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1. INTRODUCTION

The distributed information systems area has seen a rapid growth in terms of
research interest as well as in terms of practical applications in the past three years.
Distributed systems are becoming a reality, however truly distributed databases are
still rare. For a large organization with a distributed computer network the problem
of distributing a database includes determination of;
C () How can the database be split into componcnts to be allocated to distinct
sites, and

C ( %) _ﬂ ow much of the data should be replicated and how should the repli-

cated fragments be allocated?
In this paper we design models for solving both of the above problems

The problems of database distribution have been attacked carlier Msearch—
ers, but we perceive two serious shortcomings in the work known to us. First there
is a body of work on file allocation which considers only a single file and ignores the
complexity introduced by the interlinked files which appear in realistic databases.
Second there are models which consider also the parallel problem of network topol-
ogy and hence deemphasize the data distribution problem. The topology of a net-
work with remote sites is often constrained by operalional considerations, but the
capabilitics of network connections are such that most networks can be reconfigured
to deal well with any known load.

Most modern networks provide at least on the logical level complete connec-
tivity and have nodes that can accomodate multiple files. It is in that setting that
our model is placed; we make also the simplifying assumption that the unit tr=i.
mission cost is the same among any two nodes. We are then able to concenti.
the problem of distribution of multi-file databases, modelled by a conceptual mcu.
of connected relations.

Figure 1 provides an outline of an overall database design methodology which
is consistent with previous approaches which were proposed in a non-distributed
database cnvironment[YaNW78, LumA79]. This figure is included to define the
context in which the problem is being solved. We assume that prior to undertaking
the distribution of the database the following activities have becn performed:

o The overall user requirements have been collected and analysed
o Individual application views have been modelled and integrated using
some formal techniques [e.g. NaSc78, Wik180).
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2 o Optimal Design of Distributed Databases

The spécifie inputs required for the “distribution design phase”, obtained from the
above phases, are

1. An enterprise schema An cnterprise schema describes the global,
canonicil model of the information structure for the entire database.
The schema may be represented by listings of relations, their atiributes
and domains, and definitions of connections among relations.

2. A tabulation of transactions and their volume The expected
load of transactions to be processed using the distributed database. We
assume that designers using the proposed methodology will be able to
identily important transactions and give a complete specification for
them. The success of the “optimization” effort is largely dependent on
how accurately and completely the transactions are specified.

3. Distribution requirements This refers to the fact that users
typically have a good understanding ol how they would like to partition
certain data among sites, how certain parts of data must be forced
to reside at the same site, etc. These requircments are modeled as
constraints in our formnulation.

With the above inputs from users and designers we proceed to develop an
optimization model for a non-redundant allocation of the database (Scction 3). To
limit the prolifcration of variables we have made the following simplifications: It is
assumed that all possible ways of partitioning of an object are prespecified and that
the model would cither select one of the candidate partitionings or allocate an object
as a whole. Sccondly, the logical access paths used in processing a transaction are
deterministically specified. The latter allows us to focus on data distribution rather
than mixing distribution with the optimization of transaction execution itself.

In spite of the above simplifications, the size of the problem for a realistic
database (with tens of sites and hundreds of data entitics) would still involve
thousands of variables in a zero-onc integer programming formulation. Since current
algorithms are good only for solving problems of the order of 60 to 100 variables, it
is nccessary to decompose the original distribution problem into subproblems. The
decomposition model is formulated as another integer program (Section 4). Finally,
we develop a heuristic procedure which starts off with a given non-redundant
optimal solution and determines the most beneficial replication of an object (Section
5). Section 6 includes an cxample of a database, a set of transactions for it,
and demonstrates how the non-redundant optimization model produces different
solutions for distribution as the cost parameters and frequencies of transactions are
varied.

1.2 Previous Related Work

As mentioned above, the previous work has been mainly in two areas: file allocation
and network topology applied to databases and communication networks.

The file allocation problem was first investigated by Chuy [Chu89). He devel-
oped a global optimisation model to minimise overall opcrating costs under the
constraints of response time and storage capacity with fixed number of copies of
each file. The integer program had a very large number of variables for even small
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Sec. 1. Introduction 3

problems and was computationally infeasible. Casey [Case72] relaxed the assump-
tion of fixed number of copies and stressed the difference between updates and
retrieval. Whitney [Whit70] as well as Casey addressed the combined problem of
file allocation and communication network design by restricting to tree topologies.
Eswaran [Eswa74] proved that Casey’s [ormulation was polynomially complete,
hence he suggested that heuristic rather than deterministic approaches be inves-
tigated. Several studies have been made in the area of vertical partitioning and
clustering of single files giving rise to integer programming or heuristic approaches
[HoS¢75,11076,HaNi79). In the present paper we will not consider vertical partition-
ing of the database objects per se since in the distributed environment it necessitates
a replication of keys and the modecl of transaction processing becomes too complex.

The second problem category has been explored in several studies with different
sets of assumptions and addressing different sets of parameters. Mahmoud and
Riordon [MaRi76] considered the combined problem of optimal file allocation and
channel capacity dctermination, whereas Morgan and Levin [MoLe77] examined
both the allocation of files and programs to process them within a generalized net-
work. By ignoring storage capacity constraints and inroducing some other simplify-
ing assumptions, Morgan and Levin demonstrated that the multiple file allocation
problem can be decomposed inlo single file allocation problems. Ramamoorthy and
Wah [RaWa79)] analyzed a relational distributed database for optimization of query
processing. By introducing redundant files, they showed how communication costs
attributed to joins can be minimized. Irani and Khabbaz [{rKh79] have combined
file allocation, network topology design and channel capacity allocation into a single
problem. Their model minimizes the total cost of file storage and communication
capacity over different channels under the constrainis of a minimum level of network
reliability, minimum availability of single files and maximum allowed communica-
tion delays.

e et 2o SR TRt R ke Be 3 g



4 Optimal Design of Distributed Databases

2. PRELIMINARY DEFINITIONS

In order to address the general problem of distributed database design and to de-
velop modcls which are widely applicable, it is necessary to define the notions of a
logical database schema, occurrences of schema constructs, and the data manipula-
tion operations in a general way. The concept of horizontal partitioning may then be
applied to the individual constructs of a schema, and database transactions can be
described using a small number of manipulation primitives. We summarize in this
section the concepts and definitions which are necessary to develop the subsequent
optimization and heuristic models. A more detailed discussion of the issues related
to the modelling of logical schemas, transactions, and partitioning is presented in
[NaCWS81].

It is assumed that the integration of user views has already been done and
that the logical schema which is subjccted to distribution is a global view or an
enterprise view. (See [EIWi79,LumA79)] for details on views and their integration.)
In our model of the logical schema, we have done away with an explicit accounting
of the semantics of various relationships whenever possible, since all semantics do
not have a bearing on the distribution problem. The logical schema of a database
is modelled as a directed graph with objects as nodes and links as edges. Objects
represent entities, events, things, or concepts of interest to a community of users.
The links represent relationships among objects.

2.1 The logical schema model

We will now define the components of a logical schema, namely objects and links,
which are needed for the task of designing a distribution. Included in the discussion
of links is the use of join operations.
Object: An object is a BCNF relation [Codd74). Each object has a
unique primary key. A non-key column in an object typically represents
an atiribute of the real world object or of a relationship. An objcct has a
unique name and index 1,1 < 1 < R. An object instance is represented
by an n-tuple from the object. Upper case letters 0y, Oy, ... will denote
objects, whereas lower case letters 0y, 03, . .. will denote object instances.

Link: A link represents a binary relation among objects and specifies an
ordered pair of objects. A link is described by an index 4, 1 < A < L,
and may, optionally, have a name. The following functions are defined
for a link {, )

own: ¥ =7
and

memb: ¥ — I, ‘

where ¥ = {1,2,3,...L} and I = {1,2,3,...R}
These functions return the index of the owner (member) object, given
the index of the link.
An instance of a link | = (0,,03) owned by O, is an ordcred pair
< 04,09 >, where 0y € 04, and og € Os.
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A member object instance participates in one and only one instance of a
given link. In the graphic notation, the link is directed from the owner
object to the member object.

One to many rclationships among objects are modelled directly using a
link which associates many instances of the member object with a single
instance of the owner object. Many to many or "n-ary” relationships
among objects (n > 2) are modeled by means of an “intersection object”
which is owned by several owners via different links. Figure 2 shows
some examples of the use of links.

Join Specification: Each link h has an associated join specification
JSh : O; X O5; —Boolean, with ¢ = own(h), j = mem(h).

It maps pairs of object instances from the owner and the member of the
link to true or false depending on whether or not they match the join
specification. For ease of treatment, we restrict the join specification in
the following discussion to the equijoin only.

Informally, JS) is the conjunction of equipredicates of the type 0;.C; =
0,.C;, where C; and C; are attributes from objects O; and O; or
columns in the corresponding relations.

We further assume that the join specification exhaustively includes those
columns which constitute the primary key of the owner object.

The above idea of predefined links deserves further explanation. We recognize in
the logical schema those particular equijoins which

a involve the primary key of the owner object and a compatible set of domains
from the member object.

b are significant on the basis that these joins will be heavily used by transac-
tions.

The existence of a link arises due to some rcal-world relationship which exists
between the objects[Chen76, WiEI80]. However, in going from a high-level semantic
model of the database to the logical schema for distribution design, some simplifi-
cations due to the following events are likely:

Unimportance: Relationships which express a semantic connection among
objects, but are not used in any of the imnportant transactions that are the basis for
the distribution design, may be eliminated.

Unmodelled: Reclationships which express a conneclion among objects that
corresponds Lo a join other than the Lype of equijoin mentioned in (a) above, are not
modeled as links. The set of permissible transactions however is nol constrained.
These joins may be performed by some transactions and give rise to an execution
cost which considers the use of links whenever possible and is otherwise based on
processing algorithms which do not require links.

Non-equijoins: In cases where several types of joins are possible among two
objects, if a link is shown in the logical schema connecting those two objects, that
link is used only for the equijoin. All other joins proceed as if no link existed.
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6 Optimal Design of Distributed Databases

The physical realization of a link may take several forms (e.g. , an index, a
pointer array, clc.). If there is a link among objects Department and Employee
with the join specification Department.D# = Employec.D#, it implics that given a
value for D#, e.g. , D# = 372, it is possible to access all instances of the Employee
object having the D# = 372 without an exhaustive search.

Quantitative parameters

Each object ¢ has:
cardinality: total number of instances of that object, called card(s).
size: total length of an object instance (tuple) in bytes, called size(s).
Each link h has:
image: the fraction of the instances of the owner object participating in that
link, ¥mage(h). .
average cardinality: the average number of instances of the member object
which are associated with an owner instance which participates in the
link, avcard(h).
membership ratio: the ratio of the toal number of instances of the member
object to the total number of instances of the owner object for the link,
ratio(h).
The following relationships exist:

ratio(h) = image(h) X avcard(h)
card(memb(h)) = card(own(h)) X ratio(h)

The cardinality of an object is shown in the logical schema by a number in the top
right corner of the rectangle representing the object. The image and the average
cardinality of the link are shown at the head and the tail of the arrow which
represents a link (sce Figure 3).

2.2 Partitioning

In this subsection we define the notion of primary and derived horizontal partition-
ings. These definitions are formulated with the following implicit assumptions:

Knowledge of use For a given database, it is expected that a “user” (this
term is also a synonym for a “group of users” or a “team of designers” etc.) has
a good understanding of the dala objects and links in the logical schema and also
knows the polential uses of Lthe database al various sites. Such knowledge is often
obtained during the integration phase, where the conceptual database model has
been constructed [EIWi79). This knowlecdge may be used in defining meaningful
horisontal partitionings of data objects and the allocation of partitions to various
sites. ’

Knowledge of linkage The user is further knowledgeable about how the
partitioning applied to one object may be "propagated” to other objects via links.
Propagation here implics using identical criteria for partitioning of multiple objects.

3
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Sec. 2. Preliminary Definitions 7

. Horisontal Partitioning The horizontal partition of an object is a subdivi-
sion of the instances of the object into disjoint subsets. Each such subset, called
fragment, has the same attributes as the original object, and can be allocated on a
particular site of the database operational system. A horizontal partition satisfies
a predicate which is a boolean cxpression made up of clauses:
‘ <domainname><operator><value set>
For each object we consider two types of horizontal partitioning, resulting in primary
and derived partitions.

Primary Partitioning A primary partitioning p of an object defines N,
differcnt fragments of the object on the basis of N, disjoint predicates.
Let PRED(s, p) be the set of N predicates for partitioning the object ¢ according to
partitioning p. Let f(i,p,q) be the ¢*® fragment and let pred;pq € PRED(%, p) be the
P predicate which defines for (¢, p,q) the ¢*® fragment of object ¢ under partitioning
‘ p. Then:

o€ f(i,p, ‘I) A Predﬁ'pq(o)
; Vo € 0;31q | predipq(0)

i The allocation of fragments to the sites of the network is also given by the user. This
feature, which greatly simplifies the optimization model, comes rom the fact that,
- in rcal applicatlions, the user associates candidatle fragments te allocation sites in a
; natural way; only because of this association, the user can determine the potential
o convenience of a given partitioning.
-~ ) The allocation of fragments is therefore an input to the application; as it will
' be shown later, the non-redundant optimization model dctermines which of the
» alternative candidate partitions (if any) should be applied to an object which, in
oo turn, determines their allocation.

Derived Partitioning Derived partitioning is the concept of partitioning an

objecl. by applying the sct of partitioning predicates which apply to another object

X so as to “derive” the partitions of the former object. Once a partitioning is defined

i for 1, the objects which are connected via a link with this object ¢ become candidates
’ for derived partitioning. Two important considerations are:

; appropriateness of a derived member partitioning: Given the partition-
P ing of an owner object, it is always possible to define a corresponding derived par-
titioning of a member object via a link. Such derived partitioning may or may not
be appropriate. Ilence the user nceds to confirm whether partionings suggested by
the dependency model are Lo be considered.

A

——
R, S BT

desirability of a derived owner partitioning: Given the partitioning of
a member object, it is not necessarily possible to define a corresponding derived
§ partitioning of an owner object along a link. A horizontal partitioning can only be
derived if object instances from any single fragment of the member object map into
only one fragment of the owner object. In this case the derivation of the partitioning
is feasible. In the structural model this condition is true for identity and ownership
conncctions whenever the partitioning predicate refers to the ruling part [WiEI80].
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8 Optimal Design of Distributed Databases

The user must categorically state any such derived partitionings which are not only
feasible but also desirable.

As a result of the above considerations a user is in a position to define “a hicrar-
chy of derived partitionings”. E.g., in Figure 4, a given database has the possibility
of two derived partitioning hierarchies on the basis of a primary partitioning of
MED-DEPTS ecither by location or by a range of department numbers. These hierar-
chies involve a propagation of partitioning along owner-member links. The third
hierarchy is based on a partitioning of PROCEDURES into surgical and non-surgical
procedures. The derivation of the partitioning along PROCEDURE to MED-DEPTS and
MED-DEPTS to DUCTORS proceeds from member object to owner object and is feasible
since MED-DEPTS and DOCTORS can be partitioned into two corresponding subsets.

A more formal definition of derived partitioning follows:

For a given object 7 and its particular partitioning p, there may be an associated
set D(1, p) of derived purtitionings. An clement of this set is a triple as follows:

D(i, p) = {< 11,42, b >|] properties i, ii, iii, and iv hold}

1) is the object from which the partitioning is derived
2 is the object to which the partitioning is applied
h is the link via which the partitioning is derived.
(¥1 = own(h) A i3 = memb(h)) V (($2 = own(h) A iy = memb(h))

i
ii For an object instance o € Oy,

o€Ef 7(‘.2, 3 q) - P'Cdin,r.!(o)
3 < 1,6,k DE D(‘,P) A
o € 0;, | JSi(o,d')A pred,-l,m(o')

iii Object ¢ appcars at least once in the first colum of D(i, p),
and p is a primary partitioning for s

iv The second column of D(i,p) does not contain the same object more
than once.

Note that the properties i and ii allow one to start with the object ¢ on which
the original partition is defined and define the derived partitioning for all objects
separated from ¢ by the distance of a single link. The process may be repeated to
propagale a partitioning Lo nodes further apart than a single link.

Parameters Describing Primary Partitionings Each fragment g of par-
titioning p of object ¢ has:

allocation: the site where the fragment of the database relation is potentially
allocated, called alloc(s, p, g)

fraction: the ratio between th- number of 1 stances of the fragment and the
total number of instances of the obj ¢ ~alled 4,9,q)

b
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Sec. 2.3 Transaction Modeling 9

Parameters Describing Derived Partitionings Each fragment g of an ob-
ject s which has a derived partitioning according to partitioning p has an allocation
and a fraction as before. Allocations are preserved through the join derivation;
therefore it is

alloc(q,t,p) = alloc(q,1’,p) | 3%, % | 5,4,k € D(¢', p)

In absence of a more precise user specification, we assume that join predicates do
not alter the fraction of primary partitions; therefore we have

It(a,3,p) = frle,?',p) | 35,h |3,4, % € D(¥,p)

2.3 TRANSACTION MODELING

One of the critical inputs to the distribution design process is the specification of
the overall transaction load on the database. It is assumed that the users have
a good notion of the important transactions that will run against the database
being designed. It is expected that at least the more important transactions on
the database will be identified and specified in terms of the propcsed method of
specification. These transactions allow an estimation of the total volume of data
being accessed and transmitted. The optimization model gives a solution which
minimizes the transaction processing cost.

Each transaction is described in terms of the following four basic access primi-
tives {TDA, SDA, TJA, SJA} which are similar to the access path primitives
proposed by Su et al [SuLL81).

TDA, Total Direct Access: This access primitive models the accessing of
all instances of an object in a transaction. For an object 7, the number of instances
accessed is card(s).

SDA, Selective Direct Access: This access primitive models the accessing
of only a selected subset of the instances of an object in a transaction. - The selection
criterion is prespecified in the transaction and the selectivity, or the number of
instances selected is estimated and provided by the user.

TJA, Total Join Access: This models the access along a !ink, either to the
member object or to the owner object.

owner to member: Access to j = memb(h) from { = own(h) via link
h, given that N instances of i have been accessed. Then the number
of instances of j accessed is N X ratio(h).

member to owner: Access to j = own(k) from { = memb(h) via link
L, given that N instances of ¢ have been accessed. Then the number
of instances of j acccssed is N. '

SJA, Selective Join Access: This models the access along a link in either
direction, as in the case of TJA above. However, the number of instances of
the target object accessed is estimated, and provided by the user. It reflects the
selections made on Lthe accessed object.

We have defined a graphic notation to go along with the above 4 access primi-
tives, examples are shown in Figure 5.
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10 Optimal Design of Distributed Databases

2.3.1 Transaction Specification

The cost parameters in the optimized non-redundant model of distribution are
derived from the complete specilicalion of all important transactions known to be
applicd to the propoesed database. Jigure 6 shows a graphic description of the
following transaction on the databasc of Figure 3.

FIND all Employees in the Departments in California
who have Projects which need Part# = 73886.
LIST Emp#, Dept#, Proj#, Budget#.

A user interface of the type shown in FFig. 7 is postulated in which the user would
essentially trace a transaction through the database with the numbers shown in
various columns and [ill in the table number of instances touched by the transaction
wherever sclective accesses are concerned. The system could then compute the
“number accessed” by filling in the missing numbers in that column and also
compute the total size of data transmitted “along the links”.

2.3.2 Transaction Execution

Different distributed systems have their own ways of implementing transactions. A
The model of transaction exccutlion which is implicitly assumed in the above dis-
cussion is a simple model as follows:

i A transaction originates at a specific site. The transaction has entry points
corresponding to the objects which it accesses first.

ii A transaction proceeds serially by performing TDA or SDA of objects
depending on whether or not a sclection condition is imposed on objects. At each
stage, the domains which are required to construct the end result of the transaction
are forwarded to the next object.

iii A join is performed whenever a link is traversed by a transaction. A join
causes the transmission of the columns which are a part of the join specification for
the link concerned. The size of the join columns added to the columns required for
output becomes the “size of tuple transmitted” in the specification tabie,

iv.  The “Partitioning predicate-matched” column in the transaction speci-
fication is signilicant to determine whelher a transaclion has a built-in selection
predicate which matches any of the predefined horizontal partitioning predicates.
The cost of the exccution of a transaction reduces whenever a matched predicate
is actually selecled for partitioning,.

v The retricval versus update of an object has no impact on the execution of
a transaction in the non-redundant distribution of data. It is, however considered
important during the analysis of redundant distribution.
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The transaction exccution model assumes that the user has a good “understanding”
of the actual execution strategy that will be employcd by the system, as it requires
a deterministic descriplion of the transaction’s access path. This is quite adequate
for most of procedural database languages; it can, however, be critical for advanced
relational systems, where the system’s oplimizer may behave in a different way than
the user expects, and lead to unanticipated cxecutions. In defense of the proposed
approach, it can be argued that:

1 It is not now possible to combine both transaction processing optimization
and database distribution oplimization; because both problems are very hard and
query processing optimization is highly dependent in the fcatures of the particular
system considered. Ilence, when the database distribution problem alone is to be
solved, a simple characterization of transaction execution cost should be given.

2 Any strategy determined by the system different than the one proposed by
the user can only increase the performances of the system; hence the proposed
execution strategy can be considered as a worst-case estimation.

8 The database distribution phase can be repeated once the system is opera-
tional, with belter characterization of transaction execution strategics and measure-
ments of system’s loads.

2.3.3 Transaction Parameters

The following parameters are related to transactions and will be employed in the
subsequent formulation. For ease of referencing they are aggregated here:
transaction index : k, 1< k<T
object index : 3, 1<t<R
link index : hy 1<h<LL
For each transaction k, the following are defincd:

e(-‘ = 1 if object 1 is the entry point of transaction
= 0 otherwise.

/% =1 il object 1 is the final objeci accessed during transaction k
= 0 otherwise.

u¥ = 1 il object ¢ is updated during transaction k
= 0 otherwise.

mf, = 1 if transaction k matches partitioning predicate p for object ¢

= 0 otherwise.

o(k) = the site of origin of transaction k.
J(k) = {i| f¥ = 1} is the sct of final objects in transaction .
r{ = number of instances of object ¢ selected by transaction k.
t* = total number of accesses to object i made by transaction k.
Note: tf > r¥
s¥ = data in bytes shipped from object 5 to the site which stores the next

object acceased by the transactions, or returned as a result when
is the final object.
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{* = index of the link accessed next after object ¢.
Nezt® = index of the object accessed next afer object .
Note: Nezt* can be derived from I¥
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3 THE NON-REDUNDANT DISTRIBUTION OF A DATABASE

In this section a model for the non-redundant distribulion of a database is presented.
The objective of Lhis model is to allocate the objects to sites either wholly or in
non-redundant [ragments so as to minimize a global cost function. The highlights
of the model are the following:

a:  One of the possible alternative sites for the allocalion of each object
is selected.

b: The model takes into account access costs at the various sites and
data transmission costs between nodes; thesc two criteria also ensure
that the optimal solution is “good” from the viewpoint of efficiency.

¢t The minimization of data transmission costs is obtained by allocating
links or predefined join paths in such a way that the joins of entire
objects or between partitioned objects can be performed locally.

d: The modc! of exccution strategy for a given “logical” transaction
is deterministic, and in fact the transaction consists of a sequence of
retrieval or update actions on objects and of link traversal (navigation
in the database) between objects. Having a non-redundant model allows
evaluation of each access or transmission cost on objects or links in an
additive rather than combinatorial fashion. A linear zero-one formula-
tion is possible, involving decision variables associated with possible al-
locations of each object and of each link.

8.1 Variables

We defin. two variables, X,Y to describe the state of each object, and two variables,
V,W to describe the state of each link.
Xip = 1 if the object ¢ is partitioned according to partition p, either in
a primary or in a derived way
0 otherwise.

Y;; = 1 if the object ¢ is allocated on the site j as a whole
= 0 otherwise.
Wip = 1 il link A is used for deriving a partition in the hierarchy of

derived partitions of purtitioning p, and own(h) and memb(h)
are both partitioned using p, either in a primary or in a derived
way
= 0 otherwise.
For a link h, there are as many Wj,, variables as the number of distinct
possible partitionings that are derived using the link.
Vap = 1 if link h is local to site j, because own(h) and mem(h) are
allocated on 5 as a whole
= 0 otherwise.
For a link A, there is a Vj; variable for every potential site j to which
that link could be allocated.




14 Optimal Design of Distributed Databases

3.2 Constraints

Clearly, the decision variables are constrained in order to be consistent with their
definition. We have:

(1) a non-redundancy constraint

EX.', + Z Y,y =1 for every object ¢
P J

(2) consistency constraints for variables W

Wip < Xown(h)p AWhp < Xmem(n)p for every Wi, introduced in the model
(3) consistency constraints for variables V

Vii < Youn(n)i A Vas < Yonem(h)s for every Vj; introduced in the model

Constraints (2) and (3) arc effective because the coeflicients in the goal function
formulation for V and W variables are negalive, and hence these variables tend to
assume the value 1 in the solution of the problem; however this occurs only if the
X and Y variables of both the owner and member of the link to which V and W
refer, i.e. those on the r.h.s. of the inequalities, are also set to 1.

3.3 Cost parameters

Access costs are proportional to the number of object instances accessed in a given
node at a given site; further sophistication is not possible, as the physical database
design at local sites will be performed in a later phasc; a similar approach is taken
in [TeFr80] for the logical design of a non-distributed database.

We distinguish between [ollowing types of cost units:

CLR; : unit cost for local retrieval accesses

CLU; : unit cost for local update accesses

CRI2; : unit cost for remote retricval accesses

CRU; : unit cost for remote update accesses
The above four combinations, generated by retrieval vs. update and local vs.
remote access, are reasonable categories since they incur different costs attributed
to authorization, concurrency, recovery, ete.

Transmission costs are proportional to the actual sizes of data involved in
transmission, and not on the source and destination site. It seems impossible
to give more sophisticated models as it is very difficult to predict actual costs
between pairs of sites. The cost may not be fixed in some systems because of
the use of dynamic routling algorithms for transmissions (e.g. in ARPANET); local
networks(e.g. ETHERNET) are accurately modelled in this way.

We have:

TC: unit transmission cost between any pair of different sites j, and jg;

TCjj5, > 0 it s#sn
TCj >0 if h=7
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3.4 Goal function
The goal function takes the form:

minz = CipXip+ ) Di;¥s; = Y AngWap — 3_ BaVar;
Sp (%) h,p A,y

where:

Cip : cost of partitioning object i according to the partition p
Dy, : cost of allocating the whole object ¢ on node j i
Cip and Dy; take into account both transmission and access costs ‘

App : cost of transmissions which can be saved because of the use of
the same partitioning criteria p on the owner and the member of the
link A

By, : cost of transmissions which are saved because both the owner
and the member of the link h are stored on the same site 5 as a whole.
Note that this parameter does nol depend on a particular site j, as
uniform transmission costs are assumed.

v

3.5 Coeflicient Evaluation L;

The four coefficients Cip, Dyj, Anp, and By specify the cost of the system operation
and have to be detcrmined beforc the optimization of the model can take place.

3.5.1 Coefficient C,, for partitioned objects ;

The coefficient C;, gives the cost of partitioning an object 1 according to the
partitioning p. This cost is in turn given by the sum of an access component CA,,
and a transmission component CTp:

Both parts require some elaboration.

A) Access Component The access cost component due to partitioning is
composed of the sum of costs due to all defined and relevant transactions in this
partitioning:

CAip =) SCAint
k
where SCA,,, the access cost for a single transaction, is defined as:

SCAwr= ), NRUL,CRU; + Y. NLUL CLU;

ivketk) jemolh) .
+ 3 NRRY;CRR;, + ). NLRY;CLR;
Fybe(k) gmolk)
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The counts NRUL,;, NLUL,;, NRR},;, and NLRY,; are rupecﬁvely the number
of remote updates, loal updates, remote retnevals, and local retrievals for- trans-
action k accessing the fragment on node j of the object i partitioned sccording
to partitioning p. This cost paramcter applies only to those objects which can be
potentially partitioned and is evaluated separately for every candidate partitioning

p-
k
NRU},; = AC,;uf
NLUf,; = ACY,;uf
= &
NRRE” AC{,, $)
NLRY,; = ACY,; (1 - uf)

Let AC" be the number of accesses of transaction k to the fragment on node

J of the object i partitioned according to partition p. Recall that we defined a

matching parameter m so that m® = 1 if transaction k “matches” partitioning

p, i.e. , it selects objects which are potentially allocated by the partitioning on the

originating site of the transaction. Then AC:‘” is defined for some ¢ which satisfies
the allocation as follows.

ACY,

bi = ifmE =0 then t! fr(i,p,q) | alloc(s,p,q) = j
else if j =ofk)  then ¢
else 0
i.e. if transaction & doesn’t match with partition p, a uniform distribution of accesses
is assumed and AC‘,,J is computed as a fraction of the total accesses proportional
to the fragment size; otherwise, in case of a match, two cases arise,
i: the transaction is issued on the node j that we are considering, and
in this case all the accesses are made there, or
ii: the transaction is issued on a different site, and in this case we have
no accesses,

B) Transmission Component The transmission component of the cost
coefficient C,p is given by the sum

CT,, = CT}, + CT},
where CT, takes into account transmissions which are needed for performing the
join operatlons which are required for perlorming the query or update and CT"
takes into account the transmissions of the results from the allocation sites of object

1 (partitioned according to p) to the site of origin of transaction o(k).
The communication load for performing Lhe joins is

CTyp= 3 Y. TRuTC
hjown(h)ssi

ltocts pa) ot |
where TR),; is the communication load per link and object fragment, specifically
the number of bytes per unit time which are transmltted along link A for accessing
object 3.
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The summation 3°_.,,,. . p.pho(k) determines the number of effective frag-
ments of object § parutloned according to p, i.e. the cardinality of the set of network
sites where partitioning p places the fragments. Remember that partition predicates
will match instances of object ¢ to a subset of the network sitcs, and 3°_ is the car-
dinality of such a subset. The condition alloc(t,p, q) 7 o{k) is used because join
information has to be transmitted to all the fragments of object 1 located at remote
sites. T'C is the cost parameter for-data transmission.

The unit communication load TRy; can be computed from the transaction k
specifications as follows:

IRy = E( E rh '5)
o k \¢|next(i')ms A

h—l:,

i.e. , the instances r¥%, of the object i’ which precedes ¢ in the access path of the
= transactnon k and therefore have to be sent to object ¢ are weighted by their size
3 - s% ; here h connects ¢’ to s.

-t Note that in evaluating the transmission volumes the coelﬁcxent r¥ is used,
since it is assumed that restrictions are performed before transmlttmg objects
in the network; in evaluating access volumes, the total access coefficients t* are
used instead, because instances must be actually accessed before the evaluation of
restriction predicates on them.

» Similarily, the cost for result transmissions is obtained by summing the com-
C munication load for the results of each transaction

s CTY, = Zscr,,,,

where SCT,, is the cost for the transmlssnon of the result from a single transaction,
| defined as

SCTh = 3, (1-uf)r} fr(i,p9) TC
i isgi€s (k) A
v syba(k) A
o alioc(i,p,q)m=j
e i i.e. , those fragments of the result of the transaction which are not allocated on the
‘ & same site as the sitc of origin for the transaction, are transmitted to that site; the
object 1 must belong to the set of terminal objects for that transaction (s € f(k)),
and the type of access must be retricval.

>

3.5.2 Coeflicient D;; for whole objects

This coefficient evalutes the cost associated with objects which are wholly assigned
to a particular site. It is given by the sum of an access component DA;; and a
transmission component DT;;:

Dij = DAi; + DT
These costs can again be ¢ Jluated for cach transaction.

[T - - —
-
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A) Access Component Tbhe access component is the sum of the access costs
of single transactions SDA,;; .

DA;j = SDA:
k

and the access cost of a single transaction SDA,;; is either the sum § of the local
costs if o(k) = v or the remote costs.

SDAijr = b; sy NLU; CLU;  + (1 = &,0u))NRU CRU;
+8;44)NLRECLR;  + (1 — 6;,,4))NRR: CRR;
The factors NLU¥, NRU¥, NLR%, NRR* are respectively the number of local

updates, remote updates, local retrievals, and remote retrievals for transaction &
accessing abject ¢ stored on any site as a whole.

NRU¥ = AC*u*

NIUY = ACk !

NRR! = AC*(1 - u})

NLR* = AC* (1 - u})
In this computation ACF is simply the number of accesses made by transaction k
to object t.

AC:‘ = t:-‘

B) Transmission Component The transmission component of the cost
coefficient DT;; is given similarly to the component for CT;;, as the sum
DT = Dﬁj + DT:-',-

where again DT|; takes into account transmissions which are needed for performing
the join operations, and DT takes into account the transmission of the result, for
retrieval transactions, from the node 5 where the object 1 is stored (¢ being onc of
the termination objects of the transaction's access path) to the site of origin o(k).

.DTyy= )  TRKTC
h,jjown(h)mms

where TR),; and TC were previously introduced; in this case, the join information
has to be sent to only one site, ‘

where the cost of a unit transmission of the result from ; single transaction SDTY;,
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is defined as

SDTG= Y. (1-uf)rfTC
sIlEf (k) V
Iyo(k)
i.e. the results of the transaction, which retricves some information from the object
1 allocated on node j, have to be transmitted to the origin o(k) of the transaction,

if of k) 7 j.

3.5.8 Coefficient A,

This coefficient evaluates the savings in performing the joins using link A when
both the owner and the member objects of h are partitioned according to the same
partition p; it is:

A’lp = (mh own(h) + TRy, mcm(h)) Np
where the coeflicients TR); have already been defined.

3.5.4 Coeflicient B,

This coefficient evaluates the savings in performing the joins using link A when both
the owner and the member objects of h are stored as a whole on the same site j; it
is

Bh = TRp own(r) + TRA mem(n)

3.6 Additional Constraints for Derived Partitions

In some cases, it may be necessary to model an additional constraint. Consider
a derived partition from object s’ to object ¢ using the link A connecting ¢’ and
. It .could be required that a partition be induced on object i in the solution
if and only if the same partition is also applied to the object i’ in the solution.
As an example, consider the case of a candidate partitioning of the Department
object by location (for instance, North, South, East, West) and of a candidate
derived partitioning of Employee objects, using the link which gives the department
in which ecach employce works. Assume then that the candidate partitioning is
sclected for Employee, bul not for Department. The problems which arise in this
case arc due Lo Lhe facl thal the employce information by itsell is not sufficient
to determine the partition and the site where the record belongs. Therefore the
transaction which generates a new employec record should first join the employce
record with the department record in order to derive the corresponding location,
and hence determine the fragment where the record should be stored. This case is
different from, for instance, the use of a partitioning criterion on the department
number, which is the key field of the department object and also appears in the
employce information (hence, the fragmentation criteria can be deduced without

-
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joining the corresponding relations). In conclusion, it is left to the designer to
evaluate the possibility of constraining the derivation of predicates at lower levels
of the derivation hierarchy to be the same as the predicate at higher levels. The
constraint that modecls this fact is simply:

(1) Consistency constraint for derived partitions
Xinp < Xip for constrained pairs < #/,5” > in the derivation

In fact, because of this constraint, the optimization model can be simplified.
The variable Wy, becomes useless as a result of the above constraint, because if
Xinp is set to 1 in the solution, then certainly the link is used for deriving the
partition (compare with constraints (2) in Sec. 3.2). Hence a modified model can be
used in which:

a: no W), variable is introduced for those pairs of objects which are constrained in
the derivation,

b: the coefficient Cy»p is computed in the derived model as the difference of Cinp
and A in the original model, since the savings will always occur if the partitioning
p is used for object ¢”,

c: the constraint (4) is introduced.

3.6.1 Modelling dependencies between objects

Similar constraints can be used for modelling other kinds of dependencies between
objects. Assume that object o" is “semantically” dependent from object o’ (for
instance, o” is a weak entity in the sense of [Chen78], or or o” is “externally”
identificd from o’ [Nava80), or the link between o’ and o” is an ownership connection
in the structural model [WiEI80]). This dependency might force the access to object
o’ whenever o” is accessed, and in this case the designer could decide to force object
0" to have the same allocation of object o’. As above, we need to introduce the
constraints (4'):
(4’) Dependency Constraint

x‘wp S X"l’ A Y,'n,' S Y", for dependent pairs < i’, & >

and the possibility of simplifying the model exists along similar lines as in the above
discussion. Here both the Vj; and W,, would be climinated.
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. 4 Computational Complexity and Decomposition

4 COMPUTATIONAL COMPLEXITY AND DECOMPOSITION

The computational complexity of a linear zero-one program depends roughly on the
number of variables which are involved.
Let:

N : the number of sites

NPF; : the number of candidate partitions for object &

R : the number of objects

L : the number of links

ND), : the number of partitions which are derived using the link A,
then the number of variables in the model is

NVAR=N(R+L)+)_ NP+ ND,
‘ A

(there are: NF; variables X;, and N variables Y;; for each object, ND, variables
W;p and N variables V;; for each link)

This number can easily become too large for integer programming solution
methods; hence some techniques are needed for decomposing the original design
problem into subproblems which are computationally feasible. The decomposition
aims at determining subsets of the enterprise schema which can be independently
optimized; it is desiderable to “cut” the model into subsets by snapping the links
along which the least transmission volumes occur, as the allocation of these links
will not be optimized.

A model for determining such a decomposition of the problem is presented
in the following; the aim of the model is to decompose the original problem into
subproblems whose dimension is big enough to represent meaningful problems, yet
is small enough to be computationally feasible. This aspect is captured by one
of the model constraints, which limits the number of variables belonging to the
subproblem betwcen a lower and an upper bound.

4.1 Decomposition Model

The model determines a subproblem S consisting of a set of objects and links
having an associated number of decision variables for the non-redundant allocation
model which is limited between a lower and an upper bound. An optimal set S is
determined by minimizing the volume of transmissions which use the links between
objects belonging to the sct and objects outside the set.

Variables One dccision variable is introduced for each object 1, and two

decision variables are introduced for each link A.
X; 1 if the object belongs to the subproblem S

0 otherwise.
1 if the link h connects an object of S and an object outside §
0 otherwise.
1 if the link h connects two objects of S
0 otherwise.

Y

Zn
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Goal function The goal function for the decomposition has the form:
minz =Y W)Y
A
where W}, represent the transmission requirements along the link A, and it is:

Wi = B, =TR, own(h) + TR, mem(h)
The cocflicient TR); is introduced in Sect 3.5.1.

Constraints Size constraints are introduced to assure that the subproblems
created from the decomposition phase will be neither too large nor too small. There
are also two new consistency constraints.

1) Constraint on the dimension of the subproblem. Let LB and U B represent
the lower and upper bound respectively on the number of variables that are included
in the subproblem; then:

LB < Y (N+NP)X;+) (N+ND\)Z, < UB
[y A

2) Conasistency constraint for the variables Y,. Each Y, must be forced to 1
when the values assumed by the X variables of the owner and member object are
different. Otherwise the Y} value is free, and because of the positive coefficient in
the goal function, ¥, will naturally be 0.

Ya 2 me(h) ~ Xmem(n) A Y, 2> chm(h) “Xown(h)p 1< h <L

3) Conasistency constraints for the variables Z). Each Z) must be forced to 1
when both owner and member are 1, but must be forced to 0 when any of them is
0 (hence, Z, is equal to the product X,un(h) Xmem(r)). This is modelled in a linear
program by introducing the constraints:

Zx S xmm(h)

Zn < me(h)
Zh 2 Xmem(h) + Xowaiyy—1, 1<h<ZL

OSBRI o= S TR WAL IIP I £ SN s S art SRR
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5 DESIGN OF A PARTIALLY REPLICATED DISTRIBUTION OF
THE DATABASE

The introduction of redundancy in a distributed dalabase can lead to important
advantages both from the viewpoint of performance and reliability of the system.
The introduction of redundancy has Lo be handled with great care, since it also leads
to an increase in the complexity of the distributed database management software.

Redundancy exists at many levcl in database systems. System level redundancy
is provided by data encoding and logging mechanisms, with the sole objective of
gaining reliability. Redundancy in databases is commonly increased by the use of
indexes and auxiliary access paths. In distributed systems especially we find that
sets of data elements are kept redundantly at multiple sites.

The potential gain in performance from such a replication is due to the fact that
any of the copies of each replicated database object can be used by a transaction
for a retrieval access, provided that all the copies are consistent; hence several
execution strategies can be used for accessing objects, decreasing overall execution
costs. The improved reliability is obviously related to the availability of several
copies, geographically dispcrsed, of the same information. The increase in the
complexity of database management is mostly due to the need of maintaining the
consistency of the replicated copies of the same data objects; updates have therefore
to be propagated to all of them.

In the following, we will describe a heuristic technique for progressively intro-
ducing redundancy by replication, using the optimal non-redundant solution as a
basis. Assumptions will be made about how transactions are handled in the repli-
cated environment, aiming to give an execution model of transactions which is typi-
cal of distributed database systems which employ replication. It will be shown that
the transaction excution model is inherently combinatorial because of replication,
and this motivates the use of a heuristic allocation algorithm.

5.1 Assumptions about the Distributed Database Environment

In order to analyze replication within the distributed database environent we have
to modify and extend the assumptions made in the previous analysis:

1: The non-redundancy constraint is relaxed; therefore, it is possible to have
several different allocations of the same data object.

2: The updates are immediately propagated to all the copies of each data
object; therefore updates to objects are directed t¢ all the sites where the objects
are replicated.

8: The oplimizer which determines the executlion strategy of transactions has
the following features:

a: It has a global knowledge of database; global dircctories are therefore
available at each site where transactions are optimised.

b: It selects the best alternative among the logically equivalent execution
strategies which are possible for retrieval accesses; this choice reflects
the same criteria which are used in the optimization model, namely, the
minimization of access and transmission costs.
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4: The replicated copies are used to enhance system reliability as well, and
lessen the requirements for stable storage at cach node [MiWi81). The increase
in rcliability which depends on the presence of multiple copies can be taken into
account by associating to each object a set of negalive cost parameters, each of
which estimates the overall benelit which is a function of the number of copics of
the object.

5.2 Example of Transaction Execution over a Redundantly Distributed
Database

Consider a simple transaction T* which accesses two objects O; and Oz which have
degrees of redundancy dry and dr respectively. Consider the following 4 possible
cases:
case a: Both O; and O; are retrieved (u¥ = u%¥ = 0); then there are
dry X drg possible execution strategies for the transaction, each using
one particular pair of copies of Oy and O2. The cost associated with
transaction execution is the minimum cost among these alternatives.
case b: O, is retrieved and O is updated (u¥ = 0, u§¥ = 1); then all
the copies of O2 are accessed, while there are dry alternative execution
strategics for accessing one of the copies of Q). The information which
is used for joining Oy and O3z is sent from the sclected copy of O; to
all copies of O2. The cost asociated with transaction execution is the
minimum cost among the dr; alternatives.
case ¢: O is updated and O is retrieved (uf = 1, u§ = 0); then all
the copies of O; must be accessed, but only one copy of Oz is sufficient.
The information wh_h is used for joining O, and Qg is sent from the
most convenient copy of O; to the sclected copy of Oy. Again, the
cost associated with transaction exccution is the minimum among drg
alternatives.
case d: Both O; and Oz are updated (u¥ = u = 1); then there is only
one exccution strategy for T*, consisting of accessing all the copies of
both O, and O3. For each object of Og, the information which is used
for joining O and Oj is sent from the most convenient copy of Oy.
In the following, some definitions are given which are uscful for the replicated
oplimizalion model.
Let S be a non-redundant solution, O be the set of objccts of the database, I be
a subset of 0. The set SOL(S, I) contains those solutions S’ generated by taking all
possible ways in which objects in I can be non-redundantly allocated in combination
with replicated allocations for the objects in O—I. Therelore, indicating with prime
the allocation variables of S’ and without prime the allocation variables of S, the
following definition can be given:
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SOL(S, 1) = {S']
VieL((3ip| Xip = X3 = 1A (VP # p, Xy = 0) A (V5,Y}; = 0))
V(@Y= Ysj = "A(V] #J, Yﬁj' =0)A (VP,X:-’, = 0))),
Vi€ (0-1),(Xyp = Xip AYi; =Yy}

The cardinality of SOL(S, I) is a function of the degree of redundancy dr; of
the objects in I; it is |SOL(S, I)] == [, dr:.

Finally, we can say that two solutions S’ and 8" differ in one variable V, or
§'—8§" =V, when X[, = X{, and Y; = Y7; for all variables other than V, and
Vi=1,V"'=0.

Given a solution S, it is possible to evaluate the transaction execution cost
C(T*,S) as the minimum of the set of alternative transaction execution costs
TEC(T*, S'), where S’ is one of the solutions in SOL(S, I*) and I* is the set of the
objects retrieved by thc transaction. We have:

(T, 8) = TEC(T*,S’)

min
S'€SOL(S,I*)
Recalling the cases of Sect. 5.2, the sct of retrieved objects is

I* = {0,,02} in case a,

I* = {0,} in case b,
Ik = {02} in case C,
*=e¢ in case d;

in general itis  I* = {O; | u¥ = 0}.

Figure 8 shows the lor the 4 cases of Sect. 5.2 the accesses of transactions and the
required transmissions in terms of the set of SOL(S, I), given a solution S.

5.3 Description of the Object Allocation for the Redundant Database
Distribution Algorithm

The description of a redundant database allocation uses the same variables X, and
Y;; that were introduced in the non-redundant model, relcasing the non-redundancy
constraint. Therefore it is possible now to allocate an object according to several
alternative partitionings, or Lo store it as a whole on scveral parlitionings and [ull
allocalions. We can define a redundant solution S as the assignment of 0/1 values
to the dccision variables X,p and Y5, subjected to the constraint that each object
should be allocated at least once in the distributed database; the non-redundancy
constraint is therefore modified as follows:

Y Xp+) Y21, Vi<R
r £
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5.4 Evaluation of Transaction Execution Cost

In this section the transaction execution cost TEC(T*, S') for a given solution S’ of
SOL(S, I¥) is derived from the logical description of transaction accesses, introduced
in Section 2.3. The same cost parameters as in the non-redundant model are used
for access and transmission costs (see Section 3.3).

The transaction execution cost TEC(T*,S’) comprises 2 components: access
costs AC(T*, S') and transmission costs TC(T*, §').

Access Cost Let U(k) be the set of objects used by transaction k. The access
cost AC(T*, S’) considers essentially the same components as in the non-redundant
model, but now aggregation is made on the objects for a fixed transaction instead
of aggregating on transactions while keeping the object fixed. It is:

AC(T*, 8" = 3 (SCAipk Xip + SDAj1 Yi;5)
s€U (k)

where SCA;pi and SDA;;x were defined in Secs. 3.5.1 and 3.5.2. However, X.p and
Y;; are now fixed and appear in the cost evaluation. Also, notice that there can be
more than one value X;, or Y;; set to 1 for the objects which are updated.

Transmission Cost The transmission cost TC(T*, S’) is given, as before, by
the sum of two components. The first one, TC'(T*, S'), takes into account those
transmissions which are required for performing the joins. For every copy of object
i which is accessed via a join with the object ¢’ (i.e. for every pair <i,¢'> such
that ' precedes i in the access path of the transaction), a transmission is required,
unless 3’ has the same allocation as ¢. Therefore,

a: the transmission of the join information from object ¢’ to all the fragments
of object i is required when the solution S’ has the variable X, set to 1 and Xy,
set to 0;

b: likewise, the transmission of the join information from object i’ Lo object
i is required when the solution S’ has the variable Y;; set to 1 and Yy ; set to 0.
We have:

TC(TH 8= ).  (1—Xup) Xip Nprkof +
i,¢ pliEV(K)A
Next® (/)=
(1-Ye) Vi rf ol TC
i8 JHEUV (M)A
Nexth(s')ms

This formulation takes care of the minimization of the transmission cost when ¢’ and
i are allocated according to the same partitioning, or on the same site; otherwise
transmission of join information to each copy which is retrieved or updated is
provided. The minimisatior of transaction execution costs which accrue to the
choice of onc particular copy of cach retricved object is part of the minimization of
costs associated with alternative solutions in SOL(S, I*).

—
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Note the similarity between T'C'(T*, ) and the coefficients CT', and DT, of
the non-redundant model; here again X, and Y;; are fixed, and hence the use of
their product in the formulation is possible.

The second component of the transmission cost, TC"(T*, S'), takes into ac-
count these transmissions which are required for collecting the result of the trans-
action on the site of the transaction. This cost is evaluated exactly in the same
way as in the non-redundant model origin, as it involves transmissions to the origin
site from those sites which store terminal objects of the transaction; note that, as
terminal objects are accessed for retrieval, they are not redundantly allocated. We
have:

TC"(T*,8') = Y (SCTV Xip + SDTY;, Yi;) TC
k

where SCT,, and SDA{;; were introduced in Secs. 3.51 and 3.52.

5.5 A Greedy Heuristic Algorithm for the Progressive Introduction of
Redundancy

A greedy heuristic algorithm for the progressive introduction of redundancy, using
the optimal non-redundant solution as a basis, is shown in Fig. 9. The algorithm
has the following features:

1 The algorithm is iterative; at each iteration, the solution S determined at the
previous iteration is taken as a basis, and all variables V' which have value 0 in that
solution are tentatively set to 1, generating a set of alternatives solutions S’ such
that S’ — S = V. Global costs are then evaluated for all alternatives, and the one
with minimal cost is sclected. Thercfore, at each step the “degree of redundancy” of
the solution increases. The optimal solution from the non-redundant optimization
model is the basis for the first iteration.

2 The algorithm can be classified as a greedy heuristic, because at each step
the variable V is sclected which decreases the overall costs the most.

8 The algorithm is convergent toward a relative minimum, as the overall
cost monotonically decreases with progressively determined solutions. In fact, the
algorithm terminates when it is not possible to decrease the overall cost any {urther.

4 The reliability bencfit acerued by having multiple copies is not attributed
to any particular transaction, but rather to a solution.

The algorithm compares alternative solutions S by associating to them a global
cost C(S) which is based on the cost of transaction excculion and the bencfits
accruing from the increasing reliability due to the introduction of redundancy.

The object { whose allocation variable value is changed from 0 to 1 in S’ divides
the transactions into two sets. The first one consists of those transactions which use
O;(s € U(k)), whose execution cost has to be evaluated. The sccond one consists
of those transactions which do not use O;(¢ & U(k)), whose execution costs does
not change from the previous iteration. Clearly, by storing individual transaction
excculion cosls corresponding to the current solution al each iteration, these costs
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need not be evaluated for transactions of the second set. The transaction execution
component of the global cost C’ is evaluated by summing the contributions from
the transactions of both sets (sce Fig. 9).

The reliability benefit can be modeled as a function of dr;, the number of
copies of each objcct ¢ in the considered solution. Realistically, the bencfit increases
with dr; in a non-linear way; in fact, while the introduction of the first copy is
highly beneficial, the interest in having the (dr; + 1**) copy of the same information
decreases with dr;. A possible function to model this property is:

fldry) = (1—27%+)B;

where B, is the benefit of having the object ¢ infinitely redundant; note that f(1) =
0, f(2) = 1/2 By, f(3) = 3/4 B;, and so on. The benefits due to replication are
taken into account by summing the values returned by the above functions for all
objects in 8’ (sce Fig. ¢).

At each iteration, Spew corresponds to the current “best” candidate between the
alternative S’ solutions generated from S; C, C’ and Cp... denote the corresponding
global costs. The algorithm terminates when none of the candidate solutions S’
yields a global cost which is less than the current global cost, and therefore Cpew <
C is not satisfied.

5.6 Alternative Heuristic Formulations

The heuristic proposed above is “conservative”, in the sense that dccisions taken
at each step involve the repetition of all cost evaluations concerning those objects
whose allocation is modified from the previous step. In that sense the proposed
heuristic is “sound” (decisions are always based on correct cvaluations), but it is
also rather hard from a computational viewpoint. As alrcady shown, the compuia-
tion of transaction exccution costs grow combinatorially with the number of objects
retricved by the transaction itsell; therefore the complexity of an iteration decreases
linearly as the algorithm evolves because of the reduction of variables to be con-
sidered as candidates, but the complexity of transaction cost evaluation increases
combinatorially with the degree of redundancy of objects in the base solution.

In some cases, the dimensions of the database design problem are such that the
computational complexity of the proposed heuristic is too hard; then the proposed
heuristic is a good basis lor building “laster” heuristics, which sacrifice the accuracy
of the final result in order Lo avoid hard computations. In the following, such a
faster heuristic is presented which has the important property of being convergent
toward a relative minimum.

The algorithm consists of the following steps:

step 1 Iteration 1 of the original algorithm is performed, and all the candidate
solutions S’ corresponging to a cost C’ which improve the cost C* of the optimal
non-redundant solution are retained; these solutions are ranked in descending order
by value of the associated cost C’ (hence, the first solution correspond to the more
convenient variable to be set at 1).




RIS

Sec. & Design of a Partially Replicated Distribution of the Database 29

step 2 Then, variables are tentatively set to 1 according to the ranking order,
thus increasing progressively the degree of redundancy of the solution. At each
iteration, it is verified that the global cost has decrcased with respect to the previous
iteration; however, this is done for the considered variable only.

step 8 If the above verification fails, then it is possible cither to terminate
the process or to repeat Step 1 with the current solution as a basis, rank variables
according to their convenience, and then proceed with Step 2. In this case, the
optimization process terminates when Step 1 is performed without finding any new
solution which decreases the cost of the current one.

5.7 Introduction of Concurrency Control Costs in the Design

Synchronization costs can be introduced in the design of the redundant distribution
of a database to take into account the increase in complexity of concurrency control
due to the presence of redundant copies, which require updating within transactions.
An addilional parameter CM is introduced which measures the cost of transmitting
one message betwecn different sites. Concurrency control is also necessary for
databases without replication and for auditable rctrieval transactions as well as for
update operations. The cocfficient CC(T*, S') will evalute the amount of overhead
with respect to a non-redundant exccution of the same transaction. Since our model
aims Lo be general no particular schema is assumed for the implementation of the
concurrency protocol, and we consider that synchronization overhead is proportional
with the number of copies to be updated. This number is furthermore proportional
to the number of fragmeuts per partitioned object Ny, when the transaction does
not match the partition. We have therefore

co(Tt, s = Y (Z Xiplmly + (1 —=mE)Np) + ) - Y-j) cM
SEU(K)A \ p J
u =1

In selecting the best alternative for transaction cxcution the term CC(T*, ')
should be added to AC(T*, S') and TC(T*, §').

5.8 Introduction of Storage Limitations in the Design

Storage limitations at cach database site may also be introduced into the model. In
modecrn systems storage costs may become a minor component of overall system cost.
ITowever, with replication of data it may be uscful to include in the optimization
constraints which account for storage limitations in order not to excecd available
storage at each site. Such a constraint is

Xp fr(s,p,9) + Y.; size(i) < SC; for every site 5
L] p,elalloc(i,p,q) ==y
where SC; measures the storage capacity at site j.
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6 EXAMPLE

An example of an application of the optimal non-redundant allocation model is
shown in Figs. 10 and 11. The example is quite simple, but it incorporates most of
the features which are typical of a database distribution problem.

6.1 Description of Requirements

The requirements for the optimization model are described in Fig. 10a, b, and
c. We are considering a fully-connected, distributed database consisting of three
sites. The database schema which has to be distributed (Fig. 10a) consists of three
objects (DEPARTMENT, EMPLOYEE, and PROJECT) and threc links (DEPT-PROJ, DEPT-
EMPL, and PROJ-EMPL). Quantitative parameters and the index numbers associated
with objects and links are also shown in the figzure. Note that the link between
DEPARTMENTs and PROJECTs is included in Lhe logical schema, but is never used
by the transactions which are considered; hence it is not subjected to distribution
optimization.

The candidate partitionings are shown in Fig. 10b. Partitionings 1 and 2 are
primary on DEPARTMENT and derived on EMPLOYEE via link DEPT-ENP; partitioning
3 is primary on PROJECT amd derived pm EMPLOYEE via link PROJ-ENP; partitioning
4 is primary on EMPLOYEE. Because of these definitions, the object EMPLOYEE can
be partitioned according to 4 alternative candidates (3 derived partitionings and 1
primary partitioning); consequently, variables 2y, 249, Z,3, and z,4 are introduced.
The object DEPARTMENT can be partitioned according to 2 alternative candidates
(both primary); correspondingly, variables z2; and z22 are introduced. Finally, the
object PROJECT can be partitioned accordingly to only 1 candidate partition, which
is primary (variable z33).

The Transactions are shown in Fig. 10¢; quantitative parameters are described
through Transaction Specification Tables, as in Fig. 7. Transaction 1 is issued at
Site S1 and matches predicate py. Therefore, if the employcc OBJECT accessed by
the transaction were partitioned according to p4 in the optimal solution determined
by the optimization modcl, all accesses of T'1 will be local to Site 1. (This, of course,
will also occur if Object 1 is allocated at Site 1 as a wholc). Transaction 2 can be
issued from all the sites, but it matches predicate pl when it is issued from Site 1.
Transaction 4 can be issued from Sites 1 and 2 and in both cases matches partition
P2,

6.2 The Optimisation Model

The optimization model for the example involves the usc of 25 variables; in fact,
there are 7 X, variables (corresponding to 4 primary and 3 derived partitionings),
3 W, variables (for the links along which derived partitions are propagated), 9
variables Y;; (each object can be allocated on each node on a whole), 8 variables
Va; (2 links are used by transactions, and can be local to each site). Moreover,
21 constraints are introduced (3 non-redundancy constraints, and 18 constraints
for modelling depcndencies between variables Wi, and X;p or Vi and Y5, The

. e
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optimization was made using the Additive Generalized Balas Algorithm, which is a
gencral, 0-1 integer linear solution method; the program was taken from [BaCC81).
The CPU time used for an optlimization run was between 1 and 3 seconds on a
DEC-20/60 system.

6.3 Discussion of Results

Figure 11 shows seven results of the optimization, obtained by varying the cost
parameters and the transaction frequencies. For simplicity, in the case of multiple
site transaction, the same frequency value is assigned to each version. A solution is
represented in the table by the variables which are set to 1; object or link variables
are shown in separate columns.

Cases 1, 2, and 3 show the effect of increasing transmission cost. With null
transmission cost (T'C = 0), each object is allocated by itself, and no Vj; or
Wiy variable appears in the solution (as join transmission costs are not evaluated).
Howecver, by increasing transmission cost, the object allocation moves to site 1. This
is because, in the example, most transactions are issued from site 1, and therefore
this solution maximizes the locality of processing.

Cases 4 to 7 show the effect of increasing one of the transaction frequency values
in turn. Cases 4 and 5 still maintain the allocation of objects on site 1, because
transactions 1 and 2 are issued from 1. However, case 6 presents the partitionings
of objects 1 and 3, which are used by transaction 3, according to partitioning 3,
which matches the transaction. Likewise, case 7 presents the partitioning of objects
1 and 2 according to partitioning 2, which is matched by transaction 4.

In case 8, the access costs are made equal to 1, without distinguishing local
versus remote and retrieval versus update accesses. Then, the objects move to site
3, where most of retrievals take place.

Finally, cases 9 and 10 show the effect of increasing the access cost at site 1.
In case 9, the objects move to site 2; in case 10, the frequeney of transaction 3,
issucd from site 3, is increased, and consequently the objects move to site 3. While
the behavior of the allocation oplimizer can be easily understood and connected a
posteriori, the allocation chosen by the model is not at all obvious a priori.
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7 CONCLUSIONS AND FUTURE WORK

In this report we have dcalt with the problem of distributing 2 database by con-
sidering the logical schema of the database consisting of objects and predefined
links, where individual objects were in the form of normalized relations. By defining -
four basic logical access types and using a rather straightforward model of trans-
action execution, we were able to develop necessary equations to estimate costs of
transaction processing and develop an optimization model to minimize the costs. A
decomposition model was developed to make the problem computationally feasible
and a heuristic procedure was discussed to incorporate redundant allocation of en-
tire objects or partitioned objects.
This paper has developed a methodology for the distribution design phase
(see Fig. 1) which fits in the overall framework of database design. This phase
is into a series of activities which are neccessary before the optimization model can
in fact be applied. An important early step is the solicitation of partioning guidance
from the user, which makes this model tractable. The example in Section 6 points
out the scenario of a distribution design by considering various possible mixes of
transactions.
It is conceivable that after a database has been distributed and is operational
a restructuring is called for, due to the following reasons:

i Better transaction load estimates are available.

1t There is a need to introduce new objects and links in the database schema
and repopulate the database.

11t Cost parameters such as access costs and transmission costs have undergone
a change.

The approach that can be taken to deal with the above problem is to run a
revised optimization model. The revision consists of adding to each Cy, or Dy the
‘ cost of moving the already allocated object Lo the intended new location. This cost
‘ should be averaged over the time period between two restructuring since all other
1 t costs are per unit time. The non-redundant model could then be run with these
1 ; new cost parameters.

v Redoing the problem under redundancy amounts to solving the old and the
o | new problems with new parameters and advocating restructuring if

R
Cold - Couu > ﬁ

! where, Cyq and Cy,, are total costs of transaction processing for the old and new
“* f allocations using new parameters.
¢

R is the cost of a one-time restructuring

P is the time units between two restructurings
A sophisticated databasc environment with a buiit-in design tool which is capable of
doing the above type of restructuring can be expected to monitor loads and trigger
a distribution of data over the nctwork when needed.




Sec. 7 Conclusions and Future Work

Future extensions to this work will address:
i A vertical partitioning of objects.
#t Diflerent models for transaction execution.

it More general models for deseription of data replication; e.g. the effectiveness
of redundantly allocaling a single fragment.

iv Consideriation of equivalent logical schemas for further optimiszation; e.g.
when a subproblem is decomposed, alternative logical schema representations of the
subproblem should be investigated.

The current model is encouraging since it permits a formal solution to a design
problem which is too complex to be solved by random search and for which no
good directed scarch algorithms are known. At the same time few people have
the experience to design distributed databascs by intuition. although the results
obtained from testing our model were explainable in informal terms.
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EXAMPLES AND FIGURES

‘ r—-—» Users
»| requirement collection

- requirement specification

+»| view analysis and integration

enterprise transaction distribution
schema definition requirements .

¥ ¥

»| DISTRIBUTION DESIGN .

i distribution of the enterprise schema into local logical schemata

feedback
Y

4
——a | physical database design for each local database

1

} implementation schema
3

b operational system

Figure 1 The Overali Distributed Database Design Methodology
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CUSTOMER

ACCOUNT

Acct#,Cust#,.......

. (a) a one-many relationship between
CUSTOMER and ACCOUNT

CUSTOMER ACCOUNT
Cust# ........ Acct#,.......
C-A
Cust#, Acct#,.......

{b) a many-many relationship between
CUSTOMER and ACCOUNT

° PROJECT PROGRAMMER
Rname,............ Phame,.............
\ ASSIGNMENT
Rname, Pname, Cname, & Months, . . .
COMPUTER
Cname,...........
{c) a ternary relationship between PROJECT,

. . PROGRAMMER and COMPUTER

Figure 2 Use of Objects snd Links to Model Different Types of Relationships

-

- e

PR UG - i gt ARG A PR DU AP & YAy o O R wera”

e st T oy g 7 3 % e



P a2

38 Optimal Design of Distributed Databases
MED-INFO PAYROLL
2400 30000
Emp ##, Med-Rec-No, . ....... Emp ¥ Month, Salary, . .......
N 30
0.6
MANAGER EMPLOYEE DEPARTMENT
100 |1 1000 |20 50
Emp#, Mgr-Info, . ........ o1 Emp #, Name, Address, Dept#, . ... - n Dept#, Location, . ...........
1 1
TASK 3 PROJECT 4 PART-NEEDED
3000 |15 200198 16000
Emp#E Proj#2, Hours, . ....... - 3 Proj#, Budget, Dept#,......... 16 Proj £, Part#,Qty, .. ........
6
SUPPLIER SP PART 1
100 |1 1800 |1.8 1000
Sup#f Address, . ............ ﬁ Sup#, Part#, Price, . ........... n Part#Z, Deser, .. ....oivinnnn

Figure 3 An Example of a Database Schema
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MED-DEPT |
) _D_#_, Location, .......... }
DOCTOR / \ PROCEDURE
Drname,......... P
\ \L /
PATIENT-VISIT

~—
Pname, D#, Drname, Pr#% ... ..

(a) Database Schema
- ‘ MED MED
- /
i . DOC PROC DOC PROC
S .
.
3 PAT l PAT y
o
’ Partitioning Predicate for MED-DEPTS Partitioning Predicate for MED-DEPTS
is based on Location is based on ranges of D #*

MED

DOC 1

PROCEDURES are partitioned into surgical
and non-surgical procedures

Figure 4 A Database Schema and Its Possible Derived Partitioning Hierarchies
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TDA: Total Direct Access.
no. accessed = card (i)

—
SDA: Selective Direct Access.
= no. accessed is user specified

N TJA: Total Join Access. .
no. accessed = N * ratio, if j is i
i i the member of h
= N, if j is the owner
ofh

N SJA: Selective Join Access.
h no. accessed is user specified

o Figure 8 Transaction Access Primitives
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Transaction: Find all EMPmployees in the DEPartments in CAlifornia
' that have PROJects which need PART#= 73886,
List EMP#, DEPT#, PROJ#, BUDGET.

EMPLOYEE

200
Emp ¥, Name, Address, Depr 2z, . . .

Proj##,\ Budget, Dept#t

N DEPARTMENT
10
Dept &, Location, ..........
Location = ‘CA’
> Proj #, Budget,
) PROJECT PART-NEEDED
16| & 16
Proj## Budget, Dept#,......... Proj % Proj #, Part#, Qty,......
.. 1\ Part #
) 5 PART
v 1 :
A . Part#, Descr,...........
Part-2t = 7386
| .

T s i R SL
.

Figure 8 A Graphicsl Transaction Specification
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TRANSACTION SPECIFICATION

Object [.'sed as| Used No.of | Link [Partn’g| Size of | Retrvi [Evaluated *
Entry | for | Acces’d UsedJMPred. Tuple] vs to. Bytes
- | Point |Result| Tuples | NextiMatchedX’mitted |[Update| X’mitted
part | 1 0 1 |p-pN| - | 4| R 4
part-needa| 0 0 16 |PN-PR - l 4 R 64
project | © 0 16|PR-p| P2 | 12| =& 192
department | 0 0 10]lp-E| P0 | 12] R ho12=120
employee 0 | 1 200 | - PP | 16] Rr 200

| Origin at: Site 3 Freqaz: 50/month

Figure 7 A Tabular Transaction Specification
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Let S = y11, Y13, Y31, 23 represent a redundant allocation of a database having 38
sites and 2 objects, where all non-mentioned variables are set to zero. Cases
. a, b, ¢, d of Section 5.2 are represented below with diagrams, where solid
dots correspond to objects in SOL(S,I"); arrows indicate precedences between
transaction accesses; and a vertical arrow connects accesses performed at the
same site, which do not require any transmission.

Case a: Retrieval-Retrieval,

i I* = {04,0,}, SOLS, I*) = {{y11, yn1}, {w11, 32}, (i3, v }s {Was, 92}}
A different transaction execution is obtained from each solution in SOL(S,I*);

Q‘lzs\lzs\uzs\nzs

Obj
| I o 1 o\ o ilo /o 1|o °
2l® o 2|o 2|@ o ) o/ ?
Case b: Retrieval-Update ;

I* = {01} = SOL(S, I*) = {{y11,¥21,¥22)}, {13, 21, ¥22}}
* Transmissions to both copies of the updated object are required.

Nty 2 a2 3 A
. obj
1 e o 1|0 .

. zl\ 20‘0//

Case c: Update-Retrieval

I* = {03} = SOL(S, I*) = {{v11, yu3, yn1}, {¥12, Y13, 22} }

‘ Transmission is required from one of the copies of the updated object to the
‘ retrieved object; the best transmission alternative is selected.

W2 3N 1 2 3

Obj

=
:
L4

Case d: Update-Update

. ‘ I* = ¢,SOI(S, I*) = {{y11, v13, Y21, va2}}

N ! Transmission to both copies of Object 2 are required for both copies; the best
’ alternative is selected. '

Ty fg

Figure 8 Transaction Execution over a Redundantly Distributed Database
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14 : Optimal Design of Distributed Databases

Start with Spev = S., Crnew = C.
(* reters to the optimal non-redundant solution)
Tepeat
S i== Snew: C 1= Cnew; .
for every variable X, or Yip which does not belong to § do
begin -y
build S’ = (S +that variable set to 1);
C':=0; :
for every transaction T* such that i € U(T*) do
begin
" compute CT(T*,S');
¢ :=C + CT(THS');
end;
for every tramsaction T* such that i U(T*) do
C':=C 4+ CT(TKS);
C':=C + Y1, fldn);
it C' < Cpew then
begin Snew i= 8'; Cnew 1= C’ end e
end .
until (Caew < C); o |

S,8’, Snew represent assignments of variables X;; and Y;; corresponding to old,
partial and new solution at cach iteration. C,C’, Cy,\ are the corresponding total
costs. The counts.dr; are the degree of redundancy of object ¢ in solution S.

Figure 9 Algorithm for Redundant Database Distribution
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Sec. *  Examples and Figures . 415

(a) Database Schema

DEPARTMENT
501 DEPT-EMP
Dept #, Location, .......... 1
1
DEPT-PROJ Oginec::\ame [ Index
ployee 1
PROJECT ¢ 40 Department 2
2000 Project 3
Proj#, Dept, Type, Mgr, . ......
0.7%
PROJ-EMP
EMPLOYEE ¢ 3
4500 920

Emp#, Proj #, Dgpt#, Name, Status, . ...

(b) Candidate Partitionings

P1: primary on DEPARTMENT (Object 2)

pred(2,1,1) : DNO in {1...20};alloc(2,1,1) = 1; fr(3,1,1) == 0.4

pred(2,1,2) : DNO in {21...50}; alloc(2,1,2) = 3; fr(2,1,2) = 0.8

derived on EMPLOYEE via link DEPT-ENP

P2: primary on DEFARTMENT

pred(2,2,1) : LOCATION=Northern Californis;alloc(2,2,1) = 1; fr(2,2,1) = 0.26
pred(2,2,2) : LOCATION=Central California ;alloc(2,2,2) = 2; fr(2,2,2) = 0.30
pred(2,2,3) : LOCATION=Southern California;alloc(2,2,3) = 3; fr(2,2,3) = 0.44
derived on EMPLOYEE via link DEPT-ENP

P3: primary on PROJECT

pred(3,3,1) : TYPE=Software;alloc(3,3,1) = 1; fr(3,3,1) = 0.7

pred(3,3,2) : TYPE=Ha.rdwaro,anc(3 3,2)=3; fr(3,3 2) = 0.3

derived on EMPLOYEE via link PROJ-ENP

P4: primary on EMPLOYEE

pred(1,4,1) : STATUS=Regular ;alloc(1,4,1) = 2; fr(1,4,1) = 0.5

pred(1, 4,2) : STATUS=Part-time;alloc(l, 4,2) = 2; fr(1,4,2) = 0.2

pred(1,4,3) : STATUS=Fired ;alloc(1,4,3) = 3; fr(1,4,3) == 0.3

Figure 10 Example of a Database Schems, Candidate Partitionings, and Transactions
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16 Optimal Design of Distributed Databases

DEPARTMENT | Yes 5 {DEPT-| P1 4 R 20
EMPLOYEE Yes 450 | ENP| P1 40 R 1800
ORIGIN: Site 2 (FREQUENCY: freqsa) and Site 3 (FREQUENCY: freqss)

. DEPARTMENT | Yes 5 | DEPT+ 4 R T 20
EMPLOYEE Yos 450 | ENP . 40 R 1800

(c) Transactions ‘ .

T1: Give 5% raise to salaries of rogulu; employees

ORIGIN: Site 1 (FREQUENCY: freq::)
Object Used as! Used No.of | Link l:art.n LSue of | Retrvi |Evaluated
d

Entry | for | Acces’d| Used| Pred. | Tuple| vs Ino. Bytes
Point | Result ] Tuples atchedX'mitted kUpdau X’mitted

EMPLOYEE Yes | Yes 2250 U -

T2: List name and nlu-y of employesas with
. departaent city = San Francisco

ORIGIN: Site 1 (FREQUENCY: fregss)

T3: List all participants to hardware projects whose manager is Jones
ORIGIN: Site 3 (FREQUENCY: freqas)

PROJECT olmm P3 l 4| B I 80
EMPLOYEE 45 | Ewp| P3 40| R 180

Yes

o |

T41: Give a 5% ralse to employee salaries
for the departments in Northern California

ORIGIN: Site 1 (FREQUENCY: fregui)

DEPARTMENT | Yes 13 |pEPT{ P2 l 4I R l szl
ENPLOYEE Yes 1170 | emp| P2 - ) -

T42: Give a 5% raise to employee salaries
for the departments in Central California

ORIGIN: Site 2 (FREQUENCY: fregqs)

DEPARTMENT | Yes 15 [pePTd{ P2 4l ® 60
EMPLOYEE Yo | 1350| ENP| P2 - u --

Figure 10 Example of a Database Schema, Partitionings, and Trapncﬁons
(continucd)
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Sec. Examples and Figures 47
TABLE OF RESULTS
Case Cost Transaction Optimal Cost
Parameters Frequency Solutions
CLR,CRR,CLU,CRU TC Ji..4 y ad w
1| 0 i= Y11, %32, Y53 | — 33490.50
2 0.5 Ja==fy= 33553.00
3| cLrR=1,CRR=2.5, Jo=1 Vi1, v, Uas |wig,|  33563.00
4 CLU=8,CRU=10 Jr==100, f3 3,4 =1 w2 | 1147493.00
S f1 =100, f13,¢ =1 || ya1,y81,¥01 305813.25
6 Js =100, f134 =1 || Z33,y23,Z33 | vaa | 40916.00
7 1 | fa=100, f1,2,3 =1 || 212,223, ¥s3 | vi2 | 1289025.00
8 CLR=CRR= fr=/fy= Vi3, Va3, Vss [wis,|  6243.00
CLU=CRU=1 Ji=fa=1 we3
8 | cLRy=10,CRRy =25, h=fa= V12, Y23, Vas [W12, 43910.00
CLU|=50,CRU|=10° fa = fq =1 was
10 |CLRs,3=1,CRR2,3 =25, fs = 100, Vi3, Y23, Va3 |wis,| 50702.00
CLU|=5,CRU|=1°° I1 = ,’ == !‘ =1 Wy

Figure 11 Optimal Non-Redundant Solution for Several Values of the Cost Parameters

and the Transaction Frequencies







