.~ AD=A113 400 STMFORD UNIV CA DEPT OF COMPUTER SCIENCE F/6 972
WELL STRUCTURED PARALLEL PROGRAMS ARE NOT EASIER TO SCHEDULE:(U)
SEP 81 E W MAYR NOOOIW-SI.-I-OZGO
UNCLASSIFIED STAN‘CS-G!-‘BO

-
B
==
[\
{4+
==
N
n

Jie &,
0.4 l: =
s - ¥
IL2s flie pee

==
N
N

TrF
B

———
N
(@]

MICROCOPY RESOLUTION. TEST CHART

September 1981 Report. No. STAN-CS-81-880 -

S
(o) Well Structured Parallel Programs
- Are Not Easier to Schedule ’
|
: =i by
y
¢ Ernst W. Mayr
I 2

lorTrit Nrrp s §0 AT R4S

v i o ALY o NNt Ak S K i 55

Department of Computer Science

« :
g Stanford University ‘
v Stanford, CA 94305 .
‘;

§

; DTIC
'!

ELECTERD
APR 1 4 1982 °/

o QD)UN/O‘, 2
' PR e 04}

D !

L
REnA
sk RV
:
<.

DISTRIBUTION STATEMENT A |

Approved for public release}
Distribution Unlimited

;!‘ o - \oad 8

) r"
v

T AN BT € X R e, SRR A O T T A NI Rt e

' 3 ' Well structured parallel programs are not easier to schedule

i i B

by

Ernst Mayr
Department of Computer Science
Stanford University

v

s onhe

__ _ September 15, 1981

Abstract:

The scheduling problem for unit lime task systems with arbitrary precedence
constraints is known (o be NP-complete. We show that the same is true even
if the precedence constraints are restricted to certain subclasses which make
1 the corresponding parallel programs more structured. Among these classes
» are those derived from hierarchic cobegin-coend programming constructs,
level graph forests. and the parallel or serial composition of an ~ut-tree and
an in-tree. In each case, the completeness proof depends heavily on the
number of processors being part of the problem instances.

Ayggssion For
NTIS GRA&I E
DTIC TAB 0O

Unannounced O

Justification. _ __ ____ |

syYer [te, on Cile

| Distribution/

Aggilabi_li_tgv Codes
Avail and/or-

x - Dist Special

Copy
INSPECTED
2

Key Words and Phrases: Scheduling. parallel programs, NP-complete, well-structured i l

This work was supported in part by the Deutsche Forschungsgemeinschaft. Grant No. 13 Ma 870/1-1, and in part {4
by Office of Naval Research contract N00014-81-K-0269 and by National Science Foundation grant IST-7921977.
Reproduction in whole or in part is permitted for any purpose of the United States government.

DISTRIBUTION STATEMENT A
Approved for public release;
I'!' Lo '.Lf‘.h.‘ . o a

jps— - e I W T " i g b oty oo o sl ; s 2B _—”--—“.”_>_ T [—
FE N g TR = :)

; 1. Introduction .’ :

Technological progress has made it possible to design and construct computer architectures with a large
number of processors. The intention is to make use of the apparent :nutual independence of many
,‘. activities in (sequential or parallel) programs or task systems, thus achicving shorter overall execution
times. Becausc this hardware - time tradcoff is one of the main justifications to build parallel computers,
the scheduling problem, i.c., the problem to assign activities to processors such as to respect their inherent
| precedence constraints and simultancously to minimize time, has attracted considerable practical and

theoretical interest.

For finite task systems, the scheduling problem could in principle be solved by enumerating all possible

Rk

schedules and comparing them. However, in general it does not make any sense at all to invest much more

e AR

time in finding a good schedule than this schedule can then save. Unfortunately, it turned out very soon
- that alrcady basic variants of the scheduling problem belong to the class of combinatorial optimization
problems which arec NP-complete and for which only more or less enumcrative solution methods of z
, exponcntial complexity are known [4,9,11]. Efficient algorithms which produce optimal schedules and 1

require only polynomial time are known only for the following few cases:)

(i) the scheduling on an arbitrary number of identical processors of a unit-time task system whose
; precedence constraints form an in-forest (resp., out-forest) [8];
(ii) the scheduling of an arbitrary unit-time task system on two identical processors [3];

(iii) the scheduling on an arbitrary number of identical processors of a unit-time task system whose

incomparability graph is chordal [10].
For an extended list of complexity results for scheduling problems, see [2,7].

While in [11] arbitrary precedence constraints arce used to show NP-completeness of the scheduling
problem of unit-time task systems on an arbitrary number of identical processors, it is the purpose of this
paper to show that even well structured precedence constraints arc of no help. In particular, we pre-» it

; precedence constraints as they derive from paratlel constructs in programming languages like Ce.,

Pascal or Algol 68 still render the scheduling problem NP-complete. The same holds true for precedence

constraints consisting of forests of level graphs or in-treces and onc or more out-trces (or. symmetrically,

AT L R)
O, -,
.

out-trees and onc or more in-trees). In the reductions cmployed for the proofs, the number of available
. processors plays a significant role, an obscrvation in support of the difficulty (or, maybe, impossibility) to

j show NP-completencss for a fixed number of processors,

I UYL e TR AT e P W R L Ay ey e S -

2. Preliminaries and notation

A task system is a finite set T = {t,,...,t,} of tasks. For our purposes, all tasks in 7" require unit time
to get exccuted. A precedence constraint on a task system 7' is a partial order < over T'. The relation
t;<t; means that the execution of ¢; cannot start until ¢; is finished. In the scquel, we usually represent
(T, <) by a directed acyclic graph (dag) with node set 7' and an edge from ¢, to ¢; iff t;<¢; and there
is no t; such that ¢;<¢, <t; (i.c., all transitive edges are omitted).

A schedule for (T, <) on m processors (m € N) is a mapping s from T onfo some initial segment
{1,...,1} of N such that

(i) t<t; = s(t) < s(t;) for all ¢;,¢t; €T,

@ 1<|s () <mforallre{t,...,1}.

We say that t € T is cxccuted at (time-)step s(¢), and we call { the length of the schedule s. Note that if
¢; and ¢; are exccuted at the samce time-step they must be incomparable with respect to <, i.e., neither

t.'<tj nor tj<t|' holds.

An instance of the scheduling problem for unit-time task systems on an arbitrary number of (identical)

processors is given by a quadruple (T, <, m,!) where

(i) T is a finite task systcm, without loss of gencrality denoted by the numcrals for 1 through |T);

(ii) < is a partial order over T, without loss of generality dcnoted by a list of the edges in the dag
defined by < as noted above;

(iii) m and ! arc positive integers in radix notation.

Theorem ([11]):

The set
{(T, <,m,): there is a schedule for (T, <) on m processors of length < {}

is NP-complete.

In the proof of this thcorem in [11], task systems with precedence constraints from a completely gencral
class are used. We want to improve on the above result by showing that precedence constraints of a very

natural structure suffice to make the above scheduling problem NP-complete.

Definition:

A dag (directed acyclic graph) is a hierarchic parallel graph (HPG) if and only if it can be obtained in a

bV e

i dhca A

2

P

finite number of steps from the axiom e by the graph grammar with the following rules:

() any node e can be replaced by :

(i) any node e can be replaced by , for any n € N.

(Note that all edges point downward; thus all edges entering a node which is being replaced, afterwards
enter the topmost node of the replacing graph, and correspondingly, the edges which leave the node then

become outgoing edges of the bottommost node.)

We should like to remark that HPG's are closely related to parallel control structures of programs in high

level programming languages like Concurrent Pascal (1} or Algol68 [12].

Let H be some directed acyclic graph. Then H defines, in an obvious way, a task system Ty — the set
of nodes of H — together with a partial order <y ~— the partial order over Ty gencrated by the edges
of H.

Theorem 1.

The Hierarchic Programs Scheduling Problem
HPSP=g4.r {{H{,m,{); II is an HPG, and there is a schedule for (T};, <) on m processors of length
<}

is NP-complete.

It is clear that HPSP is in NP. As a matter of fact, it is not hard to test whether a given graph is an HPG,
and then HPSP is a restriction of the general scheduling problem of {11] which is in NP. In the next two
sections we will show that HPSP is NP-complete. This is achicved by cfficiently reducing to HPSP the

satisfiability problem 3SAT for scts of clauses with three diffcrent literals each [S).

3. A basic task system which is hard to schedule

Let L = L,A...AL, be a propositional formula in three literal conjunctive normal form over the set of
variables {z,,...,z,}, i.e., every clause L; is a disjunction of three different literals (from three different
variables) in {z;,Z),...,Zn,En}-

We first present a directed acyclic graph I, which by itself is not an HPG, but consists of 2n HPG
components, and which is hard to schedule. For the time being we assume in addition that the number
m of processors available in the system is not constant but changes in a predetermined manner at every
time-step. We will then show in the next section how to disposc of this assumption, and also, how to
transform [/}, into a hicrarchic parallcl graph.

Let H', be defined as shown in Figure 1 where all edges are considered as dirccted downward. The graph
H', consists of 2n connected components, one for cach literal in {z,,Z,,...,Z,,Z.}. Fach component
has exactly n + 2r + 2 levels. Within cach component, cvery level contains cither one or two tasks. The
i-th component has two tasks cxactly on level [#] and on all levels n + 25 + { suchthat 1 < 7 < r
and the literal belonging to component 2 (which is z it if 2 is odd, and z4 if 7 is even) does not occur in
L;. Also, within cach component every task on level 1 has (directed) edges going to every task on level
i+ 1, forall1 <7< n+2r+3, and two tasks on any level are always followed by just one task on

the next level. Obviously, each component forms an HPG.

‘The next two lemmas show that there is a schedule for H, of length at most n + 2r + 3 if and only if

the formula L is satisfiable.

Lemma 1:

If L is satisfiable then there is a schedule for (’I',,o,_ y <m,) which in cvery time-step uses at most as many

processors as indicated in Figurc 1, and whose length is n + 27 + 3.
Proof;

let V C {zy,%,...,%n,En} be the sci of literals sct true under some fixed truth assignment to the
variables z(,...,2z, that satisfics L, and let V be the set of those components of H, corrcsponding to
literals in V. Consider the schedule s which, for 1 < 7 < n + 2r + 2, assigns j to all tasks on level j
in componcnts in V. and j + 1 to all other tasks on level 7. We claim that s satisfics the condition in
the lemma. ‘This is certainly true for time-step 1 because |t7| = n. In time-step 2, n processors are used

to execute the remaining tasks on level 1, and another n + | processors are used to cxecute all level 2

4

~ Ak ..

Component 1 | 2 3 4 -.-21—1 20 .- 2n—-1 2n Time- | No. of
Literal =z, 3} T2 Ty o0 X B coc In Tn step | processors
Level 1 1 0
2 2 2n+1
3 3 2n+2
4 4 2n+2
i+1. o . o . o oo o) o z'-l.-l 2n.+2
"+1' n-;-l 2n:+-2
n+2 n+2 2n+1
n+3 n+3 3n—1
n+4 n+4 3n
n+5 | n+5 3n—1
n+6 | n+6 3n
'n+21: : : : : n-i:2r 3;¢
n+2r+1 OQ 0 O [} 0 n+4+2r+1| 3n—-1
n+2r+2 ‘ n+2r+2| 3n
n+2r43 n

Figure 1

II'L for I, = lllA. . /\L,, where L‘ = ZVZ3VZ,, L’ = 2 VZ;VZ,, ,4, = 23VE V2,

o

aliinthing dics

tasks of the n componcnts in V. This is possible because V' contains either z, or Z, but not both. The
same rcasoning now applics up through time-step n + 2 after which exactly the n tasks on level n + 2 in
components in V have becn exccuted. In time-step n + 3, n processors are used to execute the remaining
tasks on level n + 2. Another 2n — 3, 2n — 2, or 2n — 1 processors are usced to execute alt tasks on level
n + 3 of the components in v, depending on whether 3, 2, or 1 literals of L, are in V. In the first two
cases, two resp. one of the available 3n — 1 processors remain idle at time-step n + 3. As V' contains
the ‘true’ literals under a satisfying assfgnment for L it contains at least onc literal of Ly. Thus, 2n — 1

processors certainly suffice to cxecute all tasks on level n + 3 of the components in V.

In the next time-step, the remaining tasks on level n + 3 and the n tasks on level n + 4 of components
in V are exccuted for which at most 2n + n = 3n processors are needed. Again we may now observe
inductively that after time-step n + 2r + 2 all tasks in level n + 27 + 1 have been executed and there are

exactly those n tasks on level n + 27 + 2 left which are not in components in V. These n tasks can be

scheduled for the n processors available in time-step n + 2r +3. |

Lemma 2:

If there is a schedule for (T4, <) of length at most n + 2r + 3 which at every time-step uses at most

the number of processors indicated in Figure 1, then L is satisfiable,
Proof:

First observe that any task on level £+ 1 can be cxccuted only if all tasks on level £ of the same components
have becn exccuted before. As there are 2n components each of which has cxactly n + 27 + 2 levels and
as there arc only n processors available at the first step, every admissible schedule for (T, <) has
a length at least n + 2r + 3. Further, as there also arc only n processors available in the last step every

admissible schedule s for (T"',, » <y,) of length n + 2r + 3 satisfies the following property:

There is a set V of exactly n components of /T, such that for all § with | < j < n+2r+2,
(D under s all tasks on level j of components in V are exccuted at time-step 7, and all tasks

on level 5 of components not in V arc executed at time-step 7 + 1.

Let V be the set of literals belonging to the components in V. We are now going to show that V defines
a satisfying truth assignment for L via z; :=true iff z; € V, for 1 < ¢ < n. Assume first that there
is some minimal 4, 1 < ¢ < n, such that V contains z; and Z;. Then n + 2 processors are nceded in

time-step ¢ + 1 to exccute all tasks on level ¢ 4+ 1 of the components in V, and only n (resp. n — 1, if

AR @ e s e SRS 4 s

= 1) processors arc left to complete the execution of level 4 of HY. As ¢ was chosen minimal, there

are, however, n + 1 (resp. m, if ¢ = 1) tasks left on level 4. Hence, V' must contain, for every 1, either
z; or ;.

Next assume that there is some minimal j, 1 < j < 7, such that V contains no literal occurring in
L;. Then 2n processors are needed in time-step n + 25 + 1 to exccute all tasks on level n + 25 + 1 of
the components in V, and only n — 1 processors are available to exccute the remaining n tasks of levél
n + 27, in contradiction to property (I). Hence, V' must contain, for every j, at lcast on literal in Lj, ie.,

V gives rise, in the way indicated above, to a satisfying truth assignment for L. [l

In the next section, we shall show how to embed ', in a hierarchic parallel graph in such a way that
at cach time-step exactly the proper number of processors is available for the tasks in the embedded

subgraph.

4. HPG’s are hard to schedule

In this scction, we prove our main
Theorem 2:

HPSP is NP-complete.

Proof:

Let I, and H', be as in the previous section. We now define the instance (Hy,m,) of the Hierarchic
Programs Scheduling Problem with H, as in Figure 2, m = 3n+ 1, and { = n + 2r + 8.

H,, has n + 2r + 8 levels. Note that every directed path from the topmost to the bottommost node of
H,, which travels along the left part of Hy in Figure 2 contains n + 2r + 8 nodes. As a conscquence,
every schedule of length < [has in fact length = ! and must exccute these tasks level by level. The
construction of H,, thus assurcs that for all time-steps ¢ + 3 with 1 < ¢ < n + 2r + 3 the number of
processors available for the right part of /1, in Figure 2 (which is 11 1) is cxactly the same as for I, in
the previous section at time-step s.

I1,, obviously is an HPG and can be constructed from L in polynomial time (though we omit the details

of this construction). This establishes, together with Lemmas 1 and 2, the claim of the theorem, ||

We should like to mention that HPSP still remains NP-complete if the size of m and { in the instances

is taken from their unary represcntation.

e b

et ik,

-

Level Prfg(r:elsﬁrs
1 ' - ;
: - 1
3 - 1
4 n
‘ 5 2n+1
¥
2 6 2n+2 :
n-:i-4 271:4'2 ’
n+5 ° o ° o o o 2n+1 E
n+6 3n—1 3
n+7 HY, 3n
n+8 3n—1
n+9 3:n
n+2:r+3 . . 3:71
n+2r+4 ' 3n—1
n+2r+5 . Q. o\‘ Tt 2/ 3n
n+2r+6 n ;
n+2r+7 _ . - !
n+2r+4-8 -

Figure 2
"The hicrarchic parallel graph 1], -

i
]
e
1

v‘w.&-* . &

-
5. Level graphs and forests *
In this section, we extend the result of the previous section to a class of seemingly very simple precedence
' constraints.
Processors
Level for H},
1 e o o o e o n
2 2 2n+1 _
,.1{: 3 2n+42 i
!
! 4 2n+2
+ : :
.} n+1 2n+2
: n+2 2n+1
n+3 H 3n—1 :
-
3 zt n+4 3n
i : :
‘ ‘ é n+2r 3n
n+2r+1 3n—1 ,
]
n+2r+2 o o e o e o an
n+2r+3 n
Figure 3 '
The level forest ﬂ,, for L, = LlA. . /\L', with Ll. = ZI,VzsVZ,, Lz = z,Vz;VZ,, L, = VI VZ, !
1

Dcfinition:

A directed acyclic graph H is a level graph iff its node set Ty can be partitioned into sets Ty,..., T,

such that, for all 1 < 7 < s, there is an edge from every node in T; to every node in Ty,

A level forest is a directed acyclic graph consisting of finitcly many level graph components.

e Ry

AL 7 S N i+ Tl ol " b4, - s . ol 1 G

Note that every component of H, in Scction 3 is a level graph, and hence, that 177 is a level forest.

Theorem 3:

The scheduling problem with an arbitrary number of identical processors and unit-time task systems with

level forests as precedence constraints is NP-complete.

Proof?

We also usc a reduction of 3SAT to the above problem. We noted alrcady that H, is a level forest. Now
Figure 3 provides an embedding of H/, into a level forest graph 77, which by the same argument as in

the proof of Theorem 2 has a schedule on m = 3n + 1 processors which is of length [< n + 27 + 3 if

and only if I, is satisfiable. J

10

-""q

6. In-forests with one out-trce

While trees (in-trees or out-trces) were the first class of precedence constraints for which a polynomial
time scheduling algorithm was found [8] (a result which easily generalizes to in-forests and out-forests)
we shall show in this section that already the simplest combination of the two kinds of trecs makes -~
scheduling problem hard.

Let MF (mixed forest) be the class of directed acyclic graphs each of whosec components is cither an

in-tree or an out-tree, and let 2MF be the subclass of MF whose members have at most two components.
Theorem 4:

The scheduling problem with an arbitrary number of identical processors, unit-time task systems, and

with clements of 2MF as precedence constraints is NP-complete.

Corollary:
The scheduling problem for MF-graphs is NP-complete.
Proof of the Theorem:

A variant of 3SAT which is also NP-complete, is One-in-three-3SAT, i.e., the problem to determine for
an arbitrary propositional formula L in 3-conjunctive normal form whcther there is a satisfying truth
assignment to the variables in L such that, in every clause L, exactly one litcral is assigned true [5]. For a
given [, = L;A... AL, with variables v,,...,v,, we construct i ¢ as indicated in Figure 4. fI,, consists
of one in-trec and one out-trce (again all cdges are considered directed downward).

Further, let Izl,, be i1 L Wwithout its level 2n+2r+4 nodes and the incident cdges. I:I L consists of 2n
connected compnnents of 2n + 2r + 2 levels each (these in-tree components are called r-components)
and two components of 2n + 2r + 3 levels (called {-components), one in-trce and onc out-trec. Each
r-component contains, on cvery level, cither one or two tasks, and the i-th r-component (which belongs
to zs4 if 4 is odd, and Zy, if ¢ is even) has two tasks on levels 2[£] and 25 + 1 for all j 5£ [4),
1 < j < n, as well as on level 2n + 25 (resp., 2n + 27 -+ 1) if the corresponding literal does (resp., docs
not) occur in L.

We now show that therc is a schedule for (Tfu’ < fl..) on m = 3n + 3 processors of length at most
2n 4+ 2r + 3 if and only if . is in Onc-in-three-3SAT,

First, let V C {2,,2,,...,2n,Zo} be the sct of litcrals sct true under some fixed truth assignment to

11

[

Processors
ZTn ZIn for r-comp’s

n

‘ 2n+1
3n
3n

: 3n
3n
3n

3n+1
3n—1
> o 3n+1

. Literal Ty T L)
Level 1

| 27.; : P :‘ : : : :
2n+1
f;: 2n+2 Se
- 2n+3 '
.“" 2n+4 .
| ‘. 2n+5 . oo ¢ o

I .“.'

——

2n+21" 3n'—1
2n+4-2r+1 3n+1
2n+2r+2 3n—2
5 2n+2r+3 n
2n+42r+4

Figure 4

The mixed forest il,, where Ly = ¥,Vz,V%,, L, = z,Vz,Vz,, L, = 7,VE;VZ,

the variables z,,...,z, such that V contains cxactly one literal of every clause L, of L, and let V be

1
|
|

the set of those components of H, determined by the litcrals in V. Consider the schedule s which, for
all1 <5 < 2n+2r+2, assigns 5 to all tasks on level 5 of all the r-components in V and the two
I-components, and j + 1 to all tasks on lcvel 5 of all the other r-components. Level 2n + 2r + 3 of the

[-components is assigned 2n + 2r + 3 under 8. We leave it to the reader to verify that, in fact, s is a

12

) © cabra e ? ve s 3 T ".' s R L L _ X - _
—

correct schedule for (T , < fu)‘

For the other direction assume that there is a schedule s for (Tfn’ < fu) on m = 3n + 3 processors,
of length < 2n + 2r + 3. As the I-components of H ;. consist of 2n + 27 + 3 levels, we must in fact
have the length of s equal 2n + 27 + 3. Now note that also because of the [-components, in the first and

last time-step at most n processors are available for the 2n r-components. As these components all have

FUVE TP

2n + 2r + 2 levels the following property must hold:

There is a set V of exactly n r-components in H 1, such that, for all 7 with 1 < 3 <

. — i

R R O O

2n + 27 4 2, under s all tasks on level j of components in V are executed at or prior to
: (In time-step j, and in every r-component not in V, there is at least onc task on level J not yet
{ exccuted after time-step 5 (i.c., its valuc under s is > 7). Furthermore, all tasks on level

Jj are exccuted at the latest at time-step 5 + 1.

g Let V be the sct of literals belonging to the r-components in V. We shall show that V dcfines, as in
Lemma 2, a truth assignment satisfying L, and also that V' contains cxactly one litcral of every clause L;
of L.

; As 2n + 3 processors are needed to cxecute the level 1 tasks in the two [-components, and because of
' property (1), all tasks excecuted at time-step 1 are of level 1. Let V be the set of those r-components
whose level 1 tasks arc exccuted in the first step, and let V be defined as above.

Assumc first that there is some minimal 7 such that V contains cither both z,; and Z; or none of the two
literals. It casily follows from the construction of I:l and property (II) that after time-step 2¢ — 1

a) all levels 7 with 1 < 7 < 2¢ — 1 are completed,

b) all tasks on level 27 — 1 of components in V have been cxecuted, and

¢) no other tasks have becn executed so far.

At time-step 27, three (resp., n + 2 if ¢ = 1) processors arc needed to exccute all tasks on level 21 of
the {-components, and 2n — 1 (resp., n if © = 1) processors have to be used to complete fevel 21 — 1,
Therefore, n + 1 processors are available for tasks which arc on levels > 27 and cxccutable at time-step
2i. If V contains both «; and %;, these n + 1 processors do not suffice to exccute the n + 2 tasks on level
» 2¢ in the componcnts in v, contradicting property (1). If V comains ncither 2, nor Z;, then n processors
suffice to exccute all tasks on level 2¢ of the components in V, and the one remaining processor could
be used for any task on some level > 2¢ all of whose predecessors have already been exccuted. Let us
assume instcad that one processor is added to the m processors available at time-step 2¢ + 1. It follows
from the construction of I:I,,, however, that in this case 3n + 5 processors arc necessary at timc-étcp

2i + 1 to assure property (II). Thus, we again obtain a contradiction, and we conclude that, for all ¢, V

13

b, . " Jedigy 5

il

.o
——

.
g
3
L[4
P
.
§
»

must contain either z; or Z;. Furthermore, a simple counting argument shows that, under s, in time-step
j. where 1 < 5 < 2n + 1, only tasks on levels j or j — 1 are executed.

Now assume that there is some minimai 7, 1 < 7 < r, such that V does not contain exactly onc literal
of L;. Then, by an argument analogous to the one just presented, we achicve a contradiction to property

(IT) at time-step 2n + 27 if V contains more than one literal of L;, and at time-step 2n + 25 + 1 if V

_ contains no literal of L; at all. Hence, V' provides a truth assignment for z,,...,z, showing that [is

in One-in-three-3SAT.
It is now immediate that there is a schedule for (T, , <;,) on m = 3n + 3 processors of length
I<2n+2r+4ifandonlyif Lis a member of One-in-three-3SAT, Again we leave it to the rcader to

convince himsclf that the above reduction can be carried out in polynomial time. |

The result stated in Theorem 4 has independently been obtained in [6).

As a further corollary of Theorem 4 and the construction of I, we obtain that the scheduling problem for
precedence constraints decomposable into an out-tree and an in-tree opposing cach other is NP-complete.
This follows immediately if we add to I . onc node (at the top) with outgoing cdges to all nodes in
H 1. without predecessor, and a second node (at the bottom) with incoming edges from all nodes of ifs

without successor.

14

Y

——————— = e e = oe o e e mm—mee

7. Conclusion

There are several conclusions we should like to point at which can be drawn from the results presented
in the previous sections. The first is that restricting the precedence constraints to be cither in-forests
or out-forests allows a polynomial scheduling algorithm, but that relinquishing this restriction slightly in
either one of a number of dircctions immediately renders the scheduling problem NP-complete. We have
shown this to hold, for examplec, for the parallel composition of an out-trce and an in-tree as well as for
their serial, opposing composition. The latter might seem a littlc bit surprising in view of the polynomial
scheduling algorithms for in- and out-trees, respectively. But it is the intricate interleaving of the two
trees on different levels which makes them so difficult to schedule together.

We also showed that restricting the precedence constraints to a subclass which is widely considered well-
structured and which forms a subsct of the precedence constraints originating from parallel constructs
in high level programming languages does not help, this subclass is, in a scnse, as hard to schedule
as the general class. Again the nicely structured precedence constraints still allow the encoding of an
NP-complete combinatorial problem.

The last observation is that in all the reductions given in the previous scctions, the number of parallel
processors is part of the problem instance, and that this fact is heavily made use of. This once more
supports the conjecture that it might not be possible to prove the scheduling problem on some fixed

number of processors to be NP-complete.

15

PR

8. References

10.

11

12.

. BRINCH HANSEN, P.: The architecture of concurrent programs.

Englewood Cliffs, N.J.: Prentice Hall 1977

. COFFMAN, E.G. (£D.): Computer and job/shop scheduling theory.

New York: Wiley 1976

. COFFMAN, E.G., GRAHAM, R.L.: Optimal scheduling for two-processor systems.

Acta Informatica 1 (1972), pp. 200-213

. COOK, S.A.: The complexity of theorem proving procedures.

Proc. 3rd Ann. ACM STOC (1971), pp. 151-158

. GAREY, M.R., JOUNSON, D.S.: Computers and ir:iractability: a guide to the thcory of NP-

completeness.
San Francisco: W.H. Freeman and Company 1979

. GAREY, M.R., ET AL.: Scheduling opposing forests.

TM-81-11216-44, Bell Labs, Murray Hill, N.J. (1981)

.GRAHAM, R.L., ET AL.: Optimization and approximation in detcrministic sequencing and

scheduling: a survey,
In. HAMMER, P.L.,, ET AL. (EDS.): Annals of Discrctc Mathematics 5. Amsterdam-New
York-Oxford: North-Holland Publishing Company (1979), pp. 287-326

. Hu, T.C.: Parallel sequencing and assembly line problems.

Operations Rescarch 9 (1961), pp. 841-848

. KARP, R.M.: Reducibility among combinatorial problcms.

In: MiLLER, R.E., THATCUHER, J.M. (EvS.): Complexity of computer computations. New York:
Plenum (1975), pp. 85-103

PAPADIMITRIOU, CH., YANNAKAKIS, M.: Scheduling interval-ordered tasks.

SIAM J. Comput. 8 (1979), pp. 405-409

ULLMAN, J.D.: NP-complcte scheduling problems.

J. Comput. System Sci. 10 (1975), pp. 384-393

WILINGAARDEN, A. VAN, ET AL.: Reviscd report on the algorithmic language ALGOL. 68.
Berlin-Heidelberg-New York: Springer-Verlag 1976

16

A

Py T ——

. VIOV PP

praprapeTa

