
AD-AS13 400 STANFORD UNIV CA DEPT OF COMPUTER SCIENCE F/Q 9/2
WELL STRUCTURED PARAL.LEL PROGRAMS ARE NOT EASIER TO SC)EDULE. (U)
SEP al E W MAYR NOOOIR-1-E-0269

UNCLASSIFIED STAN-CS-S1-880 O

EEEEEEEEEE

LEN

L 336 l211111 o 112 .0

IIUI 1 2 III1 4 ItIIIB
111L25 RESLTIN T C.6

MICROCOPY RESOLUTION TEST CHART

September 1981 Report. No. STiAN-CS-81-80

0s

o Well Structured Parallel Programs
Are Not Easier to Schedule

by

Ernst W. Mayr

Department of Computer Science

Stanford University
Stanford, CA 94305

DTIC

lick 0T

DISTRIBUTION STATEMEN1T A
Aprvdfrpublic releasel Aw ~ ~ ''

VW1

Well structured parallel programs are not easier to schedule

by

Ernst Mayr
Department of Computer Science

Stanford University

September 15, 1981

Abstract:
The scheduling problem for unit time task systems with arbitrary precedence
constraints is known to be NP-complete. We show that the same is true even
if the precedence constraints are restricted to certain subclasses which make
the corresponding parallel programs more structured. Among these classes
are those derived from hierarchic cobegin-coend programming constructs,
level graph forests, and the parallel or serial composition of an -rut-tree and
an in-tree. In each case, the completeness proof depends heavily on the
number of processors being part of the problem instances.

Accession 'Fo

RTIS GRA&Ij

DTIC TAB)
Unannounoed 03

Justification

copy Distribut ion/
INSPECTED Availability Codes

Avail and/or

-Dist Special

Key Words and Phrases: Scheduling. parallel programs, NP-complete, well-structured

This work was supported in part by the Deutsche Forschungsgemeinschaft. Grant No. 13 Ma 870/1-1. and in part
by Office of Naval Research contract N00014-81-K-0269 and by National Science Foundation grant IST-7921977.
Reproduction in whole or in part is permitted for any purpose of the United States government.

DISTRIBUTION STATEMEN A
Approved for public releasel

1. Introduction

Technological progress has made it possible to design and construct computer architectures with a large

number of processors. The intention is to make use of the apparent mutual independence of many

activities in (sequential or parallel) programs or task systems, thus achieving shorter overall execution

times. Because this hardware - time tradeoff is one of the main justifications to build parallel computers,

the scheduling problem, i.e., the problem to assign activities to processors such as to respect their inherent

precedence constraints and simultaneously to minimize time, has attracted considerable practical and

theoretical interest.

For finite task systems, the scheduling problem could in principle be solved by enumerating all possible

schedules and comparing them. However, in general it does not make any sense at all to invest much more

time in finding a good schedule than this schedule can then save. Unfortunately, it turned out very soon

that already basic variants of the scheduling problem belong to the class of combinatorial optimization

problems which are NP-complete and for which only more or less enumerative solution methods of

exponential complexity are known [4,9,111. Efficient algorithms which produce optimal schedules and

require only polynomial time are known only for the following few cases:

(i) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

precedence constraints form an in-forest (resp., out-forest) [81;

(ii) the scheduling of an arbitrary unit-time task system on two identical processors [3];

(iii) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

incomparability graph is chordal [101.

For an extended list of complexity results for scheduling problems, see [2,71.

While in [111 arbitrary precedence constraints are used to show NP-completeness of the schcduling

problem of unit-time task systems on an arbitrary number of identical processors, it is the purpose of this

paper to show that even well structured precedence constraints are of no help. In particular, we pTr.'. 'it

precedence constraints as they derive from parallel constructs in programming languages like Ct.

Pascal or Algol 68 still render the scheduling problem NP-complete. The same holds true for precedence

constraints consisting of forests of level graphs or in-trees and one or more out-trees (or. symmetrically,

out-trees and one or more in-trees). In the reductions employed for the proofs, the number of available

processors plays a significant role, an observation in support of the difficulty (or, maybe, impossibility) to

show NP-completeness for a fixed number of processors.

2. Preliminaries and notation

A task system is a finite set T = {tQ,...,t=} of tasks. For our purposes, all tasks in 7' require unit time

to get executed. A precedence constraint on a task system T is a partial order -< over T. The relation

t, -<t means that the execution oft, cannot start until t. is finished. In the sequel, we usually represent

(T, -<) by a directed acyclic graph (dag) with node set T and an edge from tj to tj iff tj-<t, and there

is no tk such that ti -<tk -<tj (i.e., all transitive edges are omitted).

A schedule for (T, -<) on m processors (m E N) is a mapping a from T onto some initial segment

{1,...,L}of N such that

(i) t -<t3 =* 8(ti) < s(tj) for all ti,t, E T;

(ii) I < 18-'(r)l < m for all r E {1,...,1I.

We say that t E T is executed at (time-)step s(t), and we call I the length of the schedule s. Note that if

t. and t are executed at the same time-step they must be incomparable with respect to -<, i.e., neither

t,-<tj nor t,-<t, holds.

An instance of the scheduling problem for unit-time task systems on an arbitrary number of (identical)

processors is given by a quadnple (T, -<, m, 1) where

(i) T is a finite task system, without loss of generality denoted by the numerals for I through ITI;

(ii) -< is a partial order over T, without loss of generality denoted by a list of the edges in the dag

defined by -< as noted above.

(iii) m and I are positive integers in radix notation.

Theorem ([111):

The set

{(T, -<, m, 1); there is a schedule for (T, -<) on m processors of length < 1}

is NP-complete.

In the proof of this theorem in (11, task systems with precedence constraints from a completely general

class are used. We want to improve on the above result by showing that precedence constraints of a very

natural structure suffice to make the above scheduling problem NP-complete.

Definition:

A dag (directed acyclic graph) is a hierarchic parallel graph (IlPG) if and only if it can be obtained in a

2 i

finite number of steps from the axiom * by the graph grammar with the following rules:

(i) any node * can be replaced by

(ii) any node * can be replaced by n.. , for any n E N.

(Note that all edges point downward; thus all edges entering a node which is being replaced, afterwards

enter the topmost node of the replacing graph, and correspondingly, the edges which leave the node then

become outgoing edges of the bottommost node.)

We should like to remark that HPG's are closely related to parallel control structures of programs in high

level programming languages like Concurrent Pascal [1] or Algol68 (121.

Let H be some directed acyclic graph. Then H defines, in an obvious way, a task system TH - the set

of nodes of H - together with a partial order -<H -- the partial order over T11 generated by the edges

of H.

Theorem 1:

The Hierarchic Programs Scheduling Problem

HPSP--dr {(H,m, 1); 11 is an HPG, and there is a schedule for (T1, -<) on m processors of length

<1)

is NP-complete.

It is clear that HPSP is in NP. As a matter of fact, it is not hard to test whether a given graph is an HPG,

and then HPSP is a restriction of the general scheduling problem of [111 which is in NP. In the next two

sections we will show that HPSP is NP-complete. This is achieved by efficiently reducing to HPSP the

satisfiability problem 3SAT for sets of clauses with three different literals each [5].

3[

A
3. A basic task system which is hard to schedule

Let L = LIA... AL, be a propositional formula in three literal conjunctive normal form over the set of

variables {zl,..., x.}, i.e., every clause Li is a disjunction of three different literals (from three different

variables) in {zi, X,.... YO,? Z.).

We first present a directed acyclic graph I' which by itself is not an HPG, but consists of 2n HPG

components, and which is hard to schedule. For the time being we assume in addition that the number

m of processors available in the system is not constant but changes in a predetermined manner at every

time-step. We will then show in the next section how to dispose of this assumption, and also, how to

transform f'L into a hierarchic parallel graph.

Let I ' be defined as shown in Figure 1 where all edges are considered as directed downward. The graph
H', consists of 2n connected components, one for each literal in { .. , , Each component

has exactly n + 2r + 2 levels. Within each component, every level contains either one or two tasks. The

i-th component has two tasks exactly on level [-i- and on all levels n + 2j + I such that I < i < r

and the literal belonging to component i (which is xi,_ if i is odd, and if i is even) does not occur in
L. Also, within each component every task on level i has (directed) edges going to every task on level

i + 1, for all I < i < n + 2r + 3, and two tasks on any level are always followed by just one task on

the next level. Obviously, each component forms an HPG.

The next two lemmas show that there is a schedule for I, of length at most n + 2r + 3 if and only if

the formula L is satisfiable.

Lemma 1:

If L is satisfiable then there is a schedule for (T 1 , "1,,.) which in every time-step uses at most as many

processors as indicated in Figure 1, and whose length is n + 2r + 3.

Proof.

Let V C {z,,i,..., ,,,,} be the set of literals set true under some fixed truth assignment to the

variables z, ... O, ,, that satisfies L, and let 1V be the set of those components of III corresponding to

literals in V. Consider the schedule a which, for I < j < n + 2r + 2, assigns j to all tasks on level j

in components in V, and j + 1 to all other tasks on level j. We claim that a satisfies the condition in

the lemma. °I'his is certainly true for time-step I because Iii = n. In time-step 2, n processors are used

to execute the remaining tasks on level 1, and another n + I processors are used to execute all level 2

4

RP"

Component 1 2 3 4 ... 2i-1 2i ... 2n-1 2n Time- No. of

Literal xi T i Z2 T2 X. i i ... Xn In step processors

Level 1 1

2 2 2n+1

3 * * 3 2n+2

4 - - * 4 2n+2

i+1 • * i+1 2n+2

n+1 n+ 1 2n+2

n+2 n+2 2n+1

n+341n+3 3n-1

n+4 n+4 3n

n+5 40n+5 3n-1

n+6 n+6 3n

AAA? Xn27 3n'

n+2r+l IIn+2r+l 3n-1

n+2r+2 n+2r+2 3n

n+2r+3 n

Figure 1

IIL for L = L.A... AL,, where L, = ztVzSV, LI = z1 VzVz,, I, = zV Vz,%

5

tasks of the n components in 1. This is possible because V contains either zx or x but not both. The

same reasoning now applies up through time-step n + 2 after which exactly the n tasks on level n + 2 in

components in V have been executed. In time-step n + 3, n processors are used to execute the remaining

tasks on level n + 2. Another 2n - 3, 2n - 2, or 2n - 1 processors are used to execute all tasks on level

n + 3 of the components in f, depending on whether 3, 2, or 1 literals of L, are in V. In the first two

cases, two resp. one of the available 3n - 1 processors remain idle at time-step n + 3. As V contains

the 'true' literals under a satisfying assignment for L it contains at least one literal of L1. Thus, 2n - I

processors certainly suffice to execute all tasks on level n + 3 of the components in V.

In the next time-step, the remaining tasks on level n + 3 and the n tasks on level n + 4 of components

in V are executed for which at most 2n + n = 3n processors are needed. Again we may now observe

inductively that after time-step n + 2r + 2 all tasks in level n + 2r + I have been executed and there are

exactly those n tasks on level n + 2r + 2 left which are not in components in V . These n tasks can be

scheduled for the n processors available in time-step n + 2r + 3. I

Lemma 2:

If there is a schedule for (Tt,, , -<,t) of length at most n + 2r + 3 which at every time-step uses at most

the number of processors indicated in Figure 1, then L is satisfiable.

Proof.

First observe that any task on level i+ I can be executed only if all tasks on level i of the same components

have been executed before. As there are 2n components each of which has exactly n + 2r + 2 levels and

as there are only n processors available at the first step, every admissible schedule for (T,, -<ni,) has

a length at least n + 2r + 3. Further, as there also are only n processors available in the last step every

admissible schedule a for (Tn1, -< H.) of length n + 2r + 3 satisfies the following property:

There is a set V of exactly n components of H', such that for all j with 1 < j _< n + 2r + 2,

(I) under a all tasks on level j of components in 1V are executed at time-step j, and all tasks

on level j of components not in V are executed at time-step j + 1.

Let V be the set of literals belonging to the components in V. We are now going to show that V defines

a satisfying truth assignment for L via zi :-=true iff zi E V, for 1 < i < n. Assume first that there

is some minimal i, I < i < n, such that V contains zi and 7j. Then n + 2 processors are needed in

time-step i + I to execute all tasks on level i + I of the components in 1, and only n (resp. n - 1, if

t 6

i = 1) processors are left to complete the execution of level i of Mt. As i was chosen minimal, there

are, however, n + 1 (resp. n, if i = 1) tasks left on level i. Hence, V must contain, for every i, either

xi ori.

Next assume that there is some minimal j, 1 < .< r, such that V contains no literal occurring in

Lj. Then 2n processors are needed in time-step n + 2j + 1 to execute all tasks on level n + 2j + 1 of

the components in T, and only n - I processors are available to execute the remaining n tasks of level

n + 2j. in contridiction to property (I). Hence, V must contain, for every j, at least on literal in Lj, i.e.,

V gives rise, in the way indicated above, to a satisfying truth assignment for L. 1

In the next section, we shall show how to embed HI, in a hierarchic parallel graph in such a way that

at each time-step exactly the proper number of processors is available for the tasks in the embedded

subgraph.

4. HPG's are hard to schedule

In this section, we prove our main

Theorem 2:

HPSP is NP-complete.

Proof.

Let I, and HL be as in the previous section. We now define the instance (HL, m, 1) of the Hierarchic

Programs Scheduling Problem with 1IL as in Figure 2, m = 3n + 1, and I = n + 2r + 8.

tlL has n + 2r + 8 levels. Note that every directed path from the topmost to the bottommost node of

HI, which travels along the left part of IlL in Figure 2 contains n + 2r + 8 nodes. As a consequence,

every schedule of length < I has in fact length = I and must execute these tasks level by level. The

construction of HL thus assures that for all time-steps i + 3 with 1 < i < n + 2" + 3 the number of

procecsors available for the right part of 11L in Figure 2 (which is It'L) is exactly the same as for 11L', in

the previous section at time-step i.

I1L obviously is an HPG and can be constructed from L in polynomial time (though we omit the details

of this construction). This establishes, together with Lemmas 1 and 2, the claim of the theorem. U

We should like to mention that HPSP still remains NP-complete if the size of m and I in the instances

is taken from their unary representation.

* i

Processors
Levelfor JIL

2

3

5 n 2n+I

6 n22n+2

n+4 *n-2. 2n+2

n+5 *n-2.. . .. 2n+I

n+6 3n-1

n+7 HL 3

n+8 3n-1

n+9 3n

n+2r+3 3

n+2r+4 3n-1

n+2r+5 3n

n+2r+,6 2~.

n+2r+7

n+2r+8____

Figure 2

The hierarchic parallel graph IIL-

5. Lcvl graphs and rorests

In this section, we extend the result of the previous section to a class of seemingly very simple irecedence

constraints.

Processors
Level for 1'

t 1 *2n+1. n

2 n 2n+1

3 2n+2

4 .n .. 2n+2

n+1 n-1 2n+2

n+2 n 2n+1

n+3 H' 3n-1

n+4 3n

n+2r 3n

n+2r+l 3n-1

n+2r+2 1 0 0 0 * 3n

n+2r+3 *. 2n+1.. n

Figure 3

The level forest ITL for L = LIA... AL,, with L, = Vz2 VY,, L2 = z1VziVz,, L, --- z 2VV,

Definition:

A directed acyclic graph H is a level graph if" its node set T can be partitioned into sets Tj,..., T,

such that, for all 1 < i < a. there is an edge from every node in T to every node in T+1.

A level forest is a directed acyclic graph consisting of finitely many level graph components.

9

Note that every component of t'L in Section 3 is a level graph, and hence, that 11' is a level forest.

Theorem 3:

The scheduling problem with an arbitrary number of identical processors and unit-timc task systems with

level forests as precedence constraints is NP-complete.

Proof-

We also use a reduction of 3SAT to the above problem. We noted already that H'L is a level forest. Now

Figure 3 provides an embedding of H' into a level forest graph HL which by the same argument as in

the proof of Theorem 2 has a schedule on m = 3n + 1 processors which is of length I < n + 2r + 3 if

and only if L is satisfiable. I

10

.jI

6. In-forests with one out-tree

While trees (in-trees or out-trees) were the first class of precedence constraints for which a polynomial

time scheduling algorithm was found [8] (a result which easily generalizes to in-forests and out-forests)

we shall show in this section that already the simplest combination of the two kinds of trees makes &'!

scheduling problem hard.

Let MF (mixed forest) be the class of directed acyclic graphs each of whose components is either an

in-tree or an out-tree, and let 2MF be the subclass of MF whose members have at most two components.

Theorem 4:

The scheduling problem with an arbitrary number of identical processors, unit-time task systems, and

with elements of 2MF as precedence constraints is NP-complete.

Corollary:

The scheduling problem for MF-graphs is NP-complete.

Proof of the Theorem:

A variant of 3SAT which is also NP-complete, is One-in-three-3SAT, i.e., the problem to determinc for

an arbitrary propositional formula L in 3-conjunctive normal form whether there is a satisfying truth

assignment to the variables in L such that, in every clause Li, exactly one literal is assigned true [5]. For a

given , -- LiA... AL, with variables vi. . . , v,, we construct Fi, . as indicated in Figure 4. ItL consists

of one in-tree and one out-tree (again all edges are considered directed downward).

Further, let 11,t be L, without its level 2n+2r+4 nodes and the incident edges. [iL consists of 2n

connected components of 2n + 2r + 2 levels each (these in-tree components are called r-components)

and two components of 2n + 2r + 3 levels (called 1-components). one in-tree and one out-tree. Each

r-component contains, on every level, either one or two tasks, and the i-th r-component (which belongs

to xivt if i is odd, and 7j, if i is even) has two tasks on levels 2r 1 and 2j + I for all j r [kl,

1 < j < n, as well as on level 2n + 2j (resp., 2n + 2j + 1) if the corresponding literal does (resp., does

not) occur in Ly.

We now show that there is a schedule for (T. , HL) on m = 3n + 3 processors of length at most

2n + 2r + 3 if and only if I, is in One-in-three-3SAT.

First, let V C {,,,... ,Z"1,) be the set of literals set true under some fixed truth assignment to'

Processors
Literal X1 71 X2 12 .. n I for r-comp's

Level 1I. 2n+2 0 4 1 . 0 4 n

2 *n+1. 2n+1

3 V3n

4 0, 0 3n

22n 4 0' 04 73n

2n+1 1 74 43n

2n+2 4 3n

2n+3 3n+1

2n+4 3n-1

2n+5 . 3n+1

2n+2r 413n-1

2n+2r+l 0 4 4 7 4 3n+1

2n+2r+2 o03n-2

2n+2r+3 4..2n+2. n

2n+2r+4 *.3n + 2.

Figure 4

17he mixcd forest 11L where L, - IVZ2 VT,, L2 x zVxjVx., L, =x 2V~iVz.

the variables zi,... , z,~ such that V contains exactly one literal of every clause Li of L, and let Vbe

the set of those components of 'IL, determnined by thc literals in V. Consider the schedule a which, for

all 1 < j 5 2n + 2r + 2, assigns j to all tasks on level j of all the r-components in V and the two

1-components, and j + I to all tasks on level j of all the other r-components. Level 2n + 2r + 3 of the

I-components is assigned 2n + 2v + 3 under a. We leave it to the reader to verify that, in fact, s is a

12

correct schedule for (T , -<=L).

For the other direction assume that there is a schedule s for (Ti, If on m - 3n + 3 processors,

of length < 2n + 2r + 3. As the 1-components of HL consist of 2n - 2r + 3 levels, we must in fact

have the length of 8 equal 2n + 2r + 3. Now note that also because of the 1-components, in the first and

last time-step at most n processors are available for the 2n r-components. As these components all have

2n + 2r + 2 levels the following property must hold:

There is a set V1 of exactly n r-components in Hi, such that, for all j with 1 < j _

2n + 2r + 2. under s all tasks on level j of components in V are executed at or prior to
(11) time-step j, and in every r-component not in V. there is at least one task on level j not yet

executed after time-step j (i.e.. its value under s is > j). Furthermore, all tasks on level

j are executed at the latest at time-step j + 1.

Let V be the set of literals belonging to the r-components in V. We shall show that V defines, as in
Lemma 2, a truth assignment satisfying L, and also that V contains exactly one literal of every clause Lj

of L.

As 2n + 3 processors are needed to execute the level 1 tasks in the two 1-components, and because of

property (II), all tasks executed at time-step I are of level 1. Let V be the set of those r-components

whose level 1 tasks are executed in the first step, and let V be defined as above.

Assume first that there is some minimal i such that V contains either both z and Y or none of the two

literals. It easily follows from the construction of [IL and property (II) that after time-step 2i - I

a) all levels j with I < j < 2i - I are completed,

b) all tasks on level 2i - I of components in V have been executed, and

c) no other tasks have been executed so far.

At time-step 2i, three (resp., n + 2 if i = I) processors are needed to execute all tasks on level 2i of

the 1-components, and 2n - I (resp., n if i = 1) processors have to be used to complete level 2i - 1.

Therefore, n + I processors are available for tasks which arc on levels > 2i and executable at time-step

2i. If V contains both xi and T, these n + I processors do not suffice to execute the n + 2 tasks on level

2i in the components in iV, contradicting property (11). If V contains neither x, nor Xj, then n processors

suffice to execute all tasks on lcvcl 2i of the components in V, and the one remaining processor could

be used for any task on some level > 2i all of whose predecessors have already been executed. Let us

assume instead that one processor is added to the m processors available at time-step 2i + I. It follows

from the construction of II,, however, that in this case 3n + 5 processors are necessary at time-step

2i + I to assure property (11). Thus, we again obtain a contradiction, and we conclude that, for all i, V

13

must contain either z, or x,. Furthermore, a simple counting argument shows that, under a, in time-step

j, where I < j 2n + 1, only tasks on levels j or j - 1 are executed.

Now assume that there is some minimal j, 1 < j <_ r, such that V does not contain exactly one literal

of L. Then, by an argument analogous to the one just presented, we achieve a contradiction to property

(II) at time-step 2n + 2j if V contains more than one literal of Li, and at time-step 2n + 2j + 1 if V

contains no literal of Li at all. Hence, V provides a truth assignment for z 1 , X,, showing that b is

in One-in-three-3SAT.

It is now immediate that there is a schedule for (T , " ,,) on m = 3n + 3 processors of length

I < 2n + 2r + 4 if and only if L is a member of One-in-three-3SAT. Again we leave it to the reader to

convince himself that the above reduction can be carried out in polynomial time. I

The result stated in Theorem 4 has independently been obtained in [61.

As a further corollary of Theorem 4 and the constmiction of iL we obtain that the scheduling problem for

precedence constraints decomposable into an out-tree and an in-tree opposing each other is NP-complete.

This follows immediately if we add to "L one node (at the top) with outgoing edges to all nodes in

HL without predecessor, and a second node (at the bottom) with incoming edges from all nodes of [IL,

without successor.

114

7. Conclusion

There are several conclusions we should like to point at which can be drawn from the results presented

in the previous sections. The first is that restricting the precedence constraints to be either in-forests

or out-forests allows a polynomial scheduling algorithm, but that relinquishing this restriction slightly in

either one of a number of directions immediately renders the scheduling problem NP-complete. We have

shown this to hold, for example, for the parallel composition of an out-tree and an in-tree as well as for

-: their serial, opposing composition. The latter might seem a little bit surprising in view of the polynomial

scheduling algorithms for in- and out-trees, respectively. But it is the intricate interleaving of the two

trees on different levels which makes them so difficult to schedule together.

We also showed that restricting the precedence constraints to a subclass which is widely considered well-

structured and which forms a subset of the precedence constraints originating from parallel constructs

in high level programming languages does not help, this subclass is, in a sense, as hard to schedule

as the general class. Again the nicely structured precedence constraints still allow the encoding of an

NP-complete combinatorial problem.

The last observation is that in all the reductions given in the previous sections, the number of parallel

processors is part of the problem instance, and that this fact is heavily made use of. This once more

supports the conjecture that it might not be possible to prove the scheduling problem on some fixed

number of processors to be NP-complete.

15

8. References

1. BRINCI HANSEN, P.: The architecture of concurrent programs.
Englewood Cliffs, N.J.: Prentice Hall 1977

2. COFFMAN, E.G. (E.D.): Computer and job/shop scheduling theory.
New York: Wiley 1976

3. COFFMAN, E.G., GRAHIAM, R.L.: Optimal scheduling for two-processor systems.
Acta Informatica 1 (1972), pp. 200-213

4. COOK, S.A.: The complexity of theorem proving procedures.
Proc. 3rd Ann. ACM STOC (1971), pp. 151-158

5. CAREY, M.R., JOHNSON, D.S.: Computers and i,-ractability: a guide to the theory of NP-
completeness.
San Francisco: W.H. Freeman and Company 1979

6. GAREY, M.R., PT AL.: Scheduling opposing forests.
TM-81-11216-44, Bell Labs, Murray Hill, N.J. (1981)

7. GRAHAM, R.L., FT AL.: Optimization and approximation in deterministic sequencing and
' , [scheduling: a survey.

In: HAMMER, P.L., ET AL. (EDS.): Annals of Discrete Mathematics 5. Amsterdam-New
York-Oxford: North-Holland Publishing Company (1979), pp. 287-326

8. Hu, T.C.: Parallel sequencing and assembly line problems.
Operations Research 9 (1961), pp. 841-848

9. KARP, R.M.: Reducibility among combinatorial problems.
In: MILLRAI, R.E., TIA'rC , ER, J.M. (EDs.): Complexity of computer computations. New York:
Plenum (1975), pp. 85-103

10. PAPADIMITRIOU, C11., YANNAKAKIS, M.: Scheduling interval-ordered tasks.
SIAM J. Comput. 8 (1979), pp. 405-409

11. ULLMAN, J.D.: NP-complete scheduling problems.
J. Comput. System Sci. 10 (1975), pp. 384-393

12. WI.INGAARDrN, A. VAN, ET AL.: Revised report on the algorithmic language ALGOL 68.
Berlin-Heidelberg-New York: Springer-Verlag 1976

16

