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1. INTRODUCTION

The distributed information systems area has seen a rapid growth in terms of
research interest as well as in terms of practical applications in the past three years.
Distributed systems are becoming a reality, however truly distributed databases are
still rare. For a large organization with a distributed computer network the problem
of distributing a database includes determination of-

&-) Hfow can the databas eijTioc0mponents to be allocated to distinct
sites, and

__ j How much of the data should be replicated and how should the repli-
cated fragments be allocated?

In this paper we design models for solving both or the above problems:
The problems of database distribution have been attacked earlier ly\esearch-

ers, but we perceive two serious shortcomings in the work known to us. Firs there
is a body or work on file allocation which considers only a single file and ignore the
complexity introduced by the interlinked files which appear in realistic databases.
Second there are models which consider also the parallel problem or network topol-
ogy and hence deemphasize the data distribution problem. The topology of a net-
work with remote sites is often constrained by operational considerations, but the
capabilities of network connections are such that most networks can be reconfigured
to deal well with any known load.

Most modern networks provide at least on the logical level complete connec-
tivity and have nodes that can accomodate multiple files. It is in that setting that
our model is placed; we make also the simplifying assumption that the unit tfrri-

mission cost is the same among any two nodes. We are then able to concenit.i
the problem or distribution of multi-file databases, modelled by a conceptual ±ii,.

or connected relations.
Figure 1 provides an outline of an overall database design methodology which

is consistent with previous approaches which were proposed in a non-distributed
database environment(YaNW78, LumA791. This figure is included to define the
context in which the problem is being solved. We assume that prior to undertaking
the distribution or the database the following activities have been performed:

* The overall user requirements have been collected and analysed
e Individual application views have been modelled and integrated using

some formal techniques (e.g. NaSc78, WiEI80.
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2 Optimal Design of Distributed Databases

The specific inputs required for the "distribution design phase", obtained from the
above phases, are

1. An enterprise schema An enterprise schema describes the global,
canonichl model of the information structure ror the entire database.
The schema may be represented by listings of relations, their attributes
and domains; and definitions of connections among relations.

2. A tabulation of transactions and their volume The expected
load of transactions to be processed using the distributed database. We
assume that 'designers using the proposed methodology will be able to
identify important transactions and give a complete specification for
them. The success of the "optimization" effort is largely dependent on
how accurately and completely the transactions are specified.

3. Distribution requirements This refers to the fact that users
typically have a good understanding of how thvy would like to partition
certain data among sites, how certain parts of data must be forced
to reside at the same site, etc. These requirements are modeled as
constraints in our formulation.

With the above inputs from users and designers we proceed to develop an
optimization model for a non-redundant allocation of the database (Section 3). To
limit the proliferation of variables we have made the following simplifications: It is
assumed that all possible ways or partitioning of an object are prespecified and that
the model would either select one of the candidate partitionings or allocate an object
as a whole. Secondly, the logical access paths used in processing a transaction are
deterministically specified. The latter allows us to focus on data distribution rather
than mixing distribution with the optimization of transaction execution itself.

In spite of the above simplifications, the size of the problem for a realistic
database (with tens of sites and hundreds of data entities) would still involve
thousands of variables in a zero-one integer programming formulation. Since current
algorithms are good only for solving problems of the order of 60 to 100 variables, it
is necessary to decompose the original distribution problem into subproblems. The
decomposition model is formulated as another integer program (Section 4). Finally,
we develop a heuristic procedure which starts off with a given non-redundant
optimal solution and determines the most beneficial replication of an object (Section
5). Section 6 includes an example of a database, a set of transactions for it,
and demonstrates how the non-redundant optimization model produces different
solutions for distribution as the cost parameters and frequencies of transactions are
varied.

1.2 Previous Related Work

As mentioned above, the previous work has been mainly in two areas: file allocation
and network topology applied to databases and communication networks.

The file allocation problem was first investigated by Chu [Chu69j. He devel-
oped a global optimization model to minimize overall operating costs under the
constraints of response time and storage capacity with fixed number of copies of
each file. The integer program had a very large number of variables for even small

*•. ..
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Sec. 1. Introduction 3

problems and was computationally infeasible. Casey (Case72] relaxed the assump-
tion of fixed number of copies and stressed the difference between updates and
retrieval. Whitney (Whit70] as well as Casey addresseJ the combined problem of
file allocation and communication network design by restricting to tree topologies.
Eswaran [Eswa74] proved that Casey's formulation was polynomially complete,
hence he suggested that heuristic rather than deterministic approaches be inves-
tigated. Several studies have been made in the area of vertical partitioning and
clustering of single files giving rise to integer programming or heuristic approaches
JHoSe75,11o76,HaNi79]. In the present paper we will not consider vertical partition-
ing of the database objects per se since in the distributed environment it necessitates
a replication of keys and the model of transaction processing becomes too complex.

The second problem category has been explored in several studies with different
sets of assumptions and addressing different sets of parameters. Mahmoud and
Riordon [MaRi76] considered the combined problem of optimal file allocation and
channel capacity determination, whereas Morgan and Levina [MoLe77] examined
both the allocation of files and programs to process them within a generalized net-
work. By ignoring storage capacity constraints and inroducing some other simplify-
ing assumptions, Morgan and Levin demonstrated that the multiple file allocation
problem can be decomposed into single file allocation problems. Ramamoorthy and
Wah [RaWa79] analyzed a relational distributed database for optimization of query
processing. By introducing redundant files, they showed how communication costs
attributed to joins can be minimized. Irani and Khabbaz [IrKh79 have combined
file allocation, network topology design and channel capacity allocation into a single
problem. Their model minimizes the total cost of file storage and communication
capacity over different channels under the constraints of a minimum level of network
reliability, minimum availability of single files and maximum allowed communica-
tion delays.

lt



4 Optimal Design of Distributed Databases

2. PRELIMINARY DEFINITIONS

In order to address the general problem of distributed database design and to de-
velop models which are widely applicable, it is necessary to define the notions of a
logical database schema, occurrences of schema constructs, and the data manipula-
tion operations in a general way. The concept of horizontal partitioning may then be
applied to the individual constructs of a schema, and database transactions can be
described using a small number of manipulation primitives. We summarize in this
section the concepts and definitions which are necessary to develop the subsequent
optimization and heuristic models. A more detailed discussion of the issues related
to the modelling of logical schemas, transactions, and partitioning is presented in
[NaCW81.

It is assumed that the integration of user views has already been done and
that the logical schema which is subjected to distribution is a global view or an
enterprise view. (See [EIWi79,LumA79J for details on views and their integration.)
In our model of the logical schema, we have done away with an explicit accounting

. I of the semantics of various relationships whenever possible, since all semantics do
not have a bearing on the distribution problem. The logical schema of a database
is modelled as a directed graph with objects as nodes and links as edges. Objects
represent entities, events, things, or concepts of interest to a community of users.
The links represent relationships among objects.

2.1 The logical schema model

We will now define the components of a logical schema, namely objects and links,
which are needed for the task of designing a distribution. Included in the discussion
of links is the use of join operations.

Object: An object is a BCNF relation [Codd74I. Each object has a
unique primary key. A non-key column in an object typically represents
an attribute of the real world object or of a relationship. An object has a
unique name and index i, 1 < i < R. An object instance is represented
by an n-tuple from the object. Upper case letters 01, 02,... will denote
objects, whereas lower case letters o, o2,... will denote object instances.

Link: A link represents a binary relation among objects and specifies an
ordered pair of objects. A link is described by an index h, I < < L,
and may, optionally, have a name. The following functions are defined

*for a link 1,
own: -. I

and
memb:)I -- I,
where ) = (I,2, 3,...L} and I = {, 2, 3,...R)

These functions return the index of the owner (member) object, given
the index of the link.
An instance of a link I = (01, 02) owned by 01 Is an ordered pair
< o,o >, where ol E 01, and ot E O.
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A member object instance participates in one and only one instance of a
given link. In the graphic notation, the link is directed from the owner
object to the member object.
One to many relationships among objects are modelled directly using a
link which associates many instances or the member object with a single
instance of the owner object. Many to many or "n-ary" relationships
among objects (n > 2) are modeled by means of an "intersection object"
which is owned by several owners via different links. Figure 2 shows
some examples of the use of links.

Join Specification: Each link h has an associated join specification

JS : O X Oj -+Boolean, with i = own(h),j = mevn(h).

It maps pairs of object instances from the owner and the member of the
link to true or false depending on whether or not they match the join
specification. For ease of treatment, we restrict the join specification in
the following discussion to the equiJoin only.
Informally, JSk is the conjunction of equipredicates of the type O,.C -
O.Cy, where Ci and C. are attributes from objects O and O or
columns in the corresponding relations.
We further assume that the join specification exhaustively includes those
columns which constitute the primary key of the owner object.

The above idea of predefined links deserves further explanation. We recognize in
the logical schema those particular equijoins which

a involve the primary key of the owner object and a compatible set of domains
from the member object.

b are significant on the basis that these joins will be heavily used by transac-
tions.

The existence of a link arises due to some real-world relationship which exists
between the objects[Chen76, WiEI80. However, in going from a high-level semantic
model of the database to the logical schema for distribution design, some simplifi-
cations due to the followilng events are likely:

Unimportance: Relationships which express a semantic connection among
objects, but are not used in any of the important transactions that are the basis for

]t the distribution design, may be eliminated.
* Unmodelled: Relationships which express a connection among objects that

corresponds to a join other than the type of equijoin mentioned in (a) above, are not
modeled as links. The set of permissible transactions however is not constrained.
These joins may be performed by some transactions and give rise to an execution
cost which considers the use of links whenever possible and is otherwise based on
processing algorithms which do not require links.

Non-equijoins: In cases where several types of joins are possible among two
objects, if a link is shown in the logical schema connecting those two objects, that
link is used only for the equijoin. All other joins proceed as if no link existed.
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The physical realization of a link may take several forms (e.g. , an index, a
pointer array, etc.). If there is a link among objects Department and Employee
with the join specification Departaent.D* = Employe.D#, it implies that given a
value for D, e.g. , D# = 372, it is possible to access all instances of the Employee
object having the DO = 372 without an exhaustive search.

Quantitative parameters

Each object i has:
cardinality: total number of instances of that object, called card(i).
size: total length of an object instance (tuple) in bytes, called size(i).

Each link h has:
image: the fraction of the instances of the owner object participating in that

link, image(h).
average cardinality: the average number of instances of the member object

which are associated with an owner instance which participates in the
link, avcard(h).

membership ratio: the ratio of the toal number of instances of the member
object to the total number of instances or the owner object for the link,
ratio(h).

The following relationships exist:

ratio(h) = image(h) X avcard(h)

card(memb(h)) = card(oun(h)) X ratio(h)

The cardinality of an object is shown in the logical schema by a number in the top
right corner of the rectangle representing the object. The image and the average
cardinality of the link are shown at the head and the tail of the arrow which
represents a link (see Figure 3).

2.2 Partitioning

In this subsection we define the notion of primary and derived horizontal partition-
ings. These definitions are formulated with the following implicit assumptions:

Knowledge of use For a given database, it is expected that a "user" (this
term is also a synonym for a "group of users" or a "team or designers" etc.) has
a good understanding of the data objects and links in the logical schema and also
knows the potential uses of the database at various sites. Such knowledge is often

*i obtained during the integration phase, where the conceptual database model has
been constructed IEIWi79I. This knowledge may be used in defining meaningful
horizontal partitionings of data objects and the allocation of partitions to various
sites.

Knowledge of linkage The user is further knowledgeable about how the
partitioning applied to one object may be "propagated" to other objects via links.
Propagation here implies using identical criteria for partitioning of multiple objects.
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Horizontal Partitioning The horizontal partition of an object is a subdivi-
sion of the instances of the object into disjoint subsets. Each such subset, called
fragment, has the same attributes as the original object, and can be allocated on a
particular site of the database operational system. A horizontal partition satisfies
a predicate which is a boolean expression made up of clauses:

<donainnaae><operator> <value sot>
For each object we consider two types of horizontal partitioning, resulting in primary
and derived partitions.

Primary Partitioning A primary partitioning p of an object defines Np
different fragments of the object on the basis of Np disjoint predicates.
Let PRED(i, p) be the set of N predicates for partitioning the object i according to
partitioning p. Let f(i,p,q) be the qth fragment and let predpq E PRED(i,p) be the
predicate which defines for (i, p, q) the qth fragment or object i under partitioning
p. Then:

The o E f(i, p, q) -. pred,q(o)

Vo E 0i31q I predip(o)

The allocation of fragments to the sites of the network is also given by the user. This
feature, which greatly simplifies the optimization model, comes from the fact that,
in real applications, the user associates candidate fragments to allocation sites in a
natural way; only because of this association, the user can determine the potential
convenience of a given partitioning.

The allocation of fragments is therefore an input to the application; as it will
be shown later, the non-redundant optimization model determines which of the
alternative candidate partitions (if any) should be applied to an object which, in
turn, determines their allocation.

Derived Partitioning Derived partitioning is the concept of partitioning an
object by applying the set of partitioning predicates which apply to another object
so as to "derive" the partitions of the former object. Once a partitioning is defined
for i, the objects which are connected via a link with this object i become candidates
for derived partitioning. Two important considerations are:

appropriateness of a derived member partitioning: Given the partition-
ing of an owner object, it is always possible to define a corresponding derived par-
titioning of a member object via a link. Such derived partitioning may or may not
be appropriate. Ilence the .user needs to confirm whether partionings suggested by
the dependency model are to be considered.

desirability of a derived owner partitioning: Given the partitioning of
a member object, it is not necessarily possible to define a corresponding derived
partitioning of an owner object along a link. A horizontal partitioning can only be
derived if object instances from any single fragment of the member object map into

P only one fragment of the owner object. In this case the derivation of the partitioning
is feasible. In the structural model this condition is true for identity and ownership
connections whenever the partitioning predicate refers to the ruling part (WiEISO.

* i
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The user must categorically state any such derived partitlonings which are not only
feasible but also desirable.

As a result of the above considerations a user is in a position to define "a hierar-
chy of derived partitionings". E.g., in Figure 4, a given database has the possibility
of two derived partitioning hierarchies on the basis of a primary partitioning of
NMD-DEPTS either by location or by a range of department numbers. These hierar-
chies involve a propagation of partitioning along owner-member links. The third
hierarchy is based on a partitioning of PROCEDURES into surgical and non-surgical
procedures. The derivation of the partitioning along PROCEDURE to MED-DEPTS and
IED-DEPTS to DUCTORS proceeds from member object to owner object and is feasible
since MED-DEPTS and DOCTORS can be partitioned into two corresponding subsets.

A more formal definition of derived partitioning follows:

For a given object i and its particular partitioning p, there may be an associated
set D(i, p) of derived partitionings. An element of this set is a triple as follows:

D(i,p)= {< il,i 2 ,h >1 properties i, H, iii, and iv hold)

*it is the object from which the partitioning is derived
i2 is the object to which the partitioning is applied
h is the link via which the partitioning is derived.

* I (i = own(h) Ai -2menib(h)) V ((i2 = own(h) ^i = memb(h))

ii For an object instance o E 0i.

*o E fr(i2, p, q) -+ pred,.,p,,(o)
, *-,3 < it, i2,h >E D(i,p) A

o' E O,, I JaS(o, o') A pred.,,,.(d)

ii Object i appears at least once in the first colum of D(i, p),
and p is a primary partitioning for i

iv The second column of D(i,p) does not contain the same object more
than once.

Note that the properties i and ii allow one to start with the object i on which
the original partition is defined and define the derived partitioning for all objects
separated from i by the distance of a single link. The process may be repeated to

* propagate a partitioning to nodes further apart than a single link.

Parameters Describing Primary Partttlonngs Each fragment q of par-
titioning p of object i has:

allocation: the site where the fragment of the database relation is potentially
*allocated, called a.e(i, p, q)

fraction: the ratio between th- number of i stances of the fragment and the
total number of Instances of the ob -% *lleod sp,q)
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Parameters Describing Derived Partitioning. Each fragment q of an ob-
ject i which has a derived partitioning according to partitioning p has an allocation
and a fraction as before. Allocations are preserved through the join derivation;
therefore it is

alloc(q, i, p) = alloc(q, i', p) I 3i i, W E D(i, p)

In absence of a more precise user specification, we assume that join predicates do
not alter the fraction of primary partitions; therefore we have

f7(qyi P) = fr(q, i', p) I 37, W I ", i, W E (i', p)

2.3 TRANSACTION MODELING

One of the critical inputs to the distribution design process is the specification of
the overall transaction load on the database. It is assumed that the users have
a good notion of the important transactions that will run against the database
being designed. It is expected that at least the more important transactions on
the database will be identified and specified in terms of the proposed method of
specification. These transactions allow an estimation of the total volume of data
being accessed and transmitted. The optimization model gives a solution which
minimizes the transaction processing cost.

Each transaction is described in terms of the following four basic access primi-
tives {TDA, SDA, TJA, SJA} which are similar to the access path primitives
proposed by Su et al [SuLL81].

TDA, Total Direct Access: This access primitive models the accessing of
all instances of an object in a transaction. For an object i, the number of instances
accessed is card(i).

SDA, Selective Direct Access: This access primitive models the accessing
of only a selected subset of the instances of an object in a transaction. -The selection
criterion is prespecified in the transaction and the selectivity, or the number of
instances selected is estimated and provided by the user.

TJA, Total Join Access: This models the access along a .ink, either to the
member object or to the owner object.

owner to member: Access to j = memb(h) from i = own(h) via link
h, given that N instances of i have been accessed. Then the number
of instances of j accessed is N X ratio(h).

member to owner: Access to j - own(h) from i = memb(h) via link
L, given that N instances of i have been accessed. Then the number
of instances of j accessed is N.

SJA, Selective Join Access: This models the access along a link in either
direction, as in the case or TJA above. However, the number or instances of
the target object accessed is estimated, and provided by the user. It reflects the
selections made on the accessed object.

We have defined a graphic notation to go along with the above 4 access primi-
tives, examples are shown in Figure 5.

WIN 111 11 llllfi 11



10 Optimal Design of Distributed Databases

2.3.1 Transaction Specification

The cost parameters in the optimized non-redundant model of distribution are
derived from the complete specification of all important transactions known to be
applied to the proposed database. Figure 6 shows a graphic description of the
following transaction on the database of Figure 3.

FIND all Employees in the Departments in California
who have Projects which need Part# = 7386.

LIST Emp#, Dept#, Proj#, Budget#.

A user interface of the type shown in Fig. 7 is postulated in which the user would
essentially trace a transaction through the database with the numbers shown in
various columns and fill in the table number of instances touched by the transaction
wherever selective accesses are concerned. The system could then compute the
"number accessed" by filling in the missing numbers in that column and also
compute the total size or data transmitted "along the links".

2.3.2 Transaction Execution

Different distributed systems have their own ways of implementing transactions.
The model of transaction execution which is implicitly assumed in the above dis-
cussion is a simple model as follows:

i A transaction originates at a specific site. The transaction has entry points
corresponding to the objects which it accesses first.

i A transaction proceeds serially by performing TDA or SDA of objects
depending on whether or not a selection condition is imposed on objects. At each
stage, the domains which are required to construct the end result of the transaction
are forwarded to the next object.

iii A join is performed whenever a link is traversed by a transaction. A join
causes the transmission of the columns which are a part of the join specification for
the link concerned. The size or the join columns added to the columns required for
output becomes the "size of tuple transmitted" in tile specification table.

iv The "Partitioning pre(licate-matched" column in the transaction speci-
fication is significait to deternine whether a transaction has a built-in selection
predicate which matches any of the predefined horizontal partitioning predicates.
The cost or the execution of a transaction reduces whenever a matched predicate
is actually selected for partitioning.

v The retrieval versus update of an object has no impact on the execution of
a transaction in the non-redlundant distribution or data. It is, however considered
important during the analysis of redundant distribution.

-t!
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The transaction execution model assumes that the user has a good "understanding"
of the actual execution strategy that will be employed by the system, as it requires
a deterministic dascription of the transaction's access path. This is quite adequate
for most or procedural database languages; it can, however, be critical for advanced
relational systems, where the system's optimizer my behave in a different way than
the user expects, and lead to unanticipated executions. In defense of the proposed
approach, it can be argued that:

1 It is not now possible to combine both transaction processing optimization
and database distribution optimization; because both problems are very hard and
query processing optimization is highly dependent in the features of the particular
system considered. Hence, when the database distribution problem alone is to be
solved, a simple characterization of transaction execution cost should be given.

2 Any strategy determined by the system different than the one proposed by
the user can only increase the performances of the system; hence the proposed
execution strategy can be considered as a worst-case estimation.

3 The database distribution phase can be repeated once the system is opera-
tional, with better characterization of transaction execution strategies and measure-
ments of system's loads.

2.3.3 Transaction Parameters

The following parameters are related to transactions and will be employed in the
subsequent formulation. For ease of referencing they are aggregated here:

transaction index : k, 1 < k < T
object index : i, I <i<R
link index : h, 1< h<L

For each transaction k, the following are defined:
• = 1 if object i is the entry point of transaction

= 0 otherwise.

$ = I if object i is the final object accessed during transaction k
= 0 otherwise.

U -- I if object i is updated during transaction k
= 0 otherwise.

mp = 1 if transaction k matches partitioning predicate p for object i
= 0 otherwise.

o(k) = the site or origin of transaction k.

f(k) = (i If -I) is the set of final objects in transaction k.
rk = number of instances of object i selected by transaction k.

= total number of accesses to object i made by transaction k.

Note: k> s
-s data in bytes shipped from object i to the site which stores the next

object accessed by the transactions, or returned as a result when i
is the final object.

I

_ _ _ _ _ _ _ _ _
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-j index of the link accessed ntxt after object i.

Neti* = index of the object accessed next after object i.
Note: Nez~' can be derived from Lih
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3 THE NON-REDUNDANT DISTRIBUTION OF A DATA,BASE

In this section a model for the non-redundant distribution of a database is presented.
The objective of this model is to allocate the objects to sites either wholly or in
non-redundant fragments so as to minimize a global cost function. The highlights
or the model are the following:

a One of the possible alternative sites for the allocation of each object
is selected.

b: The model takes into account access costs at the various sites and
data transmission costs between nodes; these two criteria also ensure
that the optimal solution is "good" from the viewpoint of efficiency.

e: The minimization of data transmission costs is obtained by allocating
links or predefined join paths in such a way that the joins of entire
objects or between partitioned objects can be performed locally.

d: The model of execution strategy for a given "logical" transaction
is deterministic, and in fact the transaction consists of a sequence of
retrieval or update actions on objects and of link traversal (navigation
in the database) between objects. Having a non-redundant model allows
evaluation of each access or transmission cost on objects or links in an

-'I additive rather than combinatorial fashion. A linear zero-one formula-
tion is possible, involving decision variables associated with possible al-
locations of each object and of each link.

3.1 Variables

We defin._ two variables, X, Y to describe the state of each object, and two variables,
V, W to describe the state of each link.

XiP 1 if the object i is partitioned according to partition p, either in
a primary or in a derived way

= 0 otherwise.

Y = 1 if the object i is allocated on the site j as a whole
= 0 otherwise.

Whp 1 if link h is used for deriving a partition in the hierarchy of
derived partitions of purtitioning p, and own(h) and memb(h)
are both partitioned using p, either in a primary or in a derived
way

= 0 otherwise.

For a link h, there are as many Wh, variables as the number of distinct
possible partitionings that are derived using the link.

Vp = 1 If link h is local to site j, because own(h) and mer(h) areL €- allocated on j as a whole
= 0 otherwise.

For a link h, there is a Vj variable for every potential site to which

that link could be allocated.

I



14 Optimal Design of Distributed Databases

3.2 Constraints

Clearly, the decision variables are constrained in order to be consistent with their
definition. We have:

(1) a non-redundancy constraint

E XiP + Yij = I for every object i
p 3"

(2) consistency constraints for variables W

Wp X...(h)p A Wp 5 Xe(&)p for every Whp introduced in the model

(3) consistency constraints for variables V

Vhj :_ Y...(h)j A Vhi :_ Y, , (h)i for every Vh, introduced in the model

Constraints (2) and (3) are effective because the coefficients in the goal function
formulation for V and W variables are negative, and hence these variables tend to

" I assume the value I in the solution of the problem; however this occurs only if the

X and Y variables of both the owner and member of the link to which V and W
refer, i.e. those on the r.h.s. of the inequalities, are also set to 1.

3.3 Cost parameters

Access costs are proportional to the number of object instances accessed in a given
node at a given site; further sophistication is not possible, as the physical database
design at local sites will be performed in a later phase; a similar approach is taken

* - -in [TeFr80J for the logical design of a non-distributed database.
We distinguish between following types of cost units:
CLR : unit cost for local retrieval accesses
CLUj : unit cost for local update accesses
CR1j : unit cost for remote retrieval accesses
CRUi : unit cost for remote update accesses

The above four combinations, generated by retrieval vs. update and local vs.
remote access, are reasonable categories since they incur different costs attributed
to authorization, concurrency, recovery, etc.

Transmission costs are proportional to the actual sizes of data involved in
transmission, and not on the source and destination site. It seems impossible
to give more sophisticated models as it is very difficult to predict actual costa
between pairs of sites. The cost may not be fixed in some systems because of
the use of dynamic routing algorithms for transmissions (e.g. in ARPANET); local
networks(e.g. ETHERNET) are accurately modelled in this way.

We have:
TM: unit transmission cost between any pair of different sites j1 and j2;

MY, h > 0 if Ji7-i3

> Ji =

II
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3.4 Goal function

The goal function takes the form:

min z E Ci i + Dt3 Yj - E AttpWp - EJ BiAV. 3
ti. 1,3 I,p ij

where:

cip :cost of partitioning object i according to the partition p
Di"  :cost of allocating the whole object i on node j

Cip and Dij take into account both transmission and access costs

AkP : cost of transmissions which can be saved because of the use of
the same partitioning criteria p on the owner and the member of the
link h

Bh : cost or transmissions which are saved because both the owner
-and the member of the link h are stored on the same site j as a whole.

Note that this parameter does not depend on a particular site j, as
uniform transmission costs are assumed.

3.5 Coefficient Evaluation

The four coefficients Cip, Dll Ahp, and Bh specify the cost of the system operation
and have to be determined before the optimization of the model can take place.

3.5.1 Coefficient Cip for partitioned objects

The coefficient Cip gives the cost of partitioning an object i according to the
partitioning p. This cost is in turn given by the sum of an access component CAp
and a transmission component CTp:

Cp -- CAp + CTp

Both parts require some elaboration.

A) Acces Component The access cost component due to partitioning is
* "composed of the sum of costs due to all defined and relevant transactions in this

partitioning:

CAP = SCAp

where SCAip, the access cost for a single transaction, is defined am

SCA - NRU" CRU, + NLUk Cw,

* j' .(k) j-o(k)

+ NRRp CRRy + J NLR. CLRj
* jp.(k) j-.(k- )
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The counts NRUt,, NLUp, NRRj',, and WLR!'i are respectively the number
of remote updates, local updates, remote retrievals, and local retrievals for- tran-
action k accessing the fragment on node j of the object i partitioned according
to partitioning p. This cost pararneter applies only to those objects which can be
potentially partitioned and is evaluated separately for every candidate partitioning
p.

NRUO =ACk uts

NRRi",i = A& ,.,(1 - uf)
NLRjkp,. = AC;Ipi -w*'

Let AC ,, be the number of accesses of transaction k to the fragment on node
j of the object i partitioned according to partition p. Recall that we defined a
matching parameter m so that mi, - 1 if transaction k "matches" partitioning

. p, i.e. , it selects objects which are potentially allocated by the partitioning on the
originating site of the transaction. Then AC ', is defined for some q which satisfies
the allocation as follows.

AC -- if mi = 0 then t' fr(i, p, q) I aLloc(i, p, q) = j

else ifj - o(k) then t'

else 0
i.e. if transaction k doesn't match with partition p, a uniform distribution of accesses
is assumed and AC , is computed as a fraction of the total accesses proportional
to the fragment size; otherwise, in case of a match, two cases arise,

i: the transaction is issued on the node j that we are considering, and
.4 in this case all the accesses are made there, or

ii: the transaction is issued on a different site, and in this case we have
no accesses.
B) Transmission Component The transmission component of the cost

coefficient Cip is given by the sum
i

CTi, = CTl:, + CT!,
where CT , takes into account transmissions which are needed for performing the
join operations which are required for performing the query or update and CT?,
takes into account the transmissions of the results from the allocation sites of object
i (partitioned according to p) to the site or origin of transaction o(k).

The communication load for performing the joins is

CT:, = TR.1 TC

j i where TRI is the communication load per link and object fragment, specifically
the number of bytes per unit time which are transmitted along link h for accessing
object i.

I
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The summation ,.(,,,,~#.(k) determines the number of effective frag-
ments of object i partitioned according to p, i.e. the cardinality of the set of network
sites where partitioning p places the fragments. Remember that partition predicates
will match instances of object i to a subset of the network sites, and Eq is the car-
dinality of such a subset. The condition alloc(i, p, q) 0 o(k) is used because join
information has to be transmitted to all the fragments of object i located at remote
sites. TC is the cost parameter for data transmission.

The unit communication load TRki can be computed from the transaction k
specifications as follows:

k-l~

i.e. , the instances r, of the object i' which precedes i in the access path of the
-' Itransaction k and therefore have to be sent to object i are weighted by their size

sk ; here h connects ' to i.
Note that in evaluating the transmission volumes the coefficient r k is used,

since it is assumed that restrictions are performed before transmitting objects
in the network; in evaluating access volumes, the total access coefficients fik are
used instead, because instances must be actually accessed before the evaluation of
restriction predicates on them.

Similarily, the cost for result transmissions is obtained by summing the com-
munication load for the results of each transaction

i c'p = FSCT

where SCTj is the cost for the transmission of the result from a single transaction,
defined as

= (1 - u) r fr(, p, 9) TC
'iqli4EI(k) A
J'.(k) A.JL (i,p,q)_a _

i.e. , those fragments of the result of the transaction which are not allocated on the
same site as the site of origin for the transaction, are transmitted to that site; the
object i must belong to the set of terminal objects for that transaction (i E f(k)),
and the type of access must be retrieval.

3.5.2 Coefficient Dq ' for whole objects

This coefficient evalutes the cost associated with objects which are wholly assigned
' to a particular site. It is given by the sum of an access component DA.j and a

transmission component DTq:

Dq = DAq + DT

These costs can again be e Juated.for each transaction.

K - .........
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A) Access Component The acem component is the sum of the aceem cost
of ingle transactions SDAyl,

DA SDA,

aad the access cost of a single transacUton SDAq', i either the sum S of the local
costs if 0(k) = y or the remote costa.

SDAyk = 6,,.(k)NW CWi + (1 - #..(1k))NR0 CR14
+ 6j,.(k)NLR CLRi + (1 - 6,,())NRRi' CRR4

The factors NLU , NRUk, NLRi, NRRjk are respectively the number of local
updates, remote updates, local retrievals, and remote retrievals for transaction k
accessing object i stored on any site as a whole.

NRU = Act U

NRR, = AC' (I - U)

In this computation AC is simply the number of accesses made by transaction k
to object i.

., .~A&, =¢ 0

B) Transmission Component The transmission component of the cost
coefficient DTj is given similarly to the component for CT,, as the sum

DT1, DTq + DT7,i

where again DT7, takes into account transmissions which are needed for performing
the join operations, and DT, takes into account the transmission of the result, for
retrieval transactions, from the node i where the object i is stored (i being one of
the termination objects of the transaction's access path) to the site of origin o(k).

D~vij TRhTC

where TRhi and TC were previously introduced; in this case, the join information
has to be sent to only one site.

where the cost of a unit transmission of the result fiom a single transaction SDT77.

I . ...

Ir
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is defined as

(I- u#) r TC

i.e. the results of the transaction, which retrieves some information from the object
i allocated on node j, have to be transmitted to the origin o(k) of the transaction,
if o(k) 3 j.

3.5.3 Coefficient Ak,

This coefficient evaluates the savings in performing the joins using link h when
both the owner and the member objects of h are partitioned according to the same
partition p; it is:

jj, = (TRh .ow(h) + TRh we(h)) Np

where the coefficients TRhi have already been defined.

3.5.4 Coefficient Bh

This coefficient evaluates the savings in performing the joins using link h when both
the owner and the member objects of h are stored as a whole on the same site j; it
is:~

B TRh ,rn(h) + TRkmW.m(h)

3.6 Additional Constraints for Derived Partitions
In some cases, it may be necessary to model an additional constraint. Consider
a derived partition from object i to object i" using the link h connecting i and
e". It could be required that a partition be induced on object i" in the solution
if and only if the same partition is also applied to the object i in the solution.
As an example, consider the case of a candidate partitioning of the Department
object by location (for instance, North, South. East. West) and of a candidate

*derived partitioning or Employee objects, using the link which gives the department
* in which each employee works. Assume then that the candidate partitioning is

selected for Employee, but not for Department. The problems which arise in this
case are due to the fact that the employee information by itself is not sufficient
to determine the partition and the site where the record belongs. Therefore the
transaction which generates a new employee record should first join the employee
record with the department record in order to derive the corresponding location,
and hence determine the fragment where the record should be stored. This case is
different from, for instance, the use of a partitioning criterion on the department
number, which is the key field of the department object and also appears in the
employee information (hence, the fragmentation criteria can be deduced without
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joining the corresponding relations). In conclusion, it is left to the designer to
evaluate the possibility of constraining the derivation or predicates at lower levels
of the derivation hierarchy to be the same as the predicate at higher levels. The
constraint that models this fact is simply:

(4) Consistency constraint for derived partitions

Xnp Xi,, for constrained pairs < i',i" > in the derivation

In fact, because of this constraint, the optimization model can be simplified.
The variable W1,p becomes useless as a result of the above constraint, because if
Xi,,p is set to I in the solution, then certainly the link is used for deriving the
partition (compare with constraints (2) in See. 3.2). Hence a modified model can be
used in which:

a: no W. variable is introduced for those pairs of objects which are constrained in
the derivation,

b: the coefficient Cip is computed in the derived model as the difference of Cj-
and Alp in the original model, since the savings will always occur if the partitioning
p is used for object i",

c: the constraint (4) is introduced.

3.6.1 Modelling dependencies between objects

Similar constraints can be used for modelling other kinds of dependencies between
objects. Assume that object o" is "semantically" dependent from object o' (for
instance, 6' is a weak entity in the sense or [Chcn76J, or or o" is "externally"
identified from o' [Nava8O], or the link between o' and o" is an ownership connection
in the structural model [WiEI80]). This dependency might force the access to object
o' whenever o" is accessed, and in this case the designer could decide to force object
6" to have the same allocation of object d. As above, we need to introduce the
constraints (4'):

(4') Dependency Constraint

Xi,-, Xvp A Yi,, _5 Yv'" for dependent pairs <i', j" >

and the possibility of simplifying the model exists along similar lines as in the above
discussion. Here both the Vh, and Wp would be eliminated.
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4 COMPUTATIONAL COMPLEXITY AND DECOMPOSITION

The computational complexity of a linear zero-one program depends roughly on the
number of variables which are involved.
Let:

N : the number of sites
NP : the number of candidate partitions for object i
R : the number of objects
L : the number of links
NDh : the number of partitions which are derived using the link h,

then the number of variables in the model is

NVAR= N(R + L)+ E NP,+ F NDI

(there are: NI variables X1, and N variables Y3 for each object, NDk variables
1lVp and N variables Vii for each link)

This number can easily become too large for integer programming solution
'4 methods; hence some techniques are needed for decomposing the original design

problem into subproblems which are computationally feasible. The decomposition
* I aims at determining subsets of the enterprise schema which can be independently

optimized; it is desiderable to "cut" the model into subsets by snapping the links
along which the least transmission volumes occur, as the allocation of these links
will not be optimized.

A model for determining such a decomposition of the problem is presented
in the following; the aim of the model is to decompose the original problem into
subproblems whose dimension is big enough to represent meaningful problems, yet
is small enough to be computationally feasible. This aspect is captured by one
of the model constraints, which limits the number of variables belonging to the
subproblem between a lower and an upper bound.

4.1 Decomposition Model

The model determines a subproblem S consisting of a set of objects and links
having an associated number of decision variables for the non-redundant allocation
model which is limited between a lower and an upper bound. An optimal set S is
determined by minimizing the volume of transmissions which use the links between
objects belonging to the set and objects outside the set.

Variables One decision variable is introduced for each object i, and two
decision variables are introduced for each link h.

Xi 1 if the object belongs to the subproblem S
= 0 otherwise.

'4 Y1, - I if the link h connects an object of S and an object outside S
= 0 otherwise.

Zh = I if the link h connects two objects or S
7 0 otherwise.
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Goal function The goal function for the decomposition has the form:

min z = Wh Y

where W represent the transmission requirements along the link h, and it is:

W ---- Bh = TRh ,1 (h) + TRh1 mo(h)

The coefficient TR 1 is introduced in Sect 3.5.1.

Constraints Size constraints are introduced to assure that the subproblems
created from the decomposition phase will be neither too large nor too small. There
are also two new consistency constraints.

1) Constraint on the dimension of the aubproblem. Let LB and UB represent
the lower and upper bound respectively on the number of variables that are included
in the subproblem; then:

LB < <(N+NP)X+ (N+ND) A UB

wh) Consistency constraint for the variables Yh. Each Y must be forced to 1
when the values assumed by the X variables of the owner and member object are
different. Otherwise the YA value is free, and because of the positive coefficient in
the goal function, Yh will naturally be 0.

Yh > X&,,(h) - Xm,,,(h) A Yh 2 X,.M(h)- Xo.,(&), I < h < L

3) Consistency constraints for the variables ZI,. Each Zh must be forced to 1
when both owner and member are 1, but must be forced to 0 when any of them is
0 (hence, Zh is equal to the product X...(h) Xm.,(h)). This is modelled in a linear
program by introducing the constraints:

Zh :5 Xo..(h)

4 +

*4 (

* .~ I _!_ _ _ _ _____
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5 DESIGN OF A PARTIALLY REPLICATED DISTRIBUTION OF

THE DATABASE

The introduction of redundancy in a distributed database can lead to important
advantages both from the viewpoint or performance and reliability of the system.
The introduction or redundancy has to be handled with great care, since it also leads
to an increase in the complexity of the distributed database management software.

Redundancy exists at many level in database systems. System level redundancy
is provided by data encoding and logging mechanisms, with the sole objective of
gaining reliability. Redundancy in databases is commonly increased by the use of
indexes and auxiliary access paths. In distributed systems especially we find that
sets of data elements are kept redundantly at multiple sites.

The potential gain in performance from such a replication is due to the fact that
any of the copies of each replicated database object can be used by a transaction
for a retrieval access, provided that all the copies are consistent; hence several

- execution strategies can be used for accessing objects, decreasing overall execution
costs. The improved reliability is obviously related to the availability of several
copies, geographically dispersed, of the same information. The increase in the
complexity of database management is mostly due to the need of maintaining the
consistency of the replicated copies of the same data objects; updates have therefore
to be propagated to all of them.

In the following, we will describe a heuristic technique for progressively intro-
ducing redundancy by replication, using the optimal non-redundant solution as a
basis. Assumptions will be made about how transactions are handled in the repli-

AW cated environment, aiming to give an execution model of transactions which is typi-
cal of distributed database systems which employ replication. It will be shown that
the transaction excution model is inherently combinatorial because of replication,
and this motivates the use of a heuristic allocation algorithm.

5.1 Assumptions about the Distributed Database Environment

In order to analyze replication within the distributed database environent we have
to modify and extend the assumptions made in the previous analysis:

1: The non-redundancy constraint is relaxed; therefore, it is possible to have
several different allocations of the same data object.

2: The updates are immediately propagated to all the copies of each data
object; therefore updates to objects are directed to all the sites where the objects

are replicated.

3: The optimizer which determines the execution strategy of transactions has
the following features:

a: It has a global knowledge of database; global directories are therefore

-iavailable at each site where transactions are optimized..
b: It selects the best alternative among the logically equivalent execution

strategies which are possible for retrieval accesses; this choice reflects
the same criteria which are used in the optimization model, namely, the
minimization of access and transmission costa.
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4: The replicated copies are used to enhance system reliability as well, and
lessen the requirements for stable storage at each node IMiWi81. The increase
in reliability which depends on the presence of multiple copies can be taken into
account by associating to each object a set of negative cost parameters, each of
which estimates the overall benefit which is a function of the number of copies of
the object.

5.2 Example of Transaction Execution over a Redundantly Distributed
Database

Consider a simple transaction Tk which accesses two objects 01 and 02 which have
degrees of redundancy dr, and dr 2 respectively. Consider the following 4 possible
cases:

case a: Both 01 and 02 are retrieved (ut = u: = 0); then there are
dr, X dr2 possible execution strategies for the transaction, each using
one particular pair of copies of 01 and 02. The cost associated with
transaction execution is the minimum cost among these alternatives.

case b: 01 is retrieved and 02 is updated (uk = 0, u' = 1); then all
the copies of 02 are accessed, while there are dr, alternative execution
strategies for accessing one of the copies of 01. The information which
is used for joining 01 and 02 is sent from the selected copy of O1 to
all copies of 02. The cost asociated with transaction execution is the
minimum cost among the dr1 alternatives.

case c: 01 is updated and 02 is retrieved (uA =1, ut = 0); then all
the copies of o, must be accessed, but only one colpy of 02 is sufficient.
The information wh'. h is used for joining 01 and 02 is sent from the
most convenient copy of 01 to the selected copy of 02. Again, the
cost associated with transaction execution is the minimum among dr2
alternatives.

case d: Both 01 and 02 are updated (uk - uk = 1); then there is only
one execution strategy for Tk, consisting of accessing all the copies or
both 01 and 02. For each object or 02, the information which is used
for joining 01 and 02 is sent from the most convenient copy of 01.

In the following, some definitions are given which are useful for the replicated
optimization model.

Let S be a non-redundant solution, 0 be the set of objects of the database, I be
a subset of 0. The set SOL(S, I) contains those solutions S' generated by taking all
possible ways in which objects in I can be non-redundantly allocated in combination1 with replicated allocations for the objects in 0-I. Therefore, indicating with prime
the allocation variables of S' and without prime the allocation variables or s, the
following definition can be given:
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SOL(S, I) = {S'
Vi E 1,((3 1p I Xi = X = 1 A (Vp' 3 p,X v = o) A (Vi,Y =0 ))

V(3jY I ,. = y.= .A(V 1  jY,, = o)A(Vp,X' = 0))),
Vi E (0 - I), (X,, = XI,, A Yl; = Yi))

The cardinality of SOL(S, I) is a function of the degree of redundancy dr of
the objects in I; it is ISOL(S, I)= -liE,, dr.

Finally, we can say that two solutions S' and S" differ in one variable V, or
S'- S" = V, when X = = X and V Y'. for all variables other than V, and
V, V1, Vs' = 0.

Given a solution S, it is possible to evaluate the transaction execution cost
C(Tk,S) as the minimum of the set of alternative transaction execution costs
TEC(Tk, S'), where S' is one of the solutions in SOL(S,Ik) and Ik is the set of the
objects retrieved by thc transaction. We have:

C(Tk, S) = min TEC(Tk, S')

S'ESOL(S,I&)

Recalling the cases of Sect. 5.2, the set of retrieved objects is

1h =- {O1, 02) in case a,

I- = {O} in case b,

I k - {02} in case c,

_I
k = in case d;

in general it is IA = {O, I u = 0=}.

Figure 8 shows the for the 4 cases of Sect. 5.2 the accesses of transactions and the
required transmissions in terms or the set or SOl(S, I), given a solution S.

5.3 Description of the Object Allocation for the Redundant Database
Distribution Algorithm

The description of a redundant database allocation uses the same variables Xp and
Y~i that were introduced in the non-redundant model, releasing the non-redundancy
constraint. Therefore it is possible now to allocate an object according to several
alternative partitionings, or to store it as a whole on several partitionings and full
allocations. We can define a redundant solution S as the assignment of 0/1 values
to the decision variables Xip and Yii, subjected to the constraint that each object
should be allocated at least once in the distributed database; the non-redundancy
constraint is therefore modified as follows

P I
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5.4 Evaluation of Transaction Execution Cost

In this section the transaction execution cost TEC(Tk, S') for a given solution S' of
SOL(S, I h) is derived from the logical description of transaction accesses, introduced
in Section 2.3. The same cost parameters as in the non-redundant model are used
for access and transmission costs (see Section 3.3).

The transaction execution cost TEC(Tk, S') comprises 2 components: access
costs AC(Tk, S') and transmission costs TC(Tk , S').

Access Cost Let U(k) be the set of objects used by transaction k. The access
cost AC(Tk ', S') considers essentially the same components as in the non-redundant
model, but now aggregation is made on the objects for a fixed transaction instead
of aggregating on transactions while keeping the object fixed. It is:

AC(Tk, S') -- F (SCApk X,,, + SDA,, Y,,)
iEU(k)

where SCAipk and SDAijk were defined in Secs. 3.5.1 and 3.5.2. However, Xjp and
Y4 are now fixed and appear in the cost evaluation. Also, notice that there can be
more than one value XKp or Yi set to 1 for the objects which are updated.

Transmission Cost The transmission cost TC(T', S') is given, as before, by
the sum of two components. The first one, TCI(Tk, S'), takes into account those
transmissions which are required for performing the joins. For every copy of object
i which is accessed via a join with the object ' (i.e. for every pair <i,i'> such
that i' precedes i in the access path of the transaction), a transmission is required,
unless i' has the same allocation as i. Therefore,

a: the transmission of the join information from object i' to all the fragments
of object i is required when the solution S' has the variable Xip set to 1 and Xop
set to 0;

b: likewise, the transmission of the join information from object i' to object
i is required when the solution S' has the variable Yi set to 1 and Y',j set to 0.

We have:

TC'(T", S') - (I - Xip) Xp Np r' es +
,. i,i',pliEU(k)A

i Nesth(O')-i

(I - Ye 4r tTC

i~i'.JlEU(h)A

This formulation takes care of the minimization of the transmission cost when s and
i are allocated according to the same partitioning, or on the same site; otherwise
transmission of join information to each copy which is retrieved or updated is
provided. The minimizatior of transaction execution costs which accrue to the
choice or one particular copy of each retrieved object is part of the minimization of
costs associated with alternative solutions in S014S, I).

F -I
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Note the similarity between TC'(Tk, 8') and the coefficients C1p and DT', of
the non-redundant model; here again Xip and Yii are fixed, and hence the use of
their product in the formulation is possible.

The second component of the transmission cost, TC(Tk, S'), takes into ac-
count these transmissions which are required for collecting the result of the trans-
action on the site of the transaction. This cost is evaluated exactly in the same
way as in the non-redundant model origin, as it involves transmissions to the origin
site from those sites which store terminal objects of the transaction; note that, as
terminal objects are accessed for retrieval, they are not redundantly allocated. We
have:

TC"(Tk, S') = (SCTkX,, + SDT! -k Y's) TC
k

where SCT1,k and SDAI. were introduced in Secs. 3.51 and 3.52.

5.5 A Greedy Heuristic Algorithm for the Progressive Introduction of
Redundancy

A greedy heuristic algorithm for the progressive introduction of redundancy, using
the optimal non-redundant solution as a basis, is shown in Fig. 9. The algorithm
has the following features:

1 The algorithm is iterative; at each iteration, the solution S determined at the
previous iteration is taken as a basis, and all variables V which have value 0 in that
solution are tentatively set to 1, generating a set of alternatives solutions S' such
that S' - S = V. Global -osts are then evaluated for all alternatives, and the one
with minimal cost is selected. Therefore, at each step the "degree of redundancy" of
the solution increases. The optimal solution from the non-redundant optimization
model is the basis for the first iteration.

2 The algorithm can be classified as a greedy heuristic, because at each step
the variable V is selected which decreases the overall costs the most.

3 The algorithm is convergent toward a relative minimum, as the overall
cost monotonically decreases with progressively determined solutions. In fact, the
algorithm terminates when it is not possible to decrease the overall cost any further.

4 The reliability benefit accrued by having multiple copies is not attributed
to any particular transaction, but rather to a solution.

The algorithm compares alternative solutions S by associating to them a global

cost C(S) which is based on the cost or transaction execution and the benefits
accruing from the increasing reliability due to the introduction of redundancy.

The object i whose allocation variable value is changed from 0 to I in S' divides
the transactions into two sets. The first one consists of those transactions which use

" O(i E U(k)), whose execution cost has to be evaluated. The second one consists
of those transactions which do not use O(i 9' U(k)), whose execution costs does

* not change from the previous iteration. Clearly, by storing individual transaction
. execution costs corresponding to the current solution at each iteration, these costs

* .-. .. ' - ,.
" - - '

" , . . "- -' ' ' - - -- - f " i m
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need not be evaluated for transactions or the second set. The transaction execution
component of the global cost C' is evaluated by summing the contributions from
the transactions of both sets (see Fig. 9).

The reliability benefit can be modeled as a function of dri, the number of
copies of each object i in the considered solution. Realistically, the benefit increases
with dri in a non-linear way; in fact, while the introduction of the first copy is
highly beneficial, the interest in having the (drv + 1 h ) copy of the same information
decreases with drv. A possible function to model this property is:

f(dvi) =( - 2-dri+l)B,

where Bi is the benefit of having the object i infinitely redundant; note that f(1) =

0, f(2) = 1/2B,, f(3) = 3/4Bi, and so on. The benefits due to replication are
taken into account by summing the values returned by the above functions for all
objects in S' (see Fig. 0).

At each iteration, Se, corresponds to the current "best" candidate between the
alternative S' solutions generated from S; C, C' and C,, denote the corresponding
global costs. The algorithm terminates when none of the candidate solutions S
yields a global cost which is less than the current global cost, and therefore C,.,.. <
C is not satisfied.

5.6 Alternative Heuristic Formulations

The heuristic proposed above is "conservative", in the sense that decisions taken
at each step involve the repetition or all cost evaluations concerning those objects
whose allocation is modified from the previous step. In that sense the proposed
heuristic is "sound" (decisions are always based on correct evaluations), but it is
also rather hard from a computational viewpoint. As already shown, the computa-
tion of transaction execution costs grow combinatorially with the number of objects
retrieved by the transaction itself; therefore the complexity or an iteration decreases
linearly as the algorithm evolves because of the reduction of variables to be con-
sidered as candidates, but the complexity of transaction cost evaluation increases
combinatorially with the degree of redundancy of objects in the base solution.

In some cases, the dimensions of the database design problem are such that the
computational complexity of the proposed heuristic is too hard; then the proposed
heuristic is a good basis for building "faster" heuristics, which sacrifice the accuracy
of the final result in order to avoid hard computations. In the following, such a
faster heuristic is presented which has the important property of being convergent
toward a relative minimum.

The algorithm consists of the following steps:

step I Iteration I of the original algorithm is performed, and all the candidate
solutions S' corresponging to a cost C' which improve the cost C" of the optimal
non-redundant solution are retained; these solutions are ranked in descending order
by value of the associated cost C' (hence, the first solution correspond to the more
convenient variable to be set at 1).
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step 2 Then, variables are tentatively set to 1 according to the ranking order,
thus increasing progressively the degree of redundancy of the solution. At each
iteration, it is verified that the global cost has decreased with respect to the previous
iteration; however, this is done for the considered variable only.

step 3 If the above verification fails, then it is possible either to terminate
the process or to repeat Step I with the current solution as a basis, rank variables
according to their convenience, and then proceed with Step 2. In this case, the
optimization process terminates when Step I is performed without finding any new
solution which decreases the cost of the current one.

5.7 Introduction of Concurrency Control Costs in the Design

Synchronization costs can be introduced in the design of the redundant distribution
of a database to take into account the increase in complexity or concurrency control
due to the presence of redundant copies, which require updating within transactions.
An additional parameter CM is introduced which measures the cost of transmitting
one message between different sites. Concurrency control is also necessary for
databases without replication and for auditable retrieval transactions as well as for
update operations. The coefficient CC(TA, S') will evalute the amount of overhead
with respect to a non-redundant execution of the same transaction. Since our model
aims to be general no particular schema is assumed for the implementation of the
concurrency protocol, and we consider that synchronization overhead is proportional
with the number of copies to be updated. This number is furthermore proportional
to the number of fragmekits per partitioned object N,, when the transaction does
not match the partition. We have therefore

CC(T 5s, S') = ,,m',+( ~,N,) + F CM
Sr~ 1

In selecting the best alternative for transaction excution the term CC(T h , S')
should be added to AC(T h, S') and TC(Tk, S').

5.8 Introduction of Storage Limitations in the Design

4 Storage limitations at each database site may also be introduced into the model. In
modern systems storage costs may become a minor component of overall system cost.
However, with replication of data it may be useful to include in the optimization
constraints which account for storage limitations in order not to exceed available
storage at each site. Such a constraint is

' (pq)Xi, fr(i, p, q) + Y size(i) : SCi  for every sitej

where SC, measures the storage capacity at site j.
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6 EXAMPLE

An example of an application of the optimal non-redundant allocation model is
shown in Figs. 10 and 11. The example is quite simple, but it incorporates most of
the features which are typical of a database distribution problem.

6.1 Description of Requirements

The requirements for the optimization model are described in Fig. 10a, b, and
c. We are considering a fully-connected, distributed database consisting of three
sites. The database schema which has to be distributed (Fig. 10a) consists of three
objects (DEPARTMENT, EMPLOYEE, and PROJECT) and three links (DEPT-PROJ, DEPT-
EMPL, and PROJ-EMPL). Quantitative parameters and the index numbers associated
with objects and links are also shown in the figure. Note that the link between
DEPARTMENTs and PROJECTs is included in the logical schema, but is never used
by the transactions which are considered; hence it is not subjected to distribution
optimization.

The candidate partitionings are shown in Fig. 10b. Partitionings 1 and 2 are
* . primary on DEPARTMENT and derived on EMPLOYEE via link DEPT-EMP; partitioning

3 is primary on PROJECT amd derived pm EMPLOYEE via link PROJ-EMP; partitioning
4 is primary on EMPLOYEE. Because of these definitions, the object EMPLOYEE can
be partitioned according to 4 alternative candidates (3 derived partitionings and 1
primary partitioning); consequently, variables zI, Z12, z13, and X14 are introduced.
The object DEPARTMENT can be partitioned according to 2 alternative candidates
(both primary); correspondingly, variables zai and X22 are introduced. Finally, the
object PROJECT can be partitioned accordingly to only I candidate partition, which
is primary (variable Zss).

The Transactions are shown in Fig. 10c; quantitative parameters are described
through Transaction Specification Tables, as in Fig. 7. Transaction 1 is issued at
Site Si and matches predicate P4. Therefore, ir the employee OBJECT accessed by
the transaction were partitioned according to p4 in the optimal solution determined
by the optimization model, all accesses of Ti will be local to Site 1. (This, of course,
will also occur if Object I is allocated at Site I as a whole). Transaction 2 can be
issued from all the sites, but it matches predicate pl when it is issued from Site 1.
Transaction 4 can be issued from Sites 1 and 2 and in both cases matches partition
P2.

6.2 The Optimization Model

The optimization model for the example involves the use of 25 variables; in fact,
there are 7 Xp variables (corresponding to 4 primary and 3 derived partitioningp),
3 Whp variables (for the links along which derived partitions are propagated), 9
variables Y,, (each object can be allocated on each node on a whole), 6 variables
V#,j (2 links are used by transactions, and can be local to each site). Moreover,
21 constraints are introduced (3 non-redundancy constraints, and 18 constraints
for modelling dependencies between variables WAp and Xip or Vh, and Yiy. The
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optimization was made using the Additive Generalized Balas Algorithm, which is a
general, 0-1 integer linear solution method; the program was taken from [BaCC81I.
The CPU time used for an optimization run was between I and 3 seconds on a
DEC-20/60 system.

6.3 Discussion of Results

Figure 11 shows seven results of the optimization, obtained by varying the cost
parameters and the transaction frequencies. For simplicity, in the case of multiple
site transaction, the same frequency value is assigned to each version. A solution is
represented in the table by the variables which are set to 1; object or link variables
are shown in separate columns.

Cases 1, 2, and 3 show the effect of increasing transmission cost. With null
transmission cost (TC = 0), each object is allocated by itself, and no Vhy or
W,p variable appears in the solution (as join transmission costs are not evaluated).
However, by increasing transmission cost, the object allocation moves to site 1. This
is because, in the example, most transactions are issued from site 1, and therefore
this solution maximizes the locality of processing.

Cases 4 to 7 show the effect of increasing one of the transaction frequency values
in turn. Cases 4 and 5 still maintain the allocation of objects on site 1, because
transactions 1 and 2 are issued from 1. However, case 6 presents the partitionings
of objects 1 and 3, which are used by transaction 3, according to partitioning 3,
which matches the transaction. Likewise, case 7 presents the partitioning of objects
1 and 2 according to partitioning 2, which is matched by transaction 4.

In case 8, the access costs are made equal to 1, without distinguishing local
versus remote and retrieval versus update accesses. Then, the objects move to site
3, where most of retrievals take place.

Finally, cases 9 and 10 show the effect of increasing the access cost at site 1.
In case 9, the objects move to site 2; in case 10, the frequency of transaction 3,
issued from site 3, is increased, and consequently the objects move to site 3. While
the behavior of the allocation optimizer can be easily understood and connected a
posteriori, the allocation chosen by the model is not at all obvious a priori.

A

_ _ _ _ _
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7 CONCLUSIONS AND FUTURE WORK

In this report we have dealt with the problem of distributing a database by con-
sidering the logical schema of the database consisting of objects and predefined
links, where individual objects were in the form of normalized relations.,By defining
four basic logical access types and using a rather straightforward model of trans-
action execution, we were able to develop necessary equations to estimate costs of
transaction processing and develop an optimization model to minimize the costs. A
decomposition model was developed to make the problem computationally feasible
and a heuristic procedure was discussed to incorporate redundant allocation of en-
tire objects or partitioned objects.

This paper has developed a methodology for the distribution design phase
(see Fig. 1) which fits in the overall framework of database design. This phase
is into a series of activities which .are necessary before the optimization model can
in fact be applied. An important early stop is the solicitation of partioning guidance

' tfrom the user, which makes this model tractable. The example in Section 6 points
out the scenario of a distribution design by considering various possible mixes of
transactions.

It is conceivable that after a database has been distributed and is operational
a restructuring is called for, due to the following reasons:

i Better transaction load estimates are available.

ii There is a need to introduce new objects and links in the database schema
and repopulate the database.

iii Cost parameters such as access costs and transmission costs have undergone

S* a change.

The approach that can be taken to deal with the above problem is to run a
*! revised optimization model. The revision consists of adding to each C1, or Di, the

cost of moving the already allocated object to the intended new location. This cost
should be averaged over the time period between two restructuring since all other
costs are per unit time. The non-redundant model could then be run with these
new cost parameters.

Redoing the problem under redundancy amounts to solving the old and the
new problems with new parameters and advocating restructuring If

R- c.. >

where, C.,1 and C... are total costs of transaction processing for the old and new
allocations using new parameters.

R is the cost of a one-time restructuring
P is the time units between two restructurings

A sophisticated database environment with a built-in design tool which is capable of
doing the above type of restructuring can be expected to monitor loads and trigger
a distribution of data over the network when needed.

I
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Future extensions to this work will address:

i A vertical partitioning of objects.

ii Different models for transaction execution.

iii More general models for description of data replication; e.g. the effectiveness
of redundantly allocating a single fragment.

iv Consideriation of equivalent logical schemas for further optimization; e.g.
when a subproblem is decomposed, alternative logical schema representations of the
subproblem should be investigated.

The current model is encouraging since it permits a formal solution to a design
problem which is too complex to be solved by random search and for which no
good directed search algorithms are known. At the same time few people have
the experience to design distributed databases by intuition, although the results

Iobtained from testing our model were explainable in informal terms.
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EXAMPLES AND FIGURES

Users

requirement collection
I

requirement specification

"' ' - view analysis and integration

enterprise transaction distribution
schema definition requirements

I -o DISTRIBUTION DESIGN

-1 distribution of the enterprise schema into local logical schemata

physical database design for each local database

implementation schema

--- operational system

Figure 1 The Overall Distributed Database Design Methodology

i
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CUSTOM ER CUSTOMER ACCOUNT

cult # .... Cust# ..... Acct 9...

ACCOUNTI C-A

Amc#. Cust# ri m -,s -V At;t....

(a) a one-many relationship between (b) a many-ma ny relationship between
CUSTOMER and ACCOUNT CUSTOMER and ACCOUNT

PROJECTPROGRAMMER

Rname, Pname, Cname.# Months...

COMPUTERI
Cname .........

1c) a ternary relationship between PROJECT.
* PROGRAMMER and COMPUTER

Figure 2 Use of Objects and Unks to Model Different Types of Relationships
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MED-INFO PAYROLL

Emp #. Med-Rec-No ......240 Month, Salary,........0

4 30

-0.6

* ~ ~ AAE Fiur EMLOE AnDEaplARTaMEaNTScem

10 1 OI0s

E*# Mg-no..... t0 1 01i p ,NmAdes et _ .Dp4,Lcto ......

.- 

_____________________ 
________________
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MED-DEPT

D# Location......

DOCTOR PROCEDURE

Orna e .......... 1 # ............

(a) Database Schema

MED MEDDOC / ooc
DOC PROC DOC ZPROC

PAT PAT

Partitioning Predicate for MED-DEPTS Partitioning Predicate for MED-DEPTS
is based on Location is based on ranges of D,#

PROC

' DOC
* " PROCEDURES are partitioned into surgical

and non-surgical procedures

Figure 4 A Database Schema and Its Possible Derived Partitioning Hierarchies
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TDA: Total Direct Access.
no. accessed - card (i)

SDA: Selective Direct Access.
no. accessed is user specified

TJA: Total Join Access.
~IJ j ~ ~ Jno. accessed -N *ratio, if j is

the member of h
- N, if j is the owner

of h

LZI~LIZ] SJA: Selective Join Access.
no. accessed is user specified

Figure 5 Transaction Access Primitives
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Transaction: Find all Ml[Puployees in the DLWrtents in CAlifornia
that have PROJects which need PART#= 7386.

List EMPM. DEMl. PROJ#. BUDGET.

EMPLOYEE

Emp#. Name. Address. DapA ...

Pro Budget. Dept4

.. DEPARTMENT

q ept~tg. Location ........... l

~Location - 'CA'

AProj#, Bud eot pt

PROJECT , PART- NEEDED
!~1 1E' m 161

Proj Budget. Dept# ......... .. Proj;# Proji# Part#. O .......

Part#

PARTP r V .............
Part.-# 7386

Figure 6 A Graphical Transaction Speclfication

..........................................
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TRANSACTION SPECIFICATION

Object Jsed as Used No.of Link (Partn'g Size of Retrvl (Evaluated
Entry for Acces'd Used Pred. Tuple vs Ino. Bytes

-i Point Result Tuples Next MatchedX'mitted {Update X'mttd

part 1 0 1 I p-pil - I 4 RI 41
part-needl 0 0 I 18 IP,-PRl - I 4 R I 81
project 10 0 1 IPR-DI P1 I 12 RI 1921
departmentl 0 1 0 I 10 J- I P1 I 12 R 10.12=120
employee 0 1 I 200 - I R I 6 R 200

Origin at: Site 3 Freq3 3: 50/month

Figure 7 A Tabular Transaction Specification

71 __
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Let S = Pii,PI13,V1,pt2 represent a redundant allocation of a database having S
sites and 2 objects. where all non-mentioned variables are set to zero. Cases
a, b. c. d of Section 5.2 are represented below with diagrams, where solid
dots correspond to objects In SOL(S, 1k); arrows indicate precedences between
transaction accesses; and a vertical arrow connects accesses performed at the
same site, which do not require any transmission.

Case a: Retrieval-Retrieval,
I-= (Oi, O), SOs, 1 ) - ((Vlih I1 }, (ii, 911), (Vi, V 1), {15, V22))

A different transaction execution is obtained from each solution In SOL(S, 1k);.
Sit

123 2 23 2 23 2 23
ObJ

1 0 1% 0 10 0 /0

200 0 20 0/

Case b: Retrieval-Update
1k = {o, = SOL(S, I*) = ({V11, V21, 22), (13,121, Y22))

Transmissions to both copies of the updated object are required.

It 1 2 3 2 3

Obi
\ 0

Case c: Upd&te-Retrieval
1* = (02) - SOL(S, Ik) = {(es, v,, Y2), (yII, V13, V22)

Transmission Is required from one of the copies of the updated object to the
retrieved object; the best transmission alternative is selected.

st12 3 I2 3

ObJ

2 0 2 0 V
Case d: Update-Update
Ik = #', SoJS, IJ) = ({I,,, Y1, V21, l})

Transmission to both copies of Object 2 are required for both copies; the best
alternative is selected.

i 2 3
Ob)

* 26

Figure 8 Transaction Execution over a Redundantly Distributed Database

ii .
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start with S.. S 8', C... =C

(C refers to the opting1 non-redundant solution)

repeat

S := S...; C := C",.;
for every variable Xp or Yp which does not belong to S do
begin

build S' - (S +that variable set to 1);
C':= 0;
f or every transaction Tk such that i E U(T*) do
begin

compute C T(Tk, S');
C' := C' + CT(Th, S');

end;
f or every transaction TA such that i 9'U(T') do

C' :=C ' + CT(T*, S);
C':= C' + E, f(dri);
if C' < C,. then

begin S.. := ,'; C,. :w Ce end
end

until (C., < C);

S, S', S. represent assignments of variables X. and Yq- corresponding to old,
partial and new solution at each iteration. C, C', C... are the corresponding total
costs. The counts drv are the degree or redundancy or object i in solution S.

Figure 9 Algorithm for Redundant Database Distribution

C

_______________________



Sec. Examples and Figures 45

(a) Database Schema

DEPARTMENT s 1DEPT-EMP
ID p # Location ........... I

1DEPT-PROJ Objcctname IndexIEmployee IPROJECT i40 Department 2

Pr. Dept , M. S..... 20Project 3

10.75

EMPLOYEE I rOJEM

i mp -y Proj#, Deptt ae tts

(b) Candidate Partitionings

P1: primary on DEPARTMENT (Object 2)
pred(2, 1, 1): DN0 in {1...20};alloc(2, 1, 1) 1; fr(2, 1, 1) = 0.4
pred(2,1,2): DMo in {21...50); alloc(2,1,2) = 3; fr(2,1,2) = 0.6
derived on EMPLOYEE via link DEPT-EMP

P2: primary on DEPARTMENT
pred(2, 2, 1): LOCATON=Northern Calif ornla; a.loc(2, 2,1) = 1; fr(2, 2, 1) = 0.26
pred(2, 2,2): LOCATION=Central California ; lloc(2, 2,2) = 2; fr(2, 2,2) = 0.30
pred(2, 2,3): LOCATION=Southern California; aLLoc(2, 2,3) = 3; fr(2, 2,3) = 0.44
derived on EMPLOYEE via link DEPT-IMP

P3: primary on PROJECT
p ed(3, 3,1) : TYPE=Sof tware; LLoc(3,3, 1) = 1; fr(3, 3, 1) = 0.7
pred(3, 3,2) : TYPEHadware; alloc(3, 3,2) = 3; fr(3, 3,2) = 0.3
derived on EMPLOYEE via link PROJ-UP

P4: primary on EMPLOYEE

pred(t, 4,1) : STATUS=Rular ; aLLoc(1, 4, 1) - 2; Jr(1, 4, 1) = 0.5
pred(l, 4,2) : STATUS=Part-time; alloc(1, 4,2) - 2; fr(l, 4, 2) - 0.2
pred(l, 4,3) : BTATU8=Fired ; alloc(l, 4,3) - 3; I l, 4,3) - 0.3

Figure 10 Example of a Database Schema, Candidate Partitionings, and Transactions

t ° ... , -
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(c) Transactions

Ti: Give 5% raise to salaries of regular employees

ORIGIN: Site 1 (FREQUENCY: freqti)
Object sod asI Used No.of Link Partn'g Size of Retrv Evaluated

Entry for Acces'd Used Pred. |Tuple vs no. Bytes
Point Resultj Tuples Next Matched X'mitted Update Xmitted

EMPLOYEE IYes Yes- 2250 -- P4 -- --

T2: List name and salary of employees with

department city = San Francisco

ORIGIN: Site 1 (FREQUENCY: req2)

E TN1 YeDEPT P1 41 R 1 201
"EMPLOYEE Y Yes 450 P1 40 1800

ORIGIN: Site 2 (FREQUENCY: freq,,) and Site 3 (FREQUENCY: f req,)

DEPARTMENT Y4 1IET Rj .820!
E E I Yes Y 450 EMI I 40 R 1

T3: List all participants to hardware projects whose manager is Jones

ORIGIN: Site 3 (FREQUENCY: freqa)

PROJECT e* s I Yes 20 PROJ P3 4 1 R 801 0

EMPLOYEE Yes 45S I P3 40 R 180

T41: Give a 5% raise to employee salaries

for the departments in Northern California

ORIGIN: Site I (FREQUENCY: freq4l)

"DEPARTMENT IYeI Yes 131 DEPT 2 I 4I R2
EMPLOYEE Ye 170 : P2 , -J U --

T42: Give a 5% raise to employee salaries
for the departments in Central California

ORIGIN: Site 2 (FREQUENCY: rcq4s)
DEPART EN T Y s 2 4 

EMPLOYEE Yes 1350 IMP P2 U

Figure 10 Example of a Database Schema, Partitionings, and Transactions
(continued)
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TABLE OF RESULTS

Case Cost 2V Transaction Optimal w Cost
Parameters Frequency Solutions

CLRCRRDCLUORU f- y and I I
ii0 1' =lj Hi22P 133 33490.5

21 o's f2~ - 33553.00
3I 0LR1-,CRRt-2.5, 1 1 pillylpas 1I'LI- 33563.00,
41 CWU=5,cRtu=10 fI - 100, f,,4 . I 1 I____ wit 1147493.00

51f 100, fl,a.= -1 1 l131,1t31 30M813.25
61 I S -s 100,1l.3,4 - 1 jzIs,?/2s,33 vat 40916.00
7 1 1. = 100, fi 2,s -= 1 , z2,s U* it 1289025.00'
8 CLR=ORRt= 1h - f2 IS, V23, 33 Witt 6243.00

CWU=CRU=1 Ii =1 W23_____U~

9 CLR=10,CRR,25, 1 f, = s f12 , L129 '2 Witt 43910.00
cw1 i=50,CnUi=100 fa 14 =E- 1* 1u, ___

10 CLR 2 ,3=1,CRR,,s25, f3 - 100, jIJ1 32393 3 139Pa 50702.001
I LU=5,0RU 1=100' __ Ia=1 = 1 =2 1 _____ was____

* Figure 11 Optimal Non-Redundant Solution for Several Values of the Cost Parameters
and the Transaction Frequencies
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