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dimensions, the order in which the product is computed affects the

number of operations. An optimum order is an order which minimizes

the total number of operations. We present some theorems about

an optimum order of computing the matrices. Based on these

theorems, an O(n log n) algorithm for finding an optimum order is

presented in part II.
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I. Inlroduction

Conisider the evaluation of 'he product of n- 1 malrices

M M1 XM2 X X Mn-I (!)

where M. is a w. ×< wi+1 matrix. Since matrix multiplication satisfies

the associative law, the final result M in (1) is the same for all orders

of multiplying the matrices. However, the order of multiplication

greatly affects the total number of operations to evaluate M . The

problem is to find an optimum order of multiplying the matrices such

that the total number of operations is minimized. Here, we assume that

the number of operations to multiply a px q matrix by a q Xr matrix

is pqr.

In L1][7] , a dynamic programming algorithm is used to find an

optimum order. The algorithm needs O(n 3 ) time and O(n 2 ) space. In 12,

Chandra proposed a heuristic algorithm to find an order of computation which

requires no more than 2T operations where T is the total number of opera-
0 o

tions to evaluate (1) in an optimum order. This heuristic algorithm needs

only O(n) time. Chin L31 proposed an improved heuristic algorithm to give an

order of computation which requires no more than 1. 25 T . This improved
0

heuristic algorithm also needs otly O(n) time.

In this paper we first transform the matrix chain product problem into

a problem in graph theory - the problem of partitioning a convex polygon into

non-intersecting triangles, see [9][10)[11][IZ], then we state several theo-

reis about the optimum partitioning problem. Based on these theorems, an

O(n log n) algorithm for finding an optimum partition is developed.
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2. Partitioning a convex polygon

Given an n-sided convex polygon, such as (lie hexagon shown in

Fig. 1, the number of ways to partition the polygon into (n-2) triangles

by non-intersecting diagonals is the Catalan numbers (see for example,

Gould [8]). Thus, there are 2 ways to partition a convex quadrilateral,

5 ways to partition a convex pentagon, and 14 ways to partition a convex

hexagon.

Let every vertex V. of the polygon have a positive weight w.. We
1L

can define the cost of a given partition as follows: The cost of a triangle

is the product of the weights of the three vertices, and the cost of parti-

tioning a polygon is the sum of the costs of all its triangles. For example,

the cost of the partition of the hexagon in Fig. I is

W1W2W3 + w1w3W6 + W3w4w6 4- W4W5W6.  (2)

v'2
V5 V

Fig. I

3
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If we erase the diagonal from V 3 to V6 and replace it by the diagonal

from V to V4 , then the cost of the new partition will be

WIWWW3 + WIW3W 4  W4W6 +W 4w 5w 6  (3)

We will prove that an order of'multiplying (n-1) matrices corre-

sponds to a partition of a convex polygon with n sides. The cost of the

partition is the total number of operations needed in multiplying the

matrices. For brevity, we shall use n-gon to mean a convex polygon

with n sides, and the partition of an n-gon to mean the partitioning of an

n-gon into (n-2) non-intersecting triangles.

For any n-gon, one side of the n-gon will be considered to be

its base, and will usually be drawn horizontally at the bottom such as

the side V-V 6 in Fig. 1. This side will be called the base, all other

sides are considered in a clockwise way. Thus, V I-V2 is the first

side, V2-V 3 the second side,..., and V 5-V 6 the fifth side.

The first side represents the first matrix in the matrix chain and

the base represents the final result M in (1). The dimensions of a matrix

are the two weights associated with the two end vertices of lihe side. Since

the adjacent matrices are compatible, the dimensions wI XW 2 , w 2 Xw 3 ,

... , Wni Xw can be written inside the vertices as w 1 ,w 20 .... w The

diagonals are the partial produicts. A partition or an n-gon corresponds

to an alphabetic tree of n-I leaves or the parenthesis problem of n-I

symbols (see, for example, Gardner [6]). It is easy to see the one-to-

one correspondence between the multiplication of n- I matrices to either

L_4



the alphabetic binary tree or the parenthesis problem of n-I symbols.

Here, we establish the correspondence between the matrix-chain product

and the partition of a convex polygon directly.

Lemma 1. Any order of multiplying n-I matrices corresponds to a

partition of an n-gon.

Proof. We shall use induction on the number of matrices. For two

matrices of dimensions wlxw 2 , w 2 X w 3 , there is only one way of multi-

plication, this corresponds to a triangle where no further partition is

required. The total number of operations in multiplication is wIw 2 w 3 ,

the product of the three weights of the vertices. The resulting matrix has

dimension wIXW 3 ' For three matrices, the two orders of multiplication

(M 1 XM 2) M 3 and M 1 X(M 2 X M 3 ) correspond to the two ways of parti-

tioning a 4-gon. Assume that this lemma is true for k matrices where

k n- 2 , and we now consider n-I matrices. The n-gon is shown in

Fig. 2.

I I

'12 WA-I

I W Vn

Fig. 2
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Let the order of multiplication be represented by

M = (M l M xX... XM p-)X(M pX...XMn-)

i.e., the final matrix is obtained by multiplying a matrix of dimension

(W1 Xw ) and a matrix of dimension (w pXw ). Then in the partition of the
pp n

n-gon, we let the triangle with vertices VI and V have the third vertex V
n p

The polygon V1-V 2 .... -V is a convex polygon of p sides with base V -V
12p ip

and its partition corresponds to an order of multiplying matrices M1l, ... , Mp-

giving a matrix of dimension wI X w . Similarly, the partition of the polygon
p

V -V -...- V with base V -V corresponds to an order of multiplyingp p+l n p n

matrices Mp,..., Mn-l, giving a matrix of dimension wpXwn . Hence the

triangle V 1V V -with base VI-V n represents the multiplication of the twopn n

partial products, giving the final matrix of dimension w I Xw .

Lemma 2. The minimum number of operations to evaluate the following

matrix chain products are identical.

M xM I ... XM XM1 2 n- x n-I

M .( M 1 X... ×M X M
n In-3 n-2

S3n-1 n

where M. has dinwision w. X w and wn 1  wP Ne that in the

first matrix chiin, the resulting matrix is of dimension w1 hy w Tn
n

the last matrix chain, the resulting matrix is of dimension w 2 by w1

But in all the cases, the total number of operations in the optimum orders

of multiplication is (he same.

6=

I -*----



Proof. The cyclic permutations of the n-l matrices all correspond to

the same n-gon and thiis have Ithe same optitmm partitions. I

(This Lemma was obtained independently in f 41 with a long proof.)

From now on, we shall concentrate cnly on the partitioning

problem.

The diagonals inside the polygon are called arcs. Thus, one

easily verifies inductively that every partition consists of n-2 triangles

formed by n- 3 arcs and n sides.

In a partition of an n-gon, I-he deree of a vertex is the niu-nber

of arcs incident on the vertex plus two (since there are two sides

incident on every vertex).

Lemma 3. In any partition of an n-gon, n 4, there are at least two

triangles, each having a vertex of degree two. (For example, in Fig. 1, the

triangle VIV 2 V 3 has vertex V2 with degree 2 and the triangle V V V has

vertex V 5 with degree 2.) (See also [5].)

Proof. In any partition of an n-gon, there are n-2 non-intersecting

triangles formed by n-3 arcs and n sides. And for any n > 4, no

triangle can be formed by 3 sides. Let x be the number of triangles

with two sides and one arc, y be the number of triangles with one side

and two arcs, atirl z be. the ntimher or tria nile s i fiI rte ni rc s

Since an arc is'used in two triangles, we have

x + Zy + 3z = 2 (11-3) , (4)

7



Since the polygon has n sides, we have

Zx + y n (5)

From (4) and (5), we getJ

Since z aO, we have x !t U

Lemma 4. Let P and P" both be n-.gons where the corresponding

weights of the vertices satisfy w.i15 <w", then the cost of an optimum parti-

tion of P is less than or equal to the cost of an optimum partition of P'.

Proof. Omitted.*

If we use C(w,w 2 ,w 3 . . ,w) to mean the minimum cost of

partitioning the k-gon with weights w . optimally, Lemma 4 can be

stated as

C~wW2 .. Pwk (-(w1, w'. ,W' if w

We say that two vertices are connected in an optimumn partition

if the two vertices are connected by an arc or if the two vertices are

adjacent to the same side.



In the rest of the paper, we shall use V 1 V 2 .... Vn to denote

vertices which are ordered according to their weights, i.e. w I -w 2 < . . .

To facilitate the presentation, we introduce a tie-breaking rule for vertices

of equal weights.

If there are two or more vertices with weights equal to the smalleb.

weight w I , we can arbitrarily choose one of these vurtices to be the vertex

V 1 . Once the vertex V 1 is chosen, further ties in equal weights are resolved

by regarding the vertex which is closer to V in the clockwise direction to be

of less weight. With this tie-breaking rule, we can unambiguously label the

vertices V 1 , V2 ... , V for each choice of V . A vertex V. is said to ben 11

smaller than another vertex V., denoted by V. < V., either if w. < w. or ifJ 1 j 1 J

w. = w. and i < j. We say that V. is the smallest vertex in a subpolygon1 3 1

if it is smaller than any other vertices in the subpolygon.

After the vertices are labeled, we define an arc V.-V. to be less than1 J

another arc V -V
p q

if min(i,j) < min(p, q)

o min(ij) = min(p, q)

I max(i,j) < max(p,q)

(For example, the arc V 3 - V9 is less than the arc V4 -V 5 . ) Every partition of

an n-gon has n- 3 arcs which can be sorted from the smallest to the largest

into an ordered sequence of arcs, i. e., each partition is associated with a

unique ordered sequence of arcs. We define a partition P to be lexicographi-

cally less than a partition Q if the ordered sequence of arcs associated with

P is lexicographically less than that associated with Q.

9



When there is more than one optimum partition, we use the

I -optimum partition (i. e., lexicographically-optirnum partition) to mean

the lexicographically smallest optimum partition, and use an optimum parti-

tion to mean some partition of minimum cost.

We shall use V , Vb .... to denote vertices which are unordered

in weights, and Tijk to denote the product of the weights of any three
Vik

vertices V., V. andV
.1 j

Theorem 1. For every way of choosing V 1 , V 2. ... (as prescribed), there

is always an optimum partition containing V -V and V I-V 3 . (Here, V I-V 2

and V -V 3 may be either arcs or sides.)

Proof: The proof is by induction. For the optimum partitions of a triangle

and a 4-gon, the theorem is true. Assume that the theorem is true for all

k-gons (3 k ! n-1) and consider the optimum partitions of an n-gon.

From Lemma 3, in any optimum partition, we can find at least two

vertices having degree two. Call these two vertices V. and V.. We can

divide this into two cases.

(i) One of the two vertices V. (or V.) is not V I , V 2 or V 3 in some optimum
1 j

partition of the n-gon. In this case, we can remove the vertex V. with

its two sides and obtain an (n-l)-gon. In this (n-l)-gon, V I , V 2 , V 3

are the three vertices with smallest weights. By the induction assump-

tion, V1 is connected to both V 2 and V 3 in an optimum partition.

10



(ii) Consider the complementary case of (i), in all the optimum partitions of

the n-gon, all the vertices with degree two are from the set [V1, V, V3]
3

(In this case, there will be at most three vertices with degree two in every

optimum partition. ) We have the following three subcases:

(a) V.i = V 2 and V j = V 3 in some optimum partition of the n-gon,

i.e., both V 2 and V 3 have degree two simultaneously. In this

case, we first remove V 2 with its two sides and form an (n-l)-gon.

By the induction assumption, V 1 , V 3 must be connected in some opti-

mum partition. If V I-V 3 appears as an arc, it reduces to (i). So

V I-V 3 must appear as a side of the (n-l)-gon, and reattaching V~ to

the (n-l)-gon shows that either V 1 , V2 and V 3 are mutually adjacent

or V -V 3 is a side of the n-gon. In the former case, the proof is

complete, so we assume that V 1 -V 3 is a side of the n-gon. Simi-

larly, we can remove V 3 with its two sides and show that V I , V

are connected by a side of the n-gon.

(b) V. = V and V = V in some optimum partition of the n-gon,

i.e. , V 1 and V2 both have degree two simultaneously. In this

case, we can first remove V and form an (n-1)-gon where V, V
I 3P

V 4 are the three vertices with smallest weights. By the induction

assumption, V 2 is connected to both V 3 and V 4 in an optimum

partition. If V -V or V -V appears as an arc, it reduces to Mi.

Hence, V 2 -V 3 and V 2 -V 4 must both be sides of the n-gon. Simi-

larly, we can remove V with its two sides and form an (n-O)-gon

where V 1 , V 3 , V 4 are the three vertices with smallest weights.

11



Again, V must be connected to V and V by sides of the n-gon.
1 3 4

But for any n-gon with n 2 5, it is impossible to have V and V

both adjacent to V and V2 at the same time, i.e., V and V 21 1

cannot both have degree two in an optimum partition of any n-gon

with n > 5.

(c) V. = Vis V = V 3 in some optimum partition of the n-gon. By

argument similar to (b), we can show that V 2 must be adjacent

to V1 and V 3 in the n-gon. The situation is as shown in Fig. 3(a).

Then the partition in Fig. 3(b) is cheaper because

T 123 , TIZq

and C(wl q, wy wt Wx Wp3I G(w 2 w w w t Pw3

according to Lemma 4. K

I3 LA1,W

V3

(o) (b)

Fig. 3

Corollary 1. For every way of choosing V 1 V2 .... (as prescribed), the

I -optimum partition always contains V -V 2 and V I -V 3 .

Proof: It follows from Theorem 1 and the definition of the I -optimum

partition. U

12



Once we know V V and VV 3 always exist in the I -optimum parti-

tion, we can use this fact recursively. Hence, in finding the I -optimum

partition of a given polygon, we can decompose it into subpolygons by joining

the smallest vertex with the second smallest and third smallest vertices

repeatedly, until each of these subpolygois has the property that its smallest

vertex is adjacent to both its second smallest and the third smallest vertices.

A polygon having V 1 adjacent to V2 and V 3 by sides will be called

a basic polygon.

Theorem 2. A necessary but not sufficient condition for V 2 -V 3 to exist in an

optimum partition of a basic polygon is

__+ + -

w w 4  w2  w 3

Furthermore, if V 2 -V 3 is not present in the I -optimum partition,

then V1 , V4 are always connected in the I -optimum partition.

Proof. If V 2 , V 3 are not connected in the i -optimum partition of a basic

polygon, the degree of V 1 is greater than or equal to 3. Let V be a vertex

in the polygon and VI, V are connected in the I -optimum partition. V4 isp

either in the subpolygon containing V I , V 2 and V or in the subpolygon con-P

taining V I , V 3 and V . In either case, V 4 will be the third smallest vertex

in the subpolygon. From Corollary 1, VIP V4 are connected in the I-optimum

partition of the subpolygon and it also follows that V , V4 are connected in the

I -optimum partition of the basic polygon.

13



If V 2 , V 3 are connected in an optimum partition, then we have an

(n-l)-gon where V 2 is the smallest vertex and V4 is the third smallest

vertex. By Theorem 1, there exists an optimum partition of the (n-l)-gon

in which V2 , V4 are connected. Thus by induction on n, we can assume

that V is adjacent to V in the basic polygon as shown in Fig. 4(a).
42

t" Vt

VWq)

V2(

(a) (b)

Fig. 4

The cost of the partition in Fig. 4(a) is

T 12 + C (w 2 w 4, .. w t... ,Ow 3  (7)

And the cost of the partition in Fig. 4(b) is

T T124 + C(WlI Ow40 .... I w t ... ' w 3 )  (8)

I

.. . ..4 -2,



According to Lemma 4,

C(wI t w4 9 . * * . I w 3 Cw z vW 4  1 . W t, . . . , w 3 ) 9)

Since the weights of the vertices between V4 and V3 in the clockwise direction

are all greater than or equal to w 4 , the difference between RHS and LHS

of (9) is at least

T243 T 143

So the necessary condition for (7) to be no greater than (8) is

T123 2 243 T 124 + T134
or

1 + 1 1 1
w I  w 4  w 2  w 3

Lemma 5. In an optimum partition of an n-gon, let Vx, Vy, V z  and Vw be

four vertices of an inscribed quadrilateral (V and V are not adjacent inx z

the quadrilateral). A necessary condition for V -V to exist isx z

1 1 1 1I + I I+1 
(10)w w w wx z y w

Proof: The cost of partitioning the quadrilateral by the arc V -V is

T + T (11)xyz xzw

and the cost of partitioning the quadrilateral by the arc V -V isy w

T + T .(12)

xyw yzw

For optimality, we have (11) (12) which is (10). U

15



Note that if strict inequality holds in (10), the necessary condition is

also sufficient. If equality holds in (10), the condition is sufficient for V -V z

to exist in the I -optimum partition provided min(x, z) < min(y, w). This lemma

is a generalization of Lemma 1 of Chin [3] where V is the vertex with the
y

smallest weight and V , V V are three consecutive vertices with w

greater than both w and w .

A partition is cciled stable if every quadrilateral in the partition

satisfies (10).

Corollary 2. An optimum partition is stable but a stable partition may not

be optimum.

Proof. The fact that optimum partition has to be stable follows from Lemma 5.

Figure 5 gives an example that a stable partition may not be optimum. U

i,)~

(a) a stable partition (b) the optimum partition

Fig. 5

In any partition of an n-gon, every arc dissects a unique quadri-

lateral. Let V V V V be the four vertices of an inscribed quadri-
xv Y P w

lateral and V -V be the arc which dissects the quadrilateral. We define
x z

V -V to be a vertical arc if (13) or (14) is satisfied.
x z7

16



nhin(w , w ) < liiin(w ,w* (01)

rnin(w ,w ) -min(w ,wx z y 'V 14
(14)

max(w ,w ) 9 max(w ,w )x z y w

We define V -V to be a horizontal arc if (15) is satisfiedx z

min(wx ,w z )> nin(Ww) 1 w5

max(w ,w )< max(w ,w )
x z y w

For brevity, we shall use h-arcs and v-arcs to denote horizontal arcs

and vertical arcs from now on.

Corollary 3. All arcs in an optimum partition must be either vertical

arcs or horizontal arcs.

Proof: Let V -V be an arc which is neither vertical nor horizontal.
x z

There are' two cases:

Case 1. min(w ,w ) -min(w ,w
x z y w

and max(w ,w )> rnax(w ,w)
x z y w

Case 2. min(w 1 w ) > rnin(w ,w )x y w

and Max(w ,w )- rnax(w' ,w )x zy w

In both cases, the inequality (10) in Lemma 5 cannot be satisfied.

This implies that the partition is not stable adi henre cannol he oplimm. U

17
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Tiworem 3. Let V and V be two arbitrary vertices which are not adjacentx z

in a polygon, and V be the smallest vertex from V to V in the clockwisew x z

manner (V w /V V /V ), and V be the smallest vertex from V to VW ' W Zy Z X

in the clockwise manner (V $ V V / V ). This is shown in Fig. 6 where
y x y 7,

without loss of generality, we assume that V < V and V < V Ax z y w"

necessary condition for V - V to exist as an h-arc in the I -optimum
x z

partition is that

w <w < w <w
y x z w

(Note that the necessary condition still holds when the positions of V and Vy w

are interchanged.) . Vat

€ %

-s

gx' (Wx')

I I

Vy

Fig. 6

Proof. The proof is by contradiction. If w x w , w must be equal tox y x

the smallest weight w I and V -V can never satisfy (15). Hence, inx z

order that V -V exists as an h-arc in the I -optimum partition, we mustx z

have w <w < w . Since V is the smallest vertex from V to V iny x zy z x

the clockwise manner and V < V , we must have V = V 1 .
x w y



Assume for the moment that V < V < V . From Corollary 1,
3 x z

both V -V and V -V exist in the I -optimum partition, and the two arcs
12 1 3

would divide the polygon into subpolygons. If V and V are in different
x z

subpolygons, then they cannot be connected in the I -optimum partition.

Without loss of generality, we can assume that the polygon is a basic polygon.

In this basic polygon, either V 2 -V 3 or V 1-V 4 exists in the I -optimum

partition (Theorem 2).

If V2 , V are connected, then V and V are both in a smaller polygon

2 3 x z

in which we can treat V as the smallest vertex and repeat the argument. If
2

V , V4 are connected, the basic polygon is again divided into two subpolygons

and V and V both have to be in one of the subpolygons and the subpolygon has
x z

at most n-I sides. (Otherwise V -V can never exist in the I -optimum
x Z

partition. ) The successive reduction in the size of the polygon will either

make the connection V -V impossible, or force V and V to become the

second smallest and the third smallest vertices in a basic subpolygon. Let V

be the smallest vertex in this basic subpolygon. In order that V -V appearx z

as an h-arc, we must have w > w . From Theorem 2, the necessary condi-x m
tion for V -V (i. e. V2 -V 3 ) to exist in an optimum partition of the subpolygon

x z
is

1 1 1 1

w +w I w I+wI
X z m w

Since w > w, the inequality is valid only if w < w .x m z. w

Corollary 4. A weaker necessary condition for V -V to exist as an h-arcx z

in the I -optimum partition is that

V <V <V <V
y x Z w

Proof. This follows from Theorem 3. U

19



We call any arc which satisfies this weaker necessary condition a

potential h-arc. Let P be the set of potential h-arcs in the n-gon and H

be the set of h-arcs in the I -optimum partition, we have P :3 H where the

inclusion could be proper.

Corollary 5. Let V be the largest vertex in the polygon and V and V
w x z

be its two neighboring vertices. If there exists a vertex V such that
y

V <V and V <V ,thenV -V isa potentialh-arc.
y x y z x z

Proof. This follows directly from Corollary 4 where there is only one vertex

between V and V . Ux z

Two arcs are called compatible if both arcs can exist simultaneously

in a partition. Assume that all weights of the vertices are distinct, then there

are (n-l)! distinct permutations of the weights around an n-gon. For

example, the weights 10, 11, 25, 40, 12 in Fig. 5(a) correspond to the

permutation wl,Ww w4 , W 5, w 3 (where w 1 <w 2 <w 3 <w 4 <w 5 ). There

are infinitely many values of the weights which correspond to the same per-

mutation. For example, 1, 16, 34, 77, Z9 also corresponds to wIW , W 4, W 5 , w 3

but its optimum partition is different from that of 10, 11, 25, 40, 12. However,

all the potential h-arcs in all the n-gons with the same permutation of weights

are compatible. We state this remarkable fact as Theorem 4.

Theorem 4. All potential h-arcs arc compatible.

Proof. The proof is by contradiction. Let V , V , V and V be the fourx y z w

vertices described in Theorem 3. Hence, we have V < V < V < Vy x z w
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and V -V is a potential h-arc. Let V -V be a potential h-arc which is notx z pci

compatible to V -V , as shown in Fig. 7. Without loss of generality, we
x z

can assume V < V . (The proof for the case V < V is similar to thatp q ci P

which follows.)

VV

J 1/

Fig. 7

Since V is the smallest vertex between V and V in the clockwisew x z

manner, we have V < V < V . Hence, we have either V < V < V < V
z w q y p z q

or V < V < V < V . Both cases violate Corollary 4 and V - V cannot
y z p q p q

be a potential h-arc. U

Note that the potential h-arc V -V always dissects the n-gon into two
x z

subpolygons and one of these subpolygons has the property that all its vertices

except V and V have weights no smaller than max(wx , w ). We shall call this
X Z

subpolygon the upper subpolygon of V -V For example, the subpolygon
x Z

V ..... V ..... V ... V in Fig. 7 is the upper subpolygon of V -V .

x w q z x z
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Using Corollary 4 and Theorem 4, we can generate all the potential

h-arcs of a polygon.

Let V x-Vz be the arc defined in Corollary 5, i.e. V I Vx < V z Vw

The arc V -V is a potential h-arc compatible to all other potential h-arcs inx z

the n-gon. Furthermore, there is no other potential h-arc in its upper subpoly-

gon. Now consider the (n-l)-gon obtained by cutting out V . In this (n-l)-w

gon, let V ,be the largest vertex and V , and V , be the two neighbors ofw x z

V ,where V <V ,<V,<V , * Then V ,-V ,is again a potentialh-arc
w 1 x z w x Z

compatible to all other potential h-arcs in the n-gon and there is no other

potential h-arc in its upper subpolygon which has not been generated. This

is true even if V is in the upper subpolygon of V , -V ,. If we repeat thew X z

process of cutting out the largest vertex, we get a set P of arcs, all arcs

satisfy Corollary 4. The h-arcs of the I -optimum partition must be a

subset of these arcs.

The process of cutting out the largest vertex can be made into an

algorithm which is O(n). We shall call this algorithm the one-sweep

algorithm. The output of the one-sweep algorithm is a set S of n-3 arcs.

S is empty initially.

The one-sweep algorithm:

Starting from the smallest vertex, say V1 , we travel in the clockwise direc-

tion around the polygon and push the weights of the vertices successively onto

the stack as follows (w I will be at the bottom of the stack).

(a) Let Vt be the top element on the stack, V. I be the element immedi-

ately below Vt, and V be the element to be pushed onto the stack.c
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If there are two or more vertices on the stack and wt > w , add

Vt-l'c to S, pop Vt off the stack; if there is only one vertex on

the stack or w t < wcI push Wc onto the stack. Repeat this step

th
until the n vertex has been pushed onto the stack.

(b) If there are more than three vertices on the stack, add Vt -V c

to S, pop Vt off the stack and repeat this step, else stop.

Since we do not check for the existence of a smallest vertex whose

weight is strictly no larger than those of the two neighbors of the largest ver-

tex, i.e. the existence of the vertex V in Corollary 4, not all the n-3 arcs gen-
y

erated by the algorithm are potential h-arcs. However, it is not difficult to

verify that the one-sweep algorithm always generates a set S of n-3 arcs

which contains the set P of all potential h-arcs which contains the set H of

all h-arcs in the I -optimum partition of the n-gon, i. e.,

SDP DH

where each inclusion could be proper. For example, if the weights of the

vertices around the n-gon in the clockwise direction are w 1 , w 2, .... wn

where w 1  w 2- ... Wn, none of the arcs in the n-gon can satisfy

Corollary 4 and hence there are no potential h-arcs in the n-gon. The one-

sweep algorithm would still generate n-3 arcs for the n-gon but none of the

arcs generated is a potential h-arc.
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3. Conclusion

In this paper, we have presented several theorems on the Polygon

Partitioning Problem. Some of these theorems are characterizations of the

optimum partitions of any n-sided convex polygon, while the others apply

to the unique lexicographically smallest optimum partition. Based on these

theorems, an O(n) algorithm for finding a near-optimum partition can be

developed IZ1. The cost of the partition produced by the heuristic algorithm

never exceeds 1. 155 Copt, where Copt is the optimum cost of partitioning

the polygon. An O(n log n) algorithm for finding the unique lexicographically

smallest optimum partition will be presented in part II.
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1. Introduction

In Part I of this paper, we have transformed the matrix chain

product problem into the optimum partitioning problem and have stated

several theorems about the optimum partitions of an n-sided convex polygon.

Based on these theorems, we now present algorithms for finding the unique

f -optimum (lexicographically smallest optimum) partition.

Using the same notation as in Part I of this paper, we can assume

that we have uniquely labelled all vertices of the n-gon. A partition is

called a fan if it consists of only v-arcs joining the smallest vertex to all

other vertices in the polygon. We shall denote the fan of a polygon

V I-V b-Vc- ... Vn by Fan(w IlW wWc.... wn ). The smallest vertex V,

is called the center of the fan.

We define a vertex as a local maximum vertex if it is larger than its

two neighbors and define a vertex as a local minimum vertex if it is smaller

than its two neighbors. A polygon is called a monotone polygon if there

exists only one local maximum and one local minimum vertex. We shall

first give an O(n) algorithm for finding the I -optimum partition of a mono-

tone polygon and then give an O(n log n) algorithm for finding the I -optimum

partition of a general convex polygon.

2. Monotone Basic Polygon

In this section, let us consider the optimum partition of a monotone

polygon, i. e. a polygon with only one local minimum vertex and one local

maximum vertex. It follows from Corollary I of Part I that we can
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consider a monotone basic polygon only. The understanding of this special case -

is necessary in finding the optimum partition of at general convex polygon.

Consider a monotone basic n-gon V -V -Vc .... -V 3 , the fan of the

polygon is denoted by

Fan(w 1 w 2 wWc .... w 3 )

where the smallest vertex V is the center of the fan.

The definition of a fan can also be applied to subpolygons as well. For

example, if V 2 , V are connected in the basic n-gon and V becomes the
2 3 2

smallest vertex in the (n-l)-sided subpolygon, the partition formed by con-

necting V 2 to all vertices in the (n-1)-gon is denoted by

Fan(w 2 j wc..... w3 )

Lemma 1. If none of the potential h-arcs appears in the I -optimum parti-

tion of the n-gon, the I -optimum partition must be the fan of the n-gon.

Proof. From Theorem 3 of Part I, we know that any arc which exists as

an h-arc in the f -optimum partition mus je a potential h-arc. Hence, if

the I -optimum partition does not contain any potential h-arc, the i -optimum

partition must be made up of v-arcs only. Hence, we iave to show that

among all partitions which are made up of v-arcs only, the fan is (i) the

lexicographically smallest and (ii) one of the cheapcst partitions in the n-gon.

(i) Since the fan consists of only v-arcs joining V to all other vertices! 1

in the n-gon, it is by definition the lexicographically sniallest partition.

(ii) Suppose the I -optimum partition contains v-arcs only hut is not the

fan. There must exist three vertices V V k , V. such that the triangles

i-3'



V V'V j and ViVjV k are present in the I -optimum partition. Since V -V.

is a v-arc (by assumption) and V 1 is the smallest vertex in the n-gon, we

have w 1 = min(w.,w.) and max(w., w.) t wk . If we replace the v-arc1 j 1

V. -V. by the v-arc V - Vk' we can get a partition whose cost is less than or13 1

equal to that of the I -optimum partition but is lexcographically smaller

than the I -optimum partition, and results in a contradiction. U

Let V.-V. and V -V be two potential h-arcs of any n-gon. We
i j p q

say that V.-V. is above V -V (and V -V is below V. -V.) if the upperi j p q p q 13

subpolygon of V -V contains the upper subpolygon of V.-V..
p q 13

Let P be the set of all potential h-arcs in a monotone basic n-gon.

P can have at most (n-3) arcs.

Lemma 2. For any two arcs in P, say V.-V. and V -V , we must have
1 j p q

either V.-V. above V -V or V -V above V.-V.
1 3 p q p q ii

Proof. By contradiction. Let V. -V. and V -V be two arcs in P which
1 3 p q

do not satisfy this lemma. Then the intersection of the upper subpolygons

of V.-V. and V -V must either be empty or consists of part of each upper
1 3 p q

subpolygon only.

Since the vertices other than V., V. in the upper subpolygon of1 3

V.-V. must have weights larger than max(wi , w.), the local maximum vertex

of the monotone basic polygon must be present in the upper subpolygon of

SV. -V.. Similarly, the local maximum vertex of the monotone basic polygon
13

must also be present in the upper subpolygon of V -V . Hence, the inter-P q

sections of the upper subpolygons of V. -V. and V -V cannot be empty.1 3 p q

4
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From Theorem 4 of Part 1, we know that V.-V. and V -V cannot
I j p q

cross each other and hence the intersection of their upper subpolygons

cannot consist of part of each upper subpolygons only. U

We can actually show this ordering of potential h-arcs pictorially

by drawing a monotone basic polygon in such a way that the local maximum

vertex is always at the top and the local minimum vertex is at the bottom.

Then a potential h-arc V.-V. is physically above another potential h-arc
1 J

V -V if the upper subpolygon of V -V contains the upper subpolygon ofP q P q

V.-V.. From the definition of the upper subpolygon, we can see that
1 3

min(w.,w.) > max(w w ) if V.-V. is above V -V•1 J p q jp q

Consider the monotone basic n-gon which is shown symbolically in

Figure 1. V is the local maximum vertex and V. -V.,, V -V are potentialn j p q

h-arcs of the monotone basic n-gon. The subpolygon V -.... V -V- ... -Vp i j q

which is formed by ,o potential h-arcs V -V and V.-V. and the sides ofp q 13

the n-gon from V to V. and from V. to V in the clockwise direction is saidp 1 q

to be bounded above by the potential h-arc V -V. and bounded below by the

potential h-arc V -V q
p q

5b
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Figure 1

Lemma 3. Any subpolygon which is bounded by two potential h-arcs of the

monotone basic n-gon is itself a monotone polygon.

Proof. Consider the subpolygon V .... -V.v- .... V in Figure 1.
p i j q

Without loss of generality, we can assume V. < V. and V < V .Since

1 J p ql

V is the only local maximum vertex in the monotone basic n-gon, we must
n

have V < V <..- < V. < V and V -> V > ... > V > V l . ence, V
1 p n n j q lp

*is the unique local minimum vertex and V. is the unique local maximum
J

vertex in the subpolygon V -.... - V-V. - ....- V . By definition,
p i j q

V -.... -V.-v.-.... -V is a monotone polygon. U
p 1 j q
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Lemma 4. Any potential h-arc of a subpolygon bounded above and below

by two potential h-arcs of the monotone basic n-gon is also a potential

h-arc of the monotone basic n-gon.

Proof. Consider the subpolygon V .... -V.-V.- ... -V in Figure 1. Let

V -V be a potential h-arc in this subpolygon and V is the smallest vertex
x z w

between V and V in the clockwise direction around the subpolygon. With-x z

out loss of generality, we can assume V. <V. , V <V and V < V
1 j p q x z

Since V is in the upper subpolygon of the potential h-arc V -V , we havex p q

w 1 < w ! w q < w w . Since V. < any vertex in the upper subpolygon1 p q I
of V.- V. and V < V. < V. , V is the smallest vertex between V and V in

Sj w 1 j wx z

clockwise direction around the monotone basic n-gon. Hence, we have

w<w w < w and V -V is a potential h-arc of the monotone basic
1 z W x z

n-gon. U

We can now summarize what we have discussed. If there

is no h-arc in the i-optimum partition of a monotone basic

n-gon, the I-optimum partition must be a fan. Otherwise, the h-arcs in tne

I -optimum partition are all layered, one above another. If we consider the

local maximum vertex V and the local minimum vertex V as tvo degen-
n I odgn

erated h-arcs, then the I -optimum partition of a monotone basic n-gon will

contain one or more monotone subpolygons, each bounded above and below

by two h-arcs and the I -optimum partition of each of these monotone sub-

polygons is a fan.

7



Then, in finding the I -optimum partition of a monotone basic polygon, we

have only to consider those partitions which contain one or more subpoly-

gons bounded above and below by potential h-arcs and each of these sub-

polygons is partitioned by a fan. Since there are at most (n-3) non-

degenerated potential h-arcs in a monotone basic n-gon, there will be at

most 2 n- 3 such partitions and we can divide all these partitions into

(n- 2) classes by the number of non-degenerated potential h-arcs a partil inn

contains. These classes are denoted by H 0 ,H I ..... H where the sub-n- 3

script indicates the number of non-degenerated potential h-arcs in each

partition of that class.

There is no potential h-arc in the partitions in the class H 00

Hence the class consists of only one partition, namely the fan

Fan(wl1w2 ... . w3).

In the class H i , each partition has one non-degenerated potential

h-arc. Once the potential h-arc is known, the rest of the arcs must all be

vertical arcs forming two fans, one in each subpolygon.

Two typical partitions in H I of a monotone basic polygon are shown

in Fig. 2. In Fig. 2a, there is one non-degenerated potential h-arc,

V -V (V < V.). The upper subpolygon is a fanc i c 1

Fan(wlwd.... Iw.)

and the lower subpolygon is a fan

Fan(wI1w2 w,w i,w 3 )

8
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Fan(w I.... 2 w 3 )

= WI(w 2 : w3 ) (2)

The condition of (1) to be less than (2) is

w 2 • (wc:w 3)

(w 2:w 3 ) -w 2 .w 3 W

Similarly, the condition for the partition in Fig. 2a to be less

than H0 is

w Wd w. ).
(w :w.) -w •*w. I

C1 C 1

We say that a partition is said to be f -optimal among the partitions

in a certain class (or several classes) if it is the lexicographically smallest

partition among all the partitions with minimum cost in that class (or

several classes). Hence, the I -optimum partition is I -optimal among all

partitions in the classes Hot H1 ... . and Hn 3

Now, assume that the I-optimal partition among all the partitions in

HI H 2 ..... P Hn- 3 contains only one potential h-arc Vi- Vk only, as shown

in Fig. 3. (Note that V i-Vk will exist in this partition as an h-arc. ) This

partition will be the f -optimum partition of the monotone basic n-gon if it

costs less than that of the fan in H 0 . The condition that the partition with

Vi-Vk as the single h-arc costs less than H0 is

w.*•(w :w k)
k < w if w. w

wi Iwk wi 'wk

o r

10



\I

- /.\-

Fig. 3. A monotone polygon with a single h-arc.

wk . (w. :w)
k g < w I  if Vk < w.

(w i : wk w i  w <k  k <

Combining the two incqualities above, we have

C(w .... k
C (w wk ) < w (4)

(w i wk) - w i. w
i k 1 k

where C(w .... ,w k) denotes the cost of the optimum partition of the

subpolygon w.-w.- ... -w -wk and is equal to the cost of the fan in thisx J g

case.

An h-arc V -V which divides a polygon into two subpolygons is
1 k

called a positive arc with respect to the polygon if (4) is satisfied, i. e. , the

partition with the arc as the only h-arc and a fan in each of the two subpoly-

gons costs less than the fan in the same polygon. Otherwise, it is called a

negative arc with respect to the polygon.

11



When an n-gon is divided into subpolygons, an h-arc is defined

as positive in a subpolygon if the cost of partition of the subpolygon with

the h-arc as the only h-arc is less than the fan in the subpolygon.

Let us consider a partition with two h-arcs as shown in Fig. 4,

and assume that this partition is I-optimal among all partitions in the

classes H2, H3, Hn-3"

Fig. 4. A monotone 8-gon with two h-arcs.

if V -Vk is positive with respect to the suibpolygon

V -V -V -V -V then the condition analogous to (4) isIip q k'

C(w., w ,w , w__ _ - - p q ... . ... .

f(w:wk-(w :w )-w .w - w 1 (5 a)
ik p q p q i k

If V i-Vk is positive with respect to the whole polygon

V V......." n ..... V then the condition is

12



C(ww p, w rw , w w k

(w~w) i" Wk<w I  (5b)
1Wi Wk wi* k

Note that (5b) implies (5a).

The condition for the arc V -V to be positive with respect to
p q

the subpolygon V.-V -V -V -V -V -V is
i p r n s q k

C(w w r Wn, w )
Ox W w s Wq

p q P q

If the arc V -V is positive with respect to the whole polygon
p q

V 1  V-V -V -n-V -V q-V k  it must satisfy (6b).
p r p s q k q

G(WpWr, Wn, s' w

p q p q

Since w 1 < min(w, w k), condition (6b) implies (6a).

Here, the presence of V -V k will divide the original polygon
k

into two subpolygons where V -V appears in the upper subpolygon.
p q

If V -V is a positive arc with respect to the original polygon, then
p q

V -V is certainly positive in the tipper subpolygon. But if V -V is
p q p q

positive in the subpolygon, the arc V -V qmay become negative if
p q

V i-V k is removed, i.e. V -V becomes negative with respect to the
p q

original polygon.

Similarly, if the arc V i-V k is positive with respect to a sub-1k

polygon, the arc Vi -Vk may become negative if the arc V -V is~p q

removed.

The preceding discussions can be summarized as Theorem 1.

13



Theoremri 1. If an h-arc is positive with respect to a polygon then the

arc is positive with respect to any subpolygon containing thai arc. If an li-arc

is positive with respect to a subpolygon, it may or may not be positive with

respect to a larger polygon which contains the subpolygon. U

There are two intuitive approaches to the f -optimum partition of

a monotone basic polygon. The first approach is to put in the potential

h-arcs one by one. Each additional potential h-arc will improve the cost

until the correct number of h-arcs is reached. Any further increase in

the number of h-arcs will increase the cost. To introduce an h-arc into

the polygon, we can test each potential h-arc (at most n-3) to see if it

is positive with respect to the whole polygon. If yes, that positive

arc must exist in the I-optimum partition, and the polygon will be

divided into two subpolygons, each being a monotone polygon. We can

repeat the whole process of testing positiveness of the h-arcs. The

trouble is that all these arcs may be negative individually with respect to

the whole polygon and yet H 0 may not be the optimum. For example, two

arcs V. -V. and V -Vq may be negative individually with respect to the

whole polygon but the partition with both V.-V., V -V present at the
; I j p q

* same time may cost less than H 0 as shown in Fig. 5a. This shows that

we cannot guarantee an optimum partition simply because no more

potential h-arcs can Ee added one at a time.

The second approach is to put all the potential h-arcs in first

and then take out the potential h-arcs one-by-one, where each deletion

S14



will dec:rease the cost until the correct number of h-arcs is reached.

Any further deletions will increase the cost. Unfortunately, even if

all h-arcs are positive with respect to their subpolygon, the parti-

tion may not be optimum. In Fig. 51, each h-arc is positive

with respect to its local subpolygon but the partition is not optimum.

(Note that positiveness of an h-arc in a quadrilateral is the same as

stability. But the idea of stability applied to vertical arcs as well.)

This means that we cannot guarantee an optimum partition simply

because no h-arc can be deleted one at a time.

(a

V j

S(a) (b)

Fig. 5. Counter examples for the intuitive approaches.

15
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Let us outline the idea of an O(n) algorithm for finding the I-optimum

partition of a monotone basic polygon. First, we get all the potential

h-arcs by the one-sweep algorithm. Then, we start from the highest

potential h-arc and process each potential h-arc from the highest to the

lowest. For each potential h-arc, we try to get the I -optimum partition

of the upper subpolygon of that arc (i. e. the I -optimum partition of the

subpolygon bounded below by that h-arc). The I -optimum partition in

the subpolygon is obtained by comparing the cost of the I-optimal partition

among the partitions of the upper subpolygon which contain one or more

potential h-arcs with that of the fan in the upper subpolygon.

If we try all possible combinations of the potential h-arcs as

3candidates for the I -optimal partitions, we need O(n ) operations to

find the I -optimum partition. Fortunately, there are some dependence-

relationships among these potential h-arcs. Hence, certain subsets of

the potential h-arcs will either all exist or all disappear in the I -

optimum partition of the monotone polygon. We shall be dealing with

potential h-arcs most of the time, so we shall use "arcs" instead of

potential h-arcs for brevity.

Consider the monotone basic polygon shown symbolically in

Fig. 6. There are three potential h-arcs, denoted by h k , h., and h.

Vn is the local maximum vertex and V is the local minimum vertex.

Without loss of generality, we can assume w - w ' for a = i, j and k.
a a

Since we shall deal with subpolygons bounded by two potential h-arcs,

let us use hn for Vn and h for V 1 (i.e. we consider these vertices as

16



degenerated arcs). From Lemmas 1 and 3, the I-optimum partitions of

the subpolygons bounded by two potential h-arcs (i.e. the white area of the

polygon in Fig. 6) are all fans.

Assume (i) hk is positive in the subpolygon bounded by h and h

but hi is negative in the subpolygon bounded by h and h.

(ii) h. is positive in the subpolygon bounded by hk and h. but h.3 
1 3

is negative in the subpolygon bounded by hk and hl, and

(iii) h. is positive in the subpolygon bounded by h. and h only.1 j 1

Then either the three arcs h hj, h. all exist or no h-arcs exists in the

optimum partition.

This shows that the existence of an h-arc depends on the existence

of another h-arc.

We shall use the notations

C(h) to denote the cost of the f -optimum partition of the

subpolygon bounded above by 11. and bounded belowJ

by h., and1

HO() to denote the cost of the fan in the subpolygon boundedh h i

above by h. and bounded below by h..

17



Fig. 6. An octagon with three potential h-arcs.

In Fig. 6, the condition for hk to be positive with respect to the

whole polygon is (compare (5a))

hk< w 
(7)

(k k )~k k

The LIIS of (7) is denoted by

and is called the supporting weight of hk with h as the ceiling (the

definition of ceiling will be given formally later). Note that the LIUS of

(7) depends only on the weights of vertices in the upper subpolygon of hk

In terms of the supporting weights, we can write the three

conditions (i), (ii) and (iii) as follows:

18



(hi < w.
i Il.k

(ii) w 1 < S h<w

(iii) I < w 1

An arc h. is a son of the arc h. (or h. is the father of h.)J - 1 1 j

if the following conditions are satisfied:

(i) h. is above h. (the son is above the father)3 1

(ii) In any subpolygon containing h. and h. , the arc h. will exist1 1

in the I -optimum partition of the subpolygon if and only if h.
I

exists in the f -optimum partition.

(iii) h. is the highest arc that satisfies (i) and (ii).
1

It is easy to see that every arc can have at most one father but an arc

can have many sons. Also the ancestor-descendant relationship is a

transitive relationship. If an arc" exists in the I -optiituxi partition, all

its descendants will also exist.

An arc hk is a ceiling of an arc h. if the following conditions

are satisfied:

(i) h k is above h.
k 1

(ii) hk is not a descendant of h.

(iii) hk is the lowest arc which satisfies (i) and (ii).

19



Consider two partitions of a subpolygon as shown in Fig. 7.

(a) (b)

Fig. 7. A subpolygon of the octagon shown in Fig. 6
(The shaded areas are optimally partitioned

and the blank areas are partitioned by a fan.

The h-arcs in the shaded area are all

descendants of h..)
J

The cost of partition of Fig. 7a is

h h

ck) + _O (h1 )

where the cost of partition in Fig. 7b is

I

The condition for the partition in Fig. 7a to be cheaper than that in Fig. 7b

_. is (similar to (5a))

S hk <

iZh.

mz



In order to give an intuitive meaning of the supporting weight S (hk)

let us regard h k and h. in Fig. 7 as fixed while the position of h. can be

moved up or down by increasing or decreasing the values of w. and w.' .
I I

If h. moves up and coincides with h., i.e., w. = w., the partition in Fig. 7a

costs less than or equal to the partition in Fig. 7b. If the position of h.
1

moves down gradually from h., there will be a position for which the cost

of the partition in Fig. 7a is equal to the cost of the partition in Fig. 7bo

We can consider this position as a fictitious arc f. , i.e.

() + H] f (hk) (8)

the k -optimum partition of the subpolygon bounded by hk and h becomes

a fan. The arc f. is called the floor of h.. Note that the minimum of the
3 1

two weights associated with f. is the supporting weight of h.3 3

We now give two examples to illustrate the concepts, notations

and the algorithms. Then a formal description of the algorithm will be

given.

Consider a monotone basic polygon with five potential h-arcs,

h 6 , h 5 ..... h 2 where h 6 is the highest arc as shown symbolically in

Fig. 8. Let w. < w.' for i = a,b ... e. The maximum vertex,
1 1

which lies above h , has the weight wf and the minin in vertex,

which lies below h 2 , has the wci. L w 1 . We can regard wf (and w1I
as a degenerated arc and use h to relprei t,|t wf (and h 1 to repre-

7 to I ere

sent w
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Fi. . 1-gnwih &hars

Example

First we compareih hars

HOCl(h7 ) +H 0
6 ) HO f 7)



77

Fig. 9. llistl-tions for ELxainple I1.

9a. To findf

In the equation, f 6 is the only uiiKno-wn. lr, COmnputati on, wedo

not use the eqjuati on but use the sup pi) r tiri %k(-10itf 11 ist 03d (h is

the ceiling of h 6). If the h-arc hi is below )r coji-icide s withi f 6,which

means that h6 is negative with respect to thc smallo.st sub~polygon, h 6

should be deleted and never appear in the I -optimium partition. For

simplicity, we shall assume all arcs and floors have distinct positions

in the example.

Let us assume that f 6 is below hr, or symnbolically we write

h 5If6

OW 5

Fig. 9b. The positit o f of f0

Z3



Then we do the next comparison.

Fig. 9c. To findf5

Assume that f 6If 5 i e. h 6is a son of h. and h 4If 5 the next

comparison is

HO(h 7) + H O(h 6) + Ho(, Ho(

Fig. 9d. Condense h16 to 11 5;and find f 6 5

24
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Note that f is in a sensc the cxiined floo(r oif h anid h1 and h.656

beconies the ceiling of h 5. The equiation can also be written as

C;(I,) + li~,)= H h 7)

If h ,/f. the next comnparisonl will bc

1-1O (h 5) l io( h 4) H 5

Fig. 9e. To find f 4 .

Assumei that f ,5/f4 i.e. h 5is ason of li4 ' andhl /f 4 ,we have

C(h,) + H h (£ H h7

25



L 7

f4-WW

Fig. 9f. To find f£5'

with h 7a-, the ceiling of h 4'Moving to h 3we compare

7 3'

* .Fig. 9g. To find f 3
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Asum tat f /f i.e. h is a son of h and h if ,we C03m1pare
As un , 654 3' 4 3 2 3

Ch7+ 191(£h3 H (f h7)

W'b

Fig 9ha-fidf

354

with h 7as the ceiling of h 3 Moving to h 2 * ec'rnpare

O(h) I- HO~h 1)= 1s

Fig. 9i. 'ro fwnd f 2 .

27



Assume that f6543 /f2 , i.e. h 3 is a son of hand h/f 2 , we have

C(h7 _ h h
h2) H0(f65432) = H(f6543)

WfW

Wda.

12. a.

Fig. 9j. To find f65432

and h is the ceiling of h Now if

72

S(h2) < w 1

the partition consisting of

C(h )+ 'oh)h7 h

is the I -optimum partition.

28



Fig. 9k. The f -optimnum partition.

if s~h 7 w then HO(h ) will he the f -optimurn partition.

Example Z. The successive comparismns are

±~ ) +10 h6 -H 0(7)

7*

Fig. 10. ff1~ptr).~fr ILxample, 2.

10a. To find f 6

29



Assume that h 5If 6, we compare

0( 5 5 5

Fig. 10b. To find f 5

Assume that f51/f 6, i.e. h 6 becomes the ceiling of h,,and h 4/f 5 ' we

compare

11 ~h4 " (7f:) =H0( f:5)

Fig. 1loc. To fin fc f4

30



Assumninfg that f Iff i. e. hi becomes the ceiling of h and] h If we4 5' 5 4) 3 4'

Cot l pre

Fig. 10d. To find f 3

Assimec that f If and f Ah then arc h should be dleleted. Next,3 4 32' 3

Vie as sumne that fV /h, then arc h 4shmild also be deleted. Suppose

1h If 5 we s hall then comipare

h h1 h

0 Oh) 0(f) O~

Fig. 10e. 'ro find f.
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Asstirie f 5 /f~li. e. h is a son of h 2 . and h1 /f, we then determnine

* f5 2

~'AA

Fig. 10,r. To find f 5 2

Assitme f /f 5,i.e. h 6is a son of h 21arid h i/f 52our next coin-

palri~iol is

A f- 1 0 f"2 h
h ? (h

\\5 '62
~K7 7

Fig. 10g. To findf
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and h- bwcoines the ceiling of h

Assuime hI/f 6 5 2 , tie the partition C (h2 If I()l i s the

f -optimum partition.

Fig. 1Oh. The I -optimum partition.

Had we assumed f 5/f6 and f 52/h then both h 5 and h 2

should also be removed and we are left with

f 6  against hI

If h I/ f  then we have the f -optimum partition1 6h6

O(h7) + l4O(h()

From the above two examples, we can see that h k is the coil-

ing of h. if h k  is the lowest arc above 11. s1ch that the sipporting

weight of 1lk is smaller than or equal It) that of hi.
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Let us outline the algorithm for finding the F -optimum partition

of a monotone basic polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep

algorithm. (All the h-arcs form a list with the arc V b-Vb / at

the bottom.)

2. Process the potential h-arcs one by one, from the top to the bottom.

(We try to find the I -optimum partition of the subpolygon bounded

below by the arc being processed.)

2a. Let h be the arc currently being examined, h be the arc
R C

immediately above h and h be the arc immediately below

h R in the list. If h R is negative with respect to the subpoly-

gon bounded above by hc and below by hN , delete hR , other-

wise go to Step Zc.

Zb. Once h and its descendants are deleted, we backtrack to h
R

and compare the cost of the partition with h and its descend-
C

ants against the cost of the fan in the subpolygon bounded above

by the ceiling of h and below by h If the fan is I -optimum

in the subpolygon, we will delete hC and repeat this step until

no further deletion is possible. Then we move to examine hN.

(The actual comparisons are done in terms of the supporting

weights.

Zc. Here, hR is positive in the smallest subpolygon bounded by

potential h-arcs. We will backtrack to condense all its

descendants to hR as follows. Let h C be the ceiling of hC. if

34



S h c hC becomes a son of hR We will

combine h C as well as all its descendants to hR andS(h)s R

recalculate the combined supporting weight h
I

Replace hc by hc and compare the cost of the partition

with hR and its descendants against that of the fan in the sub-

polygon bounded above by the new h C I i. e. h and below
C' C'

by hN . If the fan is f -optimum in the subpolygon, we

delete h as well as its descendants, and go to Step 2b to

R

see if we can delete more arcs. Otherwise, we repeat this

step to see if we can condense more arcs.

2d. Now we have S ( hC the supporting weight of

hc. The arc h is the ceiling of hR and Sh ) is the

supporting weight of hR * We move and process hN .

Before a formal description of the algorithm is given, a procedure

to process the list of potential h-arcs in a monotone polygon is presented.
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SPr L'-edure MONO- PARTIT ION (L)

Input: consists of a list of potential h-arcs, passed to the procedure

via the argument L. Let h I be the lowest arc in L, the

one immediately above h be h , and h be the highest
1 2 p4-1

arc in L. (Note that h I and h are degenerated arcs with

the minimum vertex and the maximum vertex of the polygon.

Output: consists of all the potential h-arcs that exist in the 2-optimum

partition of the polygon.

stepO hc : h P
t-hR:= h;C P~

hR hp

hN h
N p-i'

MIN-WEIGI-1T = minimum of the two vertices of h N;

Comment: hR is the arc to be processed and h C is the ceiling

of the subpolygon. h N is the arc immediately below h R in L.

Step 1 Calculate S(h C)

R

If S C - MIN-WEIGI-T
(1R)

the _go to Step 2

else go to Step 3

36



Step 2 While (h i h 1 ) And
R Pi

(the supporting weight of h MIN-WEI(HT) Do
R

Begin

Remove h R and all its descendants from L;

h R : =hC ;

h = the ceiling of the new hR

End;

Go to Step 4.

Step 3 If (h J hp) and (the supporting weight of h < the
_ _ C p-i- R

supporting weight of h

then

Be g in

Condense h and all its descendants into h
C R.

h C :=the ceiling of h C

go to Step 1;

End

else

Begin

Record S hC as the supporting weight of h and h. as

(h~ R R

the ceiling of h I

go to Step 4;

End.
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4  If h N / h I

then

Begin

h h
C  R

hR: hN;

hN: = the arc immediately below the new h R

MIN-WEIGHT = minimum of the two vertices of

the new hN

go to Step 1;

End

else o to Step 5;

Step 5 Exit procedure and return L to caller.

Now we can give the algorithm for finding the I -optimum parti-

tion of a monotone basic polygon.

Algorithm I

Input consists of n positive integers, which are the weights of the

n vertices of the monotone n-gon. W[ll is the weight of the

minimum vertex and W[i+I] is the neighbor of W[i] of the

n-gon going in the clockwise direction. Let the weight of the

maximuim vertex be Wit].

Output consists of a list of potential h-arcs which will exist in the

I -optimum partition of the n-gon, the partitions in the sub-

polygons bounded by every two consecutive arcs in the list

are fans.
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Step 0 For i 2 step 1 until N do

i-1

CP[i] r W jll" W[j+l1:
j=l

C I[ 1 0;

Comment: The sum of adjacent products V[ii: W[j] can be

obtained from CP[j] - Cl[i] for 1 < i < j - N and hence

we can calculate the supporting weights easily.

Step I Apply the one-sweep algorithm to obtain a list of arcs.

1,et this list be L.

Comment: L contains (n-3) arcs which includes all potential

h-arcs in the monotone n-gon, and these arcs are layered,

one above another.

Step Z From L, remove those arcs which are not potential h-arcs:

If L is empty

then go to Step 6

else go to Step 3.

Step 3 Let the lowest arc in L be h 2 , the one immediately above

h 2 be h 3 , and so on:

Let the highest arc in 1, be h

Insert h I with weight WIll below h2

Insert h with v'ei !ht Wit] ab(ve hp V-I p

Con zinent: h is the ceiling of h
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Stop 4 MONO- PARTITION (L);

Comment: when returned from MONO-P1AICT'IT!UN, 1L will

contain all the ceiling arcs with their descendants in the I-opti-

Inu l. partition.

Step 5 Reinove h and hp 1 from l;

Step 6 Output L and stop.

This algorithmn has been implenented in Pascal and the listing of

the computer program is given in Appendix I.

Lemma 5. Any arc which is deleted from the arc-list L in Step 2 of

the procedure MONO-PARTITION cannot be present in the I -optimum

partition of the polygon.

Proof. There are two cases in which an arc is deleted from L:

(1) Its ancestors are deleted. It follows from the definition of the

ancestor-descendant relationship that it cannot be present in the

I -optimum partition of the polygon.

(2) It is the hR which satisfies the logical condition of Step 2 of the

procedure. Hence, in the subpolygon bounded below by h N and above by

h G , the partition with h R and its descendants costs more than or equal to

that of the fan. Ilence, the partition with hit and its descendants is not

I -optimum in the subpolygon and h R as well as its descendants should not

appear in the I -optimum partition of the whole polygon. E

40
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F __________0

Lemma 6. After an arc ht. has been processed, the subpolygon be-

tween h.i and its ceiling is optimally partitioned.

Proof. The h-arcs remaining in the partition of the subpol ygon are all

descendants of It By definition of the ancestor-(]escendant relationship,

Vthe partition of the subpolygon ;s optii-mkum-.

Lemmia 7. Let V be the maximum vertex, and hk h k-' ,h. he
t k - ' ' ' J+l

a set of hi-arcs in the partition such that

htk/h I- /... /h. - / h.

and h kis the ceiling of hkI

Itj+ is the ceiling of h.

then the supporting weights of these h-arcs satisfy

hk _1 kjI(

P'roof. Assume that one of the inequalities is not satisfied, say

S(hj +2) ,'(h h 1
j+1 h~i

Trhen if h. exists hi will also e'xist, 11 becomrs- ai son of h . This
Sj I I i I j

contradicts the assumption that hi+ is at ceiling of 1. J
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Lemma 8. Any arc which remains in L at the end of the procedure must

be present in the I -optimum partition of the polygon.

Proof. We can divide the h-arcs in L at the end of the procedure into two

groups:

(i) those which are descendant of some other arcs in the output, and

(ii) those which have no ancestor in the output.

By the definition of the descendant-ancestor relationship, the arcs in

group (i) must be present in the I -optimum partition whenever their cor-

responding ancestors in group (ii) is present in the i -optimum partition.

Hence, we have only to show that all arcs in group (ii) must be present

in the I -optimum partition.

Let V t be the maximum vertex and the set of arcs in group (ii)

be hk, hk_ 1 ..... hj+ 1 , h such that hk/hk  ... /h j+l/h Since none

of these arcs has an ancestor, we must have

hk as the ceiling of hk.

and hi+ as the ceiling of h.

From the logical condition in Step I of the procedure, we have

w I> S l(10)

Fromri Lennia 7 and (10), we have

"' > S h11 : h k .1 " : h
hi42

42
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\\which inlplics tLat

ht> Ch + C ()
>l h a_1 k 1  0 ( k 1I

> C(ht)+ C + C h .!i "~~~ \ h k _ j 0 h

the cost of the f -optimum partition of the polygon.

In other words, for any arc h. in group (ii) of L, i=k,k-i,... j+l,j1

all the arcs above h. in L must be present in f -optimum partition of the

upper subpolygon of h.. Since H 0 (ht) > Ch) + HO(h) , they all

should be present in the i -optimum partition of the monotone basic

polygon. U

Theorem 2. The partition obtained by the algorithm is f -optimum.

Proof. From Theorems 3 and 4 of Part I, we know that all the h-arcs

present in the f -optim-urm partition are potential h-arcs and hence are

included in the arc-list L obtained by the one-sweep algorithm. It follows

from Lemmas 5 and 8 that all the arcs which are deleted from L cannot be

present in the i -optimum partition and all the arcs which remain in L must

be present in the f -optimum partition. Further, from Lemma 1, the
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I -optimum partition in any subpolygon bounded by two adjacent potential

h-arcs in L must be a fan. Hence, the partition consisting of the h-arcs

output by the algorithm and with fans in every subpolygons bounded by

two adjacent arcs in L must be I -optimum. N

4 Let us examine how much time we spend in executing the

algorithm.

Step 0 and Step 1 each scans the polygon once, and hence takes

O(n) time. Since there are at most n-3 arcs in L, Step 2 also takes

O(n) time. There are three nested loops in the procedure. The inner-

most one is in Step 6, the middle one spans from Step 1 to Step 3, while

the outermost one spans from Step I to Step 5. Whenever the innermost

loop is executed once, a potential h-arc is deleted from L. Whenever

the middle loop is executed once (ie. the "then" part of Step 3 is exe-

cuted once), a potential h-arc is condensed into its father. Once an arc

is deleted or condensed, it will never be examined again. Since there

are at most n- 3 potential h-arcs in L, the total number of executions in

Step 2 and Step 3 is O(n). The outermost loop will also be executed at

most (n-3) times. Hence the whole algorithm will finish its work in O(n)

time.
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3. The Convex Polygon

Thecre 1nay be several local rnaxiinuiln vertices in a general con-

vex polygon. Let us still draw the polygon in such a way that the global

minimum vertex is at the bottom. From Theorem 4 of part I, we know that

all potential h-arcs are still compatible in a general convex polygon. How-

ever, unlike those in a monotone polygon, the pntential h-arcs no longer

form a linear list. Instead, they form a tree, called an arc-tree. In Fig. lla,

there is a 12-gon with 6 potential li-arcs and they are labelled as h2 , h 3, h4 , h5 ,

h 6 and h7 . (Note that we also obtain V4-V30 V7 -V 6 and V6 -V 8 from

the one-sweep algorithm. In order to have a simpler example, let us

assume that all these three arcs are unstable and hence are not shown

in Fig. Ila. ) To get a better feeling of the arc-tree, we can redraw the

12-gon as shown in Fig. lib. Again, we regard V1 as a degenerated

arc hl, V12 as a degenerated arc h , and V as a degenerated

arc h9 .

The father-son relationship still holds for the h-arcs in a gen-

eral polygon, and we can also define supporting weights of the arcs in a

similar way. The only difference is that the ceiling of a subpolygon may

consist of more than one arc. Before we can calculate the supporting

weight of any arc, we must process all the arcs above it, i.e. all the arcs

in its upper suibpolygon. Ifence, we can do a post-order traversal through

the arc tree. Let us consider the following two examples. %gain, for

simplicity, we assume that all arcs have distinct positions in the examples.
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VIs

W-,

Wa W

W9

I. (b)

Fig. 11, A general 12-gon.
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Example 3.

Wc first compare

HO0(h,) + HO (h5) =~ 8

W 0 W'10

W 7  - V 7  ----

Fig. 12. Tlilstrations for Example 3.
12a. To find f.

Assume h 4Ifl we compare

HO(h5) + Oh fQ4) = HO(f')

W44
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Assume h 3/f 4and f 5 f 4* wc condecnse h I;into h4

H O(h) + H0h)+ HO (fh ) H =

or

*C(Z8) I- H h 4) h8

4

Fig. 12c. To find f 5 4 .

Before we can process h 0we have to pr ocess h 7and h 6first. Hecnce,

thc next comparison is:

H 0(h,) + HOh)= H 9(h)
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W9  W9I I

"77

Assumne h 6 /f 7 ,we compare

H (h 7) + H80(h6) = HOG 7)

49



i(h9) 
0(h 6 

f)h

as4 th9 ce li g o h

W

6 7sr.

5 ' -

Fig. 12f. To find 7 6 .

Ass h/f and next we process the arc and h

as the ceilings of h 3

HO(h4 h6) + H ~ )=H h4,h6

Fig. IlZg. To find f3
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Suppose h 2 If 3 and f5 f7If3we first condense h 5 and li4 into h 3

and we get

C h, 6)+ 0 (f h) J1(h8 h 6)

h_ 4 f 543

Fig.~ ~ W 2-.Tofn

Noh f an I o ecodns adh no n

2 43 763' +56-3

obtain

C(h 8p h9) h 3HHO (f)h=8H , h89)

h 463 5476

Fig 12. Ro8in

W 10 - 7 W 1 v51



Assume h /f anld we compare
2 54763

if(3 h ~( f2) ,O

1 57 3 2' 3

h2and get

(h 8 h9) (f 2 J~ (f 8 3~

h~ 2 47632 54763

E9C12
10 

W1

2- . 3 W 3

5-4763a

Fig. 12k. To find f 5 4 7 6 3 2 .
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If h 1 f S4 7 6 3 2 , the I-optimum pariition of the whole polygon consisls

of all six h-arcs hz , h 3 , h 4 , h 5 , 6 and h, 7 If f 7 32 / all six

h-arcs will be removed and the I-optimum partition is a fan.

Example 4

AWc first compare

H + HO = H0(f8)

S-1% -R

t -

Fig. 13. Illustrations for lNxainpie 4.
13a. To find f5

Assume h4If and we compare

458

H(): += Of)
v1W 1 0

Vig 13Fb. i To find f 4
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Let h 3If 4and f 4If 5 so we compare

3 49 4 5h

= =i~h9

Fig 13c. Toff

677

Oh ~(7) + = i0(h(6 h

H h f 1 O ~f-7

'StS

Fig. 13d. To findf

676
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(h 4 . 6 ) + 1 (h 3 ) = o(h 4 h )

Spoch I n f IIf w odnchit3 36 43

chh)+ A +O 56

Fig. 1 3f. To find f43

Sup os h2 f 3 an f4 f /f6 w c nd nse h it55



Assumeo h / 43 6f and f4 /f5 we proceed to process Ii.

Assm and 43z we co43 s

O~ )+ "(2 f"(h ) 6

(II____'3 
13/i

Fig. 13g. To find f2

Ass i-rc h /f nd /f , w coden e h int5h



Suppose 1 fh , we remove h. as well as its dchscendants h 3 and h,

Assume f6/f5 and f 6/h, we remove h() from the polygon. Now, we

have f7/f5 and f /h , so we remove h7 from the polygon. Finally,

we have hl I/f and the I -optimum partition of the polygon consists of one

h-arc h 5 .

iA.

10

W7a

Fig. 13i. The optimum partition.

From the above two examples, we have the following observa-

tions.

(1) Before we can process a potential h-arc, we have to process all

the arcs above it. Hence, we should do a post-order traversal, starting

at the root of the arc tree, i. e. the degencrated arc h 1

(2) Whenever we do a condensation or dcletiori, we aluays pick the

ceiling arc which has the highest floor first, i.e. the one. with the

largest supporting weight. Hence, wc should keep track of the order

of the ceiling arcs.
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(3) Once a ceiling arc h. of h. is renoved or condensed, the ceiling3 1

arcs of h. bccnri._! the ceiling arcs of h. and we have to update the
j 1

order of all the ceiling arcs of h.1

One way of keeping track of the order of the ceiling arcs is to

keep them in a priority queue.

Now, let us outline the algorithm for finding the optimum parti-

tion of a general convex polygon.

1. Get all the potential h-arcs of the polygon by the one-sweep

algorithm. (All the h-arcs form a tree, with the root at the

bottom. Let the arc-tree be T.)

2. Process the h-arcs, one by one, from the leaves to the root. (We

always process the children before we process the father, and we

always obtain the optimum partition of the subpolygon bounded below

by the arc being processed.)

3. Let h be the arc currently being examined, U R be the set of arcs

immediately above h R, and h N be the arc immediately below hR

in T. If hR is negative in the subpolygon bounded above by the

arcs in U R and below by hN , delete h R , else go to step 5.

4. Once hR and its descendants are deleted, we examine the arcs in

U V to see if we can delete more arcs. If yes, we delct, the arc

wilh the largest supporting wvighl; 1hn we include its cling arcs

into U R and repeat this step. Otherwise, we move to process the

next arc.
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5. Now, hR is positive in the smallest subpolygon. If there *,xists

some arc in UR, say hj, such that

S(R) < the supporting weight of h.

we will pick the arc with the largest supporting weight in

U R' condense it with its descendants into hR and include all

its ceiling arcs into UR. Then we compare the cost of the partition

with h and its descendants against that of the fan in the subpolygonR
bounded above by the arcs in UR and below by hN. If the fan is

I -optimum in the subpolygon, we remove hR as well as all its

descendants from T, and we examine the arcs in U R to see if we

can delete any more arcs. Otherwise, we examine the arcs in UR

to see if we can condense any more arcs.

6. Now, S (h) S the supporting weight of every arc in U. . The

arcs in UR are the ceiling arcs of hR and S (hR) is the supporting

weight of h . We move to process the next arc.
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Before presenting the algorithm, let us describe a recursive

procedure to process the potential h-arcs of any subpolygon.

Procedure PARTITION (ROOT)

Input: consists of a set of potential h-arcs of a subpolygon. These

arcs are arranged in the form of an arc tree, like the one

shown in Fig. lb. The root of the tree is passed to the

procedure via the argument ROOT.

Output: consists of a set of the potential h-arcs which appear in the

I -optimum partition of the subpolygon. We can divide that

arcs into two types: (i) those arcs which are descendants of

some other arcs in the set and (ii) those arcs which have

no ancestor in the set. The arcs in type (i) are con-

densed into their ancestors and can be traced out from the

arcs in type (ii). The arcs in type (ii) are called ceiling

arcs and are kept in a reduced arc tree. The root of the arc

tree is passed back to the caller via the parameter ROOT.

60



Ste p 0 Let the arc at the root of the itiput arc tree be h N;

MIN-WEIGIIT = the weight of the miinimtum of the two

vertices of hN;

T = an arc tree with only one arc, h N;

Step I For each arc immediately above h N in the input arc-tree Do

Begin

Step la Let the arc to be processed be hR;

If there exists a non-degenerated arc above hR

then go to Step lb

else go to Step If;

Comment: h R is immediately above hN!R

Step lb PARTITION (h );

Let the subtrcc returned be T'

Comment: Before processing h the subtrces of hi

are first processed recursivly.

Step lc Let U R be the set of arcs immnediately above hI in T'

Calculate S(h I

If S5 hi )  , MIN1-W .IGI '1'

then go to Step Id

else go to Step le.
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Step ld Remove hR from T'

while (there exists a non-degencrated arc, h., in U.) anid
jIt

(the supporting weight of h. MIN-WEIGIIT) DoJ

Begin

Remove h. from UR
S3

Remove h. from T';

Include all ceiling arcs of h. into U R

end;

Insert the forest T' into T such that all arcs in U R are RI
immediately above h N in T.

Go to Step li.

Step le If (there exists a non-degenerated arc in U and (its sup-

porting weight > the supporting weight of h

then

Begin

Among all the arcs in U R , pick the one with maximum

supporting weight;

Let it be h.
J

Condense h. into hR and remove it from T'

Includc all ceiling arcs of I. ink, i
j It

- Fix up the tree T' so that all the c(cilig arcs of h. arc~J

imncdiately abovc hR in T'

go to Step Ic;
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else

Begin

Record S R as the supporting weight of h Rand all

arcs in UR as the ceiling arcs of h R insert T ' into T

so that h is immediately above hN in T;

go to Step li;

end.

Step If Let hC be the dcgenecrated arc above hR

Calculate ShC)
hR

If h MIN-WEIGHT

then go to Step lg

else go to Step lh

Step lg Remove hR

Insert h C immediately above h N in T.

go to Step li

Step Ih Record S C) as the supporting weight of h and h C as

the ceiling arc of hR; insert the subtrec with hR an h C

into T so that h R is immediately above hN in T.

Step li F nd.

Ste p 2. Return T with root stored in ROUT to callcr.
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Now, the details of the algorithm to find an optimum partition of

a convex polygon is presented.

Algorithm 11

Input consists of n positive intcgcrsi, which are the weights of the

n vertices of an n -gon. W[11) is the weight of the niininILxn1

vertex and W[i+fl is the neighbor of Wii of the n-gon going

in thc clockwvise direction.

Out put consists of a tree of potential h-arcs which exist in the

I -optimum partition of the ri-gaon.

Step 0 For i =Zstep 1 until N do

.9~i i- j 1 ~ 41

G'[ 1] 0

Cornment: The surn of adjacent produicts XV (i W til can be

obtained fromn C P[j] - G P[i] for 1 < i < j < N.

Ste p 1 Apply the one-sweep algorithmn to obtain a tree of arcs. Let

this arc tr, e be T.

Gon-une nt: ' contains all potential h-arcs in the n-goni.

Stcp 2 From T, remove thiose arcs which are not pote ntial

h-arcs;

If T is empty

thien a~o Step[ 6.

else go to Ste p 3.
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St o p 3 ulse rt th,' d,4*1 i: Iu. rate. a e Ii xvith wx i1jht W 1 1 to th.

bottonm of the tree, as the root of th. tr,;

Inserit a degernc'rated arc with tihc local mnaximt, ik weight

at the tip of each corresponliiii branch of the arc tree.

Step 4 PARTITION (hl);

Comnment: h is the root of T; when returned from

PARTITION, T will contairn all the ceiling arcs with their

descendants in the I -optimum partition.

Step 5 Renove all degenerated arcs.

Step_ Output T and stop.

This algorithm has been iniplencented in Pascal and the list-

ing of the computer progran is given in Appendix II.

Theorem 3. The partition of the general convex n-gon obtained by the

algorithm is I -optimum.

Proof. Using arguments similar to those in Theorem 2, we can first

prove that all the potential h-arcs which are deleted from the arc-tree

cannot be present in the I -optimum partition, then we prove that any arc

which is left in the arc-tree at the end of the algorithm must be present

in the I -optimum partition. Hence, the partition consisting of the h-arcs

output by the algorithm and with fans in the subpolygons bounded by a

potential h-arc and the arcs immediately above it in the output arc-

tree must be 1-optimum. i
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Let us examine how much time we spend in executing the algorithri.

Steps 0 and 1 each scans the polygon once, and hence takes 0(n)

time. Since there are at most n-3 arcs in T, Step 2 also takes 0(n) timc.

There will be a recursive procedure call for each arc in T (except the

leaf nodes). Inside each procedure call, there are two nested loops. The

innermost loop is the "while"t loop in Step ld and the outer one spans from

Steps Ic to le. Whenever the innermost loop is executed once, a potential

h-arc is deleted from T. Whenever the outer loop is executed once (i.e.

the "then" part of Step le), a potential h-arc is condensed into its father.

Once an arc is deleted or condensed, it will never be examined again. In

order to carry out the deletion and condu. ztion efficiently, we cannot

examine all the arcs in U R each time we go through the loop. Hence, we

R* ~ need to order thc arcs in UR in a priority queue and it takes O(log xi) to

update the queue each time. Hence, it takes 0(n log n) time in executing

Step 4 of the algorithm. Steps 5 and 6 each takes O(n) time. Hence, the

whole algorithm takes O(n log n) time to find the I -optimum partition.
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4. A closer look at the optimum partitions

We now present some theorcrns which enable the algorithm to

divide the polygon into several subpolygons and hence can improve the

average performance of the algorithm. These theorems have also been

mentioned in [4] without detailed proofs.

Let us consider the polygons where there are two or more

vertices with equal weights w 1 .

Lemma 9. For every choice of V 1 V .. (as prescribed in Part I), if

the weights of the vertices satisfy the condition

. w 1 =w2<w 3 -<... < Wu
1,= 2 <w3 s wn

then V -V 2 exists in every optimum partition of the n-gon.

Proof. The lemma is true if VI -V is a side of the n-gon. Hence, we

can assume that V 1 , V 2 are not adjacent to the same side of the n-gon.

The proof is by induction on the size of the n-gon. The lemma is

true for a triangle and a quadrilateral. Assume that the lemma is true for

all k-gons (3 < k < n-l) and consider the optimum partitions of an n-gon.

By Lemma 3 of Part I, we know that there are at least two vertices

with degree two in each optimum partition of the n-gon. We have the

following two cases.

(i) In an optimum partition of an n-gon, one of the vertices with degree

two, say V., has weights larger than w 1 . In this case, we can form an

(n-1)-gon by removing V. with its two sides. By induction assumption,1

V1- V 2 is present in every optimum partition of the (n-1)-gon.
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(ii) Consider the complementary case of (i), i.e. all vertices with

degree two have weights equal to w 1 in an optimum partition of the n-gon.

In other words, V 1 and V 2 are the only two vertices with degree two in

that optimum partition, as shown symbolically in Fig. 14 a. Note that

every arc in the optimum partition must dissect the n-gon into two sub-

polygons in such a way that V 1 , V 2 can never appear in any subpolygon

together, else there will be more than two vertices with degree two in

the optimum partition. In Fig. 14b. we show a partition of the n-gon in

which V and V 2 are connected. Let us denote the n-2 triangles in Fig. 14 a

by P 2 ... I P n- Except P1 and P n-2 all the other n- 4 triangles are

made up of one side and two arcs each. For each of these n- 4 triangles,

we can find a unique triangle in Fig. 14b such that they both consist of

the same side. We use P.' to denote the image of P. in Fig. 14b. The1 1

only two triangles left unmatched in Fig. 14b are V V V and V V V
1 a2 1 2j

and they are the images of P1 and Pn 2, respectively. Let the cost of P.11

be C. and the cost of P' be C.'. Since C' C. for 1 " i < n-2, the1 i i 1

partition in Fig. 14b is cheaper than that in Fig. 1 4 a and we have

contradiction. M
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Fig. 14

Theorem 4. For every choice of V 1 V 2S .... (as prescribed in Part 1), if

the weights of the vertices satisfy the condition

WI = w 2 <  w 3 - .. -4 W n

then every optimum partition of the n-gon must contain a triangle V IV 2V p

for some vertex V pwith weight equal to w 3 . Note that if w I = w 2z < w 3

Pw

W 4 !5< .•.!9 w n , then every optimum partition must contain the triangle

V IV2V 3 since there is a unique choice of V 3

Proof. Similar to Lemnma 9, we can prove this theorem by induction on the

ize of the n-gon. The theorem is true for any triangle or quadrilateral

atisfying the above condition. Assume the th(orem is true for all k-gons

t3 k n-1) and consider the optimum partitions of an n-gon.

69



From Lemma 9, we know that V 1 , V2 are always connected in every

optimum partition. Hence, without loss of generality, we can assume V 1.V 2

to be adjacent to the same side of the n-gon. Again, we have the following

two cases.

(i) In an optimum partition, one of the vertices with degree two, say V.,1

has weight larger than w In this case, we can remove V. with its sides and
3,1

form an (n-l)-gon. By induction assumption, every optimum partition of the

(n-l)-gon contains a triangle V1VzVp for some vertex V where wp =w3"

(ii) Consider the complementary case of (i), in an optimum partition of

the n-gon, all vertices with degree two have weights less than or equal to w 3

Since V -V is a side of the n-gon, for n > 4, either V 1 or V (but not both)

can have degree two. We have the following two subcases:

(a) If there are more than one vertex whose weight equals w 3P we

can form an (n-l)-gon by removi;.g one of those degree two vertices whose

weight equals w 3 . By induction assumption, every optimum partition of the

(n-l)-gon contains a triangle V V 2 for some vertex V with w = V3 ,

(b) There exists only one vertex of weight w 3 . In this case, there

must be only two vertices with degree two in the optimum partition of the

n-gon. These two vertices are V 3 and either V or V . Without loss of

generality, we can assume V 1 has degree 2. The situation is shown symboli-

cally in Fig. 15a. Again, every arc in the optimum partition must dissect the

n-gon in such a way that V and V 3 can never appear in any subpolygon to-

gether. In Fig. 15b, we show a partition containing the triangle V V V
1 2 3~

Using arguments similar to those in the proof of Lemma 9, we can show that

the partition in Fig. 15b is cheaper and we obtain a contradiction.
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Fig. 15

Theorem 5. For every choice of V 1 , V 2 , ... (as prescribed in Part 1), if thc

weights of the vertices of the n-gon satisfy the following condition,

W, =w 2  "Wk W k~l *w n

for some k, 3 k !! n, then every optimum partition of the n-gon contains

the k-gon V 1- V 2 " ,V k*

Proof. The proof is by induction on t . of the n-gon. The theorem is

* true for any triangle and quadrilateral. Suppose the theorem is true for all

polygons with (n-1) sides or less and consider the optimum partitions of an

n-gon.

From Lemma 3 of Part I, there exist at least two vertices having

degree two in every optimum partition. We have the following two cases.
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(i) In an optimum partition of the n-gon, one of the vertices with degree

two, say V. , has weight larger than w 1 . In this case, we can remove the
1

vertex V. with its two sides and obtain an (n-l)-gon. By induction assumption,
1

every optimum partition of the (n-l)-gon contains the k-gon V 1-V ... Vk .

(ii) Consider the complementary case of (i), i. e. , all the vertices with

degree two have weights equal to w 1 in an optimum partition. Let two of

these vertices be V.,V.. We have the following two subcases:1.1

(a) k> 3. We first form an (n-1)-gon by removing V. and its two sides.
1

There are (k-l) vertices with weights equal to w in the (n-1)-gon. By induc-

tion assumption, every optimum partition of the (n-l)-gon contains the (k-l)-

gon which includes V. as one of its vertices. Since V. has degree two in the
3 3

optimum partition, its two neighboring vertices, say V and V , must also
x y

have weights equal to w1 and the arc V -V exists in the optimum partition
x y

(Fig. 16). Similarly, we can remove the vertex V. with its two sides V.-V
3 j x

and V.-V and form an (n-l)-gon. By induction assumption, every optimum
j y

partition of the (n-l)-gon contains the (k-l)-gon formed by the (k-i) vertices

with weights equal to w I in the (n-1)-gon and V. is one of the vertices in the

(k-l)-gon. Now, by pasting the triangle V V.V and the (k-1)-gon together,

we form a k-gon which includes all the vertices with weight equal to w 1 in

the n-gon and this k-gon is contained in the optimum partition of the n-gon.
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vOx

Fig. 16

(b) k 3. In this case, we have w= w 2 =w 3 <w 4 !g w n

Without loss of generality, we can assume V and V both have degree two in

an optimum partition. Again, we can form an (n-1)-gon by removing V 1 and

its two sides. By Lemma 9, V and V 3 are connected in every optimum

partition of the (n-1)-gon. Since V has degree two, V -V 3 must be a side

of the n-gon. Next, we can remove V with its two sides and form an (n-l)-
J2

gon. By Lemma 9, V1 V 3 are connected by a side of the n-gon. The situa-

tion is shown in Fig. 17a. Then, the partition in Fig. 17b is cheaper because

T -T < +T
123 1zy T3x Z3 y

and C(wl,w ... ,w) y C(w w) .
x y 3x y

i.3
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Fig. 17

Now, whenever we have three or more vertices with weights equal

to w 1 in the n-gon, we can decompose the n-gon into subpolygons by forming

the k-gon in Theorem 5. The partition of the k-gon can be arbitrary, since

all vertices of the k-gon are of equal weight. For any subpolygon with two

vertices of weights equal to w I , we can always apply Theorem 4 and decom-

pose the subpolygon into smaller subpolygons. Hence, we have only to

consider the polygons with a unique choice of V 1 , i.e., each polygon has

only one vertex with weight equal to w .

Because of Theorems 4 and 5, Theorems l and 3 of Part I can be

generalized as follows.

Theorem 6. For every choice of VI V 2 ... (as prescribed in Part I), if the

weights of thc vertices satisfy the condition

w < w w "'" w
3 n

then V I-V 2 and V I-V 3 exist in ever. optimum partition of the n-gon. U
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Theorem 7. Let V and V be two arbitrary vertices which are not adjacent
x Zz

in a polygon, and V be the smallest vertex from V to V in the clockwise
w x z

manner (V / V . V # V ), and V be the smallest vertex from V to V
w x w z y z x

in the clockwise manner (V y V x , V y V ). This is shown in Fig. 18y x y z

where we assume that V < V and V < V . The necessary conditionx z y w

for V -V to exist as an h-arc in any optimum partition isx z

w <w w <w . i
y x z w

I
I

I il

VYV

Fig. 18

From Theorem 7, we know that any arc which exists as an h-arc in

some optimum partition must be a potential h-arc. In other words, the

h-arcs in every optimum partition will be generated by the one-sweep

algorithm. Hence, by modifying the condition in steps Ic and Id of the

procedure Partition to favor partitions with more h-arcs, wc can obtain

other optimum partitions which consist of more h-arcs than the I -optimum

partition. 75
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5. Conclusion

The problem to find the optimum order of computing a chain of

matrices has been around for several years [2]. It has been used as a

typical example to illustrate the dynamic programming technique in many

textbooks [11[3]. In this paper, a new approach is used to solve the

problem. Instead of tackling the matrix chain product problem directly,

it is transformed into the problem of partitioning a convex polygon and a

tailor-made algorithm for finding the optimum partition is developed.

The algorithm takes O(n log n) time and O(n) space. For those who want

to trade optimum solution for shorter execution time, an O(n) heuristic

algorithm has been presented in [5]. This heuristic algorithm is very

simple to implement and its error bound given explicitly as a function

of the number of sides of the convex polygon and the ratio of the

weights of the largest vertex to that of the smallest vertex. The

worst error ratio is less than 15%.
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Appendix I

PROGRAM OPT IMUM__ALGORITIM FOR A MUNOTON': BASI C PO.Y(;ON;

CONST MAX SIZE = 127;

TYPE POSINTEGER = 0 .. 32767; [limited by the word-
size of the computer)

LIST PTR = LIST EIEMENT;
LIST-ELEMENT PACKED RECORD

HEAD, TAIL : POS INTEGER;

HEAD SMALL : BOOLEAN;
SUP WEIGHT,
COST,
BASEPRODUCT,
SIDE PRODUCT : INTEGER;
DESCENDANT, NEXT : LIST PTR

END;

VAR W, CP ARRAY [1..MAXSIZE] OF INTEGER;
LIST, LFAF: LISTPTR;
N POSINTEGER;

SEGMENT PROCEDURE INITIALIZING;
************************************************* ***********

(* Handles the inputs and initializing all the global
(* variables.

*********************************************** )

VAR I : INTEGER;

BEGIN
WRIIELN ('a linear algorithm to find all the h-arcs in',

'the optimum')
WRITELN (' partition of a monotone basic polygon',(7/2/80)

WRITELN;

[obtain the inputs}
WRITE ('Please enter the size of the polygon (btwecn 3'

and ' ,NAX_ SI ZE-1 ,')
READI,N (N);

WR I 1;I.N
WRITELN ('Now, starting from the smallest vertex and in'

' th " ' ) ;
WRITELN (' clnckwise direction, enter the weights of',

the ver'ticcs:'
FOR I :1 TON DO READ (WIJ);
READLN;
WRIT ELN;
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(calculate the cumulative aujacenL
products around the polygon)

FOR 1 2 TI'O N DO CP[I] := CP[u-I) + W[I-IJ * W[Ij;

[initialize the psuedo arc)
NEW (LEAF);
WITH LEAF DO

BEGIN
BASE PRODUCT U;
SIDE-PRODUCT 0;

END;

[set up the output headingsl
WRITELN ('the potential h-arcs in the partitions are

END; {initializing}

SEGMENT PROCEDURE ONE SWEEP (VAR L : LIST PTR);*** *** *** *** ****** ** **** ******* ******* ** **** ** *******

(* Sweep the polygon once, collects all potential h-arcs, *)
(* puts them in a list. The address of the head of the *)
(* list is sto-ed in L.
********************************** **************************

VAR STACK : ARRAY [1..MAXSIZE] OF
POSINTEGER;

TOPELEMENT, SECONDELEMENT,
CURRENT, TOS : POS INTEGER;
P, ARCLIST : LIST_ PTR;

PROCE)URE PUSH (C : INTEGER)
********************** * * *** *** ***** ************

(* Pushes the index C onto the stack and updates the
(* variables TOS, TOP EIFMENT, and SECOND ELEMENT.( *********************************************************
BEGIN

STACK[TOS] := C;
SECONDELEMENT := TOP ELEMENT;
TOP ELEMENT C;
TOS := rDS - I;

END; [push1
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PROCEDURE POP STACK;* * A A***** ****** ********** ***** **** ****A******* *A********

* Pops the top clement off the stick and u[,dat(,:, tie *

* variabies TOS, TO[ ELEMENT, and SECOND EIEMENI. *
****** *** ************ **** ** ****** ******* ***** ***********

BEGIN
TOS := TOS + 1;
TOP ELEMENT := SECOND ELEMENT;
SECOND ELEMENT := STACK[TOS + 2];

END; {pop-stack)

(******************************************************

(*One-sweep begins here.
• ***~**************************************** ** *********

BEGIN
[initialize the local variables)
TOP ELEMENT := 0;
SECOND ELEMENT := 0;
STACK[N+1] := 0;
TOS := N;
ARC LIST := NIL;
PUSHT (1);
PUSH (2);
CURRENT := 3;

(scan through the polygon in the clockwise direction)
WHILE CURRENT < N DO

IF (W[SECONDELEMENT] <= W[TOP ELEMENT] ) AND
(W[TOP ELEMENT] > W[CURRENT]

T HEN
BEGIN

NEW(P);
WITH P^ DO

BEGIN
HEAD SECOND ELEMENT;

TAIT, CURRENT;
HEAD SMALL := W[HEAD] <= W[TAIL]
BASE PRODUCT W[HEAD] * W[TAII.]
SIDE PRODUCT CP(TAILI - CP[HEAD]
DESCENDANT := NiL;
NEXT ARC LIST;

' END;
ARCLIST P;

POP STAC K;
IF' TOS >= (N-i) (there are los:; than 2

clements . n the sLack)
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BEG I N
PUSI (CURVENT) ;

CURRENT := CURRENT + 1;
END;

EN)
ELSE

BEGIN
PUSH (CURRENT);
CURRENT := CURRENT + 1;

END;

WHILE (TOS <= (N-3))
AND (W[SECONDELEMENT] <= W[TOP ELEMENT)

AND (W[TOPELEMTNT] > WIN]) DO
BEGIN

NEW(P);
WITH P^ DO

BEGIN
HEAD SECOND ELEMENT;
TAIL N;
HEAD SMALL := WIHEAD] <= W[TAILJ;
BASE PRODUCT W[HEADJ * W[TAIL]
SIDEPRODUCT CP[TAIL] - CP[HEAD]

DESCENDANT := NIL;
NEXT ARCLIST;

END;
ARC LIST P;
POP STACK;

END;

L := ARC LIST;
END; {onesweep)
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SEGMENT PROCEDURE MONO PARTITION (VAR L: LIST PTK)

* Oldt, i , ; al I the th-c:; i l e t it i 1 pi t it i'm ',f Lii, *

(* pr [ygon and returns them in a list. The addres.; of *)
(* the head of the list is sto-ted in L.

FUNCTION FAN COST (HR, HC : LIST PTR) : INTEGER;

(* Calculates the cost of the fan of the subpolygon
(* bounded above by HC and below by HR.

VAR TEMPI, TEMP2 : INTEGER;

BEGIN
TEMPI := HR^.SIDE PRODUCT - HC^.SIDE PRODUCT

+ HC .BASE PRODUCT;
WITH HR ^ DO

IF HEADSMALL
THEN

4 BEGIN
IF HEAD = HC.HEAD
THEN TEMP2 HC^ .BASE PRODUCT
ELSE TEMP2 CP[HEAD+Ij - CP[HEAD];
FAN COST := (TEMPI - TEMP2) * W[HEAD];

END
ELSE

BEGIN
IF TAIL = HC.TAIL
THEN TEMP2 =HC^.BASE PRODUCT
ELSE TEMP2 CP[TAIL] - CP[TAIL-1 ;
FAN COST := (TEMPI - TEMP2) * W[TAII];

END;
END; ( fan cost)

FUNCTION SUPPORTING WEIGNT (HI<, 1C LI ST PTR) INTEGER;
*** ************* ** **** ********* ********* ** ****** *******

(* Find the supporting weight of the subpolygon bounded *)

(* above by IC and below by HR.
******************************************

VAR Y : INTEGER;

BEGIN
[calculate the dcrionminator)
Y -= (lIRa.SIDE_ PROI)UCT - 1R .BASI- ' PRO)UCT)

--- (ilC^ .SlI DE 1 PIOI)LICT - IIW . I3A I:- I'IOI)U(l"')

(calculate the SUPPORTING WE[GIlT)
SUPPORTING WEIGHT := (HR^.COST + Y - 1) DIV Y;

cei] ing function
END; (sutppo rting weight)
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PROCEDURE REMIOVE (VAR S : IST PTIR ; MIN : INTEIGER.I);
(AA kAk**k*A**k*k * *AA-*A A A A***A A*** k A A AAAAAAA A* A)

Rt 1i11VCS aIll the aw:c'; in 8-whose SUI ) WLIGII'fS are e(lual toA)
(*or larger than MIN from the. li;t.
(****************************A*********************k*****)*

VAR NOT DONE : BOOLEAN;

BEGIN
NOT DONE := TRUE;

4; WHILE NOT DONE DO

IF S NIL
THEN NOTDONE := FALSE
ELSE

IF S .SUPWEIGHT < MIN
THEN NOT DONE := FALSE
ELSE S S .NEXT;

END; Iremove}

PROCEDURE SUB PARTITION (VAR S LIST PTR; MIN INTEGER);*** ** ******* **** ******************** **** ***** *** **********

(* Finds the optimum partitin of the Subpolygonbounded *)
(* below by the potential h-arc at the head of S. The *)
(* h-arcs in the optimum partition of the subpolygon *)
(* is kept in a list with S pointing to the head of
(* the list.

VAR TEMP : INTEGER;

TEMP PTR : LIST PTR;
NOTDONE : BOOLEAN;

BEGI N
IF S ^ .NEXT <> NIL

THEN
BEGIN

IF S ^ 
.HEAD SMAL

THEN TEMP W[S^.HEA)]
ELSE TEMP W[S ^ .TAIL] ;
SUBPARTITION (S-.NEXT,TEMP) ; {S ^ .NEXT may become

NIl when return
from SUi1_PARTETvON

END ;

IF S .NEXT = NIl,
THEN TEMP PTR := LEAF IS is the last arc in th. list)

I.I':A I iS p.Mu,, ,-c wiLi
bo th 1.IFA' ^ .BASE PlzOI)UCT and
LEAF . SI)l.: PROI)JCT equal to NIL

EI.SE TEMP PTR S^.NEXT;
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S .COST: FAN COST(S,TEMP PTR);
NOT I)ONEI ''R[E ;
WIlII.I.: NU DONE DC)

BEGI N
S .SUP WEIG11T := SUPPORTINGWEIGHT(S,TEMP PTR)

IF S-.SUP WEIGHT > = MIN (to see if the partition is
optimum in the subpolygon}

THEN
BEGIN

REMOVE (S,MIN); {delete all h-arcs not in the
optimum partition of the
subpolygon}

NOT DONE := FALSE;
END

ELSE
BEGIN

IF S^ .NEXT <> NIL

THEN
IF S ^ .NEXT^ .SUP WEIGII'T' <= S ^ .SUPWEIGHT
THEN NOT DONE := FALSE
ELSE

BEGIN [condense S- .NEXT into S}
TEMP PTR : ^.NEXT;
S ^ .NEXT TEMP PTR ^ .NEXT;
S .COST S .COST + TE MP PTR .COST;
TEMP PTR^ .NEXT S ^ .DESCTNDANT;
S D-ESCENDANT TEMP PTR;
IF S .NEXT = NIL
THEN TEMP PTR LEAF
ELSE TEMPPTR S .NEXT;

END
ELSE NOT DONE FALSE;

END;
END;

END; {sub_partition}

BEGIN
SUBPARTITION (L,WI]);

END; Imonn_partitinn)
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PIkOCi-DUiE WRITE EIST (L IST PTR; MIN, INDENT : INTEGFR)*** *** ******** **** ******* **** ***** ** *** ******* *********** ****

* Dis plays the h-arcs in L|. li;tL pointed by I..

VAR TEMP : IOS INTEGER;

BEGIN
WHILE L <> NIL DO

BEGIN
IF L^ .HEADSMALL
THEN TEMP L-.HEAD
ELSE TEMP L^.TAIL;
IF TEMP <> MIN
THEN WRITELN (' ':INDENT,L^.HEAD, '  ':3,L^.TAIL);
WRITE LIST (L^.DESCENDANT,TEMP,INDENT+3);
L := L^.NEXT;

END;
END; (write listj

BEGIN (main program begins here}
INITIALIZING;
ONE SWEEP (LIST);
MONO PARTITION (LIST);

IF LCIST <> NIL
THEN WRITE LIST (LIST,1,3)
ELSE WRITEfN (' ':3,'NIL');

END. [main program)
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Appendix 11

PROGRAM OPTI MUtMPARTITION OF A GE'NERALCONVEX POLYGON;

CONST MAX SIZE = 127; [the maximum number o vertices in
a polygon is 126}

MAX INT = 32767; (the largcst integer in the machinel

TYPE POS INT!'GER = 0 MAX INT;
LIST PTR : LIST ETEMENTV;
LIST-ELEMENT = PACKED RECORD

HEAD : POS INTEGER;
STAY : BOOLEAN;
TAIL : POS INTEGER;
HEAD SMALL : BOOLEAN;
NEXT : LISTPTR

END;

TREE PTR = TREE ELEMENT;
TREE-ELEMENT = PACKED RECORD

HEAD, TAIL : POS INTEGER;

HEAD SMALL : BOOLEAN;
SUP WEIGHT,
TREE COST,
TREE BASE PRODUCT,
TREE SIDE PRODUCT,
LOCAL_ COST,

LOCALBASE PRODUCT,
LOCALSIDE PRODUCT: INTEGER;
DESCENDANT, NEXT,
H ARC, V ARC : TREE PTR;
LIST LINK : LIST PTR;
DE PTH[ : INTEGER

END;

[VARC and HARC are used in two
different waiys : (1) they are
used to link the unp:ocessc'cl arcs
together to form an arc-tree; and
(2) they are used as the left
link and the right link of the
processed arcs in the leftist
tree for the priority queue.

VAR W, CP : ARRAY 11..MAXSIZE] OF INTEGER;

LIST]., LIST2 : LIST PTR;
V TREE, HTREE : TREE-PTR;

N : POS INTEGER;
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SEGMENT PROCEDURE INITIALIZING;

(* Handles the inputs and ni In ial izingj all the g]objl)
(* variables.

VAR I : INTEGER;

BEGIN
WRITEIN ('a linea' algr ithfn tow find all the h-arcs in');
WRITELN (' the optimum partition of a convex polygon',

' (7/16/80)');WRITELN ;

[obtain the inputs)

WRITE ('Please enter the size of the polygon (between 3',
and ',MAXSIZE-I,'):')

READLN (N);
WRITELN;
WRITELN ('Now, starting from the smallest',

I vertex and in the ');
WRITELN (' clockwise direction, ',

'enter the weights of the vertices:');
FOR I := 1 2O N DO READ (W[I]);
READ LN;
WRITELN;

[calculate the cumulative adjacent
products around the polygon)

CP[lj 0;
FOR I : 2 TO N DO CP(IJ := CP[1-I1 + W[I-I1 * W(I];

(set up the output headings)
WRITELN ('the potential h-arcs in the partitions are

END; [initializing)
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Si:(;MI:NT PI0CFI.[)1 N I.: ONF SWIEEP (VAI? F, L S'I TI'R
(*AAAAAAAA A * A A * A - kE A * A A A A f A A It A A A A Ak AAAAAA

(* Swucp the polyyon once, collects all potential h-arcs, *)
(* puts them in a list. The address of the head of the A)

(A list is stored in L. A)

VAR STACK : ARRAY [I..MAX SIZE] OF
POS-INTEGER;

TOP ELEMENT, SECONDELEMENT,
CURRENT, TOS : POS INTEGER;
P, ARCLIST : LISTPTR;

PROCEDURE PUSH (C : INTEGER);
I********************************************************)*
(A Pushes the index C onto the stack and updates the *)

variables TOS, TOP ELEMENT, and SECOND ELEMENT.
* ** * ****** ** ** ** * ****** ** * * *** * **** ** * **** *** ** * ** * * * *

BEGIN
STACK[TOS] : = C;
SECOND ELEMENT := TOPELEMEN;
TOP ELEMENT := C;
TOS := IOS - 1;

END; [pushl

PROCEDURE POP STACK;(* * ** * ** ****** ** * **** * ** * ** *** ** ** * ** * ** **************

(* Pops the top element off the stack and updates the A)

(* variables TOS, TOP IELEMENT, and SECOND ELEMENT.
(* *** ** ** ** ** * ** * ** **** ** ** ** *** ** * ** ** ***** * ** *** ** ** **A)

BEG] N
TOS := TOS + 1;
TOP EIFNI;NT := SECOND ELEMENT;
SECOND EILEMENT := STACK[TOS + 2];

END; pop stack)

BEGIN tone sweep begins here)
{initialTze the local variablesi
TOP ELEMFNT := 0;
SECOND_ EVEMENT := 0;
STACK[NIiJ := 0;
TOS := N;
ARC LIST : NIL;
Pusll (I);
PUSH (2)
CURRENT 3;
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[scan through the plygon in the clockwise direction}
WillIE CURRENT < N DO

I F (W[SI.:CONI) l",I,EMEhNTJ <: W I T .,I, , MENTJ ) ANI)
(W['iOP ELEMENT] > W[CURRENT)

THEN
BEGIN

NEW(P);
WITH P^ DO

BEGIN
HEAD SECOND ELEMENT;

TAIL CURRENT;
STAY FALSE;
HEAD SMALL := W[HEAD] <= WITAILI;

NEXT ARC LIST;
END;

ARC LIST P;

POP STACK;
IF OS >= (N-i) [there are less than

2 elements on the stacki

T H EN
BEGIN

PUSH (CURRENT)
CURRENT := CURRENT + 1;

END;
END

ELSE
BEGIN

PUSH (CURRENT)
CURRENT := CURRENT + 1;

END;

WHILE (TOS <= (N-3))
AND (W ISECONDE , EMFNT] < W (TOP EI,I1 EN'I

AND (W[TOPELEMENT] > W[NJ) DO

BEGIN
NEW(P);
WITH P^ DO

BEGIN
HEAD SECONDELEMENT;

TAIL N;
STAY FALSE;
H EAD SMALL := W[IIEAI)J <= W['AI'I,

NEXT:= ARC L, IST;
END;

ARCLIST P.;
PO' S'TACK;

END;

L := ARC LIST;
END; f one_ ;wcepl
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SEGMENT PROCEDURE BUILD TREE (VAR I- LI ST PTR;
VAR VT, IT : TREE PTR; FI RST, LAST, M'N : PO5 I NTEG ER)

* AA* A A A A ** ** ****A **** ****** *** ***AA**AA A**AA**AA *** Ak**A * AA A* A* A)

(* Traces all the arcs in the list pninted by , and *)
(* build an arc-tree with the root po inted by T.

VAR NOT DONE : BOOLEAN;
P : TREE PT;
Q : LIST-PTR;

BEGIN
NOT DONE : = TRUE;

VT NIL;
HT NIL;
WHILE NOT DONE DO

IF L = NIL
THEN NOTDONE := FALSE
ELSE

IF (,>.HEAD < FIRST) OR (L.TAIL > LAST)
THEN NOT DONE := FALSE
ELSE

BEGIN
Q := L^ .NFXT;
IF L^.HEAD <> 1
TH EN

BEGIN
NEW (P);
WITH P^ DO

BEGIN

HEAD L^ .HEAD;
TAIL L^.TAIL;
HEAD SMALL L^ .HEAD SMALL;
DESCENDANT NIL;
DEPTH := 1;
LIST LINK L;
(LOCaL_COST, LOCALBASEPRODUCT,

LOCAL SIDE PRODUCT, TREE COST,
TREE BASE_ PRODUCT, TREE SIDE PRODUCT,
H ARC, and V ARC are undefined at this
poin t

IF (HEAD_SMAI,L AND (HEAD = MIN) ) OR
(NOT HEADSMALL AND (TAIl. MIN))

i TIlI.;N

BEG 1 N
NEXT :- VT;
VT := P;

END
ELSE,

BEGIN
NEXT := iT;
HT : P;

END;
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IF HEAD SMA,[,
TIII N I111,I) TkI,i: (U ,V ARC,li ARC,

11 ';A AL,TA I )l,, III';A I ))

ELSE BUI)D TR'E (Q,V_ARC,1I ARC,
HEAD,TAIL,TAIL)

[note that there will be at most one ar-

in the VARC list but may be several arcs
in the HARC list

END ;
END;

L : Q;
END;

END; [build-tree}

SEGMENT PROCEDURE POLY PARTITION (VAR T TREE PTR);

(* To find all the h-arcs that are present in the optimum *)
4* partition of the polygon and returns them in the arc- *)
(* tree pointed by T.

*************************** ** k**** *******************

PROCEDURE FAN COST (T : TREE PTR)*** ************************ **** ******** *** **** ***********

(* To find the cost of the fan of the subpolygon bounded*)
(* below by the arc pointed by T and above by the arcs *)
(* pointed by T.H ARCs and T^.V arcs.
* ***** *** ***** *** **** ********** ***** ** ** *************

VAR X : FOS INTEGER;
Y, Sl, $2 : INTEGER;

BEGIN
WITHl T^ DO

BEGIN
IF HEAD SMALL
THEN

BEGIN
IF V ARC = NIL
THEN

BEGIN

X ifHEA1) + 1;

S1 :CPIX] - CP[IIEADj
END

E 1,1; E

BEGIN
X V AR( "C .TA 1,;
SI VARC .'J'REEIHASEPROI)UCT;

END;
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S2 (CP[TATLI - CP Xl
Y W- ([III'AD];

END
E LS

BEG I N
IF V ARC = NIL
THEN

BEGIN
X TAIL - 1;
Si CP(TAILI - CPIX1;

END
ELSE

BEGIN
X V ARC ^ HEAD;
Si VARC^.TREEBASEPRODUCT;

END;
S2 (CP[Xj - CP[HEAD]);

Y: W[TAILI ;
END;

I F' 1 ARC <> NIL
THEN-S2 := S2 - H ARC TREE SIDE PRODUCT-- + AC TREBASE, PRODUCT;

[all the SIDE PRODUCTs and the BASEPRODUCTs are
added together and stored in the root of the
leftist tree pointed by HARC

LOCAL COST := S2 * Y;
LOCAL SIDE PRODUCT S1 + S2;
LOCALBASEPRODUCT := W[HEAD] * W[TAIL] ;

END;
END; [fan cost)

PROCEI)URE SUPPORTING WEIGHT (T : TREE PTR)*** ** ************** ***** *** ***** *** ****** *********

(* T, find the suppor ting weight of the arc pointed by T*)
(* with respect to the suhpolygon bounded below by the *)
(* arc pointed by T and above by the arcs [minted by *)
(* the T ^ . H ARC and T ^ .V ARC.

VAR D : INTEGER;

B 1':, I N
WIiH T ^ DO

BEGIN
D := (LOCA, SIDE _PRODUCT - LOCAL, BASE_-PRODUCT)

SUPWEIGIT-= (LOCAI COST + D - T) DIV D;
(ceiling function)

E N I);
END; (supporting_weight)
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FUNCTION MERGE (T], T2 :TEt PTR) TREE PTR;* ** ************ ****** ******* ***** ******* *-*** ******* ** * ***

* Mejc :; two lef ist t c.. ; inL ,e) i1 l nd rc t un; it i *)
( * ME RG E

VAR TEIMP PTR :TREE; P'IR;TEMP COST, TEMP BASE PRODUCT,

TEHP SIDE PRODUCT I NTEG ER;

BEGIN

IF T2 NIL

THEN MERGE Ti 
ELSE

IF T1 = NIL

THEN MERGE T2

ELSE
BEGIN
TEMP COST T1 .TREE COST + T2^ TREE COST;
TEMPSIDE PRODUCT T1 TREE SIDE PRODUCT

+ T .TRTE SIDE PRODUCT;
TEMP BASE PRODUCT T ^.TREE BASE PRODUCT

+ T- TREE BASE PRODUCT;

IF TI^.SUP WEIGHT < T2
^ .SUPWEIGIIT

THEN
BEGIN

TEMP PTR T I
TI T2;
T2 TEMP_PTR;

END;

WITH T1 DO
BEGIN

H ARC := MERGE (II ARC,T2);
{I ARC never c qu3]s NIL at this point]
IF V ARC = Ni,
THEN

BEGIN
V ARC II ARC;

H __ARC Nil,
EN D

E LS E

BEG I N
IF V A PC^ .D-Pill < H1 AtPC .).I"III
THEN

BEGI N
T EP PTR V ARC;

V ARU 11 A IR ;
H __ARC 'jIM PPT1

END;-
DEPTt=H HARC^ DEPTl + 1;

END;
TREE COST TEMP COST;
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TREE SIDEPRODUCT TEMP SIDE PRODUCT;
TRE.:I: BASE-PRODUCP : = TEMP-A~;E-PiJUC;

E NI ;
MERGE := Ti;

END;

END; tmerge}

FUNCTION CONDENSE (T '1Ril PTR; MIN : INTEGER) B(XKAN

(* CONDENSE is set to false if T NIL or T^.SUP %',EIGHT *)
(* <= MINC********************************************************)*
BEGIN

IF' T = NIL
THEN CONDENSE FALSE

ELSE CONDENSE T .SUPWEIGHT > MIN;

END; tcondensel

PROCEDURE COMBINE (VAR T : TREE PTR; V FIAG : BOO| KAN);
* ** ** ** ** ** ** * * **** * *** * ** * **** * * ***** * ****** * ** ** ******

(* If V [:MAG, it combines the arc pointed by T^ .V ARC *

(* into the arc pointed by T, else it combines the arc *
(* pointed by T^.H ARC into the arc pointed by T. In *
(* either case, the arc to) be combined is dcletcd frni *

* the crresponding leftist tree and put into the *

(* DESCENOANT list of the pa-ent.(********************************************************
VAR TEMPPTR : TREE PTR;

BEGIN
IF V FLAG
THEN

3EGIN
TEMP PTR T ^ .V ARC;

T ^ .V-ARC := MERGE (TEMI' PTR" .VARC,TEMP PTI.H ARC)
END

ELSE
BEGI N

TE"MP PTR T^ .^H ARC;
T^ .11-ARC = MERGE (TEMP P'IR. VARC,TEMP PT1K^ .11 A1LC;

END; .
TEMP PTN .V ARC N 11,;
TENP-PTI".H-ARC = NIL;
TEMP -- PTR'.NEXT T^.DESCEN[)ANT;
T' I)SCENIANT T PE 1 VI;
T^ .IOCA , COST : T^.IOCAI, COSI' 4 TE.MP PT ^. I.0CAI. C0 T;

T OCAI, - SIIE PRODUCT T ̂ .LOCAI. SI D" P NODUCT
4- TEMP PTR ^ 

. LOCAl. SI DE.-PRODUCT
- TEMP PTR .LOCA[. BASE _PNUI)LIC1

END; (combinc)
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PROCFDUNRE REMOVI. (VAR T TIREN: PTL; MIN INTGt.:R),****** *********** * **** **** ***** ************** * * A***** ****

(* Removes all the arcs in the lef tist tro' poi tit .. by '*

(* whose SUP WEIGHTs are larger than or equal to MIN. *)

VAR NOT DONE : BOOLEAN;

BEGIN
NOT DONE := TRUE;
W1IE NOT DONE DO

IF T = rIL
THEN NOT DONE := FALSE
ELSE

IF T- .SUP WEIGHT < MIN
THEN NOT DONE := FALSE
ELSE T := MERGE (T^.VARC,T^.EIARC);

END; {removel

PROCEDURE SUB PART 'ION (VAR TRI:1, : 'REE PTR;
MIN INTEGER)

***A****************************AA *A**********************

(* To find the nptimum partition of the subpolygon *)
(* bnunded below by the root of the arc-tree pointed *)
( by T. T)

*************************** A ******** *** *** ** *

VAR T, R, P, TEMP PTR TREE. PTR;
TEMP : INTEGER;
NOT DONE, FLAG BOOLEAN;

BEGI N
T := TRE;
R NIL,;
WHILE T <> NIL DO

B .G I N
P := T ^ .N F XT;
T^.NEXT :- NII,;
IF T^ HEAD_ SMIALL,
THEN TELMp W[T ^ .1lEAD]
ELSE TEMP W[T ^ .TAIL] ;
IF T^ .H ARC <> NIL
THEN SUB PARTITION (T^.H ARZC,TEH1');

(when return, all the h-iclc; lr th, .L~hu0p"ygon
will be put in a prir,-ity queue

IF T .V ARC <> NIL
THEN SUBPARTIT]ON (T^ .V ARC,TEMP)

{there should be at mof;t 1 v-arc, i.e.

T^.V ARC^.NEXT = Nil,, when return, all the
h-arcs in the subto.),]yyon will be put in a
priority queue
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[7

[calculate the cost of the fan of the sUbto]qJ ygjon
b1ljn(l(,d below by the arc [)e i t ,d by T antd alWvu by
thc v-arcs,; and h-arcs nI '

FAN COST(T)

NOT DONE := TRUE;
FLAG := TRUE;
WHILE NOT DONE DO

BEGI N
{calculate the supporting weight

of the arc pointed by T)
SUPPORTINGWEIGHT (T); 3

IF T^ .SUPWEIGHT >=MlN Ito see if the partition
is optimum in the

ft subpolygon

THEN
BEGIN
REMOVE (T,MIN); {delete all h-arcs not

in the optimum partitin
(of the subpolygon

NOT DONE := FALSE;
FLAG := FALSE;

END
E LS E

IF CONDENSE (T .V ARC,T ^ .SUPWEIGHT)

THEN COMBINE (T, TRUE)
ELSE

IF CONDENSE (T^.H ARC,T^.SUP VEIGHT1')
THEN COMBINE (T, FALSE)
ELSE NOTDONE := FALSE;

END;

(maintain the leftist tree structure}
I F FLAG
THEN

BEG 1 N

T ^ .TREE COST := T ^ .IOCAL COST;
T^.TREE-SIDE PRODUCT T'.LOCA, SIDE PRODUCT;
T .TREE-BASE-PROIiUCT T .LOCAI-BASE-PRODUCT;
IF T-.V-ARC Z> NIL-
TH E N

BEGIN
T TREE COST := .TRI: COST

+ -T^  V AI C- '. REE COS'T;
T .TREE SI )E PRODUCT = T^ .T-RIE SI DE PRODUCT

+ T^ .V A RC TEE'RI:I, S 1 )E PRODUCT
-T^.VARC-.TRE'E BASt; PRODUCT;

END;

96

96i



IF T .11_ARC <> Nil. .
TIIEN

13 1'(; I N
T 'TRI:I: COST := T ^

.
T l1I; COST

+ 'T . II ARC" .TREI' COST
TI.TREE SID) PROIDJCT :- T^.'REE SIEJ, PRODUCT

+ T"H ARC ^ .TREE SIDE PRODUCT
- T^.HARC .TRE-EBASEPRODUCT;

END;

IF T .VARC <> NIL
THEN

IF T^.HARC <> NIL
THEN

BEGIN
IF T^.VARC^ .DEPTI < T-.H ARC^.DEPTII
THEN

BEGIN
TEMPPTR T .V_ARC;
T ^ .V ARC T ^ .HARC;
T ^ .- ARC TEMPPTR;

END;
T- .TDEPTH T ^ .H ARC-.DEPTII + 1;

END
ELSE

ELSE
IF T^ .HARC <> NIL
THEN

BEGIN
T .V ARC T ^ .11 ARC;
T^.H-ARC Nil.;-

END;
END;

R MERGE (R,T);
T P;

ENID;
TREE : = R;

END; (sub_partition}

BEGIN (poly _partition begins here}
SUB 'AI1T ITION (T,W[ 1 I);

END; "(VI1y_partitioni
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PROCEI)UIR 1: MAIk I. 1ST (T TREE P'I'R)} ( ~~~*** * * II* * * ** ll* ** ** *** * *l *I * * A A A * ******* A I ** I* *

* 'ravcrsc; Lhe tree poiinLed by T preorderly, find; out *)
(* all the potential h-arcs which are present in the *)
(A optimum partition of the pnlygon and marks the *)
(* corresponding elements in the list pointed by LISTI. A)

******************************************** *** ****)

BEGIN
WHILE T <> NIL DO

BEGIN
T^.LIST LINK^.STAY := TRUE;
MARK LIST (T'.DESCENDANT);
MARK-LIST (T'.V ARC);
MARKLIST (T^.H-ARC);
T :=-T^.NEXT;

END;
END; {mark-list)

PROCEDURE WRITELIST (VAR 1. LIST PTR;
FIRST, LAST, MIN, INDENT INTEGER);

(* Displays the h-arcs in the list pointed by L. A)
**** ******************************************************)*

VAR TEMP : POS INTEGER;
NOTDONE : BOOLEAN;

BEGIN
NOT DONE := TRUE;
WHILE NOT DONE DO

IF L = NIL
THEN NOTDONE := FALSE
ELSE

IF (L^.HEAD < FIRST) OR (L^.TAIL > LAST)
THEN NOT DONE := FALSE
ELSE

BEGIN
IF L^ .STAY
TH E' N

BEGIN
IF L^ .HEAD SMALL
THEN TEMP 1.'.HEAD
ELSE TEMP := L.TAII,;
IF TEMP <> MIN
THEN

BEGIN
WRITELN ( ':INDENT,

L^ "HEAD,' ':3,L^'TAIL);
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WRITE LIST (L- .NE-XTI,, . HEAD,
L^ TA IL,TEM P, IND ENi-3);

E N D;
END;

L :=L^.NEXT;
ENDI;

END; [write_ listi

(main progrant begins here.

BEGIN
INITIALIZING;
ONESWEEP (LISTi);
LIST2 :=LIST1;
BUILDTREE (LIST2,VTREE,H TREE,1,N,1); iV TREE =NIL)

POLYPA RT ITIO0N (HTREE);
IF H TREE = NIL
THEN WRITELN (' ': 3, 'NIL')
E LSE.

BEGIN
MARK LIST (H1 TREE);
WRITELIST (LEIST,1,N..13);

END;
END. (main program)i
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