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1 . Introduction

Many magnetospheric phenomena of the Earth are directly controlled by the

t solar wind which flows past the Earth. Thus, accurate prediction of the

interplanetary conditions of the Earth is a prerequisite for a workable fore-

cast of the magnetospheric dynamics of the Earth.

The interplanetary space is permeated by the solar wind which is con-

tinually emitted from the Sun. Hence, the interplanetary conditions evolve

as the coronal conditions undergo changes. Although the solar wind is causally

determined by what is present at the solar surface, the relationship between

the interplanetary conditions of the Earth and the coronal conditions of the

Sun is too complicated to allow a workable prediction of the former on the

basis of a structureless description of the latter. The complication results

from the spatial variations as well as the temporal evolutions over the solar

surface. Evidently, the relationship between the conditions at two inter-

planetary points linked by a solar wind stream is much simpler. This is so,

for in the far region of the interplanetary space energy deposition by means

of processes other than thermial conduction is insignificant. Moreover, most

of the stream-stream interactions take place before the solar wind reaches

the far region. Therefore, prediction of conditions at one interplanetary

point on the basis of conditions at another interplanetary poir~t i- more

likely to be workable.

As a part of STIP (Studies of Travelling Interplanetary Phenomena)

program, we undertake a two-point correlation study to explore the feasibility

of a prediction scheme. First, we elucidate the theoretical solutions that

represent the solar wind streams in the far region of the interplanetary

space. Then, we present a useful approximation for the explicit expressions

of these solutions. Such an approximation provides an efficient algorithm
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for routine calculation of the solar wind streams. Finally, we use the

observational data from the Venus-bound space probe Pioneer 12 and the Earth-

bound satellite IMP 8, in conjunction with the solutions from theoretical

modelling, to discern the two-point correlation in the interplanetary condi-

tions. Such an assessment, aimed to ascertain the feasibility of the

prediction of the Earth's interplanetary conditions, is possible with the

recent availability of simultaneous data at 0.7 AU (where Pioneer 12 was

inserted into Venus' orbit in December 1978) and 1.0 AU (where IMP 8 was

launched into a geocentric orbit in October 1973).
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2. Governing Equations of Solar Wind Streams

As a starting point, we shall write the magnetohydrodynamic equations in

a rotating frame of reference. Referring to a heliocentered spherical coordinates

(r, 0, 0) which rotates at a constant angular velocity 6 = IzA , the temporal

and spatial variations of the physical quantities (viz, mass density p,

temperature T, thermal pressure p, heating flux flow velocity u, magnetic

field 9, electric field , and current density ) in rationalized units are

governed by the following equations:

u +-7.o7 = (1)

u + (U". v)U + 2:,xi -Vp + ov-GM + , (2)

. 3,2 1 -1,2 1

t t O-u + KT 1 + 7 D

-4a GM 2 (3)

+ .ou + -=KT -r -7 , q )u + Pa + + 0 =

-tB + Vx= (4)

0 = (5)

(~)



in conjunction with the following relational equations

p=KpT , (6)

j (7)

= VT). 1 (9)

The vector q is the axial distance from the solar axis of rotation (viz.

q = r sin 0). The constants G, Me, K and p are the gravitational constant,

the solar mass, the gas constant (viz, Boltzmann constant divided by average

mass of particles) and the magnetic permeability. The thermal conductivity

K = C T5/2 depends on the temperature, with the coefficient C essentially constant.

We remark that the thermodynamic quantities p, T, p, Q as well as

the magnetic field B and current density J are invariant in the coordinate

transformation. In the rest frame the flow velocity is u + 0 ql and the

electric field is E - 0oql x B, hence the kinetic energy is

i;t + u 0 q+ q q and the Poynting flux is

E E B + (Qqp-1B2) I- (Qoqp-'B ) The latter is clear if we recall that

in a perfectly conducting medium the Poynting flux

[1 - (10)F.'+ U! T U+,



consists of the convected flux of magnetic energy and the work done by the

magnetic stress (l stands for the unit dyadic). Moreover, although spatial

derivatives are invariant in the coordinate transformation, the temporal

derivative in the rest frame is a/at - f0a/30, hence an azimuthal variation in

the rotating frame will appear as a temporal variation in the rest frame.

It is instructive to write the equation of azimuthal motion in the conser-

vation form for angular momentum

± q± ; u + -0  (11)

+ - -1

= - +- +i" a Ei

The term D/3t(pq2Co ) + V(Upq ) accounts for the torque 2pQoq exerted by

the Coriolis force and the term 3/ap( p accounts for the torque exerted by the

thermal pressure. Clearly, qp(U + qQ ) is the material angular momentum in

the rest frame, and (q0p-B2 )l( - (p-qB0)B represents the flux of magnetic

angular momentu. Also, it is instructive to write the equation of energy

conservation in the form

~ - - (12)

which expresses the increase of entropy S = K log(T 31 2/p) by the heating

flu1x.

-ft



Now we consider a solar wind stream that appears time-independent and

hydromagnetically aligned (i.e., the flow velocity is parallel to the magnetic

field) in the rotating frame. Since, by equation (8), the electric field is

zero, equation (4) is satisfied. Let £ be a length variable that increases

outward (viz. away from the sun) along the axis of a flux tube. Hence, = ±1 B

(with the positive sign if the field line's polarity is outward and the negative

sign if inward), u = l£u and = Q. Equation (9) means that the heat flux

conducting along the flux tube has the magnitude

- T" JT (13)

By virtue of equation (5), the field strength B varies inversely with the

cross-sectional area of the flux tube. Accordingly, equation (1) yields the

invariance of the mass efflux

(14)
B

and equation (3) yields the invariance of the energy efflux

I i ' _ GIO_ 1 2)

5 Kiii§~T ~2~ i22) + ~(15)
B

along the flux tube. Furthermore, if the azimuthal gradient of the hydromag-

netic pressure is negligible, then equation (11) yields the invariance of the

hydromagnetic angular momentum efflux



-i (16)

pq (up + cq) u - p1 q B?

B

along the flux tube.

In our exposition of solar wind streams along flux tubes that spiral on

helioapexed poloidal cones, the equation of poloidal motion will not be used.

The equation of radial motion can be written as

r du (u,+cr sin 6)2 + KT(2 rdT GM 0 + -r JeB (17)

Urdr Ur KT

in which Je = -V-d(rB )/d r is the poloidal current if the azimuthal gradient

of Br is negligible. The equation of longitudinal motion

du 2 dq) dp d (18)

can be combined with equation (15) to yield the entropy equation

d 3KT + p -. 1 - A. (19)
d d = --d' OU

which can also be obtained directly from equation (12).
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3. Solutions for Spiraling Solar Wind Streams

In the far region of the interplanetary space, the flux tubes are likely

to spiral on poloidal cones (viz, 0 = const.). This means B0 = 0. On the V

other hand, the magnetic field has an azimuthal component

B )a 4-n'.0 r2 sin2 O (20)Bi= r sin e

This follows from equation (16) in conjunction with the kinematic relationship

ui = B0 u/B implied by the alignment of the stream tube with the flux tube.

In the absence of stream-stream interaction, the cross-sectional area of a

flux tube will have its radial projection varying as r2. Accordingly, the

invariance of the magnetic flux along a flux tube takes the form

= r B kos X (21)

in which the spiral angle of the flux tube

.= a :tan ¢(22)
B

is the angle between its axis and the heliocentric radial line. Next, in view

of the kinematic relationship ur  B u/B, it is seen that r2pur is equal to

%. Upon the use of dr/df = cos X and p =MYr2u r, equation (19) can be

written as



[9

d 1 2(2 + X) 0 (23)-r K _ f F. 2 dr r

in which A (r/ur)(dur/dr) is given by equation (17).

Now specification of p, u, T, B, and X at an interplanetary point with

radial distance r will determine the geometry of a spiraling flux tube passing

through that point as well as the physical profile of the solar wind stream in

that flux tube. The heat flux must take on a certain compatible value deter-

mined by the above-mentioned specified values, so that the pressure will

vanish at infinity. Equations (13) and (23) constitute a second-order system

of differential equations for T and Q. It determines two functional combina-

tions which are invariant along the flux tube. One of these two invariants

must take on a certain value (say, zero), thus providing the compatibility

constraint which will determine the heat flux. The other invariant can take

on an arbitrary value, say, K-. We do not know the mathematical expressions

nor the physical meaningof these two obscure invariants. At any rate, the

six invariants (namely,f,,1., 7, 'K, and zero) will determine the six varia-

b' - (namely, p, u, T, B, X and Q) as functions of r. The difficulty lies in

the judicious determination of the compatible heat flux in terms of the observed

values of the remaining five quantities. Since this is a two-point boundary

value problem, trial-and-error method of numerical shooting in conjunction

with numerical integration of differential equations is rather tedious. In

the next section we shall obtain analytic expressions which are satisfactory

approximations for the compatibility constraint and the invariant t.
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4. An Approximate Solution in Explicit Expressions

We have formulated a deterministic set of equations, whose solutions,

satisfying the condition of vanishing pressure at infinity, will describe

solar wind streams in the interplanetary space. The solutions of the differen-

tial equations (13) and (23) can be visualized as curves in the (r, T, Q)

space. Not all solutions are physically admissible. The admissible solution

should have the property that T - 0 as r ->c. Some properties of the admissible

solutions are clear from the invariants along a flux tube. First, the radial

velocity attains a finite value at large heliocentric distances. This follows

from the fact that its kinetic energy is converted from the finite amount of

thermal energy and heating flux. Thus, the dimensionless ratio X diminishes

to zero. In fact, most of the radial acceleration takes place during the

transonic transition which occurs in the corona before the solar wind reaches

the interplanetary space. Secondly, the spiral angle of the flux tube

approaches 900 at infinity. This follows from the variations that the radial

field decreases like r-2 whereas the azimuthal field decreases only like r-1.

Indeed, X is rather large and increases very slowly in the interplanetary

space. This can be seen from the equation

tan Y, r sin .6 M~ rM mc js
tan 'k r, Vfr r2 sin'e - WfAlr u Cos -(24)

0

which indicates X = artan(k r/r 0)tan X 0 ) in the interplanetary space where the

radial velocity does not change much. We use subscript "o" for the interplan-

etary "base" at which data are specified.



It is reasonable to analyze the problem by approximating the slowly

varying A and X in equation (23) with constants. The approximating valuesX

and X may be chosen as A 0and X0at the specified interplanetary point. In

terms of the three similarity variables (Yeh, 1971)

R=~ijr ,(25)

X -r T),(26)

X (27)

the approximated equation (23) can be split into two coupled first-order

differential equations

dIR _dX dY
_V (28)R X TY Y + (2 +)X" 27

The left-hand equation is also a rewriting of equation (13). The right-hand

equation does not involve R. This means that the two-parameter family of

solution curves in the (R, X, Y) space have a one-parameter family of projec-

tions in the (X,Y) plane. Among the latter family is a special curve which

represents the constraint between Q and T as well as r necessary for the

pressure to become vanishing at infinity. Other solutions of the right-hand

equation are unphysical, for the subsequent solutions of the left-hand equation

have the defects that either the temperature or the heat flux becomes negative

eventually. On the other hand, the left-hand equation is linear in R. This

means that various solutions differ only in scaling. We have accounted for

the scaling by the inclusion of the arbitrary constant d in the definition of

R in equation (26).
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It turns out that the physically meaningful solutions of equations (28)

are represented by three curves, which emanate from the critical point RC = 0,

xC .35 + ,Yc + -I- X of the differential equation (28) and

recede to R =. The one with X > XC, Y > YC has the asymptotic property that

T diminishes like r"21 7 for large r (Parker, 1964). The one with X = XC ,

Y = YC has T diminishing like r-21 5 (Whang and Chang, 1965). The one with

X < XC, Y < YC has T diminishing like r "413 (Durney, 1971). These three

curves will be collectively denoted by X = h(R), Y = k(R). Their other projec-

tions will be denoted by Y = f(X) and R = g(X). Clearly, h(R) and g(X) are

inverse functions to each other, whereas k(R) is the composite function of f(X)

by h(R). Each of these four functions has three branches (see Figure 1).

The function f(X) has the following power series representations

14 -., -,l - n l
+ ' for O<X< X

f(X) = YC for X = X (29)

D + x-n
x +n for XXo

The coefficients are given by the recurrence formulas (with f + X,
0

+= 2 + 7I.
f , fl

n~ f -- i + 7 f- f-
n n-1 -

n--

+ 7 + 4 +

n In + 7 n- 1  f1n-

Ad

L o ulmh n a umun m ~ m,~al ~ m
llil in , ,, --
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The two branches approach X = Xc, Y = Yc with the slope

df =  1 + 5X+ (2801 + 3410 i+ 1025 2)/

dX 175 + 125k,
x=x

The function g(X) has the following power series representations.

X (1 + n xfn) for 0 <X<X

o(X) = indefinite for X = X (30)

rip+" n)f, ,X
- +

The coefficients are given by the recurrence formulas (with go = 1, go = 1):

(i4 + i0 )n i== "n- -+I
t=O 7 4~~f-

n-i

Il --- 1t 1=0 \ / -

The two branches approach R 0, X = XC in a manner like IX- X with the

exponent

1

df

being greater than unity.

The function h(R) has the following power series representations
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(R-(7+5 )/3 + - R-n(7+5 )/31 for X<X (31)

h(R) = for X = X

2/7 35 245#-2/7 OR +]
+ -6 + _ hn R- 1  for X XC

with the coefficients given by the recurrence formula (with h- 1, h+  1,
0 0

35 + 245h*= 3Z + -

n-1

hn Id I+ 10+i0A)(2n+3i)(7+5X) +41__ 2 5 -x h hn~~

h+ = n(n7 (6n-61-35 ) hi + (2n+3i)(2i+5) h h _

n(2n+7) n-1 J

The function k(R) has the following power series representations:

- 4  00 kn R -n(7+5x)i 3 for Y< YR-7+ + n C
L n=1

k(R)- Y for Y=Y (32)

2(1R 2 k+ Rn/7 for Y >y

R 7 n=f n c

with the coefficients given by the recurrence formulas (with k 4 + 2 ,

+  2

kn  --L [n(7 + 5) + (10 + ,;h

k -f(.In + 5 )h
n -n
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Now, in view of equation (27), the compatible heat flux is given by

Q K Q u T f( T5 /2 Os(33)
K rpu c

and in view of equation (25), the additional invariant is given by

1 C T 5 /2
S (Cos (34)

r K r~u

With these results, the admissible solution can be calculated in terms of ro,

po, uo, To, B., and Xo in the following algorithm. First, determine the

compatible heat flux:

C ToX = - -. ....... Cos .
oZ Kr 0 uo

Y = f(X)

Q = K PouoT Y

Next, evaluate the invariants:

Do Uo

B0

=0 -2 1l rosin8 2Ma + 5KT29 +0

B6pu 1'2 GM 7 0B (uo - 2 rooB
0

4" =r sin e f-I-(u sin + r sin ) - o' sin

r Bf, cos

(76~ r (X)
0

Then calculate the physical quantities at the heliocentric distance r of

interest:
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R =Cr

K 2() /5

u = 212 + 2u 2 r2 sin2e + --- G- 5KT - KT k(R) 1/2

= arctan t' tanro

B
r .OsU

u4
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5. Two-point Relationship in Corotating Streams

Now we consider a corotating solar wind stream in the equatorial plane

(viz, 0 = 900). In the rest frame, this spiraling flux tube rotates at the

angular velocity Q = 3600/27 days. Let t be the instant when this corotatinge

stream sweeps through Venus. At that time, the earth is azimuthally ahead of

Venus by an azimuthal angle given by hE - IV. We want to know the later

instant tE when the same stream will sweep through the earth. The cross-

section (denoted by E' in Figure 2) of the corotating stream that sweeps

through the earth is slightly azimuthally behind the cross-section that sweeps

through Venus. The azimuthal angle between these two cross-sections, one has

the heliocentric distance rV = 0.72 AU and the other rE = 1.0 AU is

tan(_-)
(r - rV ) , (35)

V E rV E V

in which XV is the spiral angle of the flux tube at the heliocentric distance

rV. Equation (35) is obtained from the differential equation rd /dr = B /Br

for the field line together with the equation B /Br z (r/rV ) tan XV along the

flux tube. Since the earth is revolving aroun the sun at the angular velocity

DE = 3600/365 days, the time delay tE - tV is equal to (OE -OE,)/(O. E.

Hence

eEOV r E- rv tan(-YV (36)

t t 4. _. .( 6
E V 11-E E rv

Note that XV is negative, for angles are reckoned positive in the eastward

direction of the solar rotation.
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Next, suppose that the observed solar wind data at Venus (as measured by

the space probe Pioneer-Venus) have the mass density pV, the bulk speed UV,

the temperature TV, the magnetic strength BV and the spiral angle xV . From

the transformation U = u cos X, U = u sin X + Q r between the flow velocity

U in the rest frame and the flow velocity u in the corotating frame, the flow

speed in the corotating frame is given by

U (U; : r -AV + fl r V sin(_Y . (37)

Using the algorithm described in the previous section, we can calculate the

mass density PE'' the flow speed uE,, the temperature TE,, the magnetic

strength BE, and the spiral angle XE, at the heliocentric distance rE. The

corresponding bulk speed in the rest frame is

lu . (38)

These extrapolation values are to be compared with the observation values of

the solar wind at the earth at the instant tE given by equation (36). The

results will indicate to what extent, the apparent temporal variation in the

interplanetary space is due to the effect of corotation. From such a study,

we can infer the time scale in which the temporal effect due to the intrinsic

short-period changes of coronal condition may be neglected. In the 'Wo)lowing seu-

tion we shall present the results obtained from the comparison of the Pioneer-

Venus data with the data of earth-bound satellite , based on the model described

in this se'ti,)n.



6. Correlation Features in Observational Data

We use observational data of Pioneer 12 and IMP 8 for the period from

January 1980 to June 1980 to examine the two-point correlation features due

to corotation of the solar wind streams in the interplanetary space. During

this period, Venus to which Pioneer 12 is bound was azimuthally behind the

Earth to which IMP 8 is bound. The Earth-Sun-Venus angle decreased from 1030

on January 1, 1980 to 0 0 on June 15, 1980. Subsequently, Venus became

azimuthally ahead of the Earth, by 120 0 on December 31, 1980. An azimuthal

separation of 1-P amounts to one day for the delay time of the rotating stream

tubes.

Typical values of solar wind speed, density and temperature observed

by Pioneer 12 were published in digital format in Solar-Geophysical Data,

Part I (NOAA, 1980), whereas variations of solar wind speed, density and

temperature observed by IMP 8 were published in graphic format in Solar-

Geophysical Data, Part 11 (NOAA, 1980). Each triplet of data from Pioneer 12

represents the property of a solar wind stream at 0.7 AU. We use equations

in section ~, ith ,.- ,,to calculate the values of speed, density and

temperature at 1.0 AU. We also calculate the delay time, using Equation (--o).

The extrapolated values of speed, density and temperature at delayed times

were plotted as dots in F i.-u - - ? The segmental curves in the

figures display the observational data of IMP 8. Coincidence of the three

* dots representing the extrapolated triplet with the three curves would mean

perfect correlation. Since the data by IMP 8 were not in digital format,

the correlation feature is to be examined visually rather than to be assessed

in quantitative manner.
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7. Discussions and Conclusions

In this study we have examined the data from Pioneer 12 and IMP 8 to

discern the corotational correlations between the two sets of data observed

at different regions of the interplanetary space. A high correlation is

expected when the solar wind is in a quasi-steady state. We compare

theoretically extrapolated values from Pioneer 12 data with corresponding

IMP 8 data. The correspondence is determined by the assumption that solar

wind streams corotate with the Sun. The extrapolation is done through a

suitable modeling for solar wind streams in the far region of the inter-

planetary space.

The data from Pioneer 12 and IMP 8 as published in Solar-Geophysical

Data (NOAA, 198o ) consist of the three values of the flow velocity,

particle density and temperature for the proton species, together with the

azimuthal separation angle between the Earth and Venus, at selected times.

We use the standard one-fluid solar wind equations with thermal conduction

to extrapolate the velocity, density and temperature at 1.0 AU from the

observed values at 0.7 AU.

The model we have used for solar wind streams is capable of accounting

for correlation features arising from corotation of solar wind streams alone.

There are many physical factors in the model whose simple-minded treatment

cause deviations from good correlation between theoretically derived

quantities and observationally obtained quantities. Among them are non-

steady coronal conditions and non-radial streamlines. Each of these two

is beyond the present state of arts for remedy. This is so not only because

of the mathematical complexities in any time-varying or global treatment,

but also because of the observational lack of structured coronal conditions.

Generally speaking, better correlation between interplanetary



points is achieved when the azimuthal separation between them is small.

This is expected, for the simple reason that less temporal changes in the

coronal condition enter the solar wind streams in a shorter duration of

delay time.

In the realistic interplanetary space, temporal changes are always

present. It seems plausible to regard these temporal changes as a series

of quasi-steady states. If so, the relevant question is: what is the time

scale over which the averages behave like quasi-steady quantities. For

the purpose of a prediction scheme, the time scale should increase as the

azimuthal separation angle increases. When the time scale exceeds the

characteristic time of the magnetospheric phenomena of interest, predic-

tion no longer makes sense. To assess the time scale of acceptable

correlation, it seems worthwhile to perform correlation study based on

temporally averaged, with chosen time scales, data. The present study uses

instantaneous values of the interplanetary conditions at Venus and at the

Earth. With the efficient methodology and numerical code developed in this

study, the suggested study should be an accomplishable task.
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Figure Captions

Figure 1. Plots of the functions f(X) and g(X). They describe the (Y,X)
projection and the (R,X) projection of the critical solution of equa-
tion (28) with 0 = .

Figure 2. A corotating solar wind stream in the equatorial plane. The
stream flows along a flux tube emanating from the sun (denoted by S).
It sweeps through Venus (denoted by V) at time tV and through the earth
(denoted by E) at a later time tE. The flux tube has a sriral angle X
at the heliocentric distance rV of Venus. The cross-section (denoted NY
E') sweeping through the e arth has the heliocentric distance rE of the
eartu and is behind the cross-section sweeping through Venus by an azi-
muthal angle E The earth is ahead of Venus by an azimuthal angle

O- *V at time tV.

Figure3. Time-sequence plots of the interplanetary conditions, indicated
by particle density, flow speed and temperature, of the Earth. Tl.O dots
depict thetheoretical values extraplolated from the observational data of
Pioneer 12, whereas the curves depict the observational data of IMP 8.
The Earth-Sun-Venus angle is indicated on the top of panel.
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