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INTRODUCTION

In this manuscript some very basic ideas of important con-
sequence are discussed. These ideas are important for any prac-
ticing engineer in pattern recognition. The topics include
equivalent classifier, dimensionality reduction, fusion of clas-
sifier, time varying statistics etc.

Throughout, this presentation, it is assumed that the
reader is familiar with the mechanics of constructing discriminant,
selecting features and other related properties. Therefore no
attempt is made to make this presentation comprehensive. Most
of the subjects, discussed in this presentation are considered
‘obvicus' in standard books written on the subject of pattern
recognition. It is our belief that the readers of this manuscript
will benefit considerably by giving some time to these "obvious*”
results; mainly because the obvious results are sometimes very

confusing results.
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l.. OPTIMAL AND EQUIVALENT DISCRIMINANTS

Many important applications of pattern recognition can be
characterized as either waveform classification or geometric
figures classification. In order to perform this type of classi-
fication, typically one measures some observable characteristic of
the object. This collection of measurements is called the features,
and the process of deriving the featﬁres is called feature extrac-
tion. Typically a classifier is developed using these features.

It any classification problem, one of the basic assumptions
is that there exists some difference between the populations from
which the objects are sampled. Thus, there is always a classi-
fier which can be used to differentiate between the populations.
We will call it "the natural classifier” and denote it by C.
Existance of such a natural classifier is of fundamental impor-
tance in pattern recognition. This will also be useful in the
following discussion.

To f£ix the ideas, we consider the example of character recog-
nition between letters A and B. Note that there exists a natural
classifier (which human mind employs] to distinguish between A

and B. Por mechanical or computerized discrimination one would

; select features to construct a classifier. This feature leloq-

tion can be done in many ways and success of the corresponding

TR

classifier depends very heavily on these features. For the hand
written characters (A and B) two possible feature extraction pro-
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cedures are:

(a) put a standard grid on each letter and measure the
shaded area in each cell, [see attached figure].

(b) Record the presence and absence of a portion of the
letter in each cell by 1 and 0 respectively and obtain the feature
vector consisting of 0's and 1's. The collection of these features

can be employed to construct two respective classifiers).

Mathematically, the feature extraction is equivalent to trans-
{ formation from the natural space, S, to euclidean space Rp, ie |
. (F1 = 7(S]
T where F denotes the new features and T is the transformation.
Typically the transformation T is nonlinear and some time one may
not be able to express it in terms of mathematical equations.

Let C and C' denote the classifiers in the natural space and

the feature space respectively and T"l the inverse transformation of

h
o
i
i

s T. Then C and C' will be equivalent.
f 1 This equivalence is obvious because the existance of T'l implies




timal classification procedures. But it must be remembered that

that there is a one to one transformation from S to space of

features and conversely.

Extending this idea, suppose that Ty and T, are two transfor-
mations, {Pl} and {Pz} the corresponding feature then the classi-
fiers C, and C, would be equivalent to each other and to C if
Tzl and Tzl exist. Obviously C, and C, could be equivalent to !
each other, if there exists a one to one transformation from

{Fl} to {Fz}, without being equivalent to C.

Thus, the optimal classifier is the ‘'natural' classifier and
generally, it is not possible to explain how it works. On the
other hand to obtain a classification procedure a set of features

is obtained. Given these features one can attempt to obtain op-

this optimality is conditional upon the giveh feature set. In
other words, if a new feature set is given than another 'optimal’
classifier will be obtained. The two ‘optimal' classifiers will
be equivalcnt‘if and only if it is possible to obtain a one to one
transformation from one feature set to the other.

To summarize, a classifier is optimal only after a set of
features have been selected. This optimality should not be confused
with 'global' optimality. ‘ .




2. ON NEMBER OF FEATURES

In a typical pattern recognition problem there are two stages:
(a) the feature selection stage (b) design of a classifier based
on the selected features. Classifier design is relatively easier
in the sense that if the features and their class dependent

joint distributions are available then one can apply Bayes proce-~

dure to obtain optimal classifier. 1In case the class dependent

distribuytions are partially known, or even if they are completely
unknown, modifications of the optimal clasgifier or nonparametric
classifiers are applicable. On the otherhand the problem of fea-
ture selection is quite difficult because no standard procedures 1

can be applied and moreover the features are specific to the pro- 4

blem under consideration.

The problem of feature selection arises generally because the
data collected in the natural space is not suitable for mathemati-
cal manipulation. For example, consider computerized classifica-
tion of ECG curves to one of the several disease classes. 1In

this case mathematical manipulations with these random ECG curves are

almost impossible, therefore the need for alternative ways of
storing the information in a curve. For this particular problem,
one possible procedure is to apply Karhunen-lLoeve expansion.
Feature selection also plays an important role as a method of
data reduction. For example, although the data may be available
in a vector form, suitable for mathematical manipulations, yet
its dimensionality may be very large. In such situation it is
desired to compress the dimensionality without sacrificing in the

performs ~e.




Let C  be a classifier based on n features. Let C be a
classifier based on a subset of the original n features. Then it
appears to be a well known property that the performance of Cn
cannot be superior than Cn. A proof of this property is easily
obtained in the case of two class classification problem with
under-lying normal distribution with common covariance matrix.

In this case the performance of the optimal clagsifier is meTsur-
ed in terms of Mahalonobis distance §' D § where § = gl—gz‘and p
is the gommon covariance matrix, u; is the mean vector i=1,2.

The error probability decreases as the Mahalonobis distance §' 5:'1 2
increases because the error probability is given by O[-h(é'z'lg)k].

Since

R SENP NS 2 MR SRS ¢ S
1 g=fnd 2.1 221 %201

where
5 T, =
5 [m1], - [ 1 Fizf
£2 L1 Iz
-1 -1
R2.1 = R27%21 1) Ry » Igp.1 = I327Ep) 11 Iy,
and
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it follows immediately that ¢(-3(8't™! §}1/2) s o (31427} 43D

Thus, a subset selection may not lead to a better classifier.
But this does not imply that if n > m and the first classifier is
based on n features and the second classifier is based on m features
then the first classifier is necessarily better than the second.
In fact, in some cases a classifier based on n features may do

worse than another classifier bas%F on m features (m < n).




To demonstrate this property, consider the following trivial
example. Consider two populations in which the underlying ran-
dom vector is (k+1l) dimensional, k > 1. Suppose the marginal dis-
tributions of the first k components are identical in the two
populations, thus the first k components have no discriminatory
capability. On the otherhand the (k+l)th component has different
distributions in the two population. Two researchers, who are
unaware of this property, select feature sets consisting of the
first k components and the last (k+1)th component only respective-
ly. It is obvious that the first researcher will obtain poorer
discriminant although his feature set contains a larger number of
components than the second researcher.

In general, for every classifier based on m features, one can produce
an equivalent classifier with n features where n > m because all we need
to do is to add n-m non-informative independent features to the set of n
features. On the other hand given a classifier based on m features one can
produce an equivalent classifier based on one feature alone, as seen below.

The existance of a 1 dimensional equivalent criterion is
easily seen in the case of two class problem when the underlying
distributions are normal with common covariance f{. 1In this case,

the classification rule, based on n features x is given by:

ity
classify x to class 1 iff (x- ——) L (ul-uz) >0

where standard notations are employed. Choosing the one dimensional
feature Y, where

UqtH -
v = (g2 T (uymuy)

we obtain an equivalent classifier. The result is now obvious for
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m 2 2. In general for any arbitrary distributions, let

|
Y= &nt (p)-Lnt,(x) |
where fi‘*’ is the probability distribution function correspond-
ing to the ith class.
In summary, it cannot be said that a discriminant based on ?
larger number of features is necessarily better than another dis-~
criminant which uses a amaller number of features, unless the second ‘,
set of features is a subgset of the first set. Additional features !
will improve the performance of a discriminant only if they are
informative. Finally, the performance of a discriminant depends

not on the number of features but on the choice of features theh-

selves.
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3. DISCRIMINATION VERSUS CLASSIFICATION

There ars two main goals in pattern recognition. The first
goal could be called "Separating distinct sets of objects" and
the second goal is to "allocate new items to previously defined
groups”. Fisher (1938) used the term "discrimination” to refer
to the first goal. A more descriptiﬁe term is "separation”.

The second goal is referred to as "classification” which is also
called "allocation” see Johnson and Wichran (1980) and “identifi-
cation" see Rao (1974). These concepts are further explained
below.

By discrimination or separation we understand how to describe
either graphically or algebraically, the differential features
of objects (observations) from several known collections (popu-
lations). We try to find "discriminants” whose values are such
that the collections are separated as much as possible.

By classification or allocation we understand how to sort
objects (observations) into 2 or more leveled classes. The em-

phasis is on deriving a rule which can be used to “"optimally"

- assign a new object to the leveled classes.

The difference, just pointed out, between discrimination

and classification is generally not explained in standard texts

on pattern recognition . Inconsistent use of the terminology by
statisticians and pattern recognitioners has also caused confusion.
Moreover, a function which separates may also be used for alloca-
tién and conversely, an allocatory rule may suggest a discrimin-
atory procedure. Thus in practice the two goals may overlap and
the distinction between separation and allocation becomes blurred.

Allocation or clalsificationsfules are usually developed from

e i e SRR T T T T




*"learning” samples. Observations are randomly selected and are
known to come from specified populations. These samples, also
known as training set, are then examined for differences and
based on the results of this examination, the entire sample space
is partitioned in as many regions as the number of populations.
If we denote these disjoint and exaustive regions by Rl'nz""'np
where p = number of populations and if new observation falls in
the region Ry it is allocated to the ith population.

Fisher's idea, in discriminating between two populations
LAY and ¥y On the basis of observed values of presumably relevant
variables x was to transform the multivariate observations x to
univariate observations y such that the y's derived from popula-
tions L3Y and T, were separated as much as possible. For simpli-
city, Fisher suggested the use of linear combinations of x to
create the y‘'s. This idea can be extended to several classes and
also to several discriminants Yyr¥ar oo where Yy provides the best
separation, ¥y the next best separation and so on. It is well
known that these discriminants have also been used for classifica-

tion and have "optimum"” properties for the normal distributions.

N R Y




4. SAMPLE SIZE CONSIDERATIONS OF CLASSIFIERS AND TESTING
OF CLASSIFIERS:

One of the most important issues, after a classifier has
been designed, based on a training set, is to find how well it
performs. Considerable attention has been paid to this problem.
To study this problem, most attention has been given to the two
class problem assuming the under1y1n§ distributions are normal.

Denoting the probability of error of misclassification by
p there are several types of error probabilities which should be i
distinguished. 4

p : When the discriminant uses the known population

parameters and this discriminant is applied to in-

dependent observations from the population,

=
e

when the discriminant is based on a training set and
its performance is measured using the given training

set.

p*: when the discriminant is based on the training set
and its performance is measured on another iandep~-
endent set called the test set

: when the discriminant is based on a training set
and its performance is measured on the independent
sanples of the population.

A general result

p<p <
was established by Mills in 196S. The dependence of ; and 3

on the ratio n/k, where n is the size of the training set and k
is a dimension of the underlying normal random variable, was

studied by Poley (1972), when I, the common covariance matrix is
n

e e s DR e




assumed known. Foley observed that the difference between E(p) .

and p is very large if n/k << 3. Only if n/k > 3, 8(8) -pis

small and therefore ; can be considered a reaéonable estimator

of p. Mehrotra (1973) observed that if [ is also estimated, and

if n/k>S5 then only ; can be considered as a good estimator. e
However, obtaining the estimate~3 is the most important pro- ;

blem, but its distribution is very complex. Asymptotic results

have been obtained by several investigators. Lachenbruch and k

Mickey (1965) studied several possible estimators of p for the

normal distribution and concluded that the leave-one-out method,

which is equivalent to jackknifing the estimator ;, provides a

good estimator of p. This work was further studied by Cochran

(1968). Due to space considerations, it is prohibitive to go

into details of work in this area. Toussaints (1974) biblio-

graphy provides useful references related to this problem.

Several studies have also been performed to study the per-
formance of the Fisher's linear discriminant. These include the
study of its performance when their common covariance assumption
is not applicable, when the underlying distributions are not
normal. Most of these studies are empirical. Overall perfor-
mance of the Fisher's linear is found to be satisfactory.

In the study of the Fisher Linear discriminant, other pro- .
blems of interest are: (i) study of the coefficients of the
Fisher linear discriminant and (ii) the problem of testing the
significance of the obtained discriminant function. Sitgreaves
(1961) observed that the estimates of the coefficients in the
linear discrimiant are biased and obtained the bias. Nanda (1949)

12
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has shown that as the sample size increases the standard errors
of the estimates of the coefficients decrease but do not converge
to zero. Using these and other similar results one can construct
confidence intervals and test the hypotheses regarding these es-
timates. Of particular interest is the hypotheses whether or not
a certain coefficient is zero.

The second problem, namely the testing of the significance
of the obtained disériminant function, was considered by Fisher

2

by means of developing a test for D“, the Mahalonobis distance.

Rao (1946, 1948) obtained a test based on the distributional
proverty of

i (n1 +n, -k = 1) n, n, -1

(x, = %,)'s”" (%, = %)

(nq + ny) (ny ¢+ 0, - 2) k

which is distributed as F (k, n, + n, ~ k-1). In the above ex-

T pression n,,n, are sample sizes, il' §2 are sample means, s 1 is
the common covariance matrix and k is the dimensionality of the

underlying random variable.
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S. SEQUENTIAL VS. NONSEQUENTIAL CLASSIFICATION PROCEDURES WITH
SEVERAL POPULATIONS

For -simplicity of presentation, we consider the case of 3
populations denoted by LI and 75. Given an observation we
wish to classify it to one of these three populations.

Let f i(g) be the density associated with population
LAY i=1,2,3, P;= the prior probability of population LI and
C(k|i) = the cost of allocating an item to w, when it belongs
to m;, for i,k=1,2,3. The Bayes classification rule, which minji-
mizes the expected cost of misclassification is given as follows.

The observation x is classified to population wk,k-1,2,3 for
which

3
I py C(k|i) £, (%)

i=1

is smallest.
If all the misclassification costs are equal, then the term
in (5.1) will be smallest when the omitted term is largest. Thus,

for equal cost of misclassification, the observation X is classi-

to
P, £3(%)
T itp £ (0 > By £, (%)
to [pl fl(i)
2 2 L21%
93 £3(‘)
and to

if p, £ F1L AW
B APy 500 2, £,

14
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A sacond classification rule is obtained by comparing two
populations at a time. If the costs of misclassification are
equal then this rule is: classify x to v, if p; £,(x) > p, £5(¥)
and p, £,(¥) > p3 £3(x)or equivalently if p; £,(x) - py £,(x) > 0
and p; £,(x)~ Py £4(%) >0. The other two cases can be described
in a similar manner. This procedure, which is alternatively
written as (5.3)below is equivalent to(5.2)described earlier.

' ’ Allocate x to L it

58 Pi for a1l im1,2,3. (5.3)
L © By

Note that in (5.3) one obtains the same inequality which is ob-
tained in the case of two population classification, with the
major difference that the desired inequality should be satisfied

for all three possible values of i.
One may alternatively decide to follow a third procedure des-

cribed below, which is sequential in nature. First allocate
% to w, or ("2 or "3) by Bayes rule. If the decision is to allocate

to ¥, or w,, then in this second stage allocate it to one of
L 2 3

atadias; .

the two populations by again using the Bayes rule. Note that this

- third procedure is not equivalent to the Bayes rule described above.

{ It can be easily seen by means of an example. Consider the case

of three univariate normal populations with common variance 1 and

i respective weans 3, S and 6. Let the apriri probabilities be all

egual to 1/3 and the costs of misclassification be also all equal.
In this case,using procedure (5.2) the boundaries are obtained at
4 and 5.5. That is, if x < classify it to population 7, (with -

mean 3), if 4 < x < 5.5 classify it to population 7, (with mean S)

! y 15




and if x 2 5.5 classify it to population 5. On the otherhand,
the third procedure described above, will allocate x to rl-if

W=

fl(x)

T >1
£,(x) + 3 £5(x)

ey

and to ("2 or va) othexwise. In this case. the boundary is given

by 3.9075. 1In otherwords, if x < 3.9075 then it is classified to

L2} otherwise to ¥, Oor Ts. As before the boundary between L2 and LB

is 5.5.

- In'summary, the two alternative sequential procedures are
different and clearly the first procedure of'compa:ing two at a

time is optimum.
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6. ON THE POSSIBILITY OF AN UNKNOWN GROUP

Typically, in a classification problem it is assumed that

there are a specified number k of classes and the objective \
k is to classify a new observation into one of thege k classes.
In a more realistic situation it is possible that a given obser-
vation may not belong to any one of the given k classes. 1In
other words, there exists the possibility of the new object be-~
longing to an unknown class, a class not previously specified.

Thus, in such situation we encounter two problems (a) classify

the given object'in one of the k given classes (b) show that
B there exists another class to which the new object belongs.
This problem has not been considered in great detail in
‘ the literature. This is because the class conditional density,
-+ the prior probability etc. are all unknown for this unknown
ciass. However, in one particular situation the problem can be
considered as seen below, (Rao, 1974).
Let N(u,L) denote the normal density of a p~dimensional

random vector with mean vector u and covariance matrix L. Let

N(uz,Z) and N(uz,t) be two class conditional densities and let
. ? Uye Uy and I be known {(or estimated from very large training

{
| sets). Consider the well known Fisher linear classifier. For

classifying a new observation x, it is given by

| x' T7L (upmup) = 2wzl (uyuy) 2 0

B ' or equivalently by

: : 17
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x' £ (upmuy) 2 Fupeu) TTh (upouy)
Let us now considet normal densitites with covariance matrix I

and mean vector given by Xu1+(1-A) Mg This density is given by

1 ST exp=3(x=Xiy = (1=1) ) £~ (x=dpy = (1=2),)

(2w
Izl |
- exp l(x‘l‘ +(1=2) (By=H0)) I L (xmpq+ (1=2 (Hy=Ua))
- (2,,)972 1 3 1 1”42 1 } (uy=hq
| Iz{
& 1 ‘o=l ' -1
- = @n?? 1 exp=3{ (X=Hy) I70 (%=1, ) +2(1-2) (uy=Uu,) B (x-¥,)

1212

-} + (l'l)z(ul'uZ) 'z-l (ul‘U2) } .

In the above representation, using the Neyman-Fisher factoriza-
tion theorem, it is clear that (x-u,)' I l(u,-u,) is a sufficient
statistic for the unknown parameter A. Aas a consequence of this
sufficient property, it suffices to know Y-(x-ul)' t'l(ul-uz) to
{ draw statistical inference regarding all normal .populations with
g means lying on the straight line joining ¥y and Mye
Now consider the following problem. Given a new obser-

vation x and two classes with densities N(ul,Z) and N(u,,I), the
2 z problem is to classify x into one of these two classes. But

| our above result implies that Y is sufficient for A and there-

i fore, it should be possible to test whether x belongs to a class
. ‘ "Which has the normal distribution with mean Au,+(1-1)u, and co-

variance I. The idea is that if x does not belong to_ this class

18




of populations, it makes little sense to classify x to one of

the two'specified classes. In short, first we wish to test the’ {

’ hypothesis

80: mean = Xu1+(l-x)u2, A unknown
versus

L 81: Ho is not true.
|

A test for this hypothesis is given by T>C where

. Clx-uy) ™% (uy-p,) 32
T = (x—ul) L lv(x-ul)-- 1 s | 1 2
! (uy-uy) 2 (uy-1,)

and T is distributed as a chisquare random variable with (p-1)

degrees of freedom. Thus, we have the following result.

| Result: Let N(uy,I) and N(u,,I) be two normal densities. Given
o x, classify it to one of the two populations. However, it may be
possible that x belongs to another class which is neither of the

i E above two classes or any other normal population with mean lying
T on a straight line joining these means. Then one can follow
these steps

Step 1: First test the hypothesis H, vs. H; using T. If T > C,
where C is obtained by using the chisquare property of T, then

we conclude that x does not belong to any one of the two specified

. classes.
Step 2: If T < C, then use the usual Fisher linear classi-
fier to classify x to one of the two specified class.
f Example: Suppose u; = (2,6), u; = (4,9) with common covariance
BN I matrix -(Z %). Then, a given observation §' = (13,18) should be

- classified to one of these two populations only if there is evid-

19
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ence that it does not belong to any other class. For the above

problem
2

2
r = 1107 _ 261 420 = 8.57
With 1 d.f. the acceptable value of a chisquare random variable is

3.841 at level of significance 0.05 and 7.879 at level of signi-
ficance 0.005. Hence, one would conclude that this observation

does not belong to any one of the two specified classes.
It is worthwhile to note that the above procedure is dev-
eloped for the case when the parameters u's and £ are all known.

If they are unknown and the training set is large, then the above

procedure applies in the asymptotic sense. For small training
set a satisfactory procedure has not been developed.

In a recent publication Lin (1978) suggests a variation of
the idea used in Néyman-PearSon theory of hypothesis testing.
To understand his approach, consider the problem of testing a

simple hypothesis Ho versus a simple hypothesis H where

Hoz £(x) = fo(x)
and
Hla fix) = fl(x)

and f(x) denotes the probability density function of the random
variable x. According to the Neyman-Pearson theory a test for
the above problem is obtained by minimizing the probability
P(x is classified as having the pdf £4(x) |true pdt is £,(x)]

keeping the probability, P[x is classified as having the pdf
fl(k)lthe true pdf if £,(x)] fixed, Equivalently, if the entire
sample space S is partitioned in two sets R and RC = S-R, and x

20
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is classified as having the pdf f,(x) if x ¢ R, then accord-
ing to the Neyman Pearson theory R is chosen such that:
a = £, (x)dx
f 1

R
is fixed, and

B = ;fl(x)dx
R
is minimized.
In the absence of the knowledge of fl(g), Lin suggests the

following test: Choose R such that
a = {c fo(x)dx

is fixed and

V(R) = & dx

is minimized.
An adaptation of this concept to the classification-procblem is

suggested as follows. Suppose the problem is to classify x to one

of the two classes with respective pdf's hl(x) and hy (x) and the

prior probabilities Py and Py respectively. However, let there
exists a possibility that the object may not belong to any one
of these two classes. In this situation Lin suggests that one

can use a two step procedure
Step (a) Test for the hypothesis
Hy: f£(x) = £,(x) = p; h;(x) + p, h,(x)

vs

le density is unknown

Step (b). If in Step (a) the null hypothesis is accepted,

then apply the conventional classification rule.

21




Remark: It can be easily seen that Lin's proposal, in the frame-

work of testing, is to test the null hypothesis

! Thus, Lin is replacing the unknown density by the uniform density.

Ho: f(x) = £(x)

le f(x) = uniform over a certain unknown interval.
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7. ON _SELECTION OF THE BEST k OUT OF n MEASUREMENTS
IN GAUSSIAN DISTRIBUTIONS |

7.0 ABSTRACT:

The purpose of this note is to show that it is not possible
to obtain a subset of k measurements out of a set of n measure-
ments, which provides the best discrimination between two popula-

tions by extending the set of (k~1l) best measurements., This

result is demonstrated for the Gaussian distribution.

L 7.1 INTRODUCTION:

Cover and Campenhoult ( ) considered the problem of select-
ing the best k out of n measurements, for the purpose of dis-

]
h : criminating between two populations. They showed that it

is not possible to extend the set of best (k-1l) measurements
to obtain the set of best k measurements. In fact, they proved

that there does not exist any systematic method of obtaining a

subset of k measurements for the purpose of discriminating. ;
Only the exastive search provides the desired answer. |

In order to prove the above mentioned property Cover and ]
- ‘ Campenhoult first related n measurements of the distribution i

.. n-1

- under consideration to n2 Gaussian random variables, then es-

' tablished the result for these new Gaussian variables. This

author has not been able to follow their method of relating n

variabler of some distribution to n2""! Gaussian random variables.

. Moreover, it is not clear how can one obtain any desired order-

ing in the subsets of n measurement, in terms of probability of

error of misclassification and also obtain the specified magni-

tude of these error probabiliticsés




1

?

-«

The purpose of th{u note is to show that any extension of
the best (k-1) measurements to a set of k measurements (k<n)
need not give us the set of best k measurements. This is demon-
strated in the case of Gaussian random variables and by means of
two simple examples. It is also demonstrated, by means of an ex~
ample, that although it may be possible to obtain a desired or-
dering of subsets of n measurement (subject to a natural con-
straint given below and also in Cover and Campenno;t), it may not
be possible to obtain the desired magnitudes of the error pro-
babilities. This later property is also obtained in the case of
Gaussian random variables.

Before proceding further we wish to recall that this phen-
omenon, of not being able to select best subset of k out of n,
also occurs in the context of regression analysis [see Draper and

Smith (1966)1].
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7.2 TWO EXAMPLES TO SHOW THAT ANY EXTENSION OF "BEST" k TO “k+1"
MEASUREMENTS MAY NOT BE THE " BEST " SET OF (k+l) MEASUREMENTS”:

Before presenting the examples we wish to recall two basic

results.

Result (A): Let X be a n-dimensional normal random vector with

mean u, and covariance matrix b(otk) where i=1 or 2 depending upon

whether X was drawn from population m, or 7,. Let the prior pro-
babilities of m, or m, be equal and the costs of misclassification :
be equal. Then, the minimum probability of misclassification, is !
given by 0(-%) where ¢ denotes the distribution function of the ]
standard normal random variable and

2

4% = (u; = u,)" 1 (uy = uy) .

Ragult (B): Let A be a (p+q) x (p+q) postive definite symmetric matrix and ¢

r be a (ptq) dimensional colum vector. Let A and a be partitioned as follows.
: F VR
| A= _}1_:_}2_ and %_21
21 P22 R2

In terms of these paftitioned matrices we have the following

! well known equality.
-1 vo-l vl
R'ATRTRIAI R tR2,1 85 R2,1 7

no where 1 and Ry are p and q dimensional vectors, All’ Ay, and

and 512 = A21 are P X P, ¢ xq and p x q dimensional matrices and

—1A

- Ay2.1 = By = Ay Ay Ay

-1
R2,1 = Ra "~ Ay ARy -

In particular if “12 is a matrix of all zero elements, then,
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4,

from result (B) the following equality is obtained.
~1 S | L §
R'ATRA=R Ml A tRyBR
Let ,g DR P (61, esey ﬁn) '. From result (A) it follows

that if one wishes to choose only one component out of n, then

the optimum choice is to select the ith component such that

2 2
6 &5

944 isjsn %y

Example 1: 1In this example we consider the special case n=3. It
is observed that the best singleton set is {X;} but neither (X,,X,}

nor {xl,x3} is the best set of two components.

Let X be a 3-dimensional normal random variable such that

6 é é
(-o—i- ! 0—2 ' 33) = (2, 1.5, 1) and the correlation matrix is given by
2 3 1 o 0 )
P = “’ij’ =1p 1 96f,0 = /5 (7.1)
P 96. 1

Clearly, the best singleton set of measurements is given by {xl}.

bécause (Gilai) is largest among all (Gi/ai) for i=1,2,3.
Next, we calculate

-1 2 2
6)'(6 c § 8 8§, 8§, ¢
1 11 712 1 1=p2)=1] 1 1 72,72
-p -2p + 4.01
(62 912 azJ (6;). ( 12) [011’ 12 c, 0 ;7 )
WY oy 4] 42\ K PRI I IR | N
%/ \931 935 & /= 13 o2 13 .4 02 *
|1 173 3
and finally

-1 12 .
§,\' fo,, @
2] (722 %23 % (1-p§3)< 52 -20,, & & 5 - 5.719
3/ (%23 %33 8 52 ) Bt

-




-

B N

It is obvious that the set {X,,X,} is the best set of two
components, which it is not an extension of {X;}.
Example 2: The above example is extended to arbitrary n. 1In
otherwords .we show that there exists a normal distribution such
that the best éet of k components, when extended to (k+l) com-
ponents does not provide the best set of (k+l) components. With-
out loss of generality let {xl, ...,xk_l}fbe the best set of (k-1)
components and let n=k+2. Let X = (X;, ..., xk+2)' be‘normally
distributed with mean vectors X1 and y, and common correlation
matrix I, given that it belongs to population m and T respective-
ly, Let § = ¥y = K2 and I be such that

(;l [ . e o\ :k+2) = (:_1' ’ ooy :k-l .' 2' 1.5' 1)
1l k+2 1 k-1

and the correlation matrix, R, corresponding to I satisfies
1
Rlll 0

shere P is given by (7.1) and Ry, is a (k-1) x (k-1) dimensional
natrix. From result (B) , our assumption that the best set of (k-1l)
somponents is {xl, ceoy xk_l}, and Example 1 it is obvious that
the best set of k components is given by {xl, vt xk}. But,

vhen we search for the best set of (k+l) components, it turns

out to be {X;, «c.p X3/ X, 1/ X o) which is not an extension

i (X3, ceer X 10

lemark: The above result is of a negative nature. A more useful
:esulé would be to discover conditions such that it would be pos-
sible to obtain the best set of k components by extending the best

et of k components by extending the bast set of (k-1l) components.
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This work is under investigation.

In the remaining part of this note we consider one other as-~
pect of Cover and Tampenhout's - result. This example appears to
contradict their basic theorem.

Suppose M,, M,, ..., M, are n-measurements (Scalar) and 84
denotes an arbitrary, non-empty, subset of these measurements and
Pe(si) denotes the minimal probability of error when the elements
of S; are used for the purpose of classification (between two
classes). It is well known that if S, c sj then P (5;) 2 Pe(sj)’
Prokability of error p.(si) can be used to establish an ordering
among all (2"-1) possible selections of measurements. Cover and
Campenhout state the following theorem.

Theorem: Given an arbitrary ordering on the subsets of measure-
ments Ml' "2' csey "n' subject to the monotonicity contraints,

there exists a jointly normally distributed random vector Xofn
dimension which has exactly the same ordering and the same proba-
bility of error.

Example 3: The following example shows that the above result is

not correct. Suppose “1' "2' n3 are three measurements. The 7
possible non empty measurement selections are ordered below

{subject to the monotonicity criterion mentioned above). The '
corresponding error probabilities are also specified. Let the order-
ing be {My} 2 (M} 2 (M)} 2 (M) M) 27 (M, M.} 2 (Mg,M ) 2 (M;,M,,M5),
and the corresponding error probabilities be .4, .38, .35, .3, .29,
.28 and .22 respectively. At this stage we are interested in the
following question.

Is it possible to find X' = (xl,xz,xs) which is normally dis-
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tributed with mean Wyo i=1,2 depending on the class membership and
common covariance matric I such that X's have exactly the above

ordering and error magnitudes? In this simple example, we observe

that it is possible to have the same order but it is not possible

to match the error probabilities.
For a rormal random vector, the error probability is #(- %) -
where A2 is the Mahalonobis distance. Thus, it suffices to

obtain the mean .vectors By and LPY and then common covariance matrix

2-(013) such that if g =U -uy = (61, 62, 63)' then,

O

8
) = .35, ¢ 0-3%,) -8, 0 (- =) = .o

p§

1 2 o3
1 - 1/2
elgiy (5 "l 2,2, 7, L,

3 ‘§ /2
=+3)11  =.20
=013 9 9y 9y ::{

2 5, 8, & 12

2 3 3
~ ) ‘2923'—_*1)] ] = ,28

and

‘. 1/2
o (- 30§ g1 1 - 22

! where,as before, g, = 0, 1/2 and Piy = 044/03 04, i,3 = 1,2,3.
Solving the first three equations in (6) we get

| §y 8 83

) 3; = ,7706, a; = ,5066 and 3; = ,611

$ The next three equations, along with the above values of (&/0;)'s,

specify °1j' These must be Pig ™ -.23966 or .9489, P13 = ~.2135 or
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Although, it may appear that are 8 possible correlation matrices
such that the first six equalities in (6) are satisfied, however
only one of these P matrix is pogitive definite. This matrix is

given below. The remaining seven matrices are all negative de-

3 finite.
1l -.23966 : -.2135
P = -.23966 1 -.5392 .

-.2135 -.5392 1
Given the above values of élﬂ and P, the reﬁaining probabilities
- of error are fixed. Consequently, the last equality in (7.2)
will not be satisfied. In this particular example .
0362716172} = a3t oM 12 = 11

which is different from the desired value of .22.
In general, suppose Ml' Mz, cony Mn’ n 2 3 are n measurements.
" _ A certain order among subsets of'{Ml, Myr eees Mn} and the asso-
ciated error probabilities are given. The order satisfies the
' natural constraints. Using the error magnitudes corresponding to
thg singletons {ﬁi} we obtain (Gi/oi)'s. Using the error magni-
tudes corresponding to {Mi,nj}'s we get Pij's‘ At this stage all

. of the free parameters are fixed and consequently all of the other

error probabilities are also fixed. It is unlikely that a speci-

fied order among the components will be satisfied.

| Remark: Cover and Campenhout have generated n2“‘1 Gaussian random

- variables for the n originél measurements. This gives them enough

}z freedom of selection to match the error probabilities. But, their




N
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. -
|

process of arriving at n normal random variables from these nz“'l

variables is not at all clear. This is the major source of the dis-

agreement between their theorem and our counter example .
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ON RULES TO COMBINE RESULTS OF SEVERAL DISCRIMINANTS

8 .1. INTRODUCTION

In discriminant analysis, we try to allocate objects into cne of the
given classes based on some measurements bf the objects. There exists. 4
instances where ssveral independent attempts have been made to classify a ‘
population of objects, each time a different set of measurcments are chosen

and a new decision rule is constructed. Suppose we are presented with the
results of these decision rules, and we are asked to utilize these results
to classify the population of objects with a performance better than each
of the decision rules, whenever possible. In this paper we investigate such
methods for two class and three class problems. We confine to the case when
only three independent sets of measurements are taken. The results can be
generalized in a similar manner for other cases.

Let X = (X,X,,X,)" be a vector constructed by the juxtaposition of the
3 sets of measurements x:l. of an ocbject. The dimension for each measurement

vector xi is Py Thus X is of dimension p, vhere p = 91"'92”3’ Leat

X' = (D (Xl). (Dz(xz). Da(xa”' where Di'l are the three discriminants given,

) §
and l:)1 (xi) is the decision of the discriminant D:l based on the set of measurements

X, of the object.

i
The purpose of this paper is to develop some schemes such that an cbject

represented by the vector X can be classified in one of the two classes € and .
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In some cases, the set of measurements on an ocbject are naturally grouped'
in subsets such as the Xi'l. For instance if the classification was performed
on three different aspects of the same individual. Since the complexity in
constructing a decision rule for an object vector X increases with the
dimensionality p of X, it may be beneficial to develop a decision rule for each
of the subsets of measurements xi, and combine the results of the different
decision rules in a sensible fashion to obtain a decision rule for X. This
avoids the complications caused by high dimensionality, yet all the features
of the ocbject are considered in the classification. In other cases it may be
difficult to get the complete data at one place.

In section 8.2. we consider the intuitively appealing majority logic and
in Section 8.3 the optimum method of combining the results of three discrimin-
ants in the two class problem. Section 8.4 contains some general remarks on
the two class problem. In Section 8.5, 1t is demonstrated that there would
alwvays be some loss in terms of probability of correct classification when the
three discriminants are combined as opposed to using the best possible dis-
criminant for the entire X. In Section 8.6 the case of multivariate normal
is further investigated. We finish this paper with a quick review of these
ideas as they apply to the three class problem.




2. THE MAJORITY RULE

without loss of generality the function Di. (xi) can be defined as

ni(xi) = 1 i _Xi is clagsified into oy by Di.
o x, . w, by D, .

Clearly, the Di" are independent from one another provided the xi." are
mutually independent. In the following derivations, we assume that the xi."'
for £ = 1,2,3 are mutually independent.

A random vector X in the object space is thus mapped by the function Di'l
into the 3-dimensional binomial space S', where s* = {(000)%, (001)%, (0100, (011)®
(1000 %, 201, (100 %, (221 ).

In this section we consider the majority rule of combining the results
from Di's which belong to the sample space S'.

The majority rule is an intuitive approach to classify the samples in S'.
The rule is: whenever more than one X,'s are classified by the DL'I to ,,

then X should be classified to ul.

let D denote the majority decision function i.e. let D-(x) = 1 represent

that X is classified to w,. Thus D, (X) = 1 iff i Di(xi.) 2 2, else D_(X) = 0
’ i=)

and X is classified to ®,.

Let Q = Pr(D_(X) = 1|°'1) , the probability of correctly recognizing an object .

from w. Let a = Pr(D,(X) = 1|u). We assume that a, 2 3 for all i=1, 2 and 3,

such that °1 < °2 s °3'




“

Theoxem 1 i) Q2a, 2a ii) @2 ay is not necessarily satisfied.

2 1°
Proof 1) It is sufficient to prove Q 2 .
We chserve that

Q= 9‘“1'“2’“3) » 6,8,0, + 0102(1-03) + u1(1-02)03 + ‘1'°1’“2“3'
It is easily seen that Q is monotonically increasing in each

of the three variables )08, 0G4,

Since 03 2 °2

Q(°1'°2'“3) 2 Q(“1'°2'°2)
2 2
= a0, ﬁlaz (1"'2)"'“1“2 (l-cz)*uz (1-01)
2 2

= 20,a,-20,a, +a,

= °2(2°1-2°L°2+°2) .
A Q—ex2 2 o, (261-20102"'02'1)

-a, (1-02) (201-1) .
It is obvious that the above expression is always positive.

LC.Q2 a,.

ii) Q-ca - clczasd-claz(1—03)+a103(1-cz)+02a3(1-01)-c

- “1“2“2“3”3“1-2"1“2“3-“3

= a,a, (1903)-(14:1) (1-02)03

3

Therefore Q 2 “3 igf °1°2(1'°3’-‘1-°1).(1-¢2)°3 20, or

equivalently, nlcz(l-ca) 2 (1—01) (1-02)03 .
L@z a, ifg, %% 2 %,

(l-cl) (1-«2) l-az :

The above theorem tells us that the intuitively appealing majority rule is

sometimas inferior in performance to the best of the D,'s. It may be possible

i
to improve the performance by, instead of using the majority rule, using a linear
3
combination of the ni(x,_)'-, ) .0, (xi), where the weight €, is chosen to reflect
i=]
35
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|-
the magnitude of the Gt'l. However, we will not disgress into this. Instead,
we will derxive a noi\umu,pro«du:c which provides the best possible discriminant }
based on the 'Di'l.
V
]
g
%
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8.3. THE LIKELIHOOD RATIO DECISION RULE
Let a, = Pr(p,(X,) = J.lul), 8, = Pr(p, (X,) = olw,), 1 =1,2,3.

The °:I... and 81.' are the conditional probabilities of correct recognition for

~ chaervations from € and “,, respectively, 1-“1 and I'BL will be probabilities

of misclassification. Let
3 3 .
£3e£(g)= ’:11':(91(81) lop), g = g(g)) = illlpr(ni(xi) lwy).
The likelihood ratio decé¢ision rule D" is such that if /g > I‘Qdocw le_.
if £/g < 1 decide sz )and if £/g = 1 then decide x:ul with probability .S.

Theorem 2 Given the decisions of the Di"' the decision rule D'_ is the

optimal decision rule.
Proof Since nitxi)'- are mutually independent, the following equality

holds

3
i}:;u:(n,_(x,.) |uj) = Pr(D,,D,,D,|w,).

Therafore the decision rule D‘ is the same as the most powerful test for a

simple hypothesis x:al versus a simple alternative xsuz, given by the Neyman-

Pearson lemma. Consequently, with the cbvious choices of the constants of the
Neyman-Pearson lemma the discrimipant D'_ is optimum.

It remains to £ind the performance of the above, optimal decision rule D,'.
The proposition 3 given below not only answers this question but also relates
the two decision rules D- and Dl. discussed in Theorem 1. In the proposition 3
we also assume e = B.i. i=1,2,13.

Proposition 3 Let a, = By i=1,2,3 ad e, sa, sa,. The probability

of the correct decision dy -D‘ is Q* where
Q% = °1°2°3+°1“2(1"“3’"1“'“2’“3“( (l-cl)czcs,clu-cz) (1-1:3))
= max (Probability of correct decision by Dy’ probability of

correct decision by Da).
37




Proof By D!. any observation ("1("1’ ,Dz(xz),ba(x3)) will be classified as

belonging to wy
3 D, (X.) 1-D, (X.) 3 D, (X,) {(1-D, (X,)
n 611 1(1-01) 17, H(l—ai)" i o, 171
i=1 (=) iw)

when it actually belongs to ©, provided

or equivalently,

3 e 20, (x,) 3
L O =) > I (=== .
jm1 179 (=) d=1 1%

. } (with probability .5). let “’1“‘1) .Dz (xz),ns(x_s)) takes values in

{a,1,1), (0,1,1), (1,0,1)}. Clearly the decision rule D, vill

- -1 -1 -1

k classify Xcw, because a,(1-a;)"" $ a,(1-a))"" $ a,(1-a,)"". Similarly
ir (Dl.(xl) ,nztxz).na(x3)) takes values in {(0,0,0), (1,0,0), (0,1,0)}

L then the decision rile Dg will classify them as coming from 6. The

S

only other cases are when (DI(Xl).thxz) '93“‘3” = (1,1,0) or (0,0,1).

— e .

Obviously, we could classify (1,1,0) as coming from “1(“2) it

oy s

c!az (1-43)
(l-cl) (1-02)u3

> (9 1

and we could classify (0,0,1) as coming from ul(uz) provided

! (1-a.) (1-a,)a
} 2 3, (9y1.
r ) “1“2“"'3)

{

T By symmetry of the above two cases one and only one of these two points will
result in the acceptance of ui. Since the above two conditions are the same as
in the second part of Theoxem 1, the Q* is given by the first equation. To show
that the second equality holds, we observe that if

. Qt = clczasnlazu-a,)ml(l-oz)uawl(].-cz) (1-03)

then the right hand side simplifies to a

3.




« 8.4 SOME REMARKS

Since both of the above suggested decision rules are based on the samples

in S' only, (S' = {(M)t,...(m)t}), once the segments x, of an observations X, are

classified by the Di's, we can use template matching (checking the content of

the 3-C vector X' against all the possible elements in 8') to decide the classifica-
tion of X. Thus, classification using either the majority or optimum decision
rule involves the same amount of work.

For the majoxity rule to work properly, the number of subgroups k of the
elements of X should be an odd number. PFor the likelihood ratio decision rule,
there is no such restriction on the number of subgroups of the el.tnﬁl of X,
andvecanbolmthatt.hhmhhnmlth-butl_nudonthcnvmabu

information on elements of S8°.




8.5 COMPARISON BETWEEN Dl AND BEST DECISION BULE USING THE COMPLETE OBSERVATION X

Earlier in the introdoction it was said if p, the dimension of X » (81.83,83),

umylmonnymzaumtnst'mn.Dz.namdﬂnneod:m

b
their results to form Dt. The discriminants Dl,nzmdnznmvith D‘m
wmhmmni'smwwmt. Suppose, on the otherhand

v@mtmtﬂnoptimumhmntnummwhoh ut.x. Then a natural
question is: Are D and Dl. different from each othexr?

There is no doubt that D,\beinq optimum, must perform at least as well as
n'. in terms of probability of correct decision. Thus all we need to verify is
that: is D, inferior in its performance? In the following discussion we have
tried to answer this question under some assumptions, which are reasonable for
two class problems.

Suppose ipriori-probabilities of the two classes are the same. lLet

) (x.) be the p.d.f. of X, vhan w_is the true class, k = 1,2; § = 1,2,3. Then,

5y 5

by rule of optimum decision (we assume all of the parameters are known)
(1) '

1 i.e. X, is classified as from u if o I LN L
(2)
0, = £,
0 i.e. xj is classified as from w, etherwiste .
j =1,2,3. Similarly
1 i.e. X is classified as from w, if 104 w (x,)
8. €. 1 (2) > 1
bix) = ne, ® x)
0 4i.e. X is classified as from w, it <}
e, M) (x)
[for sake of simplicity we assume that _] J = 1 with probability gero) .
tju) (x,)

40
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First we consider the case vhere

(@) ay = p:(nj(xj) -,1|n1) = Pr(D, (x,) = °|0,)

®) %-53150250 t\;chthatca(l-c)>u-¢1)(1-¢)3

i 8o that D, is the majority ruleie. 2 out of 3 rule.
‘Under the above assumptions,

3
PO = 1) = Pr[ll :ju) (xj/:jm x; > 1|u1]

- (1
. ‘ ! llz (xj

where A ={ X : ‘”(x) £, 513

)clxj

]
o, 2 -
S Let 8, (x,) 3 sj £ (xj)/j (%), 3 = 1,2,3. Then

',P
Clearly, tha set A contains X such that at least one of the three Bi's is larger
- \
3 f _ than 1 and, of course, 8,828, > 1. We can easily see that A can be written in
-
{ terms of the union of 7 disjoint sets Al through A7 where
Al = {l s B,’lp ’2>10 33>1}
; A, -{; + 8,31, 8,31, "1’3’-1 < 33<1] i Ay and A are defined similarly
- with 83 replaced by ’z and 31 respectively.
{
)
P Ag = {; s l_1>1. B,%1, 33<1 such that 31>(6333) 1}
Asmdﬁdoﬁmd.tnaommum:. Thus
.. Pr(D(X) =~ 1|w,) = / x’l:“’(x)m
SR Beling=f 1450

4 1 i




Next, .
Pr(D, (X) = 1(«.1) = Pr(At least two out of three D,'s are llul)

- u1u2¢3 + °1°2 (1—03) + “1 (""2)"3 + (1-01)¢203

3
- Q) ,..
f' : 'j (i:j) dxj '
(3.2)
which follows from independence of xj's i= 1_,2,3 ;1 the set
B = Al VU pe
vhere B* consists of all those X's for which exactly two Dt's are 1. Consider

the case cbtained from ciczu-ca). This contributes the set

{x ' 821, 8,21, 33<1?
-1 -1
- {x : Bl>1. 82>1: (‘1‘2) < %ﬁ}ugx 3 81>1. Bz>1. 33 < (8102) }
- A: J 32
to the set B*. In a manner similar to this, one can easily show that

n'-nzunaua‘uazuaaun‘

Thus, the two integrals given by(8l) and(Q2) d:l.tt‘.or from each other only over
the sats A, UA U A, and B, UB, UB,. Thus, it can be easily concluded that the
S 6 2 3 4 7
mdiscrininmtsbandugmmucnucn becausa for mychAi. D(x) = 1
s

L]
whereas ND(X) = 0 and conversely for any x ¢ U lj,D,_(g) = 1 vhereas D(x) = 0.
. 2
One could still get equal probabilities of errors. To see if thase
probabilities are same or not wa consider

Pr(D(X) = 1lw,) = Px(d, (X) = 1w

o 3 e 0. -8
(’7 -/, )k_l‘x (x)ax, = 0,0,
UA (V]
sd 23
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In a manner similar to the above it can be shown that
Pr(D(X) = 0[»2) - Px(D, (%) = ofw,) -
«fr, -1 22 x e =44
4 7 x-xf" X )ax, = ¢ =%,
Up Ua
23 s
By assumption the above two differences 01-02 .and 01-92 are equal. But

6. =/

3 3 @
reMigax, >, wg W%

1= 1y 7 X
mj’"" unj""l
s s
-’2
and o, =/ 2 ) (3 1ax, < s e e
- RTIA Te e T TN, Te St
By e,
2 2
-.1

o e ’1..2 >0 Cﬂd .2-’1 > 0.

Now, wa cbserve that 0 zezheemunisbetmtmnr~1201-ozm

1

Ql-ozandoathoothorhmd
¢1>02-01>¢2

would imply 01 > 02 a contradiction. Thus we must have 01:> 02. This implies

that D is alvays htu:tmn‘.mpthmuuwhmp:obabmuu of the

ntulsthtooqhh.,andn eol‘m:mmduulunuuuz.
‘ nmmputummnm-wmmcmmozm

normal population which plays a significant role in discriminant analysis.
‘Consider, once again, the simplest form of the discrimination problem. Let




x:i. follows multivariate normal distribution with mean vector u 1" ) and covariance

matrix :1 ; i=1,2,3 and j=1,2 associated with two classes. We assume that xi's
are all stochastically independent. Under the above assumptions, the probabilities
of correct classification are given by a, = 0(61|2); i=1,2,3 when optimum

! discriminants Di(xi) are used, i=1,2,3. Here.

/7
2 2 1 -l 2 1
8 i - [ui( )"“1( )] 21 . {ul( )'ui( )] ¢ 1=1,2,3 .

' and ' ’
| af o, @\ -1 [ @ @
. 148 §%3 ("1 y ) I (“1 My ) >0
D, (X,) =
0 <o.

On the otherhand, if the whole vector X = (xl.xz.xa)’ is used then the

Y ‘ optimum discriminant rule D(X) is given by
/

= 1 ie x.%(u(n,,“(z) 1 (um_u(z)) -
S

i ' D(X) =

. 0 / <0,

| bare S . (‘.lm. o, ,,3(:))
k. ! and
-

:1 e o

' The probability of correct classification by this rule i3 0(-21- 8,

®
| 52-51’+czz+332. Thus, 1f 8, = 1 for all i, then the probability of correct

clasgification by this rule is 0("%-) = ,806; whereas the probability of correct
decision by the majority rule is givem by

030.5) +3 0% (.5) [1~0(.5)]) = .7726 .

'
I
i
*
fe
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Thus, there is a loss in not using the whole set together. The following is a

caall table consisting of some of these probabilities of correct classification

and the associated differences.

Prob. of Prob. of correct Difference
2 2 3 2 coryxect classification by in
[ 4 é [ $ classification D D, =D Probabilities
1 2 3 Lt a
- ’ 1 .50 .17 .33 .69146 .66387 .02758
- 2 1.00 .33 «67 . 76024 - 72490 .03533
3 1.5¢ .%0 1.00 .8067% «76757 .03917 J
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6. NORMAL DISTRIBUTION WITH UNKNOWN MEAN VECTORS, I KNOWN

In this section we ’ov,aluato the difference betwesn the probabilities of
correct classification by eho two methods discussed in this paper. We consider
the case when the class conditional distributions are normal with common, knowm,
covariance matrix I and unknown mean vectors. That is, in the notations of
the previous section, for j=1,2; xi follows multivariate normal distribution
wvith mean vector ":I.(:” which is unknown, and covariance matrix 81. anmd to
be known, i=1,2,3. Clearly X = (X,,X,,X;) also follows multivariate normal

distribution with mean vector u(” - (ul(j’. uz(j), "3(”) and covariance matrix

Cbviously indebcnden« of xl,xz, and xa is implied by this covariance structure.
Under these assumptions, the discriminant D(-) is used vhere
1 & ¥ classified to class 1 if {v-%(i‘_”ii",’)}, FEM XY 5o
D(Y) =
0 = Y classified to clans 2- S0

where %3 » Sample means of n’ observations from the jth class, 3=1,2 and Y
is an observation to be classified in ou of the two classes. A similar expression
for the discriminant Dl.“i.) will hold if the ith subsat is used for this purpose,
i=1,2,3:

Clearly, the probability of corxect decision, when D(Y) is employed is given

by
Prlcorrect decision by D(X) |u(nl

o

e v, 05
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1) 21\’
”[(,‘_ X ;2 ) z-x\(i-m_i(z)) >o|u‘1’]

Q@) ..(2) -
- E [n( i ) - (xm_,m) > o]z 5@ -(1)]
g1 g(2)

~

ez o [a@V 3
!(1) '2(2)

vhere
oz 29 .

and ¢(+) denotes the distribution function of standard normal random variable.
In a similar mannex, given 7Y ana %@ the conditional probability of correct
classification by D, (¥,) will be given by ¢ (1( zm"‘ )} vhere a, is also
defined with appropriate changes. Denote ¢ ( (Yiu),ii(z ) by ¢,.
Conditional on the event that X'1) ana %‘?) are given, the probability

of correct classification after combining the results of D Dz, and t)3 is given

1’
by

( - - - -
o, if xea {x: . (102)(1o)>(1noo}

%, if xca - {x b8, (-0 > ¢ (1-¢ )o}

9, if xcA -{x 1 (10, (1~0)0, > 4,4, (14, )}

3

\ )1?2’3 + 0102(1-03) + 01(1-02)03 + (1~01)0203 . otherwise

Thus the unconditional probability of correct classification is given by the

integral of the above probabilities over A A, /A, and the remaining region

ll
with respect to the joint density of X'*),%'3). This being a difficult problem
of integration, we obtain a lower bound by integrating the last expression over

the entire range. Thus, the probability of correct classification, when results

of Dl'p and Da are employed is grecater than
u7

e N T LB KA 5

P e < Ap——— T v




T R

E {0,005+ 0,0,01-0) + 0,20 00; + (1~4,)0,9, ]

using the independence of 'xi'- the above reduces considerably because, for
instance we can replace E(4,4,¢,) by 8101] B(’zl ![03].

The expression for E{l-4] is given by Equation 77 of John :(1961). The
2[1-011 can also be cobtained similarly. 'nm- an upper bound for the difference
in the probabilities of correct classification can be evaluated. The following
table gives these upper bounds for few choices of number of observations in
the training sample. The number of training samples, N, are equal in both

clasges. In the table § 12, i=1,2,3 denotes the Mahalonobis distance between

the two populations, measured for the ith subset only.
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From the table it is clear that the difference increases as N increases

provided other parameters ares fixed. Por all other parameters fixed, the

difference increases with 62. The most significant observation, from the table,

is that if the actual probability of correct classification is large then the
differance is also large. One 2lso concludes that the actual difference of
probability of correct decision between using the linear discriminant with the
whole set of observation and in parts decreases if the parameters of the popula-
tion are unknown. Thus, in otherwords, one would be less concerned about the

loss in using the alternative method D‘ of discrimination when the paramsters

are unknown.

o ar A




8.7 .EXTENSION TO THE THREE CLASS PROBLEM

In the previous sections we have considered the case when there are only
two classes. In this section the ideas of the previous sections are extended
to three class problem. Extension to more than three classes will be straight
forwvard. It will be seen that due tOo a large number of paramsters, there are
some difficulties in getting results in the most general form, but the basic
concepts remain unchanged. mfomlmmmpuﬁmgthcmus
byul:uzandu3. As before, we confine our attention to the casa when there are
three independent subsets of msasurements on eack cbject. Furthermore, as in
the previous section, we have the results of the three discriminants operating
at each subset. Our aim is to combine these results to decide to which class the
given cbject belongs.

The sample space of the results of the three disciminants is given by

’
8 -{(11022,13) t 1S 11582,13 s 3]

vhere the triplet (21.12.13) means that the first discriminant using the .fi.:st
segment of the measurement on the given object classifies it to class !.1. the
second discriminant, using the second segment, to class ).2 and the thirc

discrim: nant, using the last segment, to the class !.3. Our object, as pointed
out earlier also, is to combine the result “’1"’2"’3) and classify the object .to
one of tho three classes. Given the sample space S’ and associated probability
measures, the optimum criteria of classification would use the Bayesian approach.
Under the assumption of equally probable classes and equal costs the Bayes approach

would emply the likelihood functions only, but the unoqual costs and unequal

apriori probabilities can be accommodatedusing the standard procedures, Anderson (1968).

The probability structure associated with the sample space S$”is given by

the following 27 parameters




», j"" = Probability that the discriminant k will classify X into class i
[ ]

vhen it actually comes from claas };
for 1 € i,j,k' < 3. Obvimiy these parameters are not all independent because

3 (k)
AZP‘_J =1 for each j and k
i=}l

Purthermore, (k) genctes the probability of correct classification for each

P54

j and k, whereas P, . *) aenctes probability of misclassification for i#3 and

i3
and k. Given these parameters one can easily calculate the Probability of

obuzv:lng'any sample point of S’conditional on X belongs to a specified class.

S

FPor instance, the probability that the result of the three discriminantswill be
(21.12,!.3) when X comes from class 1 is given by

(3)
P
Ha

The optimum discriminant method which is based upon the elements of S/is then given
by D(X) where D(X) = °“’1"2"’3’ = i means that X is classified to class i.

This discriminant [See Anderson [1]], is given by

DX =1 iff e ) ?, @ ?, 3, ?, oY », ) ?, (3) gor o . 17=4.
1,i 2,i 2,1 1,4° 2,4° 3,4°

Based on the available information (!.1,!.2,1. 3) only D will be optimum which can
be seen from the arguments given in Anderson [1].
In the remaining section we study the above discriminant when PL j(k) satisfies
*

additional conditions.

Special Cases I:

Suppose Pi j(k’ are such that all of the probabilities of misclassifications
’
are equal for each class and each discriminant. Denote this probability by p.

That is
(x) = p it i=§

) -4
.3 «1-2p if i=§ .
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It is easily seen that, for p<1l/3, D is equivalent to the majority rule except
that the 6 permutations of (1,2,3) are classified arbitrarily with equal
probabilities. Further, the probability of correct classification will be

given by
1 (1-2’)3 + 3(1-29)29 + -:-(I-Zp)pz.
§
i ,
Suppose ’1,j(k) satisifies the following conditions. Let P, 10‘) - p(k)
for "si; 1=1,2,3) ®=1,2,3. Clearly P, “’" = 1-2 2™ 1mis implies that the
[

two probabilities of misclassification of an cbject from class u into w, . are
B the same for any specified k, and equal for each i. In this case, without loss
of generality, we can assume that

1
3P

Q) (2) 3)

> p >p .

These inequalities imply that, compared in terms of probabilities of correct

classification, the first discriminant is worst and the mm“u the best. As

T would be expected, the majority rule will not necessarily be the best and for
instance D classifies all of the fo'lowing S sample points to class ©-

; ‘ {Q,1,1), (2,1,1), (3,1,1), (1,2,1), (1,3,1)}

i As for the points (1,1,2) or (1,1,3) they would be classified to class 1 if

1) (2) 3)
| | 1map . 1=2p ), l-3p
N 1) (2) (3)
q P

meocm:uzandoa. zrespectively, if the direction of the inequality is
reverse. Recall that this is exactly the same condition that we have seen in

"*i an earlier section. Similarly we oan find points which will be classified to

%, and w,. The remaining 6 permutations of (1,2,3) are classified as follows
i (1,2,3) and (2,1,3) are classified such that the associated X belongs to w.;

: (1'3'2, and (3,1,2) to »

! 2 and (2,3,1) and (3,2,1) to class 9.
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Probabilities of correct classifications can be computed easily by summing

mrmpolutswhichlud.tothcacctptuccolxculvbtnltumlyth.

case. PFor instance, given

1-2p™) | 12p@ 12
&Y ";EET' RE)

the probability of correct classification of x ¢ U is given by
(3),

a-20%) 1-2p") 12y + 2 (1-2pP) (1-2p

(1)9(2) (3))'

+ 2(1-29(1) )p(z) (1-29‘3)) + 4p (1-2p

which, as expected, simplifies to 1-29(3). implying that the decision is equivalent

to the third discriminant. The probabilities can be evaluated in a similar

manner. The other special cases can also be studied.

The extension of the above idea to more than 3 classes is straight forward.

The above concepts can also be extended in exactly the same manner to the case

when there are more than 3 indspendent segments of measurement on each object.

The case when these segments of obsexrvations are stochastically dependent is

relatively hard to study although the similar concepts apply in that situation

also.

Finally, we present the formulas which can be employed to evaluate the

differences between the probabilities of the correct decisions for the two

mathods under investigation, in the case of multivariate normal distributions.

We consider the simple situation wheh all of the parameaters are assumed known

and the cnrvariance matrix is same. Suppose for X ¢ .. i=1,2,3 the mean vector
uuiand (wvithout loss of generality) the covariance matrix is I. As before X
(and therefore y,) is p dimensional which consists of three segments By Ky 08y Of
Pye Py and P, dimensicns. In the following wve give the formmlas for the

probabilities of correct and incorrect classification when X ¢ . is used. ™

same formulas can be used to calculate the associated probabilities when any one
54
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of the segment is used, of course, with cbvious modifications. Given this

structure it would be straight forward to calculate the desired aifferencs.
nthiscmétthrnclusmabl-,th.dnehiaauuludty!hcml

ulvi.ubcukonn |

1 § 2
E. P W"'i‘ 81"112

i w--]—'x X, =} 2 i
., 2 1 i Ll 2

o:.quivahntlywhonwl>o,v > 0) where

1l
P H, +u \
"1'2(“1 "'z)"z‘l" 1 |
S im1\ 71 i 2 :
Vl'f(ul -u.,‘)xl-li 3 }
i=}l 8 \-‘IL 2 §
|
;’ j Define (U,,V,) and (U,,V,) by
. P . i o +u,
‘ u,=] ¥, --ulﬂ x, - 4 1
: 1 i i 2
J y ‘L -
P, i o * . ]
vy Il muy ]| - 2
! 1| 4 i 2
“ — J
| P B u, +u,
o .
: o=l fuy cu ] x -2 !
1) 71 i 2 ;
. P - M. *+ ¥ ) |
i t
. vy=1lu, - Fx-’z 2 *
’ 1171 i L 2 ‘
o -
xemumuymme;uuumuueoemouzumz>o.v2>o)
|
" and to class w, if (U, > 0, V, > 0). The distribution of all of these pairs is
.
L bivariate normal with means, variances and covariances given below. It is assumed,
fi

as sentioned earlier also, that X is assumed to be from in the following

"
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2
2l(o)-va:(u)-2 ""2)
4oy Y1y 1

P

2
2E (V) = Var (V) = g (“."1 - “31)

mmm&ummzumumulmv is given by

X’ ("1 "25)(“11; "33
f ("1 M, E(“zi - "31>2

i=1

M, +u
n(vz)-Z( -u,)ul-zi 31.v-:(V)-): _“32
= \%4 (Y| M § 2 = ("% 1

the correlation coefficient between 02 and vz is given by

ﬂ"’x - "11)("’1 ) "’A
/(" - “1 ("21 - "3‘\2

-2 B (U,) = Var (U,) = I( -ul)z
| oYy

and finally

P
2
22 () =var (W) = § fu, ~-u
3 27 L ()

(V) = ): ( - uz .(11 My : "31). var (v,) = § (u,1 - .z‘)z
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and correlation coefficient between 03 and v3 is given by

uy, =¥, Yu, -
. . 2:(31 11)(31 _23)
U,V
/. " 2
w, =u \“1fu, -u
2(31 11\ (31 zb

Given the above distributions, it is easy to calculate that the probability

-

o!cmutyingxcul:oqlh

1/2 2
cxp-z(un-Zpuvu:)dndz

P(v,>0, v30lw) = S~ /7 2 T

b, =h, 2MYA-p
b, <b, u,v,

e )

following the notations of Johnson and KXotz (See equation 19, page 94,(3]]. Here

1 \ 2) 1/2 1 | - \2) 1/
"1'2{"(“1""2._)} o hy=3 t("xi'“ai) .

Since the arguments -h,-h, in "("‘x"“z"ulvl
equation 22.3 of page 95 of Johnson and Kots. At this stage to ¢alculate

are negative, we have to use

P(ul>o. v1>o|u1) it remains to look up "(hl'hz' Pul.vl from a table, for example
in Mational Bureau of standard publication (1939). In exactly a similar mesner

oue could cslculate
P(0,>0, 'z”"x’ and P(U,>0, v3>q|s1) .

which provide the probabilities of -uqmsuicam. It is significant to
observe that the above probebilities not only depend upon the Mshalonobis distance

-

P
(121("51 - uu)z) but also upon the angles batween (21 - 1'-2)' (21 - 23). (1'-2 - !3)

ete.
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