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i 1. Introduction

Consider the evaluation of ‘he product ol n-1 mairices

M:MIXMZX---an_l n
where Mi is a w, X Wi matrix, Since matrix multiplication satisfies )
‘:‘ f the associative law, the final result M in (1) is the same for all orders

of multiplying the matrices, However, the order of multiplication

JEPTIE T

greatly affects the total number of operations to evaluate M. The
- problem is to find an‘optimum order of multiplying the matrices such ]
that the total number of operations is minimized. Here, we assume that :
the number of operations to mulliply a pxq matrix by a q Xr matrix {
is pqr, :
In [1][7] , a dynamic programming algorithm is used to find an
optimum order. The algorithm needs O(n3) time and O(nz) space. In[2],
Chandra proposed a heuristic algorithm to find an order of computation which
requires no more than ZTO operations where T0 is the total number of opera-
tions to evaluate (1) in an optimum order., This heuristic algorithm needs ]
, only O(n) time. Chin [3] proposed an improved heuristic algorithm to give an
order of computation which requires no more than 1. 25 To . This improved
heuristic algorithm also needs only O(n) time,
In this paper we first transform the matrix chain product problem into

a problem in graph theory - the problem of partitioning a convex polygon into

non-intersecting triangles, see [9](10}J(11]{12], then we state several theo-

rems about the optimum partitioning problem. Based on these theorems, an

. O(n log n) algorithm for finding an optimum partition is developed.

2




7. 2. Tartitioning a convex polygon

Given an n-sided convex polygon, such as the hexagon shown in

Fig. 1, the number of ways to partition the polygon into (n-2) triangles

by non-fntersecting diagonals is the Catalan numbers (see for example,
7‘» : Gould [8]). Thus, there are 2 ways to partition a convex quadrilateral, !
:‘.‘,. 5 ways to partition a convex pentagon, and 14 ways to partition a convex
hexagon. j
k
. Let every vertex Vi of the polygon have a positive weight w. . We i

can define the cost of a given partition as follows: The cost of a triangle
is the product of the weights of the three vertices, and the cost of parti-
‘- tioning a polygon is the sum of the costs of all its triangles. For example,

the cost of the partition of the hexagon in Fig. 1 is

W W,W g + W, Waw, + w,ow we tw,wow, . (2)

374 4756
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If we erase the diagonal from \'3 to V6 and replace it by the diaponal

from Vl to V4 , then the cost of the new partition will be

WyWWa H W WaW b W WWe F W Ve (3)

We will prove that an order of multiplying (n-1) matrices corre-
sponds to a partition of a.convex polygon with n sides. The cost of the
partition is the total number. of operations needed in multiplying the
matrices, For brevity, we shall use n-gon to mean a convex polygon
with n sides, and the partition of an n-gon to mean the partitioning of an
n-gon into (n-2) non-intersecting triangles.

For any n-gon, one side of the n-gon will be considered to be
its base, and will usually be drawn horizontally at the bottom such as

the side V_ -V, in Fig. 1, This side will be called the base, all other

1 6

sides are considered in a clockwise way, Thus, V l-VZ is the first

side, V -V3 the second side,...,and VS-V6 the fifth side,

2
The first side represents the first matrix in the matrix chain and
the base represents the final result M in (1). The dimensions of a matrix
are the two weights associated with the two end vertices of the :qi(lc. Since
the adjacent matrices are compatible, the dimensions W Xw,, W, X W,
cea W XWn can be written inside the vertices as Wi Woreen s W The
diagonals are the partial products. A partition of an n-gon corresponds

to an alphabetic trce of n-1 leaves or the parenthesis problem of n-1

symbols (see, for example, Gardner [6)). 1t is easy to sce the one-to-

one correspondence between the multiplication of n-1 matrices to either
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the alphabetic binary tree or the parcnthesis problem of n-1 symbols, ,
lHHere, we establish the correspondcnce between the matrix-chain product

and the partition of a convex polygon directly,

Lemma 1., Any order of multiplying n-1 matrices corresponds to a

partition of an n-gon,

Proof. We shall use induction on the number of matrices. For two
matrices of dimensions le Wor WoX W, there is only one way of multi-
plication, this corresponds to a triangle where no further partition is
required, The total number of operations in multiplication is W W W
the product of the three weights of the.vertices. The resulting matrix has
dimension w, ped Wa For three matrices, the two orders of multiplication
(MIXMZ) X M3 and M] X(MZX M3) correspond to the two ways of parti-
tioning a 4-gon, Assume that this lemma is true for k matrices where

k € n-2, and we now consider n-1 matrices. The n-gon is shown in

Fig. 2.




= Let the order of multiplication be represented by

A M= (MIXMZX'“XMp-l)x(Mpx“'XMn-l)

5 i.e,, the final matrix is obtained by multiplying a matrix of dimension

E ‘ (w1><wp) and a matrix of dimension (wpan)' Then in the partition of the

é n-gon, we let the triangle with vertices V.l and Vn have the third vertex Vp .

The polygon Vl-VZ- .o -Vp is a convex polygon of p sides with base Vl-Vp

. and its partition corresponds to an order of multiplying matrices Ml’ e, Mp-l’

E-" giving a matrix of dimension w, X wp. Similarly, the partition of the polygon

; Vp-VpH- ces -Vn with base Vp-Vn corresponds to an order of multiplying

‘ matrices Mp’ ey Mn 1 giving a matrix of dimension prwn. Hence the

a triangle VIV V  with base Vl-Vn represents the multiplication of the two ;
pn

=

;’ partial products, giving the final matrix of dimension Wy XW . | }

5

Lemma 2, The minimum number of operations to evaluate the following ;

matrix chain products are identical.

MIXMZX---an

M XM, X .+ss0eXM X M
n 1 n

e P

1
- MZKM3X )(Mn_lxlvn

; where M, has dimension w, X w, and w = w.. Note that in the
i i ikl ntl 1

o e

first matrix chain, the resulting matrix is of dimension w, by W In

1
I . " the last matrix chain, the resulting matrix is of dimension w, by w, .

! But in all the cases, the total numbher of operations in the optimum orders

of multiplication is the same,

.




Proof. The cyclic permutations of the n-1 matrices all correspond to
the same n-gon and thus have the same optinnnm partitions., W

(This Lemma was obtained independently in [ 4] with a fong proof,)

FFrom now on, we shall concentrate cnly on the partitioning
R problem. .
The diagonals inside the polygon are called arcs. Thus, one

E - easily verifies inductively that every partition consists of n-2 triangles

formed by n-3 arcs and n sides.
b In a partition of an n-gon, the degree of a vertex is the number i

of arcs incident on the vertex plus two (since there are two sides

incident on every vertex), ~

Lémma 3. In any partition of an n-gon, n 2 4, there are at least two
triangles, each having a vertex of degree two. (For example, in Fig, 1, the
triangle VIVZV3 has vertex V2 with degree 2 and the triangle V4V5V6 has

vertex V5 with degree 2.) (See also {51.)

Proof. In any partition of an n-gon, there are n-2 non-intersecting i

triangles formed by n-3 arcs and n sides. And for any n 24, no

triangle can be formed by 3 sides. Let x be the number of triangles

with two sides and one arc, y be the number of triangles with one side
‘ and two arcs, and 7 he the number of trianpgles with three arves,

Since an arc is used in two triangles, we have

x + 2y + 3z = 2(n-3) , (4)




b ot

Since the pnl‘ygon has n sides, we have

2x +y = n (5)
From (4) and (5), we gct'

3x =3z +6

Since 2z 20, we have x22. l§

Lemma 4. Let P and P’ both be n-gons where the corresponding
weights of the vertices satisfy w, € wi' » then the cost of an optimum parti-

tion of P is less than or equal to the cost of an optimum partition of P’.

Prool. Omitted, K

If we use C(wl,wz, Waroes .wk) to mean the minimum cost of
partitioning the k-gon with weights w, optimally, Lemma 4 can be
stated as

’ ’ 7y s < w’ .
C(wllWZlO-l'wk)gC(W‘!wzl--o"vk) lf wi wi

We say that two vertices are connected in an optimum partition
if the two vertices are connected by an arc or if the two vertices are

adjacent to the same side,

PV PUUpVY R TP

hmatlon, K. adhe s o a
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In the rest of the paper, we shall use Vl' VZ' coos Vn to denote
vertices which are ordered according to their weights, i.e, W, < w2< cee g w .

To facilitate the presentation, we introduce a tie-breaking rule for vertices

of equal weights.
If there are two or more vertices with weights equal to the smalles:

weight w_, we can arbitrarily choose one of these vertices to be the vertex

1
V.. Once the vertex V1 is chosen, further ties in equal weights are resolved
by regarding the vertex which is closer to V1 in the clockwise direction to be
of less weight, With this tie-breaking rule, we can unambiguously label the
vertices vl’VZ' cees Vn for each choice of Vl' A vertex Vi is said to be
smaller than another vertex Vj , denoted by Vi < Vj , either if w, < wJ. or if
w, =W, and i < j. We say that Vi is the smallest vertex in a subpolygon
if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc Vi-Vj to be less than
another arc V_-V

P q

if min(i, j) < min(p, q)
s min(i, j) = min(p, q)
or
l max(i, j) < max(p,q) .
(For example, the arc V3- V9 is less than the arc V4-V5 .) Every partition of
an n-gon has n-3 arcs which can be sorted from the smallest to the largest
into an ordered sequence of arcs, i.e., each partition is associated with a

unique ordered sequence of arcs, We define a partition P to be lexicographi-

cally less than a partition Q if the ordered sequence of arcs associated with

P is lexicographically less than that associated with Q,




When there is more than one optimum partition, we use the

{ -optimum partition (i.e., lexicographically-optimum partition) to mean

the lexicographically smallest optimum partition, and use an optimum parti-

tion to mean some partition of minimum cost.
We shall use Va' Vb' ... to denote vertices which are unordered

in weights, and Tijk to denote the product of the weights of any three

vertices V,, V, and V_,
i k

Theorem 1. For every way of choosing Vl' VZ’ ... (as prescribed), there
is always an optimum partition containing V]‘-V2 and VI—V3 . (Here, Vl-V2

may be either arcs or sides,)

and V1 -V3

Proof: The proof is by induction. For the optimum partitions of a triangle
and a 4-gon, the theorem is true. Assume that the theorem is true for all

k-gons (3 < k € n-1) and consider the optimum partitions of an n-gon,

From Lemma 3, in any optimum partition, we can find at least two
vertices having degree two, Call these two vertices Vi and Vj . We can
divide this into two cases.

(i) One of the two vertices Vi (or Vj) is not Vl, V2 or V3 in some optimum
partition of the n-gon. In this case, we can remove the vertex Vi with
its two sides and obtain an (n-1)-gon, In this (n-1)-gon, Vl. VZ' V3
are the three vertices with smallest weights, By the induction assump-

tion, V. is connected to both V2 and 'V3 in an optimum partition.

1




(ii) Consider the complementary case of (i), in all the optimum partitions of

the n-gon, all the vertices with degree two are from the set [VI.VZ,V3}.

(In this case, there will be at most three vertices with degree two in every

optimum partition.) We have the following thrce subcases:

(a)

(b)

Vi = V2 and Vj = V_ in some optimum partition of the n-gon,

i,e., both V

3

2 and V3 have degree two simultaneously. In this

case, we first remove V2 with its two sides and form an (n-1)-gon.

By the induction assumption, V V3 must be connected in some opti-

l’
mum partition. If VI—V3 appears as an arc, it reduces to (i). So

Vl-V3 must appear as a side of the (n-1)-gon, and reattaching VZ to

the (n-1)-gon shows that either Vl. V2 and V_ are mutually adjacent

3

or Vl-V is a side of the n-gon. In the former case, the proof is

3

complete, so we assume that VI-V3 is a side of the n-gon. Simi-

larly, we can remove V3 with its two sides and show that Vl, V2

are connected by a side of the n-gon.
Vi = V1 and Vj = V2 in some optimum partition of the n-gon,

both have degree two simultaneously. In this

i.e., V1 and V2

case, we can first remove V1 and form an (n-1)-gon where Vz, V3,

V4 are the three vertices with smallest weights. By the induction

assumption, VZ is connected to both V3 and V4 in an optimum

partition. If VZ-V3 or VZ- V4 appears as an arc, it reduces to (i;.

Hence, Vz-V and VZ-V4 must both be sides of the n-gon., Simi-

3

larly, we can remove V, with its two sides and form an (n-1)-gon

V  are the three vertices with smallest weights,

where Vl, V3, 4

11




2

(c)

Corollary 1. For cvery way of choosing V

Again, V_must be connected to V3 and V by sides of the n-gon,

1 4

But for any n-gon with n 2 5, it is impossible to have V3 and V‘1

both adjacent to V_ and V2 at the same time, i,e., V_, and V

1 1 2

cannot both have degree two in an optimum partition of any n-gon
with n 2 5,

Vi=V.V.=V

1 f 3 in some optinmtum partition of the n-gon. By

argument similar to (b), we can show that VZ must be adjacent
to V1 and V3 in the n-gon. The situation is as shown in Fig. 3(a).

Then the partition in Fig. 3(b) is cheaper because

T1235 Thog

’ ’ W, W )
and C(wl.wq,wy.wt,wx,wp,w3) < C(wz,wq.wy wt w o' V3

according to Lemma 4. B

Fig, 3

. VZ' ... (as prescribed), the

1

fi { -optimum partition always contains Vl -V2 and Vl -V3 .

Proof: It follows from Theorem 1 and the definition of the £ -optimum

. partition.

f”j

TV P VU WO




g . Once we know Vl -VZ and VI—V always cxist in the £ -optimum parti-

3
tion, we can use this fact recursively. Hence, in finding the { -optimum
partition of a given polygon, we can decompose it into subpolygons by joining
the smallest vertex with the second smallest and third smallest vertices
repeatedly, until each of these subpolygens has the property that its smallest
vertex is adjacent to both its second smallest and the third smallest vertices.

A polygon having V1 adjacent to V2 and V3 by sides will be called

a basic polygon.

Y

Theorem 2, A necessary but not sufficient condition for VZ-V to exist in an

3 t

.- optimum partition of a basic polygon is
3 1 ;
3 1 + 1 .1 +._.]:_ ,
w w w :

1 Vg Y2 W3

Furthermore, if VZ-V3 is not present in the f -optimum partition,

then VI'V are always connected in the £ -optimum partition.

4

Proof. If VZ’ V3 are not connected in the { -optimum partition of a basic
. polygon, the degree of V1 is greater than or equal to 3, Let Vp be a vertex
in the polygon and VI.Vp are connected in the £ -optimum partition. V4 is
£ either in the subpolygon containing Vl, V2 and Vp or in the subpolygon con-
taining Vl. V, and Vp. In either case, V4 will be the third smallest vertex

3

-‘ ' in the subpolygon. From Corollary 1, V., V, are connected in the £ -optimum

1Y 4
partition of the subpolygon and it also follows that Vl. V4 are connected in the

£ -optimum partition of the basic polygon.

13
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v,V

2 V3 are connected in an optimum partition, then we have an

(n-1)-gon where V2 is the smallest vertex and V4 is the third smallest
vertex. By Theorem 1, there exists an optimum partition of the (n-1)-gon

in which V2 , V4 are connected, Thus by induction on n, we can assume

that V, is adjacent to V

4 in the basic polygon as shown in Fig. 4(a).

2

\\

. e , 'w
Va2 QﬁéD\(\A‘h)/(W:; )V3 Va \. \W‘ V/k}/ Vi
- V‘ {

(a) ' (b)

Fig. 4

The cost of the partition in Fig. 4(a) is

T + C(wz,w

123 .,th--oow3) . (7)

4' )
And the cost of the partition in Fig. 4(b) is

T 4 + C(wl.w

12 ..w.---.w3) . (8)

4" t

14




According to Lemma 4,

C(wl.w4,...,wt,...,w3) < C(wz,w4....,wt....,w3) . (9)

Since the weights of the vertices between V4 and V3 in the clockwise direction

are all greater than or equal to W4 the difference between RHS and LHS
of (9) is at least .

Toa3 " Tiasz -

So the necessary condition for (7) to be no greater than (8) is

+ < +
T123 " Toa3 *Tiaa * Thag

or

LR SR A T
Wy ow, W, Wg

Lemma 5, In an optimum partition of an n-gon, let Vx’ Vy’ Vz , and VW be
four vertices of an inscribed quadrilateral (Vx and Vz are not adjacent in

the quadrilateral). A necessary condition for Vx—Vz to exist is

1 1 1 1
—_— e, (10)
w w w w

x z y w

Proof: The cost of partitioning the quadrilateral by the arc VX-VZ is

T + T (11)
Xyz XZW

and the cost of partitioning the quadrilateral by the arc Vy-VW is

T + T . (12)
Xyw yzw

For optimality, we have (11) < (12) which is (10). B




A

Note that if strict inequality holds in (10), the necessary condition is
also sufficient, If equality holds in (10), the condition is sufficient for Vx-VZ
to exist in the f -optimum partition provided min(x, z) < min(y, w). This lemma
is a generalization of Lemma 1 of Chin [3] where Vy is the vertex with the
smallest weight and Vx, Vw, Vz are three consecutive vertices with W
greater than both W and W . -

A partition is cailed stable if every quadrilateral in the partition

satisfies (10).

Corollary 2. An optimum partition is stable but a stable partition may not

be optimum.

Proof, The fact that optimum partition has to be stable follows from Lemma 5.

Figure 5 gives an example that a stable partition may not be optimum, @
} 25 ——r(i0) /25‘3———(’l°<
\@

(a) a stable partition (b) the optimum partition

Fig. 5

In any partition of an n-gon, every arc dissects a unique quadri-
lateral, Let V., V , V_, V be the four vertices of an inscribed quadri-
x z w

lateral and Vx-Vz be the arc which dissects the quadrilateral, We define

Vx-V7 to be a vertical arc if (13) or (14) is satisfied.

16




minfw ,w )< min{w ,w ) (13) *
x 7 y' o w

min{w ,w ) = min(w ,w )
x z y' o w l 04

max(w W ) Smax(w W ) ‘
X z y w

We define Vx-Vz to be a horizontal arc if (15) is satisfied
»~ min(w _,w_}> min(w ,w ) ' . ]
x oz vy ow

5" {15) 7

max(w »wW )< max(w ,w )
X zZ y w

For brevity, we shall use h-arcs and v-arcs to denote horijzontal arcs

¥ and vertical arcs from now on, 3

Corollary 3. All arcs in an optimum partition must be cither vertical

arcs or horizontal arcs.

Proof: Let V -Vz be an arc which is neither vertical nor horizontal,
I b.q

There are two cases:

; Case 1. min{(w ,w ) = min(w ,w )
; x' =z vy w
and max(w ,w })> max(w ,w )
X zZ y w
' Case 2, min(w ,w ) > min(w ,w )
X 7 Y w
sl
s ' and max(w ,w )2 max(w ,w )
{ X z y w

In both cases, the inequality (10) in Lemma 5 cannot be satisfied.

This implics that the partition is not stable and hence cannot he optimum, B

17




Theorem 3, let V_ and Vz be two arbitrary vertices which are not adjacent
_heorem D x
in a polygon, and V_ be the smallest vertex from V_to V in the clockwise
w X Z
manner (V. #V , V #V ), and V be the smallest vertex from V_ to V
w x w z y z x

in the clockwise manner (Vy # Vx' Vy #Vy). This is shown in Fig, 6 where
£

without loss of generality, we assume that Vx < Vz and Vy < Vw' A
necessary condition for Vx - Vz to exist as an h-arc in the £ -optimum

partition is that

w <w sw <w .,
Yy b4 z w

1
‘J
(Note that the necessary condition still holds when the positions of VY and VW ]
are interchanged.) oV ;
o
. \w“’,)' s ‘
P -
.’ "\
'
/ "
Vil Wy ) (Wa)Va
e )
. ‘
\ .
» [ 4
e - v
e ' ps 4
--(WY ), -
Wy
Fig. 6
Proof. The proof is by contradiction. If w_ s wy » W must be equal to

the smallest weight wl and Vx-Vz can never satisfy (15). lence, in

order that Vx-Vz exists as an h-arc in the { -optimum partition, we must

have w <w =< w . Since V is the smallest vertex from V to V in
Y x z Y z x

the clockwise manner and Vx < VW » we must have V = Vl .
Yy

18
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Assume for the moment that V3 < Vx < Vz . From Corollary 1,

both Vl-V and V_-V_ exist in the { -optimum partition, and the two arcs

2 1 3

would divide the polygon into subpolygons, If Vx and V7 are in different

[P URTA VT

subpolygons, then they cannot be connected in the { -optimum partition, ;

Without loss of generality, we can assume that the polygon is a basic polygon.

In this basic polygon, either VZ-V3 or Vl-V4 exists in the { -optimum
partition (Theorem 2),

If VZ' V., are connected, then Vx and Vz are both in a smaller polygon

3
in which we can treat VZ as the smallest vertex and repeat the argument. If 1
|

Vl, V4 are connected, the basic polygon is again divided into two subpolygons

and Vx and Vz both have to be in one of the subpolygons and the subpolygon has

at most n-1 sides., (Otherwise Vx-Vz can never exist in the f -optimum

partition.) The successive reduction in the size of the polygon will either 1
make the connection Vx-Vz impossible, or force Vx and Vz to become the
second smallest and the third smallest vertices in a basic subpolygon, Let Vm
be the smallest vertex in this basic subpolygon. In order that Vx-Vz appear
as an h-arc, we must have wx> W From Theorem 2, the necessary condi-

tion for Vx-Vz (i. e. VZ-V3) to exist in an optimum partition of the subpolygon

is 1 1 1 1
— e 2 e e
w w w w
X zZ m W 4

Since w_>w__, the inequality is valid only if w_< w_ ,
x m z w

Corollary 4. A weaker necessary condition for Vx-Vz to exist as an h-arc

in the { -optimum partition is that

V <« V <€V <V .
y x z w

Proof. This follows from Theorem 3. B
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We call any arc which satisfies this weaker necessary condition a

potential h-arc, Let P be the set of potential h-arcs in the n-gon and H

be the set of h-arcs in the f -optimum partition, we have P D H where the

inclusion could be proper.

Corollary 5. Let Vw be the largest vertex in the polygon and Vx and Vz
be its two neighboring vertices. If there exists a vertex VY such that

V <V _and V_< V , thenV_-V_ is a potential h-arc,
y x y z X oz

Proof. This follows directly from Corollary 4 where there is only one vertex

between V. and V . W
x z

Two arcs are called compatible if both arcs can exist simultaneously
in a partition, Assume that all weights of the vertices are distinct, then there
are (n-1)! distinct permutations of the weights around an n-gon. For
example, the weights 10, 11, 25, 40, 12 in Fig. 5(a) correspond to the
permutation w_,w » W

W Y Wa (where wl<w2<w <w <w5). There

1" 72" 74" 75 3 4

are infinitely many values of the weights which correspond to the same per-
mutation. For example, 1, 16, 34, 77, 29 also corresponds to wl.wz.w4. W, W
but its optimum partition is different from that of 10,11, 25, 40,12, However,
all the potential h-arcs in all the n-gons with the same permutation of weights

are compatible, We state this remarkable fact as Theorem 4,

Theorem 4. All potential h-arcs arc compatible,

Proof. The proof is by contradiction., Let Vx. Vy, Vz and Vw be the four

vertices described in Theorem 3. Hence, we have V <« V < Vz <V
Yy x

w

-

\ YN

[ S

u
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and Vx-V? is a potential h-arc, Let VP-Vq be a potential h-arc which is not

compatible to Vx-Vz. as shown in Fig. 7. Without loss of generality, we
can assume Vp< Vq. (The proof for the case Vq < Vp is similar to that }

which follows. )

TR

V W,

t

|

|

i

i

|
v ?
d

Fig, 7

Since Vw is the smallest vertex between Vx and VZ in the clockwise
manner, wehave V <V < V , Hence, we have either V <V <V <V
z w q b |4 z q
or V <« V <V < V ., Both cases violate Corollary 4and V_-V cannot
b4 z P q P qg
be a potential h-arc. B
Note that the potential h-arc Vx-Vz always dissects the n-gon into two

subpolygons and one of these subpolygons has the property that all its verticcs

except V_ and V_ have weights no smaller than max(w ,w ). We shall call this
x z x' "z

subpolygon the upper subpolygon of Vx-Vz . For example, the subpolygon

Vx- sos -Vw- coe- Vq- cee- Vz in Fig. 7 is the upper subpolygon of Vx-Vz .




Using Corollary 4 and Theorem 4, we can generate all the potential

h-arcs of a polygon.

Let V -V be the arc defined in Corollary 5, j,e. V. < V. <« V <V ,
x 2z 1 x z w

The arc Vx-Vz is a potential h-arc compatible to all other potential h-arcs in

the n-gon, Furthermore, there is no other potential h-arc in its upper subpoly-

gon. Now consider the (n-1)-gon obtained by cutting out VW. In this (n-1)-

gon, let Vw,be the largest vertex and Vx, and Vz » be the two neighbors of

V ,where V. <V ,«V ,<V ,, ThenV ,-V ,is again a potential h-arc

w 1 x z w x z

compatible to all other potential h-arcs in the n-gon and there is no uther

potential h-arc in its upper subpolygon which has not been generated, This ]

is true even if Vw is in the upper subpolygon of Vx' -Vz r. If we repeat the
process of cutting out the largest vertex, we get a set P of arcs, all arcs
satisfy Corollary 4. The h-arcs of the f-optimum partition must be a
subset of these arcs.

The process of cutting out the largest vertex can be made into an
algorithm which is O(n). We shall call this algorithm the one-sweep
algorithm, The output of the one-sweep algorithm is a set S of n-3 arcs,

S is empty initially,

The one-sweep algorithm:

Starting from the smallest vertex, say V., we travel in the clockwise direc-

1
tion around the polygon and push the weights of the vertices successively onto
the stack as follows (wl will be at the bottom of the stack).
(a) Let Vt be the top element on the stack, vt-~l be the element immedi-
ately below Vt, and Vc be the element to be pushed onto the stack.

22




If there are two or more vertices on the stack and wt > wc , add

vt-l-vc to S, pop Vt off the stack; if therc is only one vertex on
the stack or w, SWoo push W onto the stack, Repeat this step
until the nth vertex has been pushed onto the stack,

(b) If there are more than three vertices on the stack, add vt-l-vc
to S, pop Vt off the stack and repeat this step, else stop.

Since we do not check for the existence of a smallest vertex whose
weight is strictly no larger than those of the two neighbors of the largest ver-
tex, i.e. the existence of the vertex Vy in Corollary 4, not all the n-3 arcs gen-
erated by the algorithm are potential h-arcs. However, it is not difficult to
verify that the one-sweep algorithm always generates a set S of n-3 arcs
which contains the set P of all potential h-arcs which contains the set H of

all h-arcs in the £ -optimum partition of the n-gon, i.e.,
SoOP OH

where each inclusion could be proper. For example, if the weights of the

vertices around the n-gon in the clockwise direction are w_,w,,...,. w
n

1" 72
where wy Sw,<...<w , none of the arcs in the n-gon can satisfy
Corollary 4 and hence there are no potential h-arcs in the n-gon, The one-

sweep algorithm would still generate n-3 arcs for the n-gon but none of the

arcs generated is a potential h-arc.

23
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3, Conclusion

In this paper, we have presented several theorems on the Polygon
Partitioning Problem. Some of these theorems are characterizations of the
optimum partitions of any n-sided convex polygon, while the others apply
to the unique lexicographically smallest optimum partition. Based on these
theorems, an O(n) algorithm for finding a near-optimum partition can be
developed {12]. The cost of the partition produced by the heuristic algorithm
never exceeds 1,155 Copt, where Copt is the optimum cost of partitioning
the polygon. An O(n log n) algorithm for finding the unique lexicographically

smallest optimum partition will be presented in part II,
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This paper considers the computation of matrix chain products

X I\/I2 Xooo X Mn . If the matrices arec of different

of the form M 1

1

dimensions, the order in which the matrices are computed affects the
number of operations. An optimum order is an order which minimizes
the total number of operations. Some theorems about an optimum order
of computing the matrices have been prescnted in part I. Based on

those theorems, an O(n log n) algorithm for finding the optimum order

is presented here,

This rescarch was supported in part by Nalional Science Foundation
grant MCS-T7-23738 and U.S. Army Rescarch Office grant

DAAG29-80-C-0029,

VO N T, IO M £ T N - e




1. Introduction
In Part I of this paper, we have transformed the matrix chain

product problem into the optimum partitioning problem and have stated
several theorems about the optimum partitions of an n-sided convex polygon,
Based on these theorems, we now present algorithms for finding the unique
f -optimum (lexicographically smallest optimum) partition.

Using the same notation as in Part I of this paper, we can assume
that we have uniquely labelled all vertices of the n-gon. A partition is
called a fan if it consists of only v-arcs joining the smallest vertex to all
other vertices in the polygon. We shall denote the fan of a polygon

V.-V -V -...-V_ by Fan(w |w, ,w ,...,w_). The smallest vertex V
c n 1'"b ¢ n

1 b 1

is called the center of the fan,

We define a vertex as a local maximum vertex if it is larger than its

two neighbors and define a vertex as a local minimum vertex if it is smaller

than its two neighbors, A polygon is called a monotone polygon if there
exists only one local maximum and one local minimum vertex., We shall
first give an O(n) algorithm for finding the { -optimum partition of a mono-
tone polygon and then give an O(n log n) algorithm for finding the £ -optimum

partition of a general convex polygon.

2. Monotone Basic Polygon

In this section, let us consider the optimum partition of a monotone

polygon, i.e, a polygon with only one local minimum vertex and one local

maximum vertex, It follows from Corollary 1 of Part I that we can




consider a monotone basic polygon only, The understanding of this special case
is necessary in finding the optimum partition of a general convex polygon,

Consider a monotone basic n-gon Vl-VZ-VC- oo -V3 » the fan of the
polygon is denoted by

Fan(w, |w2, Woreee s Wy)

where the smallest vertex V1 is the center of the fan,

The definition of a fan can also be applied to subpolygons as well. For
example, if VZ’ V3 are connected in the basic n-gon and V2 becomes the
smallest vertex in the (n-1)-sided subpolygon, the partition formed by con-

necting V_ to all vertices in the (n-1)-gon is denoted by

2

Fan(wzlwc. cees w3) .

Lemma 1. If none of the potential h-arcs appears in the { -optimum parti-

tion of the n-gon, the f -optimum partition must be the fan of the n-gon.

Proof. From Theorem 3 of Part I, we know that any arc which exists as
an h-arc in the { -optimum partition mus se a potential h-arc, Hence, if
the £ -optimum partition does not contain any potential h-arc, the { -optimum
partition must be made up of v-arcs only. Hence, wec aave to show that
among all partitions which are made up of v-arcs only, the fan is (i) the
lexicographically smallest and (ii) onc of the cheapest partitions in the n-gon,
(i) Since the fan consists of only v-arcs joining Vl to all other vertices
in the n-gon, it is by dcfinition the lexicographically smallest partition,
(ii) Suppose the { -optimum partition contains v-arcs only but is not the

fan. There must exist three vertices Vi, Vk, Vj such that the triangles




e B

VlViVj and V_VJ,Vk are present in the £ -optimum partition. Since Vi-vj
i

is a v-arc (by assumption) and Vl is the smallest vertex in the n-gon, we

have w_ = min(wi.wj) and max(wi.wj) < w

) If we replace the v-arc

K
V.-V, by the v-arc Vl-Vk, we can get a partition whose cost is less than or
1)
equal to that of the { -optimum partition but is lexcographically smaller
than the { -optimum partition, and results in a contradiction. B
Let Vi-Vj and Vp-Vq be two potential h-arcs of any n-gon, We
say that V_-V_ is above V -V (and V -V is below V -V ) if the upper
1) P q P q 1]
subpolygon of VP-Vq contains the upper subpolygon of Vi-Vj .

Let P be the set of all potential h-arcs in a monotone basic n-gon.

P can have at most (n-3) arcs.

Lemma 2. For any two arcs in P, say ’\/i-Vj and Vp-Vq » we must have

either V_ -V,  above V -V or V -V above V -V _.
1) P q P q 1)

Proof. By contradiction, Let Vi—Vj and Vp-Vq be two arcs in P which
do not satisfy this lemma. Then the intersection of the upper subpolygons
of Vi-Vj and Vp-vq must either be empty or consists of part of each upper
subpolygon only.

Since the vertices other than Vi' Vj in the upper subpolygon of
Vi-Vj must have weights larger than max(wi, wj), the local maximum vertex
of the monotone basic polygon must be present in the upper subpolygon of
Vi-Vj . Similarly, the local maximum vertex of the monotone basic polygon
must also be present in the upper subpolygon of Vp-Vq. Hence, the inter-

sections of the upper subpolygons of Vi-Vj and VP-Vq cannot be empty.

1
4
E
4
4
3
e
4




From Theorem 4 of Part I, we know that Vi-Vj and VP-Vq cannot
cross cach other and hence the intersection of their upper subpolygons
cannot consist of part of each upper subpolygons only. W

We can actually show this ordering of potential h-arcs pictorially
by drawing a monotone basic polygon in such a way that the local maximum
vertex is always at the top and the local minimum vertex is at the bottom.
Then a potential h-arc Vi-Vj is physically above another potential h-arc
Vp-Vq if the upper subpolygon of Vp-Vq contains the upper subpolygon of

Vi-V,. From the definition of the upper subpolygon, we can see that

min(w,,w.) > max(w ,w ) if V_-V,  isabove V -V |
1) P q LI P q
Consider the monotone basic n-gon which is shown symbolically in
Figure 1. V_ is the local maximum vertex and Vi—\/j ’ Vp-Vq are potential
h-arcs of the monotone basic n-gon. The subpolygon Vp- e - Vi-Vj- oo -Vq
which is formed by tvo potential h-arcs Vp_vq and Vi-Vj and the sides of

the n-gon from V_ to Vi and from Vj to Vq in the clockwise direction is said

to be bounded above by the potential h-arc Vi-VJ. and bounded below by the

potential h-arc V_-V
P q

[
)
)
' 5

ik ik




Figure 1

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the

monotone basic n-gon is itself a monotone polygon.

Proof. Consider the subpolygon Vp- ce -Vi-Vj- oo —Vq in Figure 1.

Without loss of generality, we can assume Vi < Vj and Vp < V(1 . Since

Vn is the only local maximum vertex in the monotone basic n-gon, we must

have V<Vp<...<v.<’v'n and V >V, > ..o>V >V Hence, V
i n

1 j q | S

is the unique local minimum vertex and Vj is the unique local maximum

vertex in the subpolygon Vp - eee- Vi-Vj - cee - Vq . By definition,

V -+++2.V -V -...-V is a monotone polygon. B
p i7V; q polyg
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Lemma 4. Any potential h-arc of a subpolygon bounded above and below

by two potential h-arcs of the monotone basic n-gon is also a potential

h-arc of the monotone basic n-gon,

Proof. Consider the subpolygon Vp- cen -Vi-VJ,- ‘e —Vq in Figure 1. Let
Vx-Vz be a potential h-arc in this subpolygon and VW is the smallest vertex
between Vx and Vz in the clockwise direction around the subpolygon. With-
out loss of generality, we canassume V, <V,, V <V and V <V ,

i j p q x z
Since Vx is in the upper subpolygon of the potential h-arc Vp-Vq » we have

wy<w o sw <w <w ., Since Vj < any vertex in the upper subpolygon

P 9 x z

of V.-V. and V. < V_ <V _V jsthe smallest vertex between V. and V in
1) w 1 J w x z
clockwise direction around the monotone basic n-gon, Hence, we have
w, <w_sw <w_and V_-V_is a potential h-arc of the monotone basic
1 x z w X z

n-gon. B

We can now summarize what we have discussed. If there
is no h-arc in the f-optimum partition of a monotone basic
n-gon, the f -optimum partition must be a fan. Otherwise, the h-arcs in tne
{ -optimum partition are all layered, one above another. If we consider the
local maximum vertex Vn and the local minimum vertex V1 as two degen-
erated h-arcs, then the £-optimum partition of a monotone basic n-gon will

contain one or more monotone subpolygons, each bounded above and below

by two h-arcs and the { -optimum partition of cach of these monotone sub-

polygons is a fan,




Then, in finding the £ -optimum partition of a monotone basic polygon, we
have only to consider those partitions which contain one or more subpoly -
gons bounded above and below by potential h-arcs and each of these sub-
polygons is partitioned by a fan. Since there are at most (n-3) non-
degenerated potential h-arcs in a monotone basic n-gon, there will be at
most 2n-3 such partitions and we can divide all these partitions into

(n-2) classes by the number of non-degenerated potential h-arcs a partition

JH ,...,H wherec the sub-

contains, These classes are denoted by Ho ) 3
n-

script indicates the number of non-degenerated potential h-arcs in each
partition of that class,
There is no potential h~arc in the partitions in the class Ho .

Hence the class consists of only one partition, namely the fan

Fan(wllwz. ceerWy).

In the class Hl' each partition has one non-degenerated potential
h-arc. Once the potential h-arc is known, the rest of the arcs must all be
vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in H1 of a monotone basic polygon are shown
in Fig. 2. In Fig. 2a, there is one non-degencrated potential h-arc,

Vc-vi (Vc < Vi). The upper subpolygon is a fan

Fan(w |w,, ..., w.)
c i

d’

and the lower subpolygon is a fan

Fan(w1 |w2. W W w3) .




e L, E o me T e

IR Ak A

()

Fig. 2. Two typical partitions in Hl of a2 monoton
10-gon, :

In Fig. 2b, there is one potential h-arc, VZ-V3 » and the upper

subpolygon is a fan

Fa.n(wzl W w3)

and the lower subpolygon is a degenerated fan, a triangle.

Assume that VZ-V3 is the only h-arc, then the cost is (see Fig. 2b)

+ ' +
wlwzw3 WZ(wcwd + wdwe +wewf -l-wfwg +“gwh thi +wiw3)

= 'I’123 + wz(wczw3) , (1)

where W iW, is the shorthand notation of the sum of adjacent products from

W to w3 in the clockwise dircction.

Note that the cost of Ho of the polygon shown in Fig. 2 is




Fan(wllwz. . .w3)

= wl(wzz w3) (2)

The condition of (1) to be less than (2) is

W, (wC:w3)

< w
(WZ:W3) - W, W, 1

Similarly, the condition for the partition in Fig, 2a to be less

than HO is

w o (w,rw.)
c i

d < w. . (3)
(w :w.) -w - w, 1
C 1 C 1

We say that a partition is said to be f -optimal among the partitions
in a certain class (or several classes) if it is the lexicographically smallest
partition among all the partitions with minimum cost in that class (or
several classes), Hence, the f -optimum partition is { -optimal among all

partitions in the classes H ,H_,...,, and I—In

01 -3

Now, assume that the f-optimal partition among all the partitions in

H ,H ,H contains only one potential h-arc Vi-V

ll 2! LI ] n-3
in Fig, 3. (Note that Vi-V

only, as shown

k

K will exist in this partition as an h-arc. ) This

partition will be the f -optimum partition of the monotone basic n-gon if it

costs less than that of the fan in HO. The condition that the partition with

Vi-Vk as the single h-arc costs less than HO is

wi- (w,:wk)
J < w if w <€ w

(w.:w. ) - w . w 1 i

i k i

k

k

or

10




A

5 Fig. 3. A monotone polygon with a single h-arc.

W (wi:wg)

W, W
( 1

< w if w, < w.
Y - w, o w 1 k i
i

k k

Combining the two incqualities above, we have

ERRE K
- 4
(w.:w, ) - w, - w <“1 (4)

i k i k

where C(wi, e wk) denotes the cost of the optimum partition of the
subpolygon wi-wj- R -wg-wk and is ecqual to the cost of the fan in this
' case,

An h-arc Vi-V which divides a polygon into two subpolygons is

k

called a positive arc with respect to the polygon if (4) is satisfied, i.c., the

' : partition with the arc as the only h-arc and a fan in cach of the two subpoly-
gons costs less than the fan in the same polygon. Otherwise, it is called a

8 . negative arc with respect to the polygon.

11




When an n-gon is divided into subpolygons, an h-arc is defined
as positive in a subpolygon if the cost of partition of the subpolygon with
the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 4,
and assume that this partition is £-optimal among all partitions in the

1 . .
classes HZ’H3’ . ’Hn-3

Fig. 4. A monotone 8-gon with two h-arcs.

If V.l-Vk is positive with respect to the subpolygon

Vl-Vi-Vp—Vq—Vk , then the condition analogous to (4) is

CW,, ’ )
( ; wp WCka)

Cowmd Lo T T 1) S Ga)

If Vi-Vk is positive with respect to the whole polygon

V1 - Vi - cee - Vn -~ see = Vk , then the condition is




w, ) ’

= < wy (5b)

wo,w
n’ s’ q

a (wi:wk) - W W

Clw,,w_,w ,w
i* p’r

‘ Note that (5b) implies (5a).
The condition for the arc Vp-V to be positive with respect to
q

- - - -V - - i
the subpolygon Vi Vp Vr Vn s v Vk is

q

Logtaadiat o

Clw ,w ,w ,w ,w )
pPr’ n s

(w :w )-w . w

< Inin(wi,wk) . (6a)

L i
A%
e

If the arc Vp-Vq is positive with respect to the whole polygon

. V.-V -V -V -V -V -V -V it must satisfy (6b),
) I i p r m s 4q k i
Clw PWLLW LW, W ) 13

3 . T (6b)
4 (w:w )-w .w 1 ]
: P q P 9 ¢
Since W < mm(w,,wk), condition (6b) implies (6a). :

i £

IlHere, the precsence of Vi-Vk will divide the original polygon é

into two subpolygons where Vp-Vq appcars in the upper subpolygon,

1f VP—V is a positive arc with respect to the original polygon, then &

4

VP—Vq is certainly positive in the upper subpolygon. But if Vp— Vq is é

positive in the subpolygon, the arc Vp—V may become negative if
q

Vi-Vk is removed, i.e, VP-Vq becomes negative with respect to the
original polygon.

Similarly, if the arc Vi-V is positive with respect to a sub-

k

polygon, the arc Vi-Vk may become negative if the arc Vp-Vq is

removed,

The preceding discussions can be suimmarized as Theorem 1,

13 iR




Theorem 1. If an h-arc is positive with respect to a polygon then the
arc is positive with respect to any subpolypgon containing that arc, 1If an h-arc
is positive with respect to a subpolygon, it may or may not be positive with

respect to a larger polygon which contains the subpolygon. @

There are two intuitive approaches to the f -optimum partition of

:’- a monotone basic polygon. The first approach is to put in the potential
h-arcs one by one., Each additional potential h-arc will improve the cost 1
¥ - until the correct number of h-arcs is reached. Any further increase in

the number of h-arcs will increcase the cost. To iniroduce an h-arc into

the polygon, we can test each potential h-arc (at most n-3) to see if it

is positive with respect to the whole polygon., If yes, that positive
arc must exist in the £-optimum partition, and the polygon will be
divided into two subpolygons, each being a monotone polygon. We can
repeat the whole process of testing positiveness of the h-arcs, The
trouble is that all these arcs may be negative individually with respect to

the whole polygon and yet H . may not be the optimum. For example, two

0

’ arcs Vi-Vj and Vp-Vq may be negative individually with respect to the
whole polygon but the partition with both Vi-VJ_, Vp-vq present at the

same time may cost less than H_ as shown in Fig. 5a, This shows that

0

we cannot guarantee an optimum partition simply because no more

potential h-arcs can te added one at a time.

gtiey

The second approach is to put all the potential h-arcs in first

and then take out the potential h-arcs one-by-one, where each deletion




- will decrease the cost until the correct number of h-arcs is reached.

e

Any further deletions will increase the cost,  Unfortunately, even if
all h-arcs are positive with respect to their subpolygon, the parti-

tion may not be optimum. In Fig. 5b, each h-arc is positive

. with respect to its local subpolygon but the partition is not optimum.
-j (Note that positiveness of an h-arc in a quadrilateral is the same as
“' stability. But the idea of stability applied to vertical arcs as well.)
3 This means that we cannot guarantee an optimum partition simply

. b because no h-arc can be deleted one at a time.

Fe

(a) (h)

Fig. 5. Counter examples for the intuitive approaches.




Let us outline the idea of an O(n) algorithm for finding the £-optimum

partition of a monotone basic polygon, Firsti, we get all the potential
h-arcs by the one-swecp algorithm. Then, we start from thec highest
potential h-arc and process each potential h-arc from the highest to the
lowest. For each potential h-arc, we try to get the £ -optimum partition
of the upper subpolygon of that arc (i.e. the {-optimum partition of the
;f— subpolygon bounded below by that h-arc), The £ -optimum partition in
the subpolygon is obtained by comparing the cost of the £-optimal partition
l o among the partitions of the upper subpolygon which contain one or more
potential h-arcs with that of the fan in the upper subpolygon.

If we try all possible combinations of the potential h-arcs as
candidates for the f -optimal partitions, we need O(n3) operations to
find the f -optimum partition. Fortunately, there are some dependence-
relationships among these potential h-arcs. Hence, certain subsets of
the potential h-arcs will either all exist or all disappear in the { -
optimumn partition of the monotone polygon. We shall be dealing with
potential h-arcs most of the time, so we shall use "arcs' instead of

) potential h-arcs for brevity.

Consider the monotone basic polygon shown symbolically in
Fig. 6. Therc are threc potential h-arcs, denoted by hk’ hj, and hi .
Vrl is the local maximum vertex and Vl is the local minimum vertex,
Without loss of generality, we can assumec w. < wa' for a =i, jand k.

Since we shall deal with subpolygons bounded by two potential h-arcs,

let us use hn for Vn and h1 for V1 (i. e. we consider these vertices as




degenerated arcs), From Lemmas | and 3, the {-optimum partitions of
the subpolygons bounded by two potlential h-arcs (i, c. the white area of the
polygon in Fig, 6) arc all fans,

Assume (i) h'k is positive in the subpolygon bounded by hn and hj
but hk is negative in the subpolygon bounded by hn and hi ,

(i1) hj is positive in the subpolygon bounded by h.k and hi but hj
is negative in the subpolygon bounded by hk and h1 , and

(i1i) hi is positive in the .subpolygon bounded by hj and hl only.
Then either the three arcs h'k’ hj’ hi all exist or no h-arcs exists in the
optimum partition,

This shows that the existence of an h-arc depends on the existence
of another h-arc.

We shall use the notations

h,
C< J> to denote the cost of the { -optimum partition of the
subpolygon bounded above by hj and bounded below

by hi' and

h,
H0< J> to denote the cost of the fan in the subpolygon bounded

above by hj and bounded below by hi .




i

Fig. 6. An octagon with three potential h-arcs,

In Fig. 6, the condition for hk to be positive with respect to the

whole polygon is (compare (5a))

(wk:wk') - W wk' < (7)

The LHS of (7) is denoted by

(ur)

and is called the supporting weight of hk with hl as the ceiling (the
1

definition of cciling will be given formally later). Note that the LIS of
(7) depends only on the weights of vertices in the upper subpolygon of hk .

In terms of the supporting weights, we can write the three

conditions (i), (ii) and (iii) as follows:




ez

(iii)

N By
(ii) W, <S(h. <wi
J
h,
S(hi) < Wy o

An arc h, is a son of the arc hi (or hi is the father of hj)
if the following conditions are satisfied:

(i) h. is above hi (the son is_abovc the father)

(ii) In any subpolygon containing hi and hi , the arc hj will exist N
in the £ -optimum partition of the subpolygon if and only if hi
exists in the { -optimum partition.

(iii) hi is the highest arc that satisfies (i) and (ii).

It is easy to sce that every arc can have at most one father but an arc
can have many sons. Also the ancestor-descendant relationship is a
transitive relationship. If an arc exists in the £ -optimuwnm partition, all
its descendants will also exist,

An arc hk is a ceiling of an arc hi if the following conditions
are satisfied;

(i) h, is above h,
k i

(ii) hk is not a descendant of hi

(iii) hk is the lowest arc which satisfies (i) and (i1).




Consider two partitions of a subpolygon as shown in Fig. 7.

b

Fig. 7. A subpolygon of the octagon shown in Fig. 6
{The shaded areas are optimally partitioned
and the blank areas are partitioned by a fan.
The h-arcs in the shaded area are all
descendants of hj )

The cost of partition of Fig. 7a is

where the cost of partition in Fig, 7b is

H hk
Ohi

The condition for the partition in Fig, 7a to be checaper than that in Fig. 7b

is (similar to (5a))




h,
J
let us regard h.k and hj in Fig. 7 as fixed while the position of hi can be

hk)’

In order to give an intuitive meaning of the supporting weight S(

moved up or down by increasing or decreasing the values of w, and wi’.

If hi moves up and coincides with hj , l.e., w, = wj , the partition in Fig, 7a
costs less than or equal to the partition in Fig, 7b. 1f the position of h.1
moves down gradually from hj , there will be a position for which the cost

of the partition in Fig. 7a is equal to the cost of the partition in Fig, 7b.

We can cons:der this position as a fictitious arc fj , i.e.
h h h
k j k
+ =
C(h. ) Ho(n ) ”o( £, ) ' ®
] J )

the £ -optimum partition of the subpolygon bounded by hk and hi becomes
a fan, The arc fj is called the floor of hj . Note that the minimum of the
two weights associated with fj is the supporting weight of hj .

We now give two examples to illustrate the concepts, notations
and the algorithms, Then a formal description of the algorithm will be
given,

Consider a monotone basic polygon with five potential h-arcs,

e ,h2 where h( is the highest arc as shown symbolically in
D

!

Fig., 8. l.et w < w/' for i=a,b,...,e. The maximum vertex,
; i i

has the weight wf and the minimumn vertex,

which lies above h

6 1

which lies below h has the weip t w, We can regard w, (and wl)

2’ {

as a degenerated arc and use h7 to represent W (and h1 to repre-

sent w]).




Fig. 8., A 12-gon with 5 h-arcs.

Example 1
Let us writc down the comparisons made in the algorithms,

First, we compare




' Fig. 9. Minstrations for Example 1.
b 9a. To find f{ .
D

In the cquation, f, is the only unknown. In computation, we do

6

not use the equation but use the supporting werght of h( instead (h7 is
H
the ceiling of h6). If the h-arc 115 is below or coincides with { , which 3

6
means that h6 is negative with respect to the smallcest subpolygon, 116
should be deleted and never appear in the { -optimum partition, For
simplicity, we shall assume all arcs and floors have distinct positions

in the example,

Let us assume that f6 is below h_, or symbolically we write
)

hs/f6

Fig. 9b. The position of f(). ;

23




Then we do the next comparison.

h h h

6 5 6

H ( ) + H ( ) = H ( )
0] h5 0 fS 0 f5

Fig., 9c. To find fs .

Assume that f6/f5' i.e. h6 is a son of h5,and h4/f5. the next

comparison is

h h h h

7 6 5 K
H()+H()+H( )H( )
Oh6 Oh5 Of()5 Of65

Fig, 9d. Condense h() to h5 and find f65'

24




Note that f(‘; is in a sense the combined floor of h( and h. and h,
) 1 pl {

becomes the ceiling of h5 . The equation can also be written as

h h h
1 5 7
c( )+H( ):H( )
hs 0\ fes 0\ ies

If h,/f _, the next comparison will be
4765

I
(=]

——
O 5
U
e
*
—
]
o

———
-2
o
\—/
1]

o
o

—_———
Lma

»bm:r
g

Fig., 9e¢. To find f4

Assume that f65/f4, i.e. h5 is a son of h, and 113/f4, we have

4\

25




ey hp hmiabe o o g
{'- R & “.'::

i h
with 7

Fig. 9f.

as the ceiling of h4.

Fig. 9g. To find f3 .

To find £

Moving to h

65

3 ’

we compare

26
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Assume that f /f3. i.e. h4 is a son of h

654 and h2/(3, we compare

3

Fig, 9h. To find f")543.

with h7 as the ceiling of h3 . Moving to hZ' we compare

W LY Wy W, 3 =z
Y. %S
N AN

Fig. 9i. To find fz.




Assume that f /fZ' i. e. h3 is a son of ha,and hllfz, we have

6543

2

& &

@ @
SORN I S S

a

Fig. 9j. To find f65432'

and h7 is the cetling of h Now if

P

the partition consisting of

is the f -optimum partition,

28
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% ‘5.

e s et e

Fig. 9k. The {-optimum partition,

h
4
1£ S(h ) = w1 » then Ho(h7) will be the [ -optimum partition.
1

Example 2, The successive comparisons are

Mustrations for FKxample 2,

10a, To find [, .,
6

29




Assume that h5/f6 , We compare

Fig, 10b. To find fs.

Assume that £5/f6, i.e. h, becomes the ceiling of hs,and h4/f5, we

6

compare

NN S
wc\\\\\ 4(;\\\\; N VS "
fa T4

Fig, 10c, To find £, 5

30
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WO B

Assuming that f4/f5. i.e. h_ bccomes the ceiling of }14,and }13/f4 y We

5

compare

s

L I R S

)
\

Fig. 10d. To find .

— e et - - - -

Assume that f3/f4 and f3/h2, then arc h, should be deleted. Next,

3

we assume that fi/hZ , then arc h4 should also Le deleted. Suppose

hz/f5 » we shall then compare

W

Fig. 10e, To f{ind fz.

31




Fig. 107, To find f_,.

Assume f(./f‘”)&' i. e, hb is a son of hz,and hI/fSZ’ our ncext coin-

parison is

02l nl)
h, O\ 52 052

w

o

/ \\\ ‘f\b\\\ W,

04

G/“‘) F s

. et vt . e ——

Fig. 10g. To find [()52.
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and h7 becomes the ceiling of hZ .
h h

- 7 2 .
Assume hl“()‘iZ' the the partition C(hz) t ”O(hl) is the

{ -optimum partition,

Fig. 10h., The { -optirnum partition.

Had we assumed 1'52/1"6 and f5 /h1 then both h5 and h‘2

2

should also be removed and we are left with
f() against hl.

If hl/fb » then we have the f -optimum partition

h, {
H ( )+ H ( ’) .
0 h6 0 h1

From the above two examples, we can sce that hk is the ceil-
ing of hi if hk is the lowest arc above h. such that the supporting
i

weight of l\k is smaller than or cqual to that of h,

LA




Let us outline the algorithm for finding the f -optimum partition

of a monotone basic polygon,

1.

Get all the potential h-arcs of the polygon by the one-sweep

algorithm. (All the h-arcs form a list with the arc V_ -V_, at

b b

the bottom. )

Process the potential h-arcs one by one, from the top to the bottom,

(We try to find the £ -optimum partition of the subpolygon bounded

below by the arc being processed,)

2a,

2b,

Let hR be the arc currently being examined, hC be the arc

immediately above hR’ and h be the arc immediately below

N

hR in the list, If hR is negative with respect to the subpoly-

gon bounded above by h_, and below by h delete hR’ other-

C N’

wise go to Step 2c.

Once hR and its descendants are deleted, we backtrack to hC

and compare the cost of the partition with hC and its descend-

ants against the cost of the fan in the subpolygon bounded above

by the ceiling of h . and below by hN. If the fan is £ -optimum

C
in the subpolygon, we will delete hC and repeat this step until
no further deletion is possible. Then we move to examine hN.
(The actual comparisons are done in terms of thc supporting

weights, )

Here, h

is positive in the smallest subpolygon bounded by

R

potential h-arcs, We will backtrack to condense all its

descendants to hR as follows, Let hé be the ceiling of hC. If

34
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2d,

he he
S< > < S , hC becomes a son of h1 . We will

hR hC R

combine h as well as all its descendants to h_ and

C R
h ’
recalculate the combined supporting weight S<hc>
R
Replace hC by hé and compare the cost of the partition

with hR and its descendants against that of the fan in the sub-

, i.e. h! ., and below

polygon bounded above by the new h C

C
by hN . If the fan is { -optimum in the subpolygon, we
delete hR as well as its descendants, and go to Step 2b to

see if we can delete more arcs. Otherwise, we repeat this

step to see if we can condense more arcs,

he he
Now we have S 2 S , the supporting weight of
hR hc

h
h... The arc h. is the ceiling of hR and S< ¢ is the

C C hR

supporting weight of hR . We move and process hN .

Before a formal description of the algorithm is given, a procedure

to process the list of potential h-arcs in a monotone polygon is presented.
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Input:

Output:

Step 1

Pre-edure MONO-PARTITION (L)

consists of a list of potential h-arcs, passed to the procedure
via the argument L. Let hl be the lowest arc in L, the

be the highest

one immediately above hl be hZ » and th

are degenerated arcs with

arc in L. (Note that h, and h
1 ptl

the minimum vertex and the maximum vertex of the polygon.)
consists of all the potential h-arcs that exist in the £-optimum

partition of the polygon.

h =
C hp+l ’
hR:= hp ;
h  := ;
N hp—l !

MIN-WEIGHT : = minimum of the two vertices of h_

N

Comment: hR is the arc to be processed and hc is the ceiling

of the subpolygon, hN is the arc immediately below h_ in L.

h
Calculate S<hc) ;

R

R

hc
1 s<h ) = MIN-WEIGHT
R

then go to Step 2

else go to Step 3.,




And

Step 2 i £
Step 2 While (hR, th)

{the supporting weight of h, 2 MIN-WEIGHT) Do

R
Begin
Remove hR and all its descendants from L.
h_ = H
R hC
hC : = the ceiling of the new hR
End;

Go to Step 4.

{ . 5 e
Step 3 If (hC th) and (the supporting weight of hR < the

supporting weight of hC)

then
Degin
Condense hC and all its descendants into hR :
hC : = the ceiling of hc,
go to Step 1;
End
else
Begin
hC
Record S as the supporting weipht of h
h R
R
the ceiling of hR;
go to Step 4;
Fond,

37
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Step 4

Step 5

1f hN # hl

then

Begin
hC s = hR;
hR : = hN ;
hN : = the arc immediately below the new hR ;
MIN-WEIGHT : = minimum of the two vertices of

the new hN ;

go to Step 1;

Fnd

clse go to Step 5 ;
Fxit procedure and return L to caller.

Now we can give the algorithm for finding the { -optimum parti-

tion of a monotone basic polygon.

Algorithm 1

Input

Output

consists of n positive integers, which are the weights of the
n vertices of the monotone n-gon. W[1] is the weight of the
minimum vertex and W[i+1] is the neighbor of W[i] of the
n-gon going in the clockwise direction. Let the weight of the

maximum vertex be W[t].

consistis of a list of potential h-arcs which will exist in the
£ -optimum partition of the n-gon, the partitions in the sub-
polygons bounded by every two consecutive arcs in the list

are fans,
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Step 0 For i := 2 step 1 until N do

- i-l

cprli] := IZ Wil - wij+1]:

-‘ i1

.‘ CPr{1) := 0;

Comment: The sum of adjacent products W{il: W{j] can Le
‘ obtained from CP[j] - CP[i] for 1 <i < j s N and hence

we can calculate the supporting weights easily.

Step 1 Apply the one-sweep algorithin to obtain a list of arcs.
o et this list be L.
' Comment: L contains (n-3) arcs which includes all potential
. h-arcs in the monotone n-gon, and these arcs are layered,
one above another.
Step 2 From L, remove those arcs which are not potential h-arcs;
I L. is ecmpty
then go to Step 6
else go to Step 3.
_ Step 3 Let the lowest arc in L be }12 , the one immediately above
4 | h2 be h3 » and so on:
;

Let the highest arc in 1. be h
P

Inscrt hl with weight W{1] below hz;

i Insert h with weipht W{[t] above h
ptl P

Conunent: hp is the ceiling of h

+1

.
i
[}
$
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Step 4 MONO-PARTITION (L.);
Comment: when returned from MONO-PARTITION, 1. will
contain all the cciling arcs with their descendants in the £-opti-

mum partition,

Step 5 Remnove h1 and th from 1.;

Step 6 Output L and stop.

This algorithm has been implemented in Pascal and the listing of

the computer program is given in Appendix I,

Lemma 5. Any arc which is deleted from the arc-list L in Step 2 of
the procedure MONO-PARTITION cannot be present in the £ -optimum

partition of the polygon,

Proof. There are two cases in which an arc is deleted from L.

(1) Its ancestors are deleted, It follows from the definition of the
ancestor-descendant relationship that it cannot be present in the
I -optimum partition of the polygon,

(2) It is the hR which satisfies the logical condition of Step 2 of the
procedure. Hence, in the subpolygon bounded below by hN and above by
hc, the partition with hR and its descendants costs more than or equal to
that of the fan, llence, the partition with h1 and its descendants is not

R

{ -optimum in the subpolygon and hR as well as its descendants should not

appear in the f -optimum partition of the whole polygon, B
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Lemma 6. After an arc hi has been processed, the subpolygon be-

tween hi and its ceiling is optimally partitioned.

Proof. The h-arcs remaining in the partition of the subpolygon are all

descendants of h. . By definition of the ancestor-descendant relationship,
i

the partition of the subpolygon is optimum. .
Lemma 7, Liet Vt be the maximum vertex, and h, ,h . h be

A N e 12

a sct of h-arcs in the partition such that

h/h /-.. /h. /h. ’

k' k-1 i+l j
and hk is the ceiling of hk—l s
th is the ceiling of hj ,

then the supporting weights of these h-arcs satisfy

h h ) <h.
N t P k PR J+1) .
s(h ) = s(h < Z S hj (9)

k- k-1

Proof. Assume that one of the inecqualitics is not satisfied, say

hj+2 h'%l
3
S<h. ) > 5( h. >

jtl J
Then if hj cxists h,” will also exist, h'll becomes a sonof h, . This
J J

coniradicts the assumption that h,

i+ is a ceiling of h.i . B
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« Lemma 8. Any arc which remains in L at the end of the procedure must
3 .
‘ be present in the { -optimum partition of the polygon, }
Proof. We can divide the h-arcs in L at the end of the procedure into two
i
groups: ;
i 1
A (i) those which are descendant of some other arcs in the output, and *
3 (ii) those which have no ancestor in the output. 4
F - By the definition of the descendant-ancestor relationship, the arcs in
S i
' group (i) must be present in the £ -optimum partition whenever their cor- :
- responding ancestors in group (ii) is present in the { -optimum partition.
.  Hence, we have only to show that all arcs in group (ii) must be present
. in the £-optimum partition. :
' i
Let Vt be the maximum vertex and the set of arcs in group (ii) J
’ 2 e e sy . ] . t h LA . h. . S.
be hk hk—l hJ+1 hJ such tha hk/ k-l/ /hJ+1/ j ince none
1 of these arcs has an ancestor, we must have
h ili s
k 28 the ceiling of hk-l
3 ' and hj+l as the ceiling of hj .
From the logical condition in Step 1 of the procedure, we have
1 b
: w > s J (10)
: 1 h,
g y
i From Lemma 7 and (10), we have
|
o h, h 3
? woo> 5 I e Ty Y k RO t
2 1 h, h h '
i ] k-1 k
%
¥ .
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i
i}
]

which imiplics that .

[ /by | by s j
> Lc<hk)+c<h )+---+C(hj )+H0(:-1)}

k-1

= the cost of the £ -optimum partition of the polygon.

In other words, for any arc hi in group (ii) of L, i=k,k-1,...,j+1,j,
all the arcs above hi in L must be present in { -optimum partition of the

. t t j
> +
upper subpolygon of hi. Since HO( l) C( J) HO(hl) , they all

should be present in the { -optimum partition of the monotone basic

polygon., B

Theorem 2. The partition obtained by the algorithm is f -optimum.

Proof. From Theorems 3 and 4 of Part I, we know that all the h-arcs
present in the £ -optimuwm partition are potential h-arcs and hence are
included in the arc-list L obtained by the one-sweep algorithm. It follows
from Lemmas 5 and 8 that all the arcs which are deleted from L cannot be
present in the f -optimum partition and all the arcs which remain in L must

be present in the f -optimum partition. Further, from Lemma 1, the




{ -optimum partition in any subpolygon bounded by two adjacent potential
h-arcs in L. must be a fan. Hence, the partition consisting of the¢ h-arcs
output by the algorithm and with fans in every subpolygons bounded by
two adjacent arcs in Lk must be £ -optimum. B

Let us examine how much time we spend in executing the
algorithm,

Step 0 and Step 1 each scans the polygon once, and hence takes
O(n) time. Since there are at most n-3 arcs in L., Step 2 also takes
O(n) time. Therec are thrce nested loops in the procedure. The inner-
most one is in Step 6, the middle one spans from Step 1 to Step 3, while
the outermost onc spans from Step 1 to Step 5. Whenever the innermost
loop is executed once, a potential h-arc is deleted from L. Whenever
the middle loop is executed once (i.e. the "then' part of Step 3 is exe-
cuted once), a potential h-arc is condensed into its father. Once an arc
is deleted or condensed, it will never be examined again. Since there
are at most n-3 potential h-arcs in 1., the total number of executions in
Step 2 and Step 3 is NO(n). The outcrmost loop will also be executed at
most (n-3) times. Ilence the whole algorithm will finish its work in O(n)

time,
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3. The Convex Polygon

There may be sceveral local maxinmum vertices ina general con-
vex polygon. Let us still draw the polygon in such a way that the global
minimum vertex is at the bottom, From Theorem 4 of part I, we know that

all potential h-arcs are still compatible in a general convex polygon. How-

8

; ever, unltike those in a monotone polygon, the pntential h-arcs no longer

~_. form a linear list, Instcad, they form a tree, called an arc-trce. In Fig, lla,
< ithere is a 12-gon with 6 polential h-arcs and they are labelled as hZ’ 113, h4, h5,

hé' and h7 . (Note that we also obtain V4-V3, V_,—V6 and V6—V8 from
the one-sweep algorithm. In order to have a simpler cxample, let us
assume that all these three arcs are unstable and hence are not shown
in Fig. 1la.) To get a better feeling of the arc-tree, we can redraw the

12-gon as shown in Fig, 11b, Again, we recgard Vl as a degenerated

as a degenerated arc h and V as a degenerated

arc hl’ v g 11

12

arc h9 .
The father-son relationship still holds for the h-arcs in a gen-
eral polygon, and we can also define supporting weights of the arcs in a
. similar way. The only difference is that the ceiling of a subpolygon may
consist of more than one arc. Before we can calculate the supporting
weight of any arc, we must process all the arcs above it, j.c. all the arcs

in its upper subpolygon. Hence, we can do a post-order traversal through

i the arc trce. Let us consider the [ollowing two examples, Again, for

simplicity, we assumec that all arcs have distinct positions in the cxamples,

)

i
)
1 45 4
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Fig. 11, A general 12-gon.




Example 3.

We {first compare

h h h
8 5 8
0 h5 0 fs 0 fs

v's

Ee Fig. 12. MNlustrations for Example 3.

12a, To find f5 .

Assume h4/f5 » we compare

h h h
5 4 5
H<)+H<>=H<>
Oh4 0f4 Of4

Fig, 12b. To find f‘;.




Assuine h3/f4 and fS/f4, we condense h‘5 into h4 ,

h h h h
8 5 4 8
0 h5 0 h4 0 f54 0 f54

or

ig. 12c. To {ind f54

Before we can process h3. we have to process h7 and h(> first. Hence,

the next comparison is:

h h h

9 7 9

H < ) + H ( ) = H ( )
0 h7 0 f7 0 f7




\\\{-7\

-

Fig. 12d. To find f7 .

Assume h()/f7 , we compare

h h h
‘ 7 6 7
5 I-I< )+H< )=H< )
o\h, o\f, o\f,

Fig. 12e. To find 1'6.

We have h3/f6 and f7/f6 , we condense h,’, into h() .

h h
110<h9) + 110<h7>+ uo<fh6) = no<fh9)
7 6 76 76

or
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Fig. 12f. To find f76 .

Assume h3/f76 and next we process the arc h_, using both h4 and h

3

6

as the cecilings of h3 )

o (h4'h6> .1 (h3> 4 (h4.h6)
0 h3 0 f3 0] f3

Fig. 12g. To find f3.
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Suppose hz/f3 and f 76

, we first condense h_ and h, into h3

54 f3 5 4

and we get

h8'h6 h3 h8.h()'
C h + I{O ¢ = HO £
3 544 543

Fig. 12h, To find f .

Now, hz/f543 and f76/f543' so we condense h_{, and h6 into h3 and

obtain

h b
hg g hy hg Ry
€\ * Ho\s = Ho\g

3 54763 54763

Fig. 12i, To find f5~1763'
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Assume hz/f‘54763 and we compare

. <h3) b (hz) - <h3>
0 h2 0 fz 0 fZ

£3 @ ” f3 " |
C\//////‘Ka//////w3 v’s C\ '

fa fa

Fig. 12j. To find fz.

Suppose - hl/fZ and f /fz, we condense h3 and its descendants into

54763
.' h2 and get
h8,h9 h2 } h8'h9
C h + HO P = HO p
2 547632 547632
fig

7, (%
\wf%//////@, 2 v's " @
7%/ &

: . fs47632 |

- ew e e e e e~ em em e

Fig., 12k, To find f547632'
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If hl /f the f-optimum partition of the whole polygon consists

547032"°
of all six h-arcs hZ' h3. h4, hS' hb’ and h? . If f547()32/hl , all six

h-arcs will be removed and the f -optimuwmn partition is a fan,

Example 4

We first compare

Fig, 13. Ulustrations for Example 4.
13a, To find fS .

Assume h4/f5 and we compare

h h h_:
5 4 5
0 h4 0 f4 0 f4

Fig. 13b. To find f4.
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Let ]'13/f4 and f4/f5 , SO we compare

h h h
H0<h9> + Ho<f7> = Ho<f9>
7 7 7

Fig. 13¢. To find f7 .

h, /h dw
6/ o, and we compare

h h h

7 6 1
H( >+H< >=H< >
Oh6 0 f() 0 f6

Fig. 13d. To find f() .

We have h3/f6 and I()/f7 , 50 our next comparison will be
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Fig.13e. To find £,.

Suppose hZ/f3 and f4/f3/f6, we condense h, into hg

he b h, hg,h
C h + HO f = HO ¢
3 43 43

Fj -
ig. 13f. To find f43.
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Assurne hz/f43 f /f6, and f43/f5, we proceed to process h

43

H (hB) + H (h2> = H (h3>
0 h‘2 0 IZ 0 1'2

2 ’

R 3

%//// U fl)

—-——--.-— _— e w—t - = e e e -

Fig., 13g. To find fz.

Assumie hl/fZ and f43/f2, we condensc h3 into h2

h5,h6 h2 hS'h()
C h + HO f = I-IO £
2 432 432

s/ @
/ / 7o

4’\3 ////,,
___fﬁa_?__.,__- L__ F#232 ____

Fig. 13h. To find £,




d

: , c h, as well as its desce s 1 .
Supposc f432/h1 We IreImove hl as well as its descendants h3 anc h‘1

Assume f6/f5 and fé/hl , WC remove h(‘ fromn the polygon. Now, we

have f7 /f5 and f7 /hl' 50 we remove h,{ from the polygon. Finally,

we have hl/fS' and the £ -optimum partition of the polygon consists of one

8 /h@;s\ @/ f9

h-arc hS .

C)

Fig. 13i, The optimum partition.

From the above two examples, we have the following observa-
tions.
(1) Before we can process a potential h-arc, wc have to process all
the arcs above it. Hence, we should do a post-order traversal, starting

at the root of the arc tree, i.e. the degencrated arc hl .

(2) Whenever we do a condensation or deletion, we always pick the
ceiling arc which has the highest floor first, i.e. the one with the

largest supporting weight. Hence, we should keep track of the order

of the ceiling arcs,




k k
_‘ p
g - . (3) Once a ceiling arc h_ of hi is removed or condensed, the ceiling
arcs of hj became the ceiling' arcs of hi and we have to update the 1

3 order of all the ceiling arcs of hi .
Onc way of keeping track of the order of the ceiling arcs is to ?,
T keep them in a priority queue.
;‘ Now, let us outline the algorithm for finding the optimum parti- j
"‘ tion of a general convex polygon. A

| L. Get all the potential h-arcs of the polygon by the onc-sweep :
1 - algorithm. (All the h-arcs form a tree, with the root at the |
3 bpttom. Let the arc-trec be T.) 1
; 2. Process the h-arcs, one by one, from the leaves to the root, (We

always process the children before we process the father, and we
always obtain the optimum partition of the subpolygon bounded below
by the arc being processed.)

3. let hR be the arc currently being examined, UR be the sct of arcs
immediately above hR' and hN be the arc irnmediately below hR
in T. If h_ is negative in the subpolygon bounded above by the

R

arcs in UR and below by hN , delete hR , elsc go to step 5.

4, Once hR and its descendants are dcleted, we examine the arcs in

UR to sce if we can delete miore arcs. If yes, we delete the arc

with the largest supporting weight; then we include its celing ares

into UR and repceat this step. Otherwise, we move to process the

next arc,




Now, hR is positive in the smallest subpolygon., If there »xists

some arc in U

R S2Y hj, such that

h

UR
S ) < the supporting weight of hj ,
R

we will pick the arc with the largest supporting weight in

condense it with its descendants into h_ and include all

UR’ R

its ceiling arcs into U Then we compare the cost of the partition

R’

with h

R and its descendants against that of the fan in the subpolygon

bounded above by the arcs in U and below by hN. If the fan is

R

£ -optimum in the subpolygon, we remove hR as well as all its

descendants from T, and we exarnine the arcs in U__ to sece if we

R

Otherwise, we examine the arcs in U

can delete any more arcs. R

to see if we can condense any more arcs.

U
Now, S (hR> Z the supporting weight of every arc in UR . The
"R
UR
arcs in U are the ceiling arcs of h_ and S < is the supporting
R R hR

weight of hR . We move to process the next arc,
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Before presenting the algorithm, let us describe a recursive

procedure to process the potential h-arcs of any subpolygon,

Procedurec PARTITION (ROOT)

s; Input: consists of a sct of potential h-arcs of a subpolygon. Thesc
arcs are arranged in the form of an arc tree, like the one
shown in Fig. 11b, The root of the tree is passed to the

procedure via the argument ROOT.

Qutput: consists of a set of the potential h-arcs which appcar in the 4
{ -optimum partition of the subpolygon. We can divide that
arcs into two t_m (i) those arcs which are descendants of
some other arcs in the set and (ii) those arcs which have
no ancestor in the set. The arcs in type (i) are con-
densed into their ancestors and can be traced out from the
arcs in type (ii). The arcs in type (ii) are called ceiling
arcs and are kept in a reduced arc tree. The root of the arc

trec is passed back to the caller via the parameter ROOT.

60

e e o




by

R

in T':

Ste pg L.et the arc at the root of the input arc tree be hN :
MIN-WEIGIHT ¢ = the weight of the minimum of the two
ice h
verlices of N’
T := an arc tree with only one arc, hN ;
Step 1 For each arc immediately above hN in the input arc-tree Do
= Begin
Step la Let the arc to be processecd be hR;
If there exists a non-dcgenerated arc above hR
then go to Step 1b
‘° else go to Step If;
1 Comment: hR is immediately above hN .
Step 1b PARTITION (hR);
Let the subtrce returned be T/
Commenl: Before processing hR » the subtrees of h1
are first processed recursively,
‘ . Step 1c Let UR be the sct of arcs immediately above
u
R
‘ Calculate S(hl > ;
' R
YR et
If S 2 MIN-WEIGIH]
hR

then go to Step 1d

elsc go to Step le.
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Step 1d

Step le

Remove hR from T';
while (there exists a non-degencrated arc, hj y 1N UR) and
(the supporting weight of hj z MIN-WEIGHT) Do
Remove hj from UR ;
Remove hj from T';
Include all ceiling arcs of hj into UR ;
end;

Insert the forest T/ into T such that all arcs in UR are
immediately above hN in T,

Go to Step 1i.

If (there exists a non-degencrated arc in UR) and (its sup-
porting weight > the supporting weight of hR)
then

Among all the arcs in U_, pick the one with maximum

R
supporting weight;

Let it be hj ;

Condense hj into hR and remove it from T’ ;
Include all ceiling arcs of hj into Ul{ ;
Fix up the trce T’/ so that all the ceiling arcs of h, arce
immediately above hR in T';

go to Step 1c;

end

+
]
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Begin
U

hR) as the supporting weight of h_ and all

Record S(
R R

arcs in U_ as the ceiling arcs of h,; insert T ' into T

R

R

so that hR is immediately above hN in T;

go to Step 1i ;

end.

Let hc be the degencrated arc above h_ ;

] R
- . h
o Calculate S( C) ;

hR

| he
3 1f s< )z MIN-WEIGHT
i he

go to Step 1g

go to Step 1h ,

Remove hR :

Insert hc immediately above hN in T,

go to Step 1i.

h

h

) as the supporting weight of hR and h_, as
R

Step 1h Record S( o

' the ceiling arc of hR; insert the subtrec with hR and h(.

into T so that hR is iminediately above hN in T,

End.

Return T with root stored in ROOT to caller,



Now, the dectails of the algorithm to find an optimum partition of

a convex polygon is presented.

i Algorithm I
3
[
] Input consists of n positive integers, which are the wcights of the

n vertices of an n-gon. W{[1] is the weight of the minimum
vertex and W[i+1] is the neighbor of W[i] of the n-gon going

in the clockwise direction,

OQutput consists of a tree of potential h-arcs which exist in the

£ -optimum partition of the n-gaon.

Step O For i := 2 stepl until N do

i-_‘l
cpli] : = 2 wil - wijnl;
S
ce(1] := 0
Comment:  The sum of adjacent products W{i]: W{j] can be

obtained from CP[j]- CP[i] for 1 <i<j< N.

Step 1 Apply the onc-sweep algorithm to obtain a trce of arcs. Let )~

this arc trne be T.

Il

‘ Cominent: T contains all polential h-arcs in the n-gon.
'

[ ‘ Step 2 From T, removc those arcs which arc not potential

h-arcs:

If T is empty
then go to Step 6.

else go to Step 3.




F
o

Step 3

Insert the degenerated arce hl with weipht WY o the
bottom of the tree, as the root of the tree;
Insert a degenerated are with the Jocal maximumm weight

at the tip of each corrcsponding branch of the arc trec.

PARTITION (hl);
Comment: h1 is the root of T; when returned from
PARTITION, T will contain all the ceiling arcs with their

descendants in the { -optimum partition,
Remove all degenerated arcs.

Output T and stop,

This algorithm has been implemented in Pascal and the list-

ing of the computer program is given in Appendix II,

Theorem 3. The partition of the general convex n-gon obtained by the

algorithm is { -optimum,

Proof.

Using arguments similar to those in Theorem 2, we can first

prove that all the potential h-arcs which are deleted from the arc-tree

cannot be present in the £ -optimum partition, then we prove that any arc
which is left in the arc-tree at the end of the algerithm must be present

in the { -optimum partition,

output by the algorithm and with fans in the subpolygons bounded by a

potential h-arc and the arcs immediately above it in the output arc-

{ree musi be f-optimum, W

65

Hence, the partition consisting of the h-arcs
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Let us examine how much time we spend in excecuting the algorithin,

Steps 0 and 1 each scans the polygon once, and hence takes O(n)
time. Since therc are at most n-3 arcs in T, Step 2 also takes O(n) time,
There will be a recursive procedure call for each arc in T (except the
leaf nodes). Inside each procedure call, there are two nested loops. The
innermost loop is the ''while' loop in Step 1d and the outer onec spans from
Steps lc to le. Whenever the innermost loop is executed once, a potential
h-arc is deleted from T. Whenever the outer loop is executed once (i.e.
the "then'' part of Step le), a potential h-arc is condensed into its father.
Once an arc is deleted or condensed, it will ncver be examined again. In
order to carry out the deletion and conde. :ation efficiently, we cannot
examine all the arcs in UR each time we go through the loop. lence, we
need to order the arcs in UR in a priority queue and it takes O(log n) to

update the qucue each time. lence, it takes O(n log n) time in executing

Step 4 of the algorithm. Steps 5 and 6 each takes O(n) time. Hence, the

whole algorithm takes O(n log n) time to find the f -optimum partition.
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4, A closer look at the optimum partitions

We now present some thecorems which enable the algorithm to
divide the polygon into several subpolygons and hence can improve the
average performance of the algorithm. These theorems have also been
mentioned in [4] without detailed proofs,

Let us consider the polygons where there are two or more

vertices with equal weights w, .

Lemma 9. For every choice of Vl, VZ’ ... (as prescribed in Part I), if

the weights of the vertices satisfy the condition

then VI-V2 exists in every optimum partition of the n-gon,

Proof. The lemma is true if Vl-V is a side of the n-gon. Hence, we

2

can assume that V_, V_ are not adjacent to the same side of the n-gon.

)
The proof is by induction on the sizc of the n-gon. The lemma is
true for a triangle and a quadrilateral. Assume that the lemma is true for
all k-gons (3 £ k £ n-1) and consider the optimum partitions of an n-gon,
By Lemma 3 of Part I, we know that there are at least two vertices
with degree two in each optimum partition of the n-gon, We have the
following two cases,
(i) In an optimum partition of an n-gon, onc of the vertices with degree

two, say Vi’ has weights larger than W, - In this case, we can form an

(n-1)-gon by removing Vi with its two sides. DBy induction assumption,

Vl'VZ is present in every optimum partition of the (n-1)-gon.
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(ii) Consider the complementary case of (i), i.c¢. all vertices with

degree two have weights equal to w_ in an optimum partition of the n-gon.

1

In other words, V1 and V2 arc the only two vertices with degrece two in
that optimumn partition, as shown symbolically in Fig. 14a, Note that
every arc in the optimumn partition must dissect the n-gon into two sub-

polygons in such a way that Vl' V., can never appear in any subpolygon

2

together, else there will be more than two vertices with degree two in
the optimum partition., In Fig. 14b. we show a partition of the n-gon in

which V1 and VZ are connected. Let us denote the n-2 triangles in Fig. 14a

’P’OIO’P

by 'Pl 2 n-2'

Except P1 and P , all the other n-4 triangles are

n-2

made up of one side and two arcs each, For each of these n-4 triangles,
we can find a unique triangle in Fig. 14b such that they both consist of
the same side. We use Pi' to denote the image of Pi in Fig. 14b., The

only two triangles left unmatched in Fig. 14b are VlVaVZ and V1V2Vi

and they are the images of P, and Pn , respectively. Let the cost of Pi

-2
be ci and the cost of Pi' be ci’. Since ci’ < ci for 1 <i < n-2, the

1

partition in Fig. 14b is cheaper than that in Fig. 14a and we have

contradiction. B
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(a) (h)

Fig. 14

Theorem 4, For every choice of Vl' VZ’ ... (as prescribed in Part I), if

the weights of the vertices satisfy the condition

W, =w,<w, s w, Sees S W
2 4 n ’

then every optimum partition of the n-gon must contain a triangle VIVZVp

for some vertex Vp with weight equal to w Note that if Wy =W < w

3 2 3

<w, S...% W then every optimum partition must contain the triangle

4

V]‘VZV3 since there is a unique choice of V

3"
Proof. Similar to Lemma 9, we can prove this thcorem by induction on the
size of the n-gon. The theorem is true for any triangle or quadrilateral

satisfying the above condition. Assume the theorem is true for all k-gons

{3 < k < n-1) and consider the optimum partitions of an n-gon.
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From Lemma 9, we know that Vl, VZ are always connected in every

optimum partition, Hence, without loss of generality, we can assume Vl' V2

to be adjacent to the same side of the n-gon, Again, we have the following
two cases.
(i) In an optimum partition, one of the vertices with degree two, say Vi ,

has weight larger than w

3° In this case, we can remove V,k6 with its sides and
i

form an (n-1)-gon. By induction assumption, every optimum partition of the

1 . . _ v ‘ _ .
(n-1)-gon contains a triangle VIVZVp for some vertex p where Wp w3

(ii) Consider the complementary case of (i), in an optimum partition of

the n-gon, all vertices with degree two have weights less than or equal to W,

Since Vl-V2 is a side of the n-gon, for n 2= 4, either V1 or V2 (but not both)

can have degree two. We have the following two subcases:

(a) If there are more than one vertex whose weight equals w_, we

3

can form an (n-1)-gon by removi..g one of those degree two vertices whose

weight equals w By induction assumption, every optimum partition of the

3
(n-1)-gon contains a triangle VIVZ\/p for some vertex Vp with w5 wa,

(b) There exists only one vertex of weight w In this case, there

3¢
must be only two vertices with degree two in the optimum partition of the

n-gon. These two vertices are V3 and either V1 or VZ’ Without loss of

generality, we can assume V1 has degrece 2. The situation is shown symboli-

cally in Fig, 15a. Again, every arc in the optimum partition must dissect the

n-gon in such a way that V1 and V3 can never appear in any subpolygon to-

gether, In Fig. 15b, we show a partition containing the triangle VIVZVB .

Using arguments similar to those in the proof of Lemma 9, we can show that

the partition in Fig., 15b is cheaper and we obtain a contradiction, W




(a) | (1)

Fig. 15

s @i ke o owbadn ab de Cab eged B -

Theorem 5. For every choice of Vl' VZ' ... (as prescribed in Part I), if the

weights of the vertices of the n-gon satisfy the following condition,

= = ees = < < oo £
Wy TV Wk T Wk Ya

for some k, 3 <k €£n, then every optimum partition of the n-gon contains

eahain aimden e B 4 i e o i eath i b e

the k-gon Vl-VZ- -Vk.

Proof. The proof is by induction on ti. of the n-gon. The theorem is

i true for any triangle and quadrilateral. Suppose the theorem is true for all

polygons with (n-1) sides or less and consider the optimum partitions of an

n-gon.

't From Lemma 3 of Part I, there exist at least two vertices having "

degree two in every optimum partition. We have the following two cases, R
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i
| (i) In an optimum partition of the n-gon, one of the vertices with degree

two, say V., has weight larger than w In this case, we can remove the
i

1

vertex Vi with its two sides and obtain an (n-1)-gon. By induction assumption,

every optimum partition of the (n-1)-gon contains the k-gon Vl—VZ- ces -Vk .
(ii) Consider the complementary case of (i), i.e., all the vertices with

degree two have weights equal to w, in an optimum partition. Let two of

1

these vertices be Vi. Vj. We have the following two subcases:
(a) k> 3. We first form an (n-1)-gon by removing V_ and its two sides,
1

There are (k-1) vertices with weights equal to w, in the (n-1)-gon, By induc-

1

tion assumption, every optimum partition of the (n-1)-gon contains the (k-1)-
gon which includes Vj as one of its vertices, Since Vj has degree two in the
optimum partition, its two neighboring vertices, say Vx and Vy' must also !

have weights equal to w, and the arc Vx-VY exists in the optimum partition

1

(Fig., 16). Similarly, we can remove the vertex Vj with its two sides VJ,-Vx

and Vj-VY and form an (n-1)-gon. By induction assumption, every optimum
partition of the (n-1)-gon contains the (k-1)-gon formed by the (k-1) vertices o

with weights equal to w_ in the (n-1)-gon and Vi is one of the vertices in the

1
(k-1)-gon. Now, by pasting the triangle VijVy and the (k-1)-gon together,

: we form a k-gon which includes all the vertices with weight equal to w, in

the n-gon and this k-gon is contained in the optimum partition of the n-gon.
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Fig. 16

= : = = S e
(b) k = 3, In this case, we have w, =W, w3’<w4 SWn .

Without loss of generality, we can assume V1 and V_ both have degree two in

2

an optimum partition. Again, we can form an (n-1)-gon by removing V1 and

its two sides. By Lemma 9, V, and V3 are connected in every optimum

2

partition of the (n-1)-gon., Since V2 has degree two, VZ-V3 must be a side

of the n-gon. Next, we can remove V_ with its two sides and form an (n-1)-

2

gon, By Lemma 9, V_,V_ are connected by a side of the n-gon. The situa-

1" 3

tion is shown in Fig. 17a. Then, the partition in Fig. 17b is cheaper because

<
Tias P Thay < Tiae * Tazy -

C(wl.wx.....wy)<C(W3.Wx.....wy) - -
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Fig, 17

Now, whenever we have three or more vertices with weights equal
to w, in the n-gon, we can decompose the n-gon into subpolygons by forming
the k-gon in Theorem 5. The partition of the k-gon can be arbitrary, since
all vertices of the k-gon are of equal weight. For any subpolygon with two

vertices of weights equal to w,, we can always apply Theorem 4 and decom-

1
pose the subpolygon into smaller subpolygons. Hence, we have only to

consider the polygons with a unique choice of Vl. i.e., each polygon has
only one vertex with weight equal to W,
Because of Theorems 4 and 5, Theorems 1 and 3 of Part I can be

generalized as follows,

Theorem 6. For every choice of Vl. V,.... (as prescribed in Part I), if the

2

weights of the vertices satisfy the condition

w, < < g e <
1 V2= VW, “h'

then VI-V2 and VI-V3 exist in every optimum partition of the n-gon. W
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Theorem 7. Let Vx and Vz be two arbitrary vertices which arc not adjacent
in a polygon, and VW be the smallest vertex from Vx to Vz in the clockwise
manner (V #V ,V # V ), and V be the smallest vertex from V to V

w x W z y z x
in the clockwise manner (Vy # v, Vy # V_). This is shown in Fig. 18

where we assume that Vx< Vz and VY < Vw . The necessary condition

for Vx-Vz to exist as an h-arc in any optimum partition is

w <w =w <w ., |
y x z w

oV
- Ak~

4 \
’ \
’ .
/ .
N (w \V
Vy{ Wy ) RE
~ -’ i
[ {
\‘ "
V-.(WY)—OI
Vy
Fig, 18

From Theorem 7, we know that any arc which exists as an h-arc in
some optimum partition must be a potential h-arc. In other words, the
h-arcs in every optimum partition will be gencrated by the one-sweep
algorithm, Hence, by modifying the condition in steps lc and ld of the
procedurc Partition to favor partitions with morec h-arcs, we can obtain

other optimum partitions which consist of more h-arcs than the £-optimum
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Conclusion
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The problem to find the optimum order of computing a chain of
matrices has been around for several years [2]. It has been used as a
typical example to illustrate the dynamic programming technique in many
textbooks [1][3]. In this paper, a new approach is used to solve the
problem. Instead of tackling the matrix chain product problem directly,
it is transformed into the problem of partitioning a convex polygon and a
tailor-made algorithm for finding the optimum partition is developed.
The algorithm takes O(n log n) time and O(n) space. For those who want
to trade optimum solution for shorter execution time, an O(n) heuristic
algorithm has been presented in [5]. This heuristic algorithm is very
simple to implement and its error bound given explicitly as a function
of the number of sides of the convex polygon and the ratio of the
weights of the largest vertex to that of the smallest vertex. The

worst error ratio is less than 15%,
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Appendix ]

PROGRAM OPTIMUM_ALGORITHM_FOR_A_MOUNOTOLE_BASTC_POLYGON;

CONST MAX_SIZ4E = 127;

TYPE POS_INTEGER 0 .. 32767; (limited by the word-
size of the computer)
"LIST_ELEMENT;

PACKED RECORD

LIST_PTR
LIST_ELEMENT

HEAD, TAIL : POS_INTEGER;
HEAD_SMALL : BOOLEAN;
SUP_WEIGHT,
COSsT,
BASE_PRODUCT,
SIDE_PRODUCT : INTEGER;
DESCENDANT, NEXT : LIST_PTR
END;
VAR W, CP : ARRAY [1..MAX SI%E] OF INTEGER;
LIST, LEAF: LIST_PTR;
N : POS_INTEGER;

SEGMENT PROCEDURE INITIALIZING;

(******k***************************************k***********)
(* Handles the inputs and initializing all the glnbal *)
(* variables. *)
(**********************************************************)

VAR I : INTEGER;

BEGIN
WRITELN ('a linear algnrithm tn find all the h-arcs in',
'the optimum');
WRITELN (' partition of a monntone basic polygon',
Yo(1/2/80) ") ;
WRITELN;

{obtain the inputs}
WRITE ('Please enter the size of the pnlygon (botwecn 3°',
'and ' ,MAX_SIzZk-1,"'): ')
RFEADIN (N);
WRITELN;
WRITELN ('Nnw, starting from the smallest vertex and in',
' the ')
WRITELN (' clnckwise directinn, onter the weoights of',
' the vertices:');
FOR I := 1 TO N DO READ (W[I]);
READLN;
WRITELN;
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{calculate the cumulative aujacent

products around the pnlygon}
crll] :== O;
FOR 1 := 2 TO N DO CP[I] := CP{I-1] + W[I-1] * W[I];

{initialize the psuedn arc}
NEW (LEAF);
WITH LEAF~ DO
BEGIN
BASE_PRODUCT :
SIDE_PRODUCT
END;

o

0;
0;

{set up the output headings}
WRITELN ('the potential h-arcs in the partitions are : ');

END; {initializing}

SEGMENT PROCEDURE ONE SWEEP (VAR L : LIST PTR);

(*****t**************T*******************T*****************)
(* Sweep the pnlygon once, collects all potential h-arcs, *)
(* puts them in a list. The address of the head of the *)

(* list is stored in L. *)
(**********************************************************)
VAR STACK : ARRAY [1..MAX SIZE] OF

POS_INTEGER;
TOP_ELEMENT, SECOND_ELEMENT,
CURRENT, TOS : POS_INTEGER;
P, ARC_LIST : LIST_PIR;

PROCEDURE PUSH (C : INTEGER);
(***************************************t****************)
(* Pushes the index C onto the stack and updates the *)
(* wvariables TOS, TOP ELEMENT, and SECOND ELEMENT. *)
(*********************T*******************?**************)
BEGIN

STACK[T0S] := C;

SECOND_ELEMENT := TOP_ELEMENT;

10P_ELEMENT := C;

TOS := TO0S - 1;
END; {push}

PR S ‘R Y
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PROCEDURE POP STACK;
(Rh Rk Rk kAR kR E XK RRR KRR KRR R KRR KK AR AR KKK KRR A XKk kA KA KA Kk Kk k)

(* Pops the top eclement off the stack and updates the )
4 (* variables T0S, TOP ELEMENT, and SECOND ELEMENT. *)
F (***************k*****?*******************T**************)
3 BEGIN

' TOS := TOS + 1;
3 TOP_ELEMENT := SECOND_ELEMENT;
4 SECOND_ELEMENT := STACK([TOS + 2];
END; {pop_stack}

(*****************************************************-k****)
.3 (* One-sweep begins here. *)
l - (**********************************************************)
X BEGIN

{initialize the local variables}

TOP ELEMENT := 0;

. SECOND_ELEMENT := 0;
‘ STACK [N+1] := 0;
TOS := N;

ARC LIST := NIL
3 PUSH (1);
| PUSH (2);
? CURRENT := 3;

-

{scan thraugh the polygon in the clockwise direction}
WHILE CURRENT < N DO
IF (W[SECOND_ELEMENYT] <= W[TOP_ELEMENT]) AND
(W[TOP_ELEMENT] > W[CURRENT])
THEN
BEGIN
NEW(P) ;
WITH P~ DO
BEGIN
HEAD := SECOND_ELEMENT;
TAIT, := CURRENT;
HEAD_SMALI, := W(HEAD] <= W[TAIL];
BASE_PRODUCT := W[HEAD] * W[TAIL] ;
SIDE_PRODUCT := CP(TAIL] - CP([HEAD];
DESCENDANT := NI1L;
NEXT := ARC_LIST;
END;
ARC_LIST := P;

POP_STACK;

IF 1708 >= (N-1) {thcre are less than 2
elements on the stack)
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THEN
BEGIN
PUSIHE (CURRENT) ;
CURRENT := CURRENT + 1;
END;
END
ELSE
BEGIN
PUSH (CURRENT) ;
CURRENT := CURRENT + 1;
END;

WHILE (TOS <= (N-3))
AND (W{SECOND_ELEMENT] <= W[TOP_ELEMENT])

AND (W[TOP_ELEMENT] > W([N]) DO

BEGIN
NEW(P) ;
WITH P" DO
BEGIN
HEAD := SECOND_ELEMENT;
TAIL := N;
HEAD_SMALL := W[HEAD] <= W[TAIL];
BASE_PRODUCT := W[HEAD] * W[TAIL];
SIDE_PRODUCT := CP{TAIL] - CP[HEAD];
DESCENDANT := NIL;
NEXT := ARC_LIST;
END;
ARC_LIST := P;
POP_STACK;
END;

:= ARC_LIST;

L
END; {nne_sweccp]
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SEGMENT PROCEDURE MONO_PARTITION (VAR L : LI1ST PYTR);
(Kr AR R K KRR KRR KRR KA KR TR KR KRR K AR I KRR KRR KA AR I AT AR A KRR Kk Kk k)

(* Obtaing all the h-arcs in the optimum partition of the ¥)
(* polygon and returns them in a list. The address of *)
(* the hcad of the list is stoared in L. *)

(**********************************************************)

FUNCTION FAN COST (HR, HC : LIST PTR) : INTEGER;

(***********T***********k******k?*********k****k*k*******)

(* Calculates the cnst of the fan of the subpnlygon *)
A (* bounded above by HC and below by HR. *)

k' (Rhhkhkhhkkkh kR AR KRR KA KRR KA RAR KK AR KRRk hhkhkkhhkk hhhkk kK k&)
VAR TEMPl, TEMP2 : INTEGER;

: BEGIN
3 TEMP1 := HR" .SIDE_PRODUCT - HC" .SIDE_PRODUCT
r + HC” .BASE_PRODUCT;
WITH HR™ DO B
3 IF HEAD_SMALL
e THEN
- BEGIN
4 IF HEAD = HC  .HEAD
THEN TEMP2 := HC" .BASE_PRODUCT
& ELSE TEMP2 := CP[HEAD+1] - CP[HEAD];
 ° FAN_COST := (TEMP1l - TEMP2) * W([HEAD];
3 END
= ELSE
ki BEGIN
IF TAIL = HC” .TAIL
THEN TEMP2 := HC  .BASE_PRODUCT
ELSE TEMP2 := CP[TAIL] - CP[TAIL-1];
FAN_COST := (TEMPl - TEMP2) * W[TALL];
END;
END; {fan_cost]

FUNCTION SUPPORTING WETIGNT (HK, HC : LIST PTR) : INTEGHER;
(**k****t**********?*******i*************?k*****k********)
(* Find the supporting weight of the subpnlygon bounded *)
(* above by HC and below by HR. *)
(********************************************************)

VAR Y : INTEGER;

BEGIN
{calculate the denominator)
Y := (HR".SIDE_PRODUCT - HR™.BASE_PRODUCT)
T= (IICT.SIDE_PRODUCT - HC™ LBASE_PRODUCT) ;

{calculate the SUPPORTJNG_WHLGHT}
SUPPORTING_WEIGHT := (HR".COST + ¥ - 1) DIV Y;
{ceiling function}
END; {suppnrting_weight]
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PROCEFDURE REMOVE (VAR S : LIST PTR; MIN : INTEGER);
(*iAkkkk**k*h**kiik**ii*hkil**T*AAiii*kAAAkAAAAhAAAA**Ak*)
(* Removes all the arcs in S whose SUP_WEIGITLS are equal to*)

(*or larger than MIN from thce list. *)
(*****t********i**t***k*kt*k*kkk*t**************i**k*i*i*)

VAR NOT_DONE : BOOLEAN;

BEGIN
NOT_DONE := TRUE;

WHILE NOT_DONE DO

IF S = NIL
THEN NOT_DONE := FALSE
ELSE

IF S”.SUP_WEIGHT < MIN

THEN NOT_DONE := FALSE

ELSE S := S” .NEXT;
END; {remove}

PROCEDURE SUB PARTITION (VAR S : LIST PTR; MIN : INTEGER);
(************?***********************T*******************)
(* Finds the optimum partition of the Subpolygonbounded ¥*)
(* below by the pntential h-arc at the hecad of S. The ¥*)
{* h-arcs in the optimum partition of the subpolygon *)
(* 1is kept in a list with S pointing to the head of *)
(* the list, *)
(********************************************************)
VAR TEMP : INTEGER;

TEMP_PIR : LIST_PTR;

NOT_DONE : BOOLEAN;

BEGIN
IF S" ,NEXT <> NIL
THEN
BEGIN
IF 8" ,HEAD SMALL
THEN TEMP := W[S™.HEAD]
ELSE TEMP := W[S ™ .TAIL];
SUB_PARTITION (S™.NEXT,TEMP); {S" .NEXT may become
N1I. when return
from SUB_PARTITOW}
END;

IF S”  NEXT = NII

THEN TEMP_PTR := LFAF {S is the last avce in the list}
{LEA is a psucds are with
both LEAF" BASE_PRODUCYT and
LEAF" .S1DE PRODUCYT equal to NIL}

ELSE TEMP_PTR := S™ .NEXT; -
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$7.CO8T := FAN_COST(S,TEMP_PTR);
NOT_DONE := TRUF;
WHITE NOT_DONE DO
BEGIN
S” .SUP_WEIGHYT := SUPPORTING_WEIGHT (S, TEMP_PTR) ;

IF $".SUP_WEIGHT > = MIN {tn sce if the partition is
optimum in the subpnlygon}

THEN
BEGIN

_ REMOVE (S,MIN); {delete all h-arcs not in the
-, nptimum partition of the

k. subpnlygon}
- NOT_DONE := FALSE;
F END
. ELSE
i BEGIN
IF S" .NEXT <> NIL
THEN
. IF S” .NEXT" .SUP_WEIGHT <= S" .SUP_WEIGHT
: THEN NOT_DONE := FALSE
- ELSE -
BEGIN {condense S" .NEXT into &}
TEMP_PTR := S" .NEXT;
S” .NEXT := TEMP_PTR” .NEXT;
§7.COST := S".COST + TEMP_PTR" .COST;
TEMP_PTR™ .NEXT := S” .DESCENDANT;
S” .DESCENDANT := TEMP_PTR;
IF S” .NEXT = NI
THEN TEMP_PTR := LEAF
ELSE TEMP_PTR S” .NEXT;
END
ELSE NOT_DONE := FALSE;
END;

e

3 END;
K END; {sub_partitionn}

BEGIN
SUB_PARTITION (L,W[1]);
END; {monn_partitionn}




PROCFDURE WRITE_LIST (L : LIST P¥R; MIN, INDENT : INTEGER
(RRAAF IR IR AR AT R AR Rk kKRR A AR AR R AR AR KA R RN Rk Rk hkhh ke hhkh k&

(* bisplays the h-arcs in the list pninted by I,
(********‘k**k*********************************************

VAR TEMP : POS_INTEGER;

)
*

i
*
*
*

BEGIN
WHILE L <> NIL DO
BEGIN
IF L" .HEAD_SMALL
THEN TEMP := L”.HEAD
ELSE TEMP := L" ,TAIL;
IF TEMP <> MIN
THEN WRITELN (' ':INDENT,L" .HEAD,' ':3,L" .TAIL);
WRITE_LIST (L".DESCENDANT,TEMP, INDENT+3);
L := L" .NEXT;
END;
END; {write_list}

BEGIN {main program begins here}
INITIALIZING;
ONE_SWEEP (LIST);
MONO_PARTITION (LIST);
IF LIST <> NIL
THEN WRITE_LIST (LIST,1,3)
ELSE WRITELN (' ':3,'NIL');
END. {main program}
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Appendix I

PROGRAM OPTIMUM PARIITION_OF_A_GENERAL_CONVEX POLYGON;

127; { the maximum number nf vertices in
a polygon is 126}
32767; {the largest integer in the machine}

CONS'T" MAX_SIZE

1l

MAX_INT

1 TYPE POS_INTUGER
. LIST_PTR
‘ LIST_ELEMENT

0 .. MAX_INT;
"LIST_ELEMENT;
PACKED RECORD

niiuaniihii ek

HEAD : POS_INTEGER; a
: STAY : BOOLEAN; 3
7 TAIL : POS_INTEGER; 3
g HEAD_SMALL : BOOLEAN; 3
NEXT : LIST PTR
END;
2 TREE_PTR = "TREE_ELEMENT;
- TREE_ELEMENT = PACKED RECORD
: HEAD, TAIL : POS_INTEGER; ‘
5 HEAD_SMALL : BOOLEAN; i
SUP_WEIGHT, k
TREE_COST,
TREE_BASE_PRODUCT, f

TREE _SI1DE _PRODUCT,
LOCAT,_COST,
LOCAIL_BASE_PRODUCT,
LOCAI_SIDE_PRODUCT: INTEGER;
DESCENDANT, NEXT,

H_ARC, V_ARC : TREE_PIR;

LIST LINK : LIST_PTKR;

DEPTH : INTEGER
END;

{V_ARC and H_ARC are usecd in two
different ways : (1) they are
uscd to link the unprocessced avcs

’ together to form an arc-tree; and
(2) they are used as the left
link and the right link of the

‘ processcd arcs in the leftist

‘ tree for the priority gqueuc, }

; VAR W, Cp

LIST1, LISTZ2
V_IREH, H_TREE
N

ARRAY [l..MAX_SIZE] OF INTEGER;
LIST_PIR; .
TREE_PTR; -
POS_TNTEGER;




Y Cal

SEGMENT PROCEDURE INITIALIZING;

(*********************************************k**k*****t***)
(* Handles the inputs and initializing all the globual *)
(* wvariables. *)
(*******************k********i************#*******tk*******)

VAR I : INTEGER;

BEGIN
WRITELN ('a linear algnrithm to find all the h-avcs in');
WRITELN (' the optimum partition of a convex pnlyygnn',
! (7/16/80) ") ;
WRITELN;

{rbtain the inputs}
WRITE ('Please enter the size of the pnlygon (between 3°',
' and ',MAX_SIZE~1,'): ');
READLN (N);
WRITELN;
WRITELN ('Now, starting from the smallest',
' vertex and in the ');
WRITELN (' <clockwise direction, ',
: 'enter the weights of the vertices:');
FOR I := 1 170 N DO READ (W[I]);
READLN;
WRITELN;

{calculate the cumulative adjacent
products around the polygon}

TO N DO CP[I] := CP[I-1] + W[I-1} * W[I};

{set up the nutput headings} ,
WRITELN (‘'the pntential h-arcs in the partitions are : ');

END; {initializing}

87

- -




SEGMENT PROCEDURE ONE SWEEP (VAR [, : LIST PTR);

(**tk**l-kkiA‘kk**k*k'kk-f*****-kkiilkik'kkktk;\-‘A*k*)\'**AA***kkk*k)
(* Sweep the polyygon once, collects all potential h-arcs, *)
{(* puts them in a list, The address of the head of the *)

(* list is stored in L. *)
(i******t***********************t*****k*****‘k*************k'
VAR STACK : ARRAY [1l..MAX SIZE] OF

POS_INTEGER;
TOP_ELEMENT, SECOND_ELEMENT,
CURRENT, TOS : POS_INTEGER;
P, ARC_LIST : LIST_PIR;

PROCEDURE PUSH (C : INTEGER);
(******‘k*****************************************‘k*******)
(* Pushes the index C ontn the stack and updates the *)
(* wvariables T0S, TOP_ELEMENT, and SECOND ELEMENT. *)
(‘k********************_‘k_*******************?*******k******)
BEGIN
STACK{TOS] := C
SECOND_ELEMENT
TOP_ELEMENT :=
708 := 1T0S - 1;
END; {push}

1= TOP_ELEMENT;
C;

PROCEDURE POP STACK;
(************T*******************************************)
(* Pops the top element off the stack and updates the *)
(* variables T0S, TOP_ELKMENT, and SECOND ELEMENT. *)
(*****t***********************************;**************)
BEGIN

TOS := T0S + 1;

TOP_ELEMENT := SECOND_ELFEMENT;

SECOND ELEMENT := STACK([TOS + 2);
END; {pnp_stack)

BEGIN {one swecp begins here}
{initialize the lncal variables}
TOP_ELEMENT := 03
SECONU_ELHMHNT := 03
STACK([Nt1} := 0;

TOS := N;

ARC_LI1IST := NIL;

PUSH (1)

PUSH (2);
CURRENT := 33
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{scan through the pnlygon in the clockwise direction}
WH1LF CURRENT < N DO
I (W[ESI'?C()NI)‘_I'Il.h‘MliN'l'] < w['l‘()l'__l-)l.l'iMl-‘,N'J‘l) AN
(W[TOP_ELEMHNT] > W[CURRENT])

THEN
BEGIN
NEW(P) ;
WITH P” DO

BEGIN
HEAD := SECOND_ELEMENYT;
TAIL := CURRENT;

STAY := FALSE;
HEAD_SMALL := W{HEAD] <= W[TAILJ};
NEXT := ARC_LIST;
END;
ARC_LIST := P;

POP_STACK;
IF 708 >= (N-1) {there are less than
2 elements on the stack}

THEN
BEGIN
PUSH (CURRENT) ;
CURRENT := CURRENT + 1;
END;
END
ELSE
BEGIN

PUSH (CURRENT) ;
CURRENT := CURRENT + 1;
END;

WHILE (TOS <= (N-3))
AND (W[SECOND_ELEMENT] <= W[TOP_ELEMENT])

AND (W[TOP_ELEMENT] > W{N]) DO

BEGIN
NEW(P);
wirn p° DO

BEGIN
BEAD := SECOND_ELEMENT;
TAIL := N;
STAY := FALSE;
HEAD_SMALL := W{HEAD] <= W[TALL];
NEXT := ARC_LISYT;
END;

ARC_LIST := P;
POP_STACK;
END;

L := ARC_LIST;
END; {one_swecep}
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SHEGHENT PROCEDURE BUILD_TREE (VAR [ : LIST _PTR;

VAR VI, HT : TREE PIR; FIRST, LAST, MIN : POS INTEGER) ;
(*kkkir'kk*kl***********?***ikAkk***‘k*kkk'kk**'kk****k-k-k*kkA‘**k)
(* Traces all the arcs in the list pninted by L and *)
(* build an arc-tree with the root pninted by T. *)
(****k******‘k******k*************************************t*)

VAR NO_DONE : BOOLEAN;
P : TREE_PTk;
Q : LIST_PTR;

BEGIN
NOT_DONE := TRUE;
VT := NIL;

HT := NIL;

WHILE NOT_DONE DO
IF L = NIL
THEN NOT_DONE := FALSE
ELSE

IF (LA.HEAD < FIRST) OR (L".TAIL > LAST)
THEN NOT_DONE += FALSE
ELSF
BEGIN
Q := L" .NEXT;
IF L™ .HEAD <> 1
THEN
BEGIN
NEW (P);
WITH P~ DO
'BEGIN
HEAD :=
TAIL :=
HEAD_SMALL L .HEAD_SMALL;
DESCENDANT NIL;
DEPTH := 1;
LIST_LINK := L;
{LOCAL_COST, LOCAI_BASE_PRODUCT,
LOCAL,_S1DE_PRODUCT, TREE_COST,
TREH_BASH_PRODUCT, TRHE_SIDE_PRODUCT,
H_ARC, and V_ARC are undefined at this
point }
IF (HEAD_SMALL AND (HEAD = MIN)) OR
(NOT HEAD_SMALL AND (TAIL = MIN))
THEN
BEGIN
NEXT = VI
vVl := P;
END
ELSE
BEGIN
NEXT :=
HT := P;
END;

iy,
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IF HEAD SMALI
THEN BUTLD TREE (0,V_ARC,H_ARC,
HEAD FALL, HEAD)
ELSE BUILD_TREE (Q,V_ARC,H_ARC,
- HEAD,TAIL,TAIL) ;
{nnte that there will be at most one aro
in the V_ARC list but may be several arcs
in the H_ARC list }
END;
END;
L := Q;
END;
END; {build_tree}

SEGMENT PROCEDURE POLY PARTITION (VAR T : TREE PTR);

(*********************T************'k**********T************)
(* To find all the h-arcs that are present in the optimum *)
(* partition of the polygon and returns them in the arc- *)
(* tree pointed by T. *)
(**********************************************************)

PROCEDURE FAN_COST (T : TREE_PTR);
***************************T***********i****************)
(* To find the cost of the fan of the subpolygon bounded?*)
(* Dbelnw by the arc pointed by T and above by the arcs *)
(* pointed by 17 .H ARCs and 71" .V arcs, *)
(******************T*************?***********************)
VAR X : POS_INTEGHR;
Y, 81, S2 : INTEGER;

BEGIN
Wil 1T° DO
BEGIN
IF HEAD SMALL
THEN -
BEGIN
IF V ARC = NIL
THEN
BEGIN
X := HEAD + 1;
S1 := CP[X] - CP{HEAD]};

END
BEGIN

X 1= V_ARCT .PATL;

S1 := V_ARC™.TREE_BASE_PRODUCY;
END;
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S$2 := (CP[TAIL] - CP(X]);
Y := W{HEAD];

END
ELSE
BEGIN
IF V ARC = NIL
THEN
BEGIN
X := TAIL - 1;
S1 := CP(TAIL] - CP(X];
END
ELSE
BEGIN

X :=V ARC .HEAD,
S1 := V ARC” . TREE__ BASE__ PRODUCT ;
END;
S2 := (CP{X) - CP[HEAD]);
Y := W[TAIL];
END;

IF H_ARC <> NIL
THEN S2 := $2 - H_ARC .TREE_SIDE PRODUCT
+ H ARC . TREE_BASE _PRODUCT;
{all the SIDE PRODUCTs and the BASE _ PRODUCTS are
added tngether and stored in the root of the
leftist tree pointed by H_ARC }

LOCAL_COST := S2 * Y;
LOCAL_SIDE_PRODUCT :
LOCAL BAQF PRODUCT
END;
END; {fan_cost]

Sl + S2;
WIHEAD] * W[TAIL];

mn

PROCKEDURE SUPPORTING_WEIGHT (T : TREE PTR) ;

(**k*k***************************************************)
(* T» find the suppnrting weight of the arc pointed by T*)
(* with respect to the subpnlygon bounded below by the *)
(* arc pointed by T and abave by the arcs pointed by *)
(* the T .H_ARC and T .V_ARC, *)
(***********T************T*******************************)

VAR D : INTELGER;

BEGIN
WI'tH 17 Do
BEGIN
D := (LOC/\[.__S1|)[‘]“PI{OI)UC'[‘ - LOCAIL_BASE PRODUC'I');
SUP WBICHT := (LOCAI COST + D -~ l) D1V D;
- - (ceiling function}
END;

END; (suppnrting_weight}
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FUNCTION MERGE (T1, T2 : TRl PTR) : TREE PTR;
(FA IR ARk Ik kR Rk Kk kAR AR KK AT Rk KA Ak kAKX FAA KKK KKK A KA KK K &)

(* Mcerges two leftist trecs into one and rceturns 1t In *)

(* MERGE. *)
(*******************t*******k**************t*************)
VAR TEMP_PTR : TREE_PTR;

TEMP_COST, TEMP_BASE_PRODUCT,

TEMP_SIDFE_PRODUCT : INTEGER;
BEGIN

IF T2 = NIL
THEN MERGE := T1
ELSE
IF Tl = NIL
THEN MERGE := T2
ELSE
BEGIN
TEMP_COST := T1" .TREE_COST + T2  .TREE_COST;
TEMP_SIDE_PRODUCT := T1.TREE_SIDE_PRODUCT
+ T2  .TREE SIDE PRODUCT;
TEMP BASE PRODUCT := T1 " .TREE BASE PRODUCT
- - + 172" .TREE_BASE_PRODUCT;

-

IF Tl .SUP_WEIGHT < TZA.SUP_WEIGHT
THEN
BEGIN
TEMP_PTR := T1;
Tl := 12;
T2 := TEMP_PTR;
END;

WIiTH T17 DO
BEGIN
H_ARC := MERGE (H_ARC,T2);
{H_ARC never cquals NIL at this point}
IF V_ARC = NI
THEEN
BEGIN
V_ARC := H_ARC;
H ARC := NIL
END™
ELSE
BEGIN
IF V_ARCT.DEPTH < H_ARC™ .DEPTI
THEN B
BEGIN
TEAP_PTR := V_ARC;
V_ARC := 0_ARC;
H_ARC := TEMP_PTR;
END; -
DEPTH := H ARC™.DEPTH + 1;
END; -
TREE_COST := TEMP_COST;
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TEMP _SIDE_PRODUCT;

TREE_SIDE_PRODUCT
TEMPTBAGE PRODUCT ;

TREE_BASF_PRODUCT
END;
MERGE := T1;
END;
END; {merge}

nou

FUNCTION CONDENSE (T : TREEK_PTR; MIN : INTEGER) : BOOLEAN;
(**************************T**********************k*k****)
(* CONDENSE 1is set to false 1if T = NIL or T .,SUP WEIGHT *)
(* <= MIN - *)
(********************************************************)
BEGIN

IF T = NIL

THEN CONDENSE FALSE

ELSE CONDENSE : T“.SUP_WEIGHT > MIN;
END; {cnndense}

PROCEDURLE COMBINE (VAR T : TREF_PTR; V_FLAG : BOOLEAN) ;

(********************************************************)
(* If V._IFLAG, it combines the arc pninted by T  .V_ARC *)
(* into the arc pointed by T, else it combines the arc *)
(* pointed by 17 .H_ARC into the arc pointed by 7. In *)
(* either case, the arc tn be combined is deleted frowm *)
(* the corresponding leftist tree and put into the *)
(* DESCENDANT list of the pavent, *)
(***************************************************k***k)

VAR TEMP_PTR : TREE_PTR;

BEGIN
IF V_FLAG
THEN
BEGIN
TEMP_PTR := T" .V_ARC;
T".V_ARC := MERGE (TEMP_PTR™.V_ARC,TEMP_PIR™.H_ARC);
END T } - B
ELSE
BEGIN
THHP_PTR
T" .H_ARC :
END;
TEMP_PTR L V_ARC NI1L;
TEMP_PTR™ JH_ARC NIL;
TEMP_PTR™ (NEXT := T" .DESCENDANT;
T™.DESCENDANT 1= TEMDP_PIR;
T" .LOCAI,_COST := T7.LOCAI_COST 4 TEMP_PTR™ .LOCAL_COST;
T .LOCAL_SIDE_PRODUCT := T7.LOCAL_SIDE_PRODUCT
T+ TEMP_PTR™ . LOCATL_S1DKE_PRODUCT
- TEMP_PTR™ .LOCAL_BASE_PRODUCT;

T" .H_ARC;
MERGE (TEMP_PTR" .V_ARC,TEMP_PTR™ JH_ARC) ;

n

non

END; {combine)
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PROCEDURE REMOVE (VAR T : TREE_PTR; MIN : INTEGER);

(*************i***************-***************k**ik*******)
- (* Remnves all the arcs in the lelftist tree pninted by 1%)
! (* whnse SUP _WEIGHTS are larger than or equal to MIN, *)
(**********k*?***********kﬁ*****k;\k*ktxxxtkt***i*********)

VAR NOT_DONE : BOOLEAN;

BEGIN
NOT_DCWNE := TROL;
WHILE NOT_DONE DO

i IF T = NIL
g THEN NOT_DONE := FALSE
- ELSE

IF T  .SUP_WEIGHT < MIN
THEN NOT_DONE := FALSE

k.~ ELSE T := MERGE (T”.V_ARC,7T" .H_ARC) ;
> END; {remnve}
S PROCEDURE SUB_PARI'" I'ILON (VAR TREF TREE _PTR; i
‘ MIN : INTEGER); H
& (****»****************************A***********************) .
R (* To find the nptimum partition of the subpolygon *) B
. (* bounded below by the rant of the arc-trec pninted *) §
9 (* by T. *) g.
(*********k*****k***************k*k**********************) ;
VAR T, R, P, TEMP_PTR : TREE_PIR; :
TEMP : INTEGEK; £
NOT_DONE, FLAG : BOOLEAN; ¥
¥
BEGIN ﬁ
T := TREE; L
R := Nl[l; ‘
WHILFE T <> NIL DO ‘
BEGIN
P = T .NEXT;
T°.NEXT := NIL;
IF T .HEAD _SMALIL ;
THEN TEAP = W[T™ .HEAD] i
. ELSE TEMP := W[T " .TAIL]; 4
IF 17 .H_ARC <> NIL
f : THEN SUB_PARTITION (T‘.H_ARC,TEHP);
' {when return, all the h-avcs in the subpnlygnn
; will be put in a priority qucuc }
IF T".V_ARC <> NIL
THEN SUB_PARTITION (17 .V_ARC,TEMP);
{therc¢ shnuld be at most 1 v-arc, i.e.
T".V ARC™.NEXT = NIilL., when return, all the
h-ar¢s in the subpnlygon will be put in a
} . prinrity queuc }

5
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{calculate the cost of the fan nf the subynlygon :
' hounded below by the arc po ' nted by T and abowve by

3 the v-arces and h-arces of ¥ }

FAN_COST(T) ;

NOT DONE := TRUE;
FLAG := TRUE;
WHILE NOT_DONE DO
BEGIN
{calculate the suppnrting weight
of the arc pninted by T}

SUPPORTING_WEIGHT (T);

b b n i i

IF T° .SUP_WEIGHT >=MIN {tn see if the partition
1s optimum in the
subpolygaon }

THEN

BEGIN

REMOVE (T ,MIN); {delete all h-arcs not
in the optimum partition
of the subpolygon }

NO'T_DONE := FALSE;
FLAG := FALSE;

END

ELSE

IF CONDENSFE (T".V_ARC,T".SUP_WEIGHT)

THEN COMBINE (T, TROUE)

ELSE
IF CONDENSE (T .H_ARC,T".SUP_WEIGHT)
THEN COMBINE (T, FALSE)
ELSE NOT_DONE := FALSE;

END;

{maintain the leftist tree structure}
IF FLAG
THEN
BEGLN
T" .TREE_COST := T" .IOCAL_COST;
T .TREE_SIDE_PRODUCT := T  .LOCAIL_SIDE_PRODUCT;
T" .TREE_BASE_PRODUCT := 17 .LOCAI_BASE_PRODUCT;
IF T".V_ARC <> NIIL
THEN
BEGIN
T" .TREE_COST := T" ,TREL_COST
+ 17 JV_ARC™ .TREF_COST;
T .TREE_SIDE_PRODUCT := T7,TREE_SIDE_PRODUCT
+ T TV_ARC” LTREE_S1DE_PRODUCT
= T".V_ARCT,TREE_BASE_PRODUCT;
END;
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IF T" .H_ARC <> NI1L -
THEN
BEGLIN
T JTREE_COST = 17 JIREE_COSY
17 JH_ARCT VTREF_COST;
T .TREE_SIDE_PRODUCT = 17, TREE_SIDE_PRODUCT
+ T TH_ARC™ . TREE_SIDE_PRODUCT
~ T".H_ARC™ .TREE_BASE_PRODUCT;

END;
IF T" .V_ARC <> NIL
THEN
IF 17 .H_ARC <> NIL
THEN
BEGIN
IF T .V_ARC" .DEPTH < T".H_ARC" .DEPTH
THEN
BEGIN
TEMP_PTR := T " ,V_ARC;
T .V_ARC := T" ,H_ARC;
T" .H_ARC := TEMP_PTR;
END;
T" .DEPTH := T .H_ARC™ .DEPTH + 1;
END
ELSE
ELSE
IF T" ,H_ARC <> NIL
THEN
BEGIN
T .V_ARC := T  .H_ARC;
T".H_ARC := NIL;
END;
END;
R := MERGE (R,T);
T := P;
END;

TREE := Rj;
END; (sub_partition}

BEGIN (pnly_ pavtition begins herc]
SUB PARTLIFION (T,W[1]);
END; {poly partition}
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PROCEDURE MARK LIST (1T : TREE _PYR);
(*************‘:*ﬁ************.;*i******************A‘kk***t**)
(* Traverses Lhe tree pointed by 1 preorderly, [inds out %)
(* all the pntential h-arcs which are prescent in the *)
(* optimum partition of the pnlygnn and marks the *)
(* corresponding elements in the list pninted by LisT1. *)
(***********************************t**********************)
BEGIN
WHILE T <> NIL DO
BEGIN

T .LIST_LINK" .STAY := TRUE;

MARK_LIST (T .DESCENDANT) ;
", MARK_LIST (T".V_ARC);
MARK_LIST (T".H_ARC);
- T := T .NEXT;
A END;
i END; {mark_list}

PROCEDURE WRITE_LIST (VAR L : LIST_PTR;
FIRST, LAST, MIN, INDENT : INTEGER);
(AAIII I AI KRR IR R RIIIIR KRR K I IR KRk hh kAR Ak Ak Rk k kAR AR KR KKKk k X

(* Displays the h-arcs in the list pointed by L. *)
. (**********************************************************)
¢ VAR TEMP s+ POS_INTEGER;
' NOT_DONE : BOOLEAN;

BEGIN

NOT _DONE := TRUE;
WHILE NOT_DONE DO

IF L = NIL
THEN NOT_DONF := FALSFE
ELSE

IF (L” .HEAD < FIRST) OR (L".TAIL > LAST)
THEN NOT_DONE := FALSE
ELSE
BEGIN
1F L".STAY
THEN
' BEGIN
IF L .HEAD_SMALL
THEN TEMP := L".HEAD
ELSE TEMP := L".TAlL;
: IF TEMP <> MIN
THEN
BEGIN
WRITELN (' ':INDENT,
L® .HEAD,' ‘':3,L".TAIL);

_..._._____

-
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WRITE_LIST (L .NEXT,[.” .HEAD,
L™ cTAIL,TEMP, INDENT+3);
END;
END;
L := L .NEXT;
END;
END; {write_list}

(**********************************************t*****t*****)

(* main program begins here. *)
(**************************************i*******************)
BEGIN
INITIALIZING;
ONE_SWEEP (LIST1);
LIST2 := LISTI;
BUILD_TRFE (LIST2,V_TREE,H TREE,1,N,1); {V_TREE = NIL}
POLY_PARTITION (H_TREE); -
IF H_TREE = NIL
THEN WRITELN (' ':3,'NIL')
ELSE .
BEGIN
MARK_LIST (H_TREE);
WRITE_LIST (LIST1,1,N,1,3);
END;
END. {main program}







