing lightbulbs and pears. In some cases productivity
increases but the quality of code goes down. In other cases, the cost of the
language development is written off in a research budget. Even in cases where
the same job has been done twice, we are left without hard evidence because
doing a job the second time is not doing the same job. In the sequel, I wish
to argue that a structured approach can actually increase development costs.

13-68 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Academic Poppycock / Doc. HAS.5

3.1 Structuring restricts the programmer thereby making his job harder.

Working on real-time software is, in some ways, very much like surgery.
One has to work very, very carefully and use one's complete knowledge of the
system's anatomy. Just as a surgeon cannot perform an appendectomy without
some knowledge of the circulatory system, the real-time programmer cannot work
on a program to record sensor data without knowledge of the memory allocation
policy. If we asked the surgeon to perform his operations in such a way that
it would work even if the patient's circulatory system were changed, we would
be making his job much harder - perhaps impossible. The real-time
programmer's job is hard enough - why make it harder?

3.2 Reversing early design decisions

Parnas has pointed out that the most critical design decisions are those
made early in the project because later decisions are based on the earlier
ones. Reversal of the earlier decisions is costly because it implies recon-
sideratioa and possible reversal of all later decisions. The Newhire approach
represents a design decision that she wants us to make early in the project.
Subsequent reversal of that decision will be very costly. The reversal is
inevitable because we need the control that she wants to dpny us.

Throughout structured prograing one makes decisions on the assumption
that future decisions can be ignored. Correcting errors will be very
expensive.

3.3 There will be extra documentation costs

If we take the Newhire approach, we will start out documenting a
fictitious "virtual" system. We will then start to refine that design
(following the precept of stepwise refinement). Each refinement will have to
be completely documented. If we were to bypass this documentation, no one
would understand what was going on in the abstract programs. At each new
stage the old information must be included again. If we just write our
program, we only have to document the decision once. Moreover, SECNAV INST
3560.1 will cause us to write yet another set of documents because it does not
allow "abstraction."

3.4 Repeated testing

Testing is a necessary process in software development. No one in his
right mind believes a program if it has not been run. Newhire'5 memo already
contains some programs. They have to be tested. Testing such programs is not
easy because we'll have to simulate the missing operations. Worse, this
testing process should be repeated with each refinement. With conventional
programing, you only have to test when you finish the subprogram and once
more at integration.

SOFTWARE ENGINEERING PRINCIPZS 13-69
3-14 August 1981

SEC. 13 / HOST-AT-SFA (HAS) SYSTEM

3.5 More source code will be produced

Even academic papers have shown that structured programing tends to lead
to bigger programs. More code, sore cost.

Conclusions

When university computer science departments were first proposed, many
opposed them on the grounds that the graduates would have no basic training
in either fundamental mathematics or engineering techniques. They would have
learned theoretical approaches that had not been proven. Nothing personal,
mind you, but Einar Newhire is just such a graduate. She would be more useful
to us if she had never heard of a computer. Then she would corn here without
ridiculous ideas, and we could have taught her what she needs to know. She's
a bright girl who has been brainwashed. Maybe this paper viii cause her, and
her ilk, to see the light and to recognize the "structured view" for the
academic poppycock that it is.

The CPDS that we submitted for HAS is an unusually complete piece of
documentation. It is unfair but typical for Newhire to complain that it is
too complex: thorough documentation of real-life programs contains many
details that academics tend to "abstract away" in their programs.

In the meantime, the government must look at the track record. Our
approach, whatever its faults, has produced progrms that fly. The structured
approach has not. Until a real project has been successfully completed using
the structured approach, no project manager in his right mind will bet on it.

13-70 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAS.6 Separdon of Concerns

EXAM4PLE DESCRIPTION

Eric W. Seavaller
New Haven University
(submitted to SIGOPS)

introduction

Professor S. W. Dijkstra has introduced two distinct topics into the

computer literature:

(1) Process synchronization: how to write programs that control several
computations proceeding "in parallel" at unknown relative speeds,
given that these computations share variables and other resources
(1968a; 1968b).

(2) Separation of concerns: how to organize a program so that
programner3 need not think about too many things at one time (1968b;
1972; 1976).

The purpose of this note is to relate these two fields of study, showing
how "separation of concerns" can help us evaluate synchronization and resource
allocation control structures.

This thesis is not new. Dijkstra's original TH.E. operating system
papers (1968b) clearly indicate that he introduced process synchronization to
confine the processor allocation policy to one portion of his system. He
stated that a change in the number of processors would impact only one level
of his hierarchical structure. In this paper, I want to take real-time
constraints into account and discuss some limitations they impose on our
ability to separate concerns.

Concerns in real-time programs

By examining existing real-time programs one can distinguish seven classes
of concerns:

S

(1) Sensing, i.e., reading input lines and recording the observed values
in internal storage.

(2) Initiating sensing.

SO1TWAJ ENGINEElING PRINCIPLES 13-71

3-14 August 1981

SEC. 13 / H0ST-AT-SEA (HAS) SYSTSM

(3) Decoding, i.e., recognition of an event defined by a predicate on
internal variables.

(4) Calculating system values from the input values.

(5) Responding to events that have been decoded and recorded.

(6) Scheduling, i.e., allocating the processor among the processes that
are eligible to run.

(7) Coordinating access to shared resources.

Although conventional real-time programs deal with many of these concerns
in the same program text, the concerns are independent in the sense that they
can change independently. Observe that:

(a) The algorithm involved in sensor reading is largely independent of
the period of observation.

(b) Initiating sensing is critical because information may be lost if
sensor reading is delayed. The initiating policy depends more on
processor speed than on the interface to the input sensors.

(c) If the sensor values have been recorded in internal variables,
decoding them to recognize significant events ay usually be delayed
without deleterious effect. Similarly using them to calculate system
values may also be delayed.

(d) Response to an external event is often complex and may extend over a
time period that is much longer than the sensor observation period.
Sensor observations often must continue throughout the period of
response.

(e) Processor scheduling can be performed knowing only the processor
demands of the various tasks and their deadlines. It is not
influenced by other properties of the tasks.

(f) Coordinating the usage of shared resources is primarily constrained
by the number and nature of the resources. For the most part, it can
be arranged without keeping track of momentary processor allocation.
However, the average allocation to each process cannot be ignored if
real-time deadlines are to be met. 1 , 2 .

1 There are two concerns of processor allocation: 1) momentary allocation:
which process has the processor at any given instant, and 2) average
allocation: how much of the processor time is allocated to each process on
the average over a period of time.

2 Whether one can ignore momentary allocation is a more complex point than
it may appear; we will return to it in the section titled "A fundamental
limitation of separation of concerns."

13-72 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Separation of Concerns / Doc. HAS.6

The process model

We assume that we have available a number of parallel processes that

communicate by means of

(a) shared variables, and

(b) special synchronization variables that are accessed only by special
synchronization operations.

We also assume that synchronization operations can block and release
processes. A blocked process may not be scheduled to run; when it is released
it becomes eligible to run again.

The duration of a process may be long either because it is complex or
because it is not allocated the processor by the scheduler. Delays caused by
scheduling are hidden from the process, so it cannot affect them. Synchroniza-
tion operators explicitly block and release processes, constraining the actions
that the scheduler may take. Thus, processes are subject to scheduling, while
synchronization operations restrict scheduling by defining which processes are
eligible to run.

Proposed real-time software organization

I propose that the software be organized into three kinds of units:
processes, schedulers, and monitors.

(A) Processes are sequential subsets of the activities of the system. We
use the term "sequential" to indicate that the sequence of events within a
process can be determined by an examination of the task to be performed and is
not influenced by the number or speed of the available processors and devices.
The relative order of events within a single process is determined by a
conventional program that controls that process, but the relative order of
events in different processes is affected by processor speed and resource
speed as well as scheduling policies. In order to be able to ignore processor
speed and scheduling policies while designing the other algorithms, processes
are regarded as proceeding in parallel at unknown relative speeds, but at real
speeds sufficient to satisfy the real-time constraints.

There would be four classes of processes:

(1) Cyclic processes that observe external inputs and record their
values in internal variables (Sensing) 3.

3 Names in parentheses key objects in the proposed organization to the seven
concerns in real-time programing.

SOFTWARE ENGINEERING PRINCIPLES 13-73
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

(2) Processes that examine recorded data to recognize events of
significance to the system (Decoding).

(3) Processes that process the recorded data to compute the
information required (Calculating).

(4) Processes that are awakened whenever an event is noted and carry
out the system's response to the event (Responding).

(B) Schedulers allocate the processor to processes, using scheduling
policies to decide which process should run next. There would be two
schedulers.

(1) A simple scheduler that deals only with the periodic waking of
sensing processes (Initiating). it is assumed that the sensing
processes use small, fixed amounts of processor time in each
observation cycle. That time is effectively reserved for them
and is not available for other processes.

(2) A deadline scheduler that allocates the remaining processor
time, giving priority to processes with the most ijminent
deadlines (Scheduling).

(C) A monitor is simply a module or a collection of routines called by
other program n order to obtain access to a shared resource (Coordinating).
There would be one for each type of resource. Each monitor hides both the
synchronization method used internally and the changeable aspects of the allo-
cation policy. The monitors will use synchronization primitives (Parnas 1978).

Separation of concerns achieved by proposed organization

The following examples illustrate the separation of concerns achieved by
the proposed organization:

(a) If a sensor is replaced by one with a different interface to the
computer, the program controlling the process that reads and
interprets that sensor is the only program that needs to be changed.

(b) If accuracy requirements or other factors dictate a change in the
frequency of reading a sensor, the periodic awakener is changed.
This may make a change in the amount of time available for demand
scheduling, but in most cases there will be no ripple effect.

Wc) Replacing a single processor with a faster or slower model (or with a
ultiprocessor system) will affect the schedulers, but in fairly
straightforward ways. If the code was properly parameterized when
written, reprograming will be minimal.

13-74 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Separation of Concerns Doc. HAS.6

(d) Changes in the way of detecting or responding to a significant event
can usually be confined to the program controlling a single process.

(e) Changes in the availability or allocation policy for resources other
than the processor result in changes to individual monitors. The
process synchronization routines that are used by these monitors are
distinct and should not be affected. Unless required processor time
is changed drastically, scheduling is not affected. Processes using
the resources need not be affected by the changes.

A fundamental limitation of separation of concerns

Unfortunately, separation of concerns in the area of resource allocation
is not always possible. The resource allocation strategies may interact
strongly through their effects on processes that are using two or more
distinct resources. If a process that has been allocated some of resource B
is slowed by the monitor that allocates resource A, then the policy used in
allocating A may have noticeable effects on the allocation of B.

P. J. Courtois (1975; 1977) has carefully investigated this problem and
developed statistical criteria to help recognize situations where there would
be too much error caused by ignoring the allocation policy for one resource
when designing an allocator for another. Very roughly, if we wish to neglect
the dynamics of resource A when concerned with resource B, the actions that
change the state of resource A must be of short duration and occur relatively
frequently when compared to actions that change the state of resource B. When
this is valid, one is justified in considering A to be almost continually
available but somewhat slower than the actual A when allocating resource B.
For a particular process, we will consider A to perform at a rate equal to its
actual rate multiplied by the fraction of the time that it is available for
that process.

In designing systems of cooperating processes, we want to be able to
neglect the momentary processor allocation, including the time used to
accomplish process switching, when allocating other resources. We will only
succeed if operations requesting or releasing the processor can be of
significantly shorter duration than operations requesting and releasing other
resources. If this is so, then we can view the processor as almost continually
available for each process, but considerably slower then the actual processor.

Process synchronization primitives

The fundamental limitation suggests that successful application of the
process concept will require that the software include several levels of
process synchronization primitives (Parnas 1978).

SOTFTARE ENGINEERING PRINCIPLES 13-75
3-14 August 1981

SEc. 13 . HOST-AT-SEA (HAS) SYSTEM

1. The lowest level must include only operations with extremely short
execution time. They serve primarily to inform the schedulers of changes in
the state of readiness of processes.

2. Using the lower level operations, ore can implement monitors or other
operations that are convenient for resource allocation. The implementation
must keep processes that are waiting for a chance to execute the lover level
operations distinct from processes that are waiting for entrance to the
monitors and processes waiting for resources.

3. Decoding problems such as those discussed by Patil (1971) and Parnas
(1975b) are implemented using the lowest level primitives. The real-time
constraints on the duration of the lowest level primitives do not necessarily
apply to decoding operators such as those proposed by Patil.

Conclusions

The structure described above seem a plausible way to improve the
organization of real-time software. It should be further evaluated by means
of prototype software.

13-76 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

HAXS. 7 Implementing Processes in HAS

EXAMPLE DESCRIPTION

SE WALLER SOFTWARE SYSTEMS SERVICE

our motto

STRUCTURED SOFTWARE SAVES

Introduction

Software Technologist Einar Newhire of the Naval Electronics Research Lab
(NERL) has proposed that the Host-At-Sea (HAS) software be implemented using
processes as a structuring concept. 0. U. DeZeeman of Computer System
Distributors (CSD) has written a rather sharply worded paper indicating that
practical limitations prevent the implementation of processes for HAS. Under
terms of NERL contract NERL-CSS 42089a-216, this paper has been written to
resolve the conflict.

SSSS's position on the controversy is clear. The arguments on both sides

have definite merit. Nehire's approach leads to a better structured system,
but she failed to describe the system completely. The failure to deal. with
certain issues creates the impression that they have been overlooked. In
fact, Nevhire simply abstracted. Those issues can be dealt with separately
from the ones discussed.

This report is divided into two sections. Section 1, a modification of
a SIGOPS paper (HAS.6), discusses the motivation for the process concept in
HAS. Addressed specifically to HAS, it indicates what can be gained by using
processes as a structuring concept. Section I addresses the question of how
to implement processes. It includes a set of macros that can be used to
translate the processes described in Einar Nevhire's proposal into code for
the HAS-BEEN computer. Because this contract did not call for study of HAS-

BEEN assembly language, we have used a simple, machine-independent notation to
describe our code. To avoid confusion, we have used the same notation that
CSD used to describe its proposed implementation of HAS.

SOFTWARE ENGINEERING PRINCIPLES 13-77
3-14 August 1981

SEC. 13 / HOST-hZ-SE& (HAS) SYSTEM

SECTION I

Professor E. W. Dijkstra has introduced two distinct topics into the
computer literature:

(1) Process synchronization: how to write programs that control several
computations proceeding in parallel at unknown relative speeds, given
that these computations share variables and other resources.

(2) Separation of concerns: how to organize a program so that programers
need not think about too many things at one time.

The purpose of this section is to relate these two fields of study to HAS.

Concerns in HAS

By examining the CSD design for HAS, one can distinguish seven classes of
functions ao be performed.

(1) Sensing, i.e., reading input lines and recording the observed values

in internal var~ables.

(2) Initiating sensing.

(3) Decoding, i.e., recognition of an event defined by a predicate or.
several internal variables.

(4) Calculating system values from input values.

(5) Responding to events that have been decoded.

(6) Scheduling i.e., allocating the processor among the processes that are
eligible to run.

(7) Coordinating access to shared resources.

Although the CSD design for HAS deals with many of these concerns in the
same program text, the concerns are independent because they could change
independently. Observe that:

(a) The algorithm involved in sensor reading is largely independent of the
period of observation.

(b) Initiating observations is critical because information may be lost if

sensor readings are delayed. The initiating policy depends more on
processor speed than on the interface to the input sensors.

13-78 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS I Doe. HAS.7

(c) If the sensor values have been recorded in internal variables,
decoding them to recognize significant events may usually be delayed
somewhat without deleterious effect. Similarly, using input values to
calculate system values may usually be delayed.

(d) Response to an external event is often complex and may extend over a
time period that is much longer than the sensor observation period.
Sensor observations often must continue throughout the period of
response.

(e) Processor scheduling can be performed knowing only the processor
demands of the various tasks and their deadlines. It is not
influenced by other properties of these tasks.

(f) Coordinating the usage of shared resources is primarily constrained by
the number and nature of those resources and may often be arranged
without taking the momentary processor allocation into considera-
tion. The average processor allocation cannot be ignored because HAS
has real-time constraints.1 , 2

The process model

Einar Newhire's design assumes that ve have available a number of
processes that coumunicate by means of:

(a) shared variables, and

(b) special synchronization variables that are accessed only by special
synchronization operations.

We also assume that synchronization operations can block and release
processes. A blocked process is not eligible to run until it is released.

The duration of a process may be long either because it is complex or
because it is not allocated the processor by the scheduler. Delays caused by
scheduling are hidden from it, so that it cannot affect then. Synchronization
operators explicitly block and release processes, restricting scheduling by
defining which processes are eligible to run.

I There are two separate concerns of processor allocation that are being
distinguished here: 1) momentary allocation: which process has the
processor at any given instant, and 2) average allocation: how mch of the
processor tim is allocated to each process on the average over a period of
time.

2 Whether one can ignore momentary allocation is a more complex point than

it my appear and we will return to it in the section called "A fundamental
limitation of separation of concerns."

SOITWARE ENGINEERING PRINCIPLES 13-79
3-14 August 1981

• assos

SEC. 13 / HOST-KT-SEA (HAS) SYSTEM

Proposed real-time software orsanization

The HAS software should be organized into two kinds of units to be known
as processes and modules. The modules include monitors and schedulers, as
described in Newhire's module design (HAS.3).

Processes are sequential subsets of the activities of the system. We use
the teir "sequential" to indicate that the sequence of events within a process
can be determined by an examination of the task to be performed and is not
influenced by either the number or the speed of the processors and devices.
The relative order of events within a single process is determined by a conven-
tional program that controls that process, but the relative order of events in
different processes is affected by processor speed and scheduling policies.
To achieve separation of concerns, processes are regarded as proceeding in
parallel at unknown relative speeds, but at real speeds sufficient to satisfy
the HAS timing constraints.

There are four classes of processes:

(1) Cyclic processes, run periodically, that observe external inputs and
record their values in internal variables (Sensing) 3.

(2) Processes that examine recorded data to recognize events of
significance to the system (Decoding).

(3) Processes that process recorded data to compute the information
desired (Calculating).

(4) Processes that are awakened whenever a significant event is noted and
carry out the system's response to the event (Responding).

There are two schedulers:

(1) A simple scheduler that deals only with the periodic starting of sen-
sing process-s (Initiating). It is assumed that the sensing processes
use small, fixed amounts of processor time in each observation cycle.
That time is reserved for them and unavailable to other processes.

(2) A deadline scheduler that allocates the remaining processor time
among the other processes (Scheduling).

A monitor module is a collection of routines that are called by the other
programs when they need to obtain access to a shared resource (Coordinating).
There would be one monitor for each type of resource. Each monitor hides 'both
the synchronization method that is used internally and the changeable aspects
of the allocation policy. The monitors use synchronization primitives
(Dijkstra 1968; Parnas 1976) to implement coordination.

3 Names in parentheses key these objects to the seven HAS concerns mentioned
earlier.

13-80 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementins Processes in HAS / Doc. HAS.7

The following examples illustrate the separation of concerns achieved by
the proposed organization:

(1) If a sensor is replaced by one with a different interface to the
computer, the program controlling the sensing process for that sensor
is the only program that needs to be changed.

(2) If accuracy requirements or other factors dictate a change in the
frequency of reading a sensor, the simple scheduler that initiates
periodic processes is changed. This may make a change in the mount
of time available for demand scieduling, but in HAS there will be no
ripple effect because the HAS-BEEN has plenty of extra CPU cycles
according to our analysis.

(3) Replacing a single processor with a faster or slower model or with a
multiprocessor system will affect the schedulers in fairly straight-
forward ways. Reprogramnsug will be minimal. The code describing
the processes themselves need not change at all.

(4) A change in the algorithm used to detect or to respond to a signifi-
cant event can be confined to the program controlling a single
process.

(5) Changes in the availability or allocation policy for non-processor
resources result in changes to individual monitors. The process
synchronization routines that are used by these monitors will not be
affected. Unless processor time required is changed drastically,
scheduling is not affected. Processes need not be affected by such

changes.

A fundamental limitation on separation of concerns

Unfortunately, separation of concerns in the area of resource allocation
is not always possible. The resource allocation strategies may interact
strongly through their effects on processes that are using two or more
distinct resources. If a process that has been allocated some of resource 3
is slowed by the monitor that allocates resource A, then the policy used in
allocating A may have noticeable effects on the allocation of B.

P. J. Courtois (1975; 1977) has carefully investigated this problem and
developed statistical criteria to help recognize situations where there would
be excessive error caused by ignoring the allocation policy for one resource
when designing an allocator for another. Very roughly, if we wish to neglect
the dynamics of resource A when concerned with resource B, the actions that
change the state of resource A must be of short duration and occur relatively
frequently when compared to actions that change the state of resource B. When
this is valid, one is justified in considering A to be almost continually
available but somewhat slower than the actual A when allocating B. For a
particular process, we will consider A to be performing at a rate equal to its

SOiTWARI ENGINEERING PRINCIPLES 13-81
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

actual rate multiplied by the fraction of the time that it is available for
that process.

In HAS, we vent to be able to neglect the momentary processor allocation
vhen allocating other resources. We will only succeed if operations request-
ing or releasing the processor (synchronization operations) can be of signifi-
cantly shorter duration than operations requesting and releasing other
resources.

These conditions can be satisfied by the HAS design proposed by Einar
Newhire.

13-82 SOFITWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS / Doc. HAS.?

SECTION II

In Section I of this paper, we shoved that the motivation for using
Newhire's approach is to achieve separation of the seven types of concerns
encountered in HAS. The processes given in Newhire's proposal take care of
four of them: sensing, decoding, calculating, and responding. To make a
complete system, it is necessary to write the code for periodic scheduling,
processor allocation, and resource coordination. We propose to do this in
four stages.' In the first stage we will take care of resource coordination by
introducing monitors for the shared resources. In the second stage we will
take care of the periodic scheduling or "initiating" by introducing a special
process analogous to a hotel desk clerk to function as an alarm clock. It
waits until a certain time is reached, and then awakens another process. In
the third stage, we will implement the synchronization routines that change
the set of processes eligible to run. In the final stage, we will implement
the scheduler that allocates the real processor(s) mong the processes
eligible to run, so that all make smooth progress.

We ask Mr. DeZeeman and other readers to be patient with this slro,

multistage approach. Our purpose, like Newhire's, is to deal with one problem
at A time so that the human brain can handle the degree of complexity required
at any given time.

SOFTWAREZ ENGINEERING PRINCIPLES 13-83
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

Stase 1: Coordination of Shared Resources.

In HAS resources are shared in two ways: explicitly and implicitly. The
explicitly shared resources are primarily data structures, tables, and I/0
devices. The implicitly shared resources are the "private" memory areas of
the processes. Although we chose to ignore this problem while writing the
basic process controller program, there comes a time when we mst recognize
that the memory areas of all processes are shared with the memory check
process(es), so that no area is really private to a process.

When do we need a monitor?

We need a monitor for any resource such that (a) it is used by more than
one process and (b) simultaneous or overlapping attempts to use the resource
would result in errors. We need a monitor for any such resource whether it be
a single boolean variable, an I/0 device, or a mass storage device. For each
type of resource there is a usage discipline or protocol that will guarantee
that the user processes do not interfere with each other. The monitor is a
set of supervisory routines guaranteeing that the discipline is followed.

An example of a shared resource is a buffer chat is used to comunicate
between two processes. Another example is a shared ariable, such as embc in
RAS.4, that is set by one process and checked by another. All of the data
structures used to store the temperatures, wind speeds, avA other data are
also considered to be shared variables in this context.

It is essential to observe that we are talking about variables that are
shared among processes, not about variables that are shared among modules.
The recorded data are store4 in variables that are private to a record storage
module, but the module is used by several processes. Those processes may all
call the module's access functions, and we must guard against the danger of
simultaneous or overlapping access by two or more processes.

What is a monitor?

Some authors (e.g., Brinch Ransen, Roare) give the term monitor a very
narrow meaning as a specific construct in a programming language. At Seavaller
.oftware ystes Service, we use "monitor" in its original and more general
sense. Monitor refers simply to the collection of procedures that access the
resource directly and hence are able to monitor the accesses. We are not
going to propose a specific language construct for monitors for two reasons:

(1) HAS will be implemented using an existing language.

(2) Different types of resources require different types of monitors.

858. considers designing the monitors to be a system design problem, not a
language design problem. For example, for a data strucctre that consists of a
single word in core, the hardware provides the necessary "monitor" by prohibit-
ing simultaneous reads and writes.

13-8" SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS / Doc. HAS.7

The monitor procedures will use the access procedures of the modules that
hide the implementation details of the resource. These access procedures,
such as GET and SET functions, hide the data structures and access algorithms.
They would suffice if simultaneous calls were not a danger. For more general
situations, these procedures will be used by additional programs that syn-
chronize use of the resource by multiple processes. The external interface to
the monitor may look like the basic access functions, but it need not. The
design criteria and the monitors needed in HAS are discussed below.

Monitors for HAS

The HAS structure proposed by Newhire contains four types of computer
resources that are shared among processes: single variables, buffers, the
data structures hidden by the record storage module, and the "private"
variables of each process. In addition, there are system resources, such as
transmitters and receivers.

Buffer Monitors

For buffers, Habermann's ACCEPT and DEPOSIT procedures (1972) can be used
as monitors. They use Dijkstra's P and V operators to guard against incorrect
simultaneous access by multiple processes. Note that, unlike the monitors
built into CONCURRENT PASCAL (Brinch Hansen, 1975), they do not always exclude
each other's executions. Mutual exclusion is not necessary for this type of
buffer; unless the routines cry to operate on the sae frame in the buffer, an
ACCEPT and a DEPOSIT may occur simultaneously without ill effect.

In the algorithms below, the semaphores "out.abuf" and "in.xbuf" prevent
more than one process from simultaneously accepting from or depositing into a
buffer, respectively. The semaphore "space.xbuf" synchronizes the processes,
preventing buffer overflow and "data.xbuf" prevents buffer underflow; these

two semaphores prevent a simultaneous ACCEPT and DEPOSIT on the ame frame.
"space.xbuf" must be initialized to the number of initially available frames
in the buffer, "data.xbuf" is initialized to zero, and the other semaphores
are initialized to 1.

"front.xbuf" is an index to a buffer location; it always points to the
first empty buffer slot if no DEPOSIT is in execution. Similarly, "rear.xbuf"
points to the frame preceding the first full frame unless an ACCEPT is in
progress. "successor" returns a pointer to the next buffer frame succeeding
the one pointed to by the parameter.

SOFTWARE ENGINEERING PRINCIPLES 13-85

3-14 August 1981

VJ

SEC. 13 / HOST-AT-SZA (HAS) SYSTEM

procedure deposit(x, xbuf);

begi global pointer front.xbuf; parameter x; comment x is the data to be

stored

global buffer xbuf;

semaphore in.ibuf, space.xbuf, data.xbuf;

P(in.ibuf); comment only one process can deposit at a time;

P(space.xbuf); comment wait if the buffer is full;

xbuf(front. xbuf):- x;

front.xbuf:- successor(front.xbuf);

V(data.sbuf); comment signal that the buffer is not empty;

v(in.xbuf);

end;

procedure accept(x, xbuf);

ein global pointer rear.xbuf; parameter x; comment x is the data to be

retrieved

global buffer xbuf;

semaphore out.zbuf, space.xbuf, data.xbuf;

P(out.zbuf); comment only one process can accept at a time;

P(data.xbuf); comment wait if the buffer is empty;

rear.xbuf:- successor(rear.sbuf);

x:n xbuf(rear.xbuf);

X(space.zbuf); comment signal that the buffer is not full;

V(out.xbuf);

end;

Data Structure Monitors

The record storage functions represent a shared data structure that is a
classic instance of the "reader-writer" problem (Courtois 1971). For each
such "holder" there is a process that periodically updates the information,
and there are several other processes (the report generator processes) that
use the information to prepare messages. The latter are "reader" processes
and do not interfere4 with each other. Since the updating processes write

4 They may slow each other down but they cannot affect the results.

13-86 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Impleaenting Processes in HAS I Doe. RAS.7

in the data structures, the information in the holder viii be inconsistent
while one of these processes is in the middle of an update. To design the
monitor for each type of record, it is first necessary to decide exactly what
is meant by consistent data. If the data items being stored are not to be
compared to each other, then the data may be considered consistent after each
individual item has been completely updated. On the other hand, if the data
are to be compared (e.g., to compute temperature gradients), then it is
important that all items taken from the storage represent the saw point in
time. In that case the data will not be considered consistent between the
time that the updating process starts to insert new values and the time that
it finishes.

In the first case, where individual data items may be updated and the
report is considered consistent, the update access functions provided by the
monitor will look like the individual SET functions provided by the basic
module. In the second case, since a number of items must be considered
consistent, the monitor mAst provide a single access function for updating all
of them.

Example of the Second Case:

If the record storage module provides functions SETTEMI, SETTEM2, and
SETTEI3 to store temperature values, and all three temperatures should
represent the same moment because differences will be computed, the access
monitor will use the three SETTE functions to implement SETTEK(PI,P2,P3).

SETTEM and the other monitor access functions will contain the
necessary synchronization operators to guarantee that after one of the
TMW item has been updated, no data will be used until all three have
been updated. At all other times, access to TDIPI, TENP2, TEHP3 need not
be restricted.

Assuming the availability of the three functions above and FETTEMI,
FETTEK2, and FETTEK3 to fetch values in a similar way, the monitor
procedures would look as follows:

INITIALIZATIOH

begin global intezer readcount:-0;

global semaphore tems, temw;

temcs:-I; temi:-Il

end;

SOJTMARE KNGIIERING PLINCIPLES 13-87
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

procedure SETTUM(pl, p2, p3);

begia global semaphore team; parameter p1, p2, p3;

!(tsm); comment wait if any other process

operating on data, alse

lock out other processes;

setteal(pl);

setten2(p2);

settem3(p3);

end;

procedure FETTEM(pl, p2, p3);

begin global intexer readcount; Parameter plfp2t p3;

global semaphore teav, teucs;

P(temcs); coment mutually exclusive -,caes

to readcouut;

readcount :ureadcountel;

if readcount - 1 then P(teime); end-if; coment if first reader, lock out

writers, wait if writer

already in progress;

Wteafc a);

p1 :fetteml;

p2 :fettem21

p3 :-fettem3;

PNtemcs);

readcount t roadcount-1;

if readcountinO then V(tein); end-if; comment allow waiting writer to

proceed if no other

reader;

end;

13-88 SOFTWARE ENGINEERING PRINCIPLES
3-14, August 1961

Implementing Processes in HAS / Doc. HAS.7

Monitor for private memory areas

One of the requirements for the HAS program is that all areas of memory
are periodically tested by a memory check process. This includes the areas
storing code and data that are private to the other processes. Since memory
checking destroys the contents of the memory, the contents must be copied to
an area that is private to the memory check process before the test begins.
They will be returned after the check is complete. During the test it is not
possible to execute the relocated code or access the relocated data.5 Thus,
a process may not rim while its memory is being checked.

Each of the processes in Newhire's proposal has a clearly defined homing
state, that is, a state in which it remains most of the time and iu which it
may be safely suspended. To build the monitors for the private code and data
of each process, we will introduce one additional semaphore per process. The
process does a V on this semaphore before entering the homing state and a P
upon starting up again. The memory check process does the P before beginning
to relocate the data and a V when the data is returned. Thus, execution of
the process and its memory check cannot occur at the same time.

Because shared data areas are already protected by semaphores, the memory

check process can use them like any other user.

Shared code areas used by reentrant processes are not already protected
because the processes that execute them are "readers": they do not alter the
code. In such cases, the shared code oust be equipped with reader-writer
entry points. The memory check process is the writer.

5 This design for memory checking is based upon the following two assumptions
that hold for HAS at present. The assumptions must be noted because the
design must be changed if the assumptions no longer hold.

(1) The HAS-BEEN computer is not equipped with hardware that supports
run-tims relocatable code or data (such as the PDP-11/40 segmentation
hardware). If we had such hardware it would be a simple matter to
relocate the data and code and perform the memory check without concern
for the progress of the process.

(2) The time frame in which sensor readings must be made is relatively long
compared to the time required to check the memory belonging to a
process. Therefore, not scheduling the process during that time is an
acceptable solution. If the time frames involved were shorter, it
would be necessary to segment the code and data, thereby reducing the
time for any one memory check, or to duplicate the code and data so
that progress could be made during the memory check.

SOFTARE ENGINEERINC PRINCIPLES 13-89
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

There are two areas of memory that are not covered by the above
discussions. These. are the areas of memory in which the memory-check process
resides and the areas of memory devoted to the semaphores. If the memory-
check process is to check its own memory, it must have a copy of itself (or a
subset) elsewhere. This copy checks the memory-check process as if it were
any other process.

The semaphores are a problem because they are not private to any other
process and can not be protected by semaphores. Luckily, they represent a
very small part of memory, so that all other processes can be suspended while
they are being checked.

13-90 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS /Doc. HAS.7

Stage 2: The "desk clerk" procedure

Even after all of the processes in Newbire's proposal have been refined
to include the synchronization implicit in the resource monitors, there is
nothing in the code that refers to real time. All of the processes are now
synchronized; they will not interfere with each other. This can be proved
without making any assumptions about their real speeds or relative speeds.
This is a very important property. Designing a system of processes so that
their correct cooperation depended on each process proceeding strictly
according to a rigid schedule would be like planning a subway system without
safety interlocks, on the assumption that the trains would always be on time.

Unlike some multiprograming systems, the HAS system has real-time
deadlines for some of its work that are really "hard" deadlines. By hard
deadlines, we mean that the old adage, "better late than never", does not
hold. Data that is not read in time is lost forever. Out-of-date data may
lead to drastic errors. We must take real time into account somewhere.

Even though many processes may wait for particular points in time, we
propose that all observation of the actual time be confined to a single
procedure. Each process that needs to wait executes a P operation on a sema-
phore. The single procedure that observes real time will do the necessary V
operation at the proper time. When that happens, the waiting process is
marked ready and begins to compete for the processors, making progress in
accordance with the scheduling policies. We stated earlier that blocks of
time are reserved for these periodic, time-driven processes. This is
implemented by assigning them higher priorities than the demand processes.

This approach has certain advantages:

(1) The concern, "What do I do when my time comes?" is separated from "Is
it my time to run yet?"

(2) The concern "Which of the ready processes should be run now?" is
separated from "Which processes should be ready at this point in
time?" (Both of these have been called scheduling and considered one
problem in the past.)

(3) Waiting for a given amount of time to pass is only done by one

procedure. Certain inaccuracies that can occur because two processes
are waiting until the same point in time are more easily avoided.

SOFTWARE ENGINEERING PRINCIPLES 13-91
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTEM

(4) Changes in the real-time schedule are confined to the desk-clerk
program sketched below. When this program runs is discussed later.

if time interval elapsed then

V(semaphores on list for this interval);

determine next interval;

end;

end-if;

13-92 SOFITWABE ENGINEERING PRINCIPLES
3-14 August 1981

Implementin ' Processes in HAS / Doc. HAS.7

Stage 3: Implementing the P and V routines

Our code now contains many calls of the synchronization routines invented
by E. W. Dijkstra (1968a, 1968b). P is used by a process to try to pass a
semaphore and to mark its passage. V is used to allow a semaphore to be
passed. The specifications for P and V could be written as shown below:

P AND V WITH TRACES

The specification for P and V recognizes the fact that, when dealing
with parallel processes, the events that are described by a trace are not
simply calls of routines. We must introduce Pb, which is the event of
the start of a P, and Pe, the end of a P. Only by treating these as
distinct events can we describe the waiting that occurs during a P. In
this specification, illegal traces never occur. A call on P (the event
Pb) is always allowed. The P-V module delays the Pe until it is legal.
Thus, for this specification, the legal traces might be more accurately
called possible traces. These assertions refer only to traces on the
events for one semaphore.

SYNTAX:

(1) P: semaphore -) semaphore gt: greater than
(2) V: semaphore -) semaphore le: less than or

equal to
L: Legal

SEMANTICS: 0: equivalence

Legality:

i - number of P operations that can be completed before any V operation is
done (usually one)

(1) (n gt 0) -) L(V0 .Pb.Pe)

(2) (n gt 0) -) L((Pb.p.)i.Pn.V.Pa)

(3) (n . i)) L((Pb.Pe)n.V)

Equivalences:

(1) L(TPb.P.V)) T = T.Pb.Pe.V

(2) L(T.Pb.V.Pe) e) T a T.Pb.V.Pe
(3) L(T.V.Pb.p.) -) T = T.V.Pb.Pe

This does not bind us to any particular implementation.

SOFTWARE ENGINEERING PRINCIPLES 13-93
3-14 August 1981

SEC. 13/ HOST-AT-SEA (HAS) SYSTEM

Dijkstra has published two slightly different implementations of the P and V
operations (1968a, 1968b). Both satisfy the above requirements, but we believe
that the implementation proposed in this section is appropriate for HAS.

We implement each semaphore using an integer variable and a set variable.

The set variable can contain zero, one, or more processes. There are operators
to insert a process in the set, to remove a process from the set, and to ask
if a specific process is in the set. The integer variable is usually initial-
ized to I and the set variable to empty. However, it would be permissible to
initialize the integer variable to any non-negative value if the set variable
is empty, and to negative values if the number of processes in the set variable
is equal to the magnitude of the integer variable.

A P-operation is then implemented by decrementing the integer variable
and testing it. If the integer variable is negative when tested, the process
enters itself in the semaphore's set variable and releases the processor to
ready processes. The process is now blocked. This action corresponds to

Pb. If the integer variable is non-negative, the process may continue.
This action corresponds to P*.

The V-operation increments the integer variable. If the result is negative
or zero, one of the processes is removed from the semaphore's set variable,
and entered in one of the sets of ready processes. This process is now "ready"
to run. Removing a process from the semaphore set corresponds to Pe.

In this implementation, if the integer variable is negative, its magnitude
always represents the number of processes in the set variable. In this case,
the integer value is redundant since we could get the same information by
counting the entries in the set variable. When the integer value is positive,
it is not redundant.

The operation P followed by a V or the operation V followed by a P will
leave the umber of the processes in the set unchanged. The fact that the
order of these events does not matter, except with regard to the identity of
the processes in the set, makes it easier to prove that certain properties of
the system will hold even if the speeds of processes change.

There are still two portions of the P and V operation to be refined.
If the processor is released in the P operation, a "ready" process must be
selected to run. If a process is removed from the semaphore's set in the V
operation, one of the members of the set must be selected to be made ready.
In neither case have we yet specified which one. If you look back at the
specifications for P and V, you will find no help on this question. The

choice of a process from the set members is not constrained by the require-
ments. This has the advantage that any program proven correct using only the
specifications of P and V, will work correctly with any policy for selecting
set members. For HAS, we suggest two simple policies. We will always remove
the longest waiting process from a semaphore set variable. When a process is
marked ready, we assign it a priority. We will always select the highest
priority process when allocating the processor.

13-94 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS /Doc. HAS.7

The sets may be represented as First-In-First-Out (FIFO) queues of process
descriptors. Each process descriptor viii contain the process number,
priority, and state information such as register contents and program counter.

Implementations for standard queue manipulation procedures are found in
most programing texts; we vill not include them here. We vill assume we have
two procedures, INSERTP (process, queue) to insert a process in the queue, and
REHOVEP (process, queue) to remove the longest vaiting process from the queue,
placing its descriptor in the parameter "process."

The final code for P and V nov looks like:

procedure P(s);

beii global integer int.s; global process-descriptor queue set.s;

int.s: int.s-l;

if int.s It 0 then

begi~n

coMMen currentprocess is a function returning the process descriptor

of the process running on this processor;

insertp(currentprocess, set.s);

processor-allocate;

end;

end-if;

end;

procedure V(s);

bii global integer int.s; global process-descriptor queue set.s;

private process descriptor process;

int.s:-int.s+l;

if int.s Is 0 then

begi

removep(process, set.s);

make ready(process);

end;

end-if;
end;

The "processor allocate" and "make ready" routines are described later.

SOFTWARE ENGINEERING PRINCIPLES 13-95
3-14 August 1981

SEC. 13 / HOST-AT-SEA (HAS) SYSTE4

Stage 4: Completing Process Implementation

Adding Preemptive Scheduling

The code that we have now is complete and could be directly translated
into running code if we could live with non-preemptive processor scheduling.
It has a lot of processes that voluntarily release the processor when they try
to execute a P operation and cannot finish it. Because of the mutually
cooperative nature of the process structure and the fair scheduling strategy
that we have taken, things would go well if we had no real-time deadlines and
we really did not care about the relative speeds of the processes. The
behavior of the system would be a bit "jerky". One process would run until
its input or output buffer emptied or filled, another would then run until a
similar event occurred to it, etc.

For HAS, this behavior is not acceptable. We must now add provisions to
have the processor preempted between synchronization events. Unfortunately,
one of the properties of the HAS-BEEN computer is that it has no interrupt
system. Although we may wish to preempt processors, we must really implement
things so that the processes release them voluntarily. To ensure smoothness,
we will insert instructions every so often to check the priorities of waiting
processes and release the processor whenever a waiting process has higher
priority than the one currently running. This will be done automatically by
postprocessing the code generated by the above expansion and inserting a macro
call to the scheduler after every few statements. We are fortunate that the
HAS-31EN computer does have adequate speed for our application even if we
insert many instructions in this way.

It is interesting to note that the T.H.E. system (Dijkstra 1968) at one
time had a preemptive clock implemented in a similar manner. However, this
code was removed permanently after an experiment revealed that the behavior
was satisfactory without it. T.H.7 had no real-tien demands, but we have
the option of trying the same experiment.

The "desk clerk" is given control whenever the processor is reallocated,
since checking the real-time clock is the top priority activity.

We will adopt a round-robin policy for processes of equal priority. This
strategy is implemented using one queue of ready processes for each priority.
When a process gives up running, it inserts itself at the back of the queue
with its priority. Then it calls the processor allocate routine to select and
start the next process. The next process is removed from its ready queue
before it is run. Code for this routine is shown below:

rocedure round robin;

make ready(current process);
desk clerk;
processor allocate;

end;

13-96 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Implementing Processes in HAS Doc. HAS.7

Process switching routines

The procedure 'Snake ready" inserts a process into a FIFO queue of ready
processes. Code is shown below:

procedure make ready (p);
beink process-descrietor parameter p; private integter pri;

zlobal process-descriptor queue array ready list;
coment p - process number to insert in ready queue, ready_ list

is an array of queues, one for each process priority level;

priarn priority(p);

insertp (p, ready_ list(pri));

The operation of releasing a processor and reassigning it is machine
dependent and so will only be sketched here. It involves storing copies of
the processor registers in the old process's data area and loading new values
into the registers from the new process's data area. The abstract program is
shown below:

procedure prociessor-allocate;

beg~in global process-descriptor queue arrayV ready list;

private process-descriptor proc;

private integer i;

private constant integer maximmjPriority;
"9save registers and PC;"

comment, find highest-priority, non-empty ready set. If all the
other ready sets are empty, there is always a process in the
0 priority set that consumes time and calls
processor allocate again;

i : mtaiimanjriority;

while reedy-liat(i) is empty do.

beink i-.- i-1; end;

end-while;,

remoep(proc, ready list(i)); comment places process descriptor in

proc#;

load registers and PC from descriptor for process proc;

and;

SOFTWARE ENGINEERING PRINCIPLES 13-9 7
3-14 August 1981

sEc. 13 / HOST--SEA (HAS) SYSTEM

Conc lusions

0. U. DeZeeman called Einar Newhire's design unrealistic academic
poppycock. He would have been more accurate if he had simply called it
incomplete. In this report we have shown how Newhire's design can be refined
in a step-by-step way, adding code to implement the missing portions. This
code could be added in the form of subroutine calls but we do not recomiend
that. We propose that the code given here be implemented as macros and
inserted in-line so that the many calls will not incur excessive overhead.
The resulting code will be a bit hard to read, but no one need read it. Tke
macro expansion process should be automated so that changes can be made to the
separate sections rather than to the expanded code. This will save inmense
labor during the program maintenance part of the HAS system's life cycle.

13-98 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

1-i

EVAL. 1 Comment Sheets

Nam (optional):

Instructions

Please use the following sheets to record your observations as we progress

through the course. Identify material under discussion by using the relevant

document identifier. Highlight what you liked as well as the problems you

found. Lengthy coments may be extended into the following entry and should

be so indicated by crossing out the intervening typing. Examine the example
below.

Collect Cummt Sheets and attach to Course Evaluation (EVAL.2); turn in

all comments at -he end of the course.

Example

Relevant document: P.2.

TWO: - rrsfr&+;ua on noo to (A* bA" tliA fail&t.

SOTWARE ENGINEERING PRINCIPLES 14-1

3-14 August 1981

SIC. 14 / EVALUATIONS

Relevant document:

Relevant document:_

Relevant document:_

14-2 SOFTWA E KIGINERING PRINCIPLES
3-14 August 1981

Count Sheets / RVAL.1

Relevant document:

Relevant document:

Relevant document:

SOITWAZR ENCGNERING PRINCIPLES 14-3
3-14 August 1981

kL , , j . -

S C. 14 / EVALUATIONS

Relevant document:

Relevant document:

Relevant document:

14-4 SOFTWARE ENGINEERING PRINCIPLES
'3-14 August 1981

Coment Shoots / EVAL.1

Relevant document:_ _

Relevant document:_

Relevant document:_

SOFTWARE ENGINEERING PRINCIPLES 14-5
3-14 August 1981

SIC. 14 / EVALUATIONS

Relevant document:

Relevant document:_

Relevant document:

14-6 SOFTWARE ENGINEERING PRINCZPLES
3-14 August 1981

Coment Sheets IEVAL.1

Relevant document:______

Relevant document:______

Relevant document:______

SOFTWARE ENGINEERING PRINCIPLES 14-7
3-14 August 1981

SEC. 14 1 EVALUATIONS

Relevantc dacument:______

Relevant document:______

Relevant document:______

14-8 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Coment Sheets IEVAL.1

Relevant document:_ ____

Relevant document:______

Relevant document:______

SOTZWARE ENGINEKERING PRINCIPLES 14-9
3-14 August 1961

SEC. l4 / EVALUATIONS

Relevant document_ _

Relevant document:

Relevant document:

14-10 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

- "- - I , "" ! q I

EVAL.2 Course Evaluation

Name (optional)

Instructions

I. There are eight questions or requests for information. Please respond to
all eight.

2. For questions followed by a rating scale, mark the scale with a bar,
to indicate your answer to the question. Scale calibrations appear below
the rating bars. You may rewrite scale calibrations you dislike or do not
understand.

If you are uncertain about your rating, mark a lower bound with a left
parenthesis, (, and an upper tound with a right parenthesis,) .

We encourage you to elaborate on your rating in the space provided below
the scale.

Your rating night look like this
xxx xmx

.9 VIA;& JVIs * me&*Ju\ AMc -

3. Please attach any Coment Sheets (EVAL.l) you completed during the course.

SOITWARE ENGINEERING PRINCIPLES 14-11
3-14 August 1981

-~~~~AW -Jam-. ~- - -

SEC. 14 / EVALUATIONS

Questions

1. What percentage of the time that you devote to software do you spend on
the following software activities? The sum should approximate 1OOZ.

Project or Acquisition Management : :... : :
(including contracting, financial 0z 25Z 501 75% 1OOZ
management, data item management)

Software Construction (including : : : :
analysis, design, code, debug, 0% 25% 501 75% 100z
maintenance, and documentation)

Software Testing or System Evaluation :....... :: :
0% 25% 50Z 75Z 100%

Configuration Management or : : : to :
Quality Assurance 0% 25% 50% 75% 100%

Software Engineering Research :.......:........ : :
or its Funding 0 25Z 50% 75Z 10OZ

Teaching : :0 : : :
0% 2.5% 50Z 75% 100%

Other (:....... : : : :
(specify) 0% 25% 50% 75% OOZ

2. Hw well were the course goals met? (See section VIII of GEN.I.)

not a. all one-fourth halfway three-fourths totally

14-12 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Evaluation Doec. EVAL.2

3. What is your overall understanding of the course material?

lost vague basics good total

4.a. How useful will the course be to your work?

fatal harmful neutral helpful vital

b. If you feel it will be useful, how often will it be so?

............ :.*...... 0.00.... S.:.... *.*.* .0

once yearly monthly weekly daily

5. How was the overall performance of the instructors?

:0 ~~~~~~~~~*..******000.. .00.0 .. 0... 000 0.*.. .

terrible poor fair good excellent

6. How do you rate the course overall?

terrible poor fair good excellent

SOFTWARE UNGIHIRING PRINCIPLES 14-13
3-14 August 1981

SEC. 14 / EVALUATIONS

7. For 'each course topic, rate how useful the material vii be to your work
and rate the quality of presentation. If a bad presentation ruined
otherwise useful material, please note this.

Utility Presentation

PROGRAM FAMILIES

fatal harmful none helpful vital terrible poor fair good excellent

UNDES IRED EVENTS

fatal harmful none helpful vital terrible poor fair good excellent

INFORMATION-RIDING MODULES
: .. . - . .. : ... *.*. ... *. **"0 o.*..~....:.....

fatal harmful none helpful vital terrible poor fair good excellent

SPECIFICATIONS

fatal harmful none helpful vital terrible poor fair good excellent

ABSTRACT INTERFACE MODULES

fatal harmful none helpful vital terrible poor fair good excellent

HIERARCHICAL STRUCTURES

fatal harmful none helpful vital terrible poor fair good excellent

LANGUACE CONS IDERATIONS
so :0.......:.... .. Sl:... o.......:69-6

fatal harmful none helpful vital terrible poor fair good excellent

14-14 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Course Evaluation / Doe. EVAL.2

(Question 7 continued)

Utility Presentation

PROCESS STRUCTURE

fatal harmful none helpful vital terrible poor fair good excellent

DOCUMBNATION

fatal harmful none helpful vital terrible poor fair good excellent

8. A list of questions on miscellaneous topics follows. Please add topics of
your own if you wish.

a. What were the good and bad aspects of the programing assignment
(MADDS)?

b. What were the good and bad aspects of the MP and HAS examples?

SOITWARE ENGINEERING PRINCIPLES 14-15
3-14 August 1981

SEC. 14 / EVALUATIONS

c. What problem, if any, are there with the pseudo-code (GEN.5)?

d. What definitions should be improved or should be added to the glossary
(GLOS.1)?

e. What new topics should be added to the course; which current topics

should be dropped?

f. How will you use some of the course ideas in your future work?

s.

14-16 SOFTWAE ENGIUNURING PRINCIPLES
3-14 August 1981

- -

Course Evaluatiou Doc. EVAL.2

SOFTWARE ENGINEERING PRINCIPLES 14-17
3-14 August 1981

GLOS. 1 Glossary

A

Abstract a) as a verb (e.g., "to abstract from a representa-
tion") - to ignore certain details in making a
description or model of some object.
b) as an adjective (e.g., abstract interface) - an
abstract "" is a model of X that omits certain
details of X. Because certain details are not taken
into consideration the abstraction represents many
possible versions of the object that differ in the
ignored details.

Abstract data type (First, see Data type.) A class of variables that
includes more than one data type. A description of an
abstract data type describes the common properties of
several data types. For example, 'arithmetic' is an
abstract data type that includes 15 bit and 30 bit
integers as well as floating point numbers. Some
authors consider an abstract data type to be a data
type whose implementation is hidden from users, who
see only the type's abstract behavior.

Abstract interface A model of an interface that is valid for more than
one actual interface. All statements made about the
abstract interface must be true of all of the actual
interfaces that it models.

Abstract program A program that is incomplete; some details necessary
to have it run are omitted. It represents all programs
that could be obtained by supplying the missing details
in a way consistent with the incomplete description.

Access functions or A program in a module that may be called by programs
Access programs outside of that module. most run-time comunication

between modules is effected by invocation of access
programs. There are several different sorts of access
functions: some return information to the caller,
some change the state of the module to which they
belong, and some do both.

Address space The set of data addresses that a program can use.

SON TARE ENGIU"RING PRINCIPLES 15-1
3-14 August 1981

+' ' • + - " -- - - - - .-- •- . '.IP *- all -

SEC. 15 / GLOSSARY

Algorithm A precise description of possible sequences of opera-
tions. The algorithm is conditional if the sequence
of actions depends on the data provided as input to
the algorithm. The algorithm is non-deterministic if
more than one sequence of operations is allowed for
fixed values of the input data.

B

Buffer A storage device used to transfer information between
system components. The buffer allows the information
producers and the information consumers to proceed
asynchronously. Producers insert items into the
buffer; consumers remove item from the buffer. The
system components need not wait for the others unless
the buffer is full or empty. Sometimes the word
"buffer" is used to man a first-in-first-out (FIFO)
buffer.

C

Coding specification A coding specification for a given program is a
document in which "pseudo-code" or abstract programs
are used to constrain the selection of algorithms and
data structures or to specify them completely. What-
ever the extent of the constraints imposed, the coding
specification should contain all information (or
references) required to write complete and .orrect
code for the program.

Critical section A portion of a program that should not be executed
simultaneously by several processes. One process
entering a critical section must exclude other
processes from entering the same section until the
first process has left (known as mutual exclusion).

15-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 Augkst 1981

Glossary / Doc. GLOS.l

D

Data type A class of variables (information holders) that can be
used as operands for a common set of operators. For
example, "8 digit integer" is a data type that can be
used as an array index. Some authors define data type
as a set of values together with a set of allowed
operations. (See also Abstract data type.)

Deadlock A system state in which a set of processes ceases to
make progress because each member of the set is
waiting for some other member of the set to complete
some action.

Decision postponement Progress in design is made by making decisions.
Because early decisions are harder to reverse than
later decisions, making decisions that are likely to
be reversed later should be avoided. In decision
postponement, decisions unlikely to be reversed are

made to allow progress while waiting for the
resolution of uncertainties. Abstraction is one

method of decision postponement.

Design decision At the start of a software design project, many
programs are possible. As each interface is defined,
statements written, etc., the set of possible products

is reduced until, at the end, only one program remains.
Each act that reduces the set of possible products is
a design decision.

E

Embedded computer A computer system that is part of a larger system and
system must meet interfaces that are primarily determined by

characteristics of the system in which it is embedded.

Extensible languages Conventional languages provide a set of built-in
features such as boolean variables and while state-
ments. By means of subroutines or procedures one user
can extend the facilities available to another user.
These extensions are easily distinguished (in syntax,
efficiency, and "safety") from those features that are
built into the language. An extensible language
allows a user of the compiler to provide new features
that can be used with the same efficiency and safety
as those that were built into the compiler.

SOFTWARE ENGINEERING PRINCIPLES 15-3
3-14 August 1981

SEC. 15 / GLOSSARY

F

Fail-soft A system is referred to as having fail-soft features
if the occurrence of an undesired event (such as a
hardware failure) results in a partial reduction of
services rather than a total failure.

Family A hardware family is a set of computers with enough in
common that it pays to study their common properties
before looking at individual models. A program family
is a set of programs with enough in comon that one

begins by studying the common properties and then
proceeds to look at one or more of the family members.
An abstract program is one way of representing a
program family.

FIFO A first-in-first-out (FIFO) queuing discipline is one
in which items inserted into the storage device first
are extracted from the device in the order inserted.

Formal specification A statement, by means of mathematical axioms in a well
understood mathematical notation, of the requirements
that a module must meet.

Function Used in three distinct senses in this course: a) the
role that a system fulfills is often termed the
system's function; b) the access programs of a module
are often called functions, after FORTRAN (see also
Access function); and c) a function is a mathematical
mapping from a domain into a range. The syntax
portion of formal specifications describes the domain

and range of each access function.

H

Hierarchy A binary relation on a set of objects defines a
hierarchy of those objects if the relation is loop
free. (See also Level.)

15-4 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Glossar-y / Doc. GLOS.1

I

Information-hiding A set of program that allows other programs to use a
module data structure or algorithm without having those other

programs be sensitive to changes in the data structure
or algorithm. The other programs use access functions
that can be implemented in a compatible way for all
allowable changes to the data structure or algorithm.

The data structure or algorithm is termed the secret
of the module. Equivalently, a module refers to a set
of programs written by part of a programmer team.
Modules being built by more than one person will them-
selves be divided into modules. In other discussions
you may find 'module" being used to mean separately
compilable portions of a program, separately callable
portions, or separately loadable portions of a program.
We reserve the use of the word for portions of a
program that are w.itten independently. A module may
consist of more than one subroutine or macro, the
usual case in this course.

Interface The set of assumptions that one program makes about
another program. If program A violates the assump-
tion(s) that program B makes about it, program B will
not work properly. An interface may include assump-
tions about data structures, entry points, calling
sequences, etc., as well as more subtle assumptions
about the effects of the programs involved.

L

Level Proper use of the word "level" in describing a soft-
ware system depends on the definition of a loop-free
binary relation between the components of the system.
Call that relation R. If the relation R holds between
cl and c2 then R(cl,c2) w true. Level 0 is the set of
components c such that there is no component d such
that R(c,d) - true. Level i is the set of components
c such that a) there is at least one component d in
Level i-I such that R(c,d), and b) if R(c,d) then d is
in a lower level than i. The "real meaning" of level
depends on the relation R, which should always be
specified before using the terms "level" or
"hierarchy."

SOFTWARE ENGINEERING PRINCIPLES 15-5
3-14 August 1981

A0A113 45 NAVALRESEARCHLAB WASINGO Cp

SOFTWARE ENGINEERING PRINCIPLES 3-14 AUGUST 1981,(U)
AUG 81 L J CHMURA, P C CLEMENTS

UNCLA SSI.FED N

7.7 ~~hIE

HEND

'2.2

IIIJL15 _L4 1111_L

SEC. 15 / GLOSSA&Y

M

Macro definition Associating a name with a program segment known as the
body of the macro. The macro nme can be used as an
abbreviation for the body. Some macro systems allow
the definition of the macro body to be conditional.

Macro expansion The process of taking a program text containing occur-
rences of the ne of the macro (also called calls on
the macro) and replacing those calls with the associ-
ated bodies. This process is called expansion because
usually the body consists of more characters than the
name so that the text becomes longer. That need not
be the case. Sometimes a macro name may be 'expanded'
to an empty string.

Memory allocator A component of a software system that determines the
location of sections of code and data in main memory
and mass storage devices.

Module See Information-hiding module.

Monitor An information-hiding module in a software system that
supervises the use of a given resource. All resource
requests and resource releases are made by calling one
of the module's access functions. If parallel
processes are sharing a resource the monitor synchro-
nizes their activities.

Multiprocessing Computing on a system in which there are several
programable hardware units in use simultaneously. In
normal usage, the term means that there are several
CPU's although it can also be applied to systems in
which there is one CPU and a set of peripheral
programnable units such as channels or front-end
processors.

Multiprograming Computing on a system in which a single progrmmable
unit is used to execute a nu=er of tasks that proceed
independently of each other. In normal usage this
refers to system in which several user jobs may be
in the midst of execution simaltaneously by intermit-
tent use of a single piocessor; the term may also be
applied to system in which several processes belong-
ing to the *am user job can be in the midst of
execution simultaneously. (See also Process.)

Mutual exclusion See Critical section.

15-6 SOFTWARE ERGINhRING PRINCIPLES
3-14 August 1961

Glossary / Doc. GLOSl

0

0 functions/ The access functions of a module may either change
V functions the information in the module or reveal (return)

information stored by a nodule. Those that change the
stored information are celled operator functions or
0-functions. Those that return information are called
value functions, or V-functions. O-V functions that
do both types of services are possible.

P

P & V The operators defined by Dijkstra for the data type
semaphore (see definition of semaphore). The P
operation is used in a Pass attempt. A process nay
have to wait until the semaphore is passable. The V
uperation signifies that a Pass attempt should be
allowed to complete.

Predicate A property that may be true or false of so= object or
ordered tuple of objects. For example, green is a
predicate that may be true or false about some object.
Greater-than is a predicate that,.can be defined on
pairs of numbers, so that for any specific pair of
numbers it will be true or false. Complex predicates
are defined i,% terms of boolean expressions and
simpler predicates.

Procedure The Algol term for a closed subroutine. Some pro-
cedures correspond to FORTRAN function subroutines and
have a value sr that they may appear in expressions.
(See also Function.)

Process A subset of the events in a system. We may describe
one or more processes by means of a program that deter-
mines the sequence of events. If the system consists
of more than one process, the sequence of events in
different processes may be determined by the tiing of
outside events, the relative speeds of devices, ached-
uling algorithms, etc. This leads us to say that the
relative speeds of processes should be considered
unknown. (See also Sequential process.)

SOFTWARE ENGINEERING PRINCIPLES 15-7

3-14 August 1961

SEC. 15 / GLOSSARY

Program A specification of an algorithm in a form sufficiently
complete either to be executed directly on a computer
or to be translated mechanically into a directly execu-
table form. The notation used to specify the algorithm
is called the programing lang se. If programs
written in the language can be executed directly on the
computer without translation, the language is called a
machine language, and the programs are called machine
language programs. For languages that are not machine
languages, a program, called a translator, that trans-
lates from the language into machine langae is
usually supplied. Host programing languages allow
the programer to divide a program into independently
executable componnts. The component in which execu-
tLion starts is called the main program. Other compo-
nents are called subprograms or subroutines. A method
of executing subroutines is supplied by the programing
language (the call statement in FORTRAN, the call and
perform statements in COBOL). A subprogram is executed
by calling (or invoking) it. In process structured
systems, a program is used to determine the sequence
of events for a process, and execution may begin con-
currently in several programs (see also Process). A
set of programs Srouped together for the purpose of
concealing a design decision is called an information-
hiding module. (See also Information-hiding module.)

Pseudo-code A program that is not machine executable but is
intended to describe the main steps in an algorithm.
The software designer can concentrate on the design of
an algorithm because the pseudo-code is not as tightly
constrained as a real programing language might be.

Queue A first-in, first-out storage device. In some
documents, queue is used in a more general sense to
refer to any mechanism capabim c storing a set of
objects. tn that case, the or writer must
identify the discipline used ss.

15-6 O.SOYTWARZ Z3GIZfRI3 PRINCIPLKS
3-14 August 1l

Glossary Doc. GLOS.1

R

Reader/writer The "reader/writer problem'" is one of the standard

problems in process synchronization. It refers to a
situation in which several processes wish access to
the same data item. Readers do not interfere with
each other and may use the item simltaneously.
Writers are updating the item and require exclusive
access so that they do not interfere with each other
or with readers. Computer science literature contains
numerous discussions of this probleu.

Ready/running/ The set of states of a process from the point of
blocked view of a processor allocator (scheduler). If a

process has been allocated by a processor it is
running. If it is waiting for some event that will
be caused by another process, e.g., a resource
becoming available, it is blocked. Processes that are
not running or blocked and are vatting for a suitable
processor to become available are called redy.

Real-time software Software in which the programing muat take "hard"
real-tine deadlines into account. A deadline is
considered "hard" if the system will be considered to
have failed if it delivers the needed results after
the deadline.

Redundancy The use of more information than the minimum needed to
describe some situation fully. The extra information
is redundant in that it can be computed from other
information already supplied. Redundancy is necessary
to check for the existence of errors. The more redun-
dancy the greater the class of errors that can be
detected and corrected.

Reentrant procedures A procedure written in such a way that several
processes or jobs may use it simultaneously. To
accomplish thisp the code mast be separate from all
data that is changed during execution. The code is
shared but each process or job has its own copy of
changeable variables.

SOMTNh ZGNGURIIG PRINCIPLIS 15-9
3-14 August 1981

• * -

SEC. 15 / GLOSSARY

S

Secret of a module See Information-hiding module.

Semantics The effect of executing a program or construct.
Operational Semantics describes the effect by
describing a possible implementation using progrs
that are assumed to be understood. Abstract Semantics
describes the effect in term of externally visible
changes in the values of variables or the behavior of
other program.

Semaphore A type of variable designed to facilitate the
synchronization of processes that are proceeding in

parallel at unknown speeds. Just as semaphores in
railway system are used to inform one train of the
activities of anotherp semaphores in computer systems
are used to inform one process of the activities of
another. See P & V.

Separation of Refers to a method of simplifying the work of a
concerns designer or analyst by having him concentrate on just

one aspect of a problem rather than try to deal with
all aspects at once. For example, one would want the
development of numerical algorithms to be separate
from concern with memory allocation policies.

Sequential process A process is a sequential process if the sequence of
events in the process is determined by the algorithm
describing the process rather than by the relative
speed of other processes.

Sequencing decisions A subset of design decisions. A design decision is
termed a sequencing decision when it reduces the
possible sequences of events that could occur in the
systm.

Specification A statement of the requirements that a module mst
satisfy.

Stack A last-in, first-out storage device. Only the most
recently inserted item can be read. When the most
recently inserted item is removed, the item that could
be read previously can be read again. The name is
derived from the analogy of a stack of trays in a
cafeteria. Only the top-most tray is visible.

15-10 SOFTWADZ ENGINEERING PRINCIPLKS
3-14 August 1981

•.., S. . .,

Glossary /Doc. LOS. I

Stepwise refinement The process of programing by first writing abstract
programs in which parts are named but not implemented,
and then implementing those parts. The implementation
may call on programs that are named but not yet imple-
mnted. The process stops when all unimplemented
programs have been refined to calls on implemented
programs or machine instructions.

Synchronization The enforcement of timing constraints on parallel
processes whose relative speed is unknown. If an
event in process A cannot properly occur before an
event in process 3, A and B must be synchronized.

Syntax The set of rules that determine what is a legal
program in a language. Knowing the syntax of a
language, one can tell whether or not a given program
has a meaning but one cannot tell what the program
does. The description of the effect of the legal
programs is termed the semantics of the language.

T

Trap A deviation from the normal flow of control of a
program caused by the detection of some error
(undesired event) in the execution of the program.
For example, if the execution of a divide command in
a program results in overflow, a trap occurs and a
special routine for responding to that situation is
invoked.

U

Undesired event (U) A moment in time that an undesired situation arises.
An undesired situation is a binary condition that is
unfortunately true. Examples of undesired situations
are: (1) data was not received when expected, (2)
data was received when not expected, (3) data does
not meet specification, and (4) a device or function
has malfunctioned.

Uses relation Given program A with specification Sa and program B,
we say that A uses B if A cannot satisfy Sa unless B
is present and satisfies some non-trivial specifica-
tion -b. The assumed specification Sb may differ
for different users of B.

SO1TwA3U 3NGIEIq NG PRINCIPLES 15-11
3-14 August 1981

SEC. 15 i GLOSSA Y

V

Variable An information holder. The information held is stored
and retrieved by means of access operators. Variables
are often referred to by meams of identifiers.

Virtual machine A set of programs and data structures that can be used
as if they were implemented in hardware. To meet this
requirement it nust be impossible for programs that
use the virtual machine "instruCtions" to alter the
program that implement those instructions or subvert
the resources used in their implementation.

Virtual umory A mechanism that makes it possible for programs to
use addresses that are different from physical memory
addresses. The mechanism mst function in such a way
that the behavior of the program is absolutely
independent of the actual memory address except for
possible delays in time.

15-12 SOTNA U GINEIRING P13IUCZPLES
3-14 August 1981

BIB. 1 Bibliography

ACM SIGPLAN. 1979. 'Preliminary Ads Reference Manual." SIGPLAB Notices,
vol. 14, no. 6, part A.

ACM SIGPLAN. 1979. "Rationale for the Design of the Ada Programmng

Language." SIGPLAN Notices, vol. 14, no. 6, part B.

Anderson, R. B. 1979. Proving Programs Correct. New York. John Wiley & Sons.

Baker, F. T. 1972. "Chief Programer Team Management of Production
Programing." IBM Systems Journal, vol. 11, no. 1, pp. 56-73.

Bartussek, W.; and Parnas, D. L. 1977. Using Traces to Write Abstract
Specifications for Software Modules. University of North Carolina Report

no. TI 77-012.

Basili, V.; and Weiss, D. 1981. "Evaluation of a Software Requirement
Document by Analysis of Change Data." Proceed. Fifth International
Conference on Software Engineering (March), pp. 314-323.

Belpaire, G.; and Wilmotte, J. P. 1974. "A Semantic Approach to the Theory of
Parallel Processes." International CoSMputing Smosium 1973, A. Guenther
et al. (eds.), New York: North Holland Publishing Co.

Bloch, A. 1977. H urphy's Law and Other Reasons Why Things Go SnoUZ! Los
Angeles: Price/Stein/Sloan.

Boehm, B. W. 1973. "Software and its Impact: A Quantitative Assessment."
Datamation, vol. 19, no. 5, pp. 48-59.

Brinch Hanson, P. 1970. "The Nucleus of a Multiprogramming System." Comm.,
AC& vol. 13, no. 4, pp. 238-241, 250.

-. 1973. Operating Systess Principles. Englewood Cliffs:
Prentice-Hall.

- 1975. 'the Programing Language CONCURRENT PASCAL." IEE Trans.
on Software Ingineering, vol. 1, no. 2, pp. 199-207.

Britton, K. eninger; and Weiss, D. 1981. Interface Specifications for the
A-7E Etendd Computer Module. Naval Research Laboratory Memorandum
Report in publication.

* Recomended reading

,4

SOFTWARE hNGINfERING PIINCIPLES 16-1
3-14 August 1981

SEC. 16 /BIBLIOGRAPHY

*Brooks, F. P., Jr. 1975. The Mythical Man-Hontb: Essay. on Software
Engineering. Reading, Mass.: Addison-Wesley.

Cooprider, L. W.; laymans, F.; Cotartois, P. J.; and Parses, D. L. 1974.
"Information Stream Sharing a Finite Buffers Other Solutions."
information Processing Letters, vol. 3, no. 1, pp. 16-21.

Coppola, A. 1979. A Design Guide For Built-In Test (SIT). LAport
RADC-TR-78-224. Available as DTIC Document ADA069384.

Courtois, P. J. 1975. "Decomposability, Instabilities, and Saturation in
Multiprogramming System." Corn. ACM, vol. 18, no. 7, pp. 371-377.

Courtois, P. J. 1977. Decomposability: Queueing and Computer System
Applications. New York: Academic Press.

Courtois P. J.; Bsymans, I.; and Parne., D. L. 1971. "Concurrent Control
with 'leaders' and 'Writers."' Own. ACM, vol. 14, no. 10, pp. 667-668.

*Dahl, 0. J.; Dijkstra, I. W.; and Hoare, C. A. Re 1972. Structured
Programing. London: Academic Press.

Daly, H. B. 1977. "Management of Software Development." IEEE Trans. on
Sof tware Enginetein vol. SI-3, no. 3, pp. 229-242.

Department of Defense.* 1976. Requirements for High Order Computer Programing
Language "Steelman."

*Dijkstra, E. W. 1968a. "Co-operating Sequential Procese. Proarmuin
Languagesp ad. F. Genuys. New York: Academic Press, pp. 4312.

* * 198b. "The Structure of the 'T.l.B.' Multiprograing System."
Corn. £01, vol. 11, no. 5, pp. 341-346.

- -0 1975. "Guarded Commands, llondetermzinacy and Formal Derivation of
Programs." Comm. ACl, vol. 18, no. 8, pp. 453-457.

--. 1977. A Discipline of Programing. Enzgleuwood Cliffs:
Prentice-Hall.

Elson, M. 1973. Concepts of Programming Languages,. Chicago: Science Research
Associates.

Floyd, R. V. 1967. "Assigning Meanings to Programs." Proceed. Am. Math. Soc.
Symposia in Applied Mathematics, vol. 19, pp. 19-32.

* eco me nded reading

16-2 SOFTWARE ENGINEERING PRINCIPLES
3-14 August 1981

Biblioaraphy /Doc. B13.1

*Gerhart, S a nd Telovitz, L. 1976. "Observations of Fallibility in
Applications of Modern Programing Methodologies." IEEE Trans.* on
Software Engineering, vol. SE-2, no. 3, pp. 195-207.

Goguen, J.1 Thatcher, J.; Wagner, E.; and Wright, J. 1975. "Abstract
Data Types as Initial Algebras and the Correctness of Data
Representations." Proceed. of Conf. on Computer Graphics, Pattern
Recognition and Data Structure, pp. 89-93.

Gries, D. 1976. "An Illustration of Current Ideas on the Derivation of
Correctness Proofs and Correct Programs." I=E Trans.* on Software
Inaneeriz vol. S1-2, no. 4, pp. 238-2044; Correction (May 1977)T,

Guttag, J. V. 1975. The Specification and Application to Programming of
Abstract Data Tyes. University of Toronto Computer System Research
Group Technical Report CSRG-59.

-. 1977. "Abstract Data Types and the Development of Data
Structures." Corn. ACl, vol. 20, no. 6, pp. 396-404.

-. 1980. "Notes on Type Abstraction (Version 2)."1 IEEE Trans. on,
Software Engineeriez, vol. SE-6, no. 1, pp. 13-23.

Guttag, J. V.; and Horowitz, Z. 1978. "Abstract Data Types and Software
Validation.",Coom. ACl, vol. 21,, no. 12, pp. 1048-1064.

Habermann, A. N. 1969, "Prevention of System Deadlocks." Corn. Aol, vol. 12,
no. 7, pp. 373-377p 385.

* -. 1972. "Synchronization of Cornnicating Processes." Corn. Aol,
vol. 15, no. 3, pp. 171-176.

Hall, A. D. 1962. A Methodology for Systems Engineering. Princeton:
.D. Van Nortrand.

Heitmeyer, C. L.; and Wilson, S. R. 1980. "Military Message System: Current
Status and Future Directions." IEEE Trans. on Cornanications, Vol.
COM-28, no.9, pp. 1645-1654.

* Heninger, K. L. 1980. "Specifying Software Requirements for Complex Systems:
New Techniques and Their Application." Trans. on Software Enzineering,
vol. 51-6, no. 1, pp. 2-13.

Neninger, K. L.; Kallandar, J.; Farinas, D. L.; and Shore, J. E. 1978.
Software Requirements for the A-71 Aircraft. Naval Research Laboratory
Memorandum Report no. 3876.

A* Recornended reading

SOFTWARE ENGINEERING PRINCIPLES 16-3

3-14 August 1981

SEC. 16 / BIBLIOGRAPHY

Hoare, C. A. R. 1969. "An Axiomatic Basis for Computer Programing." Coum.
AC, vol. 12, no. 10, pp. 576-583.

- . 1974. "Monitors: An Operating System Structuring Concept." Comm.
A0M, vol. 17, no. 10, pp. 549-557.

James, V. E. 1975. "Encouraging Use of Reference Documentation." Journal of
Systems Management, pp. 32-33.

Jensen, K.- and Wirth, N. 1974. Pascal User Manual and Report. 2nd ed. New
York: Springer-Verlag.

Kaiser, C.; Irakoviak, S. 1974. "An Analysis of Some Run-Time Errors in an
Operating System." IMIA Rapport de Recherche, no. 49.

Karnighan, B. W.; and Plauger, P. J. 1976. Software Tools. Reading, Mass.:

Addison-Wesley.

-----. 1978. The Elements of Programing Style. 2nd ed. New York:
McGraw-Hill.

* Knuth, D. E. 1974. "Structured Programing With Go To Statements." Computing
Surveys, vol. 6, no. 4, pp. 261-301.

osy, D. W.; and Farquhar, J. A. 1972. Information Processing/Data
Automation Implications of Air Force Comund and Control Requirements in
the 1980s (CCIP-85) - Technology Trends: Software. Vol. IV of the Air
Force Systems Command Development Planning Study Report.

Linden, T. A. 1976. "The Use of Abstract Data Types to Simplify Program
Modifications." Proceed. of Conf. on Data: Abstraction. Definition and
Structure, SIGPLAN Notices, Special Issue, vol. 11, pp 12-23.

Liskov, B.; and Berzina, V. 1977. "An Appraisal of Program Specifications."
Massachusetts Institute of Technology Computation Structures Group Mem
141-1.

Liskov, B.; Snyder, A.; Atkinson, R.; and Schaffert, C. 1977. "Abstraction
Mechanisms in CLU." Cam. ACH, vol. 20, no. 8, pp. 564-576.

Liskov, B.; and Zilles, S. 1974. "Programming with Abstract Data Types,"
SIGPLAN Notices, vol. 9, no. 4, pp. 50-59.

-. 1975. "Specification Techniques for Data Abstractions." IEEE
Trans. on Software Engineering, vol. S-1, no. 1, pp. 7-19.

* lecomended reading

16-4 SOFTWARE ENGINEERING PRINCIILES
3-14 August 1981

Biblioagrhl Doc. 113.1

%ills, H. D. 1971. Chief Programmer Team: Principles and Procedures. IBM
Federal System Division Report no. FSC 71-5108.

-- 1972. Mathematical Foundations for Structured Prograrning. IBM
Federal Systems Division Report no. FSC 72-6012, pp. 225-238.

. 1975. "Now to Write Correct Program and Know It." Proceed. 1975
Couf. on Reliable Software, IEEE Cat. no. 75C10940-7CSR, pp. 363-370.

*1975. "Nov math of Computer Programing." Corn. ACK, vol. 18,
no. 1, pp. 43-48.

MIL-STD-1679 * 1978. Weapon System Dove lopet,.

Navy Manpower and Material Analysis Center, Pacific. 1978a. Navy Manpower
Planning System (VAMPS) Software Development Guidebook: N&VHOI&CPAC
Document no. GB-0l, rev. 0.

--. 1978b. Interim NaM Manpower Planning System (NAMPS): Functional
Description. NV)OIACrAC Document no. ID-0l.

*Parker, A.; Heninger,.; Parnas, D.; and Shore, J. 1980. Abstract Interface
Specifications for the A-7 Device Interface Modules. Naval Research
Laboratory Memorandum Report no. 4385.

Parnas, D. L. 1971. "Information Distribution Aspects of Design Methodology."
Proceed. of IFIP Congress 71, pp. 339-344.

.1972a. "A Technique for Software Module Specification with
Examples." Comm. ACM, vol. 15, no. 5, pp. 330-336.

*1972b. "On the Criteria To Be Used in Decomposing System into
Modules." Corn. ACM,: vol. 15, no. 12, pp. 1053-1058.

---. 1974. "On a 'Buxzword': Rierarchical Structure." Proceed. of IhIP
Congress 74, pp. 336-339.

-. 1975a. "The Influence of Software Structure on Reliability."
Proceed. of the 1975 International Conf. on Reliable Software,
pp. 358-362.

-1975b. " On the Solution to the Cigarette Smoker's Problem
(Without Conditional Statemtents)." Corn. ACM, vol. 18, no. 3,
pp. 181-183.

* --. 1976a. "On the Design and Development of Program Families."
IEEK Trans. on Software Engineering, vol. S1-29 no. 1, pp. 1-9.

*Recomended reading

SOFTWARE ENGINEZRING PRINCIPLES 16-5
3-14 August 1981

SEC. 16 / ULBLIOGRAPHY

-. 1976b. Soma Kypotheses about the "Uses" Hierarchy for Operating
System. Technical Report. Darmstadt, W. Germany: Technische Hochschule
Darmstadt.

* --. 1977a. Use of Abstract Interfaces in the Development of Software
for Embedded Computer Systems. Naval Research Laboratory Report no. 8047.

---. 1977b. "The Use of Precise Specifications in the Development of
Software." Proceed. of the IFIP 1977, pp. 861-867.

* -. 1979. "Designing Software for Ease of Extension and Contraction."
IREE Trans. on Software Engineering, vol. SE-5, no. 2, pp. 128-137.

Parnas, D. L.; Bartussek, W.; Handsel, G.; and Wuerges, 8. 1976. Using
Predicate Transformers to Verify the Effects of "Real" Programs.

Unvrsity of North Carolina Report no. TR-76-101.

Perua*, D. L.; and Handsel, 0. 1975. More on Specification Techniques for
Software Modules. * Iachbereich Iniormatik, Technieche Hochachule
Darmstadt.

Paes, D. L.; Shore, J. Z.; and Elliot, W. D. 1975. On the Need for Fewer
Restrictions in Changing Compile-Tim Enviroents.* Naval Research
Laboratory Report no.* 7847.

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1976. "Abstract Data Types
Defined as Classes of Variables." Proceed. of Conf. on Data:
Abstraction, 'Definition and Structure, SIGPLAB Notices, Special Issue,
vol. 11, pp. 149-154. Also Naval Research Laboratory Report no. 7998.

*Parnas, D. L.; and Werges, R. 1976. "Response to Undesired Events in
Software Systems." Proceed. of Second International Conf. on Software
Engineering, pp. 437-W4.

Patil, 5. 1971. Limitations and Capabilities of Diikstra's S ema phore
Primitive$ for Coordination Among Processes. Proj. MAC, Computational
Structures Group Memo 57.

Randall, B.; Lee, P. A.; and Treleaven, P. C. 1978. "Rliability Issues in
Computer System Design." Compting Surveys, vol. 10, no. 2, pp. 123-165.

Reed, D. P.; and Kanodia, R. K. 1979. "Synchronization with Eventcounts and
Sequences." Coin. ACl, vol. 22, no. 2, pp. 115-123.

Reference Manual for the Ada, Programing Language, July, 1980.

*Recosmended reading

16-6 SOVTWARS EWGINEERING PRINCIPLES
3-14 August 1981

Bibliography /Doc. BIB.1

Satterthwaite, E. 1972. "Debugging Tools for High-Level Languages."
Software - Practice and Experience, vol. 2, no. 3, pp. 197-217.

Shaw, A. C. 1974. The Logical Design of Operating Systems. Englewood Cliffs:
Prentice-Hall.

Tucker, A. E. 1975. "The Correlation of Computer Programming with Test

Effort." System Development Corp. TM-221900, pp. 1-36.

* Turski, W. H. 1978. Computer Programming Methodology. London: Heyden.

* Weinberg, G. M. 1971. The Psychology of Computer Programing. New York:
Van Nostrand.

Wirth, N. 1977a. "MODULA: A Language for Modular Multiprograming." Software
- Practice and Experience, vol. 7, no. 1, pp. 3-35.

Wirth, N. 1977b. "The Use of MODULA." Software - Practice and Experience,
vol. 7, no. 1, pp. 37-65.

1977c. "Design and Implementation of MODULA." Software -

Practice and Experience, vol. 7, no. 1, pp. 67-84.

-- .-. .1977d. "Towards a Discipline of Real-Time Programing." Comm.
ACM, vol. 20, no. 8, pp. 577-583.

Wolverton, R. W. 1974. "The Cost of Developing Large-Scale Software." IEEE

Trans. on Computers, vol. C-23, no. 6, pp. 615-636.

* Recommended reading

SOFTWARE ENGINEERING PRINCIPLES 16-7

3-14 August 1981

',, e V

