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AN INTELLIGENT CONTROL STRATEGY FOR COMPUTER CONSULTATION

1. Introduction To Inference Networks

Expert consultant systems are presently available for various

classes of problems. The most well known of these systems is MYCIN

which has demonstrated a high level of competence in the diagnosis of

infectious diseases. MYCIN operates on a system of inexact

reasoning, propagating new information through an inference network

in the form of certainty factors 15,6]. Various other expert systems,

such as EMYCIN (3], have been cast in the mold of MYCIN.

The essence of an expert consultant is embodied in a graph

called the inference network. Nodes on this network are

representations of individual propositions, describing parameters

relevant to the particular problem under study. Links connecting

these propositions stipulate mathematical functions, combining

antecedent propositions to update a consequent. These links or

rules, as they are often called, define implications directed from

antecedent to consequent, organizing the network to allow propagation

of information. The inference network may have a simple tree

structure, with each proposition acting as the antecedent of only one

other proposition, or it may have a more complicated graph structure

in which one antecedent has several consequents. We have designed

and implemented our inferencing systems with acyclic networks to

avoid indefinite looping during propagation. This restriction,

though it greatly simplified the current design, should not be an

absolute requirement, since a related work [11] did provide for

cycles.
Ihbsubsmpt submittd Pmbuar 10, 1982.
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Most inference networks will contain a limited number of

nodes, typically consequents that imply no other proposition, that

are the subjects of the inference evaluation process. Let us refer

to these propositions as top propositions or consequents. In an

inference network designed to predict the probability of rain, there

may be one top proposition representing the chance of rain. A more

complex problem involving several competing hypotheses may require

several top propositions simultaneously. These top propositions may

have independent inference networks, or they may share antecedent

propositions. In general, they will have some common antecedents

and other antecedents specific to each consequent, resulting in a

complicated graph structure for the inference network.

Propositions on the inference network of a consulting system

will be classified as "askable" or "unaskable". Askable propositions

.2 are those which the user may be reasonably expected to supply.

Unaskable propositions are those more esoteric concepts whose

resolution we prefer to leave to the system. Often it may be

reasonable to associate a degree of askability with each askable

proposition. A knowledgeable user may save time by responding to

propositions of low askability. Requesting the same information from

a less experienced user, however, may be a complete waste of time.

Top propositions are nearly always classified as unaskable.

When the user provides the information requested for askable

propositions elsewnere on the network, that information may be

propagated toward the top propositions. The most common technique

2



applied by expert systems for updating the top propositions is a

depth-first traversal of the inference network with reverse chaining

of the rules. When an askable node is traversed, the user is

prompted for the respective parameter. Once the user supplies the

requested information, his response is propagated, and the traversal

continues. If, however, the user is unable to update the parameter,

the traversal is expanded to the antecedents of that unanswered

proposition. This depth-first reverse chaining mechanism thus

expands from a consequent to its antecedents in a direction opposite

to that specified by the links, and then propagates back the

'4 .information in the manner specified by the implications when it

returns.

The most time-consuming aspect of expert computer

consultation is the dialogue required between the user and the system

to provide the propositional parameters. Since the consultation

time is roughly proportional to the time spent responding to

questions, an expert system may be considerably more efficient when

its thirst for data is restricted. An intelligent system, asking the

most pertinent questions first, and avoiding irrelevant propositions,

svA will react much like a human consultant. Such a system would save an

enormous amount of time by avoiding many of the propositions

traversed in a classical depth-first approach.

The greatest obstacle to the development of such an

intelligent expert system is the need for a general mechanism to

choose the most appropriate questions in the network. We propose the

3
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utilization of merits as developed for MULTIPLE [7,8,9,10] to provide

this mechanism. Merits will guide the traversal of inference networks

with a best-first strategy. The most pressing questions are asked

first, and all questioning is terminated when there remains no chance

of significantly altering the top proposition. Furthermore, this

mechanism will apply to any type of inference link that can be

expressed as a differentiable function.

I4
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2. Other Intelligent Expert Systems.

Certain simple techniques for pruning the depth-first

traversal of inference networks have been proposed for various

systems. These methods generally eliminate the traversal of nodes

already proved to be true or false. For example, assume that a

consequent H is true if either El or E2 is true. If we have already

found El to be true, and have no other reasons for desiring to know

the value of E2, then we may prune off E2; H has been proved

regardless of the status of E2. Similarly, if H is true only when

both El and E2 are true, and we know El to be false, there is no need

to work on E2.

A more sophisticated design for ordering a depth-first

traversal is presented in PROSPECTOR [2]. The MARK IV control

strategy will first select a top proposition and then attempt to
select the antecedent most likely to influence that proposition. In

selecting an appropriate antecedent for questioning, a function, the

J* function, is evaluated for each rule linking an antecedent to the

current proposition. The antecedent with the greatest J* function

value is selected for questioning. The J* function operates by

combining four considerations: extreme strengths of the rule, the

current strength of the rule, the prior probability of the

-; antecedent, and the measure of belief or disbelief in the consequent.

This mechanism results in a complicated, apparently ad hoc solution

for ordering the depth first traversal.

5
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The algorithm presented by PROSPECTOR for ordering the

depth-first traversal provides a good start in working toward an

intelligent expert system. Their system however, suffers from

several basic constraints: They attempt to optimize their inference

network traversal within the framework of a depth-first traversal.

This constricts the pathways they must follow through the inference

network. Once a node is traversed, the depth-first mechanism will

never return to that part of the network. Furthermore, the

optimization provided by the J* function with the MARK IV control

strategy is local to the sons of a single node. Just because a

proposition is the best son of the node being considered, there is no

guarantee that it will also be an optimal proposition to work on when

the entire inference network is considered. A more advanced control

strategy might search for the globally optimal proposition in the

entire inference network, and question the user on that item. Such a

technique is proposed in this paper, and compared to the PROSPECTOR

control strategy in sections 8-10.

The CASNET (causal-associational network) system attempts to

approach this control strategy dilemma from the viewpoint of finding

the next best node to work on in a global sense. CASNET assigns

each proposition in its network a weight corresponding to the

presence of evidence in support of that proposition [12]. The system

considers both forward and reverse weights corresponding to the

plausibility of a node as determined by its antecedents and

consequents, respectively. A combined weight, actually the maximum

of the forward and reverse weights, is assigned to each proposition.

6
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In addition, each node carries an estimated cost corresponding to the

difficulties that may confront a user wishing to provide the data

needed for the proposition. Two control strategies that have been

used by CASNET involve (1) the selection of the node with the maximum

weight-to-cost ratio, and (2) selection of the node with the maximum

weight subject to certain constraints on cost. Both these strategies

tend to pick the node considered most likely true or most consistent

with the current state of the network.

The control strategy presented by CASNET has several

interesting advantages. First we notice that there is no

depth-first traversal constraint. The system may pick and choose

questions from any point in the network. As a result of this

ability to move around, CASNET may search for the best question in

the entire network. Thus, the framework provided by CASNET should

allow a more intelligent control strategy than PROSPECTOR's.

It is not clear, however, that the specific heuristic applied

in the calculation of node weights by CASNET is particularly optimal.

An inference system designed to either prove or disprove a top

proposition shouldVeigh most strongly those propositions bearing the

greatest influence on its top propositions. The consistency of a

proposition *th the rest of the givens should not be as critical to

the control strategy as the ultimate influence of that proposition on

the top proposition. Thus, it would be nice if we could develop a

controlt strategy which searched the entire network for the

proposition most likely to change the top proposition. In fact, this

1.



technique has already been developed. The MULTIPLE program

[7,8,9,10], utilizes a control strategy dependent on the

cost-effective influence of each subnode on the top node or

proposition.

8
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3. The MULTIPLE Control Strategy.

MULTIPLE is an acronym for MULTIpurpose Program that LEarns.

The original MULTIPLE program was designed to search a fairly general

implicit proposition tree [7,8,9,10]. Implicit AND/OR trees for

games and theorem proving are handled well by MULTIPLE. The

program has the additional ability to learn through experience.

MULTIPLE has been implemented in the domains of the game of Kalah and

the resolution principle with promising results [1i].

The MULTIPLE control strategy is really a best-first

algorithm that efficiently selects the seemingly best proposition at

any stage, to work on next. This is accomplished with a two step

algorithm: first the system "sprouts" from the most meritorious

untried proposition on the proposition tree. After sprouting, the

merits generated for the newly sprouted propositions are backed up to

the top proposition. At each level, only the best merit along with

the proposition it represents is backed up, and finally at the top

level the most meritorious untried proposition is found. By

alternately: (1) sprouting from the most meritorious proposition,

and (2) backing up merits, MULTIPLE always works on the proposition

it considers most promising.

* Assume, for example, that proposition G12 is the most

meritorious untried subproposition in figure 1. The MULTIPLE program

will sprout its descendants G121, G122, ...,Gl2n and pick the most

9



meritorious of these. The merit of that best subproposition, GI2J is

first backed up to G12. Next, the merit at G12 is compared to those

merits previously stored at GIl and G13, the maximum merit being

backed up to GI. Finally, the merits at Gi and G2 are compared and

the best one is backed up to G. At this point we have identified a

new most meritorious proposition and may start again.

Central to this entire procedure is the concept of merit. We

now proceed to define this concept. Assume for a moment that we have

a general proposition tree with a top proposition G and

subpropositions Gi (for i = 1 to n). Each subproposition Gi may

itself have subpropositions designated Gij (for j - 1 to m). In

general, an additional subscript will indicate another level down the

proposition tree. The merit of an untried proposition Gij...st is

defined by the partial derivative:

d P

DEFINITION OF MERIT (3.1)

d Cij... st

where dP is the change in the probability of the top proposition G,

and dCij...st is the cost of expanding the untried proposition

Gij...st. Absolute value is used because we do not differentiate

! between changes in probability in the positive or negative

* directions. What matters to the merit is the absolute ability of

node Gij...st to influence the probability of proposition G if

Gij...st is expanded.

10



Note that this definition of merit describes in precise

mathematical terms those qualities we desire most for the next

proposition on the inference network which is to be expanded. A

high merit states that a proposition will exert much influence on the

top proposition with little cost. Low merits indicate that expansion

of a proposition will have little effect on probabilities at the top

level or that the expansion will be accomplished only at a high cost.

The merit has been expressed as a derivative relating P,

the change in probability of the top node, to the cost of expanding

an untried proposition somewhere else on the proposition tree.

Instead of expressing the derivative as such, we find it simplier to

apply the chain rule and evaluate the derivatives of linked nodes

d P dp dpi dPij ... s dpij...stH * - * * ,..-

dCij...st dPi dPij dPij...st dCij...st

DEFINITION OF MERIT (3.1)

The last factor in this expansion is the only one involving the cost

of expanding the untried node. It is the self-merit of that

proposition, and represents the ability to change the probability of

the untried subproposition, per unit cost applied in expansion of

that subproposition. For our purposes, we will approximate the

self-merit by an expert opinion, and so we need not worry about

calculating it.

11
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dPii...st aij... st APPROXIMATION OF SELF-MERIT

dCij...st IACij...st

The remaining factors of the merit involve the influence of

the change in the probability of a subproposition on the probability

of its immediate father. Waien dealing with inference networks, we

shall refer to each of these factors in the merit formula as a

link-merit. Every antecedent-consequent pair has its own link-merit.

Thus, the link-merit may be thought of as being associated with the

link from antecedent to consequent. A link-merit corresponds to

the degree of influence exerted by an antecedent on its consequent.

In practice, link-merits are calculated by differentiation of the

functions used in the updating scheme from antecedent to consequent.

The most meritorious proposition on a proposition tree, is

defined by MULTIPLE as the untried subproposition having the highest

merit. This proposition is known to have the greatest potential for

influencing the top proposition. In an inference network, such an

unexpanded proposition has the greatest potential for influencing the

top proposition.

The process of finding merits, it should be noted, is

performed in a time proportional to the tree-depth. Only the

merits on the newly expanded proposition need be computed for backing

up. The other merits are already in place at each node that has been

12



previously traversed. This process is thus completely analogous to

moving up a tree of winners. Execution time is proportional to

tree-depth rather than tree-size. Thus, the merit values which are

calculated to order a best-first traversal of the inference network,

are themselves computed with a best-first strategy by the MULTIPLE

algorithm. We now describe the MULTIPLE method for merit computation

as it applies to inference networks. An optimal, albeit slightly

slower, technique that uses an exhaustive depth-first traversal for

finding merits is suggested in the conclusion.

MULTIPLE always applies its efforts on the most promising

subproposition. This has proved to be a very effective technique in

several domains. Apparently, the power of the techniques stems from

;r !the fact that it disregards those alternatives which do not appear

promising. This resembles to a large extent the way an expert may

approach a consulting problem. We have therefore decided to apply

merits to the domain of expert consultant systems.

13



4. Merit In An Inference Network.

The concept of merit as presented in MULTIPLE is easily

adapted for expert tystems and inference network traversal. An expert

4 system control strategy that consistently requests information only

on the most pertinent proposition in the inference network, will ask

the fewest questions in the long run. As we have seen, asking for the

proposition of maximum merit is equivalent to asking the most

pertinent question with respect to the top proposition. The most

meritorious proposition in the network will be the proposition which

is most influential on changes in the probability of the top

proposition with respect to the cost of its own expansion. Thus, we

have designed an expert control strategy based on merits.

"* Applying the MULTIPLE algorithm to inference networks, an

expert system explores the propositions possessing the highest merits

until it encounters a proposition marked as askable. The system then

halts its traversal of the network to prompt the user for the

appropriate information. After receiving that information or

finding that the user is unable to supply it, the system proceeds to

discover the next unasked, askable proposition of highest merit. The

entire process is iterated until there are no more propositions to be

found with a greater merit than some cutoff value.

When there are several top propositions the most meritorious

node may be defined as that proposition with the highest merit in any

14



of the various networks stemming from these top consequents. This

interpretation is equivalent to defining a new supernode that may be

influenced by all the top propositions for purposes of merit

propagation. Thus, handling an inference system with several top

propositions is a simple extension of the single top consequent case,

with the minor restriction that all top propositions be measured in

similar units.

The cutoff merit is a parameter controlled by the user. It

may be utilized to limit or increase the total number of questions

asked, but will not alter the order of questioning. Therefore, there

is no reason to restrict this value once traversal has begun. Rather,

the user may change its value at any time to prematurely terminate

the traversal, or extend it to the entire network. Only those

propositions with merit above the cutoff will be asked. If no such

propositions remain, then there is no purpose to be served by further

traversal of the network, and we are done.

The MULTIPLE best-first algorithm we have presented will be

superior to the depth-first procedure previously applied in most

expert system control strategies. The merit system is not

constrained to traverse the network in a set order as are depth-first

strategies. Furthermore, the merits compared come from the entire

network rather than just a set of nodes with a common father. Thus,

the MULTIPLE mechanism for selecting the most meritorious proposition

in the network should result in fewer questions than the

corresponding depth-first strategy.

15
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An objection, however, may be raised to the degree of jumping

around on the inference network resulting from this best-first

traversal. A depth-first algorithm, it may be argued, will remain

within a single subtree for a length of time and never return to that

region of the network again. The user will therefore be questioned

thoroughly on one topic before questioning switches to another

subtree. The merit based algorithm may jump all around the inference

network in a sequence that is bewildering, and may result in

confusing the user.

In reply to this objection, we note that a merit control

* strategy may actually be implemented within the constraints of a

*depth-first traversal of the inference network. Merits may be

utilized to order the sons or antecedents of a node before it is

expanded by the depth-first traversal. Merit values may be used as a

uniform m,-hanism for prioritizing and perhaps even cutting off the

antecedents of a node within the depth-first framework. We believe,

however, that the time saved with the best-first plan of action far

outweighs any potential disadvantage that may result from changing

the order of questioning.

Furthermore, the freedom to alter the cutoff merit value for

traversal of the inference network was a trivial matter with the

best-first algorithm. Since the propositions are traversed in order

of decreasing merit, the value of the cutoff merit does not influence

which nodes are traversed, but only when the traversal should halt.

Increasing or decreasing the cutoff only extends or limits the total

16



number of questions asked. Similar reasoning does not apply with a

depth-first approach. Assume, for example, that the user began

his session with a high cutoff value, and many antecedents or sons of

nodes on the leftmost subtrees already traversed were pruned off. If

he now chooses to decrease the cutoff value, the depth-first strategy

offers no mechanism to return and evaluate those nodes. Once a node

has been examined by a depth-first traversal, it is gone forever and

never reexamined. Likewise, if the user starts with a low cutoff

value, and later increases it, he will already have wasted time

traversing many propositions in the early subtrees with low merit.

Any charges in the cutoff merit for a depth-first traversal may apply

only to parts of the tree not yet traversed. The MULTIPLE control

strategy may be much more flexible here because all nodes are

reconsidered for questioning before each question is asked.

17



5. Merits, Link-Merits, and Self-Merits.

How do we determine these magical quantities known as merits?

This question should actually be divided into its two components.

First we must be able to find self-merits, and then we need to

calculate the link-merits. Link-merits and the self-merit along a

path from any node to the top consequent are simply multiplied to

provide the merit value of the node, as specified in equation 3.1.

Self-merit was defined as the change in probability for a

proposition per unit cost of expanding or working on that

proposition. To an expert familiar with the inference network setup,

we assign the task of choosing self-merits. These need not be in any

specific range, but should be correct relative to each other. A

proposition whose parameters are easily specified by a user, and

whose probability is likely to change a great deal will have a high

value for dP/dC. Such a proposition should be granted a high

self-merit value. Conversely, a proposition for which the user is

unlikely to or slow at providing an answer, or which is rarely

changed much in probability, should be assigned a low self-merit.

* Self-merits of unaskable nodes are proportional to the expected

change in the node probability per unit cost of expanding the node to

its immediate descendants.

Furthermore, we may define self-merits for various

propositions that are not requested from the user, but either input

18
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from a mechanical or electronic source or calculated by the computer.

A calculation requiring only core space and little execution time has

very high self-merit. Those propositions requesting access to a

random storage device such as a disk, may have slightly lower

self-merits. Finally, those propositions whose parameters may only

be obtained from slower devices such as tape drives have even lower

self-merits. Of course all of these self-merits are relative to the

self merits assigned to nodes requiring user interface. Since users

are generally slower than machines, a user related proposition may

have even less self-merit.

Additional considerations may also apply within the realm of

user related propositions. Some questions are harder to answer.

These should have lower self merit, from the point of view of cost.

An entire table of numbers, for example, is more difficult to input

than a single yes/no answer. These cost factors must be weighed

together with the chances that the response will change the

proposition's probability to effectively determine self-merits.

Complications in self-merits also arise from the variation in

the pool of users. One user may find it simplier to respond to

questions of a specific type while others may have differing

preferences. Thus, we may need several sets of self-merits for

accurate merit calculation. All of these considerations must be

weighed in the design of self-merits. The most important

consideration of all, however, is that these self-merits be

internally consistent throughout the inference network.

19



Following determination of the self merit, the remaining

terms in the merit formula are all link-merits of the form dPi/dPij.

These depend on the mathematical relationship between antecedents and

conseguents. The next several sections deal with the derivation of

these link-merits. For most updating schemes, finding link-merits

involves only a trivial amount of differentiation. With

differentiation and variable substitution routines, this could even

be done automatically.

20



6. "AND", "OR", "NOT" Link-Merits.

The probability of an antecedent Ej, as estimated by a user,

we will term P(EjlEj'), following the notation of Duda et al [1),

where Ej' are the relevant observations upon which it is based. A

consequent whose truth is contingent upon the verification of all of

its antecedents is the logical "AND" of those antecedents. In a more

general probabilistic approach, assuming that all antecedents are

independent, the AND link may be mathematically described by the

equation:

P(HIEl',..., En') = P(ElIEl') * * P(EnIEn') "AND" LINK (6.1)

where the ANDed probability of the consequent on the left, given the

present probability of each antecedent Ej, is just the product of all

current antecedent probabilities. The link-merit of the

consequent with respect to any antecedent Ej may be found by

calculating the partial derivative of the consequent probability,

P(HIEl',...,En'), with respect to the probability of that antecedent,

P(EjIEj'). We now proceed to transform these link merits, first

described in [8,9,101 to the Duda notation.

d P(HIEl',...,En') =P(ElIE') * ... * P(Ej-IEj-') *

P(Ej4iIEj+l') * ... * P(EnIEn') AND-LINK-MERIT

d P(EjIEj') (6.2)

Noticing the similarity between the link-merit and the definition of

ANDing, we may rewrite the AND-link-merit as:

21
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d P(HIEl',... ,En') P(HIEl' ... En')

------- - -AND-LINK-MERIT

d P(Ej'liEj') P(EjlEj') (6.3)

This simplified form of the link-merit depends only upon the

probabilities of the consequent and the antecedent under

consideration. Such a form is very useful for actual computations,

and we will therefore attempt to simplify all our link-merits to 
this

format.

Sometimes a consequent is known to hold if any one of its

antecedents is true. Such a node is said to be linked to its

antecedents with the "OR" function. In mathematical terms, assuming

independent antecedents, the OR link may be expressed by the

function:

P(HIEl',...,En') = 1 - [l - P(EIIEI')] * * [I- P(EnIEn')]

"OR" LINK (6.4)

where the consequent probability on the left hand side is the

complement of the products of the complements of all antecedent

probabilities. Applying the definition of link-merit to equation 6.4,

we find that OR-link-merit may be specified by:

d P(HIEl',...,En') [l - P(ElIEl')] * ... * (1- P(Ej-lIEj-l')] *

__________=___ [i (- P(Ej+IIEj+l')] * ... * (1 - P(EnIEn')j

d P(EJIEj') OR-LINK-MERIT (6.5)
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Employing the same type of substitution for the OR-link-merit as we

applied to the AND-link-merit, the form may be simplified and

expressed in terms of only the specific antecedent - consequent pair

being considered. Substituting equation 6.4 into equation 6.5 we

find:

d P(HIEl',... ,En') (1 - P(HIEl',...,En')]

- .OR-LINK-MERIT (6.6)

d P(EjIEj') [1 - P(EjEj')]

-4t
Equations 6.3 and 6.6 for the evaluation of link-merits are the

actual forms used by MULTIPLE for the calculation of merits. The

AND-link-merit as well as the OR-link-merit approach a finite limit

as P(EjIEj') approaches 0 and 1 respectively. This may be observed

in equations 6.2 and 6.5 where there is no chance of obtain'-. b ze".,

in the denominator. Thus, these merit values are always def.ined.

Often it is convenient to 'classify a consequent as the

negation of its antecedent. In logical terms, the consequent is

true when its antecedent is false, and false when its antecedent is

true. In a probabilistic scheme, such a consequent may be given the

complement of its antecedent probability.

P(HIE') = 1 - P(EIE') "NOT" LINK (6.7)

Note the absence of a subscript on the antecedent E. A NOT link has

only one antecedent. Thus, merits are not needed to choose among the
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sons of such a consequent. However, the link-merit of NOT links will

be used in the MULTIPLE type of control strategy. It can easily be

shown that the NOT-link-merit is -1:

d P(HIE')

- -l NOT-LINK-MERIT (6.8)

d P(EIE')

Apparently, the negative sign may be disregarded here since only

absolute values are significant for merits. Thus, one might be led

to conclude that a NOT link leaves unchanged the merits of its

subpropositions. In section 11, however, we note that the sign on a

merit value may be very significant during merit propagation in

networks with multiple fathers on a single proposition.

Some consultant systems utilize the notion of fuzzy AND and

OR nodes in the inference network. The probability of a fuzzy AND

node is simply the minimum of all its antecedents probabilities,

while that of a fuzzy OR node is their maximum. Obviously, these

fuzzy links are not differentiable functions, and have no defined

link-merits with our present scheme. We prefer the logical AND and OR

type links because they use all antecedents in the process of

updating. It is, however, possible to adapt the calculation of

merits to fuzzy probabilities. This may enhance a system such as

PROSPECTOR, which arbitrarily chooses its next question for

propositions where the antecedent is constructed with the fuzzy AND

and OR.
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We propose two methods for the handling of fuzzy links. One

possibility is to update the probabilities with fuzzy statistics but

perform the merit calculations as if regular logical links had been

used (equations 6.3 & 6.6). This should provide a fairly good

approximation since both the AND antecedent and the OR antecedent

exert the most influence on their consequent in both fuzzy and

logical updating methods under similar conditions (see section 9).

The second possibility would also involve updating with the fuzzy

techniques, but would calculate link-merits for differentiable

approximations to the fuzzy functions. The first of these two

possibilities may be regarded as a special case of the second. The

logical AND and OR are just used to approximate the fuzzy AND and OR

in this first possibility.
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7. "MYCIN" Link-Merits.

The MYCIN system, designed to assist physicians with the

diagnosis of microbial infections, utilizes a model for inexact

reasoning in medicine [5,6]. Proceeding under the assumption that

medical reasoning is intuitive and not expressible in precise

probabilistic terms, Shortliffe developed a rule-based inferencing

scheme that updates with an informal reasoning process. This

technique, although not formally based in statistics, presents an

interpretation of probability based upon confirmation.

Two basic concepts, the measure of belief (MB) and measure

of disbelief (MD) are defined for the relationship between all linked

propositions on the inference network. The MB[H,Ej is a measure of

the belief in the consequent H, based on all available current

evidence E. Similarly, the MD(H,Ej is a measure of the disbelief in

H given the present situation E. Mathematically, the measure of

belief in a consequent H with respect to a specific antecedent El is

expressed as the ratio of the increase in the belief of H motivated

by the knowledge that El is true, to the maximum possible increase in

the certainty of H. The measure of disbelief is similarly defined

with respect to the increase in the disbelief in H. For any single

antecedent to H, El for example, either MB or MD must be zero. An

antecedent that, when proven true, increases the belief in H will

have a positive measure of belief but zero measure of disbelief.

Likewise, an antecedent whose truth diminishes the probability of its
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consequent will have a positive measure of disbelief, but a zero

measure or belief. A proposition El, that influences H in no way

whatsoever, has the property that MB[H,El] - MD[H,El] - 0.

A formal definition of these measures is give by:

measure of case

P[HIH'] = 1 1

Belief MB[H,El] P[HIEI] <- P[HIH'] 0

(eq. 7.1) otherwise P[HIEI] -- P[HIH']

I - P[HIH']

P(HIH'] = 0 1

Disbelief MD(H,E1] =- P[HIEl] >- P(HIH'] 0

(eq. 7.2) otherwise P(HIH'] - P[HIEI]

P [H IH I

Extending the Duda notation which we have adapted, P[HIH'I is the

current probability of the consequent H. P[HIEI] is the probability

of H given that antecedent El is known to be true.
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Although the measures of belief and disbelief are updated

individually, they are later combined to provide a certainty factor

that is the difference of the two.

CF[H,El] - MB[H,El] - MD[H,E1] (7.3)

A certainty factor is calculated for the antecedent of each

link in MYCIN's inference network. Antecedent certainty factors may

be used to update the measures of belief and disbelief in the

consequent. The process of discovering an antecedent certainty

factor may be arbitrarily complicated since an antecedent may itself

consist of any number of propositions in conjunction or

disjunction and these propositions may themselves depend upon

other antecedents. Measures of belief and disbelief are calculated

for each proposition in the antecedent of a consequent to be updated.

These measures are combined with each other under the rules of fuzzy

logic, to find the total measures of belief and disbelief on the

antecedent. The certainty factor of the antecedent is determined by

combining these measures, and is then used to update the consequent.

This final inferencing step, the inexact method for updating

" of consequents, is of particular interest here. Each antecedent may

be linked to a consequent with a rule describing the maximum measures

of belief or disbelief in the consequent, denoted MB'[H,E1] and

MD'[H,El], given that the antecedent is absolutely believed. The new

antecedent El may then update its consequent H in the current

situation E, by increasing the consequent measure of belief:
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MB(H,E&E1j - MB[H,E] + MB'[H,ElJ * CF[El,E] * (1 - MB[H,E]) (7.4)

if MB'[H,El] > 0, or by increasing the measure of disbelief:

MD[H,E&EI] - MD[H,E] + MD'[H,El] * CF[EI,E] * (1 - MD[H,E]) (7.5)

if MD'[H,El] > 0. Since either MB[H,El] or MD[H,El] will be zero in

every case, only one of the two updating equations will be applied in

any one case. Equation 7.4 is used in the case of confirmation of

supporting evidence, while equation 7.5 updates the hypothesis

according to evidence that tends to decrease its plausibility.

The MYCIN system has several complicating features and

special cases which are applied to these rules. We shall derive the

link merit for a simplified version of the MYCIN scheme. If all

rules are assumed to increase the belief in their consequents, and

endpoint conditions are ignored, then updating may be expressed as:

CF[H,E&El] -CF[H,E] + CF'[H,El] * CF[El,E] * (1 - CF[H,E]) (7.6)

where CF'[H,El] is the maximum certainty in H gained from the

knowledge that El is absolutely true. In our simplification, the

increase in consequent certainty with respect to the change in

antecedent certainty may be expressed as:

-- C CP"[H,El] * (1- CF(H,EI) (7.8)

d CF[El,E]
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This quantity is the link-merit on our simplified MYCIN

updating rule. An actual link merit for the real MYCIN link may be

calculated with similar reasoning and the use of a differentiable

approximation to the MYCIN updating scheme.

The link-merit we have found for MYCIN links indicates that

in a depth-first traversal of the inference network, disregarding the

costs of expanding antecedents, the antecedent with the greatest

CP'[H,E] should be the first one expanded. This mathematical

analysis supports Shortliffe's suggestion for dynamic ordering of

rules by certainty factors and expansion costs [5,61. Introducing

2' I self-merits into our analysis would, of course, provide a much more

rigorous test for prioritizing the antecedents in a MYCIN style

inference network. The self-merit of an antecedent may just be

approximated by a value inversely proportional to the number of

Apropositions on which it directly depends. Such a MULTIPLE type,

merit based scheme would surely improve the efficiency of MYCIN.

0I
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8. Subjective Bayesian "EVIDENCE" Link-Merits

Duda, Hart, and Nilsson (11 have introduced a subjective

Bayesian updating method which relates a consequent to its

antecedents by a function which we associate with the EVIDENCE link.

The EVIDENCE link model is developed with the assumption of

conditional independence of the antecedents both under the consequent

and under the negation of the consequent. Pednault, Zucker, and

Muresan have shown that with the additional assumption of mutually

exclusive and exhaustive consequents, the EVIDENCE updating scheme

breaks down [4]. In general, however, the EVIDENCE updating scheme is

able to function. We first present a synopsis of that method.

From Bayes rule we know that:

P(Ej'IH) * P(H) P(Ej'i-H) * P(H)

P(HIEj') = P(-HIEj') = (8.1)

P(Ej) P(Ej)

The probability of a consequent, given its antecedent Ej with some

current probability, is equal to the probability that the antecedent

will be at its current probability given the consequent, multiplied

by the prior probability of the consequent, and divided by the prior

probability of the antecedent.

We define the relationship between probabilities and odds as:

31



p 0

0 - -- (8.2) P - (8.3)

1 - P 1 +0

An effective likelihood ratio @j' (read lambda sub j), is defined as:

P(Ej'IH) O(HIEj')

1 - - EFFECTIVE LIKELIHOOD RATIO (8.4)

P(Ej'I-H) 0(H)

The two forms of the effective likelihood ratio may be shown to be

equivalent with equation 8.1 and either equation 8.2 or equation 8.3.

Duda et al [1] describe a method for calculating P(HIEj')

through linear interpolation. For each antecedent of H, a graph of

P(HIj') vs. P(EjIEj') is plotted (figure 2). To plot this graph one

must obtain two points: a probability for H given the antecedent,

P(HIEJ), and a probability for H under the negation of the

antecedent, P(HI-Ej). In addition, the Duda method utilizes prior

probabilities for the consequent, P(H), as well as the antecedent,

P(Ej).

Finding the approximation to P(HIEJ') with the graph in

figure 2 is just a simple linear interpolation. Given a value

for P(EJIEJ'), the antecedent probability, we may interpolate with

the following two equations to find P(HIEJ'), the predicted

consequent probability.
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case formula

P(EjIEj-) < P(Ej) then P(HIEj 1) =P(HI-Ej) +

P(H) -P(HI-Ej)

(8.5) P(EjIEj-)* _______

P(Ej)

P(EjIEj') >= P(Ej) then P(HIEj') -P(H) +

P(HIEj) - P(H)

(8. 6) [P(EjIEj') - P(Ej)1 ] _______

1 - P(Ej)

For n antecedents to a consequent H, the odds on H may be

updated with the expression

n

0(HIEl', ...,En') T -@i 0(H) (8.7)
-i

given the assumption that each antecedent Ej is independent of all

the rest.

The careful reader will notice that we have now developed a

sequence of mathematical steps that will allow the updating of

P(HIEl', ...,En'), given some new values for the Ej's. These steps are

arranged in table 1.
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Now, proceeding to the task at hand, we must find the

EVIDENCE-link-merit for the Subjective Bayesian updating method. As

with all other link-merits, calculating the EVIDENCE-link-merit is

just a matter of computing the derivative:

d P(HIEl', ...,En')

EVIDENCE-LINK-MERIT (8.11)

d P(EjlEj')

Smploying the chain rule of differentiation, and noting the various

dependencies of the terms in table 1 upon one another, we may express

the EVIDENCE-link-merit derivative as:

dP(HIEl', ... ,En') d O(HIEI' ... ,En') dO(HIEj') dP(HJEj')

_ -,,,,_ * . . .* --

d O(HIEl',...,En') d O(HIEj') d P(HIEj') d P(EjEj')

CHAIN RULE FORM OF EVIDENCE-LINK-MERIT (8.11)

The following argument will produce the mathematical

simplification of the above form of EVIDENCE-link-merits. Those

readers not interested in the derivation, should skip to the end of

this section for the final result. Before attempting to evaluate

equation 8.11 we shall digress for the moment and compute some useful

partial derivatives. These derivatives w.ill be used in the

evaluation of the chain rule form of equation 8.11 to produce a

simplified form of the EVIDENCE-LINK-MERIT.
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From equations 8.2 and 8.3 relating probabilities and odds we

note that one may calculate the derivatives of each the probability

and odds function with respect to the other.

2

d P 1 P 2

- = 2 = -2 = (1- P) (8.12)

d O (1 + 0) 0

2

d O 2 0 1

- = (1 + 0) = -2 = -- 2 (8.13)

d P P (1 - P)

AW Next, let us attempt to evaluate the partial derivative of

the logarithm of the updated odds with respect to the odds predicted

by antecedent Ej. Recall equation 8.9 from table 1:

n
d in O(HIE1', ...,En') d ((l-n) * in O(H) + 1I.n O(HIEi')]

=-------------------------------------

d O(HIEj') d O(HjEj')

whereL is the summation of its argument over all i for i - 1 to n.

Noting here that all terms in the numerator, with the exception of

O(HIEj') are constants with respect to O(HlEj'), we can express this

derivative as:
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d in O(HIEl', ...,En') d In O(HIEj')

d O(HIEj') d O(IEj') O(HIEj')

Applying the chain rule, and rearranging terms, we have:

d ln O(HIEl', ... ,En') d O(HIEl', ...,En') 1

d O(HIEl', ... ,En') d O(HIEj') O(HIEj')

d O(HIE1', .,.,En') O(HIEl', ...En')

(8.14)

d O(HIEj') O(HIEj')

One last derivative which we must analyze before returning to

the equation for EVIDENCE-link-merits is: d P(HIEj') / d P(EjlEj'),

the last term in equation 8.11. Note that P(HIEj') is a function of

P(EjlEj') through linear interpolation as given in equations 8.5 and

8.6. The derivative for each 8.5 and 8.6 with respect to P(EjIEj')

are different but they are both just equivalent to the slope of the

interpolation graph. Let us call this slope Mj for simplicity.

Note that the two slopes corresponding to Mjl and Mjr in

figure 2 are not equal. Furthermore, at the point P(EjIEj') - P(Ej)

there are two valid slopes. Which value should we use for Mj ?

This question will be answered in section 10. For the duration of

this discussion, we will assume that Mj is a known value.
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We are now in a position to evaluate the EVIDENCE-link-merit

as expressed in equation 8.11. Substituting the various partial

derivatives which we have calculated for the terms in equation 8.11

as it was expressed after applying the chain rule, we find that the

EVIDENCE-link-merit may be written as:

1 O(HIEI',...,En') 2

2 * * + O(HIEj')] * Mj

[1 + O(HIEI',...,En')) O(HIEj')

2

d P(HIEl',...,En') 1 + O(HIEj') O(HIE ',...,En')

- . . ..__ * ' _ * Mj

d P(EjIEj') 1 + O(HIE',...En') O(HIEj')

-- (8.15)
.Aw

Equation 8.15 will allow us to compute the link-merit of any

evidence link. Furthermore, it can be shown that this merit value is

always defined. Recall from equation 8.9 that O(HIE1', ...,En')

may be expressed as the product of all the various effective

likelihood ratios for the various antecedents, and the prior odds on

the consequent. The effective likelihood ratios are themselves just

ratios of the p. edicted consequent odds, O(HIEi), to the prior

consequent odds, O(H), for i - 1 to n. With the exception of

O(HIEj'), all the terms in equation 8.9 are constant with respect to

the antecedent Ej. Using the constant C in place of these constant

terms, we may write that:
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O(HIE1', ...,En') C It 0(HIEj') (8.16)

n

whereI-

O(Hji') for all i <>

i-i 0(H)

substituting this expression for 0(HIElm , ...,En') into 8.15,

d P(HIEl . ....,Ent) 1 + 0(HIEj')

It* C It Mj (8.17)

d P(EjlEjl) 1 + C * O(HlEj-)

Thus, as O(HIEj') approaches zero, the limit of the

EVIDENCE-link-merit approaches the finite value C * Mj. Similarly,

as 0(HIEj') approaches one, the limit of the EVIDENCE-link-merit

approachen Mj / C.

Now that the EVIDENCE-link-merit has been shown to be defined

in all cases, we will derive a more intuitive form of the expression,

in terms of probabilities. Applying equation 8.3 to equation 8.15, we

find that:
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d P(HIE1', ...,En')

the EVIDENCE-link merit is equal to

d P(EjlEj')

2

[- P(HIE',...,En')] P(HIEl', ...,En') * (1 - P(HIEJ')]

..... .... . . . -.... * M j

[i - P(HIEj')J P(HIEJ') * [1 - P(HIEI', ...,En')]

Ls

cancelling appropriate terms leaves us with:

d P(HiEI',. .... ,En') [i1 P(HIEI',....,En')]*P(HIEI',....,En')

_ _... .... _ =* Mj

d P(EjIEj') [i - P(HIEj')] * P(HIEj')

EVIDENCE-LINK-MERIT (8.18)

This expression for the EVIDENCE-link-merit is the form

actually employed in our implementation of the merit control

strategy. In order to prevent any division by zero in the

implementation of equation 8.18, the value of P(HIEj') is offset by a

small amount when it is found to equal zero or one. Once a value

for Mj is determined, the remaining calculations are straightforward.

The calculation of Mj, however, does pose some difficulty; this

problem is addressed in section 10 when the merit control strategy is

compared to the PROSPECTOR method.
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9. An Intuitive Understanding of Merits

W~hat do link-merits really mean, and why should we work on

the proposition with the highest merit value? By definition, a high

merit indicates a great chance of changing the top proposition

probability. Each link-merit describes the power of an antecedent to

change the probability of its direct consequent. Since changing

consequent probabilities is the basic purpose of inference networks,

it seems reasonable to choose the merit function as a priority

rating. In previous sections we derived several important forms of

the link-merit involved in merit calculation. The purpose of this

section is to provide the reader with an intuitive understanding of

why the link-merits appear in the forms we have derived.

The AND-link merit states that the power of an antecedent to

change its hypothesis probability is inversely proportional to that

antecedent's probability (equation 6.3). Thus, the antecedent of

lowest probability has the highest link-merit among all the sons of

an AND fact. Disregarding self-merits for the moment, we should

always work on the least probable son of an AND node first. This is

clear intuitively since the antecedent of lowest probability is the

one primarily responsible for holding down the consequent probability

of an AND link.

The OR-link-merit states that the power of an antece~qnt to

change its consequent probability is inversely proportional to the
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complement of that antecedent's probability. (equation 6.6). Thus,

the antecedent of the highest probability has the greatest link-merit

among all the sons of an OR node. Contrary to our findings with the

AND proposition, if we disregard self merits for the moment, we

should always work on the most probable son of the OR node first.

This is also easily rationalized, since it is the antecedent of

highest probability that primarily supports the consequent

probability in an OR link.

Interestingly enough, the EVIDENCE-link-merit, as derived in

equation 8.18, is similar to the product of the link-merits for the

AND and the OR links described by equations 6.3 and 6.6, if we think

of P(HiEj') as somehow related to P(EjIEj'). This relationship was

initially quite surprising to us, and has provided us with several

insights into the meaning of subjective Bayesian updating. We are

tempted to view the EVIDENCE link as some combination of AND and OR

links, or as a compromise between them.

Actually, we may note from equation 8.18 that antecedents

predicting either a very high or very low consequent probability,

P(HIEj') appear to exert the greatest influence on EVIDENCE links.

Antecedents that predict consequent probability near .5 are not very

influential on the actual consequent probability. Thus, an antecedent

that tends to provide a very high or low consequent updating has

greater EVIDENCE-link-merit and should be explored before its

brothers.
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Note that with AND links, the antecedent that wished to keep

down the consequent probability the most, had highest merit. With OR

links, the antecedent that was primarily responsible for keeping the

consequent probability up earned the highest merit. An EVIDENCE link

may earn merit through its attempts to either raise or lower the

consequent probability away from .5. It thus seems to be a

combination of the AND and OR type links.

This analysis offers us an insight into the purpose of

EVIDENCE links. AND links should be used when the full power of the

AND is needed to reduce consequent probability to very low values. OR

links serve the purpose of allowing consequent probabilities to

increase to near unity. EVIDENCE links are best used when the

consequent probability should vary symmetrically around its prior

probability. EVIDENCE links have a symmetrical updating ability,

combining aspects of AND link updating with properties of OR links.

Our analysis and comparison of AND, OR and EVIDENCE links has

centered primarily on the denominator in the link-merit terms. These

denominators discriminate among the merits of the various antecedents

for a specific consequent. The numerators in all these link-merit

formulas, however, are also quite important when the propositions

being compared are from arbitrary places on the inferences network

and not just the antecedents of one consequent. In that case, merit

values must be calculated with the complete formulas as they have

been derived. These values may then be compared for any two

propositions on the network no matter how they are related.
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Thus, to utilize the merit functions for ordering sons in a

depth-first traversal, only parts of the link-merit functions need be

considered. This provides a trivial calculation for the

prioritizing of sons in such a traversal. The MULTIPLE algorithm,

however, will require use of the actual link-merit that is derived

through differentiation since merits from various dissimilar links

are compared.

p4
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10. Validity of EVIDENCE-link-merits

The PROSPECTOR system developed at SRI International

implements a depth-first traversal of the inference network. At each

EVIDENCE node the antecedents are ordered with the MARK IV strategy.

This strategy, described in the PROSPECTOR report (21, depends upon

the J* function values assigned to each antecedent. Duda et. al.

have designed the J* function to favor antecedents that tend to

increase consequent probability when the consequent probability is

low, and to favor antecedents that decrease consequent probability

when the consequent probability is high.

We decided to test our merit function against J* on several

real cases of probability updating. The J* function was programmed

as specified in the PROSPECTOR report. The EVIDENCE-link-merit

function used for comparison purposes was the one from equation 8.18.

However, before presenting the results, we must explain the Mj values

in that equation. From equations 8.5 and 8.6 it is apparent that Mj

has two different values depending on whether P(EJIEj') is greater or

less than P(Ej). These correspond to the two slopes in Figure 2.

The derivative techniques employed for deriving merits is

correct for infinitesimal changes. Thus, if P(EjIEJ') < P(Ej) and we

use the slope from the left side of the plot in Figure 2, MJl, to

compute the merit, that merit will be correct for probability changes

that take place completely on the left half of the plot.
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Equivalently, merits computed where P(EjIEj') > P(Ej) and using the

Mjr value, will be correct for probability changes that take place on

the right half of the plot.

What shall we do for the point P(EjEj') - P(Ej) ? Apparently,

that point has a left link-merit and a right link-merit,

corresponding to the left and right link-merit derivatives.

Furthermore, any P(EjIEj') point close to P(Ej) may also have a

probability change that forces the antecedent probability to pass

over P(Ej) . Would it be proper to compute link-merits for those

points as if only infinitesimal changes in the antecedent probability

will take place ?

Our solution to this problem employs an effective slope for

Nj that is some combination of the two slopes Mjl and Mjr. In

selecting a function to combine left and right slopes, we applied two

constraints. They are: (1) it is reasonable to expect the effective

slope at P(EjIEj') - P(Ej) to be the average of IMjI1 and IMjr1, and

(2) as a one moves further to the left, Mjl should quickly become the

dominating slope; likewise a move to the right should result in a

heavier weight to Mjr. We decided that a logarithmic growth and

exponential decay for the weights applied to the left and right

slopes would produce an acceptablv continuous approximation to Mj.

This approximation is used for all values of P(EjIEj'), including the

point P(EjIEJ') - P(Ej). Since our probability changes will be

finite rather than infinitesimal, it would not be proper to use

either Mjl or Mjr even at the endpoints.
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Given all the above constraints, the following approximation was

developed:

The slopes for the left and right interpolation lines on

figure 2 may be shown to have the form:

P(H) - P(HI-Ej) P(HIEj) - P(li)

Mjl -(10.1) Mjr =(10.2)

P(Ej) 1 - P(Ej)

An approximation to the slope may be produced by combining

the two sdlopes 14j1 and ?4jr with weight factors C1 and C2.

Mj -Cl1 IMJlI + C2 * IMjrI (10.3)

Finally, the weighting function to determine the constants C1 and C2:

Case 1 -

if P(Ej!EJ') <- P(Ej) then

P(Ej) - P(EjlEj')

ln 1l+ K

P(Ej)

* C1 .5 +

* 2 * n (1 + K)

and C2 1 a (10.4)



Case 2-

if P(EjlEj') >= P(Ej) then

P(EjlEj') - P(Ej)

In +K*

1 - P(Ej)

C2 - .5 +

2 * in (1 + K)

and Cl - 1 - C2 (10.5)

Te values of Cl and C2 are always in the interval [0,11.
• Furthermore, when P(EjIEj') = P(Ej), both equations 10.4 and 10.5

reduce to the value of .5, giving both Mjl and Mjr equal weight.

Thus, the proposed equations seem to satisfy our constraints. The

only unknown remaining is the constant K introduced in the weighting

functions, which determines how quickly the weighting function

changes as the point P(EjIEj') moves. A larger value for K will

cause the weight of the slope on the side to which P(EjIEJ') moves to

increase more quickly. Using the arbitrarily selected value of K - 10

we tested the merit function vs. the PROSPECTOR J* function.

A more mathematically rigorous scheme might utilize a

parabolic approximation for the interpolation process, providing a

differentiable function and a simple techniaue for computing Mj. A

parabolic approximation would also obviate the requirement for using

absolute values on the slopes of MJl and Mjr. As we shall see in the
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next section, the sign of the merit function can be significant. It

would therefore be advantageous to keep the sign of the interpolation

slope. In fact, even with our linear interpolation technique it

might be best to keep the signs of Mjl and Mjr as long as both terms

are of the same sign.

Consider the simple proposition tree in Figure 3. The top

consequent on the tree is H, and the two antecedents are called El

and E2. The method of subjective Bayesian updating is employed to

propagate changes in the antecedent probabilities, P(ElIEl') and

P(E21E2'), to the consequent P(HIEl', E2'). Two links are defined,

one from each antecedent to H. For each link we set P(HIE) = 0.9 and

P(HI-E) - 0.1, so that both sons have similar updating power. The

prior probability at each node, P(H), P(El), and P(E2) is set to 0.5,

self-merits are set to 1, and the antecedent probabilities are varied

individually. Results of this test are shown in Table 2.

Our intuitive analysis of the EVIDENCE link-merit functions

described in Section 8 is substantiated by the test data. The

link-merit tends to be maximized for an antecedent if it updates the

consequent probability away from 0.5 toward 0 or 1. The link-merit

from El to H, for example, increases as P(EIIEl') moves away from .5

and E1 attempts to update the consequent toward a more extreme

probability. This line of reasoning obviously applies only to the

various antecedents of a single consequent, when their influences on

consequent probability are compared to each other. However, it does

substantiate the general claims that the subjective Bayesian method
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provides a more symmetrical updating mechanism than ANDing or ORing,

and that it should be applied when the user is equally interested in

the variation of consequent probability in both directions from is

prior status.

Furthermore, it should be apparent by noting the changes in

P(HIEl',E2'), the updated consequent probability, that the link-merit

function for EVIDENCE type propositions is a maximum for the

antecedent that actually bears the most influence on the consequent

probability. If we wish to select the potentially most influential

antecedent for a specific consequent, the merit value provides a

superior heuristic to the J* function of PROSPECTOR.
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11. Merit Propagation in Inference Networks.

When applied to inference networks, merit propagation is

often beset with special classes of problems not handled by the

MULTIPLE algorithm previously defined. Inference networks, due to

their generalized graph structures, present special situations not

present in an ordinary proposition tree. In an inference tree where

no node has more than one father or consequent, determination of

merits may proceed precisely as defined for the MULTIPLE system. In

many inference networks, however, a node may have several fathers

corresponding to an antecedent with several consequents. Such

* situations present special problems in the backing up of merits.

Suppose, for example, that we have a proposition tree in

which the two sons, Gl and G2, of a top proposition G have a common

subproposition G' among their various antecedents (Figure 4). Assume

further that G' is found to be the most meritorious descendant of

both Gl and G2 independently. That is to say that the merit value at

G' is greater than :he merit backed up at either Gll or G22. In this

case, G' will be chosen as the most meritorious node over all of its

brothers, and its merit will be passed up to both Gi and G2. The

merit calculated coming down the left pathway from G to G1, to G'

will be backed up to G1 along the left pathway , while the merit of

the right pathway from G to G2, to G' is backed up to G2 along the

right pathway.
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A dilemma arises when the merits at G1 and G2 are compared

for backing up. It would not be accurate to back up the maximum of

these two merits as is usually done by MULTIPLE, since either choice

represents the selection of the same subproposition G'. We must

instead back up to G a merit corresponding to the combined effects of

G' through the left and right paths. Adding the absolute magnitudes

of the backed-up merits at G1 and G2 would also not be proper,

however, since the effects of G' through its left and right fathers

may tend to cancel each other rather than be additive. It is

possible that G' exerts a positive influence through G2. Thus, the

most appropriate course of ac'-ion when backing up merits from Gl and

G2 would be to add their signed merit values. If both branches

influence the top proposition G in a similar direction, their effect

on the magnitude of the merit will be additive. If, however, Gl

tends to increase the probability of G and G2 tends to decrease it,

their merits will be of opposite signs, and the total merit will be

diminished.

This solution to the problem of multiple consequents has a

firm mathematical basis. Recall from the initial definition of the

merit function as a product of derivatives, that the link-merits from[ ~G to G' are of the form:

d P(G) d P(Gl) left-links d P(G) d P(G2) right-links

-- * - (11.1) * (11.2)

d P(Gl) d P(G') d P(G2) d P(G')
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G2 for purposes of further propagation, the merit originally from Gll

may be greater than that merit at G2, and may therefore be discovered

as the most meritorious node. This may, however, be a drastic error;

the combined merit from both paths from G' to G may have been greater

than the merit backed up from Gil.

Let us analyze the origin of this problem. While backing up

from GIl and G' to GI, we considered only the merits present at those

propositions, and decided that the merit of Gil was greater. If we

would have ccnsidered the consequences of combining the effects of

the various paths out of G', we might have reached a different

conclusio'n. However, since we know only about the merit values in

the subpropositions of Gl when updating Gl, there does not seem to be

any way we might have avoided this dilemma. It thus appears that

there is a potential propagation error with any proposition having

multiple fathers that is not chosen as the most meritorious son by

all of its fathers.

Several solutions to this problem are possible, but none of

them is perfect. One may fist be tempted to assign a node extra

merit for having additional fathers. This will tend to select a

multifather proposition over its unifather brothers. This extra

weighting, however, is not always desirable. A proposition may exert.

opposing influences through its various parents. Such a node will

have a lower, rather than greater effect on the probability of a top

"* proposition. Thus, it is certainly not clear that a multifather

proposition deserves greater merit than its unifather brothers.
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We are interested in the value of the total merit derivative

d P(G) / d P(G'), however, rather than the individual left and right

influences. Noting that P(G) is just a function of P(Gl) and P(G2),

that P(Gl) is a function of P(Gll) and P(G'), and that P(G2) is a

function of P(G') and P(G22), we may apply the chain rule for

functions of several variables:

d P(G) d P(G) d P(Gl) d P(G) d P(G2)

- * - + * (11.3)

d P(G') d P(Gl) d P(G') d P(G2) d P(G')

* This formula many be extended to allow the calculation of merit for

any number of propositions with a common descendant.

Furthermore, although we have not bothered to mention the

propagation of self-merits in this discussion, they present no

additional difficulty. In general, self-merits of the leaf

proposition are multiplied into the link merits when the process of

backing up begins. A trivial application of the distributive law to

equation 11.3 allows implementation of that algorithm in this case.

d P(G) d P(G') d P(G) d P(Gl) d P(G')

* - U * - * --- +

d P(G') d C(G') d P(Gl) d P(G') d C(G')

d P(G) d P(G2) d P(G')

(11.4) - * - *

d P(G2) d P(G') d C(G')
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Thus, when the merit of G' or any other proposition with more

than one father is backed up, the self-merit may be combined with the

link merits as usual. Any time a group of brothers is compared for

backing up to their father, we must check and see whether their

merits are of a common origin. For unrelated merits, we simply back

up the merit of maximum absolute magnitude as we would in a normal

tree structure. Merits of common origin, however, must be added

before the backup.

Allow us to consider a slightly more complicated example.

Suppose now that our previous proposition tree has n subpropositions

at the top level (Figure 5). Propositions Gl and G2 share a common

. descendant G, but the remaining brothers G3...Gn have no common

descendant or are unexpanded. Merits are backed up for all the

subpropositions Gl to Gn, and must now be backed up to G. However,

before they can be backed up, the merits from Gl and G2 must be

combined since they have a common origin for their merit values.

Thus, our general procedure for backing up will be to first check all

brothers for common merit origins. Those with merits of common

origin are combined with merit addition, and only then is the maximum

merit value propagated up the proposition tree.

A more severe problem results in the proposition tree of

Figure 4 when G' is not chosen as the most meritorious descendant of

both G1 and G2. Suppose, for example, that Gl has a more meritorious

son Gl1, and the merit of Gl is backed up to G1 instead of the merit

* of G'. When that merit is compared to the merit backed up from G' to
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A more stable solution might involve the backing up of all

the merits from multifather propositions at each node on the way up.

This way, if there is any merit that is combined with a merit of

common origin during the back up it will be identified. Perhaps a

more pragmatic approach would be to back up the K-best merits and

hope for the best.

The most practical approach to merit propagation in inference

networks may just be to ignore the problem caused by multifather

nodes. After all, the objective is to save time by choosing the

proper proposition to ask the user about at each point. If more

time is wasted finding that best proposition than by using a slightly

less meritorious one, the entire purpose of the intelligent control

strategy has become self-defeating. Thus, unless a more efficient

mechanism for handling multiple fathers in an inference network is

discovered, we believe that the present MULTIPLE algorithm provides

the best control strategy to date.
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12. DISCUSSION: The Generality of Merit Functions

We have shown that the application of merits, first developed

for the MULTIPLE system, to inference networks allows efficient

updating of consequent propositions. Link-merit, which we have

derived for several types of antecedent-consequent associations, is

simply a mathematical function representing the ability of an

inference rule to alter their consequent's probability. Self-merit,

approximated by the expert, is the ratio of the expected change in

our belief in a proposition to the cost of expanding that
-'

proposition. The total merit of a node on the network is the product

of the link-merits on all the links directed from that node to a top

proposition, multiplied by the self-merit of that node. Because the

merit of any proposition on the network is a measure of the cost

effective ability of that proposition to change a top proposition, a

control strategy that selects the most meritorious proposition for

questioning is acting in an intelligent manner.

The units in which merit expresses the cost effective ability

of any sub-proposition to influence one of the top propositions are

universal to all propositions in an inference network linked to a

common consequent. This equivalence of the units used to express the

merit is a property of the merit function, and is true regardless of

the types of links used, or the units in which the lower level

propositional plausibilities are expressed. The merits of a MYCIN

style proposition and a PROSPECTOR evidence node located in the same

network will be expressed in equivalent units. All merit values in an
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inference network are expressed in units equal to those used in a top

consequent, divided by cost. The merit based control strategy is

therefore applicable to networks with any mixture of propositional

types. One restriction introduced by merits, however, is that the

belief in all top consequents be measured in similar units.

This versatility of the merit function allows the merit

control strategy to operate with various types of propositions in the

same network. Suppose, for example, we have a proposition in our

system called "NUMERICAL- SUPERIORITY". "NUMERICAL-SUPERIORITY" is

a function of the number of elements in items A and B, and thus has

two antecedents referred to as "ITEM=A=SIZE" and "ITEM-B-SIZE"

respectively, which may be actual numbers rather than probabilities.

"NUMERICAL-SUPERIORITY" is related to its antecedents by the

function:

ITEM=A=SIZE - ITEM-B=SIZE

NUMERICAL-SUPERIORITY - (12.1)

ITEM=A=SIZE + ITEM=B=SIZE

the link-merit from ITEM-A-SIZE to NUMERICAL-SUPERIORITY is derived

as:

d NUMERICAL-SUPERIORITY 2 * ITEM-B-SIZE

2
* d ITEM-A-SIZE (ITEM-ASIZE + ITEM=B-SIZE)
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substituting for ITEM-B-SIZE with equation 12.1, we find:

2

d NUMERICAL-SUPERIORITY (1 - NUMERICAL-SUPERIORITY )

d ITEM-A-SIZE 2 * ITEM-A-SIZE

a similar calculation may be performed to determine the link-merit of

ITEM-B-SIZE.

A generalized inference network may be updated with

propositions whose plausibilities are stored in many forms. The

linking functions described by the rules that construct the network

will need to take this into account when updating consequents. The

merit formulas, however, will always be found with the same

algorithm. Therefore, it is reasonable to assume that a computer may

be programmed to derive link-merits on an inference network for which

it is supplied with the linking formulas.

We are now ready to present our vision of a future expert

consultant system. Propositions, supplied by an expert, will be

linked into an inference network by linking functions, also specified

by the expert. Common updating functions such as NOTing, ANDing, and

ORing of antecedents, as well as the MYCIN scheme for inexact

reasoning, and the method of subjective Bayesian updating would be

system defined links. The expert may employ these predefined

functions in his links, or proceed to define his own set of linking
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functions. Once the system has created the network specified by the

expert, it will derive the various functions required for link-merit

calculation. Differentiation and variable substitution routines

will be available to the system for merit calculation on any new

expert defined linkage functions. If a new function is found to be

useful it may be stored in the data base of common link types for

future use. This future system will allow the expert complete

flexibility in creating the network, and free him from the burdensome

calculations that may be needed for finding the link-merits.

Furthermore, for the sake of completeness we should point out

that a merit based best-first traversal may be applied to inference

networks in which the propositions or rules contain variables. An

example of a variable rule is "if there is evidence for the presence

of organism x, then initiate treatment for organism x". Variables

may be very helpful in limiting the number of propositions and rules

that must be instantiated in the computer's memory for specific

cases. An algorithm for handling such variables has been developed

for the MULTIPLE program's implementation of the resolution principle

in theorem proving [111.
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13. CONCLUSIONS

Expert consultant systems have shown their adaptability to

many important problems. These systems have incorporated a valuable

tool, the inference network, in the analysis of various top

consequents. An inference network consists of propositions ordered

into a graph structure to allow propagation of information from lower

level, simpler, propositions to the more esoteric top proposition of

the network. The majority of time consumed by the inferencing process

is needed for questioning of the user. A significant reduction in

the numbers of propositional parameters filled in by the. user will

markedly reduce execution time and increase the cost effectiveness of

expert consultants.

We have applied the concept of merit, first developed for use

in the MULTIPLE system, to inference networks. Merit, a function of

both the cost and potential benefits of expanding a proposition, is a

quantity easily calculated by computers. The MULTIPLE algorithm

prioritizes the propositions under consideration by their merits. In

an inference network, the merit may direct an intelligent traversal

of the propositions, and an efficient ordering of questions to be

asked from the user.

The askable proposition of maximum merit on an inference

network corresponds to the parameter having the largest potential

cost effective influence on some top consequent, and should be
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expanded before working on propositions of lower merit. Introduction

of a cutoff merit may allow termination of user questioning when

there remain no unknown parameters which may significantly alter the

top consequent probability. Such a questioning strategy will

minimize the time needed by the user to answer insignificant

questions, and increase the efficiency of the inferencing process.

In this paper we have explicitly shown the derivation of

link-merits for *AND", "OR", "NOT", "MYCIN", and "EVIDENCE" type

links in an inference network. The techniques utilized in these

derivations, however, may be applied to any other type of link

representing a differentiable function. New classes of links

.J developed by experts designing inference networks should be adaptable

to the best-first approach based on merit calculations. Perhaps in

some future system computers may even be programmed to derive the

link-merits for an inference network. A system with such a

capability could easily utilize the merit mechanism for network

traversal by combining the link-merits which it would derive with the

expert supplied self-merits at the startpoints of the propagation.

The expert designing an inference network would never be required to

deal with merit functions or their derivation, but just specify the

IL links as mathematical functions, and provide a self-merit for each

proposition on the network.

The concept of merit provides a flexible and useful tool in

lot the design of control strategies for expert consultant systems. Merit

values may be employed to order antecedents prior to the expansion of
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a depth-first traversal, or they may themselves direct a best-first

MULTIPLE type of inference network traversal. We believe that the

MULTIPLE algorithm will offer a significant saving of time over the

classical depth-first approach. The original MULTIPLE algorithm was

designed for implementation with indefinitely large trees such as

those created when proving theorems or playing games. An exhaustive

search of such a tree is not realistically feasible. With finite

inference networks, however, it may be possible to save additional

time by a more exhaustive system for the updating of merits. When

searching for the unasked, askable proposition of maximum merit in

the inference network, an expert system may first perform an

exhaustive depth-first merit analysis, extending and expanding the

network traversal at each proposition until it reached an askable

proposition. The endpoints or leaves on this exhaustive merit

analysis would include all the askable propositions under

consideration by the system at that time. Such a mechanism for merit

propagation would examine all the possible askable nodes, and

discover the absolutely optimal proposition for questioning the user.

Thus, we propose two possible implementations for the

introduction of a merit based best-first control strategy. The first

scheme involves calculation of merit values with the MULTIPLE

algorithm, always expanding the most meritorious descendant. The

merit values which guide the user through the inference network in

a best-first traversal, would also be calculated in a similar manner.

This technique offers the advantage of quick merit calculation since

the time for the traversal needed to calculate the merit values is
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proportional to the depth of the inference network. A second

possible implementation for inference network control strategies is

to calculate the merit values with an exhaustive depth-first network

traversal. This might require slightly more time for finding the

most meritorious proposition on the network, but it would guarantee

that the user is always questioned on the absolutely most meritorious

proposition.
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APPENDIX

The i-star function we have used for comparison with merits

in section 9 is described in 121. For the sake of completeness, we

summarize that description:

Let 0(HIEj) 0(HI-Ej) 0(RIEJ')

LS *LN -L -

0(H) O(H) 0(H)

where 0(H) are the prior odds on H, O(HIEj) are the odds on H given

that Ej is true, 0(HI-Ej) are the odds on H given that Ej is false,

and 0(RlEV) are the odds on H given the present odds on Ei.

Define the measures of belief and disbelief in a similar

manner to that used for the mycIN system in section 4.

-MB(HIE') P(HIEj') - P(H)

if P(HIEj1) > P(H)

1 -P(H)

0 otherwise

?4D(HIE') -P(H) -P(HIE11)

if P(HIEJ') < P(H)

P (H)

0 otherwise
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We may now define )* as a function of these terms:

Case 1-

if LS > LN

LS

- - P(EjIEj') *[I MB(HIEJ')J

Ll

Case 2-

if LS < LW

LN

= - P(Ejfgjl) *(I - MD(fIgjl)j

+ in - [1 P(EjlEj-)] [1 -MB(HJI)]

LS
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G

G1 G2

G11 G12 G13 Gin

G121 G122 Gl2n

*Figure 1. A Proposition tree. G is the top level Proposition.

Each node Gij ... st is assigned a merit based upon its ability to

influence G and the cost of sprouting from it.
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consequent

probability

P(HIEj')

1

P(HIEj) -

~P (H I-Ej) -

•I I I

0 P(Ej) 1

antecedent probability P(EjIEJ')

Figure 2. A plot of consequent probability, P(HIEJ'), vs. antecedent

probability, P(EJIEJ'). One such plot is interpolated for each

antecedent of a consequent to be updated. Straight lines are used

between the three points for interpolation. The slope of the line on

the left, between 0 and P(Ej) is called Nil, while the slope of the

-second half of the line between P(Ej) and 1 is called Mjr.
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* Table 1. Steps in Subjective Bayesian updating.

Step 1-

Linear interpolation is used to find P(HIEj') for each Ej

If P(EJIEJ') <- P(Ej) then (equation 8.5)

P(H) - P(HI-Ej)

P(HIEJ') - P(Rt-Ej) + P(EjIEJ')* _______

P(Ej)

If P(EjIEJ') >- P(Ej) then (equation 8.6)

P(HIEJ) - (5)

P(HI~j') -P(H) + [P(EjIEj') -P(Ej)1 _______

* 1- P(Ej)

Step 2-

Predicted consequent probabilities are converted to odds using

equation 8.2. P(HIEjI) is the predicted probability for the

consequent H, considering only the current probability for the
antecedent Ej'.

P(HIEj')

O(HIEJ') -(8.8)

1-P(HIEj1)
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*table 1 (continued)

Step 3 -

Effective likelihood ratios of the antecedents are combined to

determine the current odds on the consequent H. Note that this step

is contingent upon the independence of the various antecedents.

(results of combining equations 8.4 and 8.7)

'II
n n

O(I1 ...., En) @iI O(H) -O(HjEi') *O(H)

(8.9) i-1 i-l O(H)

Step 4 -

Odds of consequent are converted back to probabilities using equation

8.3. The value P(HIEl', ...,En') is the final updated probability

, for the consequent H.

O(HIE11, ...,En')

* P(HIEl', ...,En') - (8. 10)

1 + O(HIEI', ...,En')
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El E2

Figure 3. The simple tree used for testing the EVIDENCE-link-merit

function against 3*. P(H) a P(El) -P(E2) -. 5 and the probabilities

at El and E2, P(ElIEl') and P(E2IE2V) are independently varied.

* Results are presented in table 2.
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Table 2. Comparison of EVIDENCE-link-merit and J* Functions

Link-merit J*-.Function

from H to: from H to:

P(ElIEl') P(E21E2') P(HIE1',E2') El E2 El E2

.50 .50 .500 .800 .800 2.197 2.197

.40 .50 .420 .800 .780 1.953 2.197

.30 .50 .340 .800 .718 1.588 2.197

.20 .50 .260 .800 .616 1.128 2.197

.10 .50 .180 .800 .472 0.592 2.197

.01 .50 .108 .800 .308 0.062 2.197

.01 .40 .081 .615 .243 0.062 1.953

.015 .40 .084 .617 .252 0.092 1.953

.005 .40 .078 .614 .235 0.031 1.953

.01 .405 .082 .624 .246 0.062 1.968

.01 .395 .079 .607 .241 0.062 1.937

.30 .70 .500 .891 .891 1.588 1.588

.30 .90 .701 .747 1.136 1.588 0.592

.40 .90 .767 .586 .968 1.953 0.592

.41 .90 .773 .573 .951 1.983 0.592

H.42 .90 .779 .560 .934 2.012 0.592

.45 .90 .795 .525 .883 2.035 0.592
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table 2. (continued)

.39 .90 .761 .600 .985 1.921 0.592

.38 .90 .755 .614 1.002 1.889 0.592

.35 .90 .736 .659 1.052 1.784 0.592

.40 .91 .777 .569 .973 1.953 0.535

.40 .92 .787 .551 .979 1.953 0.478

.40 .95 .816 .492 .996 1.953 0.302

*.40 .89 .758 .603 .962 1.953 0.648

.40 .88 .748 .619 .957 1.953 0.704

.40 .85 .720 .663 .941 1.953 0.868
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G

G1 G2

Gil G' G22

Figure 4. A proposition tree. G is the top node. G' is a

subproposition of both GI and G2. Thus, G' influences G through both

a left and a right path. How should we propagate the merit of G' ?

G

'P

Gi G2 G3 ..... Gnf\f\
Gil G' G21

Figure 5. A proposition tree in which two of the subpropositions

share a common descendant but the other subpropositions have

independent children. We must treat the merit propagated from G' in

a special way, but use the normal propagation routine for the other

propositions.
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