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INTRODUCTION

In this manuscript some very basic ideas of important con-

* sequence are discussed. These ideas are important for any prac-

* ticing engineer in pattern recognition. The topics include

* equivalent classifier, dimensionality reduction, fusion of clas-

sifier, timeverying statistics etc.

... Throughout, this presentation, it-is assumed that the

* reader is familiar with the mechanics of constructing discriminant,

selecting features and other related properties. Therefore no

attempt is made to make this presentation comprehensive. Most

of the subjects, discussed in this presentation are considered

'obvious' In standard books' written on the subject of pattern

recognition. it is our belief that the readers of this manuscript

will benefit considerably by giving some tim to these "obvious"

* results; mainly because the obvious results are sometims very

-* confusing results.
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1. - OPTIMAL AND EQUIVALENT DISCP.IMINANTS

Many important applications of pattern recognition can be

characterized as either waveform classification or geometric

figures classification. In order to perform this type of classi-

fication, typically one measures some observable characteristic of

the object. This collection of measurements is called the features,

and the process of deriving the features is called feature extrac-

tion. Typically a classifier is developed using these features.

It any classification problem, one of the basic assumpticns

* is that there exists some difference between the populations from

which the objects are sampled. Thus, there is always a classi-

fier which can be used to differentiate between the populations.

We will call it "the natural classifier" and denote it by C.

Existance of such a natural classifier is of fundamental impor-

tance in pattern recognition. This will also be useful in the

following discussion.

To fix the ideas, we consider the example of character recog-

nition between letters A and B. Note that there exists a natural

classifier [which human mind employsJ to distinguish between A

1 and B. For mechanical or computerized discrimination one would

select features to construct a 'classifier. This feature selec-

tion can be done in many ways and success of the corresponding

classifier d;p--t very heavily on these features. For the hand

written characters (A and B) two possible feature extraction pro-
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cedures are:

(a) put a standard grid on each letter and measure the

shaded area in each cell, [see attached figure].

(b) Record the presence and absence of a portion of the

letter in each cell by 1 and 0 respectively and obtain the feature

vector consisting of O's and Vs. The collection of these features

can be employed to construct two respective classifiers).II I II

Mahmtcly the feature exrcioiseuvlntora-

-F -- . .

Z' C an C ' deot th lsiir inh naua pc n
T. The C an C wil be eqivlet

Maheatcll, 1h fetI extraction is qiaet otas

1 formation from the natural space, S, to euclidean space Rn, ie

t IF]) = TES]
t i where F denotes the new features and T is the transformation.

",- Typically the transformation T is nonlinear and some time one may

*-not be able to express it in terms of mathematical equations.

* Let C and C' denote the classifiers in" the natural space and

t' the feature space respectively and T'1 the inverse transformation of

. T. Then C and C' will be equivalent.

This equivalence is obvious because the existance of T" implies

3



that there is a one to one transformation from S to space of

features and conversely.

Extending this idea, suppose that T1 and T2 are two transfor-

mations, (F1) and {F2 ) the corresponding feature then the classi-

fiers C1 and C2 would be equivalent to each other and to C if

T11 and T21 exist. Obviously C1 and C2 could be equivalent to

each other, if there exists a one to one transformation from

{F1 } to {F2), without being equivalent to C.

Thus, the optimal classifier is the 'natural' classifier and

generally, it is not possible to explain how it works. On the

other hand to obtain a classification procedure a set of features

is obtained. Given these features one can attempt to obtain op-

timal classification procedures. But it must be remembered that

this optimality is conditional upon the given feature set. In

other words, if a new feature set is given than another 'optimal'

classifier will be obtained. The two 'optimal' classifiers will

be equivalent if and only if it is possible to obtain a one to one

transformation from one feature set to the other.

To summarize, a classifier is optimal only after a set of

features have been selected. This optimality should not be confused

with 'global' optimality.

4



2. ON NMSER OF EATURES

In a typical pattern recognition problem there are two stages:

(a) the feature selection stage (b) design of a classifier based

on the selected features. Classifier design is relatively easier

in the sense that if the features and their class dependent

joint distributions are available then one can apply Bayes proce-

dure to obtain optimal classifier. In case the class dependent

distributions are partially known or even if they are completely

unknown, modifications of the optimal classifier or nonparametric

classifiers are applicable. On the otherhand the problem of fea-

ture selection ts quite difficult because no standard procedures

can be applied and moreover the features are specific to the pro-

blem under consideration.

The problem of feature selection arises generally because the

data collected in the natural space is not suitable for mathemati-

cal manipulation. For example, consider computerized classifica-

tion of ECG curves to one of the several disease classes. In

this case mathematical manipulations with these random ECG curves are

almost impossible, therefore the need for alternative ways of

storing the information in a curve. For this particular problem,

. one possible procedure'is to apply Karhunen-Loeve expansion.

Feature selection also plays an important role as a method of

data reduction. For example, although the data may be available

in a vector form, suitable for mathematical manipulations, yet

its dimensionality may be very large. In such situation it is

desired to compress the dimensionality without sacrificing in the

perform -e.
5



Let C be a classifier based on n features. Let Cm be a

classifier based on a subset of the original n features. Then it

appears to be a well known property that the performance of C.

cannot be superior than Cn . A proof of this property is easily

obtained in the case of two class classification problem with

under-lying normal distribution with common covariance matrix.

In this case the performance of the optimal classifier is me sur-

ed in terms of Mahalonobis distance 4' E- 1 k where k - 4l-k2 and E

is the qommon covariance matrix, pi is the mean vector i-1,2.

The error probability decreases as the Mahalonobis distance 4' E-1

increases because the error probability is given by 4[-h(V'Z'Ik)h].

Since

1 kA + 4. E 22 1 k2.1

where

LtZ L 21 :2

k2.1 - k2-E21 E 41 E22 .1  2- E 2-'21 E11 12

and

4-1 122.1 k2.1 2 0-

it follows immediately that *(_ 4 C 1  1/2 1, E'- 1/2

Thus, a subset selection may not lead to a better classifier.

But this does not imply that if n > m and the first classifier is

based on n features and the second classifier is based on m features

then the first classifier is necessarily better than the second.

In fact, in some cases a classifier based on n features may do

worse than another classifier based on m features (m < M.
S



To demonstrate this property, consider the following trivial

example. Consider two populations in which the underlying ran-

dom vector is (k+l) dimensional, k > 1. Suppose the marginal dis-

tributions of the first k components are identical in the two

populations, thus the first k components have no discriminatory

capability. On the otherhand the (k+l)th component has different

distributions in the two population. Two researchers, who are

unaware of this property, select feature sets consisting of the

first k components and the last (k+l) th component only respective-

ly. It is obvious that the first researcher will obtain poorer

discriminant although his feature set contaiis a larger number of

components than the second researcher.

In geieral, for every classifier based on m featurbs, one can produce

an equivalent classifier with n features whe n z m because all we need

to do is to add n-m non-informative indepndent features to the set of n

features. Qa the other hand given a classifier based on m features one can

produce an equivalent classifier based on one feature alone, as seen below.

The existance of a 1 dimensional equivalent criterion is

easily seen in the case of two class problem when the underlying

distributions are normal with common covariance Z. In this case,

the classification rule, based on n features x is given by:

iPl+U2 ;
t1assify ; to class 1 iff ( -- • (Ul 2 > 0

where standard notations are employed. Choosing the one dimensional

feature Y, where 1+
Y 2 E-- F 0 j 1 -U 2 ) '

we obtain an equivalent classifier. The result is now obvious for

7
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m z 2. In general for any arbitrary distributions, let

where f is the probability distribution function correspond-

ing to the ith class.
In summary, it cannot be said that a discriuinant based on

larger number of features is necessarily better than another die-

criminant which uses a smaller number of features, unless the second

set of features is a subset of the first set. Additional features

will improve the performance of a discriminant only if they are

informative. Finally, the performance of a discriminant depends

not on the number of features but on the choice of features them-

selves.

8
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3. DISCRIMINATION VERSUS CLASSIFICATION

There are two main goals in pattern recognition. The first

goal could be called "Separating distinct sets of objects" and

the second goal is to "allocate new items to previously defined

groups". Fisher (1938) used the term Odiscrimination" to refer

to the first goal. A more descriptive term is "separation".

The second goal is referred to as "classification" which is also

called "allocation" see Johnson and Wichran (1980) and "identifi-

cation' see Rao (1974). These concepts are further explained

below.

By discrimination or separation we understand how to describe

either graphically or algebraically, the differential features

of objects (observations) from several known collections (popu-

1 ationa). We try to find "discriminants" whose values are such

that the collections are separated as much as possible.

By classification or allocation we understand how to sort

objects (observations) into 2 or more leveled classes. The em-

phasis is on deriving a rule which can be used to "optimally"

assign a new object to the leveled classes.

The difference, just pointed out, between discrimination

and classification is generally not explained in standard texts

on pattern recognition. Inconsistent use of the terminology by

statisticians and pattern recognitioners has also caused confusion.

Moreover, a function which separates may also be used for alloca-

tion and conversely, an allocatory rule may suggest a discrimin-

atory procedure. Thus in practice the two goals may overlap and

the distinction between separation and allocation becomes blurred.

Allocation or classification rules are usually developed from

_i9



"learning* samples. Observations are randomly selected and are

known to come from specified populational These samples, also

known us training set, are then examined for differences and

based on the results of this examination, the entire sample space

is partitioned in as many regions as the number of populations.

If we denote these disjoint and ucaustive regions by RR 2 ... Rp

where p - number of populations and if new observation falls in

the region Ri , it is allocated to the ith population.

Fisher's idea, in discriminating between two populations

' 1 and w2 on the basis of observed values of presumably relevant

variables 5 was to transform the multivariate observations X to

univariate observations y such that the y's derived from popula-

tions 11 and w2 were separated as much as possible. For simpli-

city, Fisher suggested the use of linear combinations of k to

create the y's. This idea can be extended to several classes and

also to several discriminants yi,y2, .. where y1 provides the best

separation, Y2 the next best separation and so on. It is well

known that these discriminants have also been used for classifica-

tion and have "optimum" properties for the normal distributions.

* 0 101
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4. SA1PLE SIZE CONSIDERATIONS OF CLASSIFIERS AND TESTING

OF CLASSIFIERS:

One of the most important issues, after a classifier has

been designed, based on a training set, is to find how well it

performs. Considerable attention has been paid to this problem.

To study this problem, most attention has been given to the two

class problem assuming the underlying distributions are normal.

Denoting the probability of error of misclassification by

p there are several types of error probabilities which should be

' tdistinguished.
p : When the discriminant uses the known population

parameters and this discriminant is applied to in-

dependent observations from the population,

p • when the discriminant is based on a training set and

its performance is measured using the given training

a set.

o*: when the discriminant is based on the training set

and its performance is measured on another indep-

endent set called the test set

p : when the discriminant is based on a training set

and its performance is measured on the independent

samples of the population.

A general result

< <

was established by Mills in 1965. The dependence of 0 and 0

a on the ratio n/k, where n is the size of the training set and k

is a dimension of the underlying normal random variable, was

studied by Foley (1972), when Z, the common covariance matrix is

_n



assumed known. Foley observed that the difference between E(p)

and p is very large if n/k << 3. Only if n/k > 3, Z(p) - p is
A

small and therefore p can be considered a reasonable estimator

of P, Mehrotra (1973) observed that if E is also estimated, and

if n/k>S then only p can be considered as a good estimator.

However, obtaining the estimate - is the most important pro-

blem, but its distribution is very complex. Asymptotic results

have been obtained by several investigators. Lachenbruch and

Mickey (1965) studied several possible estimators of p for the

normal distribution and concluded that the leave-one-out method,

which is equivalent to jackknifing the estimator p, provides a

good estimator of p. This work was further studied by Cochran

(1968). Due to space considerations, it is prohibitive to go

into details of work in this area. Toussaints (1974) biblio-

graphy provides useful references related to this problem.

Several studies have also been performed to study the per-

formance of the Fisher's linear discriminant. These include the

study of its performance when their common covariance assumption

is not applicable, when the underlying distributions are not

normal. Most of these studies are empirical. Overall perfor-

mance of the Fisher's linear is found to be satisfactory.

In the study of the Fisher Linear discriminant, other pro-

blems of interest are: (i) study of the coefficients of the

Fisher linear discriminant and (ii) the problem of testing the

significance of the obtained discriminant function. Sitgreaves

(1961) observed that the estimates of the coefficients in the

linear discrimiant are biased and obtained the bias. Manda (1949)

12



has shown that as the sample size increases the standard errors

of the estimates of the coefficients decrease but do not converge

to zero. Using these and other similar results one can construct

confidence intervals and test the hypotheses regarding these es-

timates. Of particular interest is the hypotheses whether or not

a certain coefficient is zero.

The second problem, namely the testing of the significance

of the obtained discriminant function, was considered by Fisher

by means of developing a test for D2 , the Mahalonobis distance.

Rao (1946, 1948) obtained a test based on the distributional

pro',erty of
(n 1 + n2 -k - 1)"n, n2

(n, + n2 ) (n1 + n2 - 2) k 2  1- 2

which is distributed as F (k, nI + n2 - k-1). In the above ex-

* pression n,n 2 are sample sizes, R11 ;2 are sample means, s-1 is

the common covariance matrix and k is the dimensionality of the

underlying random variable.

13
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5. SEQUENTIAL VS. NONSEQUENTIAL CLASSIFICATION PROCEDURES WITH
SEVERAL POPULATIONS

For simplicity of presentation, we consider the case of 3

populations denoted by Wis 12 and 1 3* Given an observation we

wish to classify it to one of these three populations.

Let fi( ) bethe density associated with population

Wis 1-i,2,3, Pi- the prior probability of population Wis and

C(k i) - the cost of allocating an item to w k when it belongs

to Wi, for i,k-l,2,3. The Bayes classification rule, which mini-

z izes the expected cost of misclassification is given as follows.

The observation e is classified to population wk, k-1,2,3 for

which

3Epi C(kli) fi(k)
i-l (5.1)

~i~k

is smallest.

If all the misclassification costs are equal, then the term

in (5.1) will be smallest when the omitted term is largest. Thus,

for equal cost of misclassification, the observation is classi-

to

Iif p1 f (k) >P2f: f2(

to 11 I3f 3 06)

if P2 2 (k) >  (5.2)
2 ~IP f ~2f() j 3(4)

and to " f(l)

T3 if P3 f 3 ) >lp 2 f2(X)

14



A second classification rule is obtained by comparing two

populations at a time. If the costs of misclassification are

equal then this rule is: classify 6 to T1 if P3 YAP > P2 f2(; )

and P1 fl ) > P3 3 (x) Or equivalently if Pl f,1C) - P2 f2 (x) > 0

and P1 f 1
0 6) - P 3 f 3 (4) > 0 The other two cases can be described

in a similar manner. This procedure, which is alternatively

written as (5.3)below is equivalent to(S.2)described earlier.

Allocate to v. if

YA() Pi for all i-1,2,3. (5.3)

Note that in (5.3) one obtains the same inequality which is ob-

tained in the case of two population classification, with the

major difference that the desired inequality should be satisfied

for all three possible values of i.

One may alternatively decide to follow a third procedure des-

cribed below, which is sequential in nature. First allocate

to 1, or (v2 or 3) by Bayes rule. If the decision is to allocate

to W2 or w3, then in this second stage allocate it to one of

the two populations by again using the Bayes rule. Note that this

third procedure is not equivalent to the Bayes rule described above.

it can be easily seen by means of an example. Consider the case

of three univariate normal populations with common variance 1 and

respective means 3, 5 and 6. Let the apriri probabilities be all

equal to 1/3 and the costs of misclassification be also all equal.

In this case, using procedure (5.2) the boundaries are obtained at

4 and 5.5. That is, if x < classify it to population w 1 (with

man 3), if 4 s x < 5.5 classify it to population vw2 (with mean 5)

15



and if x a 5.5 classify it to population w 3* On the otherhand,

the third procedure described above, will allocate x to r1 , if

1f (x)

Sf 2(x) + . f 3 (x)

and to (i2 or T3) otherwise. in this case. the boundary is given

by 3.9075. In otherwords, if x < 3.9075 then it is classified to

11 otherwise to w2 or w3 . As before the boundary between w2 and 3

is 5.5.

In summary, the two alternative sequential procedures are

different and clearly the first procedure of comparing two at a

time is optimum.

LI
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6. ON THE POSS IBILITY OF AN UNNOWN GROUP

Typically, in a classification problem it is assumed that

there are a specified number k of classes and the objective

is to classify a new observation into one of these k classes.

In a more realistic situation it is possible that a given obser-

vation may not belong to any one of the given k classes. In

other words, there exists the possibility of the new object be-

longing to an unknown class, a class not previously specified.

Thus, in such situation we encounter two problems (a) classify

the given object in one of the k given classes (b) show that

* : there exists another class to which the new object belongs.

* This problem has not been considered in great detail in

the literature. This is because the class conditional density,

the prior probability etc. are all unknown for this unknown

class. However, in one particular situation the problem can be

considered as seen below, (Rao, 1974).

Let N(W,Z) denote the normal density of a p-dimensional

random vector with mean vector U and covariance matrix E. Let

N(y 2 A) and N(P2rE) be two class conditional densities and let

ul' W2 and E be known (or estimated from very large training

sets). Consider the well known Fisher linear classifier. For

classifying a now observation x, it is given by

x -(i+1 2 )- (jzu 2) 0

or equivalently by

17
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x' -  (UI-U2 1 (.I.2E- (U1.2

Let us now consider normal densitites with covariance matrix E

and mean vector given by uIl+(l-X) P2. This density is given by

1 exp- --(x-- -l- ) ' _).2 )

W (2w)P/21

M (2w) p/2 lexp-{ (x-.l) E (x-iu)+2(l-A)(U1 -i2) (x-_l)

+ (l-) (U 2)z 1 (U- 2

In the above representation, using the Neyman-Fisher factoriza-

tion theorem, it is clear that (x-u.i) E- C(UI- 2) is a sufficient

statistic for the unknown parameter A. As a consequence of this

sufficient property, it suffices to know Y-(x-.l) ' E-1 (Ul-U2) to

draw statistical inference regarding all normal populations with

means lying on the straight line joining uI and M2"

Now consider the following problem. Given a new obser-

vation x and two classes with densities N(IzE) and N( 2.E), the

problem is to classify x into one of these two classes. But

our above result implies that Y is sufficient for A and there-

fore, it should be possible to test whether x belongs to a class

-VhiLh-has the normal dt t with mean XU1+(l-A) 2 and co-

variance E. The idea is that if x does not belong to this class

18



of populations, it makes little sense to classify x to one of

the two' specified classes. In short, first we wish to test the

hypothesis

H0: meanX- l+(l-)l 2 , ) unknownversus
H1 : H0 is not true.

A test for this hypothesis is given by T>C where

1, [ lX- ) ' E-1 (pl-02)] 2
T- -lx-p 1) E-  (x-ul ) - -  1 - -

and T is distributed as a chisquare random variable with (p-1)

degrees of freedom. Thus, we have the following result.

Result: Let N(WI,Z) and N(U2 1 E) be two normal densities. Given

x, classify it to one of the two populations. 1owever, it may be

possible that x belongs to another class which is neither of the

above two classes or any other normal population with mean lying

*on a straight line joining these means. Then one can follow

these steps

Step 1: First test the hypothesis H0 vs. H1 using T. If T > C,

where C is obtained by using the chisquare property of T, then

we conclude that x does not belong to any one of the two specified

classes.

Step 2: If T < C, then use the usual Fisher linear classi-

fier to classify x to one of the two specified class.

Example: Suppose ui - (2,6), V2 - (4,9) with coamon covariance

matrix X -(l . Then, a given observation - (13,18) should be

classified to one of these two populations only if there is evid-

19
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ence that it does not belong to any other class. For the above

problem

1107 2612,202
T - - 8.57

With 1 d.f. the acceptable value of a chisquare random variable is

3.841 at level of significance 0.05 and 7.879 at level of signi-
ficance 0.005. Hence, one would conclude that this observation

does not belong to any one of the two specified classes.

It is worthwhile to note that the above procedure is dev-

eloped for the case when the parameters u's and E are all known.

. tIf they are unknown and the training set is large, then the above

procedure applies in the asymptotic sense. For small training

set a satisfactory procedure" has not been developed.

In a recent publication Lin (1978) suggests a variation of

the idea used in Neyman-Pearson theory of hypothesis testing.

To understand his approach, consider the problem of testing a

simple hypothesis H0 versus a simple hypothesis H1 where

H0 : f(x) - f0 (x)and
H1: f(x) - fl(x)

and f(x) denotes the probability density function of the random

, variable x. According to the Neyman-Pearson theory a test for

the above problem is obtained by minimizing the probability

PCx is classified as having the pdf f6(x)jtrue pdf is fl(x)]

keeping the probability, Ptx is classified as having the pdf

f l (x)I 4the true pdf if f0 (x)] fixed. Equivalently, if the entire
sarple space S is partitioned in two sets R and RF S-R. and x

20



is classified as having the pdf fo(X) if x C R, then accord-

ing to the Neyman Pearson theory R is chosen such that:

a = f (x)dx

is fixed, and

f = f(x)dx
'R

is minimized.

In the absence of the knowledge of f (x), Lin suggests the

following test: Choose R such that

CL = c f0 (x)dx
R

is fixed &ra
V(R) - I dx,

is minimized.

An adaptation of this concept to the classification- problem is

suggested as follows. Suppose the problem is to classify x to one

of the two classes with respective pdf's h1 (x) and h2 (x) and the

prior probabilities p1 and p2 respectively. However, let there

existsa possibility that the object may not belong to any one

of these two classes. In this situation Lin suggests that one

can use a two step procedure

Step (a) Test for the hypothesis
H0: f(x) - f0(x) BE p, hl(X) +  2h(x

vs

-. H: density is unknown

Step (b). If in Step (a) the null hypothesis is accepted,

then apply the conventional classification rule.
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Remark: It can be easily seen that Lin's proposal, in the frame-

work of testing, is to test the null hypothesis

H0 : f(x) - f(x)

vs

HI : f(x) - uniform over a certain unknown interval.

Thus, Lin is replacing the unknown density by the uniform density.

K2

22

4,



7. ON SELECTION OF THE BEST k OUT OF n MEASUREMENTS

IN GAUSSIAN DISTRIBUTIONS

7.0 ABSTRACT:

The purpose of this note is to show that it is not possible

to obtain a subset of k measurements out of a set of n measure-

ments, which provides the best discrimination between two popula-

tions by extending the set of (k-1) best measurements: This

result is demonstrated for the Gaussian distribution.

7.1 INTRODUCTION:

Cover and Campenhoult ( ) considered the problem of select-

ing the best k out of n measurements, for the purpose of dis-

criminating between two populations. They showed that it

is not possible to extend the set of best (k-i) measurements

to obtain the set of best k measurements. In fact, they proved

that there does not exist any systematic method of obtaining a

subset of k measurements for the purpose of discriminating.

Only the exastive search provides the desired answer.

In order to prove the above mentioned property Cover and

Campenhoult first related n measurements of the distribution

under consideration to n2nl Gaussian random variables, then es-

tablished the result for these new Gaussian variables. This

author has not been able to follow their method of relating n

variabler of some distribution to n2n 'l Gaussian random variables.

Moreover, it is not clear how can one obtain any desired order-

ing in the subsets of n measurement, in terms of probability of

error of misclassification and also obtain the specified magni-

tude of these error probabilities.
23
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The purpose of this note is to show that any extension of

the best (k-1) measurements to a set of k measurements (k<n)

need not give us the set of best k measurements. This is demon-

strated in the case of Gaussian random variables and by means of

two simple examples. It is also demonstrated, by means of an ex-

ample, that although it may be possible to obtain a desired or-

dering of subsets of n measurement (subject to a natural con-

straint given below and also in Cover and Campenholt), it may not

be possible to obtain the desired magnitudes of the error pro-

' tbabilities. This later property is also obtained in the case of
Gaussian random variables.

Before proceding further we wish to recall that this phen-

omenon, of not being able to select best subset of k out of n,

also occurs in the context of regression analysis [see Draper and

Smith (1966)).

24
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7.2 TWO EXAMPLES TO SHOW THAT ANY EXTENSION OF "BEST" k TO uk+l"

MEASUREMENTS MAY NOT BE THE " BEST " SET OF (k+l) MEASUREMENTS":

Before presenting the examples we wish to recall two basic

results.

Result (A): Let . be a n-dimensional normal random vector with

mean Pi and covariance matrix 16(a&) where i-i or 2 depending upon

whether * was drawn from population 7I or w2. Let the prior pro-

babilities of 1 or v2 be equal and the costs of misclassification

be equal. Then, the minimum probability of misclassification, is

given by #(AT where 0 denotes the distribution function of the

standard normal random variable and

A2 - (01 " U2) '  - (Za1 - 2 )

Re ult(B): Let A be a (p+q) x (p+q) postive definit symmitricitrix and

be a (p+q) dc al ol ector. Let A and be partitioned as folloms.A, Al=1.,
A = 1 and

In terms of these partitioned matrices we have the following

well known equality.

- ~'A -' A' l.I A 1  i ,
IA-'

where ki and k2 are p and q dimensional vectors, All, A22 and

and A12 - A21 are p x p, q x q and p x q dimensional matrices and

A22-1 - A22 - A21 Al A 12

,.2.1 ,42 .1

In particular if A12 is a matrix of all zero elements, then,
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IV

from result (B) the following equality is obtained.

Let = i - 1A2 " 1 ... in)" From result (A) it follows

that if one wishes to choose only one component out of n, then

the optimum choice is to select the ith component such that

62 82
:I max
Vjj iss "'

Example 1: In this example we consider the special case n-3. It

is observed that the best singleton set is (Xi) but neither (XlIX 2 }

nor {XX 3} is the best set of two components.

Let be a 3-dimensional normal random variable such that

1'I 2 63 - (2, 1.5, 1) and the correlation matrix is given by
01 a2 a3.1

P- (ij) - L 1 .96 - (7.1)

., .96 1

Clearly, the best singleton set of measurements is given by (X1 },

because (d61/a2 is largest among all (6 i/aO for 1-1l,2,3.

Next, we calculate

(6 1 12 21
I, a20 ('(a2~ 2 01 i6 62

"22 12 2 IP2)-r1- 12 1 2 2 Yal 2 a 2 J

(I , a 13 I) _= 6 2 7
_23) -1 3  .3 4*3f~3l0 3 6 13 -21o13 aa + or

and finally

(82\'2 3 23 (3 6 2(17 23 2o aS- a or 4.719

V3/(o23 033/ o,~ L0  ',2 0203 3
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It is obvious that the set {X2 1X3 ) is the best set of two

components, which it is not an extension of (Xl).

Example 2: The above example is extended to arbitrary n. In

otherwords .we show that there exists a normal distribution such

that the best set of k components, when extended to (k+l) com-

ponents does not provide the best set of (k+l) components. With-

out loss of generality let (Xl, ... Xk-l}.be the best set of (k-1)

components and let n-k+2. Let ( (Xl ... , Xk+2)' be 4ormally

distributed with mean vectors )1 and M2 and common correlation

matrix Z, given that it belongs to population v 1 and 12 respective-

1y. Let 4 " 1 -42 and Zbe such that

5 '" - " i 1k-l12, 1.5, 1)

7 Uk+2 0 k-l

and the correlation matrix, R, corresponding to E satisfies

--

where P is given by (7.1) and R is a (k-i) x (k-1) dimensional

atrix. From result (B) , our assumption that the best set of (k-i)

=omponents is (Xl, ..., Xk-.1), and Example 1 it is obvious that

the best set of k components is given by x1 , ... , Xk). But,

#hen we search for the best set of (k+l) components, it turns

3ut to be (X I , ... , - +lI Xk+2) which in not an extension

)f {xl , *.. Xk) .

Aemark: The above result in of a negative nature. A more useful

.esult would be to discover conditions such that it would be pos-

sible to obtain the best set of k components by extending the best

set of k components by extending the best set of (k-i) components.
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This work is under investigation.

In the remaining part of this note we consider one other as-

pect of Cover and Campe-hots. result. This example appears to

contradict their basic theorem.

Suppose Hl, 2, ... , Mn are n-measurements (Scalar) and Si

denotes an arbitrary, non-empty, subset of these measurements and

Pe(Si) denotes the minimal probability of error when the elements

of Si are used for the purpose of classification (between two

classes). It is well known that if Si a S then Pe(Si) k Pe(Sj).

Probability of error Pe(Si) can be used to establish an ordering

among all (2h1) possible selections of measurements. Cover and

Campenhout state the following theorem.

Theorem: Given an arbitrary ordering on the subsets of measure-

ments Ml1 *2 , .. *, Mn , subject to the monotonicity contrain.ts,

there exists a jointly normally distributed random vector k of n

dimension which has exactly the same ordering and the same proba-

bility of error.

Example 3: The following example shows that the above result is

not correct. Suppose Hip M2 K3 are three measurements. The 7

possible non empty measurement selections are ordered below

(subject to the monotonicity criterion mentioned above). The

corresponding error probabilities are also specified. Let the order-

ing be (1} a {M3 } a {Ml) z {H 14 2 ) Z'm 3 }  (14 2,H3) X x { ,M3)}

and the corresponding error probabilities be .4, .38, .35, .3, .29,

.28 and .22 respectively. At this stage we are interested in the

following question.

Is it possible to find - (X 1,X2 1 X3 ) which is normally dis-
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tributed with mean ui il,2 depending on the class membership and

common covarianc. metric E such that X' have exactly the above

ordering and error magnitudes? In this simple example, we observe

that it is possible to have the same order but it is not possible

to match the error probabilities.

For a normal random vector, the error probability is 1-i) -

2where A2 is the Mahalonobis distance. Thus, it suffices to

obtain the mean .vectors Ul and 'i2 and then common covariance matrix

E-(oij) such that if -l -1 " 2 - (11' 62' 63)' then,

0 82 83

20z 3

82 2 62 1/2
, 1 1 032 -- - + .

1-012 1 01 02 02 (7.2)
26 82 1/2

81 -2p ~1 3/2
213 + 83298"013 01 01 )3  (.2

6 3 3

2. 2 81 8 3 8 3/" t- 4P 2 3 a +_yI 1 .28
1 2 3  02 02 03

and

TI .22

where,as before, ai '71 1/ nai i Q i ,4

Solving the first three equations in (6) we get

Ll -7706, - *a.5066 and L3 * .611a01 2 03

The next three equations, along with the above values of (ho)e

specify pij, These must be P -.23966 or .9489, -.2135 or

.9828 and P -.5392 or .9948.
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Although, it may appear that are 8 possible correlation matrices

such that the first six equalities in (6) are satisfied, however

only one of these P matrix is positive definite. This matrix is

given below. The remaining seven matrices are all negative do-

finite.

[1 -.23966 -.21351

P 1-.23966 1 -.5392

-.2135 -.5392 1

Given the above values of 4I and P, the remaining probabilities

SI of error are fixed. Consequently, the last equality in (7.2)

will not be satisfied. In this particular example

,-16) {( )-()] 1 /2 } . .1714

which is different from the desired value of .22.

In general, suppose MI M12, ... , 4n , n a 3 are n measurements.

A certain order among subsets of {MI4 '2 " Mn} and the asso-

ciated error probabilities are given. The order satisfies the

natural constraints. Using the error magnitudes corresponding to

the singletons (M i we obtain (6i1/ai )s. Using the error magni-

tudes corresponding to {Mi,Mj }'s we get Pij's. At this stage all

of the free parameters are fixed and consequently all of the other

error probabilities are also fixed. It is unlikely that a speci-

fied order among the components will be satisfied.

Remark: Cover and Campenhout have generated n2n-1 Gaussian random

variables for the n original measurements. This gives them enough

freedom of selection to match the error probabilities. But, their

30



process of arriving at n normal random variables from these n2
n-l

variables is not at all clear. This is the major source of the dis-

agreement between their theorem and our counter example.

*3t

fi

, 31

I



00 RULE TO COMME IESULTS C1 SEVERAL DIXNU

in discrminant analysis, we try to allocate objects into one of the

given classes based on some measurements bf the objects. There exists

instances where several independent attempts have been nado to classify a

population of objects, each time a different set of measurements are chosen

and a new decision rule is constructed. Suppose we are presented with the

results of these decision rules, and we are asked to utilize these results

to classify the population of objects with a performance better than each

of the decision rules, whenever possible. In this paper we investigate such

methods for two class and three class problems. We confine to the case when

only three independent sets of measurements are taken. The results can be

generalized in a similar manner for other cases.

Let X- (X 1 X2 ,X 3 )t be a vector constructed by the juxtaposition of the

3 sets of measurements X of an object. The dimension for each measurement

vector XA is pi. Thus X is of dimension p, where p - p 1 .p 2 p 3 . Let

X, - (DI(X1 ) , (D2 (X2 ), D 3(X3)), where Di's are the three discriminants given,

and Di (Xi) is the decision of the discriminant D1 based on the set of measurements

X i of the object.

The purpose of this paper Is to develop som schemes such that an object

represented by the vector X can be classified in one of the two classes a and a2"
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Zn se cases, the set of measurements on an object are naturally grouped

in subsets such as the X1 s. iror instance if the classification was performed

on three diffemrt aspects of the same individual. Since the complexity in

constructing a decision rule for an object vector X increases with the

dimensionality p of 1, it may be beneficial to develop a decision rule for each

of the subsets of measurements Xi, and combine the results of the different

decision rules in a sensible fashion to obtain a decision rule for X. This

avoids the cmplications caused by high dimensionality, yet all the features

of the object are considered in the classification. Zn other cases it may be

-' t difficult to get the complete data at one place.

zn section 8.2. we consider the intuitively appealing majority logic and

in Section 8.3 the optimum method of coubming the results of three discrimin-

ants in the two class problem. Section 8.4 contains some general remarks on

the two class problem. 'n Section 8.5, it is demonstrated that there would

always be some loss n terms of probability of correct classification when the

three discriminants are combinmd a opposed to using the best possible dis-

crilziant for the entire X. In Section 8.6 the case of ultivariate normal

is further investigated. We finish this paper with a quick review of these

ideas as they apply to the three class problem.,
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2. ,H MAJORM RU

without loss of generality the function D1 (Xi) can be defined as

D£CX 1 ) ( J 1 if Xi is classified into wl by Di

0 " i2 by Di

Clearly, the Di's aae independent from one another provided the X 's are

mutually independent. In the following derivations, we assme that the X Is,

- for i - 1,2,3 are mutually independent.

A random vector X in the object space is thus mapped by the function Di'a

t t t
into the 3-dimensional binomial space S', where S' - {(000) , (00l) t ,(Ol0) t ,(0ll) t ,

t t t(100) t 1(101) t I(no0) (111)t}

n this section we consider the majority rule of combining the results

from Di's which belong to the sample space S'.

The majority rule is an intuitive approach to classify the samples in $S.

The rule is. whenever more than one X i's are cla'ssified by the Di s to 01,

then X should be classified to w 1.

Let D denote the majority decision function i.e. let D nX) - 1 represent

that X is classified to w Thus D(X) - I iDx 2eseD(X)
m £1 i

* and x is classified to v2 .

iet Q - P1*(Dm CX) = 1JIM,), the probability of correctly recognizing an object.

from ma1 . Let a, Pr(Di(X) M 11i 1 ). We assume that mi k for all i-l, 2 and 3,

such that a1 9 a 2  a a3"
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Theoreul i ) Q k a 0. ii) Q k inunot necessarily satisfied.2 13.

Proof i) It is sufficient to prove Q z a2 .

we observe that

Q a (la2,*3) a L2*3 + *102(1-63) + el(1-*2)*3 + (C-a,)a2a3.

It is easily seen that Q is monotonically increasing in each

of the three variables al.,2,a 3

Since a 3 2 a 2

Q(%,a 2 ,a3 ) 2 Q(%,a2,G )

M a1Q2 2 +l2 (1-C2) +Cl2 l(-2)+2 2 (1-aI)

a 20 a2 2 C92

- a2 ( 2 cl-2a e2+a2)

Q'.-0 2 a 2 Ona1-2* 1*2+2-1)

- @2 (1-a2) (2a1-1).

It is obvious that the above ePression is always positive.

i.i) Q -0 3  w, a 12c3+a .0.(1- 4 3) + Qa3 ('. z2) +a2c 3(1-zl)-a3

WI 2+a2 a3+a3 a -2a1 a3-3

a a1 2 (1- ) 3 1 (-a2) 3

STherefore Q k a3 i.f a a2(1-03)-(1-G )(I-C 2) 3  0 , or
1 3 1 13 3

equvalenty, la2(1- (la3 ) (1-al2)a)3 0

- :. za 3 iff, ala2 a @3
(1-a 1 ) (1- 2 )  1- 3 •

The above theorem tells us that the intuitively a1ppealing majority rule ins

sometimes inferior in performance to the best of the D s. It may be possible

to improve the performance by, instead of using the majority rule, using a linear

3
combination of the Di(Xi) '8, 1 C1iD 1 (X ), where the weight CL is chosen to reflect

i-i



the magnitude of the a5'a. Sovever, we will not disgross into this. Instead,

we will derive a nonlinear procedure which provides the best possible discri inant

based on the D .
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8.3. Te LZ nD TIO D==SION LZ

Let 1- PC (Di(Xl) a 'l~, 01 - Pr(D1 (X) - 01-2), 1 1,2,3.

Te ol*s and A'i are the conditional probabilities of correct recognition for

observations from wand ar , respectively, l-m£ and 1-. vill be probabilities

of misclassification. Let

3 3
f 5 fCg1) - I PrCD (X) i ul), 9 - g( - I Pr(D1 (X1 ) 102)-

Th likelhood ratio dedision rule D L is such that if f/g > ; decide X".,

if f/g - 1 decide Xew2 )and if f/g - 1 then decide Zes with probability .5.

Thecen 2 Given the decisions of the Di's, the decision rule D, is the

optimal decision rule.

Pzoof Since D1.(X)'s axe mutually independent, the following equality

holds

3
I Pr(D (Xi)lw.) - Nr(n'D2'D3101)"

i-ij D1 DIw)

Therefore the decision rule D, is the same as the most powerful test for a

simple hypothesis Xe. 1 versus a simple alternative Xe. 2 , given by the Heyman-

pearson lem. Consequently, with the obvious choices of the constants of the

Neyman-Pearson lerna the discriipaunt DI is optimum.

Xt remains to find the performance of the above, optimal decision rule D1 .

The proposition 3 given below not only answrs this question but also relates

the two decision rules D. and D, discussed in Theorem 1. Zn the proposition 3

w also assum 0, 1 a 1,2,3.

-, oVsition 3 Let a, - S, 1 - 1,2,3, and 61 S a2 a •3" The probability

rof the correct decision by Di is Q* where

- •l•2a 3+ 2 (1--a3) +l (1. 2 )a 3 +ax((-a 1 )2 53a 1(1"• ) (1-0 3 ))

- ax(Probability of correct decision by D , probability of

correct decision by D3 ).
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Iroof By D, any observation (D(X1) ,D2 (X2 ) ,D3 (X3)) vill be classified an

belonging to when it actually belongs to provided

3 D .(X 1-DL 1 (1X ) 3 D l (Xi ) (1-OL(X1 )U ~l (l-a) > U (l-@a£) aS
i.-i (-) i-i ±

or equivalenty y ,

3 2D1 (X1 ) 3 i

L*C-

(with probability .5). Let (Dn(X.),D 2 (X2 ),D 3 (X3 )) takes values in

(1,1,1), (0,1,), (1,0,1)). Clearly the decision rule DI w

-1 -1 -1classify Xcw 1 because a (1-4) (-2) S a3(-3) . similarly

if (DI(X 1 ) ,D2 (1 2 ),D 3 (X3 )) takes values In ((0,0,0), (1,00), (0,1,0))

then the decision rule DI vll classify them an coming from a2 . The

only other cases are when (DI(XI),D 2 (X2 ),D3 (X3 )) - (1,1,0) or (0,0,1).

bviously, we could classify (1,1@0) as coming from u1 (w2 ) if

elaa (1-d )

(1-4 1 ) (1-Gz2)a 3

and we could classify (0,0,1) as coming from w I(M 2) provided

1. (2 1
1 a2 (1-3)

By symmetry of the above two cases oe and only one of these two points will

result in the acceptance of u . Since the above two conditions are the sme as

in the iecond part of Theorem 1, the Q* in given by the first equation. To show

that the second equality holds, we observe that if

* lM2*3+oe2 (13) +61 (1-02) 3+cl (l 2) (1'-3)

then the right hand side simplifies to 3 '
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8.4 BON MUIAR

since both of the Above suggested decision rules are based an the samles

in S' only, (S' -((000) t000(131) t)), once the segmnts X1 of an obevtia , are

classified by the D, s, we can use temlate matching (checking the content of

the 3-D vector Z' against all the possible elements in 8') to decide the cla *o.fica-

tion of x. Thus, ctassification using either the majority or optiamu decision

rule involves the samea mount of wark.

For the majority rule to work properly, the number of subgroups k of the

elements of X ehould be an odd numer. For the likelihood ratio decision rule,

there is no such restriction on the numnber of subgroups of the elements of X,

and we can he *=ur that this rule is always the best based on the available

Information an elements of 80.
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8.5 COMMUS=.t BT.UN D, AND UST DEMICHsIOR r =NG TU COWL=TE OSEMATIO x

ZarleLr in the itn it ws said if p, the dimesion of X - (XI X2 VX3 ),

is very large we my prefer to construct fiLrst' the DID 2 D3 and then combine

their results to form D8 . The discrinmnants Dl 1 D2 and l3 ng with Di m

assumed to be optimn and D' are assumed indpendent Suppoe, on the otherhbid

we construct the optimum discriminant D using %he vhole set X. Then a natural

question i3s Are D and Di different from each other?

There is no doubt that D, being optim , must perform at least as well as

D. in terms of probability of correct decision. Thus all we need to verify is

that: in D iznferior in its performance? In the following discussion we have

tried to answer this question under same assumptions, which are reasonable for

two class problems.

Suppose proi-probabilities of the two classes are the sae. Let

f (Y) be the P.d.f, of X when k is the true class, k - 1.21 1.2,3. Then,

by rule of optimum decision (we assume all of the parameters are known)

1 i..J X is claslsified as from- 1 if C) (X i)
D1 Wx f j (2 (

0 1.a. i is classified as from w2 elherwst..

j 1,2,3. Similarly

I ie. inclassified as from w if ZI
1 iL. Xis 1 ( )

Dx) If (x)

0 L.e. X is classified as from w2 if - I

[for sake of simplicity we assme that f i (X I with probabLiLty zero].f(2) (
f (O
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First we consider the case where

(a) 4, - 1 (D ) J ..(l) PC(D (K) - o 2 )

(b) 1 S 2 • 413 such that ala2(1-63) (L-1) (1-62)a3

so that D. is the majority raule L.. 2 out of 3 rule.

•nder the above assmptics,

P r (D ) 1 1 M - r f (1 )( X1 ) f (2 ) (X ) NJ].1

3
f ( ) dx

X )/ :) (2)1(x) f,,where A{ 11 f 1(2) Cf)f

Let( )E f (() IJ (),J-123 Than

A 10203 >1

Clearly, th set A contains I such that at least one of the three ils is larger

than 1 and, of comrse, )10203 > 1. We can easily see that A can be written in

texas of the union of 7 disjoint sets A, through A7 where

%L 1( 01 :0, 02'%,1 02- -C 0 3 <1) a£A and A4 are defined similarly

with 53 replaced by 02 and Sl respectively.

S ) 2 1)  such that ( 0 x )-1]

AG and A7defined in a similar maner. Thus

3 )Pr (D()-1w)-1 If l (K1) dxi 81
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Next'.

Pr(D(Z) 1 liu.) - Pr (at least two out of three Di'S 11ae ) I*

m C1 M3 Y2 (1-0 3+ 0 1 ("2)a3 + ( '.l)a2e33

' (8.2)
Which follows of fo of , I 1,2.3 ;the set

-f a fk U B*

where V consists of all those X's for which exactly two Di's are 1. consider

the case obtained from 6162 (1-<3). This contributes t e set

(Xf : 0 *1,~ 02)10 038 2 ' <i3~ ~J

m A2 U'B 2  +

to the set 5'. In a manner slnilar to this. one can easily show that

3 A2 A 3 U A4 U D2 U 3 U 4

Thus, the two integrals given by(.) and(,Z.) differ from each other only over

the sets A5 U A6 '7 a 2 U 33 U 24. Thus, it can be easily concluded that the
7

two discriminants D and D are not identical because for any F i U ALi D(g) " 1
5 5

whereas D(J) -'0 and conversely for any ; a U RjD (g) -I wher"s D(g) " 0.
2

One could still get equal probabilities of errors. To see if these

probabilities are same or not w consider

Pr(DCA) - la&,) - Pr(D1 (Q) - l1101)

um) 
14 

( )

5 2
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--- -.....-..

Zn a manner similar to the above it can be shown that

Pr(D(I) - Ow 2 ) - PrIWCIA) - 0("2)

4 r7:l R fk' (Xk)ftk " OIL"42

sy assumption the above tim dip erens 01-e2 and #1-42 a eqpal. but

3 ( 2)zd.

k1 kwl
- a )251 5 1 I

3 3
2, 14 ka (xk)dxk ' . a fk W)dxck)

2 2

• 1 .2 0 and 02-#,3. 0O

Now, we observe that 61 a 02 because D is better than DL. If - 62 then

S and oan the otherhand
11 2 "

would imply +1 •  a contradiction. Thus we muat have 01 6 This implies1 21 2

that D is always better than D, except in the case when probabilities of the

St hr and 2 2 to n4 ar tero ~u a as el a a 2

Zn the remainaing part of this section we consider the special case of the

no=@.L population which plays a significant role in discriminant analysis.

chsider, once again, the simplest f6zm of the discrimination problem. Let
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X, follows ult variate normal distribution wth man vector U and covariance

matrix E "1 1-1,2,3 and J-l,2 associated with two classes. We assame that XIXs

are all stochastically independent. Under the above assumptions, the probabilities

of correct classification are given by a - 4(6i12); 1-1,2,3 when optivm

discriminants Di (X1) are used, i-1,23. Here.

2 IOAL(2) - V -1 (2) (1) L1,,
6 L

a n thd! i - I -. (1
d

+
):L  ,)

(1)X (2)-1 M-()I

ax 1 2 X) is(XO n th otherhand, if the whole vector 2 is (X lX2,X3)/ is as" the the

optimum discrla t Cl ( ) s g ven y

DC) 1 it {xI4(1)~2) X+U 31, 0c

where It U[n V 2 ( S) 3 ) '0

and

z0 0

The probability of corte"t olassification by this rule is #(f 6),
" 2 S2 42 32 .2 1 + 2 Thus, if a - 1 for all i, then the-proability of correct

classification by this rule is - .806 wheres the probbility of corsect

decision by the majority rule is given by

#3(.5) + 3 2 (.5) 114-(.S)] .7726
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Thus, there in a loss in not using the wbole set together. The following is a

=all table consisting of sam of these probabilities of correct classification

and the associated differences.

Prob. of Prob. of correct Difference
22 correct classification by in

c2 42 classification D D D Probabilities
1 2 3.4'

1 .50 .17 .33 .69146 .66387 .02758

2 1.00 .33 .67 .76024 .72490 .03533

3 1.50 .50 1.00 .80675 .76757 .03917
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6G. NONIAL DISTRIMOUNf! MU~MiMN HEM VECTORS, I 1IM

In this section we evaluate the difference between the atis of

correct classification by the two methods discussed in this paper. we consider

the case when the class conditional distributions are normal with camon, knon,

covariance matrix E and unknown man vectors. That is, in the notations of

the previous section, for j'ul,21 X, follows multivariate normal distribution

with mean vector u ( M which is unknom, and covariance matrix Z. assumed to

be known, iL,2,3. Clearly X ( XiX) also follows multivariate normal

distribution with mean vector ) t('(ji, I32 ) ()) and covariance matrix

zl  0 0

Obviously independence of XI,2, an 3 is implied by this covariance structure.

Under these assumptions, the discrininant D(-) is used where

DC) 111classified to class I if L (I.l( (I).j( 2 )) 3, 0

0 - T classified to class 2- 0

where Sample me of ft observations frm the jth class, J-1*2 and Y

is an observation to be classified In one of the two classes. A similar expression

for the discrisinant D(T( I) wll hold if the ith subset is used for this purpose,

1-1,2.3t

Clearly, the probability of corect decision, when D(T) is eloyed is given

by

I[corect decision by D(X)II ( )]
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Prpr __ ___ :X1

[, - C r 1  ( 1 2 > ,l2 ) , l ) ]

(1 *2 (2) ()!()'

(1) 2(2)

where Uy(1 () ( "' (y,(1)_f 2)

and #(-) denotes the distxbution function of standard nomal random variable.

in a similar manner, given 1) and (2) the conditional probability of correct

classificaton by D,(Y) vwin be given by (a (i) .(2))) vhere a, is also

defined with appropriate changes. Denote . (a,(It (1) ,1 (2) by P.

Conditional on the event that il) and (2) are given, the probability

of Correct Classification after Combining the results of D1.D2 , and D3 is given

by

, if x 4 A1 i- x 1 * (1#l) (1-, 3 (1-#l)4243

0 if x c P.2 a x" (-i#)# (1 3) > *, (1-42,3J

3  f x q A3 -x 1 (1-4 1)(1-42)03 > 1#2(1-031

z t 3 + #i2(l-03  1  (1-024#3 + (1 - 4 l)2*3 . otherwise

Thus the unconditionml probability of correct classification is given by the

integral of the above probabilities over Al,A2A3 and the remaining region

vith respect to the joint density of i(1) ,(2) This being a difficult problem

of integration, we obtain a lover bound by integrating the last expression over

the entire range. Thus, the probability of correct classification, when results

of D11D2 and D3 are employed is groater than
47
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1 2e3 1 2(-3) + #1(1- 2)#3 + (.-#4)#23]

using the independence of X's the above reduces considerably because, for

instance we can replace NO10203) by 2[41J Y Z14 3J.

The ezpression for 3[1-4] is given by Equation 77 of John :(1961). The

S[1-.i] can also be obtained similarly. Thus an upper bound for the difference

in the probabilities of correct classification can be evaluated. The following

table gives these upper bounds for few choices of number of observations in

the training sample. The number of training samples, N, are equal in both

classes. in the table 8 .2, i.1,2,3 denotes the ahalonobis distance between

the two populations, measured for the ith subset only.
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The following table gives an upper bound of the difference between the

probabilitles of correct classification by the two methods

.4 4 0 I~? 0 ..4 N 0 N 0, .4 0,
40 ft *4 'A0 , P . 4 I 0 '

S.. I.

Ii .4 4 0, 0 1 N 0 , 1" .4 -
.4. u0 r ,4 N

01, a. A WI M. 10u n . e e

'VI A_ __ on __

o 8  ~ ev ro N 5r5 .8

0

fn in |

el Itf U 01 In S I W A 50 V

-4. . . .* *

'n .4 .4 .444 . .4 . .4 .4

0,0
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From the table it is clear that the difference increases as V increases

provided other parameters are fixed. Por all other parameters fixed, the

difference increases with 6 . The most significant observation, fra the table,

is that if the actual probability of correct classification is large then the

difference is also large. One also concludes that the actual difference of

probability of correct decision between hsing the Linear discri-Anant with the

whole set of observation and in parts decreases if the parameters of the popula-

tion are unknown. Thus, in otherwords, one would be less concerned about the

. loss in using the alternative method D of discrimination when the parmters

are unknown.

o/
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8 .7 *ECTISION TO THE T= CUMS PROWA6

in the previous sections we have considered the case when there awe only

two classes. In this section the ideas of the previous sections areetedd

to three class problem. Xztensio. to more than three classes will be straight

forward. It will be seen that due to a large numer of parameters, there are

som difficulties in getting results in the most general form, but the basic

concepts remain unchanged. To formaLise the concepts we demote the three classes

by a' 1 2 and w3 . As before, we confine our attention to tile case when there are

three independent su~bsets of mea ure ts an emob object. Furthermore, as in

the previous section, we have the results of the three discristinants operating

at each subset. Our ain is to combine theme results to decide to which class the

given object belongs.

The sample space of the results of the three discintinants is given by

soIE o '3 8 1 S A I! A21*3 5 3

where the triplet (Z 112#13 ) means that the first discriainant using the first

segmnt of the measurement on the given object classifies it to class IlV the

second discrininant, using the second segment, to class 1 2 and the thire-

discrimu-nazit, using the last segment, to the class 1 3- Our object, as pointed

out earlier also, in to combine the result ( L.L2.13) and classify the object to

one of go. three classes. Given the sample space e' and associated probability

* I measures, the optimum criteria of classification would use the Dayesian approach.

Under the assumption of equally probable classes and equal costi the Sayes approach

would emply the likelihood functions only, bet the unequal costs and unequal

It apriori probabilities can be accomodatdiising the standard procedures, Anderson (1968).

The probability structure associated with the ample space 8*"is given by

the following 27 parameters
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P (k) Probability that the discrAminant k Vill classify X into class i

when it actually comes from class ji

for 1 : 1, j , k S 3. Obviously these parameters are not all independent because

3)
. 31 for each j and k

i-1 il

urthermore, (k) denotes the probability of correct classification for each

J and k, whereas P (k) deotes probability of misclassification for isj and

and k. Given these parameters one can easily calculate the probability of

observing any sample point of S"conditional on X belongs to a specified class.

IFor instance, the probability that the result of the three discriminantswill be

(11 12'13) when X comes from class 1 is given by

A £2,1 A3,1

The optimum discriminant mathod which is based upon the elements of SOLs then given

by D0X) here D(X) - D(10," 2 ,& 3 ) - i means that X is classified to class i.

This discrIminant [See Anderson [1] , is given by

D(X) - I iff PLIl (1) 2,)12) It2.(3) p, 111 p,2,12) p, 3,1 (3) for o , '(1.

Based on the available information (£1,I12, 3) only D will be optimum which can

be seen from the arguments given in Anderson (1].

In the remaining section w study the above discriminant when Pj (k) satses

additional conditions.

Special Cases I:

Suppose P , ( are suah that all of the probabilities of misclassifiCatams

are equal for each class and each discriminant. Denote this probability by p.

That is

(kc) p if '*
1-2p if i-j.
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zt is easily seen that, for pcl/3, D is equivalent to the majority rule ewept

that the 6 pewatations of (1,2,3) are classified abitrarily with equal

pobabilies. Frther, the probability of correct classificatios will be

given by

(_P3 2 1 2
(l-2p)+ 3(1-2p) p + 1(1-2p)p

Case 2

Suppose PiJ M satisifies the following conditions. Let P vo, ) . p W

for i'ig i-l,2,3s knl,2)3. Clearly . 1-2 P (k). This implies that the

two probabilities of nisclassificaticn of an object from class a L at "I' re

! the sune for any specified k, and equal for each i. in this cae, without loss

of generality, we am suamm that

Zp(I)> (2) > (3).

ftese inequalities Imply that, compared in term of probabilities of correct

classification, the first d nt is wot and the third is the best. As

would be expected, the majority rule will not necessarily be the best and for

instance D classifies all of the f..Ioving 5 sample points to class w

As for the points (1,1.2) or (1,1,3) they would be classified to class I if

_______ .;(2 1-; 3

p 1(1) p(2) p(3)

and to class 02 and a3' respectively, it the direction of the nequality in

reverse. macall that thi Is exactLy the am condition that we have seen In

-, an earlier section. Iallarly we an find points wich will be classified to

nd2 a . The remaining 6 permutations of (1,2,3) ae classified as follows

(1,2,3) and (2,1,3) am classified such that the associated X belongs to *31

(1,3,2) and (3,1,2) to *2 aid (2,3,1) and (3,2,1) to class I1 .
53

... .... .....



Probabi I ities of correct classifications can be camputed easily by imnng

over al points which lead to the acceptance of x w w when it is truly the

case. For instance, given

_- 11 . -2. 2 1  -
p() (2) p(3)

the probability of correct classification of x c wI is given by

(1-2p (1 )) (1-2p(
2 1) 1-2p (3 ) + 21

1 -2p(2 1) (1-2p(
3 1)

+ 2(12p(1))p(2) (1-2p(3)) + 4p (1)p(2) (1-2p(3),

which, as expected, simplifies to 1-2p( 3)1, implying that the decision is equivalent

to the third discriminant. The probabilities can be evaluated in a similar

manner. The other special cases can also be studied.

The extension of the above idea to more than 3 classes is straight forward.

The above concepts can also be extended in exactly the same manner to the case

when there are more than 3 independent segments of measurement on each object.

The case when these segments of observations are stochastically dependent is

relatively hard to study although the similar concepts apply in that situation

also.

Finally, we present the formulas which can be employed to evaluate the

differences between the probabilities of the correct decisions for the two

methods under investigation, in the case of uAltivariate nozoml distributions.

We consider the simple situation wheh all of the paraters are assumed knowm

and tbe cvariance matrix Is smme. Xhppose for A c e, 1-1,2,3 the meam vecto

is Pi and (witbot loss of generality) the oovarlance ntiz is 1. &- before 5

(and therefore Pi) is p dimensional which consists of three se mts .-1 3 'of

P' P2 and p3 dimensions. In the following we give the fomnlas for the

probabilities of correct and incorrect classification when I a *I is used. Ia

saw formulas can be used to calculate the associated probabilities When an ame
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of the suent is used, of ome, with obvious modiications. Given this

structure it would be stmight forward to calculate the desired difference.

this, c of z olass problem, the decision to classify i n class

it vIil be taken it

or equi valently when ( 0 ov 1 2 0)whr
. p l " P1 £ 2 J

V- - ±2£

Defin (U2.v2) ad ( 3.,V) by

p r

we 1

2 1 1 1
L WWI 23£ x 1 31

'p I. - 112 1 L + 'A2 L

Li i L 2

p 113+p

3 3

It cam be easily shor that 3 will be classifed to class wa if (U2 a 0, V2 • 0)

and to clams *3 if (U3 ) , V3 3. 0) - 1n distribution of all of these pairs is

bivarLate normal with eems, variances and covariances given below. Xt is asmed,

as sentioned earlier also, that i is assumed to be from a in the following

Calulaios.

55

...........................................i'.



1 i

22CVI) Var (VI) )211;

and the corrlaio coefficient between Ul aid V1 is given by

, ( 1 -v,-( 1A - U3

-2 CU2 ) Vat CUV - U . 3

the correlation coefficient between U2 and V2 is given by

tip(1 2 ul (127 3

and finally

-23 (U3 ) -Vat ( 3 ) -i3

-3 • (1o31 - - 22 V

1. 

)
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and correlation coefficient between U3 and V3 is given by

OU V3 ip 3 is g40 ivenVby

- u~ IAj (~ - -~ j

Given the above dIstibutions, it is easy to calculate that the probability

of classifyiag z -a.me to oi1 Is

? * p )o,,0, v, ).46) ._/P I".- mm- 1 (W 2+2a2p - 4* ("'''u2+v

PJhO V bW - h 2 21 -0/4 2

-L(-hl.- u vwI)

following the notations of johnon end otz (see equation 19 page 94,[311. Here

h~~ ",,/,2
Since the argments -hl,-h 2 in (. ,h2  are negative, we have to use

equation 22.3 of page 95 of Johnso and Mot. At this t"g to ealculate

P(O>0, V 1 001) it reiain to look up L(,,ih 2I Paiv) from a tabled for euwle

in National Dwran of stanad pub~eseti (1959). Zn exactly a stanlar munsr

one Could calculate

PM2" 7"141o ) and P v3 "' Yo 1@) .

which provide the obMaites of misclassifications. It is significant to

chnazw that the above pr lti not only deend upgo the Naealomobs distance

~ ll ~ ~)ii) butalso upon the angles between -)2 M ~) E

etc.
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