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1. Introduction

Many magnetospheric phenomena of the Earth are directly controlled by the
solar wind which flows past the Earth. Thus, accurate prediction of the
interplanetary conditions of the Earth is a prerequisite for a workable fore-
cast of the magnetospheric dynamics of the Earth.

The interplanetary space is permeated by the solar wind which is con-
tinually emitted from the Sun. Hence, the interplanetary conditions evolve
as the coronal conditions undergo changes. Although the solar wind is causally
determined by what is present at the solar surface, the relationship between
the interplanetary conditions of the Earth and the coronal conditions of the
Sun is too complicated to allow a workable prediction of the former on the
basis of a structureless description of the latter. The complication results
from the spatial variations as well as the temporal evolutions over the solar
surface. Evidently, the relationship between the conditions at two inter-
planetary points Tlinked by a solar wind stream is much simpler. This is so,
for in the far region of the interplanetary space energy deposition by means
of processes other than thermal conduction is insignificant. Moreover, most
of the stream-stream interactions take place before the solar wind reaches
the far region. Therefore, prediction of conditions at one interplanetary
point on the basis of conditions at another interplanetary poirt i more
1ikely to be workable.

As a part of STIP (Studies of Travelling Interplanetary Phenomena)
program, we undertake a two-point correlation study to explore the feasibility
of a prediction scheme. First, we elucidate the theoretical solutions that
represent the solar wind streams in the far region of the interplanetary
space. Then, we present a useful approximation for the explicit expressions

!
of these solutions. Such an approximation provides an efficient algorithm




for routine calculation of the solar wind streams. Finally, we use the
observational data from the Venus-bound space probe Pioneer 12 and the Earth-
bound satellite IMP 8, in conjunction with the solutions from theoretical
model1ling, to discern the two-point correlation in the interplanetary condi-
tions. Such an assessment, aimed to ascertain the feasibility of the
prediction of the Earth's interplanetary conditions, is possible with the
recent availability of simultaneous data at 0.7 AU (where Pioneer 12 was
inserted into Venus' orbit in December 1978) and 1.0 AU (where IMP 8 was

launched into a geocentric orbit in October 1973).
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Governing Equations of Solar Wind Streams

As a starting point, we shall write the magnetohydrodynamic equations in

a rotating frame of reference.

(r, 6, ¢) which rotates at a constant angular velocity 3= Ion’ the temporal

Referring to a heliocentered spherical coordinates

and spatial variations of the physical quantities (viz, mass density p,

temperature T, thermal pressure p, heating flux 6, flow velocity 3, magnetic

field §, electric field f, and current density 3) in rationalized units are

governed by the following equations:

2
2

tﬁ+7-pﬁ =0 R

GM

T+ (d-v)d + 20xd - 5?@'} = -Vp + pv—r-9+

Jx B
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(5)




in conjunction with the following relational equations

p=KpT , (6)
F=ploxd (7)
£=--8xE |, (8)
a=____("“;§>'% . 9

The vector 3 is the axial distance from the solar axis of rotation (viz.

q = r sin 6). The constants G, My, K and p are the gravitational constant,

the solar mass, the gas constant (viz, Boltzmann constant divided by average

mass of particles) and the magnetic permeability. The thermal conductivity

k = ¢ 152 depends on the temperature, with the coefficient C essentially constant.
We remark that the thermodynamic quantities p, T, p, Q as well as

the magnetic field B and current density J are invariant in the coordinate

transformation. In the rest frame the flow velocity is u o+ Qeqi¢ and the

electric field is E - Qoqi¢ X ﬁ, hence the kinetic energy is

%32 +tuQq+ %quz and the Poynting flux is

= o

-$>

p ExB+ (Qoqp'lﬁz) 1 - (Qoqu‘lB )B. The latter is clear if we recall that

0 ¢

in a perfectly conducting medium the Poynting flux

e - o1 - ) i - Ly 1 -
ExE = ' n Jﬁ’) q -+ {.%p 237 o mm |- & (10)




consists of the convected flux of magnetic energy and the work done by the
magnetic stress (if stands for the unit dyadic). Moreover, although spatial
derivatives are invariant in the coordinate transformation, the temporal
derivative in the rest frame is 3/0t - Qoa/8¢, hence an azimuthal variation im

the rotating frame will appear as a temporal variation in the rest frame.

It is instructive to write the equation of azimuthal motion in the conser-

vation form for angular momentum

-7 (11)

The term a/at(pquo) + V'(quzﬂo) accounts for the torque 2ona . @ exerted by
the Coriolis force and the term 9/9¢9 p accounts for the torque exerted by the

thermal pressure. Clearly, qp(U, + qQO) is the material angular momentum in

o

the rest frame, and (q?p'léz)f¢ - (p-1gB,)B represents the flux of magnetic

0

angular momentum. Also, it is instructive to write the equation of energy

conservation in the form

QT T e P T (12)
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which expresses the increase of entropy S = K 1og(T3/2/p) by the heating

fluv.
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Now we consider a solar wind stream that appears time-independent and
hydromagnetically aligned (i.e., the flow velocity is parallel to the magnetic
field) in the rotating frame. Since, by equation (8), the electric field is
zero, equation (4) is satisfied. Let £ be a length variable that increases
outward (viz. away from the sun) along the axis of a flux tube. Hence, § = iTRB
(with the positive sign if the field line's polarity is outward and the negative

. . . > > > N
sign if inward), u = lu and 6 = 12Q. Equation (9) means that the heat flux

conducting along the flux tube has the magnitude
g=-cr7 T (13)
al
By virtue of equation (5), the field strength B varies inversely with the

cross-sectional area of the flux tube. Accordingly, equation (1) yields the

invariance of the mass efflux

m = B2 (14)

12 Sy SMo_ 10202
L it S A (1)
B

along the flux tube. Furthermore, if the azimuthal gradient of the hydromag-
netic pressure is negligible, then equation (11) yields the invariance of the

hydromagnetic angular momentum efflux

-




¢ P+ qau-planp
B

along the flux tube.

(16)

In our exposition of solar wind streams along flux tubes that spiral on

helioapexed poloidal cones, the equation of poloidal motion will not be used.

The equation of radial motion can be written as

. . 2 rdir _ GM r
£_§gr =(u¢+(br sin 6) + KT(2 - NF.? +'_'J6B@

u,dr u.= = KT

(17)

in which Jg = -p‘lr‘ld(rB¢)/dr is the poloidal current if the azimuthal gradient

of Br is negligible. The equation of longitudinal motion

d Gilo

di r

/ 8u _,2 dq) _ _dp
ougy =\, agF )T -a to

can be combined with equation (15) to yield the entropy equation

d 3 41 __.449
d’ 2KT TP @° " Fou °?

J]

which can also be obtained directly from equation (12).

(18)

(19)
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3. Solutions for Spiraling Solar Wind Streams
In the far region of the interplapetary space, the flux tubes are likely
to spiral on poloidal cones (viz, 8 = const.). This means Be = 0. On the
other hand, the magnetic field has an azimuthal component
2. 2
B, = o _"f’ 'mir sin 6 . (20)
b r sin 8 ¢y
f

This follows from equation (16) in conjunction with the kinematic relationship
ug = Be u/B implied by the alignment of the stream tube with the flux tube.
In the absence of stream-stream interaction, the cross-sectional area of a
flux tube will have its radial projection varying as r2. Accordingly, the
invariance of the magnetic flux along a flux tube takes the form

F =r Beos X (21)
in which the spiral angle of the flux tube ]

B,
A, = arctan —2 (22)
N
’

is the angle between its axis and the heliocentric radial line. Next, in view
of the kinematic relationship u = Br u/B, it is seen that rzpur is equal to g

7.2 Upon the use of dr/df = cos ¥ and p =7n37r2ur, equation (19) can be

written as




3 4T T _
a4 _Q-gﬁ;-m+xy;-o , (23)

d fl_cos%xrz T5/2 dT
Kmz dr

in which A = (r/ur)(dur/dr) is given by equation (17).

Now specification of p, u, T, B, and X at an interplanetary point with
radial distance r will determine the geometry of a spiraling flux tube passing
through that point as well as the physical profile of the solar wind stream in
that flux tube. The heat flux must take on a certain compatible value deter-
mined by the above-mentioned specified values, so that the pressure will
vanish at infinity. Equations (13) and (23) constitute a second-order system
of differential equations for T and Q. It determines two functional combina-
tions which are invariant along the flux tube. One of these two invariants
must take on a certain value (say, zero), thus providing the compatibility
constraint which will determine the heat flux. The other invariant can take
on an arbitrary value, say,’f. We do not know the mathematical expressions
nor the physical meanings of these two obscure invariants. At any rate, the
six invariants (namely,? ., &,L, 7, ., and zero) will determine the six varia-
b’ s (namely, p, u, T, B, X and Q) as functions of r. The difficulty lies in
the judicious determination of the compatible heat flux in terms of the observed
values of the remaining five quantities. Since this is a two-point boundary
value problem, trial-and-error method of numerical shooting in conjunction
with numerical integration of differential equations is rather tedious. In
the next section we shall obtain analytic expressions which are satisfactory

approximations for the compatibility constraint and the invariant .

e+ - o et
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4. An Approximate Solution in Explicit Expressions

We have formulated a deterministic set of equations, whose solutions,
satisfying the condition of vanishing pressure at infinity, will describe
solar wind streams in the interplanetary space. The solutions of the differen-
tial equations (13) and (23) can be visualized as curves in the (r, T, Q)
space. Not all solutions are physically admissible. The admissible solution
should have the property that T » 0 as r » ®. Some properties of the admissible
solutions are clear from the invariants along a flux tube. First, the radial
velocity attains a finite value at large heliocentric distances. This follows
from the fact that its kinetic energy is converted from the finite amouant of
thermal energy and heating flux. Thus, the dimensionless ratio A diminishes
to zero. In fact, most of the radial acceleration takes place during the
transonic transition which occurs in the corona before the solar wind reaches
the interplanetary space. Secondly, the spiral angle of the flux tube
approaches 90° at infinity. This follows from the variations that the radial
field decreases like r 2 whereas the azimuthal field decreases only like r-!.

Indeed, ¥ is rather large and increases very slowly in the interplanetary

space. This can be seen from the equation

tan 5, _ r m L re sinle-,(, ,Umré u_ cos k- 7
tan %5 o 2 sinle _ P 24 ’ (24)
1”,3777(191'o sin“g - £ PWMr u cosx - F

which indicates ¥ » amtan(\r/ro)tan xo) in the interplanetary space where the
radial velocity does not change much. We use subscript "o" for the interplan-

etary "base'" at which data are specified.
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It is reasonable to analyze the problem by approximating the slowly
varying A and X in equation (23) with constants. The approximating values A
and X may be chosen as Ao and X, at the specified interplanetary point. In

terms of the three similarity variables (Yeh, 1971)

R=Cr , (25)
3
C Cos ) PR
X = — - 2p - (26)
Km7 =T ?
- 2
yobImrI (27)
| TR T

the approximated equation (23) can be split into two coupled first-order

differential equations

dR _ dX dy
@y = : - -
R X-gy %.(Y+.5.)-(2+7\)

(28)

The left-hand equation is also a rewriting of equation (13). The right-hand
equation does not involve R. This means that the two-parameter family of
solution curves in the (R, X, Y) space have a one-parameter family of projec-
tions in the (X,Y) plane. Among the latter family is a special curve which
represents the constraint between Q and T as well as r necessary for the
pressure to become vanishing at infinity. Other solutions of the right-hand
equation are unphysical, for the subsequent solutions of the left-hand equation
have the defects that either the temperature or the heat flux becomes negative
eventually. On the other hand, the left-hand equation is linear in R. This
means that various solutions differ only in scaling. We have accounted for
the scaling by the inclusion of the arbitrary constant (¢ in the definition of

R in equation (26).
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It turns out that the physically meaningful solutions of equations (28)
are represented by three curves, which emanate from the critical point RC =0,
32

XC =7 t -%2 X, Yc = -Z + %X of the differential equation (28) and

recede to R = ®w. The one with X > XC, Y > YC has the asymptotic property that
T diminishes like r-2/7 for large r (Parker, 1964). The one with X = X,,

Y = Y, has T diminishing like r-2/5 (Whang and Chang, 1965). The oae with

X < XC’ Y < Yc has T diminishing like r-4/3 (Durney, 1971). These three

curves will be collectively denoted by X = h(R), Y = k(R). Their other projec-
tions will be denoted by Y = £(X) and R = g(X). Clearly, h(R) and g(X) are

inverse functions to each other, whereas k(R) is the composite function of f(X)

by h(R). Each of these four functions bas three branches (see Figure 1).

The function £(X) has the following power series representations

@® 1

b2 S -
e - + = por . q
X 3 37 é;i fn X : for 0<«X«< XC
£(X) = Y, for X = X_ (29)
L2 1l 7.l L S o+ en
Xigalge L)« £y £y X for X<Xen
The coefficients are given by the recurrence formulas (with f; = %} + f- A,
+ _ 2 + _ 11 T 5y B
fO = 7 ’ fl - h + a A).
- ) n=1 o3
_ - Q22 51 + 7 o= o=
R S PR S
\ —n l. (3% +
1+= T - ;€.1+ ff?fti J
n ‘n + 7 n= S I




rr

T The two branches approach X =X , Y = Yc with the slope

c’
1+ 5A+ (2801 + 34101+ 1025 %)/2
175 + 125 %

ag
dX

X=X
c

The function g(X) has the following power series representations.

/X-3/(7+5;) ( L. Zfi g; Xn)
n=

7(X) =« indefinite

forO<X<XC

for X =X

ﬁ'._n>
e

The coefficients are given by the recurrence formulas (with g; =1, g

n-1 - 2

for < X<

- 15 . - -
of = ———————— ‘—,.+ - 1‘ . .
n-1
21 1/

}
pre
!

exponent

being greater than unity.

The function h(R) has the following power series representations

i MR SR A0+ e Tt

13

(30)

= 1):

The two branches approach R = 0, X = XC in a manner like X - Xci« with the

2




(R'(7+5i)/3 {l + Ef; h; R—n(7+5;)/3] for X< X_
n=
(31)
n(R) = { X, for X = X_
R2/7[ (35 2“5)3 -2/1, h R-2n/7] for X>X,
+

with the coefficients given by the recurrence formula (with h; =1, ho =1,

h: = %% + ggg— A):

Nn=

'_J

. 10+200\ (2n+31)(T+53) +41 +25% o, -
h; h .
<l * 1+ % / 5 i n-l-i

=)
=
I
]
3o
o
i1
-

n-
+ 1 7 =y T 1 . . o+ ]
h, = - ——— 6n-61~353) h + 2:j~(2n+31)(21+5) h, h_ |
n n(2n+7) [E( n-1 - /,5 ron ﬂ
The function k(R) has the following power series representations:
(/AL 250 3 e e vy
'R R 0 | c
L n=
!
k(R) = w Y, for ¥ = Y (32)
!
!
I 2/7 2 -
tR/ { Lik R aV?; for Y>Y
: c

- 2 -
with the coefficients given by the recurrence formulas (with ko = g + 327 A,

+ 2

ko =7 ):
kn=l—[n(7+bx)+(10+b)h
+ L +
Kn=p—‘,}—('"n+5)hn

14
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Now, in view of equation (27), the compatible heat flux is given by

C '1‘5/2

Q = K‘Qqu(E;Eu— cos X) s (33)

and in view of equation (25), the additional invariant is given by

5/2

I cos ) . (34)

- ;\_(C
A BV rou

r

With these results, the admissible solution can be calculated in terms of Lys

Por Uy To’ Bo, and X, in the following algorithm. First, determine the
compatible heat flux:
5/<
< C Ty ' ~
L F o ot cos X s
e K IO\FOU.Q °
Y= 1(xo) R
Q= uTyY .

o) K Po 000

Next, evaluate the invariants:

o, U
;0 0
m—' Bo 2
S u 2 122,02, GM 5 9
5:9___9(_11 -3 O rTsinTe - —2 4 3KT )+ =,
B, phate) 2 0 re 0 B

o

u
L = rg sin e) Po"o

<uo sin %, + Q, r_ sin 6) - p-lBO sinﬁg] R
L o

r cOS
8] Blr XO ’

Co=roax) .
S

(W
n

Then calculate the physical quantities at the heliocentric distance r of

interest:
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R =Cr ’

T - [ﬁ mI_ e@]z/s

C cos“w T
o

i)
i
=
el
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5. Two~point Relationship in Corotating Streams

Now we consider a corotating solar wind' stream in the equatorial plane
(viz, 6 = 90°). 1In the rest frame, this spiraling flux tube rotates at the
angular velocity Qo = 360°/27 days. Let t, be the instant when this corotating
stream sweeps through Venus. At that time, the earth is azimuthally ahead of
Venus by an azimuthal angle given by ¢E - ¢v. We want to know the later
instant ty when the same stream will sweep through the earth. The cross-
section (denoted by E' in Figure 2) of the corotating stream that sweeps
through the earth is slightly azimuthally behind the cross-section that sweeps
through Venus. The azimuthal angle between these two cross-sections, one has

= 0.72 AU and the other r_, = 1.0 AU is

the heliocentric distance r E

v

2 e eme (r_ - r.) s (35)

in which Xy is the spiral angle of the flux tube at the heliocentric distance

r Equation (35) is obtained from the differential equation rd¢/dr = B¢/Br

v

for the field line together with the equation B /Br =~ (r/rv) tan Xy along the

¢

flux tube. Since the earth is revolving aroun the sun at the angular velocity
- <] : - 5 - -

QE = 360°/365 days, the time delay tg -ty is equal to (¢E ¢E,)/(Qo QE)f

Hence

(36)

Note that YX,, is negative, for angles are reckoned positive in the eastward
v P

direction of the solar rotation.
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Next, suppose that the observed solar wind data at Venus (as measured by
the space probe Pioneer-Venus) have the mass density Py> the bulk speed UV’
the temperature Tv, the magnetic strength Bv and the spiral angle Xy From
the transformation Ur = u cos X, U¢ =u sin X + Qer between the flow velocity
U in the rest frame and the flow velocity U in the corotating frame, the flow

speed in the corotating frame is given by

_ 5 SRR N 37
w, = (UV - q vy cos 1v> Q) Ty sin V) . 37)
Using the algorithm described in the previous section, we can calculate the
mass density Pge> the flow speed Up ey the temperature TE" the magnetic
strength BE' and the spiral angle Xg+ at the heliocentric distance re. The
corresponding bulk speed in the rest frame is

U, = R sin K,+ Q' r ')l/m (38)

E <ug <5 g g ‘E' ® "E
These extrapolation values are to be compared with the observation values of

the solar wind at the earth at the instant t_. given by equation (36). The

E
results will indicate to what exten' the apparent temporal variation in the
interplanetary space is due to the effect of corotation. From such a study,

we can infer the time scale in which the temporal effect due to the intrimsic

short-period changes of coronal condition may be neglected. In the rollovwing sec-

tion we shall present the results obtained from the comparison of the Pioneer-
Venus data with the data of earth-bound satellite , based on the model described

in this se:tiun.

-




6. Correlation Features in Observational Data

We use observational data of Pioneer 12 and IMP 8 for the period from
January 1980 to June 1980 to examine the two-point correlation features due
to corotation of the solar wind streams in the interplanetary space. During
this period, Venus to which Pioneer 12 is bound was azimuthally behind the
Earth to which IMP 8 is bound. The Earth-Sun-Venus angle decreased from 103°
on January 1, 1980 to 0% on June 15, 1980. Subsequently, Venus became
azimuthally ahead of the Earth, by 120° on December 31, 1980. An azimuthal
separation of 1P amounts to one day for the delay time of the rotating stream
tubes.

Typical values of solar wind speed, density and temperature observed

by Pioneer 12 were published in digital format in Solar-Geophysical Data,

Part 1 (NOAA, 1980), whereas variations of solar wind speed, density and
temperature observed by IMP 8 were published in graphic format in Solar-

Geophysical Data, Part II (NOAA, 1980). Each triplet of data from Pioneer 12

represents the property of a solar wind stream at 0.7 AU. We use equations

in section +, .ith .= .,to calculate the values of speed, density and
temperature at 1.0 AU. We also calculate the delay time, using Equation (-u).
The extrapolated values of speed, density and temperature at delayed times
were plotted as dots in Ti.u:- 2. The segmental curves in the
figures display the observational data of IMP 8. Coincidence of the three
dots representing the extrapolated triplet with the three curves would mean
perfect correlation. Since the data by IMP 8 were not in digital format,

the correlation feature is to be examined visually rather than to be assessed

in quantitative manner.




7. Discussions and Conclusions

In this study we have examined the data from Pioneer 12 and IMP 8 to
discern the corotational correlations between the two sets of data observed
at different regions of the interplanetary space. A high correlation is
expected when the solar wind is in a quasi-steady state. We compare
theoretically extrapolated values from Pioneer 12 data with corresponding
IMP 8 data. The correspondence is determined by the assumption that solar
wind streams corotate with the Sun. The extrapolation is done through a
suitable modeling for solar wind streams in the far region of the inter-
planetary space.

The data from Pioneer 12 and IMP 8 as published in Solar-Geophysical

Data (NOAA, 1930 ) consist of the three values of the flow velocity,
particle density and temperature for the proton species, together with the
azimuthal separation angle between the Earth and Venus, at selected times.
We use the standard one-fluid solar wind equations with thermal conduction
to extrapolate the velocity, density and temperature at 1.0 AU from the
observed values at 0.7 AU.

The model we have used for solar wind streams is capable of accounting
for correlation features arising from corotation of solar wind streams alone.
There are many physical factors in the model whose simple-minded treatment
cause deviations from good correlation between theoretically derived
quantities and observationally obtained quantities. Among them are non-
steady coronal conditions and non-radial streamlines. Each of these two
is beyond the present state of arts for remedy. This is s0 not only because
of the mathematical complexities in any time-varying or global treatment,
but also because of the observational lack of structured coronal conditions.

Generally speaking, better correlation between interplanetary




points is achieved when the azimuthal separation between them is small.
This is expected, for the simple reason that less temporal changes in the
coronal condition enter the solar wind streams in a shorter duration of
delay time.

In the realistic interplanetary space, temporal changes are always
present. It seems plausible to regard these temporal changes as a series
of quasi-steady states. If so, the relevant question is: what is the time
scale over which the averages behave l1ike quasi-steady quantities. For
the purpose of a prediction scheme, the time scale should increase as the
azimuthal separation angle increases. When the time scale exceeds the
characteristic time of the magnetospheric phenomena of interest, predic-
tion no longer makes sense. To assess the time scale of acceptable
correlation, it seems worthwhile to perform correlation study based on
temporally averaged, with chosen time scales, data. The present study uses
instantaneous values of the interplanetary conditions at Venus and at the
Earth. With the efficient methodology and numerical code developed in this

study, the suggested study should be an accomplishable task.
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Figure Captions

Figure 1. Plots of the functions f(X) and g(X). They describe the (Y,X)
projection and the (R,X) projection of the critical solution of equa-
tion (28) with A = 0.

Figure 2. A corotating solar wind stream in the equatorial plane. The

stream flows along a flux tube emanating from the sun (denoted by S). *
It sweeps through Venus (denoted by V) at time t_, and through the earth

(denoted by E) at a later time . The flux tube has a spiral angle ¥

at the heliocentric distance r,, of Venus. The cross-section (denoted by

E') sweeping through the earth has the heliocentric distance r_ of the

€artu and is behind the cross-section sweeping through Venus by an azi-~

muthal angle ¢V - ¢E" The earth is ahead of Venus by an azimuthal angle

¢E - ¢V at time tv.

Figure3. Time-sequence plots of the interplanetary conditions, indicated
by particle density, flow speed and temperature, of the Earth. Ti.> dots
depict thetheoretical values extraplolated from the observational data of
Pioneer 12, whereas the curves depict the observational data of IMP 8.
The Earth-Sun-Venus angle is indicated on the top of panel.
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