
AD-A113 348 OFFICE OF TIE UNDER SECRETARY OF DEFENSE FOR RESEARCH--ETC F/6 9/2

1981PROCEEDINGS OF THE SEMINAR ON THE DOD COUTER SECLMITY INITIAT-ETC(W

UNCLASSIFIED, ,mlmm....mflf

mmmEmmmmmmmEEE
EEEEmmEmmmmmmE
EmmEmmmmmmEEEE

,mmmmmmmmmmm

3.0 8 2

KEYNOTE ADDRESS

rnflITFP SUflLRITY INITIATIVE

PROCEEDINGS

OF THE

FOURTH SEMINAR

ON THE
DOD COMPUTER SECURITY

00

VINITIATIVE

DTIC
NATIONAL BUREAU OF STANDARDS OELECTE.

APR 9 1982
GAITHERSBURG, MARYLAND S

A

AUGUST 10 - 12, 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED82 04 09 030

TABLE OF CONTENTS.

Table of Contents i

About the Do!) Computer Security Initiative iii

About the Seminar iii

Acknowledgmen t s iv

Program v

List of Handouts viii

"Welcoming Address' James H. Burrows, Director, Institute
for Computer Sciences and Technology, National Bureau of
Standards A-i

"Keynote Address;" Admiral Bobby Inman, Deputy Director of
Central Intelligence, Washington, D.C. B-i

,Introductory Comments',"_Stephen T. Walker, Director,
Information Systems, Office of Deputy Under Secretary of
Defense (C3 1) C-i

'1urroughs' Efforts in Computer Security," Chris Tomlinson P-i

"68,-A Fault Tolerant Computer for Implementation in Secure
Systems," Asbjfrn Smitt, Christian-Rovsing A/S, Ballerup,
Denmark E-1

"Computer Security and Control Data'," Terry A. Cureton,
Control Data Corporation F-I

"SAC Digital Network Security Methodology" , i.uro Ferdman,
The MITRE Corporation q-1

"COS/NFE Overview," Gary Grossman, Digital Technology,
I ncorporateL___) H-

"WIS Security Strategy," Larry Bernosky, Defense Communications
Agency I-I

Trusted Computing Tsearch at)ata General Corporation,"
Leslie DeLashmutt and noug Wells, Data General Corporation ,-I

"The iAPX-432 Microcomputer System," George Cox, Intel
Cr rporation F-I

i=

"ICL Efforts in Computer Security'," Tom Parker, International
Computers, Limited L-1

"GNOSIS: A Progress Report-," Bob Colten, TYMSHARE M-1

"Computer Security Evaluation Center'," George Cotter,
Acting Director, DoD Computer Security Evaluation Center,
National Security Agency NI-1

"Trusted Computer Systems," Rein Turn, The RAND Corporation 0-1

The SDC Communications Kernel'" David L. Golber, System

Development Corporation P-i

"The MITRE Trusted Packet Switch," Chris Hisgen, The MITRE
Corporation Q-1

"Experience with KVM," Tom Hinke, System Development Corporation R-1

"SCOMP (KSOS-6) Development Experience Update,' Lester Friam,
Honeywell S-I

"KSOS-II Summary and Update," John Woodward, The MITRE
Corporation T- 1

"ACCAT and FORSCOM Guard Systems," Mike Soleglad, Logicon U-i

"A Security Model for a Military Message System,"
Carl E. Landwehr, Naval Research Laboratory V-1

"EUCLID and Verification6, Ian Griggs, I.P. Sharp &
Associates, Ltd. W-1

"The Evaluation of Three Specification and Verification
Methodologies," Richard A. Platek, Digicomp Research Corporation X-1

FC

Av;i 1i.

coyii

-- " ' " : "1 . . . I I n llnnl --

DOD COMlPUTER SECURITY INITIATIVE SE.!INAR - IV

August 10-12, 1981

ABOUT THE DOD COMPUTER SECURITY INITIATIVE

'rile Department of Defense (DoD) Computer Security Initiative was
established in 1978 by the Assistant Security of Defense for Communica-
tions, Command, and Control and Intelligence to achieve the widespread
availability of "trusted" ADP systems for use within the DoD. Widespread
availability implies the use of commercially developed trusted ADP'
systems whenever possible. Recent D)oD research activities are demonstrating
that trusted ADP systems can be developed and successfully employed in
sensitive information handling environments. In addition to these
demonstration systems, a technically sound and consistent evaluation
procedure must be established for determining the environments for which
a particular trusted system is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer efforts
and to define reasonable ADP system evaluation procedures to be applied
to both government and commercially developed trusted ADP systems. This
seminar is the fourth in a series which constitute an essential element
in the Initiative's Technology Transfer Program.

Effective January 1, 1981, the Director of the National Security
Agency was assigned responsibility for computer security evaluation for
the Department of Defense. Plans for the transfer of the Computer
Security Initiative activities to NSA are well underway.

The Institute for Computer Sciences and Technology, through its
Computer Security and Risk Management Standards program, seeks new
technology to satisfy Federal ADP security requirements. The Institute
then promulgates acceptable and cost effective technology in Federal
Information Processing Standards and Guidelines. 'The Institute is
pleased to assist the Department of Defense in transferring the interim
results of its research being conducted under the Computer Security
Initiative.

ABOUT THE SEMINAR

This is the fourth in a series of seminars to acquaint computer
system developers and users with the status of trusted ADP system
developments plans for the integrity evaluation of trusted systems.
The three previous seminars have stressed user requirements for trusted
systems throughout the government and the private sector, experience
with design of production prototype trusted systems, and industry
progress in computer security. The focus of this seminar is on trusted
system efforts across the board.

iii

ACKNOWL EDGIENTS

A number of people in and outside of the DoD Computer Security Technical
Consortium have helped to make this seminar a success. At the MITP[Corporation,
Pete Tasker helped to organize the speakers; Karen Borgeson and Dianne T.lazzone
managed registration; Charles McClure prov.ided behind-the-scenes support.
Finally Dr. Billy Claybrook handled the entire job of collecting and organizing
the material for this Proceedings.

Also, we are grateful to Greta Pignone and Sara R. Torrence of NRS for
arranging the splendid facilities.

DISCLAIMER

The presentations in this proceedings are provided for your information.
They should not be interpreted as necessarily representing the official view
or carrying any endorsement, either expressed or implied, of the Department
of Defense or the United States Government.

Stephjn T.Walker
Chai rman
DoD Computer Security Technical

Consortium

iv

DOD COMPUTER SECURITY INITIATIVE SEMINAR - IV

August 10-12, 1981

Monday, August 10

9:30 INTRODUCTION

Jim Burrows, Director
Institute for Computer Sciences and Tecnnology

National Bureau of Standards

KEYNOTE SPEAKER

Admiral Bobby Inman

Deputy Director of Central Intelligence

DOD Computer Security Initiative Status

Steve Walker, Chairman

DoD Computer Security Technical Consortium

MANUFACTURERS' EFFORTS IN COMPUTER SECURITY

Chris Tomlinson
Burroughs Corporation

Axel Hvidtfeldt

Christian-Rovsing

Terry Cureton

Control Data Corporation

2:00 ACQUISITION & DEVELOPMENT EXPERIENCE

SACDIN

Mauro Ferdman

The MITRE Corporation

Communications Operating System/NFE

Gary Grossman
Digital Technology Incorporated

WWMCCS INFORMATION SYSTEM COMPUTER SECURITY

Larry Bernosky
WWMCCS System Engineering Office

V

a i

Tuesday, August 11

9:15 NBS COMPUTER SECURITY EFFORTS

Dennis Branstad
National Bureau of Standards

MANUFACTURERS' EFFORTS IN COMPUTER SECURITY (Continued)

Les DeLashmutt
Data General Corporation

George Cox

Intel Corporation

Tom Parker
International Computers Limited

Bob Colten & Norm Hardy
Tymshare

2:00 DOD COMPUTER SECURITY EVALUATION CENTER

George Cotter, Acting Director
DOD Computer Security Evaluation Center

National Security Agency

NON-DOD RUSTED SYSTEM NEEDS

Rein Turn
The Rand Corporation (Consultant)

COMMUNICATIONS EXPERIENCE

The SDC Communications Kernel

David L. Golber

System Development Corporation

The MITRE Trusted Packet Switch

Chris Hisgen
The MITRE Corporation

5:30 Wine & Cheese Reception
Washingtonian Hotel

(until 7:30 p.m.)

vi

Wednesday, August 12

9:15 DEVELOPMENT EXPERIENCE UPDATE

KVM/37O

Tom Hinke

System Development Corporation

KSOS-6

Les Fraim
Honeywell Information Systems

KSOS-11

John Woodward
The MITRE Corporation

RESEARCH AND DEVELOPMENT UPDATE

ACCAT Guard & FORSCOM Security Monitor

Mike Soleglad

Logicon

Security Model for a Military Message System

Carl Landwehr
Naval Research Lab

2:00 RESEARCH AND DEVELOPMENT UPDATE (continued)

Euclid & Verification

Ian Griggs
I. P. Sharp & Associates, Ltd

Evaluation of Specification & Verification Systems

Richard Platek
Digicomp Research

WRAP-UP

vii

LIST OF HANDOUTS

REIN TURN

TRUSTED COMPUTER SYSTEMS: NEEDS AND

INCENTIVES FOR USE IN GOVERNMENT AND
THE PRIVATE SECTOR, JUNE 1981

viii

L.|

W. Ico;:1 nit Addre s
wjrtlh Se:nndr on the DoD Co;puter Securi ty]rlitiCLI t

Auqust 10, 19t1

James H. Burrows
Director, Institute for Computer

Sciences and Technology

I am pleased to welcome you to the Fourth Seminar on the Department of

Defense Computer Security Initiative Program. As in the past, the National

Bureau of Standards and the Institute for Computer Sciences and Technology

are happy to collaborate with Office of the Secretary of Defense in

bringing information about trusted computer systems to users and system

developers. I am told that there is a plan to hold a fifth seminar in

this series next Spring to continue these valuable information exchanges.

The program announcing this seminar also announced the establishment of

the computer security evaluation center for the defense and intelligence

cOMMnities at thil National Security Agency, a subject to he addressed b\

our disi i,,Yjished keynote speaker this morning. ,e are 9lad tna, trois

has come to fruition, and hope that we will be able to continue to wori,

with the evaluation center through the security initiative in diffusinc

trusted system technology to the user comliiunit'.

Computer security is no longer an exclusive concern of the defense and

intelligence communities. These agencles, of course, have rigorous

requirements for protecting the secrecy of data. However, as we becom.t

more dependent upon computers for handling financial, health, and other

critical information, techniques for assuring the integrity and reli-

ability of conputer systems become essential throughout the government

and private sector.

A-1

--------------------------------- I

Noll only do the defense agencies in the Federal Government need

ofi-the-sheif solutions to their security problems, but so do the ALYt

users in the civil government agencies anid the private sector. NBS can

Play a role in getting information about this needed technology to users

through technical interchanges such as this seminar, th- ough the publication

of technical reports, and through the development of computer security

standards and guidelines when the technology is appropriately developed.

The Paperwork Reduction Act of 1980 (P.L. 96-511) passed last year reflects

Congress' concerns that computer security efforts be integrated into the

overall information resources management concept. Among the responsibilities,

centered on the Office of Management and Budget, in implementing the Act

are the functions of developing and implementing policies, principles,

standards, and guidelines on information disclosure and confidentiality,

and on safeguarding the security of information collected and maintained

by the agencies. With its emphasis on planning for information technology

acquisition and use, the Act provides the impetus for including essential

activities such as planning for computer security into agency long-range

planninc foi- information management activities.

l believe that computer security is a pervasive problemi that needs tot-

.level attention from managers, as well as from technical staff. It is a

problem that encompasses the entire information processing cycle frori

intake of data through the processing of data, the delivery of the

information product, and the storage of data. While the need is pervasive,

it is also clear that achieving a secure system is costly in both time and

money.

A -2

Since the technology of computer security is not avoilable in exist ri n

computer systems, we have tried to attack the probleri of coi:qiuter security

through a variety of administrative and management controls which will

continue to be essential elements for achieving secure systems.]rusted

system technology, however, offers promising capabilities for im aintainin,

the integrity and reliability of critical systems. That assuring integrity

and reliability is important is evident in the estimates that problems

associated with errors, ormnissions, and modifications of data occur ten

times more frequently than intentional disclosures.

I, therefore, stongly support this R&D and technology transfer effort

and hope that this is a successful and fruitful seminar.

I now have the honor of introducing our distinguished keynote speaker,

Admiral Bobby R. Inman, who has broad experience both in the defense and

intelligence communities. Admiral Inman, a graduate of the University of

Texas, Austin, began his career in the U.S. Navy in 1952. Since then, he

has held the positions of Director of Naval Intelligence, Vice Director

of the iL- :. Intelligence Agency for Plans, Operations and Support, an

the Director of the National Security Agency. He is currently the beput>

Director of Central Intelligence. Let's welcome Aamiral Inrman to t111

seminar.

A- 3

a

KEYNOTE ADDRESS

COMPUTER SECURITY INITIATIVE

Admiral Bobby Inman
Deputy Director of Central Intelligence

Washington, D.C.

it is a pleasure to velcome you to this Seminar and to speak briefly with

you about computer security, the recent developments within the Department of

Defense and the Intelligence Community and the challenges that lie ahead.

As Dr. Gerald P. Dinneen, former Assistant Se:retary of befense for C3 1

defined at the first of these Seminars two years aao a trusted c -nuter

system is one with sufficient hardware and software integrity to allow its use

for the sir.jltdneous processing of multiple levels of classified or sensitive

ir fcr . " c/;n.

r- r,-ec for trusted computer systems is very real and orovirc rapidly.

%-ctcs influencirn tnis need are:

tr'e orovirc use of atorated inforF,ation handling sv'sie-s ",rcouc',-ut

the DoD and the Intellience Coe-runitv' an: in particular the linrinz

of these systems into major netorks;

- increasing requirements for controlling access to c ,partrr-nted and

sensitive information;

- tre requirement for broader dissemination of -information both within

arc beyond the coamiunity;

- ero .ino difficulties with obtaining required numlers of cleared

personnel, both military and civilian,.

bespite continuing internal efforts to develop special purposc trusted

systems for unique needs, we already rely very heavily on the products of tncE

computer industry to meet our information processing requirements, and tris

B-I

-O T1 a -

dependence will continue to grow significantly in the future. It is thierfore

very gratifying to observe the progress being made by the ca-,pute-r i ndustry in

applying computer security technology as represented by the industry presenta-

tions at this and the previous Seminars.

It is very important, also, that the Department of Defense and the

Intelligence Comunity develop sufficient expertise to be able to evaluate the

integrity of computer software and systems developed by industry dind

government, and that we be able to determine suitable physi,.al and

administrative environments for their application. We have had scattered

efforts over the past several years to evaluate specfic systems for specific

installations. But these efforts have always been more or less ad hoc, and

because of the extensive technical background required, expensive to carry out.

I am very pleased therefore to announce today the establishment of a

Computer Security Technical Eval uation Center for the Department of Defense and

*the Intelligence Community at the National Security Agency. Last fall, as

Director of NSA, I enthusiastically endorsed the establishment of this Center

at NSA as a --w and separate function. I am very pleased with the progress

being made in setting up the Center and I remain strongly committed to its

success.

I would like to make several observations about the Center and some of its

relationships:

-Because the private sector computer manufacturing cormmunity is the

primary source of ADP systems, the Center's role will be to work

with the manufacturers, deriving as much system integrity as possible

from industry developed systems. This is a rather sharp contrast to

the NSA's more traditional commnunications security role where the

government has the dominant technical role.

9-2

The Center will have a difficult task developing procedures which

assure protection of sensitive portions of a system which the

government does not own. Simply classifying security related

portions of a system built by industry won't work since the govern-

ment represents such a small portion of the overall market that the

manufacturers may well decide not to sell to the government rather

than accepting the limitations imposed by classification. This,

in the end, might lead to a highly undesirable situation where private

sector users (e.g., banks, insurance companies) have higher integrity

systems than the government.

-But sensitive portions of systems and the known vulnerabilities

that remain must be protected, in the interests of both the government

and the manufacturers. It is quite likely therefore that the most

sensitive portions of the government's analyses will be both classified

and proprietary to the manufacturer. Careful, reasoned interaction

between the government and industry will be needed to %-.ork out

suitable wo.rking relationships.

The Center will act in the interests and for the benefit of the

Department of Defense and the Intelligence Commnunity. Its evaluation

will not be intended for use by other than the DoD. It will not make

general product endorsements. But as with the Qualified Products List

procedures (as prescribed in the DoD Defense Acquisition Regulations),

the relative merit of a system in the hierarchy of evaluated products

may be available publicly in order to provide incentive and

encouragement for manufacturers to develop trusted systems and private

sector users to employ them.

B- 3

Because of the wide range of sensitive environments that exist for

information systems (ranging from privacy applications to ccxmpartrncnta-

tion within the Intelligence Commuunity, and from adjacent security

levels (e.g., Secret and Top Secret) to full multi-level systems

with Intelligence users and uncleared users), it will be vital for

the Evaluated Products List to offer a range of technical categories

and appropriate environments for specific systems. The approach of

establishing levels of technical integrity which has evolved from the

work of the Computer Security Initiative indicates the kinds of

distinctions which %ill be made in evaluating systems. A range of

suitable environments is possible with trusted systems because the

security accreditation of ADP systems depends upon El of the

aspects of the total system. The accreditation of a system to serve

users cleared at both the Secret and the Top Secret level is not as

difficult a problem as extending the use of such a system to

uncleared users as well. The Department of Defense is now using

Multics in such a limited environment serving both Secret and Top

Secret cleared users. The Evaluated Products List should provide

guidelines for implementing this type of operation where sufficient

technical integrity of software products can be demonstrated.

Finally, I would like to say that the establishment of an [valuation

Center, important as it is, must not be viewed as providing by itself

the long sought answer to the computer security problem. Within the

Department of Defense and the Intelligence Commnunity, system builders

will have to become aware of and properly employ the procedures for

development of trusted system applications. The Services and Defense

Agencies are being encouraged to establish or enhance their own

technical security test and evaluation capabilities to ensure

widespread use and availability of trusted computer systems. The

computer manufacturing community must work closely with the Center

and these Service organizations to ensure that reasonable products

are available for use in sensitive applications.

In conclusion, 1 would like to restate my awareness of the importance of

this'problem area, my enthusiasm for the establishment of the Evaluation

Center, and my deep and continuing interest in its success. I encourage you to

participate fully in this Seminar, ask the tough questions, learn all you can,

and then go out and apply what you have learned so that we may all have trust-

worthy computers in the very near future.

[W ROUCUORY CO'I2'TCS

STEP'V'A T. W,\K"IR

DIRECTOR INFORMT[ON SYSfr1iS

OF7fOr OT D 'PUTY UJqr)FR S 2CRET\RY 0 , E:'S C1

Good Morning. It is indeed a pleasure to welcome you to the Courth Seminar on
the OoD Computer Security Initiative.

It was just three years ago that we began the Computer Security initiative and

just two years ago that we held the Pirst Seminar here at 1191. We had two
major goals when we started this effort and I am proud to announce that as of

today I believe we have accomplished both of them.

As I described in my opening remarks at the last Seminar, our -,.jor external
objective for the Initiative, that of getting the computer manufacturers
involved in the development of trusted systems, had already coae a long w-Iy as

indicated by the five manufacturers who described their efforts at that

seminar. This time, as you glance at your program you will see that we have
eight manufacturers giving presentations; seven new ones including, three
European manufacturers and one giving an update from last tLre.

I must admit that I expected only two or three manufacturer Iresentations and
as Pete Tasker and I were working out the program we had the pleasiant t ;k of

frequently shuffling the program as more manufacturers accepted our invitation

to speak.

I think it is obvious from the number and variety of manufacturers represented
today and at the last Seminar that there is a strong interest in computer
security and in trusted computer systems in the US and international comnuter

manufacturing community. This external interet is most gratifying.

But just as exciting to me at least is the progress we have made to satisfy
the major internal objective of the Initiative. At the last Seminar I hinted
that within a year there would be a technical integrity evaluation process in

being to serve the DoT).

In fact, as Admiral Inman has just announced, that goal ha,, been met with the
establishment of the DoD Computer Security Evaluation Center at '1S%. The
Deputy Secretary of Defense made it official as of January 1, llPl and NSA has
been hard at work pulling all the necessary pieces together to geL the Center
functioning. Tomorrow afternoon you will hear a status report on the enter
from Mr. George Cotter of NBS.

I am personally very excited and pleased with our pro,',ress in last three
year%. It is clear to Pe that the time was right- for wlhat we live trie! to

C- I

MAN

loa. My p ersonal thI inks to everyone Wh Io Ilin ho e ed :it-I' th I p~ i i
belIieove that thle comb i ia ion of r a pidlIy sgrowing itteres.t on th pirt of(tli.

com pter manufacturers and theo i' sto ilke of aI)on (WI I ti it i oil cap i I!Ii .1kv Wi 1!
profoundly inufluence the i ntegrit of coptrsystems in thet. nea l .r t.rai

adfrom now on.

It is vital that we start to take advaintage of this improv, _,t al;s 5Oj, as
p os sibl e . In just a minute, I would Ilke to propose a ChallengTIe to bc)-h the
Computer manufacturers and the computer us-ers both inl this audience andI beyond].

Let me first describe a pirtictiilr situation as I see it in righIt now.

Over five years ago the 'kir Force, after extensive testig ;i! evaluation,
installed a Honeywell MULI'ICS System at tho Data Services Center in to,
Pentagon. That syst-em has successfully oporated in a Top Secret enviro--me,,nt
with some users cleared only for Secret access for ;overal ye-irs;. It is aI
general purpose system being used for all kinds of pro,,-rzi:r- i iig, and
administration support to the V~.

I am not recommending that everyone go out and buy a 1TIC'S Syte to) ;It i,,fV
all teir eeds.Butis I reiw the efforts of the miny mannfaictret-, thnt I

h'ive talked with lately, I realize that there is a real potent ial for :a nu-l'her
of systems with integrity similar to MIL1TICS to be avallahi e inl the nor so
distant future.

So what, you say! X Top Secret-Secret en': ronment is not ftill I milt ilevel
Secure. I can't have the highest levelIs of sensitive data oni my syste-, withl
uinclassified users so iLt hasn't solved my probl-em:i.

In reality thoughi, not very many applications require, a system to oneorint' over
anything like the full range of sons it ive informnat ion. This afternoon: van
will hear Ahout the computer security aspects of tie' tTMCS forroit io- yne
Modernization effort, perhaps the largest, highlly sensitive Coniputer svs.Fte:n
upgrade that the nlot) will perform this decadie. There are :-ntl t ilevelseuit'
problem-, throughout WIS but as you will hear, the requiirem ients exist oVEr1 a
reasonable range of sensitivity levels, not necessairily over the fuill r'g of
possible levels.

If one couples the fact that time manufacturers could sondevelop trun'-eI
system, 'with intgiylvl iia to MJLTICS and the realizationi tht inlnv

of our security requirement-, can be net by systems that operate over a limited
range of sensitivity, it is possible to see how soluitions; to 't lesLhes.e
limited applications may bo forthcoming, very soon.

You nay ac ruse me of ad voca t i n I less t hen pe'r fect so lilt ion by% wliit I ejust
said. Far from that, tbough, I amm advocating sieekiii, Igar~s~ beu u
solution prior to seeking the perfect solut inn. Indeedl if we do not i:

ser iouis at tempts to crawl4 befno we rutn here, we very 1 ike Iv ,i neve-r ,"et
anywhere near that perfect flollit ion.

c--)

Now back to my challenge. I Would like to citalli nge th, tv;m rs in thi s
audience to seriously revi~ew their needs for trusted co!!jnltor ;vstwnms ri~i
detergin,, as Larry 'Rernosky has for the 1AWMCS information Systemw
needs could be met by system,,s able to operate over limited sensitivitv
rangeCs. To the extent that you can do this, I strongl urg y C Ia c u-
this information to yuur local computer manufacturers repru,;ontat i.'e- to help
motivate them to develop systems, to mect your needs , aii. tiv-n %eti'asdn
the evaluation of potential. systems for Your application.

I would similarly chal-llenge all the manu fac tutre rs in the and ience to stuly
what has been done to date, understand the security design of systems like
W.IJL.TICS, Kernoti zed Secure operat ing System (KSOS') and Kernelized VI 370)
System (KVM) and incorporate these ideas into your product l ines, quickly.
More and more users are be ginning to realize not only that they need improved
integrity within their computer systems but also that it is possible to build
systems with these improvements, and that they can begin to demand such
features. Ns you can tell from the manufacturers participaition here, at leaist
some of your competitors are taking this seriously.

We've come a long way in the last few years. We've- completed, the first tou1,0
phase of the Initiative, gett ing the vairious pieces in place. Now it's time to
move into phase two. This will involve a lot of work. hy the ; :nnufnctuir:rs an,.
you the users have the opportunity and the responsibility to get involv-;i.

I know by your being here that you are interestLel. I cli j! lon ,e you L.- get
seriously involved.

I would now like t- summrize the activities of the Initiative on the nft ow
slijes.

..i

w ~~~---71

DoD

COMPUTER
SECURITY IIPITIATIVE

oa.T0 ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker
Chai rman

DoD Computer Security
Technical Consortium

COMPUTER NETWORK VULNERABILITIES

QAID AT ION
TAPS

RADIATION TAPS QA0iAT,0N CAIA'O

12ADIAII00 CeOiSTALW. A CA05WALI

COMI'VINICAWIN

LESC

FILES q A TOARw OE~

QEC, PIRTE EV CON[TO

~EVCA. ~ SABLL PRCETtU'' FEAloCLS 0CSLES
PMCVIO 'IS

HkoQO fE - ZMALI PAOTICN AUIS ,

FAtuRE of flOIcTlow vocuIty MANTNAC MANA S
CONI6UTE TO SOFIW&U FAILURS DIA "th5. I D EVCE ATTAC45.Ehl Of W(OQ05CO

SOFTWARE- '$ UDAOE TLI eRWL
FAILURE OF PROTECTION FEATURE SER

AC C ts CONTRO z IvP-Z Z
soU,5O CONT0LA AD ',C61 SA',C
ETC. I EO04ACrT0PES

-- 4

_.
I74

COMPUTER SECURITY

PHYSICAL SECURITY

ADMINISTRATIVE SECURITY

PERSONNEL SECURITY

COMMUNICATIONS SECURITY

EMANATIONS SECURITY

HARDWARE/SOFTWARE
SECURITY

COM9PUTER
SECURITY lATIVE

TRUSTED: SUFFICIENT HARDWARE AND
SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY/
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

C-5

khin

APPROVAL FOR DoD USE

DODD 520028

TODAY POLICY

R
E DEVELOPMENT F7 PHYSICAL

GROUP ADN NISTRATIVE
U -- v "f-PERSONNEL

I - SPECIFIC DESIGNATED P HARDWARE
R SYSTEM - APPROVING --. SOFTWARE

M REQUEST AUTHORITY T SECURITY
[- -xTEM PEST

E 7 -COMSEC
N
T

INDIVIDUAL
INSTALLATION

FOR USE OF ADP APPROVAL
PROCESSING
CLASSIFIED

INFORMATION

APPROVAL FOR DoD USE
INDUSTRY

SOON DODD 5200.28I
"~i982 * POLICY I/ iEVALUATION

R CENTER

E DEVELOPMEN
Q GROUPU j I I IU4

I -- SPECIFIC DESIGNATED' "EVALUATEDE SYSTEM - APPROVING PRODUCTS

M - REQUEST AUTHORITY LIST"
E

N
T

INDIVIDUAL
INSTALLATION

FOR USE OF ADP APPROVAL
PROCESSING
CLASSIFIED

INFORMATION

C-06

EVALUATED PRODUCTS LIST

TECHNICAL POSSIBLE
CLASS FEATURES EXAMPLES ENVIRONMENTS

I MOST COMMlERCL 11 DL'CA AT LD M flE
SYSTE MS

2 FUNCTIONAL SPECIFICATION MATL. RE BENIGN NLED T
REASONABLE PENETRATION ENHANCED KNOW
RESULTS OPERATING SYSTEM E\ l.IRON %NTS

3 REASONABLE MODERN MULTICS AF DATA SL ,ICE
PROGRAMMING TECHNIQUES CLNTER TS S

LIMITED SYSTEM INTEGRITY
MEASURES

4 FORMAL DESIGN "NO USER

SPECIFICATIONS SYSTEM PRCGRAM,'%ING
INTEGRITY MEASURES TS S C

5 PROVEN DESIGN KSOS LIMITED ,SER
SPECIFICATIONS VERIFIABLE KVM PROGRAMMING

IMPLEMENTATION LIMITED TS-S-C
COVERT PATH PROVISIONS

6 VERIFIED IMPLEMENTATION FULL USER
AUTOMATED TEST PROGRAMMING
GENERATION EXTENDED TS.S C
COVERT PATH PROVISIONS
REASONABLE DENIAL OF

SERVICE PROVISIONS

COMPUTER SECURITY INITIATIVE

EDUCATION PHASE !

PUBLIC SEMINARS WORKSHOPS

It SPECIFICATION PHASE _

DRAFT' I DoD COORD I INDUSTRY COORD REVIEW AND E.HAN.C[%ME%

IIl I EVALUATION PHASE _

INFORMAL FOR%.AL

SoS ,! I iNDLSTRY

KVM __SU6___________D

HONEYWELL Isy ,T[VS

DIGITAL EQUIPMENT CORP _

TYMSHARE S

i EVALUATED PRODUCTS LIST

1978 1980 1922 sA

(2-7

COMPUTER SECURITY INITIATIVE

ON JANUARY 1, 1981 THE SECRETAF0 OF DEFENSE
ASSIGNED RESPONSIBILITY FOR COMPUTER
SECURITY EVALUATION FOR DOD TO THE DIRECTOR,
NATIONAL SECURITY AGENCY.

COMPUTER SECURITY EVALUATION
CENTE 1

o ESTABLISH TECHNICAL EVALUATION CRITERIA
o EVALUjATE INDUSTRY AND DOD SYSTEMS
o MAINTAIN EVALUATED PRODUCTS LIST

o SPONSOR R&D IN COMPUTER SECURITY
o ENCOURAGE DEVELOPMENT AND WIDESPREAD

USE OF TRUSTED COMPUTER SYSTEMS

C I -

CURRENT INITIATIVE EVALUATION
EFFORTS

CONTROL DATA
DIGITAL EQUIPMENT CORPORATION

HONEYWELL

INTEL

TYMSHARE
UNIVAC

UNDER DISCUSSION
BURROUGHS

C'-9

Ju irrou Plaa
FEDERAL AND SPECIAL SYSTEMS GROUP

'D I IN\-

i-SEArlCH AND DEVELOPMENT

LOCAL NETWORK SECURITY

Cl- POLICY

t- DESIGN

I ACCEPTANCE

40M,

p -71

NEED FOR INTERCONNECTION OF COMPUTERS AND PERIPHERALS

- SYSTEM HIGH

' PERIODS PROCESSING

MLS HOSTS

USING LOCAL NETWORK TECHNOLOGY

ISO-LEVEL POLICY

CGiVMUNICATION IS PERMITTED ONLY

AMONG SUBSCRIBERS AT THE IDENTICAL
SECURITY LEVEL (CLASSIFICATION,
CATEGORY)

NO OTHER COMMUNICATION CAN
OCCUR

D-2

-7"

UXAr.,PLr ()F t"O1.F \FL ET

LLW

------- -----4- -

2 I

NODE ARCHITECTURE

DEV ICE
INTERFACE

UNIT

L RING INTERFACE UNIT _

SECURITY PRO3LE/MS ADDRESSED

* WITHOUT E3

- PACKET CONTENTS CAN BE COPIED DIRECTLY
BETWEEN SECURITY LEVELS

VC-ABPROCESPROESSB

~COPY OF

PACK ET XI

VC-CD r-1

HOST 2 COMMUNICATION NETWORK HOST I

SECURITY PROBLEMS ADDRESSED

* WITH E
3

- PACKET HEADERS MUST REMAIN IN PLAIN TEXT

- UNT.?USTED PROTOCOL PROCESSES CAN DOWNGRADE CLASSIFIED
DATA BY DECODING, ENCODING INFORMATI "'I CONTAINED IN
PACKET HEADERS

VC-A f~POCS

HOST 2 COMMUNICATON NETWORK HOST I

I)-.'

POTENTIAL SOLUTIONS

STORAGE CHANNELS

• ELIMINATE VARIABLES

*. ADDRESSES

* LENGTH

* OTHER HEADER FIELDS

i ENSURE THAT UNTRUSTED NETWORK PROCESSES CANNOT
COMMUNICATE WITH ONE ANOTHER OUTSIDE THE POLICY

TIMING CHANNELS

I TIME DIVISION MULTIPLEXING

KERNEL SUPPORTS

SMESSAGE BASED IPC

SPROCESS ISOLATION

SPOLICY PROCESSES

IN!TfERLEVEL INFORMATION FLOW

L1 VC-AB

L I PROCESS B PROCSS

I F
I E

-I

IF

L.

HOST 2 COMMUNICATION NETWORK HOST I

MU'.TILEVL MULTILEVEL
SECURE SECURE

OR
DEDICATED AT

LEVEL
LI WITH SNFE

NOTE: LI >L2

Burroughop

LOOP BACK

DL _ 5.E..

ACT' VA FA DTICTEo
L g _ _~r

F___--_

LOOP WITH FAILURIE

j7 \ \

\, H

ADDITIONAL MEASURES

* END-TO-END ENCRYPTION

* TRAFFIC FLOW SECURITY

D)-7

SUMMARY

EXPLOIT A SIMPLE AND USEFUL POLICY
TO REDUCE THE EFFORT OF
CONSTRUCTING A SECURE LOCAL
NETWORK

)-8

CR80-A Fault Tolerant Computer for Implementation in Secure Systems

Asbjorn Smitt

Head of Research and Development

Christian Rovsing A/S, Ballerup, Denmark

1. l General

Christian Rovsing A/S with the CR80 MAXIM and FATOM virtual machines

has introduced a new and powerful architecture for implementing secure

systems on a ultra-reliable, easy to maintain and modular fail safe computer.

The high speed memory mapped multiprocessor computers have been designed

to provide modular growth in processing power and memory requirements to

cope economically with the requirements of:

* General purpose computer systems

* Packet switches

* Message switches

* Control and Command Information

* Concentrators

* On-line systems

* Terminal systems

* Front end processors

The illustration overleaf shows that the CR80 FATOM computer tightly

couples up to 16 Processing Units (Multiprocessors) together via the S-NET,

and that each peripheral connects through individual channels to two

Processing Units, one channel being the active connection for a connected

peripheral, the other the back-up connection. Also it is seen that the CR80

MAXIM (Memory mapped Maxi-computer) is the single Processor Unit, non--

redundant subset of the CR80 FATOM (Fault Tolerant multiprocessor)

otherwise they have identical high performance characteristics.

The CR80 FATOM fault tolerant computer differs from other computers

(large, medium or small) in that it, based on a unique distribution of its

memory providing nearby unlimited processing power, up to 50 Million

instructions per second (MIPS) together with minimum added hardware to

achieve its "self repair" features and 256 Mega word maximum memory size.

- ".=MN

47

000

Extensive hardware checks has been incorporated throughout the CRSrJ

architecture, supporting integrity and security in execution of both application

and system programs, ensuring that erroneous interaction among users, and

with the system software, are prohibited. This is extremely important during

software maintenance and development, once a fault tolerant system has been

brought operational, as well as facilitating the initial software development

and debugging.

The CR80 architecture and DAMOS system software supports modularily the

total spectrum of virtual memory machines, from the 0.7-3.0 MIPS MAXIM

multiprocessor computer with one or more CPUs, up to the 50 MIPS, N+1

redundant FATOM computer, incorporating the cost effective approach of only

having I single spare unit, capable of backing up for any of N working units).

The CR80 can be upgraded in the field, often without stopping operational use,

due to its on-line maintenability and unique galvanic isolation between system

elements at the card-magazine level.

A CR80 Processor Unit (PU) constitutes either a uni- or multiprocessor

computer with from I to 5 CPUs (.7 to 3 MIPS). The CR80 FATOM connects up

to 16 Processor Units (PUs) together via the extremely fast S-NET (up to 512

Mbit/sec.) into a tightly coupled multicomputer with up to 50 MIPS capability.

In addition all lower levels of input/output processing is distributed to the I/O

controllers (peripheral processors) in the Channel Units (CU), this further

enhances the CR80 above the simple accumulated processing power of the

CPUs.

The I/O Controllers (peripheral processors) communicates with PUs through

one port of the triple ported controller memory, the two other ports allowing

for this memory being part of the address space of two processing units (PUs),

which ensure an alternative path, in case of a Processing Unit (PU) failure.

The CR80 computers also gain their strength from very fast intelligent

multiplexed Direct Memory Access (DMA) channels between the distributed

memory in PUs and CUs and that the imbedded channel processors (S-NET &

DATA CHANNEL) with minimuin interruption of the CPUs autonomeously

handle and ensure the integrity of hundreds of simultaneous active logical

channels between programs and processes.

The CR80 FATOM basic system philosophy is to achieve N+ I redundancy on all

levels, both processors and [/0 controllers. A unified system approach to

software in a redundant system, relieving application software as far as

possible of mechanisms and functions necessary for fault tolerance, moving

these to the system S/W. The CR80 FATOM Computer thus is designed to have

no single points of failure on a system basis, this includes all parts of the

system: Processors, busses, I/O devices, power supply, cooling and software in

order to achieve a continously available no-break computer. The on-line

maintenance features, allows any failed module to be exchanged and tested,

without interrupting system operation.

lso the CR80 modular packaging and integration system, ensures the

capability for expansion of a CR80 FATOM Computer to virtually any physical

size, using only a few standard types of modules and cables, as well as

achieves the cost efficiency of both the single and fault tolerant CR80

Computers.

, -4

1.2 PU Logical Organisation

As an introduction to the features of the CR80 memory napped PU a brief

discussion of the CR80 Processor Unit Logical Organization, shown overleaf is

given.

Interconnection of the PU modules is performed by means of two parallel

transfer busses, the (Processor Bus) and the (Channel Bus) impleirented as two

backplane printed circuit boards. The busses have identical electrical and

timing specifications with the following characteristics: transfer rate up to 4

mega word per second (16 bits + 2 parity bits), addressing of I irtega word As

word or byte. The Processor Bus performs as transfer bus for the Central

Processor Units (CPUs), while the Channel Bus performs as transfer bus for

the Channel Bus modules (DMAs).

The central processor units, CPUs, are general purpose processor units with

word length of 16 bits and the ability to address 64K word of instruction and

64K word of data. All data/instruction transfer performed by the CPU are via

the processor bus and the memory MAP to the memory. Physically, the CPUs

and the memory MAP are connected to the same Processor Bus, but logicdilv

the CPUs recognize the MAP as being located between the memory and the

CPU.

The function performed by the memory MAP is to expand the addressable

memory area to 16 mega word of which I mnega word can be located in the Pl

as fast access, local storage, while the remaining 15 mega word can be located

on the data channel. Besides the address translation, the MAP also includes

memory read/write protection, the protection can be performed individually

for each IK page oi the memory.

M
B~ P iAppC"Essop BLs

T A P A P A A

EH H
L#$0 #2 #0 E #2 E

BU (CHANNE 8,

A BA

TT

CIA
PsF CC D'S' LT L Td T A

S iCTRL co(m COM

pF ~p1j I To Pt,

41 P r,1 DATA CHAN~f,

a~ BUS
T

L L

7. I
A PP A N(A

CR80 FATOM CU CONFIGURATION

E-6

WhoI

The functions performed by the MAP on the Processor Bus transfers are also

performed on all Channel Bus transfers, meaning the Channel Bus Modules can

access the complete 16 mega word memory area, but only the areas which are

not protected.

Beside the address translation de2critL.d above, the MAP module also includes

the Channel direct memory access (DMA) function, interrupt preprocessing

and Data Channel Interface.

The DMA is used for blcok transfer between shared memory with peripheral

Controllers and PU local memory and is under control of the Input/output

system software.

The interrupt preprocessing performed ensures that only interrupts (CPU or

I/O) with sufficient priority will cause a context switch in one of the CPUs,

while all other interrupts will be queued by the MAP, until the CPU status

allows service of them.

Transfer on the Data Channel will be performed by the memory MAP when the

addressed location is not within the PU Local Main Memory addressing space (0

Mw).

Security is supported by means of memory access protection and division of

instructions into three privilege classes.

The CPU has 16 states of which one (state 0) is a user state and 15 (states I

through 1 5) are system states. In user state only not privileged instructions

may be executed. Medium privileged instructions can be executed at all

system states while the most privileged instroctions are reserved for execution

at system state 15.

Attempt to illegally eAecute a privileged instruction in user state or system

states I through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine.

E-7-

- ii- i

The CPU state is changed by means of the MON-instruction which is used to

activate system procedures.

E -8

A1

1.3. CR80 Security Mechanisms

The inherent logical and physical separation of programs and data in the CR80

architecture is well suited for preventing unauthorized access to data and

programs and for preventing non-intended modification of programs.

The objectives of the protection mechanisms in the CR80 are:

- to protect data belonging to a process against unauthorized modification

by other processes and against not intended reading;

- to protect programs against modifications, and,

- to prevent unauthorized execution of programs and system resources

- to prevent processes from monopolizing the processor.

Security is supported by means of memory access protection and division of instructions

into three privilege classes.

The CPU has 16 states of which one (state 0) is a User state and 15 (states I through

15) are System States.

Higher states have more privileges than lower states. In user stateonlynot priv ileged

instructions may be executed. Medium privileged instructions can be executed at

all system states while the most privileged instructions are reserved for execution

at system state 15.

Attempt to illegally execute a privileged instruction in user state or system

states 1 through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine.

The CPU state is changed by means of the MONinstruction which is used to

activate system procedures.

In addition to the memory protection provided in USER STATE by the

MEMORY MAP, each of the system states has its own memory bound register.

Only data memory locations below or equal to this boundary value may be

modified while all data memory locations available might be read in SYSTEM

STATE.

F.-9

The Memory Map protection mechanism which is active in user state is

implemented by means of two access control bits for each I Kw page in

memory. The protection values are:

access

control

bits:

00 Page absent

01 Full access

10 Read only

II No access

As will be seen in the following all non-privileged (USER STATE) memory

accesses (both from CPU's and DMA's) go through the Memory Map, and are

checked by hardware not to violate the protection value. In the system state

full access (read or write) is granted irrespective of the protection value.

If a not allowed access is attempted, the transfer is terminated without

sending the physical address to the memory, and, a transfer error is signalled

from the Memory Map.

The "Page absent" condition is used to invoke the demand paging feature of

DAMOS. It indicates that the accessed page is not resident in main memory (or

not mapped in), and will lead to suspension of the process until the page has

been loaded into memory or relocated.

.- I)

1.4 Security

The CR80 operating system DAMOS offers comprehensive data security

features. A multilevel security system ensures that protected data is not

disclosed to unauthorized users and that protected data is not modified by

unauthorized users.

All memory allocatable for multiple users is erased prior to allocation in case

of reload, change of mode, etc. The erase facility is controlled during system

generation.

DAMOS is specified using the formal notation of the Wienna development

method with the intention of making formal verification possible.

The security system is based on the following facilities:

a. Hardware supported user mode/privileged mode with 16 privilege

levels. Priviliged instructions can be executed only when processing

under DAMOS control.

b. Hardware protected addressing boundaries for each process.

c. Non-assigned instructions will cause a trap.

d. Primary memory is parity protected.

e. Memory bound violation, non-assigned instructions, or illegal use of

privileged instructions cause an interrupt of highest priority.

f. The hierarchical structure of DAMOS ensures a controlled use of

DAMOS functions.

h. A general centralized addressing mechanism is used whenever

objects external to a u,,er process are referred to.

i. A general centrali :ed access authorization mechanism is employed.

i-IlI

Centralized iddressing capabilities and access authorization are integral parts

of the security implemntation. User processes are capable of addressing

Kernel objects only via the associated object descriptor table. The following

types of DAMOS objects are known only via object descriptors:

a. Processes

b. Synchronization elements

C. Segments

d. Devices

e. Pus

f. CPUs

g. Ports

The object descriptor forms the user level representation of a DAMOS Kernel

object. It contains the information necessary for the Kernel to locate its low

level representation and to ensure its security and integrity:

a. Host PU

b. Object type

C. Object control block index for use by the Kernel to locate the

corresponding object control block.

d. A sequence number which must match a number in the object

control block (to prevent reallocated blocks from being erroneously

accessed).

e. A capability vector specifying the operations which may be perf or

med on the object by the process which has the object descriptor.

E'-12

The access right information concerning the various DAMOS objects is

retained in a PU directory of object control blocks. Each control is associated

with a single object.

When the access right of a process to a segment is verified and the segtnent is

included in the logical memnory space of the process, the contents of that

segment may be accessed on a 16-bit word basis at the hardware level slbject

to hardware access checks.

Authorization of access to an object is based on

* a general security policy, and

0 a discretionary access checking

The security policy is based on a multilevel -multicompartinent security

system.

Objects are associated with a security classification level for each compart-

kent (i.e., set of data with the same kind of information) and subjects

(processes) are associated with a security clearance level for each compart-

mrent. Both entities are described in a common type:

0 the security profile

Discretionary access checking is based on

* identification of access classes of subjects (processes), and

* statements of access capabilities for explicitly enumerated access

classes of subjects vis a vis a given object.

Access to an object is authorized if the following conditions are both fulfilled:

61:-I

" the access operation requested is allowed according to the

capability vector in the object descriptor

* the combination of process security profile, object security profile

and operation (read or write) agrees with the security policy.

The security policy is:

" A process may read from objects with classification not higher

than that of the process. An untrusted process may write to objects

with classification not lower than that of the subject.

* A trusted process may write to objects with any classification.

A process can only obtain access rights (i.e., an object descriptor) to a DAMOS

object in the following ways:

a. By inheritance from a parent process

b. By creating the object.

c. By successful look-up in the PU directory.

Similarly, a process can only distribute access rights to objects registered in

its object descriptor table. This may be done:

a. By inheritance when creating a child process

b. By entering the object into the PU directory by a symbolic name.

When an object is entered into the directory it is specified by whom it may be

looked up and what capabilities they should have vis a vis the object.

The object descriptor table and Security profile of a process is kept in a

memory which is accessible by that process when it is execut-ig in privileged

mode, but protected against modifi4ition by the process when executing in

user mode.

E-1 4

EDAMOS SECURITY

Layered design

Kerneel

" Directory functions -Error processing

" CPU management -Real time clock

" Process management *PU management

- Memory managemnent *PU service module

Inter process communication -Transfer module

*Device management -Basic transport service

*Device handlers

DAMOS SECURITY

Objectives:

Data security

* Protection of data against disclosure to
unauthorized users

* Controlled update of data

Availability of service

* Protection against denial of service

Measures:

- Capability based design

- Resource management

10 DAMOS SECURITY

HW security features

Memory protection embedded in memory mapping

* 16 Privilege levels
Each with an associated memory boundary

* Privileged instructions

* Non-assigned instruction codes trap

* Parity on memory

F-1

- , =r" =,- . :T., .-'; - , - _a

DAMOS SECURITY

Objects

Security is based on controlled acces to objects

Kernel objects

" PUS

" CPUS

-Processes

" Synchronization elements

" Virtual memory segments

" Devices

" Communication ports

EDAMOS SECURITY

Objects

File management objects Magnetic tape file management system

-Devices (disk drives) Devices (tape decks)

-Volumes (disk packs) Volumes (tapes)

• Files Files

" Users Users

Terminal management objects

* Devices (communication controllers)

" Lines

" Units (terminal, LP, VC,)

" Users

I'-17

ENDAMOS SECURITY

Access authorization

ACCESS
CONTROL

PROCESS -SECURITY
-SECURITY PROFILE
PROFILE *ACL

- Security check

- Descretionary access right verification

ED DAMOS SECURITY

Security check

0 A process may read from objects with a classification not

higher than that of the process

9A process may write to objects with a classification not

lower than that of the process

*A trusted process may write to objects with any classification

E DAMOS SECURITY

Security profile

Defines a classification for each of a set
of compartments

Type profile record

A class min A class..max A class

N class min N class..max N class

End:

E DAMOS SECURITY

Discretionary acces right

- Subject identified by a user group identifier

* Object has an acess control list

Object
UG UGI

V. - I t9

Irigh

EDAMOS SECURITY

Damos processing domains

User wiew Kernel views

.KCS

64 kw

PPP IPPP

" PMD, PCF
* DF BTS
- PM
* DVM (3)

ENDAMOS SECURITY

Process parameter segment Process parameter page

Level areas 1-15 • Parameter stack

Level 15: *Context stack

Object descriptor array . Translation table

- Segment table
- Security profile

* Process level

E-20

DAMOS SECURITY

User process logical memory space Object manager space

Program Data

P"USr OATA

J SE

e A,-'"5 "P..

I I

DAMOS SECURITY

Object descriptor

Information contained in OD:

H Host PU

*Object type and subtype

- Index to object control block

, Object control block sequence number

- Object acces level

* Capability vector

Object de. -;riptors may be obtained via:

* Creation of object

* Inheritance from parent process

* Lookup in PU directory

F-2 1

UDAMOS SECURITY

Change of execution level Change of view (processing domain)

, MON instruction - CALL instruction

* RTM instruction *RET instruction OnyaJlvl1

- Interrupt . Interrupt

* RTI * RTI

L -22

Computer Security and Control Data

Terry A. Cureton
Program manager, Security Systems

Control Data Corporation

August 10, 1981

[SLIDE: CDC Logo]

It is a pleasure for me to represent Control Data at this seminar. we
have been observing the activities of the DoD Computer Security
Initiative for some time, and are impressed with your progress. Until
recently, our participation in the Initiative has been silent. For
the most part, this has been due to the largely theoretical or
experimental nature of the material presented. However, the
Initiative has given us an opportunity to look at our own experiences
in computer security from another viewpoint. We can now see the
parallelsoand principles common to both the theoretical work and our
experience as practitioners of computer security. The message we
would like to share with you today is that we at last see a
convergence between the theory and practice.

[SLIDE: Topics]

To begin, I must start with what Contirol Data is, and why we are
involved in computer security. Then, I would like to dispel a myth
about security and performance, by relating that to our unique machine
architecture. Next, I will briefly describe how that architecture is
reflected in our operating system design. A comparison of commercial
versus government security requirements will show how we plan to meet
both. Another comparison of formal and informal design methodologies
will show how we think they are converging. Lastly, I will describe
our involvement with the DoD Initiative and our view of its impact on
the industry as a whole.

[SLIDE; Control Data Reputation]

What kind of company is Control Data?

- Many of you know Control Data is in che large-scale scientific
and engineering computer business.

- That is our tradition and our legacy, since the company was
founded in 1957 - since the days of the 1604 and the 6600.

F -

Computer Security arid Control Data
Terry Cureton Auu t k0 , 9

[SLIDE: Control Data Today]

But you may not be aware of the range ot Control Data's busiriess
today. Yes, we still make super-scale computers to, our systems
business, but we are also the industry's le iuing supplier of
peripherals - both OEM and plug-compatibles, in addition to our owl.
label. The next time you walk into a room full of disks, there':" A
good chance (65%) that we made them, since we supply OEM peripherals
to all but one of the major manufacturers. We a-e also deeply
committed to education with our unique PLATO system. PLATO is winr,
acceptance in uses ranging from teaching grade school fundamentals, t,,
training airline pilots and nuclear safety engineers. but it is ir,
Data Services that we are the world-wide leader.

[$LIDE. DATA SERVICES]

Our Data Services Company operates both commercial and sciuentitlic ,Iati
centers around the world, around the clock. Its a more thsin hal!
billion dollar business, reaching from Main S[treet to Waill Str-.-t.
And - whether it is a small businessman dealiig with our >ervict,
Bureau Company in Cleveland - or an engineering ti-m dealins wit..
CYBERNET Services in Copenhagen - the two Q]uestioris we fwa" ot I,,

[SLIDE. DS Customers Ask]

"How much will it cost?" and

"How secure will my data be?".

[SLIDE: Security (1)]

Clearly, security is a customer concern, and for Control Data it is a
hard-nosed, hard-headed business need. It is here that Control Data
learned about conputer security in a day-to-day pragmatic way. We(
have been addressing that need for more than 20 years, since the
beginnings of Data Services.

Now, Data Services is a larje chunk of our business, in fact they a-k
our largest Systems "customer". Their needs have a major impact ojn
system desijn and development. Simply put - Security has been
essential to our largest system marketplace for more than 20) years.
That's why Control Data nas been involved in computer security. We
will have to look at the data services environment to see how it
elates to computer security.

I p -.

L • ._ .

Computer Security and Control Data
Terry Cureton August ;, .98

[SLIDE. Timesharing Environment]

From a security viewpoint, it is the timesharing environment where tri(
needs are greatest. The first need ct course, is to simply keep it
running, since users have little patience for system downtime. That
requires a good deal of system integrity, in the first place. by
definition, timesharing means multiple v,_, ers sharing system resources.
Those resources and the users' data are real and tangible as:;ets which
must be protected. Then, resources have to be controlled so that all
may share equitably, and if you want to get paid, they tave t) be
accounted for. Finally, users have to Le kept seperate, :3irico h,
might be competitors.

Control Data met those needs by developing a system specifically
designed for the timesharing environment. Over time, secu, rity tlaw
were .scovered and corrected, and new security mechanisms evolvt-J
into the system design. We built up a great deal of practical
experience with that system, and that system evolved into our sa, ,1:j,
system of today. But it wasn't until the DoD Initiative that 1 e tully
recognized the unique advantages of the CYBER 170 architecturL
regarding security.

What is so unique about the CYBER 170 architecture and security? Le

answer in a word is - Performance. There seems to be a growing
supposition in the industry, that security can only be obtained at the
expense of performance. We would like to dispel that myth, by showing
how the CYBER architecture and hardware can provide security without
penalizing performance. To understand why, we have to first examine
the relationship between security and performance, and then how that
relates to design.

[SLIDE: Performance]

When considered in a broad sense, performance over the long term
requires both speed and endurance - that's why the Indianapolis 500 is
so tough. It isn't worth much to be the fastest in the race, if you
can't keep it running long enough to finish. In computing terms,
endurance is a combination of reliable hardware and software, and the
total system's ability to recover when something does break.

[SLIDE: Security (2)]

In that sense, the concept of integrity as a security requirement, is
just another way of describing endurance for performance. Thus the
emphasis on system integrity, as described in these DoD Seminars, is
consonant with our experience in computer security. That's one sign
of a convergence between the theory and practice.

Given that endurance and integrity are just different views of the
same set of requirements, then those hardware and software features
which contribute to the endurance of a system are, in tact,
contributing to both performance and security. Here's another way to
look at it.

iF

Computer Security and Control Data
Terry Cureton August 10, 198

[SLIDE: Implementation]

From this viewpoint, we can see how security and performance should be
mutually benefical - synergistic if you will - rather than conflicting
goals. How these features are implemented, and which are in
hardware - is where conflicts arise. If security features must be
implemented in software - at the expense of performance, - then the
software designer is forced to make a tradeoff decision.
Historically, the choice has been in favor of performance, simply
because that's what sold computers. But that tradeoff is beginning tc
shift the other way now.

[SLIDE: Hardware Security/Performance]

Specifically, there are four key hardware characteristics which are
contribute to both performance and security:

o Machine Architecture,

o Memory Protection,

o Context Switching, and

o Reliability Features.

Let's look at each, beginning with the architecture.

(SLIDE: Architecture]

This is the general architecture of the Control Data Cyber 170 series
computers. What is unique in this block diagram is the Peripheral
Processor Units (PPUs) in the middle. These are up to 20 separate,
independent computers, which operate concurrently with, but
independent of, the Central Processor. Note also that all I/O
operations must be pe-rformed by the PPUs. Already we see the
principle of separation of functions implemented in hardware. I'll
come back to the performance aspects of thi. later. Let's just see
how that architecture is reflected in the system design.

[SLIDE: System Layout]

I must explain that only system software executes in the PPUs. In
fact, most of the operating system consists of modules to be executed
in a peripheral processor. The PPUs also have primary control of the
operating system. The one at the top, labeled MTR (Monitor) is the
real boss of the system. The executive shown in central memory is
just a fast assistant to MTR. User jobs also reside in central memory
and only execute in the CPU. Again, we see a separation of functions.
When a user program requests I/O, or other services, from a PPU, it
validates the request and performs the operation completely
independent of the CPU. The CPU program is thus isolated from I/O
operations and c-annot directly participate in error handling and so

F-IR

Computer Security and Control Data
Terry Cureton August iO , 198"

on.

On performance, it should be noted that concurrent operations in the
PPUs also means that the software designer need not make a tradeoff
between security and performance. While a PPU module is laboriously
checking parameters or validating a user's authority to perform an 1/0
function, the CPU can be producing useful computations for another
user. This hardware separation pays off directly in pe-rformance, and
at the same time, establishes a solid base for security.

Let's move on to memory protection. Actually, memory protection also
Starts with thle architecture. What better isolation can there be than
between physically separate memories? Each Peripheral Processor has
its own independent memory, separate from the other PPUs, and more
important - from Central Memory where users must reside. Again,
hardware design provides the separation and isolation necessary for
security.

But notice, there are some system tables and software sharing central
memory with the user jobs. Here separation is maintained by the CPU
memory protection scheme.

(SLIDE: Memory Protection]

This scheme is simply a base and bounds hardware register pair. The
Reference Address (HA) is the starting address of memory assigned to
an executing program. The Field Length (FL) is the length of that
area. These hardware registers are part of the CPU, but are no t
accessible to thle executing program. Their use is completely
transparent. To the user, all memory addresses are relative to
assigned memory and the hardware precludes any other access. Thus thle
CPU program does not handle real memory addresses, which is one
characteristic in common with virtual memory systems. This eliminates
user participation - or observance - of memory management. Since only
the Reference Address changes when a program is moved or reloaded into
memory, usage can be highly dynamic and efficient. Doing it entirely
in hardware provides even greater efficency, due to the simplicity of
the mechanism. Here we see both security and performance as a result
of how memory protection is implemented.

[SLIDE; User/System Interface]

Another critical security/performance concern is the need for safe and
fast context switching between programs. The actual context switching
mechanism is provided hy a hardware feature, which has been
characterized as the "ultimate interrupt" but officially known as the
Exchange Jump operation.

An Exchange Jump can be triggered by either a PPU or a CPU
instruction. This single instruction stores the complete set of CPU
registers, including RA and FL, into memory and reloads them from the
same memory block. Yes, it sounds like magic, but it does go both
ways in the same, operation. The result is a complete two-way swap of

F-5

Computer Security and Control Data
Terry Cureton August 0, 98.

- the execution state of the current CPU program - with the memory
image of the state of another program. The whole thing is transparent
to the program and the hardware insures that nothing is lost - or
gained - in the exchange.

The exchange operation is very fast. For comparison, it is roughly
the same time as a floating point divide operation. In some processor
models it is even faster. In that case, it could be said that "a swalp
is faster than a FLOP." Again the intent was performance, but the
result is security since it is implemented in the hardware.

A CPU triggered exchange is part of the normal user/system inte Lace.
In this case the user program merely relinquishes the CPU to the
operating system. On completion of the request, the CPU is returned
in a similar manner.

The system PPU monitor however, can independently trigger a context
switch at any time. This is how a PPU module can both monitor and
control the time-slicing of the CPU among many jobs. Tt is also the
mechanism for "pulling the plug" on programs consuming too much of a
resource or hung up, and becoming a "denial of service" threat to
others. It eftectively eliminates of any form of user lockup, as the
PPUs always have the ultimate control. Thus a hardware context
switching capability can provide not only performance and security but
resource control as well.

(SLIDE. Reliability Features]

Finally, we come to those reliability features usually thought to be
interesting only to engineers. Error detection and correction
features are the most basic elements of hardware integrity. An
adequate set insures that the hardware will yield just two results -
either a correct result, or a signal that it cannot perform the
function properly. In addition, the diagnostic data produced by these
and other maintenance controls contribute to long term stability,
reliability and recoverability. My point is that they are not to be
overlooked when considering security. We are all aware that most
system flaws are exposed when operating in crisis mode - usually in
response to an error.

(SLIDE: Hardware Security/Performance (Result)]

In short, there are four key hardware characteristics which contribute
heavily to both performance and security:

o Machine Architecture

o Memory Protection

o Context Switching

o Reliability Features

F-6

Computer 5ecurity and Control Data
Terry Cureton August .0, 198.

All of these establish the base on which sottwar, must rely, tu
provide both security and performance in the broad sertse.

(SLIDE. N €work Operating System]

At this point I should introduce you to our Network Operating System,
(N.O.S. or NOS as you will). The name makes it clear that NOS is
network oriented. It not only supports access via communications
networks, but also supports multi computer networks both locally and
remotely. NOS is a multi mode system offering a full range of
processing modes including local and remote batch, database managers
and transaction processing, and a variety of interactive programming
environments. Obviously it is a multi user system as well, and that's
where security becomes a key requirement.

(SLIDE: NOS Characteristics]

One of the outstanding characteristics of NOS is that it is a
capabilities based system. It all begins with the built-in concept of
individual users. Each user must be known to the system, and their
capabilities defined on an individual basis. From this is built an
accounting system where every activity in the system is attributable
and traceable to a user. Users are totally isolated from each other,
and the operating system. NOS relies heavily on the hardware
separation and memory protection features for this isolation. For NOS
users, the only means of sharing data is via the file system. The
file system is built around individual ownership of files, and access
is, - by default - restricted to the owner. If the owner chooses,
other users' access to a file may be specified on the basis of user
identity and mode of access. NOS has file passwords too, but they are
seldom used since they are independent of identification.

Interestingly, the file system carries the memory addressing concept
much further, and exhibits most of the characteristics of a virtual
memory system. Space allocation is dynamic, on an as-needed basis,
and does not require pre-allocation. That makes it very space-
efficient and avoids deadlocks. All I/O references are relative to
the logical file name, and the system (a PPJ module) does the mapping
to real device addresses. Thus, NOS can preclude access outside of a
file, and to unwritten space.

Users and their files are also grouped into higher level FAMILYs with
no access to files across FAMILY groups. This is particularily
valuable in a university environment, to separate students from
faculty. Families are then divided into sub-families by storage
device to provide further physical separations. The result is that a
population of NOS users can be easily managed dynamically and without
inconvietence to the user. Both Families and Sub-Families may be
controlled as a group via operator commands.

In summary, NOS benefits from both a solid hardware security hase, and
a design intended [or commercial timesharing, which has withstood the
test of time and emerged robustly healthy.

F-i

Computer Security and Control Data
Terry Cureton August 10, 1981

[SLIDE: Security Requirements (I of 2)]

But what of the DoD's security requirements? Although the words may
differ, there is a strong similiarity between commercial and
government security requirements. When you speak of a kernelized
system, it must be as simple a possible - to allow provability - and
by definition must be modular. It would be interesting to compare
this concept to our system PPU modules. A self-protecting system
doesn't fall apart when a user goofs. Though not permissive, it must
expect and tolerate user errors. We have already discussed how
integrity relates to rel 1 ability. User privacy-by-default is a more
precise description of isolation, and provides protection from
accidental access.

[SLIDE: Security Requirements (2 of 2)]

Actually, access controls are a subset of resource controls. Resource
controls also deal with the denial-of-service threat. Controlled
sharing is where security is the name of the game, but need-to-know
access controls are only one form of control. Access based on the
identity of the user, and control based on owner..hip is another.
Auditability is of course, more narrowly directed toward resource
accountability. But it also provides a very effective user
surveillance capability.

The one listed government security requirement without a commercial
equivalent is the concept of security levels and categories.
Actually, they are just different sets of criteria for the access
controls mentioned above. The unique aspect is that levels and
categories are independent of data ownership and subject to a
mandatory policy. That's the hole we intend to fill.

With all of these similarities, it should not be surprising then, that
a system meeting one set of requirements, should be easily adapted to
the other. In fact, while adapting the NOS design to support levels
and categories - we found that essentially all of the control
mechanisms were already in place. The mechanisms only have to be
extended to consider levels and categories and the mandatory security
policy in the access control decision. It is clear that not only are
the requirements similar, but are convergent on a common set of
mechanisms. Simply put - form follows fLnction. Thus we believe
there is a common, generic set of control mechanisms which can be
adapted to specific security policies. There's a bonus too - With
those generic mechanisms already in place, we are confident that the
Multilevel Security extensions will result n no si jnificant
performance dr adation.

}'-A

Computer Security and Control Data
Terry Cureton August 10, 1981

(SLIDE: NOS Multilevel Security]

With the NOS Multilevel Security extensions, we will have the
functional capabilitz to support Multilevel Mode operations. This
will be a standard, fully equipped operating system, for use with our
large scale, high performance computers. It will be compatible with
the full lin~e of CYBER 170 computers, and most predecessor machines.
It will offer the full set of standard software products, and will be
software compatible with existing NOS user applications. 1)S with MLS
will also be available not only to new customers, but to installed
customers as well, which goes a long way toward the goal of
"widespread availability."

That's what we are doing as practitioners of computer security. But
how does that relate to the DoD Initiative and the theoretical work?

(SLIDE: Computer Security Approaches]

As you can see, Control Data has been approaching computer security
from a practitioner's viewpoint. Our first concern has to be
functional requirements, since we are selling not just hardware and
software but capabilities. Design evolution recognizes the fact that
we must maintain compatability with previous systems and the user's
applications. Marketability is, in fact, not the least concern, but
the one driving all other concerns.

From a theoretical approach, it is clear that computer security must
begin with the design methodology, with the objective being
provability. The idea ofa formal evaluation and on-the-shelf
certification is also important, and a pragmatic concern as well. But
what really drives a manufacturer is marketability. In this case, it
seems our concerns are markedly different. But let's look at the
respective methodologies to see if that difference holds up on
examination.

(SLIDE: Development Methodologies]

Here we can compare the formal design methodologies with those used by
informal practitioners like Control Data. Obviously, both processes
begin with some form of requirements. Formally, the security model
serves as a target requirement. But as usual, a manufacturer is
driven by market requirements, which are often conflicting and subject
to internal constraints as well. Eventually, requirements are agreed
upon and functional specifications are created. These are roughly
equivalent to Top Level Specifications and here the two processes are
very similar. In the formal process, the specs are then verified to
the security model, while informally a Design Review occurs. A Design
Review can be just as tough to do as a logical verification, and a lot
more emotional. Where a detailed design is done formally, coding
specs emerge informally. Now formal design correspondence may be
compute-intensive, but peer review of all generated code is people-
intensive. We're not sure which is more expensive, but neither is
cheap! We have been told that complete code verification is beyond the

P--9

Computer Security and Control Data
Terry Cureton August 10, 1981

state-of-the-art, well complete system testing may be also - but we
keep on trying. In penetration analysis we are doing essentially the
same thing. At Control Data, we call it Malicious User Group or MUG
system testing. Tts fun, and occasionally very exciting! Finally,
there is an evaluation of the resulting system by someone whose
opinion is important to the developer. For commercial systems, it is
simply market acceptance by the user. It would be nice however, to
have a formal stamp of approval before shipping the system.

i'he objectives of these methodologies differ markedly however. For
formal methodologies, it is Provability, but for commercial systems it
is Functionality. In most other respects they are not only similar,
but appear to Converge on a common set of developmental functions.

This convergence has encouraged Control Data to look into applying
some of these formal methods to our system. As a first step in that
direction, we have requested a DoD evaluation of our NOS system and
Multilevel Security design. That process is underway, and so far it
looks very promising. On the matter of formal design verification, we
understand the benefits, but will have to develop the means of
applying the theory to our practices. We are currently exploring some
alternatives in that area.

(SLIDE: DoD Initiative Impact]

In conclusion, we at Control Data applaud the progress of tht- 'G
Computer Security Initiative. We would especially like to
congratulate you -

o On increasing industry awareness of the need for security. (Some
non-DoD people have helped too - by getting caught.)

o We thank you for fostering - and occasionally funding - the
development of computer security technology.

o Thanks too, for focusing computer security requirements for those
not so knowlegeable in computer security. This directly benefits
manufacturers by limiting the ingenuity of those who write
technical specifications for procurements.

o And finally, we thank you for providing an evaluation framework
which places greater emphasis on functional capabilitie-s than on
technical specifications.

We look forward to a fruitful dialog on our common objectives of
advancing the state-of-the-art, and acheiving the widespread
availability of Trusted Computing Bases.

Thank you for the opportunity to address this forum.

(SLIDE: CDC Logo or DoD slide]

F- 10

CONTkOL DATA
CORPOR*TION

TOPICS

* CONTROL DATA AND SECURITY

* SECURITY AND PERFORMANCE

* ARCHITECTURE AND SYSTEM DESIGN

* DOD AND DEVELOPMENT METHODS

* DOD INITIATIVE

CONTROL DATA
REPUTATION

" LARGE SCALE COMPUTERS

" SCIENTIFIC/ENGINEERING

e SINCE 1957

CONTROL DATA TODAY

o SUPER SCALE COMPUTERS

* PERIPHERALS

9 EDUCATION - PLATO

e DATA SERVICES

DATA SERVICES

DATA SERVICES

CUSTOMERS ALWAYS ASK:

"HOW MUCH DOES IT COST?"

"HOW SECURE WILL MY DATA BE?"

F-12

a - -

SECURITY

*CUSTOMER CONCERN

*BUSINESS NEED

*20 YEAR HISTORY

*OUR LARGEST MARKETPL ACE

TIMESHARING ENVIRONMENT

o SYSTEM INTEGRITY

o MULTI USER

a ASSETS PROTECTION

* RESOURCE CONTROLS

a ACCOUNTABILITY

s USER ISOLATION

PERFORMANCE

" COMPUTE POWER

" ENDURANCE

- RELIABILITY

- RECOVERABILITY

F-13

SECURITY

. ACCESS CONTROLS

o INTEGRITY

- RELIABILITY

- RECOVERABILITY

IMPLEMENTATION

HARDWARE COMPUTE POWER -- PERFORMANCE

RELIABILITY

SOFWAE1 RELIVABILITY

ACCSS ONROLS SECURITY

HARDWARE
SECURITY/PERFORMANCE

" MACHINE ARCHITECTURE

" MEMORY PROTECTION

" CONTEXT SWITCHING

e RELIABILITY FEATURES

F-1 4

a .

CDC CYBER 170 SERIES

PERIPERAL SSOI

SYSTEM LAY-OUT

CENTRAL PERIPHERAL SYSTEM

MEMORY PROCESSORS DISK

TABLES El [m

EXECUTIVE IT1
SUBSYSTEM 1

SUBSYSTEM 2

SUBSYSTEM 3

SUBSYSTEM N

USER
PROGRAMS

MEMORY PROTECTION

CENTRAL MEMORY REFERENCE

ADDRESS (RA) 00

USER PROGRAM
2 AREA FIELD

JO\ 3 .LENGTH (FL)

F-15

USER/SYSTEM INTERFACE

SWTCH U E

" 0|1

CONTROL

DATA

EXECUTE 0,

RELIABILITY FEATURES

III ERROR DETECTION/CORRECTION

- CORRECT RESULT

- ERROR SIGNAL

* MAINTENANCE FEATURES

- HARDWARE CONTROLS

- DIAGNOSTIC DATA

HARDWARE

SECURITY/PERFORMANCE

I MACHINE ARCHITECTURE

* MEMORY PROTECTION

* CONTEXT SWITCHING

* RELIABILITY FEATURES

RESULT: SECURITY WITH
PERFORMANCE

F-16

NETWORK
OPERATING SYSTEM

o NETWORKS

e MULTI COMPUTERS

o MULTI MODE

* MULTI USERS

NOS CHARACTERISTICS

o CAPABILITIES BASED

* USER CONCEPT

* ACCOUNTING CONTROLS

* USER ISOLATION
* FILE SYSTEM

* LOGICAL FILE I/O

* FAMILY OF USERS CONCEPT

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS GOVERNMENT SYSTEMS

* SIMPLICITY, MODULARITY o KERNELIZED

" FAULT TOLERANT * SELF PROTECTING

" RELIABILITY * INTEGRITY

o USER PRIVACY e ISOLATION

F- 17

* Im -' -

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS GOVERNMENT SYSTEMS

o RESOURCE CONTROLS * ACCESS CONTROLS

a CONTROLLED SHARING o NEED TO KNOW ACCESS

*AUDITABILITY o SURVEILLANCE

*LEVELSICATEGORIES

NOS MULTILEVEL SECURITY

o STANDARD SYSTEM

- LARGE SCALE SYSTEMS
- PERFORMANCE

o COMPATIBILITY

| - HARDWARE
~- SOFTWARE

COMPUTER SECURITY APPROACHES

TH-EORETICAL PRACTICAL

DESIGN METHODOLOGY FUNCTIONAL REQUIREMENTS

DESIGN VERIFICATION DESIGN EVOLUTION

FORMAL EVALUATION MARKETABILITY

S- INSTALLED CSTMR

DEVELOPMENT METHODS

THEORY PRACTICE

SECURITY MODEL MARKET REQUIREMENTS

TOP LEVEL SPECIFICATIONS FUNCTIONAL SPECIFICATIONS

DESIGN VERIFICATION DESIGN REVIEW

DESIGN CORRESPONDENCE PEER REVIEW OF CODE

CODE VERIFICATION UNIT/SYSTEM TESTING

PENETRATION ANALYSIS IN HOUSE USE/TESTING

FORMAL EVALUATION USER ACCEPTANCE

DOD INITIATIVE IMPACT

" AWARENESS

" TECHNOLOGY STIMULUS

" FOCUS FOR REQUIREMENTS

" EVALUATION FRAMEWORK

6=
F- 1 9}

ia

SAC Digital Network
(SACDIN)

Security Methodology

Mauro Ferdman
The MITRE Corporation

PRESENTATION OUTLINE

Slide I SACDIN will be used to support command and control functions of the
Strategic Air Command.

Slide 2 Present status of the project is full-scale engineering development.
Prime contractor is ITT and the major subcontractors are IBM for
software and BDM for systems.

Slide 3 SACDIN is a large scale network covering all SAC units throughout
the continental U.S. It is a packet-switched network and it uses
AUTODIN II as a backbone. One of the characteristics of SACDIN
that is important for this seminar is that it is designed to be
mutli-level secure.

Slide 4 The security requirements are very strict and as it was mentioned
before, they include requirements for simultaneous transmission of
messages of different classification. It provides protection
against compromise of information, integrity and denial-of-service.

Slide 5 The IACM provides total mediation between subjects, which are the
users of information, and the objects which are the repositories
of information. The IACM mediates every single access of subjects
to objects.

Slide 6 The IACM mediates all accesses so it must be some assurances that
it was designed and implemented correctly. This has required
that a specialized software design methodology be used and it will
be described later. In addition, there must be some ways of
protecting the IACM from being altered by other software.

Slide 7 SACDIN has three tiers of protection provided by the applications
processes which are used for user support, the trusted processes,
which are used for I/0 Interfaces and the IACM or Internal Access
Control Mechanism, which also serves as the Opeiiting System. The
next slides will explain in more detail the security enforcement
mechanism of the IACM.

Slide 8 The methodology used for development of the IACM consisted of
creating a mathematical model to formally represent DOD securit,
policies, followed by a formal description of the IACM design in
a formal language which was formally verified not to violate the
math model. Lower level specifications were only correlated in a
less formal way.

(;-1

.... ..2

Slide 9 : In a more graphical way, the bottom line shows the standard D)D
Procurement practices for software, from user requirements to code,
with the proper test and evaluations. Our methodology has added
the upper part in parallel to provide a better assurance of a
correct dosign.

Slide 10: We quickly found that the 1ACM by itself was not enough to protect
against compromise. There were problems in these cases where
information must be transferred into or out of the Central Processor,
such as network communications, peripheral devices, etc. The

following slides will deal with these problems.

Slide 11: A host or node contains an IACM and it is fully capable of handling
multi-level communications such as from A to B or access to the
Multi-Level Data Base, marked as MLDB in the slide.

Slide 12: If we have a network, and now A attempts to communicate with C or
B with D, we are dealing with multiple IACM's, one in each node,
so it is important that the last software process that handled the

messaige be trusted.

Slide 13: The situation is more complicated through the use of a back-bone.
See in the slide the path from A to C and B to 1).

Slide 14: The solution that we adopted was to create specialized software
that serves to authenticate one node to another and to serve as
I/O transmission control. It earned the name trusted because it
used the same design methodology as the IACM.

Slide 15: The problem with peripheral devices are similar, because the IACM
does not have direct control of the information going outside
the Central Processor. The solutions adopted were similar to the
ones adopted for communications, namely to use trusted software
to handle the printer and user interface.

Slide 16: As far as integrity protection is concerned, it was based on rsin'

good software practices as shown in the slide.

Slide 17: The Central Processor that we used is a modified olt-the-a;helf
computer, the IBM Series/l, with several security features Iddhd.
They consisted o1 an expanded relocation translator, ai security
controller to monitor accesses to core and an evxpanded instruct ion
set. The terminal was specially developed and it includes a sp., i al
security field.

Slide 18: Summary and conclusions.

Slide 19: Lesson learned.

r I
* -

SAC Digital Network
(SACDIN)

Security Methodology

Mauro Ferdman
Mii rE Corporation

Purpose

Proticde Data ('ommunications Support
for Command and Control of SAC Force.

Status

Preentlk Under Full-Scale Ungineerinq
De elopme nt

Prime Contrator: ITT
M ain Subcontractor*: IBM, BDM

G. I

~ -~---40

Characteristics

Large Scale Net%%ork (About 200 Node%)

Pa ket-Switched Network
Uses ALIIODIN 1i As Backbone
Multi-Le el Secure

Security Requirements

Stri t Overall Securit% Requirements

NMulti-Leel Capabilities

Compromise, Integrity' and Denial of
Service Protection

Security Architecture

SUJET OBJAIS ECTSI

(-4

Internal Access Control
Mechanism (IACM)

Mediates All Access

Formally Proven Secure

Protected From Modification

Serves As OS

Software Architecture

APPLICATION T
PROCESSES S Sic S TS

TRUSTED x x x
PROCESSES

INTERNAL ACCESS CONTROL
IACM MECHANISM

PERIPHERAL DEVICES

HARDWARE AND INTERFACES

IACM Development Methodology

Formally Represent Security Policies (Math

Model)

Prepare Formal Top Level Specifications (B-5)
formallk prose specifications

Intermediate Language Representation
('orrelalions proofs

Stepwise Refinements
Correlation proofs

Implementation Code
(orrelations proofs

G-5

j

IACM Development Methodology

FDOD' MATH
POLICY FORMAL O L

VERIFICATION'
FORMAL
VERIFICATION

I CORRE-

REOTS FORMAL LATIONS. FORMAL1
SREOMTS SPECS

CORRE- CORRELATIONS
LATIONS

OT&E DT&E

IACM Not Enough To Protect
Against Compromise

Network Problems

Peripheral Devices Problems

Multi-Level Files

Multi-Level Problems In
Networks Host Problem

0 0
A(S) B(TSI

G;-6

Miulti-Level Problem In Networks

SACDIN Lines

0 C0 Q
0 0 0 0

A(S) B(TS) D)TS)

M~ulti-Lev~el Problems in
Networks

SACDIN/AUTODIN If Links

AUTODIN N

SACOIN

00C0 0 C(S) 0
A(S) B(TS) D(TS)

L
Network

Solutions

Trusted Software Required For
Node authenication
Otutput transmission control
Input transmission contil

(;-7

Other Trusted Functions

Printer Manager

User Interface

File Manager

Integrity Protection

Single Computer Program Architecture

Top Down Design Structured
Programming
Strict Accountability and Journaling of
Messages
Error Detection Mechanisms

Hardware Security Features

Node's Central Processor
Modified IBM Series I processor

Relotation translator

Security controller
Extended instruction set

Specialized Terminal
Spe ial securitv fields

G-8

Sum maryi,

INA(01% 1% 1 irst Multi-Level Netw4ork
With Stri I Seturi Requirements From
I rocram Inc eption

L %v% Speciabed Software De%.elopment
Slethodoloq% Reaching As Far As the
Pratita4 State-of-the-Art Will Go

I horough Securit% Anaksis Throughout
Design and Dev.elopment
(ollaborauike Effort

Lessons Learned

Large Amount of Trusted Software
Required Over and Above Basic Kernel

Largest Securii%. Problem Is the Handling
of Peripherals and Communication%
Lines, Not the Internal Handling of Data
Multi-level Securit Can Be Achieved If
Sc stemn 1%, (arefufli Planned. Designed
and Developed

COS/NFE
OVERVIEW

Gary Grossman

Digital Technology Incorporated

August 10. 1981

Preview

* COS/NFE Program

• COS/NFE Technical Description

0 HUBTM Executive

0 Security Methodology

0 Experience

DTI

C ommunicatnn

Operating

System

N etwork
F ront
E nd

I - a

-COS-INFE

*Verifiably secure

Prototype NFE

0 For AUTODIN 11

Lineage

E DTI Secure
IJNFE

w HUB Executive

COS/NFE

11-2

Precursors

ENFE Network UNIX + IIPC ARPANET U of I

INFE UNIX + Attach 1 0 AUTODIN If DTI

W N F E U N I X + A t t a c h 0
W I N

O T I G

Participants

" DCA - Sponsor

" DTI - Prime
design & implementation

" soc - Sub
formal specs., verification,

& 8ctjly analysis

* ISET - Security Watchdog

Goals

. Security
Overt channels

Covert channels
Denial of service

* Performance
'Significantly' better than INFE

11- 3

[mom

Bases

" Hardware - PF)P-1 1170

" Software - Secure HUB"M Executive
PASCAL

Schedule

" Completion - March '83

" Trusted security control - soon

COS/NFE Functions

* Identical to INFE + security

" Interfaces

* Protocols

II1-4

COS/NFE Interfaces

" AUTODIN II
ACC UMC-Z80

" WWMCCS H6000
ACC LH DH- I l - ABSI

0 Terminals
DH-11 Asynch

DV-1 I Synch VIP

COS/NFE Protocols

" AUTODIN II
THP. TCP. IP. SIP. Mode VI

" WWMCCS H6000
HFP: SAP's, Channel. Link

" Terminals
Asynch Character Start-stop

Synch Honeywell VIP

COSINFE Modules

* Protocol processing
From INFE

* Admin. & security
C1 - designed, coded

TH - designed. coded

Others - designed, being coded

" HUB'" Executive
Designed, coded, tested to usefulness
for measurements

iI-

Network SsO

AUTODIN II

TerminalsT

Seimlirls DT i

COS/NFE Security Policy

* Preserves security labelling

" Level (data) c level (line)

COS/NFE Multi-level Users

6 AUTODIN II

* Terminals

* (Hosts)
(Modifications to HFP)

11-h

-ME

Secure HUB TMExecutive

" Stand-alone

" Veritiably secure

" Communications-oriented

* Portable
PASCAL. 11 70, 11 780.yP

" Proprietary

-HUB TMSecurity Policy

* Separation of Dumnai,.)s

* Flexibility in supporting more
sophistication

TMT

HUB TMSizes (PDP- 11)

0 2838 lines of PASCAL

0 236 routines

0 32 primitives

* 1200 lines of assembler (bootstrap, cfimp)

0 70K< bytes on POP-l11 (zr 54K cool,,
16K< datiia)

11-7

Relative Speed of IPC Operations

I Includes all related primitive calls
Buffer allocation
Sending message

Receiving message

" Attach I/0 6.95ms

" HUB" 3.9ms

" Ratio 1.75

" Functions may not be comparable

TM

HUB Primitives

0 Resource management 10

. Process management 3

. Address space management 2

0 IPC 7

0 Flow control 5

* I/0 4

0 Timing 1

32

HUBI M Concepts

" Stages (processes)

" IPC

" Sessions (domains)

h-8

klow

T/7

HUB_ T Stages

" Program - sharable

" Memory
Private -unshared

Buffers -serially shared

0 Ports for IPC

TMT

HUB TMIPC

* Connections between ports

" Via butters only

HUB TMSessions

" Execution control

* Connection control

" Resource control

11-9

HUB TM Security

. Overt channels

. Covert channels

* Denial of service

Overt Channels

0 Formal control

* Definition of "trused"

9 Communication rule

* Execution rule

Covert Channels

" Engineering

" Few shared resources

" Strict controls on resources

* Only trusted software can move
resources

Il-I O

Denial of Service

0 Engineering

0 Similar to covert channels

Security Methodology

" Verification plan

* ISET evaluation

" Overt channels - formal verification

" Covert channals - engineering analysis
& solutions

" Denial of service - same

Overt Channels
DTI SDC

" Identify trusted modules X

" Correctness criterion X X

* Write & prove TLS X

" Write & prove 2LS X

" Compare 2LS & code x

I1- 11

AD-A113 348 OFFICE OF THE UDR SECRETARY OF DEFENSE FOR RESEARCH-ETC P/ 9/2

1981PROCEEDINGS OF THE SEMINAR 0N THE DOD C0PUTER SECURITY INITIAY-ETC(U)

UNCLASSIFIED N4

EEEEEEEEEIIEEE
IIEEEEEEEIIEII
EEIIIEEIIIIII
EEIIEIIIIEIII
EEIIIIIEIIIII

2~i0

DTI Soc

De
Sp.-

Init. TLS - .Criterionj

Code

D~TI

Trusted Modules

OITI

Correctness Criterion

0 One f or each trusted module

* Relatively simple

a Security-related only

11-12

Top-Level Specification

" Correctness criterion

" Initial conditions

" Variables

0 Transforms

* Mapping to TLS

" Refinement'f
Variables

Transforms

Comp9 ison of 2L5S&Code

*EG: HUB'O

2LS& 2400 lines ot INA JO

Code. 2838 lines of PASCAL

Eil-iis "

Covert Channels

SDC analysis

* Identify channels

* Construct scenarios

* B/W < 5000 baud worst case
20 baud typical

* Limited by engineering

dent if Channels

5
*,

0 5
~~yI~l .. ED WRITE :SEEK CR T DLT

Al IIIAKE.

FILE FIW

SRW RW

R W
W

I Loal.A RW WW

DIKRW R W

Scenario

UT -

11-14


~~~177q

-PerformanceExperiment

" TCP: HUB M vs. INFE UNX"

" Security with HUB "
Resource allocation: 46% of CPU

" More IPC with HUB"M

" HUBTU: PASCAL; UNIX: C

" HUB3 17% faster

_Security Experience

* SOC analysis

" ISET evaluation

" Proof of HUBTM 21-S, 2000 pages

Things to Come

Verification continuing

INFE protocols to HUBm

HUB! to other processors

11-15



Examples from

TTM
HUBM Executive Top Level Specification

in INA-JOTM

INA -JO is a Trademark of System Development Corporation

DI,

HUBTM Executive Security Criterion
From HUB Executive INA-JO

Tm 
Top Level Specification

Criterion
A"B:BUFFER,SESS:SESSION(

B <: BUFFERS _OF(SESS)
-> SLS OF-BUFFER(B) < SLS-OF-SESStON(SESSI)

& A"E:BUFFEROEV:DEVICE(
B <: DEVICE BUFFERS(OEV)

-> SLS OF BUFFER(B) SLS OF DEVICE(DEV))

& A"P:SEPS.SESS:SESSION(
P <: SET OF SEPS OF(SESS) -> DOMINATES(PSESS))

TMT

HUBTM Executive Initial Condition
From HUB Executive INA-JO

Tm 
Top Level Specification

Initial

A"SESS:SESSION(

(SESS ADM & ACTIVESESSON(ADM)

I -ACTIVESESSIONI(SESS)

& SET .OF SEPS-OF(SESS) EMPTY)

& BUFFERS OF(SESS) 
= 

EMPTY)

& A"DEV:DEVICE(

-ACTIVE DEVICE(DEV) & DEVICE BUFFERS(DEV) EMPTY)

& A"P:SEPS, SESS:SESSION(
P <: SET OF SEPS OF(SESS) ->OOMINATES(P,SESS)

11-16



HUB TM Executive Transform Communicate
From HUB Executive INA J0- TOP LEVEL Specification

TRANSFORM COMMUNICATE(B:BUFFER,SISJ:SESSION)-
EXTERNAL EFFECT

SLS OF BUFFER(B) <

SLS OF SESSION(SI) && SLS OF SESSION(SJ)

& B <:BUFFERS OF(SI)
& ACTIVE SESSION(SJ)

& Sf - SJ

& A"SESS:SESSION(
N-BUFFERS OF(SESS)

(SESS SI > BUFFERS OF(SESS) -- S (B)

SESS Si > BUFFERS OF(SESS) S (B(
<> BUFFERS OF(SESS))

NC-(BUFFERS OF)

H-I 7



------I- -

WIS Security
Strategy

Larry Bernosky
Defense Communications Agency

WWMCCS System Engineering

WWMCCS Information
System: Target Architecture

Goal: Reliable connectivity Among All Sites

-Wofl.WioeNei: Goal: Improved Local Flexibility and User Support

Typical Site
VNet Message

Gateway Handling Honeywell

or Equivalent

A10
Network ue

Data rrcFt.onat Functoflt Commanct
Package Package Unrtloe

A B Siuprior



DOD
Security Regulations

" DOD Directive 5200.28
* JCS Publication 22

" Army Regulation 380-380

" DIA Manual 50-4

Current Security
Control Techniques

" System High

" Dedicated Systems

* Periods. Processing

IA I



Characteristics of
Current Controls

" Static

* Long Lead Time to Implement

* Expensive

* Limited Extensibili.y

WWMCCS
Environment Trends

* Increasingly Complex Processing Needs

* Extensive Internetting and Intranetting

* Evolution Toward Distributed Control

" Temporary Reliance on Monolithic Machines

1- • .• . . . .



StsyWIS Security Goals
Objective: Provide "Adequate" Security for WIS

0 SaisfytheSecurity Policy
0Allow WIS to Perform Its Required Functions

0Make Controls Transparent to the User

0Allow for Evolutionary Upgrades

ARCHITECTURE PHASES

DN355 DATANET

I SInd, ohm I040 S_~O,
7  

U.
Site unqu SuPPOil 1S. Un.,., Soppo.
P-oessing 

P'11111:ng

Commad C0nI.,
support

Atomat~c Commn C.

M ....g. S.ppoitHnln

H-d-g-H

tocsloe -% PHA~S II &IV - IN,*,



Security Architecture
Overview

* Develop General Scenarios

* Summarize Requirements for Specific Components

0 Derive Security Architecture

* Overlay Scenarios on WIS Architecture

WIS Security Architecture
TSIS TSISS U se-- r 

S ecu rity

- ~~Local Network 

M liee
Multilevel

--------- .......--- -- -- ---- ---

Proc. Proc. Single Level -
A B System High

I -

iTSl . ..... 
.

S .. 
.

-iili 
t .... 

..



Security Architecture
Components

Category 1

* Local Network (Multilevel Mode Essential)
*User Support System (Multilevel Mode Essential)
*Secu~rity Monitor (Multilevel Mode Essential)

Category 2

*Automated Message Handler (Multilevel Mode Desirable)
*Long Haul Network (Multilevel Mode Desirable)

* Network Front End (Multilevel Mode Desirable)

Category 3

*Applications Processors (System High/Dedicated)
*Data Base (System High/Dedicated)

General WIS Security
Principles/Assumptions

0 Not All WIS Components Need Be Multilevel Secure

0 Priority Attention to Multilevel Secure Local Network

0 Multilevel Security Required Only Over Limited Range of

Security Levels (Controlled Mode)

1 -6



WIS Operational
Scenarios

1) Support for Homogeneous User Access

2) Support for Low to High User Access

3) Support for High to Low User Access

4) Message Receipt and Distribution to WIS Users

5) WIS Multilevel Long-Haul Connections

Support for
Homogeneous User

Access

Description

* Secret Remote User Requires Access to Data on a Secret
Processor

Requirements

* Local Network Needs to Support Remote Terminals
* Local Network Needs to Support Communication Between

Devices at the Same Security Level
0 Local Network Needs to Maintain Separation of Data Having

Different Security Classifications

1-7



Support for Homogeneous User Access

CUSUs

(S)

" User (S) Requests Access to Data on a Secret Processor

" CUS (S) Validates User Identity and Access Request

* CUS (S) Forwards Request to Processor (S) via Trusted Multilevel Local Net

* Processor (S) Validates Request and Forwards Data to CUS (S)

* CUS (S) Queues Data for User (S)

Support for Low to High
User Access

Description

0 Confidential (or Secret) Remote User Requires Access to
Selected Data from a TS System High P~ocessor

* Access Control Mechanism is Needed to Screen Request and
Validate User Identity

* Information from TS Processor Must be Reviewed/Sanitized
Before Delivery to Low User

Requirements

* Local Support is Needed for Users at Different Classification
Levels

* Local Network Needs to Support Remote Terminals
* Data Base Needs to Contain Material at Different Classification

Levels
" Data Base Needs to be Accessed by Authorized Users Having

Differing Security Clearances

1-8



Support for High to Low
User Access

ITS) (SPr . .. ;7 ,s

UserS

*User (TS) Initially Connected to Top Secret CUS
* User (TS) Oisconnects (Physical Switch or Trusted SW) from CUS (TS) After

Storing Working Files in CUS (TS)

* User's Terminal is Sanitized Automatically

* User (TS) Connects to Secret CUS

* Access to Secret Processor is Made via CUS (S)

0 User (TS) May Switch Back to Top Secret CUS Without Sanitizing Terminal

Support for High to Low

User Access

Description
" Top Secret User Requires Access to Data on a Secret Processor

" Secret Data is Released to Top Secret User

Requirements

* CUS Needs to Provide Multilevel Support for a TS User

* Mechanism is Needed to Prevent Release of TS Data into
an S Environment

* User Performance Must Not be Adversely Affected by Security
Controls

1-9

... .. .|a



Support for Low to High User Access

* Processor Security

(TS) Monitor
(TSIS)

TSIS

CUse

0 User (S) Requests File Controlled by TS System High Processor

0 CUS (S) Validates User Identity and Access Request
0 CUS (S) Forwards Request to Processor (TS)

0 Processor (TS) Validates Request and Forwards File to Security Monitor

0 Security Monitor Forwards Reviewed File to CUS (S)

* CUS (S) Queues File for User (S)

Message Receipt and Distribution
Description

* AMH Receives Secret Labeled Message Over TS Communication
Line for Distribution to Selected Local TS and S Users

0 Message Must Be Reviewed/Sanitized Since TS Data May Haw
Been Mixed with Message on Long Haui Net

* Message is Queued to Common User Support (CUS) for TS
and S Users

Requirements

* Local Network Needs to Maintain Separation of Classified
Material While on the Net and When Entering or Leaving the Net

* CUS Needs to Support Terminals Operating at Different
Security Levels

* Message Handling and Distribution Functions Need to Support
Different Security Levels

" Selected Classified Information Needs to be Reviewed
or Sanitized

I -1I()



Message Receipt
and Distribution

AMH Security
(TS) Monitor

(TSIS)

ITS)()

Essential 1

* AMH ITS) Receives Message (S)
* Message Queued for TS Users at CUS ITS)

" AMH Forwards Message to Security Monitor With Addresses of S Users

* Security Monitor Queues Reviewed Message at CUS (S)

Message Receipt
and Distribution

AMH Security
ITS) Monitor

(TSIS)

AMHCUS CUS
(5)ITS) (S)

Essential 2

* AMH (TS) Receives Message IS)

* Message Queued for TS Users at CUS ITS)

" AMH Forwards Message to Security Monitor

* Security Monitor Sends Reviewed Message to AMH (S)
* AMH (S) Queues Message for S Users at CUS (S)



Message Receipt
and Distribution
AMH Security

(TSIS) Monitor
(TSIS)

TSlS

cus cus
(TS) (S)

Desirable

0 I Message Could Contain TS Data, the AMH Routes Message to Security
Monitor

* Security Monitor Sends Sanitized Message Back to AMH

0 AMH Queues Message (S) to Both TS and S Users via Appropriate CUS

WIS Multilevel
Long-Haul Connections

Description

* Two WIS Sites Operate at Different Maximum Security Levels

* Sites Need to Exchange Information

* TS to S Message Flow Must be Reviewed/Sanitized

Requirements

* Long-Haul Network Needs to Support Local Users Operating at
Different Security Levels

* Long-Haul Network Needs to Connect WIS Nodes Having
Different Ranges of Classified Information

* Material with Different Classification Levels Needs to be
Transmitted Over the Long-Haul Network

1-12



)/

WIS Multilevel
Long-Haul Connections

Sile A (TSiS) S.e B (S)

SecurIiy (TS Ni)I

T) TST

--__ Multile I 

__ ro___esso _____ Pr_________oSI CUIS i Poesso,
TS) (TS)(SI (SI)

Essential 1

0 Site B (S) Requests File from Site A (TSIS) via NFE (TS)

0 It File at A is on TS Processor then File is Passed Through Security Monitor at
A to Verify File Contents Are at S Level

0 Security Monitor Forwards File (S) to NFE (TS)

0 NFE (TS) at B Receives File Which is Sent to Security Monitor at B to Verity
That No Modifications Occurred on the Long Haul Net (Perhaps by a More
Rigorous CRC Type Authentication)

0 Security Monitor Forwards File (S) to Appropriate Locations on Local Net B

WIS Multilevel
Long-Haul Connections

Site A ITSIS) sie 8 IS)

eMoo I TS) eil- - NFE Security
(T _i .IITS) (TSiS)

--T I j - 1 -- 1 1 -

Ti_ 1 TSISr - ...- . CUS _I .e rP-, ....1 0,, ......o, c,,, PI,, .
(TSI (s) I S S

_ _ . . ..J L __jk

Essential 2

* Site B (S) Requests File from Site A (TSIS) via NFE (TS)

" Site A Forwards File to Site B via NFE (TS)

* NFE (TS) at B Forwards File to the Security Monitor at B tor
ReviewlSanitization to S Level

* Security Monitor Forwards File (Si to Appropriate Locations on Local Net B

I -1

l-I a



WIS Multilevel
Long-Haul Connections

S-ie A ITSIS) S.t. B )

sec."~t; NFE (T e)NFE

Pfocesso, NrSSF u Processof

Desirable

* Site B (S) Requests File from Site A (TSIS) via MLS Long-Haul Network and
MLS NFE

* it File at A is on TS Processor Then File is Reviewed/Sanitized by Security
Monitor at A

* Security Monitor Forwards File (S) to S Portion of NFE (TSIS)
* Long-Haul Net (TSIS) Guarantees File Received at 8 is S Level
re NFE (S) at Site 8 Forwards File (S) to Appropriate Location on Local Net 8

Interconnection Trusted Software Encryption Policy

- Protocols - Verification - E3 - 5200.28
- Long-Hauls - Kernels - Link - JCS Pub. 22

- Subnetworks

Reom edations

- Action Items



Security Flexibilities
in the Local Network

" Reduced Need to Share Hardware

* Can Support Several Different (Tailored) Security
Approaches

" Use of Specialized Solution Approaches

" Evolutionary Implementation and Upgrade Possibilities

SAFE Description

LjstocossoslL Fjj P-c-so, I
Intercompulet Bus - I

(Red)- -

Su.PPOr up Monitor PrOC.S.

WIdeband Bub_
(Block)

Enc pltd Datl) s W

1-15

A 

.



SAFE - WlS Summary

* Similar High Level Design; Many Specifics Differ

* Need to Analyze Traffic Characteristics Impact

* E3 Protocol Analysis and BIU Development Will Benefit
WIS

" SAFE-Type Crypto Modules Can be "Easily" Incorporated
in Reston Testbed

" NSA Will Develop Crypto Devices if WIS Requirements Are
Clearly Specified in Time

* Need to Continue Tracking SAFE Effort

Trusted Interface Unit
Broadband Cable.

I | ;~Bus L

PI ort

TerminallHost

1-10



Progress

" Security Requirements Have Been Refined
- Scenarios Addressing Known Security Problem
- Inputs to WIS Requirements Survey

* Local Net Security Task Force
- Evaluate Issues of Encryption, Trusted Software,

Security Protocols
- Examine Technologies Within WIS Context

* Security Architecture for WIS Has Been Developed
- Operating Mode for Transition Components Defined
- Mandatory and Optional Requirements Identified
- Technology to Support Security Requirements for

Components Identified

WIS Security
Summary

" More EFFICIENT SECURITY Controls Are VITAL to WIS

" NOT Seeking ABSOLUTE Multilevel Security

" LOCAL NET Architecture Affords More FLEXIBILITY in

Solving Problem

1 -17



TRUSTED COMPUTING RESEARCH
AT

DATA GENERAL CORPORATION

Leslie DeLashmutt
Doug Wells

Research Triangle Park
North Carolina

Goal

Controlled sharing of information in a
distributed, multi-user environment

,1-1.

a



Overview

Access control approaches

- Capabilities

- Access control lists (ACLs)

Confinement approach

* Domains

Extended types

Securily

Reliable Software

Extended-Type Flexible
Objects Sharing

Protection Domains

Access Conrol Lists

~UID Addressing of Objects



Protection Model

* Active subjects

* Passive objects

* Access rights

obtet Invalid Reference

Ptotection Checking

. ect d Reference

Access Matrix

Objects

38846 Procl 38820 19926

Jones Execute Read Read Read
Execute Write Write

U

Smith Execute Read Read
Write Write

Read

Lws Write Read Read ..
Execute Write Write
Non-Data



Design Considerations

* Number of subjects and objects may be
large

* No protection attributes for some

subject/object pairs

* Matrix may be sparse

• Identical protection attributes for subjects
or objects

* Only small part of matrix necessary at any
one time

Capability Systems

Objects

38846 Pro 38820 19926 .. Jones
38846 EProcl R,E

Read Read Read 38820 R.W
Execute Write Write 19926 RW

0
* _Smith

38846 ESmith Execute Read Read ... 38820 R WWrite Write 19926 R.W

Read Lewis
Write Read Read

Lewis Writeteead Readr ..e 38846 RW.E.Non-Data
Execute Write Write382 R.
Non-Data 38820 R.W

19926 R,W



PROTECTION USING CAPABILITIES

PRO',ECE tJAD

CAPARI IT Y LST\

P975 IEEE Ret,, tea o Dermm~s,or Clark D 0 and Redel 0
POtecyfcOn o';'onaIo n ConmPuftr Svsrems r 15

Ak



Evaluation of Capabilities

Virtues Problems

* Protection Forgery of keys

* Simplicity • Accountability

* Flexibility * Revoking access

Efficiency Controlling propagation

Access review

Access Control List Systems

Objects 38846
Jones E
Smiih E

38846 Pro1 38820 19926 Lewis R.W,E Non-Data

Jones Execute Read Read Read Jones RE
Execute Write Write

oS _38820
a Jones R,W

Smith Execute Read Read ... Smith R.WWrite Write Lewis R.W

Read 19926Lewis Write Read Read Jones R,W
Execute Write Write Smith R.W
Non-Data Lewis R.W

. - 0"



PROTECTION USING ACCESS CONTROL LISTS

0

w PRINcIPAL-[0

1975 IEEE Repr~ied by Permiyssion Clark D D and Redell D0D
Profecthon of Informr,eon 'n Compwar Syslonms. 1) 18

.1- 7



Positive Features of ACL Systems

* Granting access has known, auditable
consequences

* ACLs directly implement verification of an

access request

* Access revocation is manageable

* Each ACL lists authorized users of an
object

* Break association between data

organization and authorization

* Natural to the user

* Minimal hardware implementation costs

* Readily adapted to heterogeneous networks

* Natural primitive for a high-level security
language

* Provide top-down view of security



Drawbacks of ACL Systems

• ACL search

- Allocation of space for ACL

- ACL check at access time

The purpose of an ACL is to establish
authorization -not to mediate every detailed
access.

I -9)



Memory Addressing in an ACL/Descriptor System

Cahe

Ph- D - pt.()



CAPABILITY ACQUISITION
IN A HYBRID SYSTEM

1 PRESENT PR'NClPAL-.

I /

3 USE CAPABILITY ON

suBSEQJENT ACCESSES ---- 2 RECEIVE CAPAR.ITY

1 ~ '; IN RETJRN

:95 IEEE Repr'..ed by pen.- sSo1 (,latk D P fn l edy,,l D
P'oterfon of Informat,on ,n C )mputer Systems p 21

.1- iII

a



Limitations

* Onty system-defined access restrictions
enforced

" No protection of user from borrowed
program "trojan horse"

" No protection of borrowed program from
user

Beginning Domain Model

D2I .D
D3



Access Matrix with Domains

Objects

DII



Access Control List with Domains

Objects

,00 'V~ser38846
Jones, Opsys E

OpsysSmith. Opsys E
Lewis, Opsys R WV E

Proc I Non-Dala

JonesJones User R.F

38820
Jones, Opsys RW

SmithSmith, Opsys RW
* _____ _____Lewis Opsys R W

19926
Lewis Jones. Opsys RAW

______Smith. Opsys R W
Lewis Opsys R.W

Gates into Domains

Srd'I 

C

"I, ui0'esf),

Ilei



Simplified Cross-Domain Call Example

Process 14 Subject

Procedure 0
DOE = User

[JonesUser]

Procedure 2
DOE = User

[Jones, User]

Procedure 1
DOE =Opsys I [JonesOpsysi

Cross-Domain Call

D2

Step 
Procedure

Procedure 2Procedure I

Step 3

S top 2

S top 3

1-IS

Ci



Potential Implementation of Domains

* Interprocedure call and return

* Problem: no architectural assurance that a
procedure can access its arguments when
called in a new domain

* One solution: dynamic access capabilities
on cross-domain calls

tP- .



Cross-Domain Call Example
Indilli Suesier

pincO41 OOriaii'

U-, D-m

K 7A -1
C.11 R.t,

Op~f~iug y~tT



[/

Extended-Type Object Example

Extended-Type Objects
of Type "Stack"

UID 38820
ETM for

Extended-Type Objects -v

of Type "Stack Frame 2

UID 38846 /
dFrame 1

Header

Header

Pr ceoure 1

Create stack ETM 38846

Procedure 2

Delete stack

Procedure 3 UID 19926
Push

P'ocedure 4
Pop Frame 2

N Frame 1

Header

" ETM 38846

L -18

L ._



Extended-Type Manager Example
STEP I

E.tended. Type Mnge,
Ac forE.tened.dType Stock M.neg,)

Men.g, 38846 UI 38446

Sue s Non.DtDe. -Subject R W E Modes

STEP 2 STEP 3

Jones Steck
ExIendd AccessControI L. IssU0 3820
to, Extended TypoObjeclof ¢

Type SIck

Subject Pop Push Cqate Delete SublcI l W E

Smth s SI.ck

UI0 9926

S Pop Push C,te D...t Sub.ect R WE' f

.1-19



Future Directions

*Military security model

*Flow control

*'-property (prevention of write-down)

- Formal specification of design

- Formal model for security in our
architecture

- Fault tolerance

- Encryption

* Sophisticated authentication mechanisms

Summary of DG/RTP Activities to Date:

" Made critical survey of primitives available
to support a trusted computing base

" Selected the best concepts to support such
a base

" Integrated these concepts into a coherent
architecture

.1 -20



IEEE Computer Society Fall Compcon '81

"Research in High-Level Computer
Architecture"

John F. Pilat
Data General Corporation/Research Triangle Park

,1-2 1

.L



THE iAPX-432
MICROCOMPUTER SYSTEM

* VLSI COMPONENTRY

0 ARCHITECTURE

0 OPERATING SYSTEM

0 SYSTEM LANGUAGE

432 MOTIVATIONS

" HIGH PERFORMANCE MOSIVLSI (HMOS)

" RECENT COMPUTER SCIENCE RESEARCH

• ADVANCING MICROCOMPUTER APPLICATIONS

K-I



432 DESIGN OBJECTIVES

9 LARGE SCALE COMPUTING POWER

o INCREMENTAL PERFORMANCE CAPACITY

o INCREASED PROGRAMMER PRODUCTIVITY

* DEPENDABLE HARDWARE AND SOFTWARE

KEY CONCEPT: DATA ABSTRACTION

" MODULAR DATA STRUCTURES AND PROCEDURES

* WELL-DEFINED MODULE INTERFACES

• OBJECT-ORIENTED PROGRAMMING METHODOLOGY

I-2



KEY CONCEPT: HIGH LEVEL FUNCTION

0 LANGUAGE-ORIENTED RUN-TIME ENVIRONMENTS

0 HARDWARE-CONTROLLED RESOURCE MANAGEMENT

o OBJECT-BASED INTERFACES AND SERVICES

KEY CONCEPT:

DOMAIN-BASED PROTECTION

" INDEPENDENT MODULE ADDRESS SPACES

" ADDRESS SPACE SWITCHING ON PROCEDURE CALL

* CAPABILITY ADDRESSING AND ACCESS CONTROL

7-

4b a m



KEY CONCEPT: OBJECTS AS

UNIFIED DESIGN FRAMEWORK

* INTEGRATING HARDWARE AND SOFTWARE

o MINIMIZING CONCEPUTAL DIFFERENCES

9 CLARIFYING AND SIMPLIFYING OVERALL DESIGN

KEY CONCEPT: MULTIPROCESSING

GENERAL GENERAL GENERA MAIN
DATA DATA **. DATA MEMORY

PROCESSOR PROCESSOR PROCESSORU SU j E

[ff - MULTIPROCESSOR INTERCON NECTif

FZFA~] ~R: ... F~FC
ESSO [OCESSOR PCOR

,o I I ,° l ,°110
SST FM S YSTEM SUSYS

I'-,



ELEMENTS OF THE ARCHITECTURE

" OBJECT-BASED ADDRESSING AND PROTECTION

" BASIC COMPUTATIONAL FACILITIES

" PROGRAM EXECUTION ENVIRONMENTS

* OBJECT-ORIENTED PROGRAMMING SUPPORT

" INTERPROCESS COMMUNICATION

" SYSTEM RESOURCE MANAGEMENT

A CONCEPTUAL VIEW OF
OBJECT ADDRESSING

ADDRESS
SPACE A

OBEEC

S--

OBJECT
TABLE OJC

ADDRESS
SPACE B

OBJECT
DESCRIPTOR



432 OBJECT ADDRESSING MECHANISM
PROCEOURE SYSTEM

AONEES SPACE ADDRESS SPACE
22 BYTES 0MBYTES

2'' 2''

ACCESS
LOAL SEGMEN 'ETE E
OBiECT
NAME

6'

OOJECTTABLE
i i SEGMENT'

mi 
i

432PROCESSING
UNIT

SIMPLE OPERAND ADDRESSING

OPERAND REFERENCE

OBJECT 1DISP i

OPERAND

OBJECT ODRESSING DISP _s LENGTH
MECHANISM__

DATA
OBJECT



COMPILER-ORIENTED INSTRUCTION
FORMATS

" ZERO TO THREE OPERANDS PER INSTRUCTION

" SYMMETRIC OPERAND ADDRESSING MODES FOR:
- SCALARS (BASE + DISPLACEMENT)
- VECTOR (BASE+ INDEX)

- RECORD ELEMENTS (BASE+ INDEX+ DISPLACEMENT)

" REGISTER-FREE
- OPERANDS IN MEMORY
- OPERANDS ON TOP OF STACK
- ANY MIXTURE OF MEMORY AND STACK OPERANDS

" BIT VARIABLE

PACKAGING PROGRAM MODULES

PUBLIC PROCEDURES
AND DATA

_ -- I -t*PO

DOMAIN PUBLIC
OBJECT h--~POC'S OTE

I DATA DOMAINS

ADOMAIN

PRIVATE 
OJC

-~PROCS OJC
A DATA

DOMAIN
OBJECT

• 4



CONTEXTS AS PROCEDURE ACTIVATIONS
FROM
CALLED

DOAN CONTEXT SP
DOMAIN I E VAlUATION

Of DEFINITION STACK

If
SP

CONTEXT
CONTEXT DATA
OBJECT OBJECT

sE
DOMAIN

Of DEFINITION

SP

CONTEXT
CONTEXT DATA
OBJECT OBJECT

TO
CALLING
CONTEXT

CONTEXTS DEFINE THE INSTANTANEOUS
LOGICAL ADDRESS SPACE

OBJCT
SELECTOR

' lI I

T4 .2 T Of I ACCESS COMPONENT I

'- ACCESS I I
COMPONENTS L

Of JIJ CONTEXT
OBJECTS .I OF 2"'OBEC

OBJECTS ACCESS COMPONENT 2

ACCESS COMPONENT 3

ACCESS COMPONENT 4L_i



DOMAINS AS USER-DEFINED OBJECT TYPES

PUBLIC INTERFACE
PROCEDURES

AND PROCEDURES

PROCEDURE-FREE REPRESENTATIONS OF
USER-DEFINED OBJECTS

USER VISIBILITY

CON TEXT yCONTROL

1/ INTRFACEUSER DfINED
INTRACUE OBJECT TYPE

CLS CONTEXT 
USER

DEFINED
PROCEURES TYPE

DEFINITION
OBJECT

ACCESS RIGHT
OPENS REPRESENTATION

DEFINING
DOMAIN



432 SYSTEM OBJECTS ARE BASIS OF THE
SILICON OS

" KEY HARDWARE-DEFINED OBJECTS CONTROL SYSTEM
FUNCTIONS, e.g.:

- PROCESS OBJECT
- STORAGE RESOURCE OBJECT

- PORT OBJECT

* HARDWARE PROVIDES THE KEY OPERATIONS
- TIME CRITICAL
- SECURITY SENSITIVE
- COMPLEX

* SOFTWARE AND HARDWARE COOPERATE TO MANAGE
THESE OBJECTS

OBJECT-BASED INTERPROCESS
COMMUNICATION

MESSAGE
QUEUE

PSENDER IORT H
PROCESS OBJECT PflOCESS

OBJECT*A OBJECT

CONTEXT C2NTf XT

OJECT MESSAGE ()RJECT

PORT

COMM UNICATION

PROCESS A CHANNEL ORO, f s

K-I



CARRIERS ENQUEUE WAITING PROCESSES

EMPTY MESSAGE
-BUFFER

LINKED PROCESS CARRIERS

PORT
OBJECT

WAITING PROCESS OBJECTS

CARRIER OBJECTS RESOLVE
MESSAGE QUEUE OVERFLOW

FINITE LENGTH
MESSAGE BUFFER

FULL

ENGUEUED MESSAGES

PORT LINKED PROCESS CARRIER QUEUE

BLOCKED PROCESS OBJECTS

N-11I



A MESSAGE-PASSING MODEL OF
PROCESS SCHEDULING

L II .AE CARHIR

C PORT POR

C PORCARRIER MOVES

CARRIER AS MESSAGE PROCESS

MESSAGE

TO CURRENT
CONTEXT

PROCESS

MESSAGE RECEIVED PROCESS SCHEDULED

MESSAGE-PASSING MODEL OF
PROCESSOR DISPATCHING

ENOUEUED PROCESSOR
CARRIERSL J

DOPORT~-
IDLE PHYSICAL

E l- -, PROCESSORS

IDLE PROCESSOR OBJECTS

PROCESSOR I
OBACTE 

1 ACTIVE PH SICAL
CURRENT PROCESSOR

RUNNING CONTEXT
PROCESS

SHARED ADDRESS SPACE

K-12



I/O IS A SPECIAL CASE OF
INTERPROCESS COMMUNICATION

DEVICE

INTERRUPT INTERRUPTS
LINE I

~ATACHED 1

QUEUE

PROCESS

PR OCESS INTERRUPT
OBJECT SIGNALS

10
MESSAGE

SHARED ADDRESS SPACE

iMAX 432: MULTIFUNCTION APPLICATIONS
EXECUTIVE

" COOPERATES WITH HARDWARE TO MANAGE OBJECTS
- OBJECT CREATION
- OBJECT MAINTENANCE
- OBJECT DISPOSAL

* PROVIDES A UNIFORM VIEW OF AN OBJECT
e.g.. FOR PORTS: CREATE PORT (SOFTWARE)

SEND MESSAGE (HARDWARE)

RECEIVE MESSAGE (HARDWARE)

!:1 ,



!MAX 432 AND THitSILICON OS

HIGH LEVEL OS iMAX 432

KERNEL OS

TRADITIONAL HARDWARE

REBALANCING THE HARDWAREISOFTWARE INTERFACE

ADA: THE IDEAL IMPLEMENTATION
LANGUAGE FOR 432

* ADA MATCHES THE 432 DESIGN METHODOLOGY
- BASED ON THE CONCEPT OF OBJECTS
- SIGNIFICANT SUPPORT FOR MODULARIZATION

-AIMED AT REDUCING PROGRAMMING COSTS

* ADA CONSTRUCTS MAP THE ARCHITECTURE AND OS
OBJECT OBJECT
PACKAGE DOMAIN
ACCESS ACCESS DESCRIPTOR
SUBPROGRAM ACTIVATION CONTEXT

* ADA-432 FEATURES PROVIDE DIRECT ACCESS TO THE
HARDWARE

- 432 SPECIFIC OPERATIONS ARE IN ADA's STANDARD MACHINE
ACCESS PACKAGE

- SIMPLE 432 EXTENSIONS TO ADA SUPPORT DYNAMIC SYSTEMS



ICL EFFORTS IN COMPUTER SECURITY

Tom Parker

International Computers Limited

This presentation covers a subject which is becoming a bit of a
Cinderella in the secure computing world. I am talking about the much
criticized business of making a real life, big machine, practical,
commercially acceptable operating system as secure as possible.

I am talking i.bout the kind of system for which the use of formal
verification technology is beyond tile state-of-tuw-art; lor which
restructuring along the TCB lines proposed by Grace Nibaldi must be very
expensive, and for which there are no absolute guarantees of security, a
system for which the attainment of the magic Nibaldi level 6 is a
fairytale fantasy, but a system which nevertheless occupies an important
niche in the total spectrum of secure data processing requirements.

SLIDE 1

The system 1 shall be talking about is a large generail purpose
operating system from a European manufacturer. It is called VME/B, and
it is marketed by ICL on our 2900 range of computer mainframes.

As some of the audience lere today may not kno, much about ICL, 1
think I'd better start by giving a brief description of who we are, and
give a bit of background to the development of the 2900 series. I shall
then go on to describe the hardware architecture of 2900, concentrating
of course on those features that are most relevant tO .ecuarity. M/I! is
the largest of a number of ICL operating systems that run on th.
architecture; it is a system that, has received a lot o attent ion from
the point of view of security in ICL and I shall be describing some of
its protection feaLures. It has also been tle target tor much of the
security enhancement work that has been undertaken by ICL, mainilv w it h
the objective of satisfying the needs of customers with ,,< ial in
stringent security requirements. I shall outline some (of this vork It
the end of the presentation.

SLIDE 2

"ICI," stands for International (omputers Lmitfd, ii)! 11(n t enl\ is
iCl, tile only indigenous UK mainframe manuftactllrer, hut ilist ,e n1,' "1i4. Of
the few to produce computers with an archit r,u untlal, i 1 d I ,ti leroti
from IBM's. To give you sole idea of the siz,, oi the C(ml.in\, i1:

I.-i



2

turnover last year exceeded 1.5 billion dollars and we employ over 26,000
people, about 20,000 of whom are in the UK.

The %alue of ICL's world-wide customer base is well over 4.5 billion
dollars in 86 different countries. Apart from the ubiquitous IBM this is
the biggest customer base outside America and Japan of any L-omputer

manufacturer.

ICL was q,)rmed in 1968 as a result ot a merger betwten what was then
two major, and competing British computer companies: ICT arid English
Electric. At that time it was realized that the new Company would soon
need a range of new machines to replace the many, varied and incompatible
ones inherited from the merger Also of course these inherited machines
had architectures and a hardware technology dating from the 50's and
early 60's. Both hardware and software technology had moved on a lot
since then.

So out of all this after an appropriate gestation period, came the
first of the 2900 series. This was a revolutionary rather than an
evolutionary step. A rare thing in the commercial computer world.

SLIDE 3

The design was of course influenced by that .)f existing in-house
systems and obviously the architectures of other machimes in the
marketplace at the time were also examined, for example a n'ambe-r of
MULTICS concepts were very influential, particularly in the protection
sphere, where some aspects still represent state-of-the-art, even 12
years later.

For those of you who would like to know more about tl.is history, I
would recommend John Buckle's book on the subject, which als-o appears in
condensed form in the November 78 issue of the ICL Technical Journal.

SLIDE_4

2900 ARCHITECTURE

So what kind of beast did we produce? Let's have a look at some of
the architectural features of the 2900. This is a I ist of the ones we
shall look at. I'll describe each one then bring this slide ba.k and

collect them altogether at the end.

Central to the architecture of 2900 are the c.omplemontirv concepts
of virtual store and virtual machines, and their commoi base of virtual]
adhress ing.

SIDE S

L,-2

.. . L. .kL. 'I
:

- -'-'. -' ', __ f. . . . . .. .. . ... . .. ;. , : " ' : : .: -i . . .. . . . ' ', , .. .. . . . .. ..-



3

All addressing is in terms of virtual addresses mapped onto real
addresses by hardware using segment and page tables. The real addresses
can be in real store or on secondary store on drum or disc. In order
words, we have a straightforward virtual store implement-cion. Lach
process runs in its own "virtual machine" in which it has its own unique
local segment table and shares a public segment table tith all other
virtual machines. It can optionally also have "global" segiment.s wLich it
shares with chosen other virtual machines. I think that it is generally
accepted that this kind of hardware-supported process address-space
separation is important to good system security.

SLIDE 6

The primitive instruction code makes extensive use of 'descriptors'
for indirect addressing. A descriptor is a 64-bit entity which formally
describes an item of information in store. One half of the descriptor
contains the base address of tine item being described ill term" oi segment
number and displacement. In other words, this half of the descriptor
contains a 'virtual' address. The other half contains information
relating to the unit size of the item, the number of units it contains,
whether modifiers added to the item's address should be appropriately
scaled or not, and so on. Descriptors are also typed according to what
kind of information they are addressing. This slide shows a "Descriptor
Descriptor" pointing to a row of three "Byte-Vector" descriptors, each of
which is pointing at a bounded area of virtual store. Some other
examples of descriptor types are Code Descriptors, Semaphore [escriptors
and System Call Descriptors. One obviously important Icorrectness'
feature present in the 2900 is automatic bound checking on modification.

SLIDE_7

Next in the list, are the features needed to control basic
input/output and other primitive privileged operations. The totality of
addressable hardware registers is called tine "image store". Tlhit divides
into two parts: the visible and invisible registers, and the dist lict ion
between them is critical to tine system's security.

Visible registers are accessible by normal unprivileged
instruct ions, and consist of sinch things as Program ( CoIuter, local
namebase pointer, Real Time Clock, and so on . Accss to the invisible
registers is by using what is called "image store oprand tormat," 1nd
this requires privilege.

Access to the invisible registers is required to perform
Input/Output operations, to activate a new process aid to priorun otier
pr iv i I eged funict ions.

Privileged status is obtainld OTly by a hardware i uteri ipt
mechan ism. When tine VME/B oporating System is present, such intvrrii)t s
cause entry to the most trusted part of the o1rating s%-toem (the



4

'Kernel' of VME/B).

SLIDE 8

A process's level of trustedness is defined by the contents of an
invisible' register: the Access Control Register, called ACR ior short.

The ACR register is actually a part of the Program Status Register shown
on the previous slide. The level of trustedness is called the ACR level.
The lower the value of its ACR, the more trusted a process is.

Segment protection occurs in that on access to store, the ACR level
of the process and the mode of access are compared with access permission
fields that are associated with each segment. "Change Access" on the
slide refers t., the ability to change the access permission fields
themselves. There is also an Execute Permission bit which is used to
prevent the accidental execution of data.

Entry to a procedure running at a different ACR level must be via a
hardware-supported 'system call' mechanism which polices the availability
uf the called procedure from the caller's ACR level. An important
feature of the mechanism is its enforcement of entry to the procedure at
the proper entry point. So you can see that what we have here is a ring
protection system. There are sixteen possible different levels, that is:
16 ACR levels.

Critical to the security of the system is the proper validation by a
trusted procedure of reference parameters passed to it when being called
by less trusted code. A special primitive instruction is provided for
this purpose which we call the 'Validate' instruction. I shall be saying
more about parameter validation later.

So, let's pause for a minute and look at the major items so tar.

SII)E 9

We have:

v i rtua I add ress ing, sup,)ort i ng
virtual store and
v irtual machines - providin6 proteOct ion between proe(,sses
descriptors with automatic hound checking,
a protected I /() mechanismr
and a lb lovel I ing prot(ct ioll system with a
asso(:iatod mchaliaii se for policing the r1-ansfer of (ontlro
betW VTI the I- I tig-s - proy iii n6 prot e(t i en w it a !)ruce1-o s%.

These aI-e a I I h)it,I iirch It ,(-ti 1r;' hardware supported features present III

the raw mach I iIe.

h.-4

-O k-



5

I should quickly mention one further architectural feature: the
process stack." It has no direct security connotations, but makes such

an important contribution to the overall flavour of the 2900 architecture
that it would be misleading to miss it out.

The instruction code at the primitive level is based on the use of a
LIFO or "Last in First Out" stack. The stack is used for parameter
passing and local name space purposes and each Virtual Machine has its
own stack. Nested procedure calls will cause the usual succession of
name spaces to be built up on the stack, which are deleted on a "last in,
first out" basis as the procedures exit. We have found the stack
mechanism on 2900 to be an elegant and natural aid to the procedure call
mechanism. Those then are the main architectural features of the 2900
series machines. When it was introduced it was quite an advanced system
for its time. In tact many of ICL's early development problems stemmed
from the fact that we were breaking new ground in so many areas. Even
today, operating system technology in commercially available systems is
only just catching up with the 2900 architecture which forms a very
adequate basis for the development of a secure operating system.

SLIDE 10

One such development is VME/B. VME stands for Virtual Machine
Environment. B stands for B.

VME/B is a large mixed workload operating system catering for Batch,
Multi-Access and Transaction Processing applications.

The smallest machine on the 2900 range on which a full system is at
present intended to be run is the 295 -, thougi there are subset opt ions
that catn run on a smallo r machine. Comparisons are difficiult but thl
2956 is very roughly equivalent to an IBM 4331 Model 2, or somewhere
between a DEC VAX 11/750 and VAX 11/780. A practical full VME./B system
including typical user application code needs a real ;tore size of at
least 2 megabytes, so it's a b i operating system.

The operating system divides into three quite distii:t parts,
separated by error handlers as shown on the slide. At the most trusted
level is KerneI, which handles real system resourc<s like stor, and
devi(es. It runs mainly 'out of proc.ess' or a pub I ic st.ak and il, is to
support the virtual store/virtual machine image of the basil. '2't()
arhitecture

rector is responsible for the hand I ling of a mor abst. ract v iew of
the system's resources. At this level are the block level If i I e niillirgor-,,
arnd the ma jor sec r i tv related operat i ng svs Lem f uncti ions I i ev th,,
I o.;der ame, handler aid privacy .ontrol I er. I iire(tor oc.(-upies AC

leveIs . ,i d .

t nconIt ro I led commull i cat i ol betweon vi rt Ii mai I III'. s prol i i I i I,
ilbove ACR level i by disal lowing piil i(, segments with writ,, e 5.0, keys



6

greater than ACR 5 and by controlling the availability of global
segments.

Level 7 to 9 contain the Above Director software as shown on the
slide. From the security point of view it could be considered as a sort
of "trusted superstructure." Above ACK 9 is the real enemy - the user.
Fac i I it i es are provided for user insta 1 lat ions to structure the L. is at
whi."h the various applications run within ACR levels 10 to 15, and these
can be used by installation management to cut normal unprivileged users
off either partially or completely from direct use of the facilities of
the operating system if so required. I shall say a bit more about this
later.

Notice that unlike in some contemporary machines, compilers, and
general uti ities are no more trusted by the operating system than user
code.

All operating system code segments are established with a i-lte
access key of zero and so all operating system code is necessarily pure.

SLIDE 11

The slide shows a typical selection of operating system procedures
and VME/B's use of the system call mechanism. The small boxes are the
procedures. I have drawn then, iL their execiution ACR level. The I1 es
with blobs on the end show the highest ACR level from which they cac be
called.

In the actual system the vast majority cannot be called at all from
outside their own level, but there still remains a substantial number
that are directly cal ]able from ,iser ACR levels.

The proper validation of parameters passed across the user/operating
system interface is well-knowi! to be critical to the security correctness
of operating systems, and VIE/ B is rio exception. A lot oft ime and
energy has been spent ,nsur ilig that referec:e patromoter valI idatioii is
(.omplete. In particular all Obect code Maa'sis pack age }las ben w r itt'ii
that searches out discrop:inc ies for mArIual aialysis arid corroction. ]'

examines actual loaded code , and .,o detects f laws that might he
introduced by post compilIation pat.is or repi irs which at that stage
have been fully applied. The chicking is thoroiore as near to tle
fergine' as possible.

Another approach has ben to reduce the number oI proceureiiis
avaiIlable to the user at particular secure installatiors. A pickgi his
been produced to monitor usage ot system code with a vi ew to iiKirg
ullused interfaices iuriavai lable, or rostructruirig the va'i ;lab it"

little used intertaces on palrticci l;ar seclle sils.

The package has a very low porlormari(e overhead arid (cai le
permn ntly lett ilr tie systen-.

1-6



Instcal lat ions have at coilsiderable degree of conitrolI over operat inrg
system called is defined at system load time in a load control file
interestingly called the 'recipe' file, and this file, is amendable l~y
installation Management. A mechianism also exists whereby trusted uuers
canl accessi aI sinaI ler iuirber of aIdd it jotia pr-(oedures.- The iva i lab Ii tv
of Lhese more powerful inter! aces c~an be taiioredi to thle sped f ic
funct iona i requ iremnen ts of the chios eu trusted user c lasses . Staunda rd
ones are for example Support Enigine el-, (Opera tor,,, or the Sys tern Manager.

There aire in fact at number of areas in VME / B in to whii ch hooks and
options, have been put. This give(s instal la'ion securi ty authocrities it
great deal of flexibi Iity in deciding oil what they want for their system.

Indeed, the extent to Wh ich part i cula r socure inst allat ions Can benid
VME/B to suit their individual security requirements is itself' a major
securitcy feature of VME/ B.

To give a cruoce example, a class of multi-access ulser canl be (defined
whose only commands are, say,

INPUT
EDIT
COBOL CoMPILE
COBUL RUN,

with no low level code or direct use of operating system iiterface being
allowed at all.

SLIDE 12

All major system objects are recorded in a central filestore
database known as the %VME/B Catalogue. It is controlled from ACN
level 5. The Catalogue is organized in terms of nodes and~ relationships.
Entries for niamed objects are located at nodies which oire (IOlillCCLtd OV
re lationiships . objects catalogued include D~ev ices, VoIitimies, FP es and
other special ized VME/B objects . One example of a VM Pohjvect is shownl
on the slide - chat of a Job profile. A user's au cess to of, p)ro f iIf,
nodes determ . nes the kind of work that he canl run onl the svstemli

Privacy controls ciin be appi ied to allI of these oh o~ k il i, i ies

c anr b e cons tr a in ed on a g enie ra I , s pe c if ic an iideii( r rcGlIi i c ha 1s is, . A wid e
variety of success types is suppo rted , disc ingu i sAting for- examp;)le he t ween
access to a file's conlten1ts and acess to its, lili anld desc(r ipt ioi. All
at tempted privacy viol atioens, are- legged t o at secur ity oil rN a I .Al

install at ion can ar-ranige that such messages" are outpuit imn11( iedjltolv to thle

louirna ., or lie Id in a buffer and then output when the bui er is Iiiol

Part icuilarlIy impcrtLant in the acc('ess conitrol tvfatures. is the'i
ab iIi tv , bv means of device access sectinugs, to prevenit 1sei, oilier thin)
chousen indi~vidull/s access intg the systeL(m 1uing it parti1(411a r tvr('lu~l.



8

Alternatively all users except named individuals can be allowed to use a
particular device. This is useful for example in preventing the system
manager's username being used at all terminals except a particular one.
Such protection would of course be additional to the protection provided
by the System Manger's password.

SLIDE 13

Users are identified by a catalogued username which can take one of
three security levels: low, medium and high. A high security user may
not submit batch jobs; high and medium security users must submit a
password when logging in for a multi-access session.

Multi-access, or MAC passwords can be up to 12 characters long and
are irreversably encrypted when stored at the catalogue user 'node' for
login comparison. In this way sight of the stored version is made
useless to the would-be penetrator.

The login sequence is very tightly controlled.

The would-be MAC user once having started the sequence will either
obtain legitimate access within a certain time or cause the terminal to
be locked out with an immediate security alarm at the Master Operator's
terminal. Line breakdowns for example at this stage cause security
violations. So pulling the plug out won't do him any good.

A reverse passvord facility is also available with which the system
can be made to identify itself to the user.

Another feature is program controlled access to files using .-CR
levels. By this means, installation management can force access to
chosen files through installation written software which can perform
auxiliary protection checks, for example file passwords.

ICL markets the IDMS Database system (developed from the Cuilinane
Corporation design). By making use of ACR access control, II>1S has
become one of the few secure databases systems commercially available
todav.

SLIDE 14

Well, these are some of the main VME/B security features. Here they
are, collected together.

We have:

- full use of the ACR ring protection system both
by the operating system and potentially by the
installation security management

- in store code unmodifiable - pure code

L-8



9

- extensive installation tailoring facilities and

hooks

- central access control to all system objects

... and so on as shown here.

And, one final thing on VME/B's features:

We have just started to investigate the possibility of the provision
of the ability to police a mandatory security policy, and it is looking
reasonably straightforward to integrate into the existing security

structure.

DESIGN AND PRODUCTION METHODOLOGY

SLIDE 15

From our experience of producing earlier operating systems we realized
at the outset that one cannot simply treat an operating system as a
collection of programs and then farm out the development of these programs
to separate groups of programmers, hoping that they will all fit nicely
together when the doomsday of integration approaches.

So we designed and built a system called CADES.

SLIDE 16

CADES is a methodology and a set of mechanisms to support that
methodology. The VME/B design is top down data driven and hierarchi_, and
the prime objective of CADES was that the product was designed before it
was implemented. We all know how difficult that is in the pressures of a
commercial production environment.

The design methodology is then supported by mechanisms which may
consist either of well-established rules for human actions and interactions
(we call them the CADES Design Rules), or software products to he used as
tools by the designers and implementors.

The hierarchies of modules and data structures with their attributes
and relationships are stored in the CAPES database, and this forms an
authorized description of the product as it is being developed. The f inal
content of the database is the product itself so there is no break in
continuity between design and production. The ultimate objective of CADES
was to support the total software development cycle from initial design
right through to successive releases of the system with supporting
documentation.

L-9



10

VME/B is a result extensively documented in a structured manner in a
microfiched multi-volume library known as the "Project Log." For example,
systems wide cross reference listings of data object usage and procidure
calling structure are available, and can be automatically reproduced for
all new releases using the CADES database.

A verv good description of CADES can Ie found in te10 'M\ 1 ) 8r) .(ii L ion
of the ICL Technical Journal.

It is important to say at this point that CADES does not have the
richness of design language nor the degree of formal ization enjoyed by tiih
formal languages that everybody here is familiar with. It was never
intended to be used as a basis for later design correctness verification.

Nevertheless, ICL finds CADES an invaluable practical tool, and we are
continuously developing, enhancing, and, possibly most importantly, using
it.

The implementation language of V'ME/B is called S3. I haven't the
faintest idea why. It is a development of ALGOL 68. In other words, it is
a well-structured high level language with moderately strong typing and a
block structure very suitable for the 2900 stack architecture.

The production teams, however, actually Code VME/B in an
implementation level enhanced System Description Language, or SDL, which is
automatically converted into S3 source by the CADES system. Niggling
little things like complex data mode declarations, interfaces parameter
specifications, constant and failure code values, macro expansions, and so
on, are thereby automatically looked after by CADES.

SLIDE 17

The slide shows an example of some implementation level SDL. It is
actually some SDL for a module which is part of the CADES system itself.
We now use CADES to design and build CADES!

I won't describe the slide in detail, it's there just to give you a
flavour of the language. At the top are the EXT and 1O sections which list
the procedures that this procedure calls, and the exterina1 dat'a a reas
referenced. The interface definitions and modes of these items are of
course all held in the CADES database. The asterisks at tihe hgin ing 02

some of the lines in the FUNCT I(ION section trigger off various subst tilt iol
and validation actioos that occur when the system is converting thiis co(i,
into S3.

The existence of centrally held dofinitions of system-wide o) octs
like data mod(- declarations and interface specs and so oil ant om jt i al Iy
reduce, of course, the problem of mismatches ill all of those areas.

An important current CA)ES dovelopment is the provision o an eii anl1od

SDb/PASCAi, back end. ICiA, holds the view that whenever possible, s"oiti-1,

L-I0



11

products should be written in high level languages, and PASCAL is one that
we have chosen to be heavily used, particularly in the production of
non-mainframe software. The compiler has been structured to enable a
number of different target object codes to be produced. In developinig the
PASCAL aspect of CADES we have incorporated a number of the good features
of the ADA development environment, for example the separation of package
specs from package bodies.

One final random point of interest, to do with the CADES design there
are no "GO TO's" in VMIE/B, well, hardly any!

SLIDE 18

I would just like to finish off now with a brief survey of some of the
additional security work that has been and is being undertaken on VME/B.

Obviously some of our customers have special security requirements, so
the first thing to say is that a substantial number of extra security
features have been developed to satisfy them. Another objective has been
to 'harden' VME/B not only from the point of view of extra facilities but
also from the point of view of correctness.

Of course everybody benefits from correctneass improvements, but also
some of the additional facilities have since become standard product line
items.

To further our 'correctness' objective, we have been subjecting the
primitive architectural features and low level operating system features to
'theoretical' analysis, backed up where appropriate by actual tests. This
is a continuous process, since new releases of the operating system are
continually providing new areas to be examined. For this reason we are
attempting to automate the analysis as much as possible.

Most of the tools developed in this work are incorporated into a
"security test package" which also incorporates tests of the standard user
visible security facilities. The package is now being applied during the
acceptance testing phase of each new release of the product.

also maintain a close retationship between ourselves and our major
secure uscrs and conduct regular meetings devoted to examination and
discussion of security issues at both technical and non-technical leve..

Every so often, we stand back and look at the overall security
structure of VME/B. One current example is a development of the securi tv
control object dependency graph idea developed by Linde at SDC, which WE
hope will be found useful in identifying areas requiring most attentiou.
Another example is an examination of the feasibility of restructuring tLi11
operating system in minor ways to enable the control of security to he more
localized (note I might add to the extent of a securi ,y kernels
local ization).

L-I I



12

An early hardened version of VME/B was subjected to a 'tiger team
attack a few years ago with encouraging results. In that attack, the
system demonstrated a reasonable degree of security in that the attack team
failed to achieve their major penetration objectives.

I should add that at the time there were a small number of known
defects declared as 'no go' areas, and others that had to be compensated
for by appropriate rather restrictive procedural controls. We have, of
course, since cleared these defects.

I would be foolish though to claim that the system is now therefore
totally secure, but it at least shows that the claim that it is 'easy' to
penetrate a modern well structured commercial operating system has to be
examined very carefully. The great majority of successful penetrations
have been by teams consisting of top class systems penetration specialists.
It has been said that the ideal qualification for a member of a penetration
team is that he should be "a negative thinking anarchist with an IQ of 150
and the patience of Job." Such people are hard to find. What is easy ior
them might well prove impossible for ordinury mortals.

A system tlat has been penetrated by specialists, and VME/B might well
be one day, cann., be dismissed as being insecure. Security is not a
binary property th,.t is either present or not, and this has of course been
clearly recognized i-i Grice Nibaldi's valuable work on this subject.

SLIDE 19

Well that's about it. As you can see we take a pragmatic approach to
security; it has to be pragmatic on a system as large as VME/B. We make no
claims of absclute security. All we can do is fill as many Ioles in the
colander as our expertise and the state-of-tie-art, allows.

The architectural bedrock on which VME/B lies is sound. The operating
system itself has been produced using modern software engineering
techniques, and the VIE/B user has always been considered 'malicious'! We
know of no comparable but more secure system.

1-12



I MENU

* BACKGROUND AND ORIGINS

* 2900 ARCHITECTURE - PROTECTION FEATURES

0 VME/B SECURITY FEATURES

0 SECURITY ENHANCEMENT WORK

I ORIGINS AND INFLUENCES
IN HOUSE MACHINI S IL IF F I S

BASIC HON(YWELL MANCHL STE V HURHOULCHS
t400 SYSTEM 4 tLLIOTT LANI, IAGE MLJLTICS kINIVERSIIY B6500 7500

4100 MACHINE PROTECTION MU5 HLL CONCEPTS

2900
ARCHITECTURE

I I-i



r'i FEATURES OF THE 2900
ARCHITECTURE

0 VIRTUAL ADDRESSING

o DESCRIPTORS

* IMAGE STORE AND INPUT/OUTPUT CONTROL

0 ACR LEVELS AND THE VALIDATE INSTRUCTION
* SYSTEM CALL MECHANISM

* THE STACK

SVIRTUAL ADDRESSING
LOCAL PUBLIC GLOBAL

VIRTUAL LOCAL VM1 LOCAL VM2
ADDRESS 0o... . ... ...-- I r o -

LOCAL SEGMENT PUBLIC SEGMENT LOCAL SEGMENT LOCAL SEGMENT
TABLE TABLE TABLE TABLE

PAGE TABLE 
PAGE TABLE

PAGE TABLE

REAL ADDRESS RE AL ADDRESS RE AL A' DRESS GALOBAL SEGM1 N T
TABLE

I,- I/



DESCRIPTORS

NO.OF UNITS PRS

SCALING
-UNIT SIZE

--- .--- .. TYPE

EG

DESCR!PTOR DESCRIPTOR
EG

BYTE VECTOR DESCRIPTOR

FCLI IMAGE STORE

VISIBLE REGISTERS INVISIBLE REGISTERS

PC PROGRAM COUNTER SSR SYSTEM STATUS REGISTER

LNB LOCAL NAME BASE PSR PROGRAM STATUS REGISTER

RT C REAL TIME CLOCK LSTB LOCAL SEGMENT TABLE BASE

DR DESCRIPTOR REGISTER PSTB PUBLIC SEGMENT TABLE BASE

ACC ACCUMULATOR
ETC

ETC
EXTERNAL DEVICE REGISTERS

ETC

h,-I5

a



PROTECTION LEVELS

" ACCESS CONTROL REGISTER (ACR)

* SEGMENT ACCESS CHECKS

- READ ACCESS

- WRITE ACCESS

- CHANGE ACCESS

- EXECUTE PERMISSION BIT

" SYSTEM CALLS

- CALLING ACR LEVEL CONTROLS

- ENFORCED ENTRY AT PROPER ENTRYPOINT

- HARDWARE SUPPORTED PARAMETER VALIDATION

T FEATURES OF THE 2900ARCHITECTURE

" VIRTUAL ADDRESSING
* DESCRIPTORS

• IMAGE STORE AND INPUT/OUTPUT CONTROL

• ACR LEVELS AND THE VALIDATE INSTRUCTION

" SYSTEM CALL MECHANISM
" THE STACK

L-l 6,

1,-]a



VM./E STRUCTURE

iSIMP L CI R

DiRECTO S JOBIC IN IU LII AL ISMIOLN JOB SIJILI [JUL IRS

JOB CONTROCL LANULLI( IANLLLA

DFETR ERROR, IM LLLL 51 i AUIL

DIRECTOR *MNO i AOBLIli VVHTAH!,

I L;.l R NLLMI LUNIIiN' & Ii'AiStl

RORINE1, H BLL(KLLVILFILE HANLLIH,

"HA A I IIJAL MACIiNE MANAi,[MI NT

SUPERSTRUCTURE

ABOVE DIRECTOR Y

DIRECTOR

KEREL

L-1 7



qTHE CATALOGUE

[OM MORE VME/B

UPROTECTION FEATURES
U USER AUTHENTICATION

12 CHARACTER PASSWORDS
- ONE WAY ENCRYPTION

- SUCCESS OR LOCKOUT WITH ALARMS
- TIMEOUT DURING LOGIN

M REVERSE PASSWORDS

* ACR PROTECTED FILES

- SECURE IOMS DATABASE SYSTEM

.... TII l DUI-N LOGIN



MAJOR VME B SECURITY FEATURES

" STRUCTURED USE OF ACR PROTECTION WITH.

* KERNEL
* DIRECTOR
* ABOVE DIRECTOR
* SUPERSTRUCTURE

" SUPERSTRUCTURE (USER'S CODE) SUBDIVIDABLE
BETWEEN 6 ACR LEVELS

" PURE CODE

* INSTALLATION ABILITY TO DEFINE WHICH OYS
FACILITIES ARE TO BE AVAILABLE TO WHICH
USERS

" ADDITIONAL INSTALLATION HOOKS

" CENTRAL TOTAL ACCESS CONTROL VIA FILESTORE
CATALOGUE OF SYSTEM OBJECTS

" LOGGING
" STRINGENT USER AUTHENTICATION PROCESS

" REVERSE PASSWORDS

" INSTALLATION PROGRAMMABLE FILE ACCESS
CONTROLS

COMPUTER
AIDED
DEVELOPMENT and
EVALUATION
SYSTEM

L,-]9



CADES

CHARACTERISTICS

*A METHODOLOGY AND A MECHANISM

*TOP DOWN, DATA DRIVEN, HIERARCHIC DESIGN

0 FORMAL CAPTURE OF DESIGN ON AN IDMS
DATABASE

OCOMPLETE DEVELOPMENT CYCLE SUPPORT

OSDL LANGUAGE

L-20

A



W A AC)E'l)S2S, RE")1- 'AlE I

A. 'AA..A'R '"EAA- ND",

N k It.)

N Bk- ,'N

EN TRAAEC USE 
-NAME

EN J TRSTD 'ERNARE CAN'

ION NAMEDS RAEC-~N1

'N. ,

A'' N

N N) %

L-21



19 FURTHER SECURITY WORK

" ADDITIONAL SECURITY FEATURES

" THEORETICAL ATTACK

" SECURITY TEST PACKAGE

" REGULAR REVIEWS OF USER REQUIREMENTS

0 SECURITY STRUCTURE APPRAISAL

" ATTACK EXERCISE

L-22



FF-

GNOSIS: A PROGRESS REPORT

BOB COLTEN
TYMSHARE

Thank you, Steve. We must have done something right last year to :et

invited again.

Before my prepared remarks, I'd like to briefly comment on the sub-

jects raised by the preceeding speakers: We fully agree with the me's-

sage expressed by Steve, by Terry Cureton, and others. You have to

walk before you run. We also agree with Axel Vidtheldt that availabil-

ity is a part of security; and with CDC that you can't forget perform-

ance or customer need. With that, let me proceed to this presentation.

This year it is our intention to bring you up to date on the procress

we have made since last years presentation.

For those of you woo weren't here last year, we'll briefly review

Gnosis.

This will be only the 25¢ tour. Then we'll tell yolu about the bench-

mark .....

Why we selected it

How it was implemented

What was the performance

We'll tell you what we learned and ....

Where we are going from here and why

Then Norm Hardy, the Architect of Gnosis will discuss some of our con-

cerns with the r-chanisms and approaches of the s(,curc system evalua-

tion effort.

M -1



*We disclosed Gnosis to this audience at the third DOD

security initiative seminar.

G nosis was started by 'Iymshare as an in-house research

program in 1975.

*It is a capability based operating system designed to

run on 370 type architecture. It was st~.rted by a

tiny team which has expanded to a small team which

now consists of six people.

The Gnosis design objectives were and still are to:

1. Protect proprietary applications, both programs and

data.

2. Provide a high performance environment for transaction

oriented applications.

3. Simpli.fy and reduce the cost of maintaining applications.

4. Provide an operating environment in which applications

can be easily maintained.

5. Improving programmer productivity in developing new

applications.

6. Provide a facility for developing fault tolerant appli-

cations.

In summary, we wanted to develop a product to enable us to enter new

markets. An operating system that is ea7,y to:

1. Learn 3. Debug

2. Program 4. and Protect

M-2



For those of you who weren't here last year, what follows is the

25¢ tour.

First, let me briefly contrast the Gnosis architecture with the

architectures of systems which we are all familiar with and love

dearly.

In most existing systems, applications are locatel in the same

memory space. On the slide that is shown on the left side, stat

pack are all in the same space. If one part of the application

has a bug in it, it is not anlikely that it will impact the entire

application or even other applications.

This type of breakdown is not only inconsicrate but downright

rude. It also tends to actively promote paranoia.

In Gnosis, we keep not only applications but components of appli-

cations separated in separate domains. In Gnosis, each element

can be totally isolated from every other element. Each of these

separate elements is a domain. The only way a user or another

program can access a domain is through an explicitly authorized

capability.

If you want to know more about Gnosis you can find more in last

years proceedings or the Mitre evaluation or write to me or Norm

at Tymshare.

Let me now briefly contrast our situation today with our situation

when we last met in 1980.

Today our development objectives are different from those we had

in 1980.

At that time we were---

Looking for external ipplications

Looking for some kin(. of sur-port

>1-3



We obtained moral support from the ovaluation center team. ... and

this support has been a factor in motivating us to accelerate the

Gnosis development effort. More about the contribution of the evalu-

ation center team from Norm.

What we are focusing on now are internal applications. We are not

looking for external financial support.

We are now focusing on:

Developing new tools to facilitate application development

Prooucing documentation to help users implement applica-

tions and actually implementing new application, as well as,

Measuring the performance of the new applications.

Now I'd like to briefly talk about the benchmark.

As you probably know, one of the most frequently cited reasons for

not using capability based systems in the past, was that their per-

formance was rotten.

We thero'c-t, bad to find an application that was both real, as well
as typical of a class of applications in which many users performed

a small number of activities simultaneously.

We wanted the test to be a multi-purpose test. The individual se-

lected to do the evaluation was someone outside the project who works

for another division. The management of that division wanted to find

out if Gnosis would run the kinds of applications they wanted to im-

plement.

Thus we and they both wanted to test the reliability of

the system under stress.

We both wanted to know how the system would perform under

various loads.

They wanted to know if Gnosis had the functionality to

run their applications.

They were concerned that Gnosis was So different that

normal people couldn't use it.



They wanted to find out how good the documentation

really was, namely, could their development people

use it.

They also wanted to know how much sharing was feasible

and how easy it was to implement dp an application.

Finally they didn't want to spend a lot of money or time

to find out if the system was viable and useful on an

application development environment.

And, we wanted an application that was fun to implement.

Because of all these reasons, we selected "Adventure", a program

written in PL/l, as the first test program to be implemented in Gnosis.

"Adventure" is a game similar to "Dungeons and Dragons" with a spec-

ific cave called the collossal cave.

Now I'd like to show you what functions were involved in building the

selected application and how much code you need to trust.

This part of the system predates adventure and this is the

only part needed to implement the adventure application.

It consists of the kernel and two separate domains, the

terminal interface and the receptionist.

The kernal, unlike most familiar operating systems, is small and very

simple; it functions more as a control program rather than as a con-

ventional operating system. It runs in supervisor mode, it is un-

swappable. The kernel maintains the extended machine architecture,

provides the basic building blocks and performs operations on them

on behalf of the user. In Gnosis, capabilities and data are isolated

from each other so that capabilities which only the kernel can access

directly cannot be forged or manipulated without authority. We wanted

to test the kernel under stress.

The terminal interface system provides the path for a terminal to

communicate with the adventure game; it converts ASCII code to HNDITC

and EBDIC to ASCII.

The receptionist verifies the identity of the caller and the destina-

I-5

A=J



tion on the domain that is being called.

Next, we built the adventure domain and hooked it to the terminal

interfact domain.

The adventure domain contained the same PL/l program we ran under

CMS.

There was an unresolved situation at this point. When the line hunn:

up we were left hanging, so we built the line monitor to:

A). Recognize the event

B). Take the appropriate action

Well, in the crudest sense, this is all yon need to have a singl e

adventure.

But, we assume that like most people, this audience is jaded and havinn:

developed a taste for adventure you would like to repeat the experience

and maybe have some friends join you in the game.

The slide shows that if you want more than one adventure, you need

to duplicate the adventure and the line monitor domains.

It is important to point out however, tnat each ]ine -()iiit-(r and tach

adventure share most of their code and their data iii read only mode.

Thus, when more than one player plays simultaneously, it is necessary

to create multiple instances of adventure. Code is shared in ,arh

instance of adventur- between the terminal interface and the recep-

t-4onist.

M -

AI



The adventure domains can also share data which is common to al! users.

For example, the description of the cave.

Thus, the entire amount of storage space required for each instancL.
of adventure is only 10 pages of real memory per user, most of it is

PL/1 variable storage. An interesting note--the adventure progran,

was not modified to run on Gnosis even though it was not desiqnud

'for sharing.

To build the multiple instances of adventure and the line monitor, and

to implement policy of what to do when a line disconnects, a now mech-

anism had to be built. This mechanism we called the adventure control-

ler.

The adventure controller creates more instances of adventure, gives

them keys, (no one else has keys), namely rights to access.

The adventure controller also implements the policy for disconnecting?

terminals. When a line is uropped, the line monitor notifies the ad-

venture controller. The adventure controller then destroy<; the in-

stance of adventure and reclaims all resources owned by that instarce.

In addition to its existing functions, the adventure controller Could

be used to:

Monitor resource consumption by each user.

Insert debugging tools.

Insert auditors for each user.

As is perhaps more evident in this slide, the entire structUre, Of

adventure, operating within the (Gnon;is environment., is very simpl,.

A total of only 600 new lines of code had to I)( written to fmlke it

work. 500 lines for the adventure controller and 100 lines for the,

line monitor. In this application one must trust the k, nel , the,

terminal interface, the receptionist, and the adventuy,, ce)ntr()ller

and nothing else.
'I- i

tA



There is no operating system as such which needs to bu trusted.

No virtual machine

No command language

No loading of programs

No file system

No editor

No system libraries

Another way of saying this is that when playing adventure in the,

Gnosis environment, "The tail does not wag the dragon." If Marv

Shaefer were here, he'd say that was a tvoll remark. I would call

him a bad gnome.

Now that you know the architecture of the adventure benchmark, let's

look at how long it took to implement it.

In reality, the whole thing took a little over one month , if you

don't count the first month to get oriented.

It took I man week to do the controller

the line monitor and

the linkages

and two more man weeks to do the multiple version of advc ntur . Then

two more man weeks to do the driver and the scripts.

Now I'd like to share with you some of the comments made, by the, -

oper of the benchmark in his report to his manager. The, dev' loper is

a senior applications programmer. 7\ '-hon' 1 h he had experience on manY

different operating systems, he han no:

Capability-based system experience

Gnosis experionce

Lxperience with Gnosis debuqginq tools

Prior contact with the Gnosis team

-Om -



GNOSIS FUNCTIONALITY

"Application programmers can

learn to use Gnosis in a

relatively short time"

"PL/l programs cin be run

under Gnosis with very

little source code modification"



He also noted a few shortcomings:

Documentation as presently available is unfit

for man or beast.

System still nueds work.

Now let's look at the results of the benchmark.

First note the CMS baseline: We used CMS because it was avail-

able. Note: The vertical axis should read cumulative or total

transaction rate.

The test i, as conducted on a 370/158 MC D I with 5 megabytes of

memory located in Dallas.

A transaction generator was used to gei erate one transaction per

second per user. (That is shown by the 45 degree line.)

Each CMS transaction needed 77 pages of memory per user and used

up 150 milliseconds of CPU time allowing . maximum of 6.4 trans-

actions per second.

In this slide, we use the CMS line fur comparison. We ran 3 tests

on subsequent weekends.

The 1st test labeled 6/1/81 looked pretty bad.

In the 2nd test on 6/7/81, we reduced resour-es

required for each transaction.

The original Gnosis version used PL/I refmatted 1/0

to write each line on the termiil.

PL/l terminal T/0 took up more than half the C1I c ycIeQS. 1t wr () t

a subroutine to replace the PL/ 1 ang uag ca I I i !;lu)tout i tie.

IAM-
",1- 1 (



Compatable to the one is CMS.

Test 2 performance dropped off precipitously due to thrashing

(fixed tables in kernel were not balanced).

In test 3, on 6/13/81, we understood and partially resolved

thrashing by better balancing of tables in the kernel.

While it may appear that Gnosis and CMS performud about equally,

it is important to note that the CMS tests were running with 100'

CPU utilization while Gnosis tests ran with much excess CPL capac-

ity.

The 6/13/81 line in this slide shows what the total transaction

rate would have been if the transaction driver had been ble to

run fast enough to saturate the CPU.

At this point, we stopped making changes in the system since we

had met our objective to beat CMS.

:e are now convinced that we can further improve (nosis perform-

ance and that Gnosis can be competitive with other I M transaction

systems.

W'e are aware of many other improvements which could be made by
reducing system overhead as well as the cost per t!-ansaction.

The top line in this figure could be achieved with 1 man month

of work to reduce system overhead by removing additional thrashinqI

bottlenecks in the kernel.

in aiddition, we could increase the transaction rat- inot hr 0

if we ootimized toermin. l transactions by de',l0opii I hiq! p'tor'- 1-m-

ance terminal. interface and by optimizini adventur(, to , l ,ox.' ,,',,)

more sharinq.



These actions would take 2 additional man months and would reduce

transaction time to 30 MS, reduce memory per transaction to 10

pages and yield 30 transactions per second on a 370/158 CPU. On

an IBM 3033 this would mean a potential of between 100 and 150

transactions per second.

This is comparable to all, but the fastest IBM transaction process-

ing systems.

Tymshare is increasing the level of support for Gnosis. We iave

been authorized to hire more people immediately.

Gnosis is moving from R & D to development status.

We have two applicatic is.

The first is:

* A switch which is designed to enable users to access

applications which run on multiple computers without

effort or awareness on the users part.

The second is:

* A transaction processing system for a transportation

agency which will be continuovsly updated and accessec

by many users simultaneously.

In summary .... what we plan to do during the next year is the

following:

* Implement more complex systems.

* Have a system which is continuously and routinely

operational.

* Develop tools to facilitate the implementation,

debugging monitoring and operatinq the net% applica-

tions.

* Insure that the new tools are general purpose and

that they enhance programmer oroductivity perform-

ance and the reliability of Gnosis.

2I-



Finally, we are now convinced that Gnosis will evolve into a

system which will be ready for general use in two to three years.

It is important to note, especially for this audience that:

*The Gnosis architecture inherently provides a base

for a trusted environment.

However, Tvmshare's approach to achieve the trusted system object-

ive is different from the traditional approach. And it is not

clear at this time how the currently accepted trusted system model

can be mapped into the Gnosis architecture.

*Norm Hardy, the architect of Gnosis, along xvtth some

Mitre people perceives a knowledge gap in this area.

*Norm is going to briefly address our concerns with

the mechanisms and approaches of the secure system

evaluation effort, not as a criticism of the process,

but rather as a search for a broader set of perspect-

ives.

Thank you and please help me welcome Norm Hardy to the podium.



GNOF IS:

A PROGR[ SS RE PORT

PRE'AREi) FUR:

THE FOURTH SEMINAR ON THE DOD

COMfUTER SECURITY INITIATIVE PROGRAM

AUGUST 11, 1981

TYMSHARE INCORPORATED

CUPERTINO, CALIFORNIA

P RL S ENI A I ON OUT LINE

" GNOSIS REVIEW

" INIIIAL BENCHMARK

-SELECTION

-ARCHI TECTURE
-PERFORMANCE

" FUTURE DIRECTIONS

* CONCLUSIONS AND CONCLRNS

>1 -I '.



I N IK 0D CT 1.01N

" GNOSIS DISCLOSED 1980

" DESIGN GOALS:

SECURITY

PERFOR,4ANCE

SIMPLICITY

MAINTAINABILITY

PRODUCTIVITY

FAULT TOLERANT

APPLI CAT I .' A2CHITL'T RL

CONTEMPORARY C rwsOS

APPLICATION APPLICATION

ARCHITECTURE ARCHITECTURE

GRAPHICS

DATA BASF

' IAT PACK

APPLI CAT I ON A

KE RNE. KERN[L



A D[ IE _VL 1 7 1'1

FOCUS ON:

-DEVELOPMENT TOOLS

-DOCUMENTATION

-IMPHFMENIATION OF APPLICAl"ICN

-MEASUREMENT

.RE PRESENT ATIVE

*MULTIPLE PURPOSE TFST

- PERPF OPMANCE
-HIN(I UONALI TY

-USARII flY

10(IO UMI U'AT ION

" RE.-OUR~l SHAPING~ DEMONVTRATIO'N

" IN[ XP V I Vi



AD-AI13 3B OFFICE OF THE U NER SECRETARY OF DEESE FO RSEARCH--ETC F 9/2

961PROCEEDINGS OF TA~ SEMINAR ON THE DOD COMPUTER SECURITY INITIAT-EC (U)
1901

UNCLASSIFIEDEqiiiiiiiImE
EIhEEIIEEEIII
IIIIEIIEIhEEEE
IEEEEIIEIIIEIII-moI EIIII
*uunuuunlllnnmn



1.0

IN 1 18

W1.25 1411116



RE EPTION ST

TRMINAL
ITERFAC

K KERN EL

RE EPTIONI T DVENTUR

TERFA E

KERNELr

M-17



LIN,' DVENTUR

w RMNAL
I ILRA

S KERNEL

L2

LINE

REc PTIONI T ONT VkENITUI)RE

ERMINAL

M - I 8



DVENT U
C NTROLL

REETO T LINE D VLN T;U
NIT

ERM INAL
TE F.A

KERNEL
L

DVENTU

500 C TROLL R

2,000 TRE

15,000 KERNEL

M/

M-19



BLCHI*ARK IfTLLNIAT1O0i CALENDAR

. READIN(,, LEARNING 1 IMONTH

. SINGLE ADVENTURE 1 WEEK

* CONTROLLER FOR IULTIPLE

ADVENTURES 2+ WEEKS

* BENCHMARK DRIVER S

SCRIPTS 2+ WEEKS

6NO I S FUNCI ONALIT Y

"% NSIS I0 ALIVE & WELL AND

CAN BE USED AS A BASE FOR

M;[ IIUSER APPLICATIONS"

"GNOSIS DOES NOT CnNSTRAIN
APPLICATION DESIGN - HIGHLY

ADVANIAG[OIS TO THE DEVELOPMENT

01 'O'J COMPETITIVE APPI ICATIONS,'

,'1-20



GtO S FuNcIIOiALIIY

"APPLICATION PROGRAMMERS CAN

LEARN TO USE GNOSIS IN A

RELATIVELY SHORT TIME"

"PL/I PROGRAMS CAN BE RUN

UNDER GNOSIS WITH VERY

LITTLE SOURCE CODE MODIFICATION"

IT IISi ~O IO ~t

'DOCUMENTATION IS UNSUITABLE

FOR APPLICATION DESIGNERS AND

PROGRAMMERS."

"SYSTEM IS INCOMPLETE AND MORE

FACILITIES ARE NEEDED TO

IMPLEMENT NEW APPLICATIONS."

M ,-2 2

Ja



CMS PERFORMANO TI, I

NOMPE

AOI N'CMR

(MS (&S[

_____________________le

NUM4O KLISEV J\R~LL



1- 3/S t+ MONTH

I ]

FUTUL PLANS AND DIKLCIi',6

" INCREASED SUPPORT

" FROM R & D TO DEVELOPMENT

" TWO TEST APPLICATIONS

SWITCH

TRANSACTION PROCESSING SYSTEM

" CONTINUOUS SYSTEM OPERATION

* NtW GENERAL PURPOSE TOOTS



George Cotter

DoD Computer Security Evaluation Ccinter

DOD
COMPUTER

SECURITY

EVALUATION

W, CENTER

DEPARTMENT OF DEFFNSE
COMPUTER SECURITY EVALUATION CENTER

N-I



.......

A LOOK AHEAD...
" PRODUCT EVALUATIONS

- CONTRACTUAL SUPPORT
- CDC CYBER NOS
- UNIVAC 1100 08

" SYSTEMS EVALUATIONS
- CONTRACTUAL SUPPORT
- COMMUNICATIONS RELATED
- DEFENSE SYSTEMS
- INTELLIGENCE SYSTEMS

* RESEARCH & DEVELOPMENT
- COMPtEX ENVIRONMENTS
- NETWORKS
- KERNELS
- Dm
- MICROPROCESSORS
- TOOLS

CURRENT ACTIVITIES...

* PRODUCT EVALUATION

* SYSTEMS EVALUATION

* RESEARCH AND EVALUATION

N-2



DOD DIRECTIVE ...
a RESPONSIILITIES OF DIRECTOR NSA AND OTHERS

* OTHER APPLICABLE DIRECTIVES

o COMPUTER SECURITY POLICY

* CENTER CHARTER

STATUS ...

* DOD DIRECTIVE - IN DRAFT

" ORGANIZATION - APPROVED

" KAMAN G - IN PROCESS

" FACILITIES - IDENTIED

* COMPUTER SECURITY PROGRAM - FY83 POM

" CURRNT ACTIVITIES - CONTINUmWI

N--



FUNCTIONS ...

* TECHIUAL INTERFACE AND SUPPORT

o CONDUCT EVALUATIONS OF INDUSTRY, GOVERNMENT PRODUCTS

o MAINTAIN EVALUATED PRODUCT LIST

o ESTABLISH AND MAINTAIN EVALUATION STANDARDS AND CRITERIA

9 CONDUCT SELECTED COMPUTER SECURITY EVALUATIONS

* CONDUCT AND SPONSOR RESEARCH AND DEVELOPMENT

e CHAIR DOD COMPUTER SECURITY TECHNICAL CONSORTIUM

e SPONSOR COOPERATIVE EFFORTS, SEMARS, WORKSHOPS

e DEVELOP CONSOLIDATED COMPUTER SECURITY PROGRAM

THOUGHTS EN ROUTE...

*COOPERATION IS THE KEY INGREDIENT

N -4



THOUGHTS EN ROUTE...

0 COOPERATION IS THE KEY INGREDIENT

o CENTERS FUNCTIONS ARE TECHNICAL

THOUGHTS EN ROUTE ...

0 COOPERATION IS THE KEY INGREDIENT

0 CENTERS FUNCTIONS ARE TECHNICAL

o CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

N-5



THOUGHTS EN ROUTE...

9 COOPERATION IS THE KEY INGREDIENT

e CENTERS FUNCTIONS ARE TECHNICAL

0 CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

o MUST PROVOKE COMMERCIAL DEVELOPMENT

THOUGHTS EN ROUTE ...

0 COOPERATION IS THE KEY INGREDIENT

* CENTERS FUNCTIONS ARE TECHNICAL

0 CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

0 MUST PROVOKE COMMERCIAL DEVELOPMENT

9 EPL SHOULD NOT BE A THREAT

N-6



THOUGHTS EN ROUTE ...

0 COOPERATION IS THE KEY INGREDIENT

a CENTERS FUNCTIONS ARE TECHNICAL

0 CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

* MUST PROVOKE COMMERCIAL DEVELOPMENT

* EPL SHOULD NOT BE A THREAT

e DOO NSUARCH TO PLUG THE GAP$

THOUGHTS EN ROUTE ...

" COOPERATION IS THE KEY INGREDIENT

0 CENTERS FUNCTIONS ARE TECHNICAL

" CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

* MUST PROVOKE COMMERCIAL DEVELOPMENT

" EPL SHOULD NOT BE A THREAT

* DOD RESFARCH TO PLUG THE GAPS

* PACE AND PRIOffilES ST CAREFULLY

N-i



TRUSTED COMPUTER SY'STEMS

REIN TURN

THE RAND CORPORATION

Since June 1978 the DoD Computer Security Consortium has con-
ducted a Computer Security Initiative program, with the goal of
achieving widespread availability of "trusted ADP Systems"* for use
within the Department of Defense (DoD), in other government agen-
cies, and in the private sector. For the government, "widespread
availability" means the use of commercially developed trusted sys-
tems whenever possible. Effective January 1, 1981, the Director of
the National Security Agency (NSk) was assigned responsibility for
tne evaluation of computer security for the DoD and thus will serve
as Executive Agent for the Computer Security Initiative. One of nis
functions will be the compilation of a DoD Evaluated Products L-ist
of trusted systems.

To date, the three major activities of the initiative have neen
(1) coordination of DoD research and development efforts in computer
security, (2) identification of efficient evaluation procedures for
trusted operating systems and their uses, and (3) identification of
incentives for the computer industry to develop trusted systems as
part of its standard product lines. This report addresses the third
task. It analyzes the needs for trusted computer systems in the
civilian agencies of the federal government, in state and local
governments, and in the private sector.

Protection is needed in computer systems to (1) safeguard
assets r resources, (2) comply with certain laws and regulations,
(3) enforce management control, and (4) assure the safety and
integrity of computer-controlled processes or systems. Additional
incentives for implementing trusted systems might be to realize
operational economies, to achieve marketing advantages, and to
enhance an organization's public image.

Protection of programs and data in computer systems involves a
variety of physical, personnel, and hardware/software security tech-
niques; administrative and operational procedures; and computer-
communication security techniques. The most difficult task to date
has been the development of trusted operating systems--a necessity

*A "trusted" ADP (automated data processing) system is one that em-
ploys sufficient hardware and software integrity measures to allow
its use for simultaneous processing of multiple levels of classified
and/or sensitive information. See the Glossary of Technical Terms
in Appendix A for other definitions.

0-1

-. A



in resource-sharing, multiuser systems to pr.ovent users from
interfering with each other and to control access to sensitive data
files or processing operations. The trusted operating systems
sought by the Computer Security Initiative Program have a iigh
potential for providing a solution to many Of these problems.

In general, the use of current computer security technique.,
entails some reduction of system throughput, as well as some modifi-
cation of existing application software or data oases. Some poten-
tial users of trustea systems are concerned about these impacts on
their existing computer applications. However, there is a clear
trend in computer hardware architectures and in software development
toward including features that would be very useful for implementing
performance-effective trusted systems; thus, performance loss is
likely to be far less of a problem in the future. Conversion
requirements for application software can also be reduced by design-
ing trusted systems to be compatible wito existing operating systems
(as has been done, for example, in the KVM and KSOS efforts). A
data-base conve2rsion may be necessary (e.gr., to include
sensitivity-level information), but this is usually a one-time
effort.

Computer security is needed in the civilian agencies of the
federal government primarily for asset and resource protection and
for regulatory compliance. Many agencies are responsible for finan-
cial disbursements or collections and thus are subject to attempts
to perform unauthorized transactions. Trusted Systems with
appropriate operational and administrative controls can protect
against unauthorized actions, unless these actions are performed by
malicious or untrustworthy authcrized users. Here, additional con-
trols must be designed into the application programs.

All civilian agencies of the federal government are subject to
the requirements for data security and integrity of Transmittal
Memorandum #1 of Office of Management and Budget Circular A-71.
Personal information on individual citizens that is maintained by
these agencies is also subject to the confidentiality requirements
of the Privacy 5kct of 19741. Trusted operating systems can provide a
tool for effectively meeting these requirements.

Protection needs in state and local government computer systems
are similar to those in federal government systems, although they
are on a smaller scale and there is considerable variation from
state to state. Financial disbursements and collections account for
a large part of state and local governments' computer use, but regu-
latory requirements for security are leLos stringent; indeed, many
states have not enacted fair information practices lo!ws, and some do
not have laws requiring confidentiality of computerized criminal-



history or public health information. Although these state agencie-s
may have less compelling needs for trusted systems and they may be
more constrained by economic considerations, trusted operating sys-
tems can greatly enhance the controllability and auditability of
state and local government computer systems, and as a consequence,
they would increase public trust in government operations.

In the private sector, business information that is stored and
processed in nearly all corporate computer systems is, or
represenus, a valuable asset that must be protected. The need for
effective management control over all operations, particularly those
that involve computers, is self-eviden'. Strong accountability
requirements have been estanlished by the Foreign Corrupt Practices
Act of 1977, and requirements for ensuring confidentiality of per-
sonal employment, medical, and financial information are included in
state laws. In addition, federal privacy protection requirements
are pending that will affect insurance, health care, and financial
industries in the private sector. Thus there is a strong rationale

for protection of data and programs in private-sector computer sys-
tems. Trusted operating systems could provide that protection, as
well as certain collateral benefits in the areas of safety and
integrity, marketing, and public relations.

The widespread availability of effective and economical trustcd
operating systems is predicated on computer system vendors' percep-
tions of an adequate market for these systems. The government alone
cannot provide enough user demand to be attractive; the market must
also include the private sector. Thus, the situation is somewhat
circular: A market will develop along with availability, but avai-
lability is influenced by the size of the market. The trusted sys-
tem technology has been developed and is not being demonstrated by
the Computer Security Initiative, so the technical risk to vendors
appears relatively small. However, the preceived need to maintain
compatibility between trusted systems that use new architectural and
design concepts and the existing equipment and software bases causes
vendors to be cautious about undertaking such development efforts.

Given the trend in new operating systems and software packages
toward inclusion of stronger controllability and auditability
features, it appears that development may evolve naturally toward
trusted operating systems. A demonstration of a credible rationale
for acquisition and implementation of trusted systems, as attempted
in this report, may provide the additional increment of incentive
for vendors to submit their systems for evaluation and inclusion in
the Computer Security Initiative's Evaluated Products Lists.

Trusted systems can contribute effectively to the solution of
the growing problems of protection of assets and resources,

•-3



compliance with laws and regulations, assurance of safety and
integrity, and implementation of full management control. In addi-
tion, trusted systems may provide operational economies, marketing
advantages, and public-image enhancement. They are needed in a
variety of applications that constitute a market that should be of
considerable interest to vendors and that should strongly encourage
participation in trusted system development efforts. Their use
could serve the interests of private business and industry, as well
as public policy, public safety, and national welfare.

o-4



NEEDS

R. TURN

THE RAND CORPORATION. SANTA MONICA. CA.

AUGUST 1981

SOURCE DOCUMENT
2811 DR&E

Trusted Compuiter Systems. Needs and Incentives for
Use! in Government and the Private Sector

R Tuirn

The Rand Corporation,. Santa Monica, Ca. 90406

Prepared for The Office of The Undersecretary for
Defense Research and Engmneering

Auc ust 1981

OUTLINE

1 Trusted systems

2 Generic needs for trtisted systems

3 Civilian agencies of the federal government

4 State and local governments

5 Private sector

6 Conckuding remiarks



TRUSTED COMPUTER SYSTEMS

'Systems that have sufficient hardware and soft
ware Integrity to allow their Uise for simiultaineouis
processing of multiple levels of classified and or

sensitive Information

DoD Computer Security Initiative Program

TRUSTED SYSTEM EVALUATION PROCESS

Mh sns Ass ratc

Sorpo'lT-

TRUSTED SYSTEM SELECTION

0,r az Irt Asseto t ro I-

AO P pplocaitn Imply Legal -eq rremt.rt

costs t- briti

ii s.. ..... .tp~tr l o

at I evel ilrt:rtts%,tfhits

o-6



GENERIC CLASSES OF NEEDS AND
INCENTIVES

* Protection of assets and resources

" Compliance with regulations

" Management control

" Systems' safety and integrity

" Operational economy

* Marketing advantages

* Public image

EFFECTIVE MANAGEMENT CONTROL

0 Important goal in any organization
* Internal control and auditing in computer

environment
0 Trusted systems to enhance control

implementation
* Tradeoffs

Control vs. efficiency and innovation
Risk of loss vs. economic pressures

ASSURANCE OF SAFETY AND INTEGRITY

* Reliability and integrity of real-time control

Hardware reliability
Software correctness
Resistance to errors and tampering

* Computer-aided design and modeling

0-7

.... . r



POTENTIAL OPERATIONAL ECONOMY

* Realization depends on context and situation

* Elimination of "make shift' security procedures

* Reduced duplication, personnel clearances.
downtime Iosses

* Reduced insurance premiums

OTHER CONSIDERATIONS

* Cost-effectiveness of trusted systems

* Impacts on performance

* Interoperability and compatibility

* Security policy versatility

TRUSTED SYSTEM COST-EFFECTIVENESS

* Performance losses will be reduced

Use of hardware featuresNew architectures support trusted systems

Lessons learned are being applied

* Software conversion can be minimized

Compatibility will be a design goal

* Data base conversion may be required
Additional data fields

DBMS conversion may be needed

o)-8



TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES - 1

0 Protection of assets and resources
Massive financial disbursements or

collections

Vulnerable to fraud
Trusted systems improve access control,

audit trails

* Management control

* Safety and integrity

" Operational economy Umn"

TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES - 2

* ReqtttlattrV : fph:itltlt,

Ta-jt ttaI Me-, -, 1 OMB Crc tflar A 71
Physct t ect-h : a t dnitncstrative stequtaris r-(1t-d

(iSA ,ccitt La it~hS

FPMR 101 35 3

FPMR 101 36 7
FPR 1 4 1107 21

Pr--Vray Act otf 1974

Ftie, ral Pturn.uuel Manttal Ch 293 297

F r-edh ofi Inf..rraitt(rt Act

TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES - 3

" Other considerations

Funding of security require,-nents

Enforcement

Mission-oriented agencies

Cost-effectiveness of security mechanisms

Physical and administrative security

0-9



TRUSTED SYSTEM NEEDS:

STATE AND LOCAL GOVERNMENTS - 1

* Protection of assets and resources

* Regulatory compliance
Information confidentiality statutes
Fair information practices laws

Criminal justice systems
Pending federal legislation regarding social

services

* Management control

TRUSTED SYSTEM NEEDS:
STATE AND LOCAL GOVERNMENTS - 2

* Safety and integrity

* Operational economy

c Other considerations
Cost is important

C Consolidated systems
Public perceptions

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR - 1

0Rationale
Computers are a necessity

Concern with interruption and consequences

Trusted systems needed
Cost at.d risk tradeoffs important

0Protection of assets and resource-%

Business records. accountings of assets and receivables

Planning. marketing. manufacturing

Compulter related crimto and fraud

Disgruntled employees

"Grass roots" growth of threats

0mnd

01-10



TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR - 2

0 Regulatory compliance

Fair Credht Reporting Act of 1969

Faly Educational Rights and Privacy Act of 1974
Financial Privacy Act of 1980

Pending 
fede ral jaws 

o
H R 1059 Privacy of rnedical information

H R 1061 Privacy of public assitance reiords

Amendments to Fair Credit Reporting Act

State laws on personnel records

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR - 3

* Regulatory compliance
Foreign Cor. upt Practices Act of 1977

Accurate record keeping
Management control over access
Accountability established

International Data Protection
National laws Austtia. Canada, Denmark, Fraice

Germany, Israel. Luiiembourg. Norway. and
Sweden

OECD guidelines
Council of Europe convention

M Management control

* Safety and integrity

R eal time systems5
Computer-aided design and mod, ling

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR - 4

" Operational economies
Reduced personne security costs
Enhanced auditabdty
Reduced security enforcement, training costs
Savings on insurance, bonding

• Marketing advantages
Secturd y assurance to clientsDemonstration of concern about confidentility and Privacy

Reduction of victimization po~tentialEnhanced public image

• Other considerations
Cost effectiveness
Risk tradeotfsManagement support 

4

0-11



CONCLUDING REMARKS

* Need exists for trusted computer systems

G Incentives are there for trusted system use

• Potential market is growing

0 Incentives exist for vendors to produce trusted
systems

* Implementation and operational questions can I
resolved satisfactorily

0I-1 2



DAVID L. GOLBER

SYSTEM DEVELOPMENT CORPORATION

THE SVC CONMUM ICAT1ONS KERNEL

The SDC communications kernel is intended to-support secure
communications applications, Such as secure front ends and
terminal access systems. It is a minimal oneratinq system,
capability-based, and nas a basic structure that we hope
will ease the problem it formal specification anI
verification. [1]

The kernel is oriented towards support ot communications
systems in that it offers extensive facilities for
interprocess communications, because of its restricted aim,
it does not support dynamic changes, such as creation of
processes.

The SDC communications kernel has been operational for a
number of years in an ARPANET-live Dob system. we feel that
the capabilities and speed of the kernel are well-adapted to
such a system, and are competitive with other systems not
using a Kernelized architecture.

The Kernel was developed under the primary direction of Dr.
Hichard wandell. The design ano coding were done Oy Karl
Auerbach, David Clemans, and Jay Eaglstun.

1.0 z ra~ezazal

The SVC communications Kernel is a descendant of the UCLA
Data-Secure Unix [2] operating system. The SDC
communications kernel remains similiar to the UCLA Kernel in
the following major areas:

a. The SDC kernel is a minimalized operating system.
It is a small amount of code which exists to
provide environment and services to processes. The
processes may De regarded as "application" coder
there is no partitioning of tne Kernel itself into
processes. The kernel is the only code in the
machine which accesses hardware features of the
machine such as memory protection registers, device

registers, etc. In a PUP 11/70, the Kernel

EI] Tne question of veritication is discussed at
the end of section 2.

[2] "Unix" is a trademark of Bell Laboratories.

P-I



The SIC Communications Kernel Auaust 1981

consists of exactly that code which runs in
hard*are "kernel" mode, the orivileqed mode of the
machine. Processes 'run in non-kernel hardware
mode.

b. rne SDC communications kernel is interaeo to be a
verifiable operating system. IFnat Is, it Should be
possible to formally state tne services and
protections that it supplies and to formally prove
that it does what it is intended to do and no more.

c. It is generally felt that operating system code
which is interruptable is very hard to verify.
Therefore it is preferrable for a verifiable
operating system to run with interrupts completely
locked out. This is the policy in the case of the
SDC communications kernel.

d. Tne bDC communications kernel is a capability-based
operating system. That is, it Keeps track of
processes' allowed accesses to various objects by
maintaining for each process an array of data
structures called capabilities, each of which
describes an object and an allowed access to that
object.

e. The Kernel is entered for one of two reasons:

An interrupt is received from a device. This
can only occur while a process is running. or

A kernel call (request for some kernel action)
is made by some process.

In either case, the kernel code is entered via a
trap or interrupt while a process is running, runs
straight through without interruption dnd then
exits. The kernel exits by causing tne resumption
of the execution of the code of some process (which
may or may not be the process which was running
when the kernel was entered).

On the other hand, the SDC communications kernel has been
modified so as to be appropriate for a communications
environment rather than for a general user-support
environment. For this and other reasons, the SDC
communications Kernel differs from the UCLA kernel in a
number of important ways:

a. ihe SDC communications kernel does not Provide for
the dynamic creation or destruction of processes.

P-2



The SDC Communications Kernel Auoust 1981

All Processes exist froT ttie time that the CPU is
oooted until it is halted.

b. The SDC commurications kernel does not provide for
swapping of processes In and out of memory. All
processes are permanently resilent in memory.

c. The dCLA system runs on a CPU (11/70, 11/45, etc)
with three nardware moles: Kernel, supervisor and
user. The kernel runs in kernel mode, *nile the
supervisor node contains code called the "unix
emulator" which provides an environment very like
that of standard Unix to "application" code running
in user mode. In distinction, "application" code
written for the SDC system runs in supervisor mode
and makes kernel calls directly. (User mode Is
unused.) SDC software thus can run in CPUs witn
only two hardware modes (11/34 and 11/23). (This
is perhaps more a difference in usage than in the
kernels tremselves. The SDC communications kernel

on an 11/70 or 11/45 could suoport some sort of
emulator in supervisor mode, which could in turn
provide some sort of standard environment to code
in user mode.)

d. The SDC communications kernel incorporates very
extensive provisions for interprocess
communications.

e. In the UCLA system, a "Scheduler" process is
responsible for choosinq the next process to run.
In the SDC kernel, processes are not swapped out,

So scheduling is much simplified and has been made
part of the kernel.

f. In the DICLA system, a "File manager" process is
responsible for giving capabilities to processes.
In the SDC system, most capabilities of processes
(for Instance, the capability to access a certain
peripheral) are assigned statically at the time the
system is configured, by a proqram called the
"Superlinker", running under normal Unix. The
Superlinker assembles the CPU memory Image and
gives static capabilities to processes as
instructed by the "superlinker control file", which
is prepared by a human being. It is this human
being who is ultimately responsible for deciding
what processes are allowed to communicate, etc.
(Some capabilites are aiven to and taken away from
a process dynamically as part of the Interprocess
communication facilities; this is discussed in more

P-3

66----



The SDC Communications Kernel Auaust 1981

detail below.) A separate File Mananer process is
not used.

The SIC communications kernel Is written in a version of
Pascal, augmented to provide certain extensions necessary
tor the use of Pascal in an operatinQ system. The IJCL4
Pascal-C transldtor translates this into C, which is then
compiled normally. The code is written in a ton-down,
highly modular and urthodical metnod, wnich is intended to
facilitate verification, altmougn no verification or formal
specification has been done as yet.

2.0 S.ir r.IL L ... &a. L.Ae

The SDC Kernel does not itself implement a security Policy.
In a typical communications system usinq the kernel, the
total security policy would be a result of the oroperties of
various parts of the system, ot which the kernel Is only one
part. The Kernel by itselt does not auarantee that tne
security Policy is correctly Implemented. The kernel is
only responsible for iaintaining and separatina process
environments, and providino and regulating interprocess
communications. Thus, the properties of the kernel are
related to the total security Policy as a lemma is to a
theorem.

An example may held to make this clear.

Consider a CPU which is to act as a sort of terminal
concentrator. The CPU is to suoport two terminals, one of
which is to carry unclassified traffic only, and the other
of which is to carry classified traffic only. The TCP and
TELNET protocols are to be used to provide services to each
of these terminals. In order to provide senaration between
the classified and unclassified traffic, the TCP and TELNET
processes are duplicated. The internal situation in the CPU
can be pictured as followed:

p-4



The SDC Communications Kernel August 1941

1 UnclassifiedI I I Classitied I
I Terminal I I Terminal I

-- -- - -- - - - - - - -

II V I VI

Line Driver I

I (part ot the kernel)

I -E NE I I IEiE

II V I V
I------------------------------------ -------------- I

I Inclassitled I I Classified I

I I TELaE I I T LPE I

II(A process) I I (A process) I

I Uncl -It e Seu i Casiidy

I M-/ U I I

I I (A pr c r 1 - -

I I-e----------------I

I Ne MXDriver I
SI (Par rofthe I(-~

I (k rn l I

------------- w -------- M--------- -----------------

I~~ ~~ I krel

V I
To Net

P-5



The SUC Comunications Kernel August 19bi

In this tioure, tile "drivers" are collections of
subroutines; they are within the kernel, since they must
manipulate the physical levice registers.

The Security MIIX/I)F:AIlX process Is a process whose
responsibility it is to separate classitiea and unclassified
traffic streams (on reception) and to Teroe tne streams on
transmission. We do not speculate here on what hasis this
is done. but it is clear tnat this process is rerformina a
highly security-relevant tunctior. Therefore, the code of
this process must be aporopriately verified. However, it is
important to point out that the veritication of the
functioning of this process is quite distinct from the
verification of the kernel. The process is not Part of the
kernel.

The TELNET and TCP processes are likeoise processes, not
part of the Kernel. because of the scheme diaorammed aoove,
we can hope to be able to show that tne malfunctionilni of
any of these Processes would not be able to violate security
constraints. (Note that this diagran, represents onlv one
example of a system which might be build on the kernel.)

Note that the drivers handle Unseparated data; therefore
they too would need to be verified. However, this is true
even before we make the observation that they handle
unseparated data: They must be verified because tney are
part of the kernel, and all of the Kernel must be verified.

Now we are in a position to discuss the role of the Kernel
itself. 6hat are the services and protections that the
kernel provides?

First of all, the kernel provides and separates the
environments of the processes. For example, the kernel sets
the machine mappina registers when one process runs so that
the code and data of that process are accessed, and so tnat
the code and data of some other process are a= accessed.

Second of all, the Kernel provides interprocess
communications facilities as specified when the system is
configured. In the figure above, for example, the various
arrows represent interprocess communications mechanisms
called "queues". (These will be discussed in more detail
below.)

ohen the system was configured, the responsible person
specifies what processes are to exist, and what
communications paths between them are to exist.

The tool by which this is done is the "superlinker"

P-6



The SDC Co:munications Kernel Au-ust 19d1

mentioned aoove. The responsinip Person orerares a
"superlinKer control tile". For instance, for the syste

pictured aoove, the suDerlinwer control file will specify
that there are to oe five processes. Each of these
processes has previously been compiled, ana Its ooject coce
Is ready and waitinq. The control file specitles where this

ooject code AS to he foind. Furthernore, the control file
specifies exactly what queues are to exist in the system,
what processes are allowed to place information on a given
queue, and what processes are to oe allowed to take
information off of a aiven queue.

This superliriKer control tile is processed my the
superlinKer proaram, which is running under whatever
development system is in use. (ILat unoer the kernel.) The
superlinKer prepares the complete ne'rory image of the CPO.
In particular, it prepares the Kernel tables which estarlisn
the existence of the various queues and what Processes are
allowed to enqueue to and dequeue from eacn one of them.
[This will be discussed in more detail oelow.)

Now we can describe what it is that the Kernel is trusted to
do: the kernel is trusted to correctly implement anJ
administer the system described by the superllnker control
file. For example, if the superlinKer control file
describes the system shown in the fioure above, then
verification of the kernel will ensure that the unclassified
TELNET process will not be able to Oequeue information from
the queue which is shown as leading from the classified TCP
to the classified I5btNET.

In order to correctly understand the nature of the security
policy of the kernel as shown in the example above, it is
very important to understand: The MUX/nEMUX process may be
described as "trusted" in that it is trusted by the human
beings who design, configure and use the system. However,
it is inappropriate to describeo this process as "trusted"
by the kernel. The kernel does not nave a notion of
"trusted" process. In particular, there is no "trusted"
ooolean in the per-process table maintained by the kernel.
The kernel Knows only what communications paths each process
has been autnorized to use.

In the example, the queue from the net driver to the
MUX/DEMUX process carries both classified and unclassified
information, while the queue from the unclassified TCP to
the unclassified TELNET carries only unclassified
information. Thus, from a security point of view, these
queues are very different. However, there is nothing in tne
kernel corresponding to this difference in the nature of
these queues.

P-7



i

rhe SDC Communications Kernel August 1981

ie can describe the philosophy here as this: the "real"
security policy Is executed by the person Nho prepares the
superlinker control tile. The kernel is responsible only
for seeing that that person's descisions are enforced. Note
that this is appropriate for the purpose for which the Sf)C
kernel has peen designed. That is, since the system is
static, there is no need to burden the kernel with code,
algorithms, etc, for making security-related descisions.
Instead, these descisions are made oeforehand, and the
Kernel is only responsible for enforcina them.

Note that in the example, the Line Driver software in the
kernel handles both terminals. There is no reason to
provide t.o copies of this software; both copies would nave
to reside in the kernel, so as to access the hardware device
registers, and would have be verified to function prooerly,
as is true for any part of the kernel and the kernel as a
whole. There would be no hardware separation between the
two copies.

Note that as part of its functioning, the driver must take
data from the queue from the u L4as&.%Led TELNET process,
and place it on the line to the JcLa £.L.d terminal.
Similarly for the classified terminal and for the other
direction of flow. It must be verified that this function
is performed correctly; but this is covered by the
reouirement that all the Kernel functioning must be verified
to perform correctly.

If the kernel were to be verified, what is it that would be
verified? Ahat would oe the formal properties that would
have to be verified to hold?

The kernel is responsible for

a. maintaining and separating process environments.

b. Providing and regulating internrocess
communications.

c. Operating devices.

Verification of the kernel would require formally statinq
the nature of these responsibilites. (These statements
would probably include formal statements of the effects of
the various kernel calls.) Then it would be necessary to
formally prove that the kernel code does properly carry out
these responsiblites.

As already emphasized, verification of the kernel would be

P-8

A-



The SLIC Communications Kernel August 1191

only part of what would have to be done to verify that a
given system satisfies some security rolicy. Variois non-
kernel parts of the system, ds well as various aspects of
the total system architecture, would also have to ne
verified.

Certain parts of the support software used to Produce the
system would also have to be appropriately veritlel.
Clearly, an important part of tnis software is the
superlinker. The output of tne superllnker is source code
versions o± the Kernel tables, %hich are then compiled,
linked, and built Into a total memory image. These Kernel
tables could be human-inspected, but this would be a very
difficult task, wnich itseif woula use many machine iids.
If there were any chance of having to lo this tedious homan
inspection repeatedly, verification of the superlinker mould
be the proper thing to do instead.

rhe kernel was developed in a context whicri emphasizel the
production of working code in a relatively short time. For
this reason, it was decided neither to formally specity the
properties of the kernel, nor to attempt to formally
demonstrate anything about it. Sone such effort may be made
in the future.

It is of course the case that code which was not developed
from formal specifications may be quite difficult to
formally verify after the fact, and will almost certainly
have to be modified in order to be veritied. This MaV be
true because actual security flaws are found by the formal
analysis, or because some aspects of the existing code are
particularly unamenable to verification. However, there are

some aspects of the existina kernel - the caPability
orientation in particular - which we hope will ease formal
verification.

3.0 111C £nQ4.Lenmtrkt QL & 2ZQCC_%A

To begin with, we emphasize that a "process" is not Part o.
the kernel, but rather an "application" program for which
the kernel provides environment and services. No part of
the kernel is described as a process.

in a PDP 11/34, the virtual address space of a process
comprises 64K bytes - each process produces lb-bit addresses

P -9



The SDC Co,.munications Kernel August 19I

as it accesses memory. Trhese virtual addresses are
translated to physical addresses by the memory management
hardware. rhis hardware manages the process' virtual memory
space in eight pieces, each of wnich contains 8K bytes.
Tnese pieces are the "pages" of a process' virtual address
space.

These pages are used as follows:

a. One page accesses the "library". This is a

collection of commonly useful subroutines. A
typical routine would be a ioutine for converting
between a machine clock, wnich might read in
seconds past January 1, 1970, to human time (date
and time). The liorary is read-only to all
processes.

b. One or more pages are used to access the Process'
text ... that is, its executable code. This access
is read-only.

c. One or more pages are used to access the Process'
data area ... that is, the area In which
initialized variables are Kept. This area is
normally read-only, but may be made writeable, by
special instructions to the superlinKer.

d. One or more pages are used to access the Process'
so-called "lbss" area ... that is, the area in whicn
variables which are initiallytzero are kept. rhis
area is read-write.

e. The last page (page seven) accesses the process'
"communications block". This is an area of memory
snared by the process and tne Kernel and used for
communications between a process and the Kernel.

f. The remaining pages (there are at most three) are
tree to be used to "map in" biocks of data Passed
from process to process using the interprocess
communications mechanisms described below. These
are referred to as mappable paqes.

In anm 11/70, the situation is smilliar, except that an 11/70
has *separate I and D space", and so has twice as many pages
for each process as the 11/34.

When an event occurs which affects a process, the kernel
posts a notification of the event in the process'
communications block, which the process looks at in the
course of its main loop, which is described below. (Section

P-10



The SDC Communications Kernel 4uqust 19RI

4 discusses traps and interruptions in more detail.)

In tne SOC system, programners write code which makes kernel
calls airectly. There is no "emulator" to Provide the
running process with an environment like that of some
familiar operatinq system. ('This is in distinction to the
UCLA Data Secure UNIX system,.) Since the proqrammer is
writing code to run in an environment wnich is unfamiliar to
him, we nave taken the approach of providina a standard
top-level structure for every process. (This also makes
understanding a process written vy another programmer
considerably easier.)

This standard top-level structure is implemented by
providina each programmer with the same "main" routine.
(Again: we emphasize that this "main" is part of the
process, not part of the Kernel.) The entire code of a
process consists of subprocedures called from this highest
level procedure "main". (In particular, there are no
"interrupt handler" or "completion" routines which are
initiated directly by the kernel.) The outline ot main is as
follows:

procedure main;
begin

initialize;
while (true) do
begin

Set "summary" flag in communications blocK to false.
while (some external event remains unprocessed) do
oegin

Call procedure to process that external event.
end;
KSLEEP;

end;
end;

The procedure "main" is caused to begin executing when the
system is booted. Main never exits.

The process begins by calling an initialization subroutine,
and then enters an infinite loop. This loop basically does
nothing except process external events. ("External" here
means external to the process.) The process detects that
there are external events to be Processed by examining its
communications block. When there are no external events to
be processed, the process maKes the system call KSLEEP to
give up the CPU until some external event occurs. when an
external event does occur, the kernel awakens the process,
which resumes execution just as though the K.SLEEP call had
returned immediately.

P-i



The SDC Communications Kernel August 1981

From the ordinary programmer's point of view, writing a
process to run under the SLC kernel consists in coding
various procedures whicn are called from main, tne
procedures which they in turn call, etc.

Ihe "summary" flag in the communications block is used in
conjunction witn the KSLEEP call to avoid a possible race
condition.

(If trie summary flaq were not used, the following mic4ht be
possible:

A process has processed all previously pending external
events, has decided that there is nothing more to do,
but has not yet wnaue the KSLEE.P call. Now an external
event occurs. The kernel posts a notification of the
event in the process' communication block. However,
the process has alreaay decided to go to sleep. The
process now makes tre KSLEEP call. As far as the
kernel can see, the process has disposed of the new
event. Inus the process goes to sleep without handling
the event, and might even sleep torever.)

The summary flag avoics this race condition as follows: Any
time that the kernel posts an external event to a process,
it sets the summary flaa in the process' communications
block to "true". If the summary flag is true when the
NSLEEP call is made, then the process is not put to sleep;
the KS.rEP call returns immediately. It is easy to see
that this mechanism, and its usage as in "main" above,
avoids tne race condition.

4.0 la.Luats and £las

The Kernel operates with all interrupts locked out (POP-I
priority 7). Thus, if a device wishes to interrupt while
the Kernel is executingi, the interrupt will remain pending
until the Kernel exits and a process starts to execute.
Then that Process will be immediately interrupted.

Suppose that an Interrupt occurs *Mile a process is
executing. The CPU will oe interrupted and the kernel will
handle the interrupt. When the process resumes executing,
it will resume t exactly the place at which it was when the
interrupt took pla.ce. In this sense, the interruot is
transparent to the process.

If the interrupt implies that some process should be

P -12



The SDC Communications Kerril Auaust 19HI

J

notified of a certain exterrtal event, then the kernel posts
d notification in the commUnications plock of tnat process.
The process is awakened if it was previously asleep. If the
notifieo process happezis OIlso to be tne process that was
running #hen the interrupt took place, then the process
finds out aoout the event wrn it returns to its "main"
routine dnd examines its connimunications block.

Thus a process runs without interruots visible to that
process. The only possible race conditions that might
affect a process are congerne6 with the reception of

notifications of external events. Tnese problems are
handled by the summary flan and the Provision of a standard
"main". Thus, a programmer can produce code for a mrocess
without consiaeratlons of race conditions, critical areas,
etc. This is clearly of 9weat benefit in a security-
oriented system %hich is also production-oriented.

The only trap used in the system is the so-called "EMT"
trap, which is used by a process to make a Kernel call. The
occurence of a trap while in Kernel mode would indicate a
bug in the kernel code. In this case the Kernel halts the
machine. A trap other tnan the EKT trap while a process is
running indicates a oug in the code of the process. TVe
kernel handles this by causing the process to be re-entered
and restarted at a low virtual process address.

5.0 ThA Ca-a"111tu L14

The kernel maintains for each process a "capability list".
This is an array of records, called "capability slots". An
index into this array is called a "capability index". A
capability slot, if not empty, contains a "capability". A

capability names some "object" and describes an allowed
"access" to that object. Some examples:

a. A (statically defined) section of a disk is an
object. Peading and writing are the two important
accesses.

b. The central clock maintained by the kernel is an
ooJect. The only access which may be alven by a
capability to the clock is the ability to set the
clock. (Any process is allowed to read the clock
without having an explicit capability to do so.)

co A block of memory is an oblect. Reading and
writing are the two Important accesses.

11-13



he StC Communications Kernel August 1981

The capability'list for each process is maintained by the
kernel. Some capabilities are placed in the list by tne
superlinker at the time that the CPU memory image is

prepared, %hile other capabilities are placed In or removed
from the list in response to kernel calls. The Process lets
no access to its capability list, eitner read or write.

A capability serves not only to define wnat accesses a
process has to a given object; it serves to actually
identify that object. For exarple, suppose that one process
communicates with another process via a "queue", as
discussed further below. When enaueueinq information to the
other process, the process names the queue by giving tne

capability index to the capability AhiChc qives the Process'
access to its end of the queue.

As another example, suppose that a certain process Is to me
allowed to set the system clock. The superlinker control
file *ill contain lines instructina the superlinker to set
into the process' capability list a capability to set tne
clock. The superlinker control file, in the part descrihing
the capabilities which the process is to have, will contain
a line such as

clock capability on 12

This specifies that the process is to nave a capability to
set the system clock, located at index 12 Jn its capability
list. When the process makes the KSETTlME system call,
one of the parameters will be the number 12. In fact, the
call is

K-SETTIE(12, new-time)

then this call is made, the kernel will check slot number 12
of the process' capability list to see if it contain a
capability to set the clock. Since it does, the kernel will
do what the call asks it to do, namely to set the clock.
Note that the kernel does not search the capability list of
the process for a capability allowing the process to do what
it has asked to do.

If the process by mistake made the call
K-SETTIlM (13,new-time), the kernel will look in slot number
13 of the process' capability list. Since this slot does
not contain a capability to set the clock, the call will
fail. That is, the kernel will give the Process a return
indIcatino that the call tailed oecause of a "had
capability" - that is, the capability at the indicated
capability index was not what was required. Also, the clock
will not be set.

P-14



The SoC Communications ernel August 1'41

Notice tnat altnough the process cannot either read or *rite
its capaoility list, since that list is maintained entirely
by the kernel, the Process must know what is in eacn
capability slot. Capabilities are placeo in the capability
list of a process eitner statically oy tne suoerlinker, like
the capacility to set the cloCK, or else as a resilt of
kernel calls made by tile process, as in the case of tettinq
a data 0lOCK as descrioel below. Thus tne process can keep
track of the entries of its caparility list without in fact
being atle to read it.

t .0 L a..1@ LLLn~J.atlas

This section describes the major method of interProcess
communications unoer the SVC Kernel, namely the enoueieing
and dequeoeing of blocks. (Inere are other methods of
interprocess communications *nich are not described here.)

The Kernel maintains a pool of tree memory blocKs. These
are blocks of 12b bytes of Pemory (in our current
Implementations). The blocks are clear as kept in the free
pool. Ahen one process 4ishes to send a messaoe to another
process, the sequence of events is as follows:

a. The first process gets a clock, and writes
information in it.

o. Tne first process places the block on a nueue to
the second process.

c. The second process takes the block off the jueue
and reads the information from it.

a. The second Process returns tre blocK to the kernel,
whicn clears it and cuts it VacK in the free PCol.

In more detail, the steps are as follows:

The first process makes a KGETDATA-BbOCK kernel call. An
argument to this is a capability index. This Must be the
index to a currently empty capability slot. The kernel will
remove a block from the free pool and place a read-write
capability to the blOCK in the specified slot.

The process then makes a K-MAP call. This specifies the
capability index where the capability to the block is
located, and one of the orocess' virtual pages, which must
be unused. The kernel in response sets the memory
management hardware to make the block appear at the

P-15



The SDC Communications Kernel August 19d1

beginninq of that paae of the process' virtual address
space, qiving the process read *nd write access to the
block. This is called "manping -tre OlocK in".

The process cadr no* read ana wiite the block, usino
references Lo a data structure which is forced to reside at
the appropriate location in the process' virtual address
space.

Now, this sequence or operations is a natural pair: when a
process gets a data block, it will almost certainly want to
"map the blocK in" to access it. Thus, these two calls can
be comoined for greater efficency. Tnis is in fact what ha
been done. That is, the KGETnArA block call has
additional parameters which will allog the calling Process
to map the tlock in as part of the call.

The process then makes a KENQUEUF: call. The parameters
here are the capability index naming the block, and the
capability inoex naminq the enqueue end of the queue. (The
queue is defined, and the capability to the queue is given,
by tne superlinKer.) In response, the kernel removes the
capability to the hlock from the first process' capaoility
list, puts the block on the queue (which is maintained
entirely by the kernel), and unmaps the block, so that the
process no longer has access to it. It posts a notification
to the secona process that the queue has something on it,
and wakes the second process if it is asleep.

The second process makes a KDEQUEUE call. The parameters
here are a capability index to the dequeue end of the queue,
and a capability index to an unusec slot in its capability
list. The kernel removes the block from the queue, and puts
a capability to that block in the specified slot. The
normal sequence of events is that a receiving process will
first dequeue a block and then map It in, similiar to the
situation in the case of the K-GETDATABLOCK call.
Therefore the KDEQUEUE call has optional parameters by
which the calling process asks the kernel to map the
oequeued block in to a specified virtual page.

The second process can now read the data in the blOCK.

The second process finally makes a KRELFASEDATA_.LOCK
kernel call, specifying the capability Index at which the
capability referring to the block Is located. The kernel
removes the capabiiit', unmaps the block from the process'
virtual memory space, clears the block and returns it to the

free pool.

The above description is one of the simplest of the

P -16



The SDC Communications Kernel Auiust 19l1

interprocess communications nechanisms provided by the SOC
kernel. one of the more interestinq variations Is the
ability ot the kernel to regulate %rite-access by a rrocess
to the contents of a block on a basis of a finer aranularity
than the whole vloCK itself.

This facility might be useful if there were a process that
should be allowed to modify certain fields In a nlock, but
not other fields. It might be the case that some process
receives a block from another via a queue, and should be
allowed to modify a "header" field witnin the block, but no
other part of the olock.

This can be achieved in tne SDC Kernel as follows: Special
instructions are placed in the superlinker control file.
These instructions Include a specification (nam-ely, a bit-
mask) of which bytes of the blOcKS dequeued from a certain
queue tne process in question is to be able to alter. The
superlinKer then configures the kernel's tables in a special
way. Now when the process dequeues a olock from the qijeue
in question, the process gets a read-only caoability to the
block. 4hen the process uses the 1<-MAP call to "map the
block in", the kernel sets the hardware mappina registers so
that the process gets only read-access to the block. The
process sets the fields it is permitted to set by maKing a
K-WRITEBLUCK call. The parameters to this call are the
capability index to the block, alona with (the address of) a
buffer of 12R bytes in the Process' data space. The kernel
will then copy from that buffer to the block those bytes
which are indicated by the bit-mask supplied to the
superlinKer by the superlinker control file.

This kind of fine-granularity control must be implemented by
the Kernel software, since the 11/70 memory nanagement
hardware does not have the necessary capabilities.

7.0 Slat

The Kernel maintains a 48-bit "fast" clock which is
incremented every 10 microseconds, usina the DFC KW11-P
clock device. This can be read by a process, using the
K-GETTIME kernel call.

The kernel also maintains for each process a "slow" clock.
This is a counter in the orocess' communications block which

is incremented every half-second. Hy setting variables in
its communications block, a process can arrange for the
kernel to give it (the process) an "alarm" notification
after a specified number of half-second ticks.

P-17



The SVC Communications Kernel Auqust 19HI

By using the slow clock and the associated alarr mechanism,
a process can implement any sort of tacilities for
maintaining multiple ndmed timers, as it chooses. Note that
using toe slow clock and the alarm mechanism do not require
system calls. The associated system overhead is thus quite
low.

The kernel allocates time amona processes by time slicinj at
one-tenth second intervals.

8.*0 1"aMPAtjaus ara4 imuLt

The SDC kernel has so far been implemented on the PDP 11/70,
11/34, 11/23 and 11/03. (The 11/23 and 11/03
implementations are modifications: the 11/23 version allows
interrupts, while the 11/03 version is more properly viewed
as a kernel emulator.)

The code is written in a modified version of Pascal, as used
in the UCLA Kernel, with small amounts of assembly language.

The 11/70 version of the code comprises approximately 2500
Pascal statements, including drivers for the DHI, DL11,
RX01, RP05, TEi6, and other devices. This becomes
approximately 30000 bytes of instructions. (Total Kernel
size, including all tables, is extremely dependent on the
system being configured: the number of processes, the sizes
of their capability lists, the number of queues, etc.)

The times required for some kernel calls is shown below.

P-18



The SDC Communications Kernel Auqust 1981

11/70 11/34

K.GE'fTIME 0.b1 1.8 milliseconds
(Read fast clock.)

GETDATA-hI,nCK 1.5 o.7 milliseconds
(Get nlock and

map, it in.)

KENQUtUF 1.7 3.1 milliseconds
(Put block on
queue.)

K-U UE1JF 1.9 3.5 milliseconds
(Get block oft
queue and mao
it in.)

KRELEASEDAIAFiLOCK 2.0 4.4 milliseconds
(Clear block and
return to pool.)

The only one of these calls which has an equivalent in the
Unix system is toe KGETTIME call. The Unix "time" system
call takes .31 milliseconds on the 11/70. 13)

We can use these numbers to get estimates of the bandwidth
of the enqueue/dequeue interprocess comiunication path under
several assumptions.

First of all, consider the following situation:

I I I I I I

I A I ------- > b I ------ >1 C I
SII I I

Here, we are supposing that the blocks are Prepared by At
processed by B, and consumed and released oy C. he total
Kernel call overnead associated with B receiving and
transmitting one 128-byte block is

E31 All times discussed below will be for the
11/70, unless specified otherwise.

P-19

It



The SUC Comf, unications Kernel August 1941

time tor KUFQIUEU 1.9 Irs
Cime for K-KN.UEUE 1.7 ms

total 3.b m's

This corresponds to a throughput of about 35K bytes per
second.

A secona situation is the following:

I I I I

I A I ------ > I- I
I I I I

Here, we suppose that A 4ets a block, orepares a message,
and enqueues the block to b. b dequeues the messa4e, reads
it, and then releases the block. The total Kernal call time
per 128-byte block here is

time for hGLE'_DArA-..LOCK 1.5 ms
time for FEvvUEUE 1.7 ms
time for K-DEVIJEUr. 1.9 ms
time for KELEASE-DATA-BLOCK 2.0 ms

total 7.1 ms

This corresponds to a throughput of about IRK bytes per
second.

1his calculation does not allow for the time necessary to
switcn processes so as to allow A and B to both run, and
thus may seem unduly optimistic. However, it is actually
quite realistic. When a system is heavily loaded, as is the
case of interest for throughput calculations, process A
would typically have a number of external events to process
when It wakes up. A will then Process all of these events,
producing a number of blocks which it enqueues to H, before
it (A) goes to sleep, letting B run. 6 then will process all
these input blocks at one scheduling. Thus the time
required to switcn from A to B is divided among this number
of blocks, and so does not greatly affect the throughput.

The time required to switch processes is, however, of some
interest. The experiment

P-20



The SIC Communications Kernel August 1981

I I I I

I A I ------ >1 I

I I I I

was re-run in such a way as to force h to be scheduled every

time A sent one block. The following figure shows the times

used to send one block, Note that both processes used the
standard "main"; the test did not separate out the time in
main from the time actually in the kernel.

< ----- Process A ----- > < ----- Process B ----- >

Enqueue Kernel Dequeue
I I I

Get I Exit I Enter I Release
block I main I main I block

V V V V V V V
I ... ... .... .. I.... .. ---.... .... I ------- I ------- .. .. .

< 1.5 > < 1.7 > < --------- 10 ------ .. > < 1.9 > < 2.0 >

< --------..--------------- 17 -------.................... >

This shows a worst-case time of 17 milliseconds for a 128-
byte DlOCK. This corresponds to a throughput of 7.5K bytes
per second.

It should be remembered that these throughputs are based on
the use ot 128-byte blocks, as in our current
implementations. The use of larger blocks would be a minor
change, and would result in proportionally larger
bandwidths, since kernel call times are independent of the
size of the block. [4] For example, if 256-byte blocks were
Used, the throughputs above would nearly double, giving
values of 70K, 36K, and 15K bytes per second.

In considering these speeds and throuahputs, it should also
be pointed out that the SDC Kernel, although It has been in
use for some time, has not been extensively worked over to
increase its speed. Effort in this area would undoubtedly
pay off.

(4] Oith the exception of the KRE6EASEDATABLOCK
call.

P-21



The SDC Communications Kernel Auust 1qRI

In comparison, the throuqhput of a Unix pipe, on an
otherwise-idle 11/70, is about 25K bytes per second. This
is the rate when a sending Process sends in units of 128
bytes. Increasinq the send unit to 1280 bytes leaves the
throughput rate approximately unchanged.

9 .0U aid.l QL Se"LcS.-

The SDC kernel does not attempt to deal with denial-of-
service threats. That is, a malicious process could cause
CPU usefulness to be so degraded that the CPH could Perform
no useful work. For example, a process could (potentially
out improbably) get and Keep a large numoer of blocks.
(This threat is somewhat limited: a process cannot get more
01OCKS than It has slots in Its capaoility list. This is a
per-process parameter in the superlinKer control file.)

Facilities could be added to the SDC kernel to address some
denial-of-service issues, out it should be pointed out that
it is consistent with tne objects of the SDC kernel not to
worry about denial-of-servlce issues. The reason Is that
there are no "optional" processes in a communlcations
processor of the kind that the kernel was constructed to
support. That is, the correct tunctioninu of each process
is necessary for the system to provide correct service. If
any process is not Performing its tasKs correctly, service
will be denied, and the Kernel cannot do anythina about it.
However, security is preserved regardless of service
denials.

10.0 CU.LL&=L £Lta

The SOC Kernel was coded several years aqo. It Is currpntly
operational for the Ueoartment of Defense on a runher of
CPUs functioninq as special comTunications controllers and
networK front ends tor ARPANE-liKe racket network terminal
and host interfaces, Uur experience so tar shows that the
resulting system provides throughput whicn Is competitive
witn other systems not usInq a Kernelized arcritectore.

11-22



The SDC Communications Kernel Auaust 1981

11.0 2a.aLa.nCa

Kampe, m., et al. The UCLA Data Secure Operatin System.
Tech. Rep., UCLA, July 1977.

PopeK,G., and Farber, D. A Model for Verification of Pata
Security in Coerating Systems. Comm. ACY, 21 9 (Sept 1979)
737-749. (Contains other pertinant references.)

Walton, E. The UCLA Kernel. Master's Th., Comptr. Sdc.
Dept., UCLA, 1975.

I1-2 3



THE SDC COMMUNICATIONS KERNEL

* AIMED AT SUPPORTING SECURE COMMUNICATIONS APPLICATIONS:

- FRONT-ENDS

- TERMINAL ACCESS SYSTEMS

- ETC.

* TYPICAL PROCESSES RUNNING SUPPORTED BY THE KERNEL WOULD BE
COMMUNICATIONS PROTOCOLS, ETC:

- TCP

- IP

* SUBJECTS OF THIS TALK:

- SECURITY POLICY

- SOME KERNEL MECHANISMS

- CURRENT STATUS AND RESULTS

System Devulopm-nt Carpor-tion

FEATURES

GENERAL "KERNEL" FEATURES:

" MINIMAL OPERATING SYSTEM, PROVIDES

- PROCESS ENVIRONMENT

- SCHEDULING
- HARDWARE OPERATION

- DEVICE DRIVERS
- INTERRUPT HANDLING

" NON-INTERRUPTABLE

" INTENDED TO BE VERIFIABLE

" CAPABILITY-BASED

Syste DuvmInwt Corwrartion

. . . : ' " ' - . . . i r " .. . . .. . . . . . . . .. . . . . . . ..- 2i



FEATURES (Cont'd)

SPECIALIZED FOR COMMUNICATIONS ENVIRONMENT

I NO DYNAMIC CREATION OF PROCESSES

* NO SWAPPING

o EXTENSIVE INTERPROCESS COMMUNICATIONS FACILITIES

I SECURITY POLICY

HUMAN DECIDES -NEED TO KNOW AMONG PROCESSES WHEN LOAD
IMAGE IS BUILT

ALLOWABLE INTERPROCESS PATHS SPECIFIED BY HUMAN WHEN
LOAD IMAGE IS BUILT

KERNEL SUPPLIES AND REGULATES INTERPROCESS COMMUNICATIONS
PATHS AS SPECIFIED

KERNEL DOES NOT DISTINGUISH BETWEEN TRUSTED AND
'UNTRUSTED PROCESSES, ALTHOUGH HUMAN MAY

KERNEL DOES NOT KNOW ANYTHING ABOUT SECURITY POLICIES SUCH
AS THE "STAR PROPERTY'

system Deveioplt Corporation

A TYPICAL APPLICATION

UNC SIFED CMASIDEMEX

S-- -O--- - - -
LINE DRIVER

(PART OF THE KERNEL)

TELNEET TELNET
IA PROCESS) {A PROCESSi

iA PROCESS) IA PROCESS,

SNET DRIVER

EDGE OF CPU 'PART OF THE

~KERNLI

TO NET

ofv- m IF Inmt 1-'CIIwk

Ills--



HOW THE HUMAN SPECIFIES
COMMUNICATION PATHS

tPlacing into the kernel his decisions about need to communicate
among the processes)

0THE SUPERLINKER CONTROL FILE

SAMPLE SITUATION:

PROCESSES A, B. C, D

"QUEUES 'X. Y

rayste Duveiapmurt Corporation

HOWe. THA U A PCFE

p,-... .. A 05 O 0

coda
ab obt

.. q,,-. acc... to q....a V

code

Sys- Ckallpevii Coprto



SUPERLINKER FUNCTION
OJECT~ ~~1- C"1" OCTAKES UPSINEof PO~CEssEs SESS WITS TAKE|S CO TILE

* ofu.TLSIIZEo

S .... * ..... T xo
TO'SSLISES sSOsSM 510055

-f-TAKESLO

-(me 1 ....
CO AItS TAES LIKE N C

WH T F UG OES 0OEVLOMEMT SESXT

SOW RSI*IAEOI

* iNITIALIZED TABLES TELL THE KERNEL

WHAT PROC;ESSES iEXIST

WHAT QUEUES EXIST
WHAT PROCESSES HAVE ACCESS TO WHAT QUEUES.

ETC ETC

S SUPERLINKER AND OTHER SYSTEM-BUILD UTILITIES TRUSTED IN SAME
SENSE AS COMPLIER

syutuni -iw7oprntrj Corpoutm

THE BOTTOM LINE

HUMANS ARE RESPONSIBLE FOR:

0 DESIGNING SYSTEM

0 DECIDING WHICH PROCESSES MUST BE TRUSTED
(i.e. BY THE HUMAN, NOT THE KERNEL)

* APPROPRIATELY VERIFYING (OR?) THESE PROCESSES

* WRITING THE SUPERLINKER CONTROL FILE

KERNEL IS RESPONSIBLE FOR

ALLOWING PRECISELY THE INTERPROCESS COMMUNICATIONS SPECIFIED
BY THE SUPERLINKER CONTROL FILE

* THE KERNEL DOES NOT ITSELF IMPLEMENT ANY PARTICULAR
SECURITY POLICY ("STAR PROPERTY" OR. I.

" THE KERNEL HAS NO NOTION OF "TRUSTED" OR "NONTRUSTED" PROCESSES.
(CERTAIN PROCESSES MAY BE TRUSTED BY THE HUMAN.)

* THE KERNEL DOES NOT PROTECT AGAINST "DENIAL-OF-SERVICE" THREATS.
Sysrt Ckwvaiopmrt Corpormati

1'-21

66- .



PROCESS STATES

ASLEEP: THE PROCESS HAS NOTHING TO DO AND GETS NO
CPU TIME UNTIL SOME EVENT EXTERNAL TO THE
PROCESS CAUSES THE KERNEL TO AWAKEN THE PROCESS

AWAKE: THE PROCESS WILL GET CPU TIME.
THE AVAILABLE CPU TIME IS ALLOCATED AMONG
ALL THE AWAKE PROCESSES IN A ROUND-ROBIN
FASHION, IN 1/1O-TH SECOND SLICES

ASLEEP

PROCESS MAKES EVENT EXTERNAL TO
K SLEEP SYSTEM PROCESS ARRIVES TO
CALL BE PROCESSED

AWAKE I

Sy-tem Oevukopent CatPoration

PROCESS VIRTUAL ADDRESS SPACE
(IN A PDP 11/34)

177777181
COMMUNICATIONS PROVIDES COMMUNICATIONS

PAGE 7 BLOCK BETWEEN THE PROCESS AND THE
("COMM BLOCK-1 THE KERNEL

160000181

PAGE 6 "MAPPABLE"
140000MS) PAGES NOT USED FOR LIBRARY

PROCESS CODE OR DATA. OR THE
PAGE 5 "MAPPABLE" COMMUNICATIONS BLOCK. ARE

S"MAPPABLE PAGES THERE ARE AT
12000081 MOST THREE OF THESE

PAGE 4 "MAPPABLE'

10000018

PAGE 3 CODE AND DATA

6000018) PROCESS' CODE AND DATA
PAGE 2 CODE AND DATA OCCUPY AT LEAST THREE

PAGES • MORE IF THE PROCESS
40000(B) IS LARGE

PAGE 1 CODE AND DATA

2000018) PROCESS GETS READ ONLY ACCESS
TO COMMON LIBRARY SUBROUTINES

PAGE 0 LIBRARYJ (FOR EXAMPLE. SUBROUTINE TO
000 CONVERT MACHINE TIME TO HUMANDATE AND TIME)

Sywt-" CM-mk mwr Ccrpcrv

II1 ... ... .. I r nm ~ m . . . .. .'2-



KERNEL-TO-PROCESS COMMUNICATIONS
(11 BEFORE EXTERNAL EVENT

COMM COMM SUMMARY FALSE
BLOCK COMM TYPE a EVENT = FALSE

[c7•1 PROCESS EXECUTING. PROCESSING

[ SOME PREVIOUS EVENT

(2) EVENT OF TYPE a, EXTERNAL TO THE PROCESS, OCCURS

KERNEL SETS COMM COMM.SUMMARY - TRUE
VARIABLES BLOCK COMM TYPE a EVENT - TRUEIF PROCESS

WERE ASLEEP.
KERNEL WOULD
AWAKEN IT. " PROCESS CONTINUES EXECUTING,

: : • UNDISTURBED

(31 PROCESS LOOKS AT ITS COMM BLOCK
PROCESS FINISHES PROCESSINGCOMM PREVIOUS EVENT. LOOKS AT COMMBLOCK BLOCK. CLEARS VARIABLES

COMM.SUMMARY = FALSE
COMM.TYPE a EVENT = FALSE

• 0 AND BEGINS PROCESSING THE
NEW EVENT

Svyem Deveklopmen CoratKo- n

PROCESS TOP-LEVEL LOOP

-- NT O -- R IEINA

PROCEDURE MAIN
BEGIN

INITIALIZE
WHILE (TRUE) 00
BEGIN

COMM SUMMARY FALSE
WHILE ITHERE ARE UNPROCESSED EXTERNAL EVENISI DO
BEGIN

IF COMM TYPE e EViNTI POCESS
IF ICOMM TYPE b EVENT) PROCESS b

IND
K SLEEP

END
END

IF (:0MM SUMMARY IS TRUE WHEN THE K SLEEP CALL IS MADE THE PROCESS DOES
NOT ACTUALLY SLEEP THE K SLEEP CALL RETURNS IMMEDIATELY

Sstem Oevuipu Corlxxatn

P -29



INTERPROCESS COMMUNICATIONS BY QUEUES

x
A B

STEPS:

1. PROCESS A MAKES K - GET -- DATA- BLOCK KERNEL CALL TO GET A
BLOCK FROM THE CPU-WIDE FREE POOL.
PROCESS A WRi rES MESSAGE IN THE BLOCK.

2. PROCESS A MAKES K- ENQUEUE KERNEL CALL TO PLACE THE
BLOCK ON THE QUEUE.
PROCESS A LOOSES ALL ACCESS TO THE BLOCK.
THE KERNEL MAINTAINS THE QUEUE.

3. PROCESS B MAKES K-- DEQUEUE KERNEL CALL TO GET THE

BLOCK FROM THE QUEUE.

PROCESS B READS THE MESSAGE.

4. PROCESS B MAKES K-RELEASE- DATA-BLOCK KERNEL CALL.
PROCESS B LOOSES ALL ACCESS TO THE BLOCK. THE KERNEL
CLEARS THE BLOCK AND RETURNS IT TO THE FREE QUEUE.

System Doveiawnmt Caor-to

ACCESSING A BLOCK
SUPPOSE: PROCESS HAS GOTTEN A BLOCK

CAPABILITY REFERRING TO BLOCK SPECIFIED BY SOME INDEX.
SAY 17

PROCESS: K MAP(17,140000(8));

17" SPECIFIES BLOCK

'140000(8) SPECIFIES ONE OF THE PAGES OF THE
PROCESS' VIRTUAL ADDRESS SPACE

KERNEL: IN RESPONSE TO THE CALL, SETS HARDWARE MAPPING REGISTERS
OF THE PROCESS SO THAT

160000(8)
PAGE 6

140000(8) -

128 BYTES OF THE 128-BYTE
VIRTUAL ADDRESS REFERS TO BLOCK
SPACE AT 140000(8)

NOTE: SOMEWHAT DEPENDENT ON POP 11 MEMORY- MANAGEMENT SCHEME

BUT: HAS BEEN EMULATED ON 11 /03t'
System Devea*wnent Corporation

a - -



PROCESS PROGRAMMER'S SETTING

STANDARD "MAIN" PROVIDED TO EVERY PROGRAMMER

PROGRAMMER WRITES THE PROGRAM UNITS CALLED FROM MAIN:

INITIALIZE (INITIALIZE PROCESS)

PROCESS -a (PROCESS EXTERNAL EVENTS OF TYPE a)

PROCESS -b (PROCESS EXTERNAL EVENTS OF TYPE b)

PROGRAMMER'S CODE IS NEVER (LOGICALLY) INTERRUPTED. THE PROGRAMMER
DOES NOT HAVE TO DEAL WITH RACE CONDITIONS, ETC

THE PROGRAMMER'S CODE MAKES KERNEL CALLS DIRECTLY. THERE IS NO
ATTEMPT TO PROVIDE A FAMILIAR PROCESS ENVIRONMENT, SUCH AS A
"UNIX EMULATOR"

THE PROGRAMMER MUST HAVE SOME UNDERSTANDING OF MEMORY
MANAGEMENT IN ORDER TO USE THE INTERPROCESS COMMUNICATIONS
MECHANISMS

System Develkopent Cor ation

STATUS
WRITTEN IN MODIFIED PASCAL.

NOT FORMALLY SPECIFIED

INTENDED TO BE "VERIFIABLE"

VERSIONS FOR

POP 11/70
POP 11/34
PDP 11/23 (INTERRUPTABLE)
PDP 11)03 IKERNEL 'EMULATOR")

SIZE

11/70 VERSION. INCLUDES DRIVERS FOR
DH. DL ISERIAL LINE INTERFACES)
RP (DISK)
RX (FLOPPIES)
TE (TAPE)
AND MORE

-2500 PASCAL STATEMENTS
-30.000 BYTES OF CODE

DATA SPACE SIZE EXTREMELY DEPENDENT ON THE NATURE OF THE SYSTEM
NUMBER OF PROCESSES. QUEUES. ETC

IN USE SUPPORTING FRONT ENDS. ETC, FOR A SPECIAL DoD ARPANET LIKE SYSTEM
System Onvwpmit Carpmution

!,- 1



INDIVIDUAL CALL TIMINGS
ALL TIMES IN MILLISECONDS

11/34 11/70 11/70
UNIX

K GET TIME 1.8 0.81 0.31
K GET DATA- BLOCK 2.7 1.5
K ENQUEUE 3.1 1.7
K -DEQUEUE 3.5 1.9
K -RELEASE -- DATA BLOCK 4.4 2.0

KERNEL CALL TIME TOSEND ONE 128-BYTE DATA BLOCK

11/34 11/70 11i70
UNIX

K GET DATA BLOCK 2 7 1 5
K ENQUEUE 3 1 1 7
K DEOUEUE 3 5 1 9
K RELEASE DATA BLOCK 4 4 2 0

13.7 7 1

DEDUCED BANDWIDTH IBYTES/SEC 9.3K 18K - 25K IPIPEI

KERNEL BANDWIDTH WOULD INCREASE PROPORTIONALLY IF BLOCK SIZE WERE
INCREASED PAST 128

UNIX PIPE BANDWIDTH SAME IF READS AND WRITES WERE DONE IN UNITS OF
1280 BYTES INSTEAD OF 128

System Oevelopmet CorporF t

SCHEDULING SPEED

AB

4 PROCESS A - - PR
n LSS B -

ENOUEUE KERNEL DEQUEUE

GET EXIT ENTER RELEASE
BLOCK MAIN MAIN BLOCK

41.5-- 4- 1.7-- 4 - 10 -4 1 9-a. 4-20--

17 -

IALL TIMES FOm 11/70. IN MILLISECONDS)

Syestn O vukiopmvt C-,poratlm

Mim



SUMMARY

* OPERATIONAL FOR A NUMBER OF YEARS

* HOPEFULLY VERIFIABLE OPERATING SYSTEM KERNEL.

* REASONABLE SPEED IN CLASSIFIED DoD APPLICATIONS,
COMPETITIVE WITH NON-KERNEL SYSTEMS.

o REASONABLY HOSPITABLE ENVIRONMENT FOR A
COMMUNICATIONS SYSTEM

syste- Oevekenwit Corporataa,

p--'}



MITRE IR&D
Project 95130

Secure Packet Switch

Chris Fliswri
Tho MITRE Corporat ior,

Motivation

* Survey of Commercial Architectures
* Exploration of Multiprocessor Machines and the Impact of

Security Kernels on Them
* Impact of Multiprocessors on Security Kernels

Problem

" Verification of Large Amounts of Software
* Performance Overhead of the Security Kernel
* Economics of Minicomputer Based Switch

* Survivability of Few Node Network

4N- I(, -I



Approach

* Functional Partitioning of Packet Switching Tasks

* Assignment of One Processor per Function

e Interprocessor Communication Minimized

a Processors that Handle More Than One Packet
Simultaneously Will Have Their Code Verified

e Most Processors Handle One Packet at a Time and Then
Have Their Memory Scrubbed Before Handling the Next
Packet

* The Functional Partitioning and Communication Limitations
Enforce the Security Policy

- Modular Node with Many Microprocessors Ensures
Survivability at Lower Cost

Model Switch

To/From TolFrom
Hosts Network

Control Control Host Host Network Network
aod Pod Pod Pod Pod Pod

Switch
Control
Bus

..... _ Packet
Data
Bus



To/From iTo/From
Hosts Ntwork L

Switch
HI HI f I IControlM~JU 41A LI] LiiBus
II IIPacket
II Data

Bus

~..,~*,..,.Network Pod

Contro Co-- -- -- -- -- -- -- - - 4"

r POesso

Input



Host Pod

Pod Packet
a18 Output Leade cnp

* Prcessr * Processor

--- --- -- --- --- -- -------
ItI

Iute Ele n Butter

Swich---------------------------

___________ actck

PrCS or -m o Poc s

Po Is -

. .. .. C o n tn pBu t e
Element

SwichContro Pod .::
p p

jd ---------

p p-

- .. I, -

C 0rIr 1.r

(S S S( 8r,,
p"rr

oul1-4

B*lf.

Flu



Control

oProgram
c Store

* (RAM) Internal Packet Pce

2 { Variables
(RAM)

Status IOOtu

0 PLA Programmable Logic Array
Packet Header Scan Processor

Network Pod

Slow. rIFO bnp.l
WOtA p,

SInpu; DIOA

J 10 H. d.,rl..~
p IROM,F

Pod 041

______ L 1 _.1
SI-1

YOOotip. I

(RM) PLPPorambl ogcAra

Output Sutr(adm

Network Pod

0- 1)



Microprocessor Usage

" Microprocessors Per Pod

- Network Pod: 9
- Host Pod: 10
- Control Pod: 15

* There Are Only Four Classes of Processor

- Packet Processor
- Packet Buffer

- Control Elements

- Fake Hosts

Microprocessor Usage, Continued

* Microprocessors for an Arpanet Style Packet Switch

Node

- 4 Trunk Lines

- 4 Host Lines

Translates To

- 6 Network Pods - 6 x 9 = 54 Microprocessors

- 6 Host Pods - 6 x 10 - 60 Microprocessors

- 2 Control Pods - 2 x 15 = 30 Microprocessors

Total 144 Microprocessors



Open Technical Issues

* Serial Bus or Parallel Bus

* 16/32 Bit Bus (Motorola VersaBus, Zilog Z-Bus,
Intel Multibus)

* Performance as Function of Load for Various Access
Protocols (e.g., Polling, Contention, TDMA)

* Bus Choice Must Satisfy Requirements for Control,
Addressing, and Data Transfer

Conclusions

* The Design is Feasible

e The Design Benefits from AUTODIN II Experience

* The Design is a Hardware Casting of the Trusted
Computing Base

e The Design Has Less Software to Verify than a
Comparable Switch

* Special Purpose Multi-Microprocessor Switches Have Been
Built Commercially



EXPERIENCE WITH KVM

SYSTEM DEVELOPMENT CORPORAT ION
SANTA MONICA, CALIFORNIA

System Development Corporation

*KVM IS A GENERAL USE SYSTEM

*KVM IS DESIGNED FOR LEVEL 4 CERTIFICATION

KVMARCHITECTURAL STATUS

*KVM OPERATIONAL STATUS

System Development Corporation



KVM IS A COMPLETE SYSTEM

C* CM PA T I BLE W ITH POPULAR UNMODIFIED
O PE R ATING SY S TEM S

0 /S DO0S

C MS M VS
M VT E TC.

OS UP POR TS E X IST ING A P PL ICAT ION S

FORTRAN JOVIAL

P L /I A^-SSE M PL ER

T E XT ED ITO RS DATA MANAGEMENT SYSTEMS

System Dmvlapment Corporation

KVM IS DESIGNED FOR LEVEL 4 CERTIFICATION

KERNELIZED ARCHITECTURE

* ENFORCES DoD SECURITY POLICY

* FORMAL VERIFIED SPEC IFICAT IONS

* CORRESPONDENCE BETWEEN SPECIFICATI ONS
AND CODE

System Onwelopment Corporation

INE



KERNELI ZED ARCH I TECTURE

* KERNEL & TRUSTED PROCESSES

- FORMALLY SPECIFIED AND VERIFIED

- INTERPRET & ENFORCE SECURITY POLICY

0 AUDITED GLOBAL PROCESSES

C CONTROL SHARED SYSTEM RESOURCES

- CONFI NED AND UNPRIVI LEGED

NON KERNEL CONTROL PROGRAM

- SUPPORTS USER VIRTUAL MACHINES

- REENTRANT,UNPRIVI LEGED, UNTRUSTED

System Development Corporation

v1370 ARCHI TECTURE

VM/370 CPI

Problem Virtual Real1

State Superv isor Supe rvisor
State State

System Development Corpormtion



KVM' ill) ARCHI 111 ( ThlI

PM

SCIII DATA F R

V M RI vi ViV ii vi

NXCP 2 S4R1(C37

VMMn

NKR 
-/



KVM ENFORCES DoD SECURITY POLICY

0 MANDATORY

4 HIERARCHICAL LEVELS + 62 COMPARTMENTS

DISCRETIONARY

ACCESS CONTROL LISTS + PASSWORDS

* MULTI-LEVEL ACCESS TO MINIDISKS

System Oevelopment Corporation

VERIFIED FORMAL SPECIFICATIONS

0 SPECIFICATIONS WRITTEN IN INA JO T FOR

ALL TRUSTED CODE

0 VERIFIED TOP LEVEL SPECIFICATIONS

- 780 LINES OF SPECIFICATIONS

- 494 PAGES OF PROOF EVIDENCE

VERIFIED SECOND LEVEL SPECIFICATIONS

- 2,910 LINES OF SPECIFICATIONS

- PROOFS ARE IN PROGRESS

System Oevelopment Corporation

R -5



SPECIFI CATI ON-TO-CODE CORRESPONDENCE

1, MAP INA JO CONSTANTS & VARIABLES TO JOVIAL DATA,

2, MAP INAJOTRANSFORMS TO JOVIAL PROCEDURES,

3. MAP INA JO ASSERTIONS TO JOVIAL SECURITY CHECKS.

4, MAP INA JO TRANSITIONS TO JOVIAL ASSIGNMENT

STATEMENTS.

5. RESOLVE DISCREPANCIES.

6. VERIFY ALL SECURITY CHECKS ARE PERFORMED BEFORE

ANY ASSIGNMENTS ARE MADE.

7. AUDIT UNMAPPED SOURCE CODE FOR SECURITY-RELEVANT
CODE.

System Development Corporation

ARCHITECTURAL STAT ISTI CS

VM/3 70 REL 3 PLC 15

13 MODULES 130,000 LINES ASSEMBLER CODE

FUNCTIONAL AREA MODULES TOTAL LINES

C0MP00LS 47 3,139 JOVIAL

KERNELS 10/ 11.590 JOVIAL/ASMB

AUTHORIZATION 32 3,637 JOVIAL

*ACCOUNTING 2 204 JOVIAL

* OPERATOR 22 2,017 JOVIAL AS'

UPDATER 3 214

- TRUSTED 213 20,821

NKCP 116 12 ,754

GLOBAL PROCESSES _20 17-230

- UNTRUSTED 126 14 ,qR4

* UNDER DEVELOPMENT

System Development Corporatlon

.t 0000



KV M AR C HIT E CT UR AL S TAT US

K VM I MP LE ME NT S

MESSAGE PROTOCOL DRIVEN SYSTEM

INTERNAL COMMUNICATION

MULTI-LEVEL RELATIONAL DBMS

- USER,DEVICE, PROFILE DIRECTORIES

CAPABILITY BASED SYSTEM

- ACCESS PERMITTED ONLY IF USER HAS A "GPANT"

0 ABSTRACT DATA TYPE MONITORS

NO CENTRAL SYSTEM TABLES

System Oevelopment Corporation

KVM OPERATIONAL STATUS

0 UNDERGOING FORMAL DETAILED SYSTEM TESTING

- SYSTEM DEVELOPMENT CORPORATION IBM 4331-II

- NAVAL AIR TEST CENTER,AMDAHL V7/A

* IN PROGRESS & CONTINUING NEXT 12 MONTHS WITH

NEW FEATURES

system onvelopment Corpormion

R-7



-7-

OPERATI ONAL PERFORMANCE

* CONTRACTUAL MEASUREMENT TASK

* ESTABLISH MEANINGFUL BENCHMARKS

* CONTRAST THROUGHPUT OF VM vs KVM

System Development Corporation

PE RFORMA!CE FXPERIM FIM TS

/

KvM

System Oevulopnient Corporetion

... . . . . . . . .i . k- ':- - - " .:' , .' -.. -,



* KVM IS A COMPLETE GENERAL USE SYSTEM

* KVM WILL BE A LEVEL-4 SYSTEM

* WE CAN LEARN ABOUT KVM WHILE USING KVM

System Oevelopment Corporatlon

R-~)

- iniin.... -



SCOMP (KSOS4)
DEVELOPMENT EXPERIENCE UPDATE
LESTER FRAIM
HONEYWELL
FEDERAL SYSTEMS OPERATION
AUGUST 12. 1981

Honeywell

TOPICS
* PROJECT OBJECTIVES
* HARDWARE DESIGN OVERVIEW
" SOFTWARE DESIGN OVERVIEW
" PERFORMANCE EXPERIENCE
" VERIFICATION EXPERIENCE

Ihone)'wol!

I- I I

PROJECT SUPPORT
NAVELEX

KERNEL AND HARDWARE D[VELOPMFNT
TRUSTED SOFTWARE
TCP

HONEYWELL
KERNEl INTERFACf PACKAGE
1822 IMPLEMENTA lION
HARDWARE PRODUCT DEVELOPMENT

Honeywell

5-I



PROGRAM OBJECTES
* DEVELOP ADDON HARDWARE TO COMMERCIAL

LEVEL 6 WHICH MAKES IT EASIER TO BUILD
SECURE SYSTEMS

* DEVELOP TRUSTED COMPUTER BASE
(TCB) SOFTWARE

ENFORCES DOD SECURITY POLICY
FORMALLY PROVABLE (TLS ONLY)

SUPPORTS VARIOUS APPLICATIONS
* DOD CERTIFICATION
* DEVELOP THE SCOMP PRODUCT

PO"ENTIAL APPLICATIONS
* FREESTANDING TIME SHARING SYSTEM
* GUARD' BETWEEN TWO NETWORKS AT DIFFERENT

SECURITY LEVELS
* SECURE NETWORK FRONT END
* SECURE DATA BASE MACHINE
* MILITARY MESSAGE SWITCH
* SECURE WORD PROCESSOR

Honeywell

SCOMP HARDWARE BASE
* LEVEL6MINICOMPUTER
* SECUR'Tv PROTECTION MODULE fSPM)

V VIRTLAL MEMORY INTERFACE UNIT VMIU)
S18&2ACLA ,JNEA APTER

* STANDARD LEYEL6 PERIPHERALS



SPM + LEVEL 6 MINICOMPUTER = SCOMP

SECURITY PROTECTION MODULE FEATURES
0 F A.',I Iio( I' S .;WIICHIN(,

I'H(I.f! E- I)t ,( HIPT()R Ti! F Df FINITION VIA DESCRIPTOR

A 'TI- ' )I
AI I ) I (A!)! )f Dl SCRIPTI )HS

S1 3 LE V- I Mi MOIRY DESCRIPi O1 ',YSTEM
I.VW F C1WROI AT ANY I F VFL
!¢FC;MI Nl' 21' WO)|!DSI'£1
I PAGf '; N:'WOD,;

1 )Mf IlA I I'N

D;fVIA (pliu VIC
DJEVICIi I( F- MIII!)'

* MU! F1(; IlIki 1lr116 SF;I|IF FIIRl
2 PIlIVI (il I). NI'(N PllVI F GE l FINGS

READ. W ! f. EX CUTf. AND CAI 1 BRACKf ',
RING CRO'IN; S;IPP( )HT INS!! ! CTIONS

* PA(I F AlII E! t (F'VFRY SIIPPOPI

KSOS-6 SOFTWARE
* SECURITY KERNEL

* TRUSTED S)FTWARE
* SCOMP KERNEL INTERFACE PACKAGE

" TRANSMISSION CONTROL PROTOCOL (TCR

Honeyw ,II



SYSTEM DESIGN
* NON-FILE SYSTEM I/O OUTSIDE KERNEL
* FILES CONSTRUCTED EXTERNALLY USING

SEGMENTS
* DEMAND PAGING VIRTUAL MEMORY

* NON-DISCRETIONARY ACCESS CONTROL
BELL AND LaPADULA

PRIVILEGE
- ACCESS ATTRIBUTES NOT FIXED

Iton e,', ,eII

SYSTEM DESIGN (CONT)
* DISCRETIONARY ACCESS CONTROL

UNIX R, W, E FOR OWNER GROUP. OTHER
- RING BRACKETS FOR OWNER. GROUP. OTHER
* SUBTYPES

• KERNEL INTERRUPTIBILITY
* - KERNEL OPERATIONS MAY BLOCK

- KERNEL OPERATIONS NOT INTERRUPTED
NO PROCESS SWITCH

* SEGMENT ACCESS RECHECK

Hone~ywell

SYSTEM DESIGN (CONT)
* INFORMATION CHANNEL CONTROL

UPGRADED ARGUMENT
READABIUTY DETERMINES RESPONSE

- SYSTEM HIGH GARBAGE CAN SEGMENT
DELAY ON RESOURCE EXHAUSTION

.I'wlell



- p . . . . . . . ._. . . . .. . . .

KSOS.6
TRUSTED SOFTWARE

0USER SERVICES
SECURE INITIATOR
SECURE SERVERS
ACCESS AUTHENTICATION FUNCTIONS
LOGIN
CHANGE GROUP
SET ACCESS LEVEL
CHANGE DEFAULT ACCESS LEVEL
LOGOUT

- FILE DISPLAY AND ACCESS MODIFIER
*PASSWVORD MODIFIER

812613
Hloneywiell

KSOS6
TRUSTED SOFTWARE (CONT)
* OPERATIONS SERVICES
-SECURE STARTUP
-AUDIT COLLECTION
*SECURE LOADER
- OPEF;ATOR COMMANDS

SET SYSTEM CLOCK
SWITCH ACCOUNTING FILES
CHANGE DEVICE ACCESS
SET DISK DEVICE STATUS
SYSTEM SHUTDOWN

Honeywell

KSOS6
TRUSTED SOFTWARE (CONT)
* MAINTENANCE SERVICES

- MAKE FILESYSTEM
TRUSTED DATABASE EDITORS
USER ACCESS
GROUP ACCESS
TERMINAL ACCESS
SECURITY MAP
MOUNTABLE FILESYSTEMS
FILESYSTEM DUMP
FILESYSTEM RESTORE
FILESYSTEM CONSISTENCY CHECK

Honeywell



SCOMP KERNEL INTERFACE PACKAGE
(SKIP)
o PURPOSE

PROV!DE AN EFFICIENT LOW LEVEL INTERFACE
FOR USE BY APPLICATIONS SOFTWARE

* PROVIDE A HIERARCHICAL FILESYSTEM
PROVIDE PROCESS CONTROL

e ATTRIBUTES
* CODE RESIDES IN KERNEL ADDRESS SPACE

WITH RING 2 EXECUTE PERMISSIONS
ACTS AS A FILTER FROM USER RING TO KERNEL
GATES TO PROVIDE FILESYSTEM AND PROCESS
CONTROL INTEGRITY

Honeywell

SKIP
FILE SYSTEM FEATURES
0 ENTRY NAMING SYSTEM
0 MONOTONICALLY INCREASING SECURITY
* INCREASE SECURITY LEVEL THROUGH

UPGRADED DIRECTORY OR FILE
* MULTICS LIKE LINK SUPPORT
* FILESYSTEM INTEGRITY MAINTAINED IN RING 2
* NO PATHNAME AWARENESS
* FILE DATA MANIPULATION IN USER RING

Honeywell

SKP
PROCESS CONTROL FEATURES
" PROVIDE CLASSICAL EVENT WAIT/NOTIFY

SYNCHRONIZATION
* ALLOW SPAWNING OF CHILD PROCESSES
" PROVIDE MECHANISM BY WHICH USER RING
* CODE CAN HANDLE INTERRUPTS AND FAULTS

Honeywell

S-j



KSOS.6
TRANSMISSION CONTROL PROTOCOL
(TCP)
* BASED ON BBN-TCP-4

- 1822 ASYNCHRONOUS LINE ADAPTER
WILL USE THE SKIP

812619

Honeywell

KS054
KERNEL PERFORMANCE ENVIRONMENT

* LEVEL6/43
- HARDWARE MONITOR

TOTAL EXECUTION TIME
I/O TIME

-NUMBER OF DMA TRANSFERS

llonetv ell

SAMPLE KERNEL
PERFORMANCE RESULTS
GATE ExECUI1oN TRE (ms
READ- SYSTEM CLOCK 1.06

GET-SYSTEM PARAMETER 1.46
GETPROCESSACCESS Z62

GET PROCESSSTATUS 1.46
SEND -MESSAGE 435

RECEIVE -MESSAGE 1.74
MAP SEGMENT 16.20

UNMAP SEGMENT 1.70
CREATE... PROCESS 46829
RELEASE PROCESS 1.36

CREATE- SEGMENT 19.79

Honeywell

S-7

" . . • -, . L .... . .. .. . .. ... . . . . . . .. . . . . .. . - . __ _ - .. ... "



SAMPLE KERNEL
PERFORMANCE RESULTS

TEST EXECUTION TIME
MISSING SEGMENT FAULT
RECOVER6

CONTEXT SWITCHING

HoneyweII

KERNEL VERIFICATIONSTATUS RESULTS
* PROOF OF DESIGN COMPLETE

* TWO MODULES CAUSE STORAGE FAULTS IN
FORMULA GENERA rOR

CREATE PROCESS
* INVOKE PROCESS

* FALSE THEO REMS CHANNEL MINIMIZED BY

-DELAY ON RESOURCE EXHAUSTION
EXCEPTION REPORTING ON WRITEUPS

* PRIVILEGE CHECKS

Honeywell

KERNEL VERIFICATION
STATUSRESULTS (CONTI

* DIFFERENCES FROM IMPLEMENTATION

. PRIVILEGE IS REMOVED

* TOOLS
.ENHANCEMENT REQUIRED

ISOLATING REASONS FOR FALSE THEOR, MS

IS TEDIOUS

81 26238

Honeywell

KERNEL VERICTO

STATSIREULTSCONi

" DI F RE C S FR M IM L M NT T O

. . .. . I I " - -- l ll ll ... R I I G ; -I R E M O V E D i l .. . . I I . .. . " -



SUMMARY
" HARDWARE

PROTOT'PE DEVELOPMENT COMPLE E
PRODUCTION DEVE LOPMEN T

" SOFTW0,ARE
KERNEL
TRUqTEO SOFTWARE
SKIP

* TEST SiTE DLUIVERY FIPST QUAR1EH'

,-9]

Ja



KSOS-11

Summary, And

Update

John Woodward

The MITRE Corporation

KSOS-11 History,

'i9



KSOS Summary and Update -Overviev

Project Goals
Project Status
Insights Into Trusted Computing

Kernelized System

PROCESS BOUNDARY

_________________________________ HUMAN
INTERFACE

OIS TRUSTED
USER SOFTWARE UTILITIES PROCESSES

* ***- OS Svc

OS SOFTWARE NOT PROTECTION-RELATED INTERFACE

* * KERNEL SVC
INTERFACE

KERNEL

HARDWARE



Project Goals -KSOS

Requirements Summary

Production - Quality System

Provable Security,

UNIX Compatibility~

Efficiency, Comparable With UNIX

Administrative Support Features

General-Purpose Kernel

Broad Applicability

Project Goals - KSOS Kernel
Architecture

Functions

Proc esses Segments 1 0

fork1 1flka41. spmn.h build release de~ie func tion

re4e4 % remdp mount unmount

i1)'"I 144 'eiki mC'%S.1114 rendekous create file

.iqn.i open c lose?

in14'rrupi te'Ioin link unlink file

%,.ilk 4im ~ lli' read %rric blot k

11.11,

ho"?,

hill

'14.1 'vi4 s4.4444' 114.1 %N' 5144'.~'M 04'

qv *4,1 16. .1 qiet see let.el qet set Imle I



_711

Project Goals - KSOS Kernel
Architecture

Non-kernel SSstem-Related Software

I er Sv ies, Operations & Maintenance Adminisraion

Set tire ,flhrraror tiie xs tem dump restore in tdf

5ec ute ser~er pa, k cncicalc tl uk, ri li (ion

Ittc4 i 'oq'out extent initidsi ttion pr . ., i l

file a e.s modtihe, modit (ontrol entr. 5Cc tttttt ndil

hanqe ac c'ss leel , nl.,Ian% heckers if. lnc.. i.. i ic1,

hanqe qrocup to oPt. dccsc., vrcoh t,

lc,.c resierc cnq (op. prinl dire(Ior mdndqer ,,ieflt Ocilli

mt' Ut. niai netu ork t on irslle- audt(| t.cjcicc

,c. stem s arp shtclcn

,(1tom terterat-it,

pro, e,, b.oot rapiite

mount unmoutit

asign deassiqn dec ,

lone ptitel spoolet

kernel-totpathname mapper

Project Goals - KSOS Security
Assurance

METHOD-SOFTWARE

OLOGYENGINEERING

FORMAL
TESTING

_ _ _ __



Project Status - Versus Requirements

Production - Quality System

Prov'able Security

UNIX Compatibility

Efficiency Comparable With UNIX

Administrative Support Features

General-Purpose Kernel

Broad Applicability

Project Status - Provable Security

Design Proofs

Spec Checking

Theorem Proving

Analysis of False Theorems
Flow Analysis

Code Proofs
Example module only



Project Status -KSOS

Efficiency

Performance

Size

Project Status - KSOS
Implementation Completion

kernel 90

Emulator 9000

NkSR 60

TCP



Insights Into Trusted Computing

Modula As the Implementation Language

Multiple Representations

Formal Methods

Hardware Base

Security Model

Insights Into Trusted Computing

It Can Be Done!

Importance of Corporate Commitment

Utility and Benefits of Formal
Specifications

Need for More Experience in Code Proofs

Need for Additional Tools and Concepts



Mike Soleglad

Lo icon

ACCAT AND FORSCOM

GUARD SYSTEMS

LOGICON

ACCAT/FORSCOM GUARD
PRESENTATION

" THE PROBLEM

" IHE SOLIJTION

AUCAT IJAH)

IIARDWAHRE CONF IGUHATION AND
rOf(S()M (U JARD

SSO lI WANE MECHANISMS

* STATUS

1.-I



ACCAT GUARD

ACCAT GUARD
THE PROBLEM4 4

LLi



ACCAT GUARD
FUNCTIONAL DESCRIPTION - TRANSACTIONS

o I IHAN .A IIIN (IRILNL ED.

AtLL LKANSAtI IONS ARE SUBMITI ED) VIA NEIWOIK MAIL

ALL RI SILIS ARE RE TURNEDVsIA "NE TWORK MALI

* SIX LFFANSAL.I FN TYPI S

MAIt

'CANOICFALIRiiFY

t N(UL SII (Lot Y

FlUF It) IIIvv

MAIL

(.ANLINS.At (111(14IY

FW W 1 TI 111 F I Fy



*SECURITY VYAICH OFFILLR !SWO)

VIEWS ALL HIGH TO LOW DATA TRANSFERS

INTERFACES WITH' TRUSTED SOFTWARE '10k DoWNGRAT)ING 01 DATA

*SANITIZATION PERSONNEL iSP)

SANITIZES LOW TO HIGH QUERY RESULTS

TRANSLATES ENGLISH QUERIFS TO -CANONICAL- FORM

INTERFACES WITH -HIGHF SIDE" U TRUSTED SOFTWARE

SIMPLE SECURITY CONDITION (READ" RULE)

*PROPERTY CONDITION ("WRITE" RULE I

TRANQUILITY CONDITION ("ALTER" RULE) ENORE

* D)ATA INTEGiRITY ("DUAL" OF DoDT SECURITY MODL)L

* IIISCREII(TNARY ACCESS (A I A UNIX)

" MANUAL DOWNGRADTE POL.ICY (VIOLATES - PROPERITY)

SECUIIIITY WVAI:I OfIE (:11SWOl VIE WS AL DATA.

SWO ACCEPTS DTOWNGRIADE I RUTEDR

SWO, CONFIRMS DECISIOIN INFURCEI)

* AUDII T AL L HIG T~lO LO(W UT)WNGH AOt S

U-/



ACCAT GUARD
HARDWARE CONFIGURATION

ACCAT GUARD
SOFTWARE MECHANISMS

,,a .~ ~ ~ 1 i z 
' 

00 , ,H,,
AlI

LA)

~~1



AD-A13 348 OFFICE OF THE UDER SECRETARY OF DEFENSE FOR RESEARCH-ETC F/S 9/2

1981PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INSTIAT-C(UI

UNCLASSIFIED

IND

E4E-4~EE II52



l1.0
- - ~ I2



ACCAT GUARD SOFTWARE CONFIGURATION

p 1

. ... .... ... ..

- , --

ACCAT GUARD

STATUS: PRESENT AND FUTURE

tRESENT

EARDWARE INSTALLED AT NAVAL OCEAN SYSTEMS CENTER (NOSC)

* At SOFTWARE COMPLETED - DEMONSTRATABLE UNDER UNIX

T HIFUSTEI) SOFTWARE FORMALLY SPECIFIED AND VERIFIED

* THREATIVULNERABILITY ANALYSIS COMPLETED

* KSOS 11 INSTALLATION UNDERWAY

I U rORE

* KSI)S 6 INSTALLATION PLANNED

* AUTOMATED SANITIZATION/TRANSLATION ELIMINATES SANITIZER

" VERIFICATION OF AUTO SANITIZATION ELIMINATES SWO

" OTHER LOW/HIGH HOST SUPPORT PLANNED

I- u-a



FORSCOM GUARD

FORSCOM GUARD
THE PROBLEM

LJ -



FORSCOM GUARD
THE SOLUTION

OS SI O)M t I NIIOMH

SE IHS DIALOGUES

LI)

FORSCOM GUARD
FUNCTIONAL DESCRIPTION

*"INTERACTIVE" ORIENTED

MEDIATES BETWEEN ALL LOW USER AND HIGH SYSTEM DIALOGUES

PROVIDES BOTH "MANUAL" AND "AUTOMATIC" DOWNGRADE MECHANISMS

PROVIDES LOW USER INPUT "FILTER' MECHANISM

*SCREENER PERSONNEL

VIEWS ALL "MANUAL" HIGH TO LOW DATA TRANSFf RS

INTERFACES WITH "TRUSTED SOFTWARE" FOR -DOWNGRADING' OF DATA

U-8



FORSCOM GUARD
SECURITY POLICY

0 DATA SEPARATION (DoD SECURITY MODEL)
-SIMPLE SECURITY CONDITION ("READ" RULE)

"-PROPERTY CONDITION ('WARITE" RULE)

TRANQUILITY CONDITION I"ALTER" RULE) KSOS
ENFORCED

0 DATA INTEGRITY ("DUAL" OF DoD SECURITY MODEL)

0 DISCRETIONAHY ACCESS (A LA UNIX)

* MANUAL DOWNGRADE POLICY (VIOLATES " PROPERTY)

SCREENER VIEWS ALL DATA

SCREENER ACCEPTS DOWNGRADE

SCREENER CONFIRMS DECISION

* AUTUMATIC DOWNGRADE POLICY (VIOLATES -PROPERTY) TRUSTEL

ALL DATA IS RECOGNIZABLE IN PROPER CONTEXT SOFTWARE
ENFORCED

"BANDWIDTH" NOT EXCEEDED

* ACCEPT USER INPUT POLICY )A "FILTER")

DATA IS RECOGNIZABLE IN PROPER CONTEXT

* AUDIT ALL HIGH.TOLOW DOWNGRADES

FORSCOM GUARD
HARDWARE CONFIGURATION

U-9

' . . .. , - "- .... lm'u mlilm~nnn mnli'ii L



FORSCOM GUARD
SOFTWARE MECHANISMS

ANtIAN OIL NS

A Al ,+'.++; t AI i flASL ANt+ INIS AS[ t #NU &
L  ~t k

I' I AMAN~

t ii IA HNIh~ L All 5 A?, NL

FORSCOM GUARD
SOFTWARE MECHANISMS

Will,

L7/
L P IP I I I 't I t

Sl t S N t H N I l N 141111

IAPII Pi51 I S. j+1I

U -1l0



FORSCOM GUARD
SOFTWARE MECHANISMS

.OIAPFICA1IO GHUS~OOAR~DzH

HIARDWARE INSTALLED AT FORCES COMMAND, FT GILLEM

"SOFTWVARE OPERATIONAL DEMONSTRATABILE UNDER UNIX

" ORALSPCE C~ IN FVRSTD OFW-EUNERA



A Secur ity Model for a Military Message System

Carl E. Landwehr

Computer Science and Systems Branch, Code 7590

Information Technology Divison

Naval Research Laboratory

Washington, D.C. 20375

[Portions of this work were sponsored by
the Naval Electronics Systems Command,
Code 8144, H. 0. Lubbes.]

Outline

What security models are good for

History of security models

Experience with Bell and LaPadula model

An appl ication-based approach

Security model for a military message system:
Current version

Definitions
Model of operations
Security Assumptions
Security Assertions
Regimes for accessing objects within containers

Outstanding Issues

Plans

V-1



i
What security models are good for

Define what "security" means in a given system

Provide basis for understanding system operation

Provide basis for proofs

History of security models

Operating system protection models

Models incorporating DoD security

Access Control (Bell and LaPadula)

Information Flow (Denning)

Revised Bell and LaPadula

Experience with Bell and LaPadula model

MME - trusted job

KSOS - NKSR

Guard - trusted processes

% 2



An application-based approach

User's view of the system

Components of an 3pplication-based model

Definition of terms

Model of operations

Assumpt ions

Assertions

How the model can be used

Current version of the MMS model

Definitions

Classification - disclosure and modification levels

Clearance - user disclosure level

User ID - one per user

Role - function performed by user

Access control list - pairs (UsetID or Role, Access mode)
access modes include read, write, execute,
may be attached to objects, containers

Object - smallest unit with explicit classification
(single level)

Container - has classification and may contain objects
or other containers (multi-level)

Entity - object or container. Each entity can be
designated by unique ID or pathname

Program - sequence of machine-executable instructions
may have an associated clearance and UserID

Message - a particular type of container



Examples of objects

Date-time group
Subject
Prece.dence

Exam~ples of containers:

Text
Message
message File

Entities that might be containers in one system and objects in another

Address list

Comments

Sor-e operations applicable to messages

Compose Edit
Output Update
Send Release
Forward Distribute
Coordinate Chop
Readdress Reclassify
Delete Undelete
Destroy Assign-action

V -4



Model of operations

- User gives UserID and is authenticated by the system

- User invokes programs to perform the functions of the
message system

- The programs a user may invoke depend on the user's role

- A user with the role of System Security Officer
controls the clearances and roles assigned to UserlDs

- Programs a user invokes may read, write, or invoke
objects or containers

- The system enforces the security assertions listed below
(prevents users from performing operations that would
contradict them)

Security assunptions

Al. Security officer assigns clearances and roles properly
to users.

A2. User enters appropriate classification when composing,
editing, or reclassifying text.

A3. User exercises proper control of access control lists.

Security assertions

Disclosure of information

DI. A user can only view objects with disclosure level
less than or equal to glb(UserID,Role,Output Device).
For objects within containers, either the container's
disclosure level or the object's disclosure level
will be checked, depending on the type of the container
and the mode of access (by unique ID or pathname).

V-5



Security assertions (cont'd)

Modification of information

Ml. Users can only modify objects with modification level
less than or equal to the glb of User, Role, and
Input Devrce modification levels.

M2. The disclosure level of any container is
always at least as great as the maximum of
the disclosure levels of the objects and containers
within it.

M3. No classification marking can be downgraded except
by a user with the role of downgrader.

M4. The clearance recorded for a UserID can only be
set or changed by a user with the role of system
security officer.

M5. No message can be released except by a user with
the role of releaser.

M6. No user can invoke a proqram for which his UserID
or role is not on the access control list with an
access mode of execute.

Noteworthy aspects of the model:

Multi-level objects (containers) are defined

Simple security condition is reflected in Dl.

*-property is not included, but "write-downs" ire controlled

via M2 and M3

Integrity is included as modification level

Login level is not included, but I/O device abstractions
can provide this effect

Programs, not processes, are included because they are
more recognizable to users

Implementation concepts (e.g., capabilities) are
avoided, but model is designed to be implementable

V-6

-.



Example regimes for accessing objects within containers

1. Access to object is allowed only if the user and
role clearances equal or exceed thp classification of
the container. If data is copied fromn the object to
another entity, that data is treatc~d as though it had
the same classification as the container.

[Apply this regime to aggregation-sensitive data.]

2. Like (1), but data copied from the object is treated
as though it has the same classification as the object,
regardless of the container's classification.

[Apply this regime to extraction of a paragraph of text from
a message.]

3. Like (2), but only the user's clearance must equal or
exceed that of the container.

[Apply this regime to viewing of messages within a message file.]

Outstanding issues

Mathematical properties of the model
Possible abstraction of model for proofs

Development of design and implementation from model

Detailed design questions -

Determine whether each abstraction is
an object or a container

Determine appropriate regime for each
type of container

Determine mappings between family members
that make different container/object
choices for a given entity

V-7



Plans

Refine/revise the security model

Integrate with MMS Intermediate Command Language
Specification

Consider man-machine interface questions

Design and develop prototype system based on
this model

Bibl iography

1. Landwehr, C.E., "Formal Models for Computer
Security," to appear, ACM Computing Surveys,
September, 1981. Also available as NRL Report 8489.

A comprehensive survey of previous formal models.

2. Miller, J.S., and Resnick, R.G., "Military
Message Systems: Applyinq a Security Model,"
IEEE Symposium on Security and Privacy, April,
1981.

A discussion of an earlier version of the MMS
security model, with an application to a message
system based on an Intermediate Command Language
specification. Introduces three regimes for
accessing entities within containers.

3. Landwehr, C.E., "Assertions for Verification of
Multilevel Secure Military Message Systems,"
Verification Workshop, SRI, 1980, reprinted in
ACM SIGSOFT Software Engineering Notes, Vol. 5
No. 3, July 1980, pp.46-47.

Presents the motivatio for application-
based models and the first version of a
security model for military message
systems. Still useful, but somewhat
dated, as the version of the model
presented does not include the concept of
roles and leaves several issues
unresolved.

4. Heitmeyer, C.L. and Wilson, S.H., "Military
Message Systems: Current Status and Future
Directions," IEEE Trans. on Comm., Vol COM-28,
No. 9, Sept. 1980, pp.1645-1654.

Discusses the family of message systems for which
the security model is defined. Describes the
application of the program family principle to
the design of message systems.

V-8



EUCLID AND VERIFICATION
IAN GRIGGS

I.P. SHARP & ASSOCIATES, LTD.

THE (ORIGINAL) EUCLID LANGUAGE

o MAJOR APPLICATION:
PROVABLY SECURE SOFTWARE

o SYSTEM IMPLEMENTATION LANGUAGE

o ALLOWS VERIFIABLE PROGRAMS
TO BE WRITTEN

EUCLID AND VERIFICATION
o THE EUCLID LANGUAGE

o INTEGRATED VERIFICATION SYSTEM

(EUCLID + VERIFICATION TOOLS)

o FUTURE DIRECTIONS

HISTORY

" DESIGN COMMISSIONED BY DARPA

" DESIGNED BY EUCLID COMMITTEE

" PASCAL + VERIFICATION FEATURES

o PDP-1 1 COMPILER FOR TORONTO EUCLID
SUBSET IMPLEMENTED BY:

- I.P. SHARP ASSOCIATES
- UNIVERSITY OF TORONTO C.S.R.G.

9 TORONTO EUCLID BOOTSTRAPPED TO VAX

a,, -



MODULES

* RECORDS WITH ATTACHED ROUTINES

* INTERFACE TO OUTER PROGRAM
EXPLICITLY SPECIFIED

. SUPPORT INFORMATION HIDING,
ABSTRACT DATA TYPES

VISIBILITY AND ACCESS CONTROL
* MODULES AND ROUTINES

IMPORT GLOBAL NAMES

o MODULES EXPORT INTERFACE NAMES

o READ / WRITE OR READONLY ACCESS

ANNOTATIONS

o ASSERTIONS
e PRE, POST FOR ROUTINES

& MODULE INVARIANT

RESTRICTIONS TO HELP VERIFIER

* NO ALIASING: ONE NAME FOR
EACH DATA ITEM

" NO OVERLAP

" NO GO TO STATEMENT

* LEGALITY ASSERTIONS

PDP-1 1 TORONTO EUCLID COMPILER

" OBJECT CODE EFFICIENCY: VERY GOOD

" COMPILER SPEED: SLOW
- STRICT CHECKING TAKES TIME

" PROGRAMMER EFFICIENCY: VERY GOOD
- STRICT CHECKING SPEEDS UP PROGRAMMING

" AVAILABLE: NOW. FROM IPSA

,.'_.A



INTEGRATED VERIFICATION SYSTEM

OBJECTIVES:
* EUCLID AS IMPLEMENTATION LANGUAGE

* INTEGRATE EXISTING VERIFICATION
TECHNOLOGY

* USER-FRIENDLY CONSISTENT SYSTEM

* RE-USABLE VERIFIFIED SOFTWARE MODULES

* MAJOR APPLICATION:
PROVABLY SECURE SYSTEMS

STEPS IN VERIFICATION - SPECIFICATIONS

FORMAL
SPECS

REOUIREMENTS ANALYZE MODIFY

(INFORMAL) SPECS SPECS

SECURITY
MODEL

THEORIES

STEPS IN VERIFICATION - IMPLEMENTATION

THEORIES \ RUES

CHECKED _ -- VERIFY .- OK? VERIFIED
SPECS IMPLEMENTATION SYSTEM

VS

IMPLEMENT 

SE

PROGRAM N

SMODIFY

PROGRAM',



OTTAWA EUCLID

IMPLEMENTATION EUCLID

SPEC
+

THEORY
EXTENSIONS

TORONTO EUCLID MORE
EUCLID____ __

* EXISTING EU RES
PDP-11FEATURESPDP°I 1

COMPILER
SEPARATE

VERIFICATION
+

COMPILATION

-a



Co ~ 1 o 0
z -c

x (o w 0w >m

0w 0

ww

w 03

0w
w z w

0 --
z z R a
w 0 w CL

0.0

w5

ILa

----- ---------------



TORONTO EUCLID
RESTRICTIONS REMOVED

" FUNCTIONS CAN RETURN STRUCTURES
" PARAMETERIZED TYPES

" LEGALITY ASSERTIONS CHECKED

ENHANCED ASSERTION LANGUAGE

" QUANTIFICATION
" IF EXPRESSIONS

" SPECIFICATION FUNCTIONS AND
VARIABLES

" LEMMAS AND AXIOMS

SEPARATE VERIFICATION/
COMPILATION

" STUB FOR EXTERNAL MODULE
= SPECIFICATION

" LINK-TIME CHECK OF
STUB VS. IMPLEMENTATION

ADVANTAGES
" ONE CONSISTENT LANGUAGE
" TYPE-SAFE SPECIFICATIONS

AND THEORIES

" RE-USE EXISTING COMPILER
SOFTWARE FOR TYPE CHECKING

FUTURE DIRECTIONS
" I.SI GUARD

" CONCURRENCY
" OTTAWA EUCLID COMPILER

FIRST IMPLEMENTATION: VAX 11
AVAILABLE: MID 1983

*ADAPT EXISTING TOOLS TO
OTTAWA EUCLID



THE EVALUIATION

OF THREE

S PECIFICATION

an~d

VERIFICATrION

METIOo1GIES

by

Richard A. Platek

Diqicomp Research Corp. Ithaca, N. Y.

X-I



Digicomp Research Corp. is presently under contracA

with DoD through the Rome Air Development Center (RADC) to

study and evaluate three specification and verification

methodologies. They are HDM (SRI International), FDM (or

Ina Jo, SDC) and Gypsy (UTexas). This thirty month effort

which began Sept. 1980 has three main phases:

a. Impartial, critical analyses of
the methodologies with special attention
paid to their present state of usability
by persons not directly associated with
the developers and an evaluation of the
expertise required in such a technology
transfer.

b. Recommendations for enhancements
some of which will be subcontracted
to the major developers through Digicomp
(subject to government approval) while
others will be used to drive further
funding through other agencies.

c. The design, implementation and
verification of a secure data base
management system using each of the
methodologies. The mathematical model of
such a secure DBMS is based on previous
work by I. P. Sharp.

The first and most of the second of these phases have

been completed while the third is underway. In this talk I

would like to describe some of our findings so far. The

work has been performed by Tanya Korelsky, Len Silver and

myself. As an indication of our backgrounds I should state

that all three of us have Ph.D.s in Mathematics but no prior

experience in verification.

X-2

L._ i



01 P-_ -_ _ -

Like many developing software systems the-e

methodologies' documentation sometimes contain features

which have not yet been implemented. Considering the fact

that these implementations are ongoing our remarks could

best be treated as time-stamped snapshots of evolving

systems. Furthermore, since these tools have not been

subjected to extensive use outside of their places of origin

it is important to obtain independent evaluations based on

sustained hands-on experience. The comparative method that

has been chosen seems to us and our sponsors to be the best

technique for revealing the strengths and weaknesses of the

existing methodologies and for making recommendations that

could" be incorporated in future specification and

verification work.

Although we will briefly review the paradigms which

underlie each of the methodologies our time constraint

forces us to assume that the hearer has been exposed to more

detailed descriptions of the methodologies as they have been

described by their developers at these And similar meetings.

1. 8DM

The present situation with HDM is guite complicated

due, in our opinion, to the large turnover in extremely

talented personnel at SRI who have been involved over the

years with the HDM project and the absence of a central

authority who would have had the power to curtail creativity

in the interests of consistency. While such a production

X-3



system or ientat ion i s inconsist ent with research 'oal and

verification is a whole has benefited from SRI's experim-nts

it is a fact that ftDM presently consists of several well

thought out and engi nee red components that Iack i n te rt I n

Althouih SRI is aware of this problem and it is ,ur r entlI

heing addressed by onjoinI work i t is fair to sa tha' It

present a1 oLuts Ier can not use HDM to desigIn, i ,1 ement n :!

verity a progiam from beginning to end. Altho!1h .:ir :7tllI v

was completed last March and reflects the system as it w -

then we've kept abreast of the more recent changes.

HDM specifications are written in SPECIAL

non-procedural strongly typed assertional language based on

first-order logic. The unit of specification is the module

which is an encapsulated abstract data type. Follc.winI

Parnas modules are descr ibed as abstract automata defineI i n

terms of states and state transforms. (We prefer the terms

"state" and "transform" to the awkward "V Function" an 1 "CD

Function" terminology; unfortunately SPECIAL maintains the

original Parnas nomenclature which is confusing to new

users. Ina Jo uses the terms "variable" and "transform",

the state being the values of all the variables at any ,Iiv,n

moment.) These modules are grouped together to form virtuil

machines which in turn are levels in a hierarchy. The top

level of this hierarchy is the user interface while the

bottom is the "machine" on which the system is to run; the

latter is not necessarily a physical machine but can be a

combination of hardware and software, for example a PASCAL

X--'0



o r DA machine. 'Vdjacent levels are re-lated b)y mel ; t i

which are of two kinds. The state or data minpi n : ' r rv I

an mage , Image (q) , on the upper level for each Iow ,r

state S . 7hese are described using SPECIAL expre s on:;.

The transform or Procedure mappings express each hi iher

level state transform T as a proqram P(T) which "runs" on

the lower level machine and cal Is lower I ,v"l I state

transforms. P(T) is correct if whenever it irives the l-,wer

state S I to the lower : tate 52 then T (Imaqe (S]) ) ) iI

T(Image( 2)). Said simnly this means that the Prolram P (T)

simulates T on the lower machine. The proaram P is written

in the target HOL. In the original IDM concpption a new

programming language, ILPL, was desicined for this eurn:,se

but this approach has been abandoned. WIhen all the P(T)

have been verified to be correct the transform mappinj:; ca:.

be composed to yield a complete verified implementation of

the top level virtual machine cn the bot to!. The

composition of transform mappings is reflected in the

resulting program by procedural call nesting; the lepth of

this nesting being essentially the length of the hierarcv.

Unfortunately the specification lanquaqe SPECIAL come

in several variants. First there is the original version of

SPECIAL which we will call Handbook SPECIAL. The publicly

available HDM automated tools which check for syntax

correctness, hierarchical consistency and certain forms of

completeness are written to this SPECIAL. These tools;

contain bugs which were discovered in the course of out

x - r)



testing. These bugs have not been corrected for reasons

outlined below.

Handbook SPECIAL contains many features which its

designers thought would be useful in specifyinq complex

systems. This compounding of features led to a language

without a clear semantics (or perhaps a better way to say it

would be a language susceptible to several overlapping

semantics). For example, a. First order logic is used to

express system states before and after transforms are

called, b. A New operator creates new objects of a certain

kind ut type when called, c. Exception conditions for

transforms must be evaluated in a certain order, d. There

are unusual constructs like "Delay Until". Because of the

incompatibility of the various semantics of these languages

it was found to be necessary to subset SPECIAL whenever any

design or code verification issues arose. For example, SRI

produced a multilevel security information flow analysis

tool. This works on the top level SPECIAL spec and uncovers

information flow. The tool is very conservative and

considers an information flow to occur between variables

whenever the former is referenced in any way by the latter

(e.g., in the assignment statement vl := O*v2 information is

assumed to have flown from v2 to vl). In order to make this

analysis it was found necessary to restrict the kind of

expressions that occur in specs. This gives rise to MLS

SPECIAL. Every variable at the top level is assigned a

security level and the MLS tool checks that information only

X-(,



flows upward in level. To do this it produces formulas

which are handed over to the Boyer-Moore theorem prover.

The latter has its own language designed according to very

different principles than those that govern SPECIAL.

HDM's original attempt at code verification involved

the use of a pseudo-assembly languaqe CIF (Common Internal

Form) set up within Boyer-Moore theory. A MODULk translator

translated MODULA code into CIF and the latter was proved

correct within Boyer-Mcore theory. In order to do this the

SPECIAL specs had to also be translated into Boyer-Moore. A

very impoverished subset of SPECIAL was developed called

VSSL. No automated tools were provided, the program had to

be respecified in VSSL. There are many discrepancies

between SPECIAL and VSSL. VSSL and CIF for example

understand integer to be non-negative while SPECIAL and

MODULA understand integer to be positive or negative. VSSL

does not allow any existential quantifiers in the effects

section of a transforms spec. Furthermore all the code

verification required large amounts of manual intervention

to add statements necessary to achieve a proof. The

smallest programs took an enormous amount of time to verify

and when done it was not clear what had been verified since

VSSL was not SPECIAL and CIF was not MODULA.

As part of the SIFT project SRI is developing a PASCAL

verification system for HDM. This has involved a new

version of SPECIAL, Pascal SPECIAL, and tools to check it.

X_/



t 1: 1 a r I u I y bec hi~ 1 t ti t ti i I

Ite a V 0 t!'1!) i 5 nt' I ~ ti t h to ih

d ef i n it i 7)n o f a r c) ( rami:)in i ng I -I n, Iae ia e T

ATld specs; and then geoneraites W's lirect I'v r Ij11

VC s were in Boyer-mcOore theo'tv. 1 -r a r i It .r o c- i v

recent ly Left SRI to Join the Univ-rsi ty o f Te xa. .-I

r Ir I t t:"-HI ha;be-]n aildapi~ t i n 114to rutn w ith the 'ICi k

theIr (,i-a provor. The Mt-c f(ur example. will1 outtcit V:7:; ir,

e i he r 1 cvt-r-,4oore or zhstaik thoeury. We ha ve not hldally-

exp-rience witni the lattc 'J Jn I r t itif(eIv Paccl ::P:CI,

Joe notit (,ont I un MLI- -P~lI- As a uhset t t-at t he Pascal

vsystem as I t lto:w standsJ can 11t 1,e useod ft s ec-t i t y p rooj )f.

As a r osul I l f t ho ;e in-r t 1 m-ite; i1 i c m p

sIb c, n trai-!teiWiwtit 7vtek to fs a het I. Et th I , 1,

d~ il tc ts anid inate r cr-cdt i ons f-r i;t I I I Aa t i c.r Th

s3tudy is; bei;>, directeod hv Ri c-h i'e ier t it a f rm,- ,I( m 1) cr

a nd pzt i nc i pal dsi,gne r o)f t he M, 1 t "()I. t Wi I11 heo

completed i.i 1-ert .Wo hope someone wilIl he na p(,-,i t icon tu

act ton the reconim-ndat ions i n the report wiich f ranr whait

we y e ;oe n i s v r y tho tiq h t f i

At 1;RI work is proceeding in ma tch ing t he o1DM t oolI

mnor e f- Ioj;elIy w it h the Sho sta k theo rem pr ove r, i n d evel1op ini

or oo f r ulIes to 0 ealI wi th fUll1 concur rency, -I w it h

developinq a new specification lanquage called ORDINARY.



I I T ) M

FTM iI i ,!I i V ! - i i I a r to 1'5)M It , h -

w a.', t h i; i' in I t i t i I ead i n . I, i k I fl1 M f',. ; , i i+j :

a :, tL', inii a o:er i,,. at[ level:; eauh! i,.-;,r iY, i +,* : ' . ,

state s Ind trat ri-, with a I c.nt I r V

ma pp iii s ;;tit in I ike HDM tio top I,,. 1 1 " ,

intertaze. 1;tei it is; to he t ht 'I

incomplete ahstract Ie:;cription of t-, fi:. } v.',, 1. 2.

omits certa in desi In decisions and >nt ins ,t , , r

mathematicallv, the top level is : s;pecificni i , ",:

of systems one of which i i the intended fi til sstc.

subsequent level also defines a family of Itsa. s iu

1IDM the mapp ings between levels relate t;e :at, . ti I,

lower to the states of the higher and the I ransf,r ' t,

higher to the transforms of the lower. They ,re :-i t !-

correct for each adiacent pair if the family f -c;ter

specified by the lower is a subset of the f mil' of - t

specif ied by the upper relative to the mappilI ; wh i ,

like a dictionary enabling one to tr ,nslat,- hi il', 'r

expressions into lower. Thus each level can bc th"'; ,,1t

as a refinement of its predecessor. This t i -I

proceeds by adding further detail and concretion.

Levels are described usinq Ina Jo, a specificati

language similar to SPECIAL but cleaner in syntax in1

semantics. Unlike SPECIAL only one kind of semantic:; is

involved, namely first order logic. This leads to

X-9



simplicity in expression and ease of provahility. The cost

is lack of expressiveness but Ina Jo is presently being

upgraded to include more extended expressiveness.

Ina Jo provides a means for proving that the top level

spec satisfies user supplied design criteria. These are

written in Ina Jo and are syntactically part of the top

level spec. Only experience will show whether this approach

is adequate f r thp expressing of interesting security

properties. In order to prove these design criteria for the

top level one submit,: 'he spec to the language processor

which produces candidate theorems the truth of which imply

that the criteria holds of all systems that satisfy the top

level spec. These theorems are proved using the associated

ITP (Interactive Theorem Prover). The latter is simple to

use and well integrated into the system. It is not very

powerful but is continually being upgraded. It contains,

for example, very little arithmetic since there has been

very little need for it in the projects SDC has used Ina Jo

on.

State mapping between adjacent levels are essentially

the same as HDM but the transform mappings are logical

rather than procedural. It T is an upper level transform

then the mapping of T, M(T), is essentially

IF CONDI THEN Dl ELSE

X-1O



IF COND2 THEN D2 ELSE

IF COND3 THEN D3 .... where the COND's are Ina Jo

Boolean expressions describing subsets of the lower level

state space and the D's are lower level transforms. With

respect to these mappings one proves that each subsequent

level is a refinement of its predecessor. As in the case of

the proof of the top level design criteria candidate

theorems are produced by the language processor from each

pair of adjacent levels and these are proved using the ITP.

All that we have described so far is implemented but we

should remark that when all this proving is completed one

still has not verified any HOL code let alone written it.

This is not meant to imply that describing, refining, and

proving the specifications in this way is without value. We

did not encounter serious difficulty in using the system.

Since the ITP is weak many "self-evident" axioms had to be

manually added to finish proofs. This is obviously a

dangerous procedure in verification since "self-evident"

sometimes turns out to be false. We have made SDC aware of

all bugs and unimplemented details we have come across and

they intend to act on them. FDM was produced primarily with

internal SDC funds and is a proprietary product. Since it

is fashionable in Washington nowadays to extol the spiritual

values of capitalism one should remark here that private

property tends to be kept up by its owners.

X-11



We now describe SOC's intentions with resoect to cole

verification. In FDM all code verification will be done

after all levels have been designed and proved. Beneath the

bottom level Ina Jo spec there will be an implementation

level which relates the bottom level Ina Jo variables and

tr-nsforms to the names of HOL variables and transforms. An

extensior. of the language processor not yet implemnted will

take this level and generate entry and exit conditions for

the HOL procedure,-. These together with HOL code will yield

VCs when passed through a VCG (a MODULA VCG for Ina Jo entry

and exit conditions is near completion). In al-ition in

order to show that the resulting program is .initdce of

the family of systems specified by the Ina 1o will

be necessary to check that in the restltinI m-,i *r pr ,iri

the entry conditions for each HOL proce u re holl wxan, , it

is called. The reason the mappings of transforms heotweon

levels are restricted to the form we ,escrihed i; to make it

possible to assemble mechanically the entry c(nditions for

each HOL procedure. This is a subtle point not mentir,ned in

SDC documentation and was the cause of some misunderstanding

among outside students of Ina Jo.

Much work remains to be done to complete the code

verification aspects of Ina Jo and Digicomp expects to fund

some of it. It is premature to make judgements but our

experience with HDM leads us to suspect that code

verification is not as simple as some would maintain. Frr

example since the present version of FDM does not ,i ami

I-?

r •



modularity the amount of work to be done at code

verification time may be inordinately irge and various

means to structure it may have to be devised. The theorem

prover will need to be upgraded to handle the full spectrtlm

of mathematics that occurs in program verification.

III. GYPSY

Unlike HDM and FDM Gypsy is both a programming .ind

specification lanquage. Gypsy text 3ppears like a Pascal

program in which specifications are interspersed at key

points. For example, every procedure and function has entry

and exit assertions and every loop is broken by at least one

assertion. Verification conditions are generated from these

specifications and code, and these VCs are submitted to an

integrated theorem prover. This is the central loop of the

Gypsy Verification Environment (GVE). This environment is

quite congenial. It contains a library manager which keeps

track of the various parts of the verification process and

their status, an internal structured editor and links to

external editors like emacs, facilities to incrementally

write and prove code, etc.

As a result of the integrated language there is no

strict separation of design and implementation in Gypsy.

The user can shade a Gypsy source text heavily towards the

one or the other. It could be pure specification witi r,.

code or pure code with no specification. The latter is

compilable with PDP-lI object code.

,N

. JI



As mentioned above the Gypsy environment lends itself

to incremental usage. Pieces of program are written and

verified. Some of these pieces are high-level routines and

some low-level. The bodies of the latter may be left

pending while their entry and exit assertions are used to

prove the correctness of the high level routines. The

system could be used as a vehicle for many design strategies

such as "stepwise refinement", top-down", etc.

Gypsy also provides a limited form of concurrency

through the use of buffers that simultaneous running

processes can send to or get from. Proof techniques have

been d-eveloped to handle the logic of this kind of

concur rency.

Gypsy's claim to fame is that one can actually produce

verified code. The main caveat seems to be that since the

specification is so close to the implementation level it is

not simple and abstract enough to get a firm grasp on what

has been proved about a large system. It lacks for example

Ina Jo's facility of expressing a design criteria at a high

level and then using mappings as a dictionary to

unabbreviate it down to a condition on actual program

variables. Gypsy does recognizes the need to provide

mechanisms of abstraction so that the intent of the code

becomes more transparent. But it seems that this goal was

given a lower priority than the the admirable one of

producing a system in which one can develop verifiable and

X-14



compilable code. One such abstraction mechanism is a form

of abstract data types using access lists. It is described

in the Gypsy language manual but hitherto not implemented.

This is one of the enhancements currently being funded by

Digicomp.

Although Don Good and his senior assistant Rich Cohen

have been with the system since its inception many people

have worked on Gypsy as graduate students at UTexas. This

is reflected in a certain uneveness in the components. An

embarrassing example is that although unproved lemmas

sometimes have to be added to the knowledge base in order to

complete proofs their status as unproved can be forgotten by

the system. Digicomp is funding a top level

reimplementation which will address some of these issues.

This will be done in a yet to be finalized dialect of LISP

with portability a major concern in the choice. The present

version is written in UCI LISP running under Tops-20 and

runs into space problems when verifying medium size

programs.

From a logician's point of view the major criticism of

the system is that it deals only with partial rather than

total correctness as these terms are used in the field of

program verification. This means that is no mechanism is

provided to prove termination of subroutines. All functions

are dealt with by the theorem prover as if they were total

and in this way an unsoundness could be introduced. The

X-15



MODULA-CIF version of HDM at tempt ,d to deal with this

problem through the use of a user supplied clock futnctirin.

Tna Jo has not faced this issue yet.

I would now like to mention some areas for possible

r esea r ch.

L. There is a need for an understandable, inte!lii ble

specification lan]uage. The prosent specification langujmAes

are like the "machine lanjuage" of specification IlnguaIes.

They are difficult to read, too homocqeneons. it seems the

proper constructs peculiar to specification remain to be

discovered.

?. Theorem proving is the big bottleneck in cole

verification. Proof checkers are too pedestrian and the

automatic ones run away. The ideal would be a system which

could take a sketch of a proof and expand it into a real

proof. I don't believe this is an impossible goal, T do

believe it is a necessity if large scale code verification

is to become a reality but I also feel it tequires a

significant breakthrouqIi in the field of automatic theorem

proving. The latter is a pure research area involving

mathematics, logic, ind artificial intelligence.

3. Integration seems to be the key to success in this

area. Ina .7o is weaker piece by piece than HDM but the

integration the system has compensates. Gypsy is the most

satisfying to work with because of its integration.

- -. -' -l



1 Final ly I would like to mention the pIo; 1i i itv ' f

tu S IIC approaches to code ver i fict ion (ther t ho 1 V1

qeneration. There are several such methcds av i 1 I ,-ihl

aIlo' one to use the orc, ram text ireif i' nr,!

than translations of it i ntfo another Ia r. 11 i,'.,

advantages of the vcq a pproach i. That rie ,, !1, , ,,,, r il

purpose theorem provers .since t V- V'.> ur, stat - I

ordinary mathemat ,ca1 lag ia o. I' I-) ,vtt -1e

VCC. approach is fu rther inteqrar I-n -Im I IIitv.

trans -ti,;on from one lanquaqe t, tI, her I lrt-it -.

Lor suc-e<.

\- I



COMPUTER SECURITY RELATED PUBLICATIONS

Listed below are titles and accession numbers of some computer security
related publications which are now available from the Defense Technical
Information Center (DTIC), Defense Logistics Agency, Building 5, Cameron
Station, Alexandria, Virginia 22314 (Phone 202-274-7633, AUTOVON 284-7633).

Firms or individuals registered with the DTIC may obtain copies for a flat fee
per document. Those who are not registered with the DTIC may obtain copies
from the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia 22161 Orders may be placed or price quotations may be
obtained for each document by calling 703-487-4650.

AD A101 996 Proceedings of the Third Seminar on the DoD Computer Security
Initiative

AD A101 997 Proceedings of the Second Seminar on the DoD Computer
Security Initiative

AD A101 998 Proceedings of the Seminar on the DoD Computer Security
Initiative - (First Seminar)

AD 076 617 Security Controls for Computer Systems Report of DSB Task
Force on Computer Security (Rand Ware Report, October 1979)

AD A103 399 TRUSTED COMPUTER SYSTEMS - Needs and Incentives for Use in
Government and the Private Sector (Rand Turn Report, June
1981)

AD A095 409 Modernization of the WWMCCS Information System (WIS) (DCA)
January 1981

AD A108 829 Trusted Computer Systems-Glossary (Huff, MITRE), March 1981

AD A108 827 Computer Security Bibliography (Discepolo, MITRE) November
1980

AD A108 828 Industry Trusted Computer System Evaluation Process (Trotter
and Tasker, MITRE) May 1980

AD A108 830 History of Protection in Computer Systems (Tangney, MITRE),
July 1980

AD A108 831 Specification of a Trusted Computing Base (TCB) (Nibaldi,
MITRE) November 1979

V-i



AD A108 832 Proposed Technical Evaluation Criteria for Trusted Computer

Systems (Nibaldi, MITRE) October 1979

AD A109 317 Formal Specifications of KVM/370 Kernel and Trusted

Processes (Gold and Thompson, SDC) May 197.

AD A109 316 Final Report VM/370 Security Retrofit Program-Detailed

Design and Implementation Phase (Gold and others, SDC)

May 1978)

AD A109 318 Semi-Formal Description of KVM/370 Trusted Processes

(Thompson, SDC) December 1977



DAI E

.F I L.M E.D


