AD=A113 388 OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCHYC F/8 9/2
PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT==ETC(U)
1981
UNCLASSIFIED

; ==

828
s

==

I

||
=

22 s pee

KEYNOTE ADDRESS

COMPUTER SFCURITY INITIATIVE

PROCEEDINGS (/)

OF THE

FOURTH SEMINAR

ON THE
DOD COMPUTER SECURITY
| INITIATIVE

AD A113348

DTIC

NATIONAL BUREAU OF STANDARDS @R\ELECTE[™
GAITHERSBURG, MARYLAND 2 APRO 1082

b

A

AUGUST 10 - 12, 1981

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

82 04 09 030

L p

{

TABLE OF CONTENTS.

Page
Table of Contents i
About the Nob Computer Security Initiative ‘ iii
About the Seminar e iii
Acknowledgments o v
Program v
List of Handouts viii
“Nzﬁcoming Address’™ James H. Burrows, Director, Institute
for Computer Sciences and Technology, National Bureau of
Standards — A-1
"Keynote Address;" Admiral Bobby Inman, Deputy Director of
Central Intelligence, Washington, D.C. B-1
“Introductory Comments,"_Stephen T. Walker, Director,
Information Systems, Qffice of Deputy Under Secretary of
Defense (C3I) L e -1
*Eurroughs' Efforts in Computer Security3" Chris Tomlinson n-1
"RS0-A Fault Tolerant Computer for iﬁbiémentation in Secure
Systems," Asbjgrn Smitt, Christian-Rovsing A/S, Ballerup,
Denmark £-1
N
"Computer Security and Control Data," Terry A. Cureton,
Control Data Corporation F-1
-
"SAC Digital Network Security Methodology;" ¥.uro Ferdman,
The MITRC Corporation n-1
V . B
"COS/NFE Overview," Gary Grossman, Digital Technology,
Incorporated .. t-1
L
"WIS Security Strategy," Larry Bernosky, Defense Communicatians
Agency R 1-1
" V : . I
Trusted Computing Research at Data General Corporation,
Leslie Delashmutt and Noug Wells, Data General Corporation J-1
g -
“"The iAPX-432 Microcomputer System,” George Cox, Intel
Crrporation -1
i
SIS R iicandi s P

/

!/
"ICL tfforts in Computer Security," Tom Parker, International
Computers, Limited L-1

“GNOS1S: A Progress Report," Bob Colten, TYMSHARE M-1

"Eomputer Security Evaluation Center," George Cotter,
Acting Director, DoD Computer Security FEvaluation Center,

National Security Agency N-1
o
“Trusted Computer Systems," Rein Turn, The RAND Corporation 0-1

"
“The SDC Communications Kernel," David L. Golber, System
Development Corporation p-1

"The MITRE Trusted Packet Switch," Chris Hisgen, The MITRE
Corporation 0-1

“E}perience with KVM;" Tom Hinke, System Development Corporation R-1

"SCOMP (KS0S-6) Development Experience Updatei" Lester Friam,

Honeywell o S-1
"KS0S-11 Summary and Update," John Woodward, The MITRE

Corporation P T-1
“ACCAT and FORSCOM Guard Systems," Mike Soleglad, Logicon U-1

"A Security Model for a Military Message System,"
Carl E. Landwehr, Naval Research Laboratory V-1

"EUCLID and Verification®, lan Griggs, I.P. Sharp &
Associates, Ltd. W-1

"The Evaluation of Three Specification and Verification
Methodologies o' Richard A. Platek, Digicomp Research Corporation X-1

*
B

DOD COMPUTER SECURITY INITIATIVE SEMINAR - TV
August 10-12, 198!

ABOUT THL DOD COMPUTER SECURITY INITIATIVE

The Department of Defense (DoD) Computer Security Initiative was
established in 1978 by the Assistant Security of Defense for Communica-
tions, Command, and Control and Intelligence to achieve the widespread
availability of "trusted" ADP systems for use within the DoD. Widespread
availability implies the use of commercially developed trusted ADP
systems whenever possible. Recent DoD research activities are demonstrating
that trusted ADP systems can be developed and successfully emploved in
sensitive information handling environments. In addition to these
demonstration systems, a technically sound and censistent evaluation
procedure must be established for determining the environments for which
a particular trusted svstem is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer efforts
and to define reasonable ADP system evaluation procedures to be applied
to both government and commercially developed trusted ADP systems. This
seminar is the fourth in a series which constitute an essential element
in the Initiative's Technology Transfer Program.

Effective January 1, 1981, the Director of the National Security
Agency was assigned responsibility for computer security evaluation for
the Department of Defense. Plans for the transfer of the Computer
Security Initiative activities to NSA are well underway.

The Institute for Computer Sciences and Technology, through its
Computer Security and Risk Management Standards program, seeks new
technology to satisfy Federal ADP security requirements. The Institute
then promulgates acceptable and cost effective technology in Federal
Information Processing Staundards and Guidelines. The Institute is
pleased to assist the Department of Defense in transferring the interim
results of its research being conducted under the Computer Security
Initiative.

ABOUT THE SEMINAR

This is the fourth in a series of seminars to acquaint computer
system developers and users with the status of trusted ADP system
developments plans for the integrity evaluation of trusted systems. !
The three previous seminars have stressed user requirements for trusted i
systems throughout the government and the private sector, experience
with design of production prototype trusted systems, and industry
progress in computer security. The focus of this seminar is on trusted
system efforts across the board.

ACKNOWLEDGMENTS

A number of people in and outside of the DoD Computer Security Technical
Consortium have helped to make this seminar a success. At the MITRE Corporation,
Pete Tasker helped to organize the speakers; Karen Borgeson and Dianne Mazzone
managed registration; Charles McClure provided behind-the-scenes support.

Finally Dr. Billy Claybrook handled the entire job of collecting and organizing
the material for this Proceedings.

Also, we are grateful to Greta Pignone and Sara R. Torrence of NBS for
arranging the splendid facilities.

DISCLAIMER

The presentations in this proceedings are provided for your information.
They should not be interpreted as necessarily representing the official view
or carrying any endorsement, either expressed or implied, of the Department
of Defense or the United States Government.

/"—) _
Stephé&n T. Walker

Chairman
Dol} Computer Security Technical

Consortium

iv j

DOD COMPUTER SECURITY INITIATIVE SEMINAR - Iv

August 10-12, 1981

Monday, August 10
9:30 INTRODUCTION
Jim Burrows, Director
Institute for Computer Sciences and Tecnnology
National Bureau of Standards

KEYNOTE SPEAKER

Admiral Bobby Inman
Deputy Director of Central Intelligence

DOD Computer Security Initiative Status
Steve Walker, Chairman
DoD Computer Security Technical Consortium
MANUFACTURERS® EFFORTS IN COMPUTER SECURITY

Chris Tomlinson
Burroughs Corporation

Axel Hvidtfeldt
Christian-Rovsing

Terry Cureton

Control Data Corporation
ACQUISITION & DEVELOPMENT EXPERIENCE

SACDIN

Mauro Ferdman
The MITRE Corporation

Communications Operating System/NFE
Gary Grossman
Digital Technology Incorporated
WWMCCS INFORMATION SYSTEM COMPUTER SECURITY

Larry Bernosky
WWMCCS System Engineering Office

Tuesday, August 11
9:15 NBS COMPUTER SECURITY EFFORTS

.Dennis Branstad
National Bureau of Standards

”

MANUFACTURERS ®~ EFFORTS IN COMPUTER SECURITY (Continued)

Les Delashmutt
Data General Corporation

George Cox
" Intel Corporation

Tom Parker
International Computers Limited

Bob Colten & Norm Hardy
Tymshare
2:00 DOD COMPUTER SECURITY EVALUATION CENTER
George Cotter, Acting Director
DOD Computer Security Evaluation Center
National security Agency
NON-DOD [RUSTED SYSTEM NEEDS
Rein Turn
The Rand Corporation (Consultant)
COMMUNICATIONS EXPERIENCE k

The SDC Communications Kernel

David L. Golber
System Development Corporation

The MITRE Trusted Facket Switch

Chris Hisgen
The MITRE Corporation i

5:30 Wine & Cheese Reception i
Washingtonian Hotel
(until 7:30 p.m.)

vi

L - v IO A I T i

Wednesday,

9:15

2:00

August 12
DEVELOPMENT EXPERIENCE UPDATE
KVM/370

Tom Hinke
System Development Corporation

KS0S-6

Les Fraim
Honeywell Information Systems

KS0S-11
John Woodward
The MITRE Corporation
RESEARCH AND DEVELOPMENT UPDATE
ACCAT Guard & FORSCOM Security Monitor

Mike Soleglad
Logicon

Security Model for a Military Message System
Carl Landwehr
Naval Research Lab
RESEARCH AND DEVELOPMENT UPDATE (continued)
Euclid & Verification

Ian Griggs
I. P. Sharp & Associates, Ltd

Evaluation of Specification & Verification Systems

Richard Platek
Digicomp Research

WRAP-UP

LIST OF HANDOUTS

REIN TURN

TRUSTED COMPUTER SYSTEMS: NEEDS AND
INCENTIVES FOR USE IN GOVERNMENT AND
THE PRIVATE SECTOR, JUNE 1981

viii

i
4
H
¢

welcomng Address
Fourth Seminar on the DoD Computer Security Imitietive
August 10, 1981
James H. Burrows

Director, Institute for Computer
Sciences and Technology

I am pleased to welcome you to the Fourth Seminar on the Department of
Defense Computer Security Initiative Program. As in the past, the Nationa)
Bureau of Standards and the Institute for Computer Sciences and Technology
are happy to collaborate with Office of the Secretary of Defense in

bringing information about trusted computer systems to users and systen '
developers. 1 am told that there is a plan to hold a fifth seminar in

this series next Spring to continue these valuable information exchanges.

The program announcing this seminar also announced the establishment ot

the computer security evaluation center for the defense and intelliuence

commwnities at thé National Sccurity Agency, a subject to be addressed by
our disiiiuuished keynote speaker this morning. we are glad tnat tms
has come to fruition, and hope that we will be able to continue to worh
with the evaluation center through the security initiative in diffusing

trusted system technology to the user community.

Conputer security is no longer an exclusive concern of the defense and
intelligence comnunities. These agencies, of course, have rigorous
requirements for protecting the secrecy of data. However, as we become
more dependent upon computers for handling financial, health, and other
critical information, techniques for assuring the integrity and reli-

ability of conputer systems become essential throughout the government

and private sector.

ﬁ.,‘,‘—f o e e e

TR %

Not only do the defense agencies in the Federal Government need
off-the-shelf solutions to their security problems, but so do the Apy

users in the civil government agencies and the private sector. NBS can

play a role in getting information about this needed technology to users
through technical interchanges such as this seminar, th:ough the publication
of technical reports, and through the development of computer security

standards and guidelines when the technology is appropriately developed.

The Paperwork Reduction Act of 1980 (P.L. 96-511) passed last year reflects
Congress' concerns that computer security efforts be integrated into the
overall information resources management concept. Among the responsibilities,
centered on the Office of Management and Budget, in implementing the Act

are the functions of developing and implementing policies, principles,
standards, and guidelines on information disclosure and confidentiality,

and on safeguarding the security of information collected and maintained

by the agencies. With its emphasis on planning for information technology
acquisition and use, the Act provides the impetus for including essential
activities such as planning for computer security into agency long-range

planning foir information management activities.

[believe that computer security is a pervasive problem that needs to;
level attention from managers, as well as from technical statf.]t 1s a
problem that encompasses the entire information processing cycle fron
1ntake of data through the processing of data, the delivery of the
information product, and the storage of data. While the need is pervasive,

it is also clear that achieving a secure system is costly in both time anc

money.

A=2

Since the technoloyy of computer security is not aveilable in existing
computer systems, we have tried to attack the problem of computer security
through a variety of administrative and management controls which will
continue to be essential elements for achieving secure systems. Irusted
system technology, kowever, offers promising capabilities for maintaining
the integrity and reliability of critical systems. That assuring integrity
and reliability is important is evident in the estimates that problems
associated with errors, omnissions, and modifications of data occur ten

times more frequently than intentional disclosures.

1, therefore, stongly support this R&D and technology transfer effort

and hope that this is a successful and fruitful seminar.

I now have the honor of introducing our distinguished keynote speaker,
Admiral Bobby R. Inman, who has broad experience both in the defense and
intelligence communities. Admiral Inman, a graduate of the University of
Texas, Austin, began his career in the U.S. Navy in 1852. Since then, he
has held the positions of Director of Naval Intelligence, Vice Director
of the fotc:.c Intelligence Agency for Plans, Operations and Supporti, anc

the Director of the National Security Agency. He is currently the Deputy

Director of Central Intelligence. Let's welcome Aamiral Inian to thi:

seminar.

ndiaden i

KEYNOTE ADDRESS
COMPUTER SECURITY INITIATIVE

Admiral Bobby Inman
Deputy Director of Central Intelligence
Washington, D.C.

it is & pleasure to welcoms you to this Seminar and to speak briefly with
you about computer security, the recent developments within the Department of

Defense and the Intelligence Community and the challenges that lie ahead,
As Ur. Gerald P. Dinneen, former Accistent Secretary of Lefense for i

defined at the first of these Seminars two years age, & "trusted” coputer
system is one with sufficient hardware and software integrity to ellow its use

for the sinulieneous processing of multiple levels of classified or sensitive

“nioreeec for trusted computer systems is very real and growing repidly.

recters infiuencing this peed ére:

.,

- the growincg use of autcreted informetion handling svsiems throu

" out

)

the DoD and the Intelligence Cemmunity enc in perticular the linking
of these svstems intc major networks;

- increasing requirements for controlling access to canpertmented end
sensitive information,;

- tne requirement for broazder disseminetion of -information both within
anc beyond the community;

- grosing difficulties with obtaining required numbers of cleared
personnel, both military and civilien.

Despite continuing internal efforts to deveiop speciel purpose trusted

systems for unique needs, we already rely very heavily on the products of tne

comnuter industry to meet our information processing requirements, and tnis

B=-1 5
| {ECEDING PAGE BLANK-NOT FLi¥

-

dependence will continue to grow significantly in the future. It is thercfore
very gratifying to observe the progress being made by the canputer industry in
applying computer security technology as represented by the industry presenta-
tions at this and the previous Seminars.

It is very important, also, that the Department of Defense and the
Intelligence Community develop sufficient expertise to be able to evaluate the
integrity of computer software and systems developed by industry and
government, and that we be able to determine suitable physizal and
administrative environments for their application. We have had scattered
ef forts over the past several years to evaluate specfic systems for specific
installations. But these efforts have always been mcre or less ad hoc, and
because of the extensive technical background required, expensive to carry out.

I am very pleased therefore to announce today the establishment of a

Computer Security Technical Evaluation Center for the Department of Defense and

-the Intelligence Community at the National Security Agency. Llast fall, as

Director of NSA, I enthusiastically endorsed the establishment of this Center
at NSA as a rnew and separate function. 1 am very pleased with the progress
being made in setting up the Center and I remain strongly committed to its
success.
1 would like to make several observations about the Center and some of its
relationships:
- Because the private sector computer manufacturing community is the
primary source of ADP systems, the Center's role will be to work
with the manufacturers, deriving as much system integrity as possible
from industry developed systems. This is a rather sharp contrast to

the NSA's more traditional communications security role where the

government has the dominant technical role.

- The Center will have a difficult task developing procedures which
assure protection of sensitive portions of a system which the
government does not own. Simply classifying security related
portions of a system built by industry won't work since the govern-
ment represents such a small portion of the overall market that the
manufacturers may well decide not to sell to the government rather
than accepting the limitations imposed by classification. This,
in the end, might lead to a highly undesirable situation where private
sector users (e.g., banké, insurance companies) have higher integrity
systems than the government.

- But sensitive portions of systems and the known vulnerabilities
that remain must be protected, in the interests of both the government
and the manufacturers. It is quite 1ikely therefore that the most
sensitive portions of the government's analyses will be both classified
and proprietary to the manufacturer. Careful, reasoned interaction
between the government and industry will be needed to work out
suitable working relationships.

- The Center will act in the interests and for the benefit of the
Department of Defense and the Intelligence Community. Its evaluation
will not be intended for use by other than the DoD. It will not make
general product endorsements. But as with the Qualified Products lList
procedures {(as prescribed in the DoD Defense Acquisition Regulations),
the relative merit of a system in the hierarchy of evaluated products
may be available publicly in order to provide incentive and
encouragement for manufacturers to develop trusted systems and private

sector users to employ them.

IS ittt R s e, ittt ik e inis il e . P = S

Because of the wide range of sensitive environments that exist for
information systems (ranging from privacy applications to campartmenta-
tion within the Intelligence Community, and from adjacent security
levels (e.g., Secret and Top Secret) to full multi-level systems

with Intelligence users and uncleared users), it will be vital for
the tEvaluated Products List to offer a range of technical categories
and appropriate environments for specific systems. The approach of
establishing levels of technical integrity which has evolved from the
work of the Computer Security Initiative indicates the kinds of
distinctions which wil) be made in evaluating systems. A range of
suitable environments is possible with trusted systems because the
security accreditation of ADP systems depends upon el'i of the

aspects of the total system. The accreditation of a system to serve
users cleared at both the Secret and the Top Secret level is not as
difficult a problem as extending the use of such a system to
uncleared users as well. The Department of Defense is now using
Multics in such a limited environment serving both Secret and Top
Secret cleared users. The Evaluated Products List should provide
guidelines for implementing this type of operation where sufficient
technical integrity of software products can be demonstrated.
Finally, I would like to say that the establishment of an Evaluation
Center, important as it is, must not be viewed as providing by itself
the long sought answer to the computer security problem. Within the
Department of Defense and the Intelligence Community, system builders

will have to become aware of and properly employ the procedures for

development of trusted system applications. The Services and Defense

Agencies are being encouraged to establish or enhance their own
technical security test and evaluation capabilities to ensure
widespread use and availability of trusted computer systems. The
computer manufacturing community must work closely with the Center
and these Service organizations to ensure that reasonable products
are available for use in sensitive applications.

In conclusion, 1 would 1ike to restate my awareness of the importance of

this ‘problem area, my enthusiasm for the establishment of the Evaluation
Center, and my deep and continuing interest in its success. 1 encourage you to
participate fully in this Seminar, ask the tough questions, learn all you can,
and then go out and apply what you have learned so that we may all have trust-

worthy computers in the very near future.

LMW = TR . - I e
VAR, W T 1 F-Y T ST

INTRONDUCTORY COMMMNTS
STEPTEN T. WALKNR
DIRECTOR INFORMATILON SYSTRMS

OFCLCE OF DEPUTY UNDER SRCRETARY 07 NEFENSS (Czl)

Good Morning. It is indeed a pleasurc to welcome you to the “ourth Seminar on
the NDoD Computer Securitv Initiative.

It was just three years ago that we began the Computer Security Initinative and
just two years ago that we held the First Seminar here at NBS. Ue had two
major goals when we started this effort and T am proud to announce thac as of
today 1 believe we have accomplished both of them.

As T described in my opening remarks at the last Seminar, our m.ajor external
objective for the Initiative, that of getting the computer manufacturers
involved in the development of trusted systems, had alveady come a lonz way as
indicated by the five manufacturers who described their efforts at that
seminar. This time, as you glance at your program you will sec that wg have
eight manufacturers giving presentations; seven new ones including thre=
European manufacturers and one giving an update from last time.

I must admit that T expected only two or three manufacturer presentations and

as Pete Tasker and 1 were working out the program we had the pleasant task of

frequently shuffling the program as more manufacturers accepted our invitation
to speak.

1 think it is obvious from the number and variety of manufacturers represented
today and at the last Seminar that there is a strong interest in computer
security and in trusted computer systems in the US and international coanuter
manufacturing community. This external interest is wmost gratifving.

But just as exciting to me at least is the progress we have made to satisfy
the major internal objective of the Initiative. At the last Seminar I hinted
that within a year there would be a Lechnical integrity evaluation process in
being to serve the Do,

In fact, as Admiral Inman has just annnunced, that goal has been met with the
establishment of the Dol Computer Security Evaluation Center at NSA. The
Deputy Secretary of Defense made it official as of Januwary 1, 1981 and NSA has
been hard at work pulling all the necessary pieces togother to et the Center
functioning. Tomorrow afternoon you will hear a status report on the Zenter
from Mr. George Zotter of NSA,

[am personally very excited and pleased with our propress in just three
years. Tt is clear to me that the time was right for what we have tried to

do. My personal thinks to evervone who has helped make this possihle. 1
believe that the comhination of rapidly growing interest on the part of the
computer manufacturers and the existence of a Mo evialuation capability will
profoundly influence the integrity of computer systems in the very noar tern
and from now on.

[t is vital that we start to take advantage of this improv. .cnt as soun as
possible. 1In just a minute, [would like to propose a challenge to hoth the
computer manufacturers and the computer users both in this audience and beyond.

Let me first describe a particular situation as I see it in richt now.

Over five years ago the Air Force, after extensive testing ani evaluation,
installed a Honeywell MULTICS System at the Data Services Center in the
Pentagon. That system has successfully operated in a Top Secret environment
with some users cleared only for Scereot access for several years. [t is a
general purpose systein being used for all kinds of programaing and
administration support to the AV.

[am not recommending that everyone go out and buy a MILTICS System tn sitisfy
all their needs. But as [review the efforts of the many manufacturers that 1
have talked with lately, T realize that there is a real potential for a nunher
of systems with integrity similar to MILTICS to be available in the not so
distant future.

So what, you say! A Top Secret-Sccrct envivonment is not fully mualtilevel
secure. [can't have the highest levels of sensitive data on nmy syste: with
unclassified users so it hasn't solved my problem.

In reality though, not very many applications require a system to onerite over
anything like the full range of sensitive information. This afternoon vou
will hear about the computer security aspects of the WNMILS Information Systen
Modernization effort, perhaps the largest, highly sensitive computer svsten
upgrade that the NoD will perform this decade. There are aultilevel security
nroblems throughout WIS but as you will hear, the requirements exist over a
reasonable range of sensitivity levels, not necessarily over the full ranage of
possible levels.

If one couples the fact that the manufacturers could soon develop trustel
systems witii integrity levels similar to MJLTICS and the realization that many
of our security requirements can be met by systems that operate over a limited
range of sensitivity, it is possible to sce how solutions to at least these
limited applications may bhe forthcoming very soon.

You may accuse me of advocating a less then perfect solution by what ['ve just
said. Far from that, though, T am advocating sceking a reasenable, useful
solution prior to sceking the perfect solution. Indeed if we do not e
serious attempts to crawl before we run here, we very likelv will nover et
anywhere near that perfect solution,

-~ ~ it M hl ‘i —_—

Now back to my challenge. [would like to challenge the users in this
audience to seriously review their needs for trusted comnuter systems and
determine, as Larry Bernosky has for the WWMCCS Information System, which
needs could be met by systems able to operate over limited sensitivitwy
ranges. To the extent that you can do this, T strongly urge you to convey
this information to your local computer manufacturers representatives to help
motivate them to develop systems to meet your needs, and thoen get involved in
the evaluation of potential systems for your application.

I would similarly challenge all the manufacturers in the audience to study
what has been done to date, understand the security design of systems like
MULTICS, Xernclized Secure Operating System (XS0S) and ¥ernelized VM 170
System (XVM) and incorporate these ideas into your product lines, quickly.
More and more users are beginning to realize not only that they neecd improved
integrity within their computer systems but also that it is possible to build
systems with these improvements, and that they can benin to demand such
features. As you can tell from the manufacturers participation here, at least
some of your competitors are taking this seriously.

We've come a long way in the last few years. WYe've coapleted the first tou:h
phase of the Initiative, getting the various picces in place. Now it's time to
move into phase two. This will involve a lot of work by the manufacturers anl
you the users have the opportunity and the responsibility to met involved,

[know by your being here that you are interested. 1 challense you to et
seriously involved.

I would now like t. sumnarize the activities of the Initiative on the naxt fow
slides.

DoD

COMPUTER
SECURITY INITIATIVE

o 1O ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker
Chairman

DoD Computer Security
Technical Consortium

COMPUTER NETWORK VULNERABILITIES

QADIATION
TAPS 4
RADIATION TAPS QAOIATION um;mcu' f :
' o :
RADIATION CRossTaln % (ROSSTALM o
. /

' — —_2

. \’.:“-_{‘ P . M /

D ! S COMMUNEATION o /
T SWITORN

| PROCESSOR | LINES SWITCHING

— CENTER

—~—
I

| N
; - »
Y0 C
FILES A N A- HAQOWARE \
A= > IMPROPER (ONWECTIONS [’ N
COPYING QPERATOR [0058 LouPLING h e
UNAUTHORIZED ACCESS REPLACE svPERV:SOR SYSTEMS PROCRAMMER REMOTE
‘laﬁ‘; :::rmwg SISABLE PROTECTVE FEATURES - CONSOLES
v PROVIDE " ing™ /7
Al M ’
HAQOWARE REVEAL PROTECTIVE MEASURES

mwneaoc PROTICTION CRCUITS MAINTENANCE MAN ACCESS
CONTRIBUTE T0 SOFTWARE FALURS DISABLE MALDWARE DEVCES S
ATTACHMERT OF KECORDERS
TAND- Tut .
§0F TWARE USE STAND-ALONE UTILITY PROGRAMS gure ves

FAILURE OF PROTECTION FEATURES el
ACCESS CONTROL 1:):::[:;;‘;‘\:»‘,”

BOUNDS CONTROL SUBTLE SOF "wale
MODIFILATIONS

COMPUTER SECURITY

PHYSICAL SECURITY
ADMINISTRATIVE SECURITY
PERSONNEL SECURITY
COMMUNICATIONS SECURITY
EMANATIONS SECURITY

HARDWARE/SOFTWARE
SECURITY

COMPUTER
SECURITY INTIATIVE

TRUSTED: SUFFICIENT HARDWARE AND
SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY/
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

APPROVAL FOR DoD USE

,0000 520028'
. POLICY
/ . \

DEVELOPMENT

GROUP PHYSICAL

/ADMINISTRATIVE

/- PERSONNEL
——= SPECIFIC DESIGNATED HARD\WARE
——= SYSTEM —= APPROVING SOFTWARE
— REQUEST AUTHORITY (- SECURITY

\ TEMPEST
COMSEC

INDIVIDUAL
INSTALLATION
FOR USE OF ADP APPROVAL
PROCESSING

CLASSIFIED
INFORMATION

nmHA2mmux—cpOom>x

APPROVAL FOR DoD USE

INDUSTRY
SOON \oooo 5200.28[] l l j
~1982 e POLICY
o [\ EVALUATION
E DEVELOPMENT . CENTER
a GROUP l j l
v L
R —— SPECIFIC DESIGNATED rd “EVALUATED
g — SYSTEM ——— APPROVING <::) PRODUCTS
g ———REQUEST AUTHORITY LIST™
N
€ N
N
T
§ INDIVIDUAL
INSTALLATION
FOR USE OF ADP APPROVAL

PROCESSING
CLASSIFIED
INFORMATION

C-6

EVALUATED PRGDUCTS LIST

TECHNICAL
FEATURES

FUNCTIONAL SPECIFICATION
REASONABLE PENETRATION
RESULTS

REASONABLE MODERN
PROGRAMMING TECHNIQUES
LIMITED SYSTEM INTEGRITY
MEASURES

FORMAL DESIGN
SPECIFICATIONS SYSTEM
INTEGRITY MEASURES

PROVEN DESIGN
SPECIFICATIONS VERIFIABLE
IMPLEMENTATION LIMITED
COVERT PATH PROVISIONS

VERIFIED IMPLEMENTATION
AUTOMATED TEST
GENERATION EXTENDED
COVERT PATH PROVISIONS
REASONABLE DENIAL OF
SERVICE PROVISIONS

POSSIBLE
EXAMPLES ENVIRONMWIENTS

MOST CCMMERCIAL DECICATED MODE
SYSTEMS

TATATURE S BENIGN NEED TC
"ENHANCED KAOW
OPERATING SYSTEM ENVIRONMENTS

MULTICS AF DATA SERVICE
CENTER TS S

NO USER
PRCGRANMAUNG
TSSC

LIVITED USER
PROGRAMMING
TS-8-C

FULL USER
PROGRAMMING
Ts-8-C

COMPUTER SECURITY INITIATIVE

EOUCATION PHASE

PUBLIC SEMINARS WORKSHOPS

SPECIFICATION PHASE

ORAFT | DoD COORD. | INDUSTRY COORD

EVALUATION PHASE

REVIEW AND ENHANCENENT

INFORMAL
K5Qs.

KvM
HONEYWELL
DIGITAL EQUIPMENT CORP

TYMSHARE

FORMAL
INDUSTRY

SUBAUITTED

SYSTENS

1
1
4
1
1
]
1
+
1
]
1
]
+
]
1
1
1
1
]
i
1
{
1

"EVALUATED PRODUCTS LIST

1989

1992

COMPUTER SECURITY INITIATIVE

ON JANUARY 1, 1981 THE SECRETARY OF DEFENSE
ASSIGNED RESPONSIBILITY FOR COMPUTER
SECURITY EVALUATION FOR DOD TO THE DIRECTOR,
NATIONAL SECURITY AGENCY.

COMPUTER SECURITY EVALUATION
CENTER

o ESTABLISH TECHNICAL EVALUATION CRITERIA
o EVALI JATE INDUSTRY AND DOD SYSTEMS

o MAINTAIN EVALUATED PRODUCTS LIST

© SPONSOR R&D IN COMPUTER SECURITY

o ENCOURAGE DEVELOPMENT AND WIDESPREAD
USE OF TRUSTED COMPUTER SYSTEMS

CURRENT INITIATIVE EVALUATION
EFFORTS

CONTROL DATA
DIGITAL ZQUIPMENT CORPORATION
HONEYWELL

B M a4 o

INTEL
TYMSHARE
UNIVAC

UNDER DISCUSSION
BURROUGHS

c-9

Durroughs
FEDERAL AND SPECIAL SYSTEMS GROUP

CHRTS TUMLINSON

LESEARCH AND DEVELOPMENT

LOCAL NETWORK SECURITY

&> POLICY

B DESIGN

> ACCEPTANCE

B e e o i

NEED FOR INTERCONNECTION OF COMPUTERS AND PERIPHERALS

> SYSTEM HIGH
> PERIODS PROCESSING
B> MLS HOSTS

USING LOCAL NETWORK TECHNOLOGY

ISO-LEVEL POLICY

CGMMUNICATION IS PERMITTED ONLY
AMONG SUBSCRIBERS AT THE IDENTICAL
SECURITY LEVEL (CLASSIFICATION,
CATEGORY) ‘

NO OTHER COMMUNICATION CAN
OCCUR

Wy

EXAMPLE OF MOLEVEL AT

N |

'
i
!

P B
: f'"‘h'_"‘"\ 1

i)
:‘] o
PERION G] SYSTE

N ITRN oy My H
SRR |

NODE ARCHITECTURE

DEVICE
INTERFACE
UNIT

1 |

n-3

SECURITY PROGLEMS ADDRESSED

e WITHOUT E?

— PACKET CONTENTS CAN BE COPIED DIRECTLY
BETWEEN SECURITY LEVELS

POCKET X
PROCESS B PROCESS A

CQPY OF
PACKET X

PROCESS C

PROCESS D

COMMUNICATION NETWORK

SECURITY PROBLEMS ADDRESSED

o WITH E’
_ PACKET HEADERS MUST REMAIN IN PLAIN TEXT
UNTRUSTED PROTOCOL PROCESSES CAN DOWNGRADE CLASSIFIED

DATA 8Y DECODING ENCODING INFORMAT! “* CONTAINED IN
PACKET HEADERS

VC-AB PROCESS A
PROCESS 8 - - %- --% g (UNTRUSTED
//

Vi 1 !

’ f i

/’ ! !

/-v\ 7
vC.Co

PROCISS D Je M_ __@ o PROCESS C

L]

HOST 2 COMMUNICATION NETWORK

N-4

POTENTIAL SOLUTIONS

STORAGE CHANNELS
» ELIMINATE VARIABLES
e ADDRESSES
e LENGTH
¢ OTHER HEADER FIELDS

» ENSURE THAT UNTRUSTED NETWORK PROCESSES CANNOT
COMMUNICATE WITH ONE ANOTHER OUTSIDE THE POLICY

TIMING CHANNELS
» TIME DIVISION MULTIPLEXING

KERNEL SUPPORTS

» MESSAGE BASED IPC

» PROCESS ISOLATION

» POLICY PROCESSES

INTERLEVEL INFORMATION FLOW

PROCESS B PROCESS A

8 READ FILE

HOST 2 COMMUNICATION NETWORK HOST 1

MULTHEVEL MULTILEVEL
SECURE SECURE
OR
DEDICATED AT
LEVEL
LT WITH SNFE
NOTE: L1>12

Burroughs @

LOOP BACK

CLOCK LOSS
DETECTED BREAX

4

!

&

o

SWITCH CLOCK | 0SS
ACTIVATED DETECTED

Csaiten
ACTIVATLO

D=6

o~

- — ~—— Burroughs "‘;}

LOOP WITH FAILURE

ADDITIONAL MEASURES

END-TO-END ENCRYPTION

TRAFFIC FLOW SECURITY

N-7

SUMMARY

EXPLOIT A SIMPLE AND USEFUL POLICY
TO REDUCE THE EFFORT OF
CONSTRUCTING A SECURE LOCAL
NETWORK

L__M o e T

L.1

CR80-A Fault Tolerant Computer for Iinplementation in Secure Systemns

Asbjern Smitt
Head of Research and Development

Christian Rovsing A/S, Ballerup, Denmark
General

Christian Rovsing A/S with the CR80 MAXIM and FATOM virtual machines
has introduced a new and powerful architecture for implementing secure
systems on a ultra-reliable, easy to maintain and modular fail safe computer.
The high speed memory mapped multiprocessor computers have been designed
to provide modular growth in processing power and memory requirements to

cope economically with the requirements of:

General purpose computer systems
Packet switches

Message switches

Control and Command Information
Concentrators

On-line systems

Terminal systems

Front end processors

The illustration overleaf shows that the CR80 FATOM computer tightly
couples up to 16 Processing Units (Multiprocessors) together via the S-NET,
and that each peripheral connects through individual channels to two
Processing Units, one channel being the active connection for a connected
peripheral, the other the back-up connection. Also it is seen that the CK80
MAXIM (Memnory mapped Maxi-computer) is the single Processor Unit, non-
redundant subset of the CR80 FATOM (Fault Tolerant multiprocessor)

otherwise they have identical high performance characteristics.

The CR80 FATOM fault tolerant computer differs from other computers
(large, medium or small) in that it, based on a unique distribution of its
memory providing nearby unlimited processing power, up to 5G Million
instructions per second (MIPS) together with minimum added hardware to

achieve its "self repair" features and 256 Mega word maximum memory size,

[

WIXVIN

i

1

i

08dJ

1055430

Iy Ny 4304

i N4

INOLvd 084

5 INNVR VLY
; 0

N

[

¢

Extensive hardware checks has been incorporated throughout the CR3/
architecture, supporting integrity and security in execution of both application
and system programs, ensuring that erroneous interaction among users, and
with the system software, are prohibited. This is extremely unportant during
software maintenance and development, once a fault tolerant systew has been
brought operational, as well as facilitating the initial software development

and debugging.

The CR80 architecture and DAMOS system software supports modularily the
total spectrum of virtual memory machines, from the 0.7-3.0 MIPS MAXIM
multiprocessor computer with one or more CPUs, up to the 50 MIPS, N+l
redundant FATOM computer, incorporating the cost effective approach of only
having 1 single spare unit, capable of backing up for any of N working units).
The CR80 can be upgraded in the field, often without stopping operational use,
due to its on-line maintenability and unique galvanic isolation between system

elements at the card-magazine level.

A CR80 Processor Unit (PU) constitutes either a uni- or multiprocessor
computer with from 1 to 5 CPUs (.7 to 3 MIPS). The CR80 FATOM connects up
to 16 Processor Units (PUs) together via the extremely fast S-NET (up to 512
Mbit/sec.) into a tightly coupled multicomputer with up to 50 MIPS capability.
In addition all lower levels of input/output processing is distributed to the 1/O
controllers (peripheral processors) in the Channel Units (CU), this further
enhances the CR80 above the simple accumulated processing power of the
CPUs.

The 1/O Controllers (peripheral processors) communicates with PUs through
one port of the triple ported controller memory, the two other ports allowing
for this memory being part of the address space of two processing units (PUs),

which ensure an alternative path, in case of a Processing Unit (PU) failure.

The CRS80 computers also gain their strength from very fast intelligent
multiplexed Direct Meinory Access (DMA) channels between the distributed
memory in PUs and CUs and that the imbedded channel processors (S-NET &
DATA CHANNEL) with minimun interruption of the CPUs autonomeously
handle and ensure the integrity of hundreds of simultaneous active logical

channels between programs and processes,

The CR80 FATOM basic system philosophy is to achieve N+ redundancy on all
levels, both processors and I/O controllers. A unified system approach to
software in a redundant system, relieving application software as far as
possible of mechanisms and functions necessary for fault tolerance, moving
these to the system S/W. The CR80 FATOM Computer thus is designed to have
no single points of failure on a system basis, this includes all parts of the
system: Processors, busses, 1/O devices, power supply, cooling and software in
order to achieve a continously available no-break computer. The on-line
maintenance features, allows any failed module to be exchanged and tested,

without interrupting system operation,

Also the CR80 modular packaging and integration system, ensures the
capability for expansion of a CR80 FATOM Computer to virtually any physical
size, using only a few standard types of modules and cables, as well as
achieves the cost efficiency of both the single and fault tolerant CR8&0

Computers.

.2

PU Logical Organisation

As an introduction to the features of the CR80 memory mapped Pl a bricf
discussion of the CR80 Processor Unit Logical Organization, shown overleaf Is

given.

Interconnection of the PU modules is performed by means of two parallei
transfer busses, the (Processor Bus) and the (Channel Bus) implemented as two
backplane printed circuit boards. The busses have identical electrical and
timing specifications with the following characteristics: transfer rate up to 4
mega word per second (16 bits + 2 parity bits), addressing of 1 mega word as
word or byte., The Processor Bus performs as transfer bus for the Central
Processor Units (CPUs), while the Channel Bus perforins as transfer bus for

the Channel Bus modules (DMAs).

The central processor units, CPUs, are general purpose processor units with
word length of 16 bits and the ability to address 64K word of instruction and
64K word of data. All data/instruction transfer perforined by the CPU are via
the processor bus and the meinory MAP to the memory. Physi&ally, the CPUs
and the memory MAP are connected to the same Processor Bus, but logicailv
the CPUs recognize the MAP as being located between the inemory and the
CpPU.

The function performed by the memory MAP is to expand the addressable
memory area to 16 mega word of which | mega word can be located in the PU
as fast access, local storage, while the remaining 15 mega word can be located
on the data channel. Besides the address translation, the MAP also includes
memory read/write protection, the protection can be performed individually

for each 1K page of the memory.

- ;X

— X

-

P Bus (PRCIESSOR BLS . B
j. ccanW |r T
’0(3‘;” l J Pus
rs S 3 P Ce { {(™
Vs i A A P iA P A A
2y 1M Mmltodd toldd]e
w
£ H H
Qb a -2\ un? #0|E 821t
R —‘-QL ~_Mv
[ARBITRATION J M
U BUS (CHANNE:. Bus . ?
. el e
ACAPTER ENARE
wal [sBa
8" g
O
SOl hAa BUS EC
D

A BLUS
T T T .
i Ci
PSTFS Osop pLTul LT (o Tu A
E2ll:s (TRLY Jomd komm| Joomm]
w w P . 1:F 1.F 1 F TC Pu
gp £° DATA CHANNE.
L .
p ¥ 31 F- 4 ne T
B
8 BUS >
RN L
C] |
A A 1A
1 #n
| ~— . !
| TOMM NS
USC DRIVES

CR80 FATOM CU CONFIGURATION

E-6

The functions performed by the MAP on the Processor Bus transfers are also
performed on all Channel Bus transfers, meaning the Charinel Bus Modules can
access the complete 16 mega word memory area, but only the areas which are

not protected.

Beside the address translation dezcrit.»d above, the MAP module also includes
the Channel direct memory access (DMA) function, interrupt preprocessing

and Data Channel Interface,

The DMA is used for blcok transfer between shared memory with peripheral
Controllers and PU local memory and is under control of the Input/output

system software,

The interrupt preprocessing performed ensures that only interrupts (CPU or
I/0) with sufficient priority will cause a context switch in one of the CPUs,
while all other interrupts will be queued by the MAP, until the CPU status

allows service of them.

Transfer on the Data Channel will be performed by the memory MAP when the
addressed location is not within the PU Local Main Memory addressing space (1
Mw).

Security is supported by means of memory access protection and division of

instructions into three privilege classes.

The CPU has 16 states of which one (state @) is a user state and 15 (states |
through 15) are systein states. In user state only not privileged instructions
may be executed. Medium privileged instructions can be executed at all
system states while the most privileged instructions are reserved for execution

at system state 15,

Attempt to illegally ezecute a privileged instruction in user state or system
states 1 through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine,

7 The CPU state is changed by means of the MON_instruction which is used to

activate systern procedures.

2 atepeboan g 528

P

k
i
3
ki

1.3, CR80 Security Mechanisms

The inherent logical and physical separation of programs and data in the CR30
architecture is well suited for preventing unauthorized access to data and

programs and for preventing non-intended modification of programs.

The objectives of the protection mechanisms in the CR80 are:
- to protect data belonging to a process against unauthorized modification

by other processes and against not intended reading;

- to protect programs against modifications, and,

- to prevent unauthorized execution of programs and system resources

- to prevent processes from monopolizing the processor.

Security is supported by means of memory access protection and division of instructions

into three privilege classes.

The CPU has 16 states of which one (state @) is a User state and 1 5(states | through
15) are System States.

Higherstateshavemore privileges thanlowerstates.Inuserstateonlynotprivileged
instructions may be executed. Medium privileged instructions can be executed at
all system states while the most privileged instructions are reserved for execution
at system state 15.

Attempt to illegally execute a privileged instruction in user state or system
states 1 through 14 causes a local interrupt, upon which the CPU

automatically envokes a supervisor routine.

The CPU state is changed by means of the MON_instruction which is uced to

activate system procedures.

In addition to the memory protection provided in USER STATE by the
MEMORY MAP, each of the system states has its own mernory bound register.

Only data memory locations below or equal to this boundary value may be

modified while all data memory locations available might be read in SYSTEM
STATE.

E-9

The Memory Map protection mechanism which is active in user state is
implemented by means of two access control bits for each | Kw page in

memory, The protection values are:

access
control
bits:

00 Page absent
01 Full access
10 Read only

11 No access

As will be seen in the following all non-privileged (USER STATE) memory
accesses (both from CPU's and DMA's) go through the Memory Map, and are
checked by hardware not to violate the protection value. In the system state

full access (read or write) is granted irrespective of the protection value.

If a not allowed access is attempted, the transfer is terminated without
sending the physical address to the memory, and, a transfer error is signalled

from the Memory Map.

The "Page absent" condition is used to invoke the demand paging feature of
DAMOS. It indicates that the accessed page is not resident in main memory (or
not mapped in), and will lead to suspension of the process until the page has

been loaded into memory or relocated.

E~10

- i i o ; o i b m

1.4 Security

I

{‘ The CRS80 operating system DAMOS offers comprehensive data security
features. A multilevel security system ensures that protected data is not
! disclosed to unauthorized users and that protected data is not modified by

unauthorized users.
All memory allocatable for multiple users is erased prior to allocation in case
! of reload, change of mode, etc. The erase facility is controlled during system

generation,

DAMOS is specified using the formal notation of the Wienna development

method with the intention of making formal verification possible.
The security system is based on the following facilities:

a. Hardware supported user mode/privileged mode with 16 privilege

’; levels. Priviliged instructions can be executed only when processing
! under DAMOS control.

! b. Hardware protected addressing boundaries for each process.
C. Non-assigned instructions will cause a trap.
d. Primary memory is parity protected.

e, Memory bound violation, non-assigned instructions, or illegal use of

privileged instructions cause an interrupt of highest priority.

f. The hierarchical structure of DAMOS ensures a controlled use of
DAMOS functions.

h. A general centralized addressing mechanism is used whenever

objects external to a user process are referred to.

i A general centrali-ed access authorization imechanism is employed.

Centralized addressing capabilities and access authorization are integral parts

of the security implementation. User processes are capable of addressing

Kernel objects only via the associated object descriptor table. The following

types of DAMOS objects are known only via object descriptors:

Processes

Synchronization elements

Segments

Devices
PUs
CPUs
Ports

The object descriptor forms the user level representation of a DAMOS Kernel

object. It contains the information necessary for the Kernel to locate its low

level representation and to ensure its security and integrity:

a.

Host PU

Object type

Object control block index for use by the Kernel to locate the

corresponding object control block.
A sequence number which must match a number in the object
control block (to prevent reallocated blocks from being erroneously

accessed).

A capability vector specifying the operations which may be perfor
med on the object by the process which has the object descriptor.

E-12

The access right information concerning the various DAMOS objects is
retained in a PU directory of object control blocks. Each control is associated

with a single object.
When the access right of a process to a segment is verified and the seginent is
included in the logical memnory space of the process, the contents of that

segment may he accessed on a 16-bit word basis at the hardware level subject

to hardware access checks.
Authorization of access to an object is based on

° a general security policy, and

. a discretionary access checking

The security policy is based on a multilevel -imulticompartment security

system,
Objects are associated with a security classification level for each compart-
kent (i.e., set of data with the same kind of information) and subjects
(processes) are associated with a security clearance level for each compart-
ment. Both entities are described in a common type:

° the security profile
Discretionary access checking is based on

° identification of access classes of subjects (processes), and

. statements of access capabilities for explicitly enumerated access

classes of subjects vis a vis a given object.

Access to an object is authorized if the following conditions are both fulfilled:

F-113

. the access operation requested is allowed according to the

capability vector in the object descriptor

. the combination of process security profile, object security profile

and operation (read or write) agrees with the security policy.

The security policy is:

° A process may read from objects with classification not higher
than that of the process. An untrusted process may write to objects

with classification not lower than that of the subject.

. A trusted process may write to objects with any classification.

A process can only obtain access rights (i.e., an object descriptor) to a DAMOS

object in the following ways:

a. By inheritance from a parent process
b. By creating the object.
c. By successful look-up in the PU directory.

Similarly, a process can only distribute access rights to objects registered in

its object descriptor table. This may be done:

a. By inheritance when creating a child process

b. By entering the object into the PU directory by a symbolic name.

When an object is entered into the directory it is specified by whom it may be

looked up and what capabilities they should have vis a vis the object.

The object descriptor table and Security profile of a process is kept in a
memory which is accessible by that process when it is execut'ng in privileged
mode, but protected against modifi#ition by the process when executing in

user mode.

E=14

* DAMOS SECURITY

Layered design

user levels

m DAMOS SECURITY

Kernel

* Directory functions *Error processing

+ CPU management +Real time clock

* Process management *PU management
«Memory manageinent *PU service module

o Inter process communication *Transfer module

» Device management «Basic transport service

« Device handlers

[P Y

& DAMOS SECURITY

Objectives?

L 1
Data security

« Protection of data against disclosure to
unauthorized users

« Controlied update of data

Availability of service

* Protection against denial of service

Measures$
]
« Capability based design

+» Resource management

% DAMOS SECURITY

HW security features

Memory protection embedded in memory mapping

* 16 Privilege levels
Each with an associated memory boundary

« Privileged instructions
+ Non-assigned instruction codes trap

+ Parity on memory

=16

. .- - - —————— -
P =, = SR e , ~

& DAMOS SECURITY

Objects
.]

Security is based on controlled acces to objects

Kernel objects

* PUS

* CPUS

*Processes

* Synchronization elements
* Virtual memory segments
* Devices

« Communication ports

& DAMOS SECURITY

Objects

File management objects Magnetic tape file management system

sDevices (disk drives) Devices (tape decks)
«Volumes (disk packs) Volumes (tapes)
e Files Files

o Users Users

Terminal management objects

* Devices (communication controllers)
eLines
« Units (terminal, LP, VC,)

sUsers

k=17

-
oot i o

PR ac P S

% DAMOS SECURITY

Access authorization

ACCESS
CONTROL 0BJECT

PROCESS *SECURITY e
«SECURITY PROFI

PROFILE .A(CJL LE

QUG!

s Security check

* Descretionary access right verification

& DAMOS SECURITY

Security check
-]

® A process may read from objects with a classification not

higher than that of the process

®A process may write to objects with a classitication not

lower than that of the process

®A trusted process may write to objects with any classification
L]

l~18

& DAMOS SECURITY

Security profile

' Defines a classification for each of a set
of compartments

Type protite record

A class min A class..max A class

N class min N class..max N class

End:

* DAMOS SECURITY

Discretionary acces right

¢ Suoject identified by a user group identifier

« Object has an acess control list

T TR

; x DAMOS SECURITY

Damos processing domains

User wiew Kernel views

GPS KCS

« PMD, PCF
*DF BTS
“PM

<DVM (3)

& DAMOS SECURITY

i Process parameter segment Process parameter page

Level areas 1-15 * Parameter stack
Level 15¢ * Context stack
* Object descriptor array « Translation table
* Segment table
* Security profile

* Process level

E-20

% DAMOS SECURITY

User process logical memory space
e e P ey,

Program Data

LS USti DATA

USER

PRO AN

INDEXEL

SEERENGG

g DAMOS SECURITY

Object manager space

Object descriptor

Information contained in OD¢

* Host PU
*Object type and subtype
* Index to object control block

* Object control block sequence number
* Object acces level

« Capability vector

Object de: <riptors may be obtained via:

« Creation of object
*Inheritance from parent process

* Lookup in PU directory

g DAMOS SECURITY

S

Change of execution level
* MON instruction

*RTM instruction

e Interrupt

*RTI

Change ot view (processing domain)
«CALL instruction

«RET instruction

} Only at level 15

« Interrupt

*RTI

£-22

Computer Security and Control Data

Terry A. Cureton
Program Manager, Security Systems
Control Data Corporation

August 1@, 1981

[SLIDE: CDC Logo]

It is a pleasure for me to represent Control Data at this seminar. We
have been observing the activities of the DoD Computer Security
Initiative for some time, and are impressed with your progress. Until
recently, our participation in the Initiative has been silent. For
the most part, this has been due to the largely theoretical or
experimental nature of the material presented. However, the
Initiative has given us an opportunity to look at our own experiences
in computer security from another viewpoint. We can now see the
parallels” and principles common to both the theoretical work and our
experience as practitioners of computer security. The message we
would like to share with you today is that we at last see a
convergence between the theory and practice.

[SLIDE: Topics)

To begin, I must start with what Contsol Data is, and why we are
involved in computer security. Then, I would like to dispel a myth
about security and performance, by relating that to our unigque machine
architecture. Next, T will briefly describe how that architecture is
reflected in our operating system design. A comparison of commercial
versus government security requirements will show how we plan to meet
both. Another comparison of formal and informal design methodologies
will show how we think they are converging. Lastly, T will describe
our involvement with the DoD Initiative and our view of its impact on
the industry as a whole.

[SLIDE:. Control Data Reputation]
What kind of company is Control Data?

~ Many of you know Control Data is in che large-scale scientific
and engineering computer business.

— That is our tradition and our legacy, since the company was
founded in 1957 - since the days of the 1664 and the 6600.

'.--!F-_-_-.q....---p-----!-I-III"""'lllllI-F;"

[——

B =S

Computer Security and Control Data
Terry Cureton Augqust o, Y.

[SLIDE: Control Data Today)

But you may not be aware of the range ot Control Data's business
today. Yes, we still make super—scale computers for our systens
business, but we are also the industry's lesding supplier of
peripherals -~ both OEM and plug-compatibles, in addition to our owl.
label. The next time you walk into a room full of disks, there's a
good chance (65%) that we made them, since we supply OEM peripherals
to all but one of the major manufacturers. We are also deeply
committed to education with our unique PLATO systen. PLATO is winniru
acceptance in uses ranging from teaching grade school fundamentals, to
training airline pilots and nuclear safety engineers. But it is i
Data Services that we are the world-wide leader.

[SLIDE: DATA SERVICES]
Our Data Services Company operates both commercial and scientitic dat s

centers around the world, around the clock. Its a more than halt
billion dollar business, reaching from Main Street to Wall Street,

And - whether it 1s a small businessman dealing with our fervice
Bureau Company in Cleveland - or an engineering firm dealing with o
CYBERNET Services in Copenhagen —~ the two questions we 1lways get are:

[SLIDE. DS Customers Ask]
"How much will it cost?" and

"How secure will my data be?".

{SLIDE: Security (1)]

Clearly, security is a customer concern, and for Control Data it is a
hard-nosed, hard-headed business need. 1t is here that Control Data
learned about conputer security in a day-to-day pragmatic way. We
have been addressing that need for more than 20 years, since the
beginnings of Data Services.

Now, Data Services 1s a large chunk of our business, in fact they arve
our largest Systems "customer". Their needs have a major impact un
system design and development. Simply put - Security has been
essentlial to our largest systems marketplace for more than 20 years.
That's why Control Data nas been involved in computer security., Wo
will have to look at the data services environment to see how it
relates to computer security.

I

Computer Security and Control Data
Terry Cureton August ¥, .Y8.

[SLIDE. Timesharing Environment)

From a security viewpoint, it is the timesharing environment where the
needs are greatest. The tirst need ¢t course, is to simply keep it
running, since users have little patience for system downtime. That
requires a good deal of system integrity, in the first place. by
definition, timesharing means multiple vsers sharing system resources.
Those resources and the users' data are real and tangible assets which
must be protected. Then, resources have to be controlled so that all
may share equitably, and if you want to get paid, they have to be
accounted for. Finally, users have to bLe kept seperate, since *hey
might be competitors,

Control Data met those needs by developing a system specifically
designed for the timesharing environment. Over time, security tlaws
were Jdliscovered and corrected, and new security mechanisms evolved
into the system design. We built up a great deal of practical
eXperience with that system, and that system evolved into our s*atirir.g
system of today. But it wasn't until the DoD Initiative that e tully
recognized the unique advantages of the CYBER 7@ architecturc
regarding security.

What is so unique about the CYBER 170 architecture and security? 7.e
answer in a word is - Performance. There seems to be a growing
supposition in the industry, that security can only be obtained at the
expense of performance. We would like to dispel that myth, by showiny
how the CYBER architecture and hardware can provide security without
penalizing performance. To understand why, we have to first examine
the relationship between security and performance, and then how that
relates to design.

[SLIDE: Performance]

When considered in a broad sense, performance over the long term
requires both speed and endurance - that's why the Indianapolis 54¢ is
so tough. Tt isn't worth much to be the fastest in the race, if you
can't kKeep it running long enough to finish. 1In computing terms,
endurance is a combination of reliable hardware and software, and the
total system's ability to recover when something does break.

[SLIDE: Security (2)]

In that sense, the concept of integrity as a security requirement, is
just another way of describing endurance for performance. Thus the
emphasis on system integrity, as described in these DoD Seminars, is
consonant with our experience in computer security. That's one sign
of a convergence between the theory and practice.

Given that endurance and integrity are just different views of the
same set of requirements, then those hardware and software teatures
which contribute to the endurance of a system are, in tact,
contributing to both performance and security. Here's another way to
look at it.)

Computer Security and Control Data
Terry Cureton August 10, 198:

[SLIDE: Implementation]

From this viewpoint, we can see how security and performance should be
mutually benefical - synergistic if you will - rather than conflicting
goals. How these features are implemented, - and which are in
hardware - is where conflicts arise. If security features must be
implemented in software - at the expense of performance, — then the
software designer is forced to make a tradeoff decision.

Historically, the choice has been in favor of performance, simply
because that's what sold computers. But that tradeoff is beginning tc
shift the other way now.

[SLIDE: Hardware Security/Performance]

Specifically, there are four key hardware characteristics which are
contribute to both performance and security:

o Machine Architecture,
0 Memory Protection,

o Context Switching, and
o Reliability Features.

Let's look at each, beginning with the architecture.

[SLIDE: Architecture]

This is the general architecture of the Control Data Cyber 178 series
computers, What is unique in this block diagram is the Peripheral
Processor Units (PPUs) in the middle. These are up to 28 separate,
independent computers, which operate concurrently with, but
independent of, the Central Processor. Note also that all 1/0
operations must be performed by the PPUs. Already we see the
principle of separation of functions implemented in hardware. 1'11
come back to the performance aspects of this later. Let's just see
how that architecture is reflected in the system design.

[SLIDE: System Layout]

I must explain that only system software executes in the PPUs. 1In
fact, most of the operating system consists of modules to be executed
in a peripheral processor. The PPUs also have primary control of the
operating system. The one at the top, labeled MTR (Monitor) is the
real boss of the system. The executive shown in central memory is
just a fast assistant to MTR. User jobs also reside in central memory
and only execute in the CPU. Again, we see a separation of functions,
When a user program requests 1/0, or other services, from a PPU, it
validates the request and performs the operation completely
independent of the CPU. The CPU program is thus isolated from I/0O
operations and cannot directly participate in error handling and so

Computer Security and Control Data
Terry Cureton August 14, 198!

on.

On performance, it should be noted that concurrent operations in the
PPUs also means that the software designer need not make a tradeoff
between security and performance. While a PPU module is laboriously
checking parameters or validating a user's authority to perform an I,/0
function, the CPU can be producing useful computations for another
user. This hardware separation pays off directly in performance, and
at the same time, establishes a solid base for security.

‘Let's move on to memory protection. Actually, memory protection also

starts with the architecture. What better isolation can there be than
between physically separate memories? Each Peripheral Processor has
its own independent memory, separate from the other PPUs, and more
important ~ from Central Memory where users must reside. Again,
hardware design provides the separation and isolation necessary for
security.

But notice, there are some system tables and software sharing central
memory with the user jobs. Here separation is maintained by the CPU
memory protection scheme.

(SLIDE: Memory Protection]

This scheme is simply a base and bounds hardware register pair. The
Reference Address (RA) is the starting address of memory assigned to
an executing program. The Field Length (FL) is the length of that
area. These hardware registers are part of the CPU, but are not
accessible to the executing program. Their use is completely
transparent. To the user, all memory addresses are relative to
assigned memory and the hardware precludes any other access. Thus the
CPU program does not handle real memory addresses, which is one
characteristic in common with virtual memory systems. This eliminates
user participation - or observance - of memory management. Since cnly
the Reference Address changes when a program is moved or reloaded into
memory, usage can be highly dynamic and efficient. Doing it entirely
in hardware provides even greater efficency, due to the simplicity of
the mechanism. Here we see both security and performance as a result
of how memory protection is implemented.

[SLIDE: User/System Interface]

Another critical security/performance concern is the need for safe and
fast context switching between programs. The actual context switching
mechanism is provided by a hardware feature, which has been
characterized as the "ultimate interrupt" but officially known as the
Exchange Jump operation.

An Exchange Jump can be triggered by either a PPU or a CPU
instruction.. This single instruction stores the complete set of CPU
registers, including RA and FL, into memory and reloads them from the
same memory block. Yes, it sounds like magic, but it does go both
ways in the same operation. The result is a complete two~-way swap of

e T~ "

|

Computer Security and Control Data
Terry Cureton August (@, (98,

- the execution state of the current CPU program - with the memory
image of the state of ancther program. The whole thing is transparent
to the program and the hardware insures that nothing is lost - or
gained - in the exchange.

The exchange operation is very fast. For comparison, it is roughly
the same time as a floating point divide operation. 1In some processor
models it is even faster. 1In that case, it could be said that "a swap
is faster than a FLOP." Again the intent was performance, but the

result is security since it is implemented in the hardware.

A CPU triggered exchange is part of the normal user/system inte'iace.
In this case the user program merely relinquishes the CPU to the
operating system. On completion of the request, the CPU is returned
in a similar manner.

The system PPU monitor however, can independently trigger a context
switch at any time. This is how a PPU module can both monitor and
control the time-slicing of the CPU among many jobs. Tt is also the
mechanism for "pulling the plug" on programs consuming too much of a
resource or hung up, and becoming a "denial of service" threat to
others. It eftectively eliminates of any form of user lockup, as the
PPUs always have the ultimate control. Thus a hardware context
switching capability can provide not only performance and security but
resource control as well.

[SLIDE: Reliability Features]

Finally, we come to those reliability features usually thought to be
interesting only to engineers, Error detection and correction
features are the most basic elements of hardware integrity. An
adequate set insures that the hardware will yield just two results -
either a correct result, or a signal that it cannot perform the
function properly. In addition, the diagnostic data produced by these
and other maintenance controls contribute to long term stability,
reliability and recoverability. My point is that they are not to be
overlooked when considering security. We are all aware that most
system flaws are exposed when operating in crisis mode - usually in
response to an error.

(SLIDE: Hardware Security/Performance (Result)]

In short, there are four key hardware characteristics which contribute
heavily to both performance and security:

o Machine Architecture
o Memory Protection
o Context Switching

o Reliability Features

F-6

—_

Computer Security and Control Data
Terry Cureton August (¥, 198.

All of these establish the base on which software must rely, to
provide both security and performance in the broad sense.

[SLIDE. M work Operating System]

At this point T should introduce you to our Network Operating System, i
(N.O.S. or NOS as you will). The name makes it clear that NOS is
network oriented, It not only supports access via communications
networks, but also supports multi computer networks both locally and
remotely. NOS is a multi mode system offering a full range of
processing modes including local and remote batch, database managers
and transaction processing, and a variety of interactive programming
environments. JObviously it is a multi user system as well, and that's
where security becomes a key requirement.

{SLIDE: NOS Characteristics])

One of the outstanding characteristics of NOS is that it is a
capabilities based system. Tt all begins with the built—-in concept of
individual users. Each user must be known to the system, and their
capabilities defined on an individual basis. From this is built an
accounting system where every activity in the system is attributable
and traceable to a user. Users are totally isolated from each other,
and the operating system. NOS relies heavily on the hardware
separation and memory protection features for this isolation. For NOS
users, the only means of sharing data is via the file system. The
file system is built around individual ownership of files, and access
is, - by default - restricted to the owner. 1If the owner chooses,
other users' access to a file may be specified on the basis of user
identity and mode of access. NOS has file passwords too, but they are
seldom used since they are independent of identification.

Interestingly, the file system carries the memory addressing concept
much further, and exhibits most of the characteristics of a virtual
memory system. Space allocation is dynamic, on an as-needed basis,
and does not require pre—allocation. That makes it very space-
efficient and avoids deadlocks. All I/0 references are relative to
the logical file name, and the system (a PPJ module) does the mapping
to real device addresses. Thus, NOS can preclude access outside of a
file, and to unwritten space.

Users and their files are also grouped into higher level FAMILYs with
no access to files across FAMILY groups. This is particularily
valuable in a university environment, to separate students from
faculty. Families are then divided into sub-families by storage
device to provide further physical separations. The result is that a
population of NOS users can be easily managed dynamically and without
inconvienence to the user. Both Families and Sub-Families may be
controlled as a group via operator commands.

In summary, NOS benefits from both a solid hardware security hase, and
a design intended tor commercial timesharing, which has withstood the
test of time and emerged robustly healthy.

Computer Security and Control Data
Terry Cureton August 18, 1981

[SLIDE: Security Requirements (1 of 2)]

But what of the DoD's security requirements? Although the words may
differ, there is a strong similiarity between commercial and
government security requirements. When you speak of a kernelized
system, it must be as simple a possible - to allow provability - and
by definition must be modular. Tt would be interesting to compare
this concept to our system PPU modules. A self-protecting system :
doesn't fall apart when a user goofs. Though not permissive, it must i
expect and tolerate user errors. We have already discussed how
integrity relates to rellability. User privacy-by-~default is a more
precise description of isolation, and provides protection from
accidental access.

{SLIDE: Security Requirements (2 of 2)]

Actually, access controls are a subset of resource controls., Resource
controls also deal with the denial~of-service threat. Controlled
sharing is where security is the name of the game, but need-to-know
access controls are only one form of control. Access based on the
identity of the user, and control based on owner.hip is another,
Auditability is of course, more narrowly directed toward resource
accountability. But it also provides a very effective user
surveillance capability.

The one listed government security requirement without a commercial
equivalent is the concept of security levels and categories.
Actually, they are just different sets of criteria for the access
controls mentioned above. The unigue aspect is that levels and
categories are independent of data ownership and subject to a
mandatory policy. That's the hole we intend to fill.

With all of these similarities, it should not be surprising then, that
a system meeting one set of requirements, should be easily adapted to
the other. 1In fact, while adapting the NOS design to support levels
and categories - we found that essentially all of the control
mechanisms were already in place. The mechanisms only have to be
extended to consider levels and categories and the mandatory security
policy in the access control decision. It is clear that not only are
the requirements similar, but are convergent on a common set of
mechanisms. Simply put - form follows function. Thus we believe
there is a common, generic set of control mechanisms which can be
adapted to specific security policies. There's a bonus too - With
those generic mechanisms already in place, we are confident that the
Multilevel Security extensions will result .n no significant
performance degradation.

Computer Security and Control Data
Terry Cureton August 1¢, 1981

[SLIDE: NOS Multilevel Security)

With the NOS Multilevel Security extensions, we will have the
functional capability to support Multilevel Mode operations. This
will be a standard, fully equipped operating system, for use with our
large scale, high performance computers. It will be compatible with
the full line of CYBER 178 computers, and most predecessor machines.
It will offer the full set of standard software products, and will be
software compatible with existing NOS user applications. 1S with MLS
will also be available not only to new customers, but to installed
customers as well, which goes a long way toward the goal of
"widespread availability."”

That's what we are doing as practitioners of computer security. But
how does that relate to the DoD Initiative and the theoretical work?

[SLIDE: Computer Security Approaches]

As you can see, Control Data has been approaching computer security
from a practitioner's viewpoint. Our first concern has to be
functional requirements, since we are selling not just hardware and
software but capabilities. Design evolution recognizes the fact that
we must maintain compatability with previous systems and the user's
applications. Marketability is, in fact, not the least concern, but
the one driving all other concerns.

From a theoretical approach, it is clear that computer security must
begin with the design methodology, with the objective being
provability. The idea ofa formal evaluation and on-the-shelf
certification is also important, and a pragmatic concern as well. But
what really drives a manufacturer is marketability. 1In this case, it
seems our concerns are markedly different., But let's look at the
respective methodologies to see if that difference holds up on
examination.

[SLIDE: Development Methodologies]

Here we can compare the formal design methodologies with those used by
informal practitioners like Control Data. Obviously, both processes
begin with some form of requirements. Formally, the security model
serves as a target requirement. But as usual, a manufacturer is
driven by market requirements, which are often conflicting and subject
to internal constraints as well., Eventually, requirements are agreed
upon and functional specifications are created. These are roughly
equivalent to Top Level Specifications and here the two processes are
very similar. 1In the formal process, the specs are then verified to
the security model, while informally a Design Review occurs. A Design
Review can be just as tough to do as a logical verification, and a lot
more emotional. Where a detailed design is done formally, coding
specs emerge informally. Now formal design correspondence may be
compute—-intensive, but peer review of all generated code is people-
intensive. We're not sure which is more expensive, but neither is
cheap! We have been told that complete code verification is beyond the

Computer security and Control Data
Terry Cureton August ¥, 19E.

state-ot-the~art, well complete system testing may be also - but we
Keep on trying. 1In penetration analysis we are doing essentially the
same thing. At Control Data, we call it Malicious User Group or MUG
system testing. Tts fun, and occasionally very exciting! Finally,
there is an evaluation of the resulting system by someone whose
opinion is important to the developer. For commercial systems, it is
simply market acceptance by the user. Tt would be nice however, to
have a formal stamp of approval before shipping the system.

The objectives of these methodologies differ markedly however, For
formal methodologies, it is Provability, but for commercial systems it

is Furctionality. In most other respects they are not only similar,
but appear to Converge on a common set of developmental functions.

This convergence has encouraged Control Data to look into applying
some of these formal methods to our system. As a first step in that
direction, we have requested a DoD evaluation of our NOS system and
Multilevel Security design. That process is underway, and so far it
looks very promising. On the matter of formal design verification, we
understand the benefits, but will have to develop the means of
applying the theory to our practices. We are currently exploring some
alternatives in that area.

[SLIDE: DoD Initiative Impact]

In conclusion, we at Control Data applaud the progress of the od
Computer Security Initiative. We would especially like to
congratulate you -

0 On increasing industry awareness of the need for security. (Some

non—-DoD people have helpec too -~ by getting caught.)

o We thank you for fostering -~ and occasionally funding - the
development of computer security technology.

o Thanks too, for focusing computer security reguirements for those
not so knowlegeable in computer security. This directly benefits
manufacturers by limiting the ingenuity of those who write
technical specifications for procurements.

o And finally, we thank you for providing an evaluation framework
which places greater emphasis on functional capabilities than on
technical specifications.

We look forward to a fruitful dialog on our common objectives of
advancing the state-of-the~art, and acheiving the widespread
availability of Trusted Computing Bases.

Thank you for the opportunity to address this forum.

[SLIDE: CDC Logo or DoD slide]

F-10

G

CONTROL DATA
CORPORATION

TOPICS

e CONTROL DATA AND SECURITY

e SECURITY AND PERFORMANCE

o ARCHITECTURE AND SYSTEM DESIGN
e DOD AND DEVELOPMENT METHODS
o DOD INITIATIVE

CONTROL DATA
REPUTATION

e LARGE SCALE COMPUTERS

o SCIENTIFIC/ENGINEERING

e SINCE 1957

k-1l

CONTROL DATA TODAY

e SUPER SCALE COMPUTERS
e PERIPHERALS
e EDUCATION — PLATO

e DATA SERVICES

DATA SERVICES 1«&

DATA SERVICES

CUSTOMERS ALWAYS ASK:

“HOW MUCH DOES IT COST?”

“HOW SECURE WILL MY DATA BE?"

SECURITY

¢ CUSTOMER CONCERN
BUSINESS NEED
20 YEAR HISTORY

OUR LARGEST MARKETPLACE

TIMESHARING ENVIRONMENT

e SYSTEM INTEGRITY

e MULTI USER

e ASSETS PROTECTION

e RESOURCE CONTROLS

o ACCOUNTABILITY
USER {SOLATION

PERFORMANCE

COMPUTE POWER
ENDURANCE
~ RELIABILITY

~ RECOVERABILITY

SECURITY

o ACCESS CONTROLS
e INTEGRITY
— RELIABILITY

— RECOVERABILITY

IMPLEMENTATION

HARDWARE COMPUTE POWER PERFORMANCE
RELIABILITY
RECOVERABILITY

SOFTWARE

ACCESS CONTROLS SECURITY

HARDWARE
SECURITY/PERFORMANCE

e MACHINE ARCHITECTURE
o MEMORY PROTECTION
e CONTEXT SWITCHING

e RELIABILITY FEATURES

F-14

CENTRAL
PROCESSOR

UNIT

CONSOLE

CDC CYBER 170 SERIES

CENTR
MEMO

"

AL
RY

~

%

EXTENDED

MEMORY

N\

PERIPHERAL PROCE

SSORS

MATRIX

DATA CHANNELS

NN
NT

l PERIPHERAL EQUIPME

{OPTIONAL)

SYSTEM LAY-OUT

CENTRAL

MEM

ORY

TABLES

PERIPHERAL
PROCESSORS

MTR

EXECUTIVE

CENTRAL MEMORY

SUBSYSTEM 1

SUBSYSTEM 2

SUBSYSTEM 3

A

SUBSYSTEM N

USER

? PROGRAMS ?

MEMORY PROTECTION

/EX€C/

72
t\\.uo\t@ N

R 008 2 2\

REFERENCE

ADDRESS (RA}

o
.
N
s
3
¢
N
¢
It
s
J
¢
s
¢
;
3

Nios A

USER PROGRAM
AREA

SYSTEM
DISK

SYSTEM
LIBRARY

FIELD
LENGTH (FL}

F-

15

USER/SYSTEM INTERFACE

MEMORY

EXEC

USER

USER

USER

CONTROL emmp
DATA
EXECUTE

RELIABILITY FEATURES

e ERROR DETECTION/CORRECTION
— CORRECT RESULT
— ERROR SIGNAL

e MAINTENANCE FEATURES
— HARDWARE CONTROLS
— DIAGNOSTIC DATA

HARDWARE
SECURITY/PERFORMANCE

e MACHINE ARCHITECTURE
e MEMORY PROTECTION

e CONTEXT SWITCHING

e RELIABILITY FEATURES

RESULT: SECURITY WITH
PERFORMANCE

NETWORK
OPERATING SYSTEM

o NETWORKS
i e MULTI COMPUTERS
e MULTI MODE

e MULTI USERS

NOS CHARACTERISTICS

CAPABILITIES BASED

USER CONCEPT
ACCOUNTING CONTROLS
USER ISOLATION

FILE SYSTEM

LOGICAL FILE 1/0

FAMILY OF USERS CONCEPT

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS

o SIMPLICITY, MODULARITY o KERNELIZED
o FAULT TOLERANT e SELF PROTECTING
e RELIABILITY o INTEGRITY

e USER PRIVACY e {SOLATION

F=17

—
s e '35 Mgt et ot i e =

SECURITY REQUIREMENTS

COMMERCIAL SYSTEMS GOVERNMENT SYSTEMS

o RESOURCE CONTROLS e ACCESS CONTROLS
o CONTROLLED SHARING o NEED-TO-KNOW ACCESS
e AUDITABILITY o SURVEILLANCE

o LEVELS/CATEGORIES

NOS MULTILEVEL SECURITY

e STANDARD SYSTEM
— LARGE SCALE SYSTEMS
—~ PERFORMANCE
e COMPATIBILITY
— HARDWARE
— SOFTWARE
e AVAILABILITY

— NEW CUSTOMERS
— INSTALLED CUSTOMERS

COMPUTER SECURITY APPROACHES

THEORETICAL PRACTICAL
DESIGN METHODOLOGY FUNCTIONAL REQUIREMENTS

DESIGN VERIFICATION DESIGN EVOLUTION

FORMAL EVALUATION MARKETABILITY

F-18

DEVELOPMENT METHODS

THEORY PRACTICE

SECURITY MODEL MARKEY REQUIREMENTS

TOP LEVEL SPECIFICATIONS FUNCTIONAL SPECIFICATIONS
DESIGN VERIFICATION DESIGN REVIEW

DESIGN CORRESPONDENCE PEER REVIEW OF CODE

CODE VERIFICATION UNIT/SYSTEM TESTING
PENETRATION ANALYSIS IN HOUSE USE/TESTING

FORMAL EVALUATION USER ACCEPTANCE

DOD INITIATIVE IMPACT

e AWARENESS
e TECHNOLOGY STIMULUS
e FOCUS FOR REQUIREMENTS

e EVALUATION FRAMEWORK

F~19

Slide

Slide

Slide

Slide

Slide

Slide

Slide

Slide

SAC Digital Network
(SACDIN)
Security Methodology

Mauro Ferdman
The MITRE Corporation

PRESENTATION OUTLINE

SACDIN will be used to support command and control functions of the
Strategic Air Command.

Present status of the project is full~scale engineering development.
Prime contractor is ITT and the major subcontractors are 1BM ifor
sof tware and BDM for systems.

SACDIN is a large scale network covering all SAC units throughout
the continental U.S. It is a packet-switched network and it uses
AUTODIN II as a backbone. One of the characteristics of SACDIN
that is important for this seminar is that it is designed to be
mutli-level secure.

The security requirements are very strict and as it was mentioned
before, they include requirements for simultaneous transmission of
messages of different classification. It provides protection
against compromise of information, integrity and denial-of-service.

The IACM provides total mediation between subjects, which are the
users of information, and the objects which are the repositories
of information., The TACM mediates every single access of subjects
to objects.

The TACM mediates all accesses so it must be some assurances that
it was designed and implemented correctly. This has required

that a specialized software design methodology be used and it will
be described later. In addition, there must be some ways of
protecting the IACM from being altered by other software.

SACDIN has three tiers of protection provided by the applications
processes which are used for user support, the trusted processes,
which are used for 1/0 Interfaces and the TACM or Internal Access
Control Mechanism, which also serves as the Operating System. The
next slides will explain in more detail the security enforcement
mechanism of the TACM,

The methodology used for development of the TACM consisted of
creating a mathematical model to formally represent DOD securitv
policies, followed by a formal description of the IACM design in
a formal language which was formally verified not to violate the
math model. Lower level specifications were only correlated in a
less formal way,

(-1

Slide

Slide

Slide

Slide

Slide

Slide

Slide

Slide

Slide

Slide

Slide

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Page

In a more graphical way, the bottom line shows the standard DOD
Procurement practices for software, from user requirements to code,
with the proper test and evaluations. Our methodology has added
the upper part in parallel to provide a better assurance of a
correct design.,

We quickly found that the 1ACM by itself was not enough to protect
against compromise. There were problems in these cases where
information must be transferred into or out of the Central Processor,
such as network communications, peripheral devices, etc. The
following slides will deal with these problems,

A host or node contains an TACM and it is fully capable of handling
multi-level communications such as from A to B or access to the
Multi-Level Data Base, marked as MLDB in the slide.

If we have a network, and now A attempts to communicate with C or
B with D, we are dealing with multiple IACM's, one in each node,
so it is important that the last software process that handled the
message be trusted.

The situation is more complicated through the use of a back-bone.
See in the slide the path from A to C and B to D,

The solution that we adopted was to create specialized software
that serves to authenticate one node to another and to serve as
I/0 transmission control. It earned the name trusted becausc it
used the same design methodology as the TACM.

The problem with peripheral devices are similar, hecause the TACM
does not have direct control of the information going outside

the Central Processor. The solutions adopted were similar to the
ones adopted for communications, namely to use trusted software
to handle the printer and user interface.

As far as integrity protection is concerned, it was based on using
good software practices as shown in the slide.

The Central Processor that we used is a modified oft-the-shelt
computer, the IBM Series/l, with several securitv teatures added.
They consisted of an expanded relocation translator, a securitvy
controller to monitor accesses to core and an expanded instruction
set. The terminal was specially developed and it includes a special
security field.

Summary and conclusions,

Lesson learned.

=Sy

SAC Digital Network
(SACDIN)

Security Methodology

Mauaro Ferdman
MITRE Corporation

Purpose

Provide Data Communications Support
for Command and Control of SAC Forces

Status

Presently Under Full-Scale Engineering
Development

Prime Contractor: ITT
Main Subcontractors: 1BM, BDM

G-}

P .. -

Characteristics

Large Scale Network (About 200 Nodes)
i Packet-Switched Network

Uses AUTODIN I As Backbone
Multi-Level Secure

: Security Requirements

Strict Overall Security Requirements

Multi-Level Capabilities

Compromise, Integrity and Denial of
Service Protection

Security Architecture

INTERANAL
ACCESS

CONTROL
MECHANISM

1 U

SUBJECTS OBJECTS

G=4

kit et st st atnditen B V- S

Internal Access Control
Mechanism _(lACM)

Mediates All Access

Formally Proven Secure
Protected From Modification

Serves As 08

Software Architecture

APPLICATION
PROCESSES

TRUSTED X
PROCESSES

L

INTERNAL ACCESS CONTROL
MECHANISM

PERIPHERAL DEVICES
AND INTERFACES

IACM Development Methodology

Formally Represent Security Policies (Math
Model)

Prepare Formal Top Level Specifications (B-5)
Formally prove specifications

Intermediate Language Representation
Correlations proofs

Stepwise Refinements
Correlation proofs

Implementation Code
Correlations proofs

G-5

IACM Development Methodology

[sYe]s] ol maTH
{ POLICY { FORMAL MODEL

VERIFICATION

FORMAL
VERIFICATION
——— 1 CORRE-
| FORMAL | LATIONS [FORMAL
REOMTS | SPECS CESIGN
L
T [
CORRE- -
CaTions ‘ CORRELATIONS

\
N

' v .
USER o A B J4cC
REQGMTS SPECS ’L specsw { SPECS } PRODUCT
omer ! ¥ oras)

IACM Not Enough To Protect
Against Compromise

Network Problems

Peripheral Devices Problems

Multi-Level Files

Multi-Level Problems In
Networks Host Protlem

TS

S
Cc
U

o O

A(S) 8(TS)

Multi-Level Problem In Networks
SACDIN Lines

A(s) B(TS)

Multi-Level Problems in
Networks
SACDIN/AUTODIN Il Links

: AUTODIN
¥ 1

i
! g SACDIN Y N

i
! \

. ML J\ I
o O Fo
@)

o o & °© O

A(S) B(TS) D(TS)

Network Solutions

Trusted Software Required For
Node authentication
Output transmission control
Input transmission contrul

; Other Trusted Functions

Printer Manager

User Interface

File Manager

Integrity Protection

Single Computer Program Architecture

Top Down Design Structured
Programming

Strict Accountability and Journaling of
Messages

Error Detection Mechanisms

Hardware Security Features

Node's Central Processor
Modified 1BM Series | processor
Relocation translator
Security controller
Extended instruction set

Specialized Terminal
Special security fields

Summary

WAL DIN Is First Multi-Level Network
With Strict Security Requirements From
Program inception

Uses Specialized Software Development
Methodology Reaching As Far As the
Pradtical State-of-the-Art Will Go
thorough Security Analysis Throughout
Design and Development

Collaborative Effort

Lessons Learned

L arge Amount of Trusted Software
Required Qver and Above Basic Kernel

Largest Security Problem Is the Handling
of Peripherals and Communications
Lines. Not the Internal Handling of Data
Multi-L.evel Securitv Can Be Achieved If
Sustem Is Carefully Planned. Designed
and Developed

--9

| COS/NFE
| OVERVIEW

Gary Grossman
Digital Technology Incorporated

August 10. 1981

Preview

o COS/NFE Program
COS/NFE Technica!l Description

| []
1 ® HUB™ Executive

[] Security Methodology
[]

Experience

C ommunicaticn
Operallng

System
/

N etwork

F ront
E nd

H-1

T ————

COS/NFE

e Verifiably secure
¢ Prototype NFE
e For AUTODIN Il

Lineage

c
i DTl Secure
w HUB™ Executive
.—/

—

N - .
COS/NFE

H-2

{ Precursors

3 ENFE Network UNIX + IIPC ARPANET

#

; INFE UNIX + Attach | O AUTODIN H
} WNFE UNIX + Attach 1 O WIN

i

Participants

DCA -~ Sponsor
DTl - Prime

design & implementation

i s e

SDC - Sub
H formal specs., verification,
. & security analysis

ISET - Security Watchdog

Security
Overt channels
Covert channels
Denial of service

. Performance
“Significantly” better than INFE

H=3

Bases

e Hardware PDP-11/70

e Software Secure HUB™ Executive
PASCAL

Schedule

« Completion - March '83

o Trusted security control - soon

COS/NFE Functions

e Identical to INFE + security
o Interfaces

¢ Protocols

COS/NFE Interfaces

AUTODIN il
ACC UMC-280

WWMCCS H6000
ACC LM DH-11 - ABSI

Terminals
DH-11 Asynch
DV-11 Synch VIP

COS/NFE Protocois

AUTODIN I
THP, TCP, IP, SIP, Mode VI

WWMCCS H6000
HFP: SAP's, Channel, Link

Terminals
Asynch Character Start-stop
Synch Honeywell VIP

COS/NFE Modules

Protocol processing
From INFE

Admin. & security

Cl - designed, coded
TH - densigned, coded
Others - designed. beiny coded

e HUB'™ Executive

Designed. coded. tested to usefuiness
for measurements

Network

AUTODIN 1l

Security
Coatrot

ferminals

COS/NFE Security Policy

« Preserves security labeliing

e Level (data) ¢ level (line)

COS/NFE Multi-level Users

e AUTODIN I
s Terminals

o (Hosts)
(Modifications to HFP)

Secure rHUBTM Executive

Stand-alone
Veritiably secure
Communications-oriented

Portable
PASCAL. 11 70, 11 780, uP

Proprietary

_HUBTMSecurit y Policy %|

¢ Separation of Domaips

e Flexibility in supporting more r
sophistication

Hus™ sizes (PDP-11)
2838 lines of PASCAL
236 routines
32 primitives
1200 lines of assembler (bootstrap, damp)

70K bytes on PDP-11 (=54K codé,
= 16K daia)

Relative Speed of IPC Operations
¢ Includes all related primitive calls
Butfer allocation
Sending message
Receiving message

Attach I/O 6.95ms

Hus™ 3.9ms
Ratio 1.75

Functions may not be comparable

HUBTM Primitives

Resource management
Process management
Address space management
IPC

Flow control

170

Timing

HUB'M Concepts

Stages (processes)
IPC

Sessions (domains)

Hus™ stages

Program - sharable

Memory
Private - unshared
Butfers - serially shared

Ports for IPC

HuB™ ipcC

¢ Connections between ports

Via buffers only

HUBrM Sessions

Execution control
Connection control

Resource contro!

it-9

LM; . i K, s b A P
RS POV

v P . ey —————

HuB™ security

Overt channels
Covert channels

Denial of service

Overt Channels

Formal control
Definition of “trus‘ed”
Communication rule

Execution rule

Covert Channels

Engineering
Few shared resources
Strict controls on resources

Only trusted software can move
resources

H=-10

Denial of Service

+ Engineering

« Similar to covert channels

Security Methodology

Verification plan

ISET evaluation

Overt channelfs - formal verification

« Covert channals ‘- engineering analysis
& solutions

Denial of service - same

Overt Channels
' bm sbC
dentify trusted modules X

Correctness criterion X
Write & prove TLS

Write & prove 2LS
Compare 2LS & code

H-11

PURRre-~ =

" AD=A113 348 OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH==ETC F/@ 9/2 \
PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT==£TC(U)

N

UNCLASSIFIED

l=°

i
22 it e

———

seee -« [Criterion]

} o J
R
.
AN
..
Al -

e

1 Trusted Modules

H
!

Correctness Criterion

One for each trusted module
Relatively simple

Security-related only

H-12

Top-Level Specitication

Correctness criterion
Initial conditions
Variables

Transforms

Second-Level Specification

Mapping to TLS

Refinement
Variables
Transforms

Comparison of 2LS & Code

e EG: HUB™

2LS: 2400 lines ot INA JO
Code: 2838 lines of PASCAL

H-13

Covert Channels

SDC analysis

Identity channels

Construct scenarios

B/W < 5000 baud worst ease
~ 20 baud typical

Limited by engineering

‘dentify Channels

T
Primiive WRITE SEEK] CREATE DELETE

e ot FILE FILE

__ Atliibute -

Existence AW T RW

“Fite
Files Length

Current
| tocaton

»
DSk ositson

Dovice t

1 Space
B TN A

Scenario

H-14

R ———w:,.

Performance Experiment

TCP: HUB™ vs. INFE UNIX™

Security with HUB™
Resource atlocation: 46% of CPU

More IPC with HUB™
HUB™. PASCAL; UNIX: C
HUB™ 17% faster

Security Experience

e SDC analysis
e ISET evaluation

e Proof of HUB™ 2LS, 2000 pages

Things to Come

Verification continuing
INFE protocols to HUB™

HUB™ to other processors

H-15

N

Examples from

HUBTMExecutive Top Level Specification
in INA-J0™

INA-JO is @ Trademark of System Development Corporation

on

T™
HUB " Executive Security Criterion
From HUB Executive INA-JO™ Top Level Specification

Criterion

A"B:BUFFER,SESS:SESSION(
B <: BUFFERS OF(SESS)
-> SLS OF BUFFER(B) <<= SLS_OF SESSION(SESS}}
& ATE:BUFFER,DEV:DEVICE(
B8 <: DEVICFE_BUFFERS(DEV)
-> SLS OF BUFFER(B) * SLS OF DEVICE(DEV))
& A"P:SEPS,SESS:SESSION(
P <: SET. OF SEPS OF(SESS) -> DOMINATES(P SESS))

onl

HUB™ Executive Initial Condition
From HUB Executive INA-JO™ Top Level Specification

Initial
A"SESS:SESSION(
(SESS - ADM & ACTIVE_SESSION(ADM)

| ~ACTIVE_SESSION(SESS)

& SET OF SEPS OF(SESS): EMPTY)

& BUFFERS OF(SESS) = EMPTY)
& ATDEV:DEVICE(

~ACTIVE DEVICE(DEV) & DEVICE BUFFERS(DEV) EMPTY)

& A"P:SEPS, SESS:SESSION{
P <: SET OF SEPS OF(SESS) -> DOMINATES(P.SESS)H

on

HUB”_‘_' Executive Transform Communicate

From HUB Executive INA-JO™ TOP LEVEL Specitication

TRANSFORM COMMUNICATE(B:BUFFER,SI,.SJ:SESSION):
EXTERNAL EFFECT

SLS OF BUFFER(B) <<
SLS OF SESSION(SI) & SLS OF SESSION(SJ)
B <: BUFFERS OF(SI)
ACTIVE SESSION(SJ)
St~ SJ
ATSESS: SESSION(
N'BUFFERS OF(SESS)
(SESS SI > BUFFERS OF(SESS) -~ §7(B)
<> SESS SJ > BUFFERS OF(SESS) s'(g)
<> BUFFERS OF(SESS)))

NC ' (BUFFERS OF)

X S

WIS Security
Strategy

Larry Bernosky
Detense Communications Agency
WWMCCS System Engineering

WWMCCS Information
System: Target Architecture

Goal Reliable Conneclivity Among All Sites
W0r|d Wioe Net:

Goal: improved Local Flexibility and User Support
Typical Site
Net Message

Galeway Handnng Honeywell

ot PR
Aulomn " \ E is
_or Equivalent T o S o
E] ;
_1 —

i 1
L o0
_ v AR “
Cotamon

Network User
Data Base —— — —r Suppon

Functional funchional Commana
Pachage Package Unique
A 8 Support

DOD
Security Regulations

DOD Directive 5200.28
JCS Publication 22
Army Regulation 380-380
DIA Manual 50-4

Current Security
Control Techniques

® System High
® Dedicated Systems

® Periods - Processing

Characteristics of
Current Controls

® Static
® Long Lead Time to Implement
® Expensive

® Limited Extensibili.y

WWMCCS
Environment Trends

@ Increasingly Complex Processing Needs
& Extensive Internetting and Intranetting

@ Evolution Toward Distributed Control

® Temporary Reliance on Monolithic Machines

WIS Security Goals

Objective: Provide “*'Adequate” Security for WIS

® Satisfy the Security Poiicy

s AT =R i e

® Allow WIS to Pertorm its Required Functions
® Make Controls Transparent to the User

@ Allow for Evolutionary Upgrades

ARCHITECTURE PHASES

Upgradea

)[—N—.—m DATANET

——— ..Q
. Support "L_"":'t"’fL.," B
—— Upgrade I -
rsundudl User i Standera & | Uses
Site Unique Support i Site Umque ' Suppont
| Processing " Processing
| Support Support
LS | LS

1H6000s} (H8000s!

DN35s
Network

A []
" Phase |
T . A
Support e fac ¥ Basehine

Phase 1l
Command Cente:
Support

Common
Aulomats
ulomatic User

Message Support

Handung
o

— ‘

:clwml lo"memo,. PHASEN 1L & 1Y
upport FUNCTIONAL

Automatic
Message
Handiing

’a
Nllwm\ i 1
tnul N-!w 4
Suvoon

I Sllndlrd s] FaMiLY 'Armly A ‘] Famiy B . | Sie umq...
i Sre umique P.oc-u ing Processing Processing |
Processing Support , Support Support

|
L suwoar I J
IHB000S) (New Processorst (New Processors) (HE000s N--

Processors)

Security Architecture
Overview

® Develop General Scenarios

® Summarize Requirements for Specific Components
® Derive Security Architecture

® Overlay Scenarios on WIS Architecture

WIS Security Architecture

TSIS TSIS

User Security
Support Monitor

1 T18/18 1

Local Network)
Multileve!

|

——————————— L———-—-}————-r——————————————

Single Level —
System High

Security Architecture
Components

Category 1
® Local Network (Multilevel Mode Essential)
® User Support System (Multilevel Mode Essential)
® Security Monitor (Multilevel Mode Essential)
Category 2

® Automated Message Handler (Multilevel Mode Desirable)
® Long Haul Network (Multilevel Mode Desirable)
® Network Front End (Multilevel Mode Desirable)

Category 3

® Applications Processors {System High/Dedicated)
® Data Base (System High/Dedicated)

General WIS Security
Principles/Assumptions

® Not All WIS Components Need Be Multilevel Secure
@ Priority Attention to Multilevel Secure Local Network

® Multilevel Security Required Only Over Limited Range ot
{ Security Levels (Controlled Mode)

WIS Operational
Scenarios

Support for Homogeneous User Access
Support for Low to High User Access

Support for High to Low User Access

Message Receipt and Distribution to WIS Users

WIS Multilevel Long-Haul Connections

Support for
Homogeneous User

Access

Description

® Secrel Remote User Requires Access to Data on a Secret
Processor

Requirements

Local Network Needs to Support Remote Terminals

Local Network Needs to Support Communication Between
Devices at the Same Security Level

Local Network Needs to Maintain Separation of Data Having
Difterent Security Classifications

Processor
(TS)

Support for Homogeneous User Access

Processor
(S)

|

cus
(S)

—M—CED

J—

® User (S) Requests Access to Data on a Secret Processor

® CUS (S) Validates User Identity and Access Request

® CUS (S) Forwards Request to Processor (S) via Trusted Muiltilevel Local Net
® Processor (S) Validates Request and Forwards Data to CUS (S)

® CUS (S) Queues Data tor User (S)

Support for Low to High

Description

User Access

® Confidential (or Secret) Remote User Requires Access to
Selected Data from a TS System High P:ocessor

® Access Control Mechanism is Needed to Screen Request and
Validate User Identity

® Information from TS Processor Must be Reviewed/Sanitized
Before Delivery to Low User

Requirements

Local Support is Needed for Users at Ditferent Classification

Levels

Local Network Needs to Support Remote Terminals
Data Base Needs to Contain Material at Ditferent Classification

Levels

Data Base Needs to be Accessed by Authorized Users Having
Ditfering Security Clearances

Support for High to Low
User Access

Processor Processor —
(TS) (S)
1SiS
cus
s

—7

|

_1

User (TS) Initially Connected to Top Secret CUS
User (TS) Di ts (Physical Switch or Trusted SW) from CUS (TS) After
Storing Working Files in CUS (TS)

User's Terminal is Sanitized Automatically

User (TS) Connects to Secret CUS

Access to Secret Processor is Mads via CUS (S)

User (TS) May Switch Back to Top Secret CUS Without Sanitizing Terminal

Support for High to Low
User Access

Description
® Top Secret User Requires Access to Data on a Secret Processor
® Secret Data is Released to Top Secret User

Requirements
® CUS Needs to Provide Multilevel Support for a TS User

® Mechanism is Needed to Prevent Release of TS Data into
an S Environment

® User Performance Must Not be Adversely Affected by Security
Controls

Support for Low to High User Access

Security
Processor .
Ts) Monitor

(TSIS)

Cus User
(S) (S)
User (S) Requests File Controlied by TS System High Processor

CUS (S) Validates User Identity and Access Request
CUS (S) Forwards Request to Processor (TS)

Processor (TS) Validates Request and Forwards File to Security Monitor
Security Monitor Forwards Reviewed File to CUS (S)
CUS (S) Queues File for User (S)

Message Receipt and Distribution
Description
® AMH Receives Secret Labeled Message Over TS Communication

Line for Distribution to Selected Loca! TS and S Users

® Message Must Be Reviewed/Sanitized Since TS Data May Hawye-
Been Mixed with Message on Long Haui Net

® Message is Queued 1o Common User Support (CUS) for TS
and S Users

Requirements
® Local Network Needs to Maintain Separation of Classified
Material While on the Net and When Entering or Leaving the Net

® CUS Needs to Support Terminals Operating at Different
Security Levels

® Message Handling and Distribution Functions Need to Support
Different Security Levels

® Selected Classified Information Needs to be Reviewed
or Sanitized

I1~10

Message Receipt
and Distribution

Security
Monitor
J (rs) (TSIS)

Essential 1

AMH (TS) Receives Message (S)
Message Queued for TS Users at CUS (TS)
AMH Forwards Message to Security Monitor With Addresses ot S Users

Security Monitor Queues Reviewed Message at CUS (S)

Message Receipt
and Distribution

Security

Monitor
(TSIS)

l]
L

AMH

(S)

Essential 2

AMH (TS) Receives Message (S)

Message Queued for TS Users at CUS (TS)

AMH Forwards Message to Security Monitor

Security Monitor Sends Reviewed Message to AMH (S)
AMH (S) Queues Message for S Users at CUS (S)

1-11

Message Receipt
and Distribution

AMH Security
Monitor

T

(TSis) (TSIS)

| 1

Desirable

® ¢ Message Could Contain TS Data, the AMH Routes Message to Security
Monitor

® Security Monitor Sends Sanitized Message Back to AMH

® AMH Queues Message (S) to Both TS and S Users via Appropriate CUS

WIS Multilevel
Long-Haul Connections

Description

® Two WIS Sites Operate at Different Maximum Security Levels
@ Sites Need to Exchange Information
® TS to S Message Flow Must be Reviewed/Sanitized

Requirements
® Long-Haul Network Needs to Support Local Users Operating at
Different Security Levels

® Long-Haul Network Needs to Connect WIS Nodes Having
Different Ranges of Classified Information

® Material with Different Classification Levels Needs to be
Transmitted Over the Long-Haul Network

1-12

T

] WIS Multilevel
| Long-Haul Connections

Site A (TS/S) Site B(S)

Secunty (TS Nev Secunty
Monitor (XX Y] ¢+< Monitor

(TS18) {TSIS)

¥
l
{ I 1
| I I

—

Processor Processor . Processor
(18) R S} ' (S)

Essential 1

@ Site B (S) Requests File from Site A (TS/S) via NFE (TS)

® It Fileat Ais on TS Processor then File is Passed Through Security Monitor at
A to Verify File Contents Are at S Level

Security Monitor Forwards File (S) to NFE (TS)

NFE (TS) at B Receives File Which is Sent to Security Monitor at B 1o Venty
That No Modifications QOccurred on the Long Haul Net (Perhaps by a More
3 Rigorous CRC Type Authentication)

Security Monitor Forwards File {S) to Appropriate Locations on Local Net B

WIS Multilevel
Long-Haul Connections

Site A(TS/S) Site B(S)

i:wmy 1 NFE 1 (T8 Net NFE Securty
onitor (TS} > 0000 ¢— s Monuor
(TSIS) J ! (TS1S)
- . -

| 1 1 N

T1S1S TSiS

| . . i

- - - ~

r Processor 1 F Processor ‘! 1 Ccus Processor

. (Ts) i {S) i \ (S ‘ (S)
. J [Lo] ;

Essential 2

® Site B (S) Requests File from Site A (TS/S) via NFE (TS)
® Site A Forwards File to Site B via NFE (TS)

® NFE (TS) at B Forwards File to the Security Monitor at B for
Review/Sanitization to S Level

Security Monitor Forwards File (S} to Appropriate Locations on Local Net B

1-13

fuise oo

WIS Multilevel
Long-Haul Connections

Site A (T5/S) Site B (S)

, T ﬂs:smn
o T e
(YSI'S?’ uYSIS) ooee ¢ rh

1S8/S TsIS

— I . R
[Processor r Processor Ccus i oncessor]
| {18) (S) | (S)

S ,_k_ i ‘

Desirable
@ Site B (S) Requests File from Site A (TS/S) via MLS Long-Haul Network and
MLS NFE

® |t File at A is on TS Processor Then File is Reviewed/Sanitized by Security
Monitor at A

@ Security Monitor Forwards File (S) 1o S Portion ot NFE (TS/S)
® Long-Haul Net (TS/S) Guarantees File Received at B is S Level
® NFE (S) at Site B Forwards File (S) to Appropriate Location on Local Net B

Interconnection Trusted Software Encryption Policy

— Protocols — Verification — B -— 5200.28
— Long-Hauls — Kernels — Link — JCS Pub. 22
— Gateways
— Subnetworks

Local Net Security in a
Command Center

Recommendations

~ Assessment
— Experiments
— Action ltems

Security Flexibilities
in the Local Network

® Reduced Need to Share Hardware

® Can Support Several Different (Tailored) Security
Approaches

® Use of Specialized Solution Approaches

@ Evolutionary Implementation and Upgrade Possibilities

SAFE Description
[~} [—H]
S| 1

User User - System ['77
Terminal ese| Terming Control Message
Support Support Monitor L Processor
| : ﬁ# |) ?g)

L

Wideband Bus
(Black)
{Encrypted Data)

[» Joeee “

SAFE - WIS Summary

Similar High Level Design; Many Specifics Ditfer
Need to Analyze Traffic Characteristics Impact

E3 Protocol Analysis and BIU Development Will Benefit
wIS

SAFE-Type Crypto Modules Can be “Easily” Incorporated
in Reston Testbed

NSA Will Develop Crypto Devices if WIS Requirements Are
Clearly Specified in Time

Need to Continue Tracking SAFE Effort

Trusted Interface Unit

Broadband Cable .«

RF

[]

Security
Memory Processor

) S
Y

11O Port

3

v
Terminal/Host

[~-16

Progress

® Security Requirements Have Been Refined
— Scenarios Addressing Known Security Problem
— Inputs to WIS Requirements Survey

® Local Net Security Task Force

— Evaluate Issues of Encryption, Trusted Software,
Security Protocols

— Examine Technologies Within WIS Context
® Security Architecture for WIS Has Been Developed

— Operating Mode for Transition Components Defined
— Mandatory and Optional Requirements Identitied

— Technology to Support Security Requirements for
Components ldentified

WIS Security
Summary

® More EFFICIENT SECURITY Controis Are VITAL to WIS
¢ NOT Seeking ABSOLUTE Multilevel Security

® LOCAL NET Architecture Affords More FLEXIBILITY in
Solving Problem

TRUSTED COMPUTING RESEARCH
AT
DATA GENERAL CORPORATION

Leslie DeLashmutt
Doug Wells

Research Triangle Park
North Carolina

Goal

Controlled sharing of information in a
distributed, multi-user environment

Overview

Access control approaches

- Capabilities

- Access control lists (ACLs)
Confinement approach
« Domains

Extended types

Relhable Software
Extended-Type Flexible
Objects Sharnng

/ Protection Domains

/ Access Control Lists
/ UID Addressing of Objects

u“ Protection Mode!
- Active subjects

- Passive objects

- Access rights

‘. —

e rL
Ob,eu | l'\vaild Reterence >

r Subjecl '
[:

Protection Checking S

Access Matrix

Objects

Proc1

Read
Jones | Execute Execute | Write Write

Subjects

Smith Execute

Read
Write Read Read
Execute Write Write
Non-Data

Lewis

T

Subjects

Design Considerations

+ Number of subjects and objects may be
large

+ No protection attributes for some
subject/object pairs

+ Matrix may be sparse

+ ldentical protection attributes for subjects
or objects

+ Only small part of matrix necessary at any
one time

Capability Systems
Objects

Proci : £

RE
RW

Read AW

X
Execute Execute

E
Execute RW
RW

Read
Write
Execute
Non-Data

R.W.E Non-Data
RW

RW

PROTECTION USING CAPABILITIES

AN

.

5'acl FASSWORD

PROTECTED JOB
.

CAPABLIT T
CAPABLITY LIS N

1975 IEEE Reprinted by permission Clark DD and Redet! DD
Protecton of intormaron in Computer Systems p 15

L)

Evaluation of Capabilities

\ﬁrtues Problems

+ Protection « Forgery of keys

+ Simplicity « Accountability

« Flexibility * Revoking access

* Efficiency + Controlling propagation

» Access review

Access Control List Systems

Objects

E
e v E
38846 Proct R.W.E Non-Data

Read

Execute
Execute

Subjects

Execute

Read
Write
Execute
Non-Data

J=6

PROTECTION USING ACCESS CONTROL LISTS

)

— =

OOQ
R
sl
“

4]

N

_

=/

40
N

J

1975 IEEE Reprinted by permission Clark 0D . and Redel DD
Protection of Information in Computer Systems. p 18

Positive Features of ACL Systems

- Granting access has known, auditable
consequences

« ACLs directly implement verification of an
access request

+ Access revocation is manageable

« Each ACL lists authorized users of an
object

- Break association between data
organization and authorization

« Natural to the user
« Minimal hardware implementation costs

Readily adapted to heterogeneous networks

- Natural primitive for a high-level security
language

* Provide top-down view of security

Drawbacks of ACL Systems

« ACL search

+ Allocation of space for ACL

* ACL check at access time

The purpose of an ACL is to establish
authorization —not to mediate every detailed

access.

e e o i

I

Memory Addressing in an ACL/Descriptor System

{ Oprrandg Name vﬁ
r Name Cache

4

Nt al ey [)tsn'[)h'

uiD (S XS v'ﬁl' Length Type
——— Subjest
‘r Frotecton Cache ’ Brosten o
— Faun

Address Transtaton
. Cache

T
Pn,s« al Dm.. ot
- T - Y L
Page frame
Nimbor l Ot Lengte

TooMa 0 Memicey

CAPABILITY ACQUISITION
IN A HYBRID SYSTEM

3 USE CAPABLITY ON N_I- /[L IGK
SUBSEQUENT ACCESSES _ 3"~

{}\‘\\f{ﬁj)) IN RETURN
- N
|] o8

. 2 RECEIVE CAPABILITY

L

1975 1EEE Hepruited by permission Clark DD and Reden DD
Protertion of informat:on in Computer Systems p 21

Limitations

» Only system-defined access restrictions
enforced

» No protection of user from borrowed
program ‘“trojan horse”

» No protection of borrowed program from
user

Beginning Domain Model

-il i N

Access Matrix with Domains

Objects

' 38846 J Proct {38820 j 19926

.e.
G
0°e :

Opsys -

Jones

Subjects

Definition of Subject

Principal Domain
(UID) (UID)

Access Control List with Domains

Objects

38846 Proct 38820 19926

oS LSS
o S S S

. Opsys E
. Opsys RWE
Non-Data

Opsys

Jones _User RE

. Opsys RW
. Opsys RW
Opsys R W

. Opsys RW
. Opsys RW
Opsys RW

Gates into Domains

Procedure *

o Srat

Return

Jones D1
. execule
Procedure Procegute 1 reat

=14

Simplified Cross-Domain Call Example

Process 14 Subject

Procedure O

DOE = User ' '
[Jones.User|

Procedure 2
DOE = User

' ' {Jones,User)

Procedure 1
DOE = Opsys

[Jones,Opsys|

Cross-Domain Call

Procedure t
Start
L
= Step 2 |
= ~

R;u_ln J ~ ~

1 —
~ | Jones D!

erecute
Procedure 2 Procegdure 3

4 |

| Bnmn————

Subject

Jones D1

Jones D2

Jones D1

J-15

Potential Implementation of Domains

« Interprocedure call and return

- Problem: no architectural assurance that a
procedure can access its arguments when
called in a new domain

+ One solution: dynamic access capabilities
on cross-domain calls

d=16

Cross-Domain Call Example

Initial Subject
Bound to Process 14

Principal

Domain

Cross-Domain
Architectural [
Call and Return |
Lhange sull et S Jomg & v L g

L AeCR SGleUt S acs pss e ghts

B +

Crecn arget o e e s D0

B
[oA S !

nen sy

Opersting System
Domain
(Voaened

LTS

J-17

AL ee

primo e r g S A

\ Extended-Type Object Example ;

Extended-Type Objects
of Type “Stack™

UID 38820

ETMtor /W
Extended-Type Obiects P 4

of Type "Stack’’ s
Ve

Frame 2

UtD 38848

Frame !
Header

Header
Pr cedure 1

Create stack ETM 38846

Procedure 2 . i
Celete stack . 1

.

Frocedure 3 UID 19926

Push [/\/\/\/\/\/J

Procedure 4
Pop Frame 2

Frame 1

Header

ETM 38846

J-18

Extended-Type Manager Example

Extended: Type Manager
Aci tor Extended- Type {Stack Manager!}
Manager 38846 UID 38446
' 1] 1 NonDsts -

1
Subiects ‘ Subject R W E Modes
AW e,

. Jones Stack
Extended Access Controt Lists ! WD 38820

tor Extended - Type Objecis ot
Type Stack
! ! ! !
' Subject Pop Push , Create : Delete)]Sumecl
B . .
L

AT
e
Smuth s Stach
uID 19926
' .

|

M 1 . .
. Pop Push Create [Sumacl

B .

Subject

J-19

Future Directions
« Military security model

* Flow control

- *-property (prevention of write-down)

+ Formal specification of design

+ Formal model for security in our
architecture

« Fault tolerance
+ Encryption

+ Sophisticated authentication mechanisms

Summary of DG/RTP Activities to Date:

» Made critical survey of primitives available
to support a trusted computing base

+ Selected the best concepts to support such
a base

- Integrated these concepts into a coherent
architecture

J=20

IEEE Computer Society Fall Compcon '81

“Research in High-Level Computer
Architecture”

John F. Pilat
Data General Corporation/Research Triangle Park

™

THE iAPX-432
MICROCOMPUTER SYSTEM

BRI
Lorn o

® VLSI COMPONENTRY
® ARCHITECTURE

® OPERATING SYSTEM
® SYSTEM LANGUAGE

432 MOTIVATIONS

® HIGH PERFORMANCE MOS/VLSI (HMOS)

® RECENT COMPUTER SCIENCE RESEARCH

® ADVANCING MICROCOMPUTER APPLICATIONS

432 DESIGN OBJECTIVES

® LARGE SCALE COMPUTING POWER

® INCREMENTAL PERFORMANCE CAPACITY

® INCREASED PROGRAMMER PRODUCTIVITY

© DEPENDABLE HARDWARE AND SOFTWARE

KEY CONCEPT: DATA ABSTRACTION

® MODULAR DATA STRUCTURES AND PROCEDURES

® WELL-DEFINED MODULE INTERFACES

® OBJECT-ORIENTED PROGRAMMING METHODOLOGY

et e~ ey

KEY CONCEPT: HIGH LEVEL FUNCTION

® LANGUAGE-ORIENTED RUN-TIME ENVIRONMENTS

© HARDWARE-CONTROLLED RESOURCE MANAGEMENT

® OBJECT-BASED INTERFACES AND SERVICES

KEY CONCEPT:
DOMAIN-BASED PROTECTION

© INDEPENDENT MODULE ADDRESS SPACES

@ ADDRESS SPACE SWITCHING ON PROCEDURE CALL

©® CAPABILITY ADDRESSING AND ACCESS CONTROL

KEY CONCEPT: OBJECTS AS
UNIFIED DESIGN FRAMEWORK

@ INTEGRATING HARDWARE AND SOFTWARE

® MINIMIZING CONCEPUTAL DIFFERENCES

® CLARIFYING AND SIMPLIFYING OVCRALL DESIGN

KEY CONCEPT: MULTIPROCESSING

GENERAL
DATA
PROCESSOR

GENERAL
DATA

PROCESSOR

GENERAL
DATA
PROCESSOR

MAIN
MEMORY
SUBSYSIEM

I

< s

L 1L 1

MULTIPROCESSOR INTERCONNECT H]

1 1L Ib

~ >
R Z \\/

INTERFACE
PROCESSOR

INTERFACE
PROCESSOR

INTERFACE
PROCESSOR

[I{e]
SUBSYSTEM

1o
SUBSYSTEM

[1Te]
SUBSYSTEM

ELEMENTS OF THE ARCHITECTURE

© OBJECT-BASED ADDRESSING AND PROTECTION

® BASIC COMPUTATIONAL FACILITIES

© PROGRAM EXECUTION ENVIRONMENTS

® OBJECT-ORIENTED PROGRAMMING SUPPORT

® INTERPROCESS COMMUNICATION

® SYSTEM RESOURCE MANAGEMENT

A CONCEPTUAL VIEW OF
OBJECT ADDRESSING

ADDRESS
SPACE A

)

OBJECT
REFERENCES

OBJECT

OBJECT
TABLE OBJECT

ADDRESS
SPACE B

OBJECT
DESCRIPTOR

432 OBJECT ADDRESSING MECHANISM

PROCEDURE SYSTEM
t ADDRESS SPACE . ADODRESS SPACE 1
2K BYVES 2% BYTES |

ACCESS
SEGMENT

O8JECT
TABLE

7
SEGMENT

ADDRESS CACHE

432 PROCESSING

SIMPLE OPERAND ADDRESSING

OPERAND REFERENCE

OBJECT DISP

OPERAND

O0BJECT
\DDRESSING DISP < LENGTH

VECHANISM

DATA
OBJECT

b=ty

COMPILER-ORIENTED INSTRUCTION
FORMATS

® ZERO TO THREE OPERANDS PER INSTRUCTION

¢ SYMMETRIC OPERAND ADDRESSING MODES FOR:

— SCALARS (BASE + DISPLACEMENT)
— VECTOR (BASE + INDEX)
— RECORD ELEMENTS (BASE + INDEX + DISPLACEMENT)

® REGISTER-FREE

— OPERANDS IN MEMORY
— OPERANDS ON TOP OF STACK
— ANY MIXTURE OF MEMORY AND STACK OPERANDS

BIT VARIABLE

PACKAGING PROGRAM MODULES

PUBLIC PROCEDURES
AND DATA

- —_—— —

DOMAIN . PUSLIC
0BJECT - PROC'S —34—* 10 OTHER
& DATA .} o DOMAINS

| . DOMAIN
0BJECTY
T ™ PRIVATE
l = PROC'S
.» & DATA

DOMAIN
0BJECT

CONTEXTS AS PROCEDURE ACTIVATIONS

FROM
CALLED
CONTEXT

OMA
OF DEFINITION ** !

DOMAIN -
OF DEFINITION

‘ '
TO

CALLING

CONTEXT

CONTEXT
OBJECT

CONTEXT
08JECT

w»
SP

CONTEXT
DATA
OBJECT

P
Sp

CONTEXT
DATA
OBJECT

EVALUATION
TACK

CONTEXTS DEFINE THE INSTANTANEOUS
LOGICAL ADDRESS SPACE

oBJtCT
SELECTOR

10F 4
ACCESS
COMPONENTS

1 OF 2"
OBJECTS

CONTEXT
OBJECT

ACCESS COMPONENT 1

ACCESS COMPONENT 2

ACCESS COMPONENT 3

ACCESS COMPONENT 4

DOMAINS AS USER-DEFINED OBJECT TYPES

- — — 1

—

DOMAIN
OBJECT

USER
CONTEXT

—

L;,,J\

CALLS

!

PUBLIC INTERFACE
PROCEDURES

INTERFACE
PROCEDURE
CONTEXT

|

o *r

DEFINING
DOMAIN

- 1

b .

PROCEDURE-FREE REPF;ESENTATIONS OF
USER-DEFINED OBJECTS

USER

= DEFINED

PROCEDURES

ACCESS RIGHT
OPENS REPRESENTATION

PRIVATE DATA
AND PROCEDURES

VISIBILITY
CONTROL

’D
USER DE+HINED
OBJECT TYPE

U

TYPE
DEFINITION
0BJECT
_J

432 SYSTEM OBJECTS ARE BASIS OF THE
SILICON 0S8

® KEY HARDWARE-DEFINED OBJECTS CONTROL SYSTEM
FUNCTIONS, e.g.:

— PROCESS OBJECT
— STORAGE RESOURCE OBJECT
— PORT OBJECT

@ HARDWARE PROVIDES THE KEY OPERATIONS

— TIME CRITICAL
— SECURITY SENSITIVE
- COMPLEX

e SOFTWARE AND HARDWARE COOPERATE TO MANAGE
THESE OBJECTS

OBJECT-BASED INTERPROCESS
COMMUNICATION

MESSAGE
QUEUE

-
-

RECEIVER

i PORT
PAOCESS OBJECT PROCESS
OBJECT "A° T i f OBJECT
i 8

CONTEXT

CONTEXY
MESSAGE | J UBJECT

OBJECT

PORT
COMMUNICATION
PRAOCESS A CHANNEL i PROCESS B

K=-11

CARRIERS ENQUEUE WAITING PROCESSES

EMPTY MESSAGE
BUFFER

LINKED PROCESS CARRIERS
\ { .

-

PORT
OBJECT

——
WAITING PROCESS OBJECTS

CARRIER OBJECTS RESOLVE
MESSAGE QUEUE OVERFLOW

FINITE LENGTH
MESSAGE BUFFER
FULL

ENQUEUED MESSAGES

LINKED PROCESS CARRIER QUEUE

BLOCKED
MESSAGES ‘

- D,J

BLOCKED PROCESS OBJECTS

h T
4 1 -

A MESSAGE-PASSING MODEL OF
PROCESS SCHEDULING

-

MESSAGE

~

) CARHIER
|
|
i
|

-
e — e e -t

CARRIER MOVES

AS MESSAGE PROCESS

PROCESS

\} ! « CARRIER
< . |

TO CURRENT
CONTEXT

< |
o

PROCESS

MESSAGE RECEIED PROCESS SCHEDULED

MESSAGE-PASSING MODEL OF
PROCESSOR DISPATCHING

ENQUEUED PROCESSOR
CARRIERS

D PORT

000
0y

1DLE PROCESSOR OBJECTS

IDLE PHYSICAL
PROCESSORS

e DY P
- E

ACTIVE r

PROCESSOR

OBJECT ACTIVE PH SICAL

CURRENTY PROCESSOR
CONTEXT

RAUNNING
PROCESS

SHARED ADDRESS SPACE

-~

b it el

1O IS A SPECIAL CASE OF
INTERPROCESS COMMUNICATION

DEVICE

INTERRUPT INTERRUPTS
LINE | |
1 vy
= Y] artacken e
110 MESSAGE : PROCESSOR
QUEUE = ;
PROCESS PREN PRATN

CARRIER

- INTERFACE S S
__MsGsior_ | . | PROCESSOR)

PORT o N ; MRS UMY
OBJECT
* DEVICE | | DEviCE

CTLR CTLR

T

v

1o
PROCESS INTERRUPT
OBJECT SIGNALS

\J

to
MESSAGE

SHARED ADDRESS SPACE

iIMAX 432: MULTIFUNCTION APPLICATIONS
EXECUTIVE

® COOPERATES WITH HARDWARE TO MANAGE OBJECTS
~ OBJECT CREATION
~ OBJECT MAINTENANCE
~ OBJECT DISPOSAL

® PROVIDES A UNIFORM VIEW OF AN OBJECT
6.9.. FOR PORTS: CREATE PORT (SOFTWARE)
SEND MESSAGE (HARDWARE)
RECEIVE MESSAGE (HARDWARE)

=13

iMAX 432 AND THE SILICON OS

IMAX 432

432 HARDWARE
TRADITIONAL HARDWARE

REBALANCING THE HARDWARE/SOFTWARE INTERFACE

ADA: THE IDEAL IMPLEMENTATION
LANGUAGE FOR 432

® ADA MATCHES THE 432 DESIGN METHODOLOGY

— BASED ON THE CONCEPT OF OBJECTS
— SIGNIFICANT SUPPORT FOR MODULARIZATION
—~ AIMED AT REDUCING PROGRAMMING COSTS

® ADA CONSTRUCTS MAP THE ARCHITECTURE AND OS

OBJECT OBJECT

PACKAGE DOMAIN

ACCESS ACCESS DESCRIPTOR
SUBPROGRAM ACTIVATION CONTEXT

® ADA-432 FEATURES PROVIDE DIRECT ACCESS TO THE
HARDWARE
~ 432 SPECIFIC OPERATIONS ARE IN ADA’'s STANDARD MACHINE
ACCESS PACKAGE
~ SIMPLE 432 EXTENSIONS TO ADA SUPPORT DYNAMIC SYSTEMS

ICL EFFORTS IN COMPUTER SECURITY

Tom Parker

International Computers Limited

This presentation covers a subject which is becoming a bit of a
Cinderella in the secure computing world. I am t.ilking about the much
criticized business of making a real life, big machine, practical,
commercially acceptable operating system as secure as possible.

1 am talking about the kind of system for which the use of formal
verification technology is bevoud the state-of-the-art; for which
restructuring along the TCB lines proposed by Grace Nibaldi must be very
expensive, and for which there are no absolute guarantees of security, a
system for which the attainment of the magic Nibaldi level 6 is a
fairytale fantasy, but a system which nevertheless occupies an important
niche in the total spectrum of secure datd processing requirements.

SLIDE 1

The system 1 shall be talking about is a large general purpose
operating system from a Furopean manufacturer. It is called VME/B, and
it is marketed by ICL on our 2900 range of computer mainframes.

As some of the audience here today may not know much about ICL, I
think ['d better start by giving a brief description of who we are, and
give a bit of background to the development of the 2900 series. 1 shall
then go on to describe the hardware architecture of 2900, concentrating
of course on those features that are most relevant to security. ME/B is
the largest of a number of ICL operating systems that run on th.
architecture; it is a system that has received a lot of attention from
the point of view of sccurity in ICL and | shall be describing some of
its protection features. It has also been the target for much of the
security enhancement work that has been undertaken by 1CL, mainly with
the objective of satisfying the needs of customers with especially
stringent sccurity requirements. [shall outline some of this work .t
the end of the presentation.

SLIDE 2

"ICL" stands for International Computers Limited, and not only is
ICL the only indigenous UK mainframe manufacturer, but dlso we e one ot
the few to produce computers with an architecture tundamentally ditterent
from IBM's. To give you some idea of the size o the Companyv, our

Lz 2o g A

foaiooe

turnover last year exceeded 1.5 billion dollars and we employ over 26,000
people, about 20,000 of whom are in the UK.

The value of ICL's world-wide customer base is well over 4.5 billion
dollars in 86 different countries. Apart from the ubiquitous IBM this is
the biggest customer base outside America and Japan of any computer
manufacturer.

ICL was ‘ormed in 1968 as a result of a merger betwten what was then
two major, and competing British computer companies: ICT and English
Electric. At that time it was realized that the new Company would soon
need a range of new machines to replace the many, varied and incompatible
ones inherited from the merger. Also of course these inherited machines
had architectures and a hardware technology dating from the 50's and
early 60's. Both hardware and software technology had moved on a lot
since then.

So out of all this after an appropriate gestation period, came the
first of the 2900 series. This was a revolutionary rather than an
evolutionary step. A rare thing in the commercial computer world.

SLIDE 3

The design was of course influenced by that »f existing in-house
systems and obviously the architectures of other machines in the
marketplace at the time were also examined, for example a number of
MULTICS concepts were very influential, particularly in the protection
sphere, where some aspects still represent state-of-the-art, even 12
years later.

For those of you who would like to know more about this history., |
would recommend John Buckle's book on the subject, which al-o appears in
condensed form in the November 78 issue of the ICL Technical Journal.

2900 ARCHITECTURE

So what kind of beast did we produce? let's have a look at some of
the architectural features of the 2900. This is a list of the ones we
shall look at. 1']l describe each one then bring this slide back and
collect them altogether at the end.

Central to the architecture of 2900 are the complementary concepts
of virtual store and virtual machines, and their common base of virtual
addressing.

SLIDE 5

s 3 S e et

All addressing is in terms of virtual addresses mapped onto real
addresses by hardware using segment and page tables. The real addresses
can be in real store or on secondary store on drum or disc. In order
words, we have a straightforward virtual store implementition. FEach
process runs in its own 'virtual machine" in which it has its own unique
local segment table and shares a public segment table with all other
virtual machines. It can optionally also have "global" segments which it
shares with chosen other virtual machines. I think that it is generally
accepted that this kind of hardware-supported process address-space
separation is important to good system security.

SLIDE 6

The primitive instruction code makes cxtensive use of 'descriptors'
for indirect addressing. A descriptor is a 64-bit entity which formally
describes an item of information in store. One half of the descriptor
contains the base address of the item being described in terms of segment
number and displacement. In other words, this half of the descriptor
contains a 'virtual' address. The other half contazins information
relating to the unit size of the item, the number cf units it contains,
whether modifiers added to the item's address should be appropriately
scaled or not, and so on. Descriptors are also typed according to what
kind of information they are addressing. This slide shows a "Descriptor
Descriptor" pointing to a row of three "Byte-Vector" descriptors, each of
which is pointing at a bounded area of virtual store. Some other
examples of descriptor types are Code Descriptors, Semaphore Descriptors
and System Call Descriptors. One obviously important 'correctness'
feature present in the 2900 is automatic bound checking on modification.

SLIDE 7

Next in the list, are the features needed to control bhasic
input/output and other primitive privileged operations. The totality of
. . . " g
addressable hardware registers is called the “image store . This divides
into two parts: the visible and invisible registers, and the distinction
between them is critical to the system's security.

Visible registers are accessible by normal unprivileged
instructions, and consist of such things as Program Counter, local
namebase pointer, Real Time Clock, and so on. Access to the invisible
registers is by using what is called "image store operand format,” and
this requires privilege.

Access Lo the invisible registers is required to perform
Input/Output operations, to activate a new process and to perform other
privileged functions.

Privileged status is obtaiued only by a hardware intervupt
mechanism. When the VME/B Uperating System is present, such interrupts
cause entry to the most trusted part of the operating svstem (the

U e TS IR

Pl sty e e

'"Kernel' of VME/B).

SLIDE 8

A process's level of trustedness is defined by the contents of an
"invisible' register: the Access Control Register, called ACR for short.
The ACR register is actually a part of the Program Status Register shown
on the previous slide. The level of trustedness is called the ACR level.
The lower the value of its ACR, the more trusted a process is.

Segment protection occurs in that on access to store, the ACR level
of the process and the mode of access are compared with access permission
fields that are associated with each segment. ''Change Access' on the
slide refers tu the ability to change the access permission fields
themselves. There is also an Execcute Permission bit which is used to
prevent the accidental execution of data.

Entry to a procedure running at a different ACR level must be via a
hardware-supported 'system call' mechanism which polices the availability
of the called procedure from the caller's ACR level. An important
feature of the mechanism is its enforcement of entry to the procedure at
the proper entry point. So you can see that what we have here is a ring
protection system. There are sixteen possible different levels, that is:
16 ACR levels.

Critical to the security of the system is the proper validation bv a
trusted procedure of reference parameters passed to it when being called
by less trusted code. A special primitive instruction is provided for
this purpose which we call the 'Validate' instruction. 1 shall be saving
more about parameter validation later.

So, let's pause for a minute and look at the major items so tar.

SLIDE 9
wWe have:

virtual addressing, supnorting

virtual store and

virtual machines - providing protection between processes
descriptors with automatic bound checking,

a protected 1/0 mechanism,

and a le Jevel ring protection svstem with an

associated mechanism for policing the transfer ot controi
between the rings - providing protection with a process.

These are all basic architectura’ hardware supported {eatures present in
the raw machine.

1 should quickly mention one further architectural feature: the
"process stack."” It has no direct security connotations, but makes such
an important contribution to the overall flavour of the 2900 architecture
that it would be misleading to miss it out.

The instruction code at the primitive level is based on the use of a
LIFO or "Last 1ln First Out" stack. The stack is used for parameter
passing and local name space purposes and each Virtual Machine has its
own stack. Nested procedure calls will cause the usual succession of
name spaces to be built up on the stack, which are deleted on a "last in,
first out” basis as the procedures exit. We have found the stack
mechanism on 2900 to be an elegant and natural aid to the procedure call
mechanism. Those then are the main architectural features of the 2900
series machines. Wwhen it was introduced it was quite an advanced system
for its time. lp tact many of ICL's early development problems stemmed
from the fact that we were breaking new ground in so many areas. Even
today, operating system technology in commercially available systems is
only just catching up with the 2900 architecture which forms a very
adequate basis for the development of a secure operating system.

SLIDE 10

One such development is VME/B. VME stands for Virtual Machine
Environment. B stands for B.

VME/B is a large mixed workload operating system catering for Batch,
Multi-Access and Transaction Processing applications.

The smallest machine on the 2900 range on which a full system is at
present intended to be run is the 2956, though there are subset options
that can run on a smaller machine. Comparisons are difficnlt but the
2956 is very roughly equivalent to an 1BM 4331 Model 2, or somewhere
between a DEC VAN 11/750 and VAX 11/780. A practical full VME/B system
including typical user application code needs a real store size of at
least 2 megabytes, so it's a big operating system.

The operating system divides into three guite distinct parts,

separated by error handlers as shown on the slide. At the most trusted
level i< Kernel, which handles real system resources like store and
devices. It runs mainly ‘out of process' on a public stack and heips to

support the virtual storesvirtual machine image of the basic 2900
architecture.

Director is responsible for the handling of a more abstract view of
the system's resources. At this level are the block level file MANAEers,
and the major security related operating system functions like the
loader, name handler and privacy controller. Dircctor occupies ACK
levels o and 5.

Lncontrolled communication between virtual machines is prohibijted
above ACR level 5 by disallowing public segments with write access kevs

L s it . R SN

greater than ACR 5 and by controlling the availability of global
segments.

Level 7 to 9 contain the Above Director software as shown on the
slide. From the security point of view it could be considered as a sort
of "trusted superstructure.” Above ACK 9 is the real enemy - the user.
Facilities are provided for user installations to structure the levels at
which the various applications run within ACR levels 10 to 15, and these
can be used by installation management to cut normal unprivileged users
off either partially or completely from direct use of the facilities of
the operating system if so required. 1 shall say a bit more about this
later.

Notice that unlike in some contemporary machines, compilers, and
general utilities are no more trusted by the operating system than user
code.

All operating system code segments are established with a write
access key of zero and so all operating system code is necessarily pure.

SLIDE 11

The slide shows a typical selection of operating system procedures
and VME/B's use of the system call mechanism. The small boxes are the
procedures. 1 have drawn them at their execution ACR level. The lines
with blobs on the end show the highest ACR level from which they can be
called.

In the actual system the vast majority cannot be called at all from
outside their own level, but there still remains a substantial number
that are directly callible from user ACR ievels.

The proper validation of parameters passed across the user/operating
svstem interface is well-known to be critical to the security correctness
of operating systems, and VME/B is no exception. A lot of time and
energy has been spent cnsuring that reference parameter validation is
complete. In particular an object code analvsis package has been writien
that searches out discrepancies for manual analysis and correction. 1t
examines actual leaded code, and ~o detects flaws that might be
introduced by post compilation patches or repairs which at that stuage
have been fully applied. The checking is thercrore as near to the
"engine' as possible.

Another approach has been to reduce the number ot procedures
available to the user at particular secure installations. A package has
been produced to monitor usage of system code with 4 view to making
unused interfaces unavailable, or restructuring the availability o
little used interfaces on particular secure sites.

The package has a very low performance overhead and can he
permanently left in the svstem.

l.-6

"'ll----!'-----------.IIIll-l--Illlllll-lll — . ,

~J

Installations have a considerable degree of control over operating
system called is defined at system load time in a load control file
interestingly called the 'recipe' file, and this file is amendable by
installation management. A mechanism also exists whereby trusted users
can dccess 4 smaller number of additional procedures. The availab:lity
of these more powerful intertaces can be tailored to the specific
functionai requirements of the chosen trusted user classes. Standard
ones are for example Support Engineers, Operators, or the System Manager.

There are in fact a number of areas in VME/B into which hooks and
options have been put. This gives installation security authorities a
great deal of flexibility in deciding on what they want for their system.

Indeed, the extent to which particular secure installations can bend
VME/B to suit their individual security requirements is itself a major
security feature of VME/B.

To give a cruie example, a class of multi-access user can be defined
waose only commands are, say,

INPUT

EDIT

COBOL CuMPILE
COBCL RUN,

with no low level code or direct use of operating svstem interface being
allowed at all.

All major system objects are recorded in a central filestore
database known as the VME/B Catalogue. It is controlled from ACR
level 5. The Catalogue is organized in terms of nodes and relationships.
Entries for named objects are located at nodes which are connected oy
relationships. Objects catalogued include Devices, Volumes, Files and
other specialized VME/B objects. One example of a VME/B object is shown
on the slide - that of a job profile. A user's access to job profile
nodes determ.nes the kind of work that he can run on the svstem,

Privacy controls can be applied to all of these objecis and dccess
can be constrained on a general, specific and hierarchic basis. A wide
variety of success types is supported, distinguishing for exampie between
access to a file's contents and access to its name and description. Al
attempted privacy violations are logged to a security journal. An
installation can arrange that such messages are output immediately 1o the
journa:, or held in a buffer and then output when the butter as tull,

Particularly important in the adccess control features i1s the
ability, by means of device access settings, to prevent users other than
chosen individuals accessing the system using a particular terminal.

Alternatively all users except named individuals can be allowed to use a
particular device. This is useful for example in preventing the system

manager's username being used at all terminals except a particular one.

Such protection would of course be additional to the protection provided
by the System Manger's password.

SLIDE 13

Users are identified by a catalogued username which can take one of
three security levels: low, medium and high. A high security user may
not submit batch jobs; high and medium security users must submit a
password when logging in for a multi-access session.

Multi-access, or MAC passwords can be up to 12 characters long and
are irreversably encrypted when stored at the catalogue user 'node' for
login comparison. In this way sight of the stored version is made
useless to the would-be penctrator.

The login sequence is very tightly controlled.

The would-be MAC user once having started the sequence will either
obtain legitimate access within a certain time or cause the terminal to
be locked out with an immediate security alarm at the Master Operator's
terminal. Line breakdowns for example at this stage cause security
violations. So pulling the plug out won't do him any good.

A reverse passvord facility is also available with which the system
can be made to identify itself to the user.

Another feature is program controlled access to files using ..CR
levels. By this means, installation management can force access to
chosen files through installation written software which can perform
auxiliary protection checks, for example file passwords.

ICL markets the IDMS Database system (developed from the Cullinane
Corporation design). By making use of ACR access control, IDMS has
become one of the few secure databases systems commercially available
today.

SLIDE 14

Well, these are some of the main VME/B security features. Here thny
are, collected together.

We have:
- full use of the ACR ring protection system both

by the operating system and potentially by the
installation seccurity management

- in store code unmodifiable - pure code

o s

- extensive installation tailoring facilities and
hooks

- central access control to all system objects

and so on as shown here.
And, one final thing on VME/B's features:
We have just started to investigate the possibility of the provision

of the ability to police a mandatory security policy, and it is looking

reasonably straightforward to integrate into the existing security
structure.

DESIGN AND PRODUCTION METHODOLOGY

SLIDE 15

From our experience of producing earlier operating systems we realized
at the outset that one cannot simply treat an operating system as a
collection of programs and then farm out the development of these programs
to separate groups of programmers, hoping that they will all fit nicely
together when the doomsday of integration approaches.

So we designed and built a system called CADES.

SLIDE 16

CADES is a methodology and a set of mechanisms to support that
methodology. The VME/B design is top down data driven and hierarchic, and
the prime objective of CADES was that the product was designed before it
was implemented. We all know how difficult that is in the pressures of a
commercial production environment.

The design methodology is then supported by mechanisms which may
consist either of well-established rules for human actions and interactions
(we call them the CADES Design Rules), or software products to be used as
tools by the designers and implementors.

The hierarchies of modules and data structures with their attributes
and relaticnships are stored in the CADES database, and this forms an
authorized description of the product as it is being developed. The final
content of the database is the product itself so there is no break in
continuity between design and production. The ultimate objective ot CADES
was to support the total software development cycle from initial design
right through to successive relecases of the system with supporting
documentation.

L-9

VME/B is a result extensively documented in a structured manner iu a
microfiched multi-volume library known as the "Project Log." For example,
systems wide cross reference listings of data object usage and procedure
calling structure are available, and can be automatically reproduced for
| all new releases using the CADES database.

A very gond description of CADES can be found in the May 1980 edition
! of the ICL Technical Journal.

It is important to say at this point that CADES does not have the
richness of design language nor the degrce of formalization enjoved by the
) formal languages that everybody here is familiar with. It was never
' intended to be used as a basis for later desigu correctness verification.

Nevertheless, ICL finds CADES an invaluable practical tool, and we are
continuously developing. enhancing, and, possibly most importantly, using
it.

The implementation language of VME/B is called S3. 1 haven't the
faintest idea why. It is a development of ALGOL 68. In other words, it is
a well-structured high level language with moderately strong tvping and a
block structure very suitable for the 290N stack architecture.

The production teams, however, actually Code VME/B in an
implementation level enhanced System Description Language, or SDL, which is
automatically converted into S3 source by the CADES system. Niggling
little things like complex data mode declarations, interfaces parameter
specifications, constant and failure code values, macro expansions, and so
on, are thereby automatically looked after by CADES.

SLIDE 17

The slide shows an example of sowe implementation level SDL. 1t is
actually some SDL for a module which is part of the CADES system itself.
We now use CADES to design and build CADES!

I won't describe the slide in detail, it's there just to give vou a
flavour of the language. At the top are the EXT and 10 secctions which list
the procedures that this procedure calls, and the external data areas
referenced. The interface definitions and modes of these items are of
course all held in the CADES database. The asterisks at the beginning ot
some of the lines in the FUNCTION section trigger oft various substitution
and validation actioas that occur when the system is converting this code
into 83.

The existence of centrally held definitions of svstem-wide objeats
like data mode declarations and interface specs and so on automatically
reduce, of course, the problem of mismatches in all of thesce areas.

An important current CADES development is the provision of an enhanced
SDL/PASCAL back end. [ICL holds the view that whenever possible, software

L=-10

L‘ AN, PRI il " . o S --‘-——--—.-‘

11

products should be written in high level languages, and PASCAL is one that
we have chosen to be heavily used, particularly in the production of
non-mainframe software. The compiler has been structured to enable a
number of different target object codes to be produced. In developing the
PASCAL aspect of CADES we have incorporated a number of the good features
of the ADA development environment, for example the separation of package
specs from package bodies.

One final random point of interest, to do with the CADES design there
are no "GO TO's" in VME/B, well, hardly any!

SLIDE_18

I would just like to finish off now with a brief survey of some of the
additional security work that has been and is being undertaken on VME/B.

Obviously some of our customers have special security requirements, so
the first thing to say is that a substantial number of extra security
features have been developed to satisfy them. Another objective has been
to 'harden' VME/B not only from the point of view of extra facilities but
also from the point of view of correctness.

Of course everybody benefits from correctiass improvements, but also
some of the additional facilities have since become standard product line
items.

To further our 'correctness' objective, we have been subjecting the
primitive architectural features and low level opecrating system features to
"theoretical' analysis, backed up where appropriate by actual tests. This
is a continuous process, since new relecases of the operating system are
continually providing new dareas to be examined. For this reason we are
attempting to automate the analysis as much as possible.

Most of the tools developed in this work are incorporated into a
"security test package" which also incorporates tests of the standard user
visible security facilities. The package is now being applied during the
acceptance testing phase of each new release of the product.

«> also maintain a close relationship between ourselves and our major
sccure users and conduct regular meetings devoted to examination and
discussion of security issues at both technical and non-technical levels.

Every so often, we stand back and look at the overall security
structure of VME/B. One current example is a development of the security
control object dependency griph idea developed by Linde at SDC, which we
hope will be found useful in identifying areas requiring most attention.
Another example is an examination of the feasibility of restructuring the
operating system in minor ways to enable the control of sccurityv tce be more
localized (note I might add to the extent of a security kernel's
localization).

L-1]

i i Yiac S P

A e

12

An early hardened version of VME/B was subjected to a 'tiger team'
attack a few years ago with encouraging results. In that attack, the
system demonstrated a reasonable degree of security in that the attack team
failed to achieve their major penetration objectives.

I should add that at the time there were a small number of known
defects declared as 'no go' areas, and others that had to be compensated
for by appropriate rather restrictive procedural controls. We have, of
course, since cleared these defects.

I would be foolish though to claim that the system is now therefore
totally secure, but it at least shows that the claim that it is 'easy' to
penetrate a modern well structured commercial operating system has to be
examined very carefully. The great majority of successful penetrations
have been by teams consisting of top class systems penetration specialists.
It has been said that the ideal qualification for a member of a penetration
team is that he should be "a negative thinking anarchist with an IQ of 150
and the patience of Job." Such people are hard to find. What is casy ior
them might well prove impossible for ordinary mortals.

A system tlat has been penetrated by specialists, and VME/B might well
be one day, cannct be dismissed as being insecure. Security is not a
binary property that is either present or not, and this has of course been
clearly recognized in Grace Nibaldi's valuable work on this subject.

SLIDE 19

well that's about it. As you can see we take a pragmatic approach to
security; it has to be pragmatic on a system as large as VME/B. We make no
claims of absclute sccurity. All we can do is fill as many holes in the
colander as our expertise and the state-of-the-art, allows.

The architectural bedrock on which VME/B lies is sound. The operating
system itself has been produced using modern software engineering
techniques, and the VME/B user has always been considered 'malicious'! We
know of no comparable but more secure system.

lL.-12

| 'CL MENU

® BACKGROUND AND ORIGINS

® 2900 ARCHITECTURE - PROTECTION FEATURES
® VME/B SECURITY FEATURES

® SECURITY ENHANCEMENT WORK

ICL

ORIGINS AND INFLUENCES

IN HOUSE MACHINES ILIFFE S
e BASIC HONEYWELL MANCHESTER BURROUGHS
1900 SYSTEM 4 ELLIOTT LANGUAGE MULTICS UNIVERSITY 86500 7500
4100 MACHINE PROTECTION MUS HLL CONCEPTS

N\

ARCHITECTURE

L-13%

iICL| FEATURES OF THE 2900
ARCHITECTURE

VIRTUAL ADDRESSING

DESCRIPTORS

IMAGE STORE AND INPUT/OUTPUT CONTROL
ACR LEVELS AND THE VALIDATE INSTRUCTION
SYSTEM CALL MECHANISM

THE STACK

icL] VIRTUAL ADDRESSING
LOCAL PUBLIC GLOBAL

LOCAL VM1 LOCAL VM2

A.. 1 o] [0 1]

VIRTUAL
ADDRESS

]

LOCAL SEGMENT | PUBLIC SEGMENT LOCAL SEGMENT LOCAL SEGMENT
TABLE TABLE TABLE TABLE

PAGE TABLE PAGE TABLE r IUR N

l l PAGE TABLE

REAL ADDRESS REAL ADDRESS REAL ADDRESS G| OBAL SEGMENT
TABLE

=14

DESCRIPTOR®S

K VIRTLAL
AUDRESS

MVIRTUAL
ALITHESS

ViIRTUAL
ADDRESS

VIRTUAL

L NO. OF UNITS AnDRess)
D SCALING
Coeeoooo-o - UNIT SIZE

L

DESCR!PTOR DESCRIPTOR

EG

BYTE VECTOR DESCRIPTOR

'CY IMAGE STORE

VISIBLE REGISTERS

INVISIBLE REGISTERS

SSR SYSTEM STATUS REGISTER
PROGRAM STATUS REGISTER
LOCAL SEGMENT TABLE BASE

PUBLIC SEGMENT TABLE BASE

PC PROGHAM COUNTER
LOCAL NAME BASE
REAL TIME CLOCK
DESCRIPTOR REGISTER

ACCUMULATOR

ETC

Egc EXTERNAL DEVICE REGISTERS

£ETC

é

'CLl PROTECTION LEVELS
i ACCESS CONTROL REGISTER (ACR)

SEGMENT ACCESS CHECKS

4 - READ ACCESS
- WRITE ACCESS
- CHANGE ACCESS
- EXECUTE PERMISSION BIT

SYSTEM CALLS

- CALLING ACR LEVEL CONTROLS
j - ENFORCED ENTRY AT PROPER ENTRYPOINT
- HARDWARE SUPPORTED PARAMETER VALIDATION

: ICL] FEATURES OF THE 2900
i ARCHITECTURE

VIRTUAL ADDRESSING
DESCRIPTORS j’
JIMAGE STORE AND INPUT/OUTPUT CONTROL

ACR LEVELS AND THE VALIDATE INSTRUCTION

SYSTEM CALL MECHANISM

THE STACK

L-16 '

SUpERSTRUCYURE

COMBILE R
UTILITIES
USEH CODE

JUB INITIALISATION JOB SCHEDULERS
JOB COUNTROL LANGUAGE HANDLER

RECORD LEVEL FILE HANDLERS
NO PUBLIC WRITEABLE
SEGMENTS ABUVE ACLRS
LOADER NAME HANDLING B PHIVACY
CONIYROL
BLOCK LEVEL FILE HANDLERS

DEVICE HANDLERS vilTUAL STORE
AN VIRTUAL MACHINE MANAGEMENT

SUPERSTRUCTURE

ABOVE DIRECTOR

DIRECTOR
KERNEL

THE CATALOGUE

N

O\
@ @ FiLe = FILE 0

do8FiLe) (pEvice o pEvicE

F|LLE

VOLUME
USER - A -

ict] MORE VME/B
PROTECTION FEATURES

USER AUTHENTICATION

12 CHARACTER PASSWORDS

ONE WAY ENCRYPTION

SUCCESS OR LOCKOUT WITH ALARMS
TIMEOUT DURING LOGIN

® REVERSE PASSWORDS

® ACR PROTECTED FILES
- SECURE IDMS DATABASE SYSTEM

1.-18

ICL

MAJOR VME B SECURITY FEATURES

® STRUCTURED USE OF ACR PROTECTION WITH.

* KERNEL

* DIRECTOR

« ABOVE DIRECTOR
* SUPERSTRUCTURE

SUPERSTRUCTURE (USER'S CODE) SUBDIVIDABLE
BETWEEN 6 ACR LEVELS

PURE CODE

INSTALLATION ABILITY TO DEFINE WHICH O/S
FACILITIES ARE TO BE AVAILABLE TO WHICH
USERS

ADDITIONAL INSTALLATION HOOKS

CENTRAL TOTAL ACCESS CONTROL VIA FiLESTORE
CATALOGUE OF SYSTEM OBJECTS

LOGGING
STRINGENT USER AUTHENTICATION PROCESS
REVERSE PASSWORDS

INSTALLATION PROGRAMMABLE FILE ACCESS
CONTROLS

COMPUTER
AIDED |
DEVELOPMENT and
EVALUATION
SYSTEM

1.-19

iICL

CADES

CHARACTERISTICS

® A METHODOLOGY AND A MECHANISM
® TOP DOWN, DATA DRIVEN, HIERARCHIC DESIGN

® FORMAL CAPTURE OF DESIGN ON AN IDMS
DATABASE

®COMPLETE DEVELOPMENT CYCLE SUPPORT
®SDL LANGUAGE

L-20

L———' PRSEGR S, - S e SRR SRR S Sa)

|
!
i
i
r

AGES250800 ElitIL

L ON EN PARAME TER LA :DATOR,

SERSIUN 501,

Ex? (omMmMON IR

movt,
L ANLNG,

TRANSLATE MIERARI™I! NAM

ENCDLTPUT MESSALE,
EN EXTEND WEAR,

iN OLTPLT PRALE,
thODUTPLT (IBRARY (FEN,

EN TRUSTED USE-NAME,

EN TRUSTED USERNAME BufFiR,
€8 TRUSTED LSERNAME CRRENC Y,

HOLTN NAMES,

SELELCTIRS,

NON 310 PRALEY

En Dt

ANE
BANOGMER I BREAR,
AN
AoemAN MERIC,
NH
Nome R
vt
(RS

NONAME 1S R

LURNAS

CENG T e
LN

gy

L=21

ICL

FURTHER SECURITY WORK
® ADDITIONAL SECURITY FEATURES

® THEORETICAL ATTACK
® SECURITY TEST PACKAGE

® REGULAR REVIEWS OF USER REQUIREMENTS
® SECURITY STRUCTURE APPRAISAL

® ATTACK EXERCISE

- w— . - - -

GNOSIS: A PROGRESS REPORT

BOB COLTEN
! TYMSHARE

Thank you, Steve. We must have done something right last year to gct

invited again.

Before my prepared remarks, I1'd like to briefly comment on thc sub-

3 jects raised by the preceeding speakers: We fully agrec with the mes-
sage expressed by Steve, by Terry Cureton, and others. You have to

3 walk before you run. We also agree with Axel Vidtheldt that availabil-

ity is a part of security; and with CDC that you can't forget perforn-

ance or customer need. With that, let me proceed to this presentation.

This year it 1is our intention to bring you up to date on the proyress

we have made since last years presentation.

For those of you wno weren't here last year, we'll briefly review
Gnosis. ‘
This will be only the 25¢ tour. Then we'll tell you about the bench- i

Why we selected it

How it was implemerted

wWhat was the performance

We'll tell you what we learned and....

. Where we are going from here and why

Then Norm llardy, the Architect of Gnosis will discuss some of our con-
cerns with the rrchanisms and approaches of the sccure system covalua-

tion effort.

. We disclosed Gnosis to this audience at the third DOD

security initiative seminar.

. Gnosis was started by Tymshare as an in-house research

program in 1975.

. . It is a capability based operating system designed to

run on 370 type architecture. It was started by a
tiny team which has expanded to a small team which

now consists of six people.

The Gnosis design objectives were and still are to:

1. Protect proprietary applications, both programs and
data.

2. Provide a high performance environment for transaction
oriented applications.

3. Simplify and reduce the cost of maintaining applications.

4. Provide an operating environment in which applications
can be easily maintaianed.

5. Improving programmer productivity in developing new
applications.

6. Provide a facility for developing fault tolerant appli-

cations.

In summary, we wanted to develop a product to enable us to enter new

markets. An operating system that is easy to:
1. Learn 3. Debug
2. Program 4. and Protect
M-2

b

'l-.'Il.Il.I!--II-llIIII-lI-II-IIllI!l--'-I....-I---_-" ;

For those of you who weren't here last year, what follows is the

25¢ tour.

First, let me briefly contrast the Gnosis architecture with the
architectures of systems which we are all familiar with and love

dearly.

In most existing systems, applications are locatecd in the same

" memory space. On the slide that is shown on the left side, stat
pack are all in the same space. If one part of the application
has a bug in it, it is not unlikely that it will impact the entire

application or even other applications.

This type of breakdown is not only inconsiderate but downright

rude. It also tends to actively promote paranoia.

In Gnosis, we keep not only applications but components of appli-
cations separated in separate domains. In Gnosis, each element
can be totally isolated from every other element. Each of these
separate elements is a domain. The only way a user or another
program can access a domain is through an explicitly authorized

capability.

If you want to know more about Gnosis you can fird more in last
years proceedings or the Mitre evaluation or write to me or Norm

| at Tymshare.

Let me now briefly contrast our situation today with our situation

when we last met in 1980.

Today our development objectives are different from those we had
in 1980.

At that time we were---

. Looking for external applications

‘ . Looking for some kinc. of surport

M=-3

We obtained moral support from the evaluation center team.... and
this support has been a factor in motivating us to accelerate the
GCnosis Jdevelopment cffort. More about the contribution of the cvalu-

ation center team from Norm.

What we are focusing on now are internal applications. We are not

looking for external financial support.

We are now focusing on:
Developing new tools to facilitate application development
Proaucing documentation to help users implement applica-
tions and actually implementing new application, as well as,

Measuringy the performance of the new applicatiouns.

Now I'd like to briefly talk about the benchmark.

As you probably know, one of the most frequently cited reasons for
not using capability based systems in the past, was that their per-

formance was rotten.

We therefc.e, had to find an application that was both real, as well
as typical of a class of applications in which many users performed

a small number of activities simultaneously.

We wanted the test to be a multi-purpose test. The individual se-
lected to do the evaluation was someone cutside the project who works
for another division. The management of that division wanted to find
out if Gnosis would run the kinds of applications they wanted to im-
plement.

. Thus we and they both wanted to test the reliability of
the system under stress.
We both wanted to know how the system would perform under
various loads.
They wanted to know if Gnosis had the functionality to
run their applications.
They were concerned that Gnosis was So different that

normal people couldn't use it.

S P

. They wanted to find out how good tLhe documentation
really was, namely, could their development pcople
use it.
They also wanted to know how much sharing was feasible
and how easy it was to implement in an application.

. Pinally they didn't want to spend a lot of money or time
to find out 1if the system was viable and useful on an
application development environment.

And, we wanted an application that was fun to implement.

Because of all these reasons, we selected "Adventure", a progran
written in PL/1, as the first test program to be implemented in Gnosis.
“Adventure" is a game similar to "Dungeons and Dragons" with a spcc-

ific cave called the collossal cave.

Now I'd like to show you what functions were involved in building tho
sclected application and how much code you need to trust.
This part of the system predates adventure and this is the
only part needed to implement the adventure application.
It consists of the kernel and two separatce domains, the
terminal interface and the receptionist.

The kernal, unlike most familiar operating systems, is smill and very

simple; it functions more as a control program rather than as a con-
ventional operating system. It runs in supervisor mode, it is un-
swappable. The kernel maintains the extended machine architecture,

provides the basic building blocks and performs operations on them

on behalf of the user. 1In Gnosis, capabilities and data are isolated

from each other so that capabilities which only the kernel can access

directly cannot be forged or manipulated without authority. Wc¢ wanteod

to test the kernel under stress.

The terminal interface system provides the path for a terminal to
communicate with the adventure game; it converts ASCIT code to ERDIC
and EBDIC to ASCII.

The receptionist verifies the identity of the caller and the destina-

M-95

tion on the domain that is being called.

Next, we built the adventure domain and hooked it to the torminal

interfact domain.

The adventure domain contained the same PL/1 program we ran under
CMS.

There was an unresclved situation at this point. When the line hunc
up we were left hanging, so we built the line monitor to:
A). Recognize the event

B). Take the appropriate action

Well, in the crudest sense, this is all you nced to have a single

adventure.

But, we assume that like most people, this audience is jaded and havina
developed a taste for adventure you would like to repeat the cxperience

and maybe have some friends join you in the game.

The slide shows that if you want more than one adventure, you necd

to duplicate the adventure and the line monitor domains.

It is importanu to point out however, tnat each line monitor and each

adventure share most of their code and their data inr rcad only mode.

Thus, when more than one player plays simultaneously, it is nccessary
to crcate multiple instances of adventure. Code is shared in cach
instance of adventur~ between the terminal intcerface and the recep-

tionist.

The adventure domains can also share data which is common to all uscrs.

For example, the description of the cave.

f Thus, the entire amount of storage space required for each instancce
of adventure is only 10 pages of real memory per user, most of it 1is
PL/1 variable storage. An interesting note--the adventure progran
was not modified to run con Gnosis even though it was not designed

‘for sharing.

To build the multiple instances of adventure and the line monitor, and
to implement policy of what to do whern a line disconnects, a new mech-
anism had to be built. This mechanism we called the adventure control-

ler.

The adventure controller creates more instances of adventure, gives

them keys, (no one else has keys), namely rights to access.

The adventure controller also implements the policy for disconnecting

terminals. When a linc is uropped, the line monitor notifies the ad-
venture controller. The adventure controller then destroys the in-

1 stance of adventure and reclaims all resources owned by that instarce.

| In addition to its existing functions, the adventure controller could
be used to:
. Monitor resourcce consumption by each user.
. Insert debugging tools.

. Insert auditors for cach user.

As is perhaps more cvident in this slide, the entire structure of

adventure, operating within the Gnosis cnvironment, is very simpleo,

A total of only 600 ncew lines of code had to be written to make it

work. 500 lines for the adventure controller and 100 lines for the

line monitor. In this application one must trust the kernel, the

terminal interfacc, the receptionist, and the adventure controller \
and nothing elsc.

M-/

i

There is no operating system as such which needs to be trusted.

No virtual machine

No command language

No loading of programs
No file system

No editor

No system libraries

Another way of saying this is that when playing adventure in the
Gnosis environment, "The tail does not wag the dragon." I1I{ Marv
Shaefer were here, he'd say that was a twoll remark. I would call

him a bad gnome.

Now that you know the architecture of the adventure benchmark, lct's

look at how long it took to implement it.

In reality, the whole thing took a little over one month , if you

don't count the first month to get oriented.

It took 1 man week to do the controller
! the line monitor and
the linkayes
and two more man weeks to do the multiple version of adventure. Then

two more man weeks to do the driver and the scripts.

Now I'd like to share with you some of the comments madce by the doevel-
oper of the benchmark in his report to his manager. The developer is

a senior applications programmer. 7MY+though he had expericnce on many

different operating systems, hc ha® no:
Capability-based system experience

. Gnosis experience

Lxperience with Gnosis debugging tools

. Prior contact with the Gnosis team

1-X

* "Application programmers can
learn to use Gnosis in a

relatively short time"

* "PL/1 programs can be run)
under Gnosis with very

little source code modification"

He also noted a few shortcomings:
. Documentation as presently available is unfit
for man or beast.

. System still nceds work.

Now let's look at the results of the benchmark.

First note the CMS baseline: We used CMS because it was avail-
able. Note: The vertical axis should read cumulative or total

transaction rate.

The test was conducted on a 370/158 MCD I with 5 megabytes of

memory located in Dallas.

A transaction generator was used to gererate one transaction per

second per user. (That 1s shown by the 45 degree line.)

Each CMS transaction needed 77 pages of memory per uscr and uscd
up 150 milliseconds of CPU time allowing & maximum of 6.4 trans-

actions per second.

on subsequent weekends.
. The lst test labeled 6/1/81 looked pretty bad.
. In the 2nd test on 6/7/81, we reduced resources

required for each transaction.
. The originral Gnosis version used PL/]1 refmatted 1/0

to write cach line on the terminal.

a subroutine to replace the PL/1 language call to a subroutine.

M-10

In this slide, we use the CMS line for comparison. We ran 3 tests

PL/1 terminal T/0 took up more than half the CPU cyeles. We wrotoe

r : s —~v— _—

—

Compatable to the one is CMS.

Test 2 performance dropped off precipitously due to thrashing

(fixed tables in kernel werc not balanced).

In test 3, on 6/13/81, we understood and partially rescolved
thrashing by better balancing of tables in the kerrel.

While it may appear that Gnosis and CMS performed about equally,
it is important to note that the CMS tests were running with 100%
CPU utilization while Gnosis tests ran with much excess CPU capac-

ity.

The 6/13/81 line in this slide shows what the total transaction
rate would have been if the transaction driver had beoen uble to

run fast enough to saturate the CPU.

At this point, we stopped making changes in the system since we

had met our objective to beat CMS.

i/e are now convinced that we can further improve Gnosis perform-
ance and that Gnosis can be competitive with other I M transaction

systems,

We are aware of many other improvements which could bLe made by

reducing system overhead as well as the cost per transaction.

i The top line in this figure could he achieved with 1 man month
of work to reduce system overhead by removing additional thrashing

bottlenecks in the kernel.

In addition, we could increase the transaction rat. another 50:
if we optimized terminal transactions by developing a high pertorm-
ance terminal interface and by optimizing adventure to allow oven

more sharing.

DAl o s i 3 g

o A« e e

These actions would take 2 additional man months and would reduce
transaction time to 30 MS, reduce memory per transaction to 10
pages and yield 30 transactions per second on a 370/158 CPU. On
an IBM 3033 this would mean a potential of between 100 and 150

transactions per second.

This is comparable to all, but the fastest IBM transaction process-

ing systems.

Tymshare is increasing the level of support for Gnosis. We have
been authorized to hire more people immediately.

. Gnosis is moving from R & D to development status.,
We have two applicaticas.

The first is:

* A switch which is designed to enable users to access
applications which run on rnultiple computers without
effort or awareness on the users part.

The second is:

* A transaction processing system for a transportation

agency which will be continuously updated and accessec

by many users simultanecously.

In summary.... what we plan to do during the next yvear is the
following:

* Implement more complex systems.

* Have a system which is continuously and routinely
operational.

* Develop tools to facilitate the implementation,
debugging monitoring and operating the new applica-
tions.

* Insure that the new tools arc gencral purpose and
that they enhance programmer vroductivity perform-

ance and the reliability of Gnosis.

M-

Finally, we are now convinced that Gnosis will evolve into a

system which will be ready for general use in two to three years.

It is important to note, especially for this audience that:
* The Gnosis architecture inherently provides a base

for a trusted environment.

However, Tvmshare's approach to achieve the trusted system object-
ive is different from the traditional approach. And it is not
clear at this time how the currently accepted trusted system model

can be mapped into the Gnosis architecture.

* Norm Hardy, the architect of Gnosis, along vith some

Mitre people perceives a knowledge gap in this area.

* Norm is going to briefly address our concerns with
the mechanisms and approaches of the sccure system
evaluation effort, not as a criticism of the process,
but rather as a search for a broader set of perspect-

ives.

Thank you and please help me welcome Norm Hardy to the podium.

GNODCSTL S

A PROGRESS REPORT

Preraren For:
Tue TourTH SEMINAR ON THE DOD

Comt uTER SECURITY INITIATIVE PROGRAM

AucusT 11, 1981
TYMSHARE INCORPORATED
CupeRTING, CALIFORNIA

PRESENTATION OUTLINE

GHOSTS REVIEW

INITIAL BENCHMARY.
-SELECTION
-ARCHITECTURE
-PERF ORMANCE.

FUTURE DIRECTIONS

CONCLUSTONS ~ AND CONCERNS

[HTRODUCTILON

* GNOSIS DISCLOSED 1980

* DESIGN GOALS:
SECURITY
PERFORMANCE
SIMPLICITY
MAINTAINABILITY
PRODUCTIVITY
FAULT TOLERANT

APPLICATION _ARCHITLCTURE

CONTEMPORARY Gnosts
APPLICATION APPLICATION

ARCHITECTURE ARCHITECTURE

GRAPHICS
NATA BASE
STAT PACK

APPLICATION

COMMUNTCATIONS

KERNEL

¢ (LEAR
* FOCUS ON:

-DEVELOPMENT TOOLS
-DOCUMENTATION

-IMPLEMENTATION OF APPLICATIONS
-MEASUREMENT

SELECTING THE BENCHMARK

* REPRESIMTATIVE

* MULTIPLE PURPOSE TFOT

-STRE S

-Pt REOPMANCE
-FOUNCTTONALLTY
-USARILTTY
~DOCOMENTATION

* RESOURCE SHARING DEMONSTRATION

* INEXPENSIVE

M-106

AD=A113 348 OFFICE OF THE UNDER SECREYARY OF DEFENSE FOR RESEARCH=<ETC F/@ 9.
OCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INIT!AT—!TC(U)

UNCLASSIFIED

204

u,

o

IL2s g |

R 4
g

Il-©
e

e

TERMINAL
INTERFACE

KERNEL

KERNEL

I

. i juiar guipmani gy

TN

ONITO S
7 .

R[‘IPTIUN?}T

KERNEL

; ﬁgzi?TuRE
ECEPTIONIGT i
7T

M-18

BENCHHARK IMPLEMENTATION CALENDAR

¢ READING, LEARNING 1 MONTH

! SINGLE ADVENTURE 1 WEEK

: CONTROLLER FOR MuLT1PLE
3 "
ADVENTURES 2+ WEEKS

BencHMark DRIVER &
SCRIPTS 2+ WEEKS

CNOSIS FUNCTIONALITY

© "OHOSIS IS ALIVE & WELL AND
CAN BE USED AS A BASE FOR
ULTIUSER APPLICATIONS”

“GNOSES DOES NOT CONSTRAIN ;
APPLICATION DESIGN - HIGHLY
ADVANTAGEOUS TO THE DCVELOPMENT

0F ~0sT COMPETITIVE APPLICATIONS.”

M~20

GNQSIS FUNCTIONALITY

® "APPLICATION PROGRAMMERS CAN
LEARN TO USE GNOSIS IN A
RELATIVELY SHORT TIME”

“PL/1 PROGRAMS CAN BE RUN
UNDER GNOSIS WITH VERY
LITTLE SOURCE CODL MODIFICATIOM”

GNOSIS SHORTICOMINGS

* "DOCUMENTATION IS UNSUITABLE
FOR APPLICATION DESIGNERS AND
PROGRAMMERS,

® “SYSTEM [S INCOMPLETE AND MORE
FACILITIES ARE NEEDED TO
IMPLEMENT NEW APPLICATIONS.”

M-21

P
Wﬁ - A lan o
; W W A7 FLE N T

(MS PERFURMANCE TSI

&>
NG P teacr

/

NUMRer i Ustis

uNOSTS BEMCHMARK RLSULTS

« 6/13/81

TapnzacTion ReTE

(MS Basguint

6/1/81 ”

Numper OF USERS

t o

YAXIMUM GNOSIY CAPACLTY

6-13/81 + 1 MONTH
WORK

FUTURL DPLANS AND DIRECTIONS

INCREASED SUPPORT
FROM R & D TO DEVELOPMENT

TWO TEST APPLICATIONS
SWITCH
-~ TRANSACTION PROCESSING SYSTEM

CONTINUOUS SYSTEM OPERATION
NEW GENERAL PURPOSE T00LS

ﬁ——"w—v

George Cotter

DoD Computer Security Lvaluation Center

DOD
COMPUTER

SECURITY

EVALUATION

- L3 CENTER

DEPARTMENT OF DEFENSE
COMPUTER SECURITY EVALUATION CENTER

DIRECTOK

UTY DIKECTOR

POLICY AND
MANAGEMENT
STARE

e OF
HESEAHOH
AN
OEVELOPMENT

A LOOK AHEAD. ..

® PRODUCT EVALUATIONS
- CONTRACTUAL SUPPORT
- COC CYBER NOS
- UNIVAC 1100 08

o SYSTEMS EVALUATIONS
- CONTRACTUAL SUPPORT
- COMMUNICATIONS RELATED
- DEFENSE SYSTEMS
- INTELLIGENCE SYSTEMS

® RESEARCH & DEVELOPMENT
- COMPLEX ENVIRONMENTS
- NETWORKS
KERNELS
DBMS
MICROPROCESSORS
TOOLS

CURRENT ACTIVITIES . ..
e PRODUCT EVALUATION

o SYSTEMS EVALUATION

o RESEARCH AND EVALUATION

e e

PR

DOD DIRECTIVE . ..
o RESPONSIBILITIES OF DIRECTOR NSA AND OTHERS

¢ OTHER APPLICABLE DIRECTIVES

o COMPUTER SECURITY POLICY

¢ CENTER CHARTER

STATUS ...
* DOD DIRECTIVE IN DRAFT

o ORGANIZATION APPROVED

o MANNING IN PROCESS
FACLITIES IDENTWFIED 7

o COMPUTER SECURITY PROGRAM FY83 POM

CURRENT ACTIVITIES CONTINUNG

FUNCTIONS . ..
¢ TECHNICAL INTERFACE AND SUPPORT

CONDUCT EVALUATIONS OF INDUSTRY, GOVERNMENT PRODUCTS

MAINTAIN EVALUATED PRODUCT LIST

ESTABLISH AND MAINTAIN EVALUATION STANDARDS AND CRITERIA

CONDUCT SELECTED COMPUTER SECURITY EVALUATIONS

CONDUCT AND SPONSOR RESEARCH AND DEVELOPMENT

CHAIR DOD COMPUTER SECURITY TECHNICAL CONSORTIUM
SPONSOR COOPERATIVE EFFORTS, SEMINARS, WORKSHOPS

e DEVELOP CONSOLIDATED COMPUTER SECURITY PROGRAM

THOUGHTS EN ROUTE . ..

e COOPERATION IS THE KEY INGREDIENT

THOUGHTS EN ROUTE . . .

e COOPERATION IS THE KEY INGREDIENT

o CENTERS FUNCTIONS ARE TECHNICAL

THOUGHTS EN ROUTE . . .

,' ® COOPERATION IS THE KEY INGREDIENT
f ® CENTERS FUNCTIONS ARE TECHNICAL

e CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

THOUGHTS EN ROUTE . ..

® COOPERATION IS THE KEY INGREDIENT
® CENTERS FUNCTIONS ARE TECHNICAL
® CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

o MUST PROVOKE COMMERCIAL DEVELOPMENT

THOUGHTS EN ROUTE . . .

® COOPERATION IS THE KEY INGREDIENT

® CENTERS FUNCTIONS ARE TECHNICAL

® CUSTOMER SERVICE MUST DOMINATE ACTIVITIES
® MUST PROVOKE COMMERCIAL DEVELOPMENT

o EPL SHOULD NOT BE A THREAT

THOUGHTS EN ROUTE . . .
® COOPERATION IS THE KEY INGREDIENT
® CENTERS FUNCTIONS ARE TECHNICAL

® CUSTOMER SERVICE MUST DOMINATE ACTIVITIES

® MUST PROVOKE COMMERCIAL DEVELOPMENT
@ EPL SHOULD NOT BE A THREAT

o DOO RESEARCH TO PLUG THE GAPS

THOUGHTS EN ROUTE . . .

COOPERATION IS THE KEY INGREDIENT

CENTERS FUNCTIONS ARE TECHNICAL
CUSTOMER SERVICE MUST DOMINATE ACTIVITIES
MUST PROVOKE COMMERCIAL DEVELOPMENT
EPL SHOULD NOT BE A THREAT

DOD RESFARCH TO PLUG THE GAPS

PACE AND PRIORITIES SET CAREFULLY

TRUSTED COMPUTER SYSTEMS
REIN TURN
THE RAND CORPORATION

Since June 1378 the DoD Computer Security Consortium has con-
ducted a Computer Security Initiative program, witn the goal of
achieving widespread availability of "trusted ADP systems’ ® for use
within the Department of Defense (DoD), in other government agen-
cies, and in the private sector. For the government, "widespread
availability" means the use of commercially developed trusted sys-
tems whenever possible. Effective January 1, 1981, the Director of
the National Security Agency (NSA) was assigned responsipbility for
the evaluation of computer security for the DoD and thus will serve
as Executive Agent for the Computer Security Initiative. One of nis
functions will be the compilation of a DoD Evaluated Products List
of trusted systems.

To date, the three major activities of the Initiative have been
(1) coordination of DoD research and development efforts in computer
security, (2) identification of efficient évaluation procedures for
trusted operating systems and their uses, and (3) identification of
incentives for the computer industry to develop trusted systems as
part of its standard product lines. This report addresses the third
task. It analyzes the needs for trusted computer systems in the
civilian agencies of the federal government, in state and local
governments, and in the private sector.

Protection is needed in computer systems to (1) safeguard
assets ¢ r resources, (2) comply with certain laws and regulations,
(3) enforce management control, and (4) assure the safety and
integrity of computer-controlled processes or systems. Additional
incentives for implementing trusted systems might be to realize
operational economies, to achieve marketing advantages, and to
enhance an organization’s public image.

Protection of programs and data in computer systems involves a
variety of physical, personnel, and hardware/software security tech-
niques; administrative and operational procedures; and computer-
communication security techniques. The most difficult task to date
has been the development of trusted operating systems--a necessity

*A "trusted" ADP (automated data processing) system is one that em-
ploys sufficient hardware and software integrity measures to allow
its use for simultaneous processing of multiple levels of classified
and/or sensitive information. See the Glossary of Technical Terms
in Appendix A for other definitions.

P

B

in resource-sharing, multiuser systems to prevent users from
interfering with each other and to control access to sensitive data
files or processing operations. The trusted operating systems
sought by the Computer Security Initiative Program have a high
potential for providing a solution to many of these problems.

In general, the use of current computer security techniques
entails some reduction of system throughput, as well as some modifi-
cation of existing application software or data bases, Some poten-
tial users of trustea systems are concerned about these impacts on
their existing computer applications. However, there is a clear
trend in computer hardware architectures and in software development
toward including features that would be very useful for implementing
performance-effective trusted systems; thus, performance loss is
likely to be far less of a problem in tne future. Conversion
requirements for application software can also be reduced by design-
ing trusted systems to be compatible wita existing operating systems
(as has been done, for example, in the KVM and KSOS efforts). A
data-base convarsion may be necessary (e.g., to include
sensitivity-level information), but this is usually a one-time
effort.

Computer security is needed in the civilian agencies of the
federal government primarily for asset and resource protection and
for regulatory compliance. Many agencies are responsible for finan-
cial disbursements or collections and thus are subject to attempts
to perform unauthorized transactions. Trusted systems with
appropriate operational and administrative controls can protect
against unauthorized actions, unless Lhese actions are performed by
malicious or untrustworthy authcrized users. Here, additional con-
trols must be designed into the application programs.

All civilian agencies of the federal government are subject to
the requirements for data security and integrity of Transmittal
Memorandum #1 of Office of Management and Budget Circular A-T71.
Personal information on individual citizens that is maintained by
these agencies is also subject to the confidentiality requirements
of the Privacy Act of 1974. Trusted operating systems can provide a
tool for effectively meeting these requirements.

Protection needs in state and local government computer systems
are similar to those in federal government systems, although they
are on a smaller scale and there is considerable variation from
state to state. Financial disbursements and collections account for
a large part of state and local governments’ computer use, but regu-
latory requirements for security are lecss stringent; indeed, many
states have not enacted fair information practices liws, and some do
not have laws requiring confidentiality of computerized criminal-

o ad

R i R -

history or public health information. Although these state agencies
may have less compelling needs for trusted systems and they may bde
more constrained by economic considerations, trusted operating sys-
tems can greatly enhance the controllability and auditability of
state and local government computer systems, and as a conseguence,
they would increase public trust in government operations.

In the private sector, business informatior that is stored and
processed in nearly all corporate computer systems is, or
represents, a valuable asset that must be protected. The need for
effective management control over all operations, particularly those
that involve computers, is self-eviden'. Strong accountability
requirements have been estabtlished by the Foreign Corrupt Practices
Act of 1977, and requirements for ensuring confidentiality of per-
sonal employment, medical, and financial information are included in
state laws. 1In addition, federal privacy protection requirements
are pending that will affect insurance, health care, and financial
industries in the private sector. Thus there is a strong rationale
for protection of data and programs in private-sector computer sys-
tems. Trusted operating systems could provide that protection, as
well as certain collateral benefits in the areas of safety and
integrity, marketing, and public relations.

The widespread availability of effective and economical trusted
operating systems is predicated on computer system vendors’ percep-
tions of an adequate market for these systems. The government alone
cannot provide enough user demand to be attractives; the market must
also include the private sector. Thus, the situation is somewhat
c¢ircular: A market will develop along with availability, but avai-
lability is influenced by the size of the market. The trusted sys-
tem technology has been developed and is not being demonstrated by
the Computer Security Initiative, so the technical risk to vendors
appears relatively small. However, the preceived need to maintain
compatibility between trusted systems that use new architectural and
design concepts and the existing equipment and software bases causes
vendors to be cautious about undertaking such development efforts.

Given the trend in new operating systems and software packages
toward inclusion of stronger controllability and auditability
features, it appears that development may evolve naturally toward
trusted operating systems. A demonstration of a credible rationale
for acquisition and implementation of trusted systems, as attempted
in this report, may provide the additional increment of incentive
for vendors to submit their systems for evaluation and inclusion in
the Computer Security Initiative’s Evaluated Products Lists.

Trusted systems can contribute effectively to the solution of
the growing problems of protection of assets and resources,

I'."ﬂ

compliance with laws and regulations, assurance of safety and
integrity, and implementation of full management control. In addi-
tion, trusted systems may provide operational economies, marketing
advantages, and public-image enhancement. They are needed in a
variety of applications that constitute a market that should be of
considerable interest to vendors and that should strongly encourage
participation in trusted system development efforts. Their use
could serve the interests of private business and industry, as well
as public policy, public safety, and national welfare.

O=4

NON-DOD TRUSTED SYSTEM
NEEDS

R. TURN

THE RAND CORPORATION, SANTA MONICA. CA.
AUGUST 1981

SOURCE DOCUMENT
R 2811 DR&E

Trusted Computer Systems: Needs and Incentives for
Use in Government and the Private Sector

R Turn
The Rand Corporation, Santa Monica, Ca. 90406

Prepared for The Oftice of The Undersecretary for
Defense Research and Engineering

August 1981

OUTLINE

Trusted systems

Generic needs for trusted systems

Cwviltan agencies of the federal government
State and local governments

Private sector

Concludmg remarks

TRUSTED COMPUTER SYSTEMS

"‘Systems that have suffictent hardware and soft
ware integrity to allow their use for simultaneous
processing of multiple levels of classified and or

sensitive information

DoD Computer Security Initiative Program

TRUSTED SYSTEM EVALUATION PROCESS

System secunty mechamisms Determine
and theiwr verification

Mechanisms Assurance
Preventon Speciticanon
Detection Design
Recovery fmplementation
Operations Verfication

Support Testing

TRUSTED SYSTEM SELECTION

Orgamzation s Asset protection
ADP apphcation Legal requirements
charactenstics Control requitements
Costs or henetus
Incentives
1

Environment considerations Imply

Pracessoe coupling

User capatnlity

User data classification

relationship rtequited

Develaper user trusy

] 0=-6

L.A —- P > HPAAPOE Wil SSHAACTET 3 S w -

GENERIC CLASSES OF NEEDS AND
INCENTIVES

Protection of assets and resources
Compliance with regulations
Management control

Systems’ safety and integrity
Operational economy

Marketing advantages

Public image

EFFECTIVE MANACEMENT CONTROL

Important goal in any organization
{nternal control and auditing in computer
environment
Trusted systems to enhance control
implementation
Tradeotfs
Control vs. efficiency and innovation
Risk of loss vs. economic pressures

ASSURANCE OF SAFETY AND INTEGRITY

® Reliability and integrity of real-time control

Hardware reliability
Software correctness
Resistance to errors and tampering

@® Computer-aided design and modeling

=7

POTENTIAL OPERATIONAL ECONOMY

Realization depends on context and situation
Elimination of “‘make shift’’ security procedures

Reduced duplication, personnel clearances,
downtime losses i

Reduced insurance premiums

OTHER CONSIDERATIONS

Cost-effectiveness of trusted systems
Impacts on performance
Interoperability and compatibility

Security policy versatility

TRUSTED SYSTEM COST-EFFECTIVENESS

® Performance losses will be reduced
Use of hardware features
New architectures support trusted systems
Lessons learned are being applied

® Software conversion can be minimized
Compatibility will be a design goal 1

@® Data base conversion may be required
Additional data fields
DBMS conversion may be needed

TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES — 1

Protection of assets and rescurces

Massive financial disbursements or
collections

Vulnerable 1o fraud
Trusted systems improve access control,
audit trails
Management control

Safety and integrity

Operational economy

TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES — 2

® Requlatory comphance
Teansmttal Memao 21, OMB Curcular A 71
Physical techmcal, adnumistrative sateguards required

GSA regulations 4
FPMR 101 35 3
FPMR 101 36 7
FPR 141107 20

Privacy Act ot 1974

Federal Personnel Manual, Ch 293, 297

Freedom of Information Act

TRUSTED SYSTEM NEEDS:
FEDERAL CIVILIAN AGENCIES — 3

® Other considerations

Funding of security requirements
Enforcement

Mission-oriented agencies
Cost-effectiveness of security mechanisms

Physical and administrative security

0-9

TRUSTED SYSTEM NEEDS:
STATE AND LOCAL GOVERNMENTS — 1

® Protection of assets and resources

® Regulatory compliiance
Information confidentiality statutes
Fair information practices laws
Criminal justice systems
Pending federal legislation regarding social
services

® Management control

TRUSTED SYSTEM NEEDS:
STATE AND LOCAL GOVERNMENTS — 2

® Safety and integrity
® Operational economy

@ Other considerations
Cost is important
Consolidated systems
Public perceptions

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR — 1

@® Rationale
Computers are a necessity
Concern with interruption and consequences
Trusted systems needed
Cost at.d nsk tradeoffs important

@ Protection of assets and resources
Business records. accountings of assets and recewvables
Planning. marketing, manufactuning
Computer related cnime and fraud
Disgruntled employees
“Grass roots’” growth of threats

0-10

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR — 2

® Regulatory comphance

Fair Creait Reporting Act of 1969

Family Educational Rights and Privacy Act of 1974

Financial Pnivacy Act of 1980

Pending federal Jaws ’
H R 1059 Privacy of medical intormation
H R 1061 Prvacy of public assistance records
Amendments to Farr Credit Reparting Act

State laws on personnel records

TRUSTED SYSTEM NEEDS:
PRIVATE SECTOR — 3 -

® Regulatory comphance
Foreign Cor. upt Practices Act ot 1977
Accurate record -keeping
Management control over access
Accountability established
international Data Protection
National laws Austria, Canada. Denmark, France A
Germany, Israel. Luxembourg. Norway. and
Sweden
OECD guidelines
Councii of Europe convention

® Manaaement control
@ Safety and integrity

Real time systems s
Computer-aided design and mod. ling

'S

&

TRUSTED SYSTEM NEEDS: -
PRIVATE SECTOR — 4

® Operatinnal economies
Reduced personne. secutity costs
F.nhanced auditabibity
Reduced security enforcement. trainming costs R
Savings on insurance. bonding -@

® Marketing advantages
Secunty assurance to chents
Demonstration of concern about confidentiahity and privacy
Reduction of victumization pntential L}
Enhanced public image o :

@ Other considerations
Cost effectiveness
Risk tradeotfs .
Management support 4

%0

e diltmedbilinia

CONCLUDING REMARKS

Need exists for trusted computer systems
Incentives are there for trusted system use
Potential market is growing

Incentives exist for vendors to produce trusted
systems

Implementation and operational questionscan! «
resolved satisfactorily

0~12

DAVID L. GOLBER
SYSTEM DEVELOPMENT CORPORATION

THE SDC COMMULICATIONS KERNEL

The SDC communications kernel is intended to support secure
communications applications, such as secure front ends and
terminal access systems. It is a minimwal operating systenm,
capablility~-pased, and nas a basic structure tnat we hope

will ease the problem ot formal specification and ;
verification, (1] !

The kernel is oriented towards support ot communications
systems in that it offers extensive facilities for
interprocess communications, because of {ts restricted ain,
it does not support dvynamic changes, such as creation of
processes,

The SDC comrunicatiors kernel has been operational for a
number of vears in an ARPANET=lirxe Dol system. we feel tnat
the capavbilities and speed of the kernel are well=adapted to
such a system, and are competitive with other systems not
using a kernelized architecture,

The kernel was developed under the primary direction of D»Dr.

Richard “andell, The designrn anc coding were done oy Karl
Auerbach, David Clemans, and Jay Eaglstun.,

1.0 In General

The SLC communications xernel is a descendant of the UCLA
Data=Secure Unix f21] operating system, The SbC
communications kernel remains similiar to the UCLA kernel in
the following major areas:

a, The SDC kernel is a minimalized operating system,
It 1is a small amount of code which exists to
provide environment and services to processes, The
processes may be regarded as "application®™ code:;
there is no partitioning of tne kernel itself {nto
processes, The Kernel 1is the only code in the
machine which accesses nardware features of the
machine such as memory protection registers, device
registers, etc, In a PDP 11/70, the kernel

[1) Tne question of verification {s discussed at

the end of section 2.

{2) "Unix* is a trademark of Bell Laboratories,

P-1

The SOC CommunicAtions Kernel August 1931

consists of exactly that <c¢ode which runs in
nardesare "kernel" mode, the orjivileged mode ot the
machine, bProcesses Tun in non=kernel hardware
mode,

be. I'ne SDC communications kernel is intenced to bpe a
veritianple operating system, Inat is, it should be
possible to formally state tnhe services and
protections that it supplies and to formally prove
thnat it does what it is intended to do and no more,

c. It is generally felt that operating system code
which 1s interruptable is very hard to verify,
Therefore 1t {s preferrable for a verifiable
operating system to run witn interrunts completely
locked out. This is the policy iIn the case of the
3DC communications kernel,

d. Tne $DC communjications kernel is a capabllity-based
operating system, That 1s, it keeps tracx of
processes’ allowed accesses to various opjects by
maintaining for each process an array of data
structures called capabilities, each of which
describes an object and an allowed access to that
ovject,

e, The kerne]l is entered for one of two reasons:

An interrupt is received from a device, This
can only occur while a process is running,., ur

A kernel call (request for some kernel action)
is made by some process.

In either case, the kernel code is entered via a
trap or interrupt while a process is running, runs
straight through without {nterruption d4nd then
exits, The kernel exits by causing tne resumption
0f the execution of the code of some process («#hich
may or may not be the process which was running
when the kernel was entered).

On the other hand, the SDC communications Kkernel has been
modified so as to be appropriate for a communications
environment rather than for a general user-support
environment, For this and other reasons, the SDC
communications kernel differs from the UCLA kernel in a
number of important ways:

a, 1the SDC communications kernel does not provide for
the dynamic creation or destruction of processes.

The SNC Communications Kernel Aygust 19ul

All processes exist from the time that the CPL 1is
vooted until it is naltea,

The SDC communications kernel does not provide for
swaprping of processes in and out of memory, All
processes are permanently resident in mremory.

The JCLA system runs on a CPU (11770, 11/45%, etc)
with three nardware moaes: kernel, supervisor and
user, The kernel runs in kernel mode, while the
supervisor mode contains code called the "unix
emulator” which provides an environment very like
that of standard Unix to "aprlication" code running
in user mode., In distinction, "application" code
written for the SDC system runs in sumervisor mode
and makes kernel calls directly. (User mode s
unused.,) SDC software thus can run in CPUs witn
only two hardware modes (11/34 anada 11/23). (Tnis
is perhaps more a ditference in usage than in the
kernels themselves, The SDC communicatiors Kkernel
on an 11/70 or 11/4% could support some sort of
emulator in supervisor mode, shich <could 1In turn
provide some sort of standard environment to code
in user mode,)

The SDC communications kernel incorporates very
extensive provisions for interprocess
comrunications.

In the UCLA system, a "Scheduler" ©process |is
responsible for <choosing the next process to run,
In the SDC kernel, processes are not swaprped out,
so scheduling is much simplified and has been made
part ot ithe kernel,

In the UCLA system, a "File M“Manager" process 1{is
responsible for giving capabilities to processes,
In the SDC system, most carabilities of ©processes
(for 1instance, the capability to access a certain
peripheral) are assigned statically at the time the
system is configured, by a proaram called the
*Superlinker", running under normal Unix. The
Superlinker assembles ¢the CPU memory Image and
gives static capabilities to processes as
instructed by the "superlinker control file", which
is prepared by a human being. It {s this human
being who {s ultimately resoonsible for deciding
what processes are allowed to communicate, etc.,
(Some capabilites are gjiven to and taken away from
a process dynamically as part of the 1interprocess
communication facilities; this {s discussed in more

p-3

The SLC Communications Kernel August 19381

detall below,) A separate File Manaaer process {s
not used.

The SNDC communications kernel is written in a version of
pPascal, auymented ¢to provide certain extensions necessary
tor the use ot PAascal in an operatina system, The UCLA
Pascal=C translator translates this into C, which is then
compiled nornally., The code {s «written in a toredown,
nighly modular and rethodicdal metnod, wnich is intended to
facilitate veritication, althougn no verification or formal
specification has been done as vet,.

2.0 Securlify Balicy ... 4n Exapople

The SDC kernel does not itself implement a security policy.
In a typical conmmunications syster using the kernel, the
total security policy would pe & result of the oroperties of
various parts of the system, of which the kernel is only one
part. The kernel by itselt does not gquarantee that tne
security policy s correctly 1irplemented. The kernel is
only responsible for maintaining and sevarating process
environments, and providing and re3julating interprocess
communications, Thus, tnhe properties of ¢the KkKernel are
related to the totel security policy as a lemma is to a
theorem,

An example may help to make this clear.

Consider a CPU which Is to act as a sort of terminal
concentrator. The C(CPU {s to support two terminals, one of
which is to carry unclassified traftic only, and the other
of which {is to carry classified tratfic only. The TCP and
TEUNET protocols are to be used to provide services to each
of these terminals, In order to provide sevaration between
the classified and unclassified traffic, the TCP and TELNET
processes are duplicated. The internal situation in the CPU
can be pictured as followed:

The SDC Communications Kernel August 1941

{ Unclassified | | Ciassitied |
l Terminal i A Terminal '
- t - (
} | t |
| { v | v |
\ L L P R R L P Ll bl bt h et i t
i [{ I
{ { Line Driver | |
' | (Part ot the kernel) | (
l [\ |
| ersceveasseseTetrsareneaTsaassseooSSesscaTe i
\ - l - 1 |
| | v { v {
y cearevecemscccvoe mesmcsessreeennea {
{ | Unclassified |] Classifiea | |
| | TELNET | i TELNET | |
I i (A process) | | (A process) | I
| wessnssscseeescere PR L L L L Add bk)
l - | - { !
[| v { s |
| crececrccsssevccrs emcsvecomcccocn= |
{ { Unclassitied |}) Classified |} |
| | ce | | TCP |]
| | (A process) | | (A process) | i
| ceessssmssveccons scecvernroarcsen- |
| - | - [|
| ' \ (i t
| | \ | { t
| { | eevercceccscancas | | !
|) =->1 Security | == | |
| | | MUX/DEMUX | | i
| eewww | (P proces) |&=e===- |
| cesrcoesmenacans=> |
| - i [
| | v |
| resrecvecerccacsne }
| i w~net Driver | |
) | (rart of tne) | 1
| t (kernel) | |
| \
| t
} |

' -~
I
i
v
To Net

The S0C Cormunications Kernel August 1961

In this tiaqure, the "drivers" are collections of
subroutines; they are within the kKernel, since they must
manipulate the pnysical :device regjisters,

The Security MIUX/DEMUX process is a process whose
responsibility it is to separate classitiea and unclassified
traffic streams (on reception) and to merqe tne streams on
transmission, we do not speculate here on what htasis this
is done., bBut it is clear that this process is rerformina a
highly security=-relevant tfunctior, Therefore, the code of
this process must be appropriately verified. However, it is
important to point oyt that the veritication of the
functioning of this proncess s quite distinct from the
verification of the kernel, The process is not part of the
kernel.

The TELNET and TCP processes are 1likeesise processes, not
part ot the xernel. btecause of the scheme diagqrammed apove,
we can nope to be able to show that tne malfunctioning of
any of these processes would not pbe able to violate security
constraints, (Note that this diagram represents only one
example of a system which might be build on the kernel.)

Note that the darivers handle unseparated data; therefore
they too would need to be verified, However, this is true
even before we make the observation that they handle
unseparated data: They must be verified because they are
part of the kernel, and all of the kernel must be verified.

Now we are in a position to discuss the role of the «kernel
itself. what are the services and protections that the
kernel provides?

First of all, the kernel rrovides aAand separates the
environments ot the processes. For examnple, the kernel sets
the machine mappina registers when one process runs so that
the <c¢code and data of that process are accessed, and so tnhat
the code anad data of some other process are pgt accessed,

Second of all, the kernel provides interprocess
communications facilities as specified anhen the system is
configured. In the figure above, for example, the varjious
arrows represent {interprocess cormunications mechanismns
called "queues",., (These will be discusSsed in more detafl
below,)

nhen the system was configured, the responsible person
speciflies what processes are to exist, and what
communications paths between them are to exist.

The tool by which this 1Is done {s the "superlinker"

P-6

The SLC Communications Kernel Auqust 1441

mentioned avove, The responsinie rerson wvrecares a
“superlinker control tiie", ¢Ftor instance, for the systen
pictured aoove, tnhe superlinker control file will specity
that there are to ne five precesses, tLach of these
processes has previously been compiled, anc jts opject cooe
is ready and waiting. The control file specities where this
opject code {s to be found. Furthermore, the control file
specifies exactly what gueues are to exist in the system,
what processes are allowed to rlace information on A given
queue, and what processes Aare to ope aliowed to take
information oft ot a aiven queve,

This superlinker control file is processed ny the
superlinker proaram, which {is running wunder whatever
development system is in use. (lot under the «kernel,) The
superlinker prepares the comrplete nemory imaqe ot tre CPJ,
In particular, it prepares the kernel tables which establisn
the existence of the various queves and what processes are
allowed to enagueue to and degueue from eacn one of them,
(This will be discussed in more detail oelow,)

Now we can describe what {t is that the kernel {s trysted to
d0: the Kernel 1s +trusted ¢to correctly implement ani
administer the system describea by the superlinker control
file. For example, if the sucerlinker control file
describes the system shown in the fiqure Aabove, then
verification of the kernel will ensure that the unclassified
TEULNET process will not be able to gequeue information from
the aqueuye which is shown as leading from the classified TCP
to the classitied TELNET.

ln order to correctly understand the nature of the security
policy of the Kernel as shown in the example above, it {is
very important to understand: The MUX/DEMUX process may be
described as "trusted" in that it is trusted by the human
beings who design, contigure and use the system. However,
it 1s {nappropriate to describec this process as "trusted"
by the Kernel, The Kkernel does not nave a notion of
"trusted®™ process. In particular, there is no "trusted®”
poolean in the per=process table maintainead by the kernel.,
The kernel knows only what communications paths each process
has been autnorized to use,

In the example, the «queue from the net driver to the
MUX/DEMUX process carries both classitied and unclassified
information, while the queue from the unclassitiea TCP to
the unclassiftied TELNET carries only unclassified
information. Thus, from a security point of view, these
queues are very different, However, there 1s nothing in tne
kernel corresponding to this difference in the nature of
these queues,

RS R

The SDC Communications Kernel August 1911

we can describe the philosophy here as this: the “real"
security policy 1{s executed by the person ~ho prepares the
superlinker control tile, The kernel 1{s responsible only
tor seeing that that person’s descisions are enforced. Note
that this is appropriate for the purpose for which the SiC
kernel has peen designed., That {s, since the system {s
static, there is no need to burden the kernel with code,
algorithms, ete, tor making security-related descisions.
Instead, these descisions are made bpeforehand, and the
kernel is only responsible for enforcing them,

Note that in the example, the Line Driver sottware in the
kernel handles bpoth terminals. There {s no reason to
provide two coples 0of this sottware; both copies would nhave
to reside in the kernel, so as to access the hardware device
registers, and would have be verified to function vprovoerly,
as s true for any part of the kernel and the Kernel as a
whole, There would be no hardware separation between the
two coplies.

Note that as part of its functioning, the driver myst take
data from the queue from the unclassified TELNET process,
and place it on the 1line to the unclassified terminal.
Similarly for the <classified terminal and for the other
airection of flow, It must be verjified that ¢this function
is performed correctly; but this 1is covered by the
reauirement that all the kernel functioning must be verified
to perform correctly.,

If the kernel were to be verified, what is it that would bpe
verified? what would oe the formal properties that would
have to be verified to hold?

The kernel is responsible for
a. Maintaining and separating process environments.

b. Providaing and regulating interprocess
communications,

C. Operating devices.

Verification of the kKernel would require formally stating
the nature of these responsibilfites. (These statements
would probably include formal statements of the effects of
the various Kkernel calls.) Then it would be necessary to
formally prove that the Kernel code does properly carry out
these responsiblites,

As already emphasized, verification of the kernel would be

pP-8

The SLC Communications Kernel August 1981

only part of what would have to be done to verify that a
given system satisfles some security nolicy. Various non-=
kernel parts ot the system, 45 well 3s various aspects of
the total system architecture, would also have to bpe
veritied,

Certain parts of the support software used to Pproduce the
system would also have to be appropriately veritied.
Clearly, an important part of tnis software is the
superlinker, The outpult ot the suyrerlinker is source coae
versions ot the kernel tables, which are then compileaq,
linked, and bpuilt into A total memory image,., These kKernel
tables could be human-inspected, but this would be a very
difficult task, whicnhn itself woulo use many machine afids.
It there were any chance of having to 4o this tedious human
inspection repeatedly, verification of the superlinker w#oula
be the proper tning to Jdo instead,

I'ne kernel was developed 1n a context whicn emphasizea the
production ot working code in a relatively short time. For
this reason, it was decided neither to tormally specity the
properties of the Kkernel, nor to attempt to formally
demonstrate anythina about it. Sonre such effort may pe made
in the future,

It is of course the case that code which was not developed
trom formal specifications may bte quite difficult to
tormally verify after the fact, and will almost certainly
have to be modified in order to be veriftied. This may pe
true because actual security flaws are found by the formal
analysis, or bpecause some aspects of the existing code are
particularly unamenable to verification. However, there are
some aspects of the existina kxernel = the carability
orientation in particular = which we hobe will ease formal
verification.

3.0 Ibe Epxironment af a Rrocess

To begin with, we emphasize that a "process" {s not rart o:
the kernel, but rather an "application” proaram for which
the kernel provides environment and services, No part of
the kernel is described as a process,

In a PDP 11/34, the virtual address sSpace of a procesS
comprises 64K bytes =~ each process produces 16=hit addresses

-9

The SDC Communjications Kernel August 19nl

as it accesses memory, Tnese virtual addresses are
translated to physical addresses by tLhe memory management
hardware, I'his hardware manages the process’ virtual memory
space in elgnt pleces, each of wnich contains HK bytes.
These pieces are the "pages™ ot a process’® virtual address
space,

These pages are used as follows:

a, 0Une page accesses the "liobrary". This 1is a
collection of commonly useful Subroutines. A
typical routine would be a8 routine for converting
between a macnine clock, w#hich might read 1in
seconds pAast January 1, 1970, to human time (date
and time), The liprary 1is read-only to all
processes.

b. One or more pages are used to access the orocess’
text ... that is, {ts executaple code, This access
is reade-only.

C. One or more pages are used to access the process’
gata area ces that 1s, the area 1in which
inftialized variables are «ept. This area |is
normally read=only, but may be made writeable, by
special instructions to the superlinker.

d. One or more pages are used to access the process’
so=called "bss" area ... that is, the area in which
variables which are initiallyszero are kenot, This
area is read=Jrite.

e, The last page (page seven) accesses the process’
*communications oblock", This {s an area of memory
snared by the process and the Kernel and wused for
communications pbetween a process and the kernel,

f. The remaining pages (there are at most three) are
tree to be used to "map in"™ bplocks of data passed
from process to process using the interprocess
communications mechanisms described below, These
are referred to as mappable vages.

In an 11770, the situation is similiar, except that an 11/70
has "separate] and D space", and so has twice as many pages
for each process as the 11/34.

when an event occurs which affects a orocess, the Kkernel
posts a notification ot the event in the oprocess’
communications block, which the process 1looks at in the
course of its main loop, which is described below. (Section

The SDC Communications hkernel Ayqust 1981

4 discusses traps ana interruptions in nofe detail,)

In tne SOC system, proagramaners write code which makes kernel
calls airectly. There is no "emulator" to provide the
running crocess with an environment 1ike that of some
familiar operating system, (Ihis is in distinction to the
UCLA Data Secure UMIX system,) Since the programmer {s
writing code to run in an envir~nment «nich {s unfamiliar to
him, we nave taken the approach of providina a standara
top=level structure £0r every process, (This also makes
understanding a process written vy Another programmer
considerably easier.)

This standard top=level structure is irplemented by
providing each vprogrammer with tne same "maln" routine.
(Again: we emphasize tnat this "main" {is part of the
process, not part of the Kkernel.) The entire code of a
process consists of subprocedures called from this highest
level procedure "main®, (In particular, there are no
"interrupt handler" or “completion" routines whicn are
initiated directly by the kernel,) The outline ot main i{s as
follows:

procedure main;
begin
initialize;
while (true) do
begin
Set "summary"® flag in communications blockx to false,
while (some external event remains unprocessed) do
pegin
Call procedure to process that external event,
end;
K.SLEEP?
end;
end;

The procedure "main" is caused to begin executing when the
system is booted. Main never exits,

The process begins by calling an initialization subroutine,
and thern enters an infinite loop, This loop basically does
nothing except process externel events. ("External®" here
means external to the process,) The process detects that
there are external events to bpe processed by examining its
communications block, When there are no external events to
be processed, the process makes the system call K_SLEEP to
give up the CPU until some external event occurs, when an
external event does occur, the kernel awakens the process,
which resumes execution just as though the K_.SLEEP call nad
returned immediately, ’

rP-11

The $SDC Communications Kernel Auqust 1981

From the ordinary vrogrammer’s point of view, writing a
process o run under the SvC kernel consists in coding
various procedures whicn are callea from main, the
procedures which they Iin turn call, etc.

Ihe "summary" flag in the communications block 1Is wused 1in
conjunction with the K_SLEEP call te avola a pissible race
condition.

(1f the summary flaqg were not used, the followina miaht be
possible:

A process has processed all previously pending external
events, has decided that there is nothing more to do,
but has not yet made the K_SLEEP call, HNOWw an external
event occurs. The kernel posts 3 notification of the
event Iin the process’ communication block. However,
the ¢(rocess has alreaaqy decided to go to sleep, The
process now makes tnhe K_.SLkEP call. As far as tne
kernel can see, the process has disposed of the new
event, Inus the process goes to sleep without handling
the event, and milght even sleer torever.)

The summary flag avoilas tnhis race conaition as follows: Any
time that the kernel posts an external event to a process,
it sets the summary flaa in the process’ communications
block to "true®, If the summary flag is true when the
K_SLEEP call 1s made, then the process is not put to sleep:
the K.SLrEP call returns 1immediately, 1t is easy to see
that this mechanism, and {ts usage as 1in "main" above,
avoids tne race condition,

4.0 loterrupdls and Iraps

The Kernel operates with 4ll interrupts locked out (PDP=11
priority 7). Thus, 1f a device wishes to interrupt while
the kernel {s executinag, the interrupt will remain vpending
until the Kkernel exits and a process starts to execute.
Then that process will be immediately interrupted.

Suppose that an Jinterrupt occurs while a process is
executing, The CPU will pe interrupted and the kernel will
handle the interrupt., When the process resumes executing,
it w1ll resume .t exactly the place at which it was when the
interrupt took placCe, In this sense, the {interrupt s
transparent to the process.

1f the {nterrupt {implies that some process should be

The SPC Communications hermdl August 19st
)

notified of a certain external event, then the kernel posts
da notification in the commynications clock of that prrocess.
i The process is awmakened if it was previously asleer. If the
. notifiea process happens qlso to be the process that was
i running +hen the interrupt took place, ther the fprocess
finds out apout the Pveng,wﬁ?n it returns to {ts M"main"®
routine and examines its communications block,

X Thus a process runs without interruots visible to thAat
process. The only bpossiple race conditions that might
atfect a process are congerned with the reception of

notitications of external events, These problems are
handled by the suymmary flag and the provision cf a8 standard
"main". Thus, A& proagrammer can rroduce code for a8 process

without considerations of race conditions, <critical areas,
etc. This 1s clearly of qgseat venefit iIin a security-
oriented system which is also production=-oriented.

The only trap used ip tne system is the so=called "EMT"
trap, which is used by a process to make a kernel call. The
occurence of a trap while in kernel mode would 1indicate a
bug in the kernel code, 1In this case the kernel halts the
machine, A trap other tnan the EMT trap while a process {is
runninyg indicates a »bpug 1in the code ¢of the process. The
kernel handles this by causing the process to be ree=entered
and restarted at a low virtual process address,

5.0 Ihe Capanility List

The kernel maintains for each process a "capability 1list".
This 1is an array of records, called "capability slots". An
index into this array is called a "capability {ndex". A
capability slot, 1if not empty, contains a "capability". A
capability names some "object" and describes an allowed
"access" to that object., Some examples:

a, A (statically defined) section of a disk 1s an
object, keading and writing are the two [{mportant
accesses,

b, The central clock maintained by the kernel 1is an
obvject, The only access which may be given by a
capability to the clock 1Is the ability to set the
clock, (Any process is allowed to read the clock
without having an explicit capability to do so,)

C. A block of memory 1Is an object. Reading and
writing are the two important accesses,

pP-13

The SDC Communications Kernel Augqust 1981

The capability 'list for each process is maintained by the
kernel. Some capabilities are placed in the 1list by tne
superlinker at the time ¢that the <CPU memory {rmaye |is
prepared, while other capabilities are placed in or removed
from the list in response to kernel calls. The process qgets
no access to its capability list, eitner read or write,

A capablility serves not only to deflne what accesses a
process nas to 4 given object; {t serves to actually
identify that object, For exarple, suppose that one process
communicates witn another process via a "queue", as
discussed further below. When enauveueing information to the
other process, the process names the queue by giving tne
capability index to the capability whicn gives the nprocess’
access to its end of the yueue.

As another example, suppose that a certain process is to ne
allowed to set the system clock., 7The superlinker control
file #ill contain lines instructinag the superlinker to set
into the process’ capability list a capability to set tne
clock. The superlinker control file, in the part descrininy
the capabilities which the process is to have, will contaln
a line such as

clock capabillty on 12

This specifies that the process is to nhave a capability to
set the system clock, located at index 12 in its capability
list. When the process makes the K_SET_TIME system call,
one of the parameters will be the numper 12, In fact, the
call is

K.SET_TIME(12, new_time)

~rhen this call is made, the Kernel will check slot number 12
of the ©process’ capability 1list to see if it contain a
capability to set the clock., Since {t does, the kernel will
do what the call asks it to do, namely to set the clock,
Note that the Xernel does not search the capability 1ist of
the process for a capability allowing the process to do what
it nas asked to do,

1f the process by mistake made the call
RoSET.TIME(13,new_time), the kernel will look in slot number
13 of the process’ capability list. Since this slot does
not contajn a capability to set the clock, the call will
fail., That 1is, the kernel will give the process a return
indicatinag that the call talled opecause of a "pad
capabjility” « that s, ¢the <capatility at the {ndicated
capabllity index was not what was required., Also, the clock
will not be set.

P-14

The SDC CommunicAations kxernel AUQUST 1941

Notice tpat although the process cannot either read or write
its capanility list, since that list is maintained entirely
by the kernel, the process must knov# what 1is {in eacn
capaoility slot. Capabilities are placea in the capapility
list of & process eitner statically oy tne superlinker, lixke
the capacility to set the Clock, Or else as a resuylt of
kKernel calls made by tne process, as in the case 0f detting
a data plock as descrivped below, 7Thus the process can keep
track of the entries of its cararility list «ithout in fact
peing atle to read it.

6.0 luteruracess Cangunications

This section describes tnhe rajor wmethod of interprocess
communications unager the SLC Xernel, namnely the enaguenueing
and dequeueing of ©pDlocks, (Inere are other methods of
interprocess communications «filch are not described here,)

The kernel maintains a pool of tree memnory blocCcks, These
are blocks ot 12b bytes of npemory (in our current
implementations). 1T1he blocks are clear 3s kept Iin the free
pool. wnhen one process sishes to send a messaae to another
process, the sequence of events is as follows:

a. The first process 4gets a ©pvplock, and writes
information in it,

p, The first process places the block on & aueue to
the second process.

C. T'ne second process takes the block off the Jueue
and reads the information from it.

a. The second process returns tne block to the kKernel,
whicn clears it and _uts it pack in the free pool.

In more detail, the steps are as follows:?

The first process makes A K.GET_DATA.BLICK kernel call. An
argument to this 1is a capability index., Thils must be the
index to a currently empty capapility slot, The kernel will
remove a3 Dblock from the free pool and place a read=write
capability to the block Iin the specified slot,

The process then makes a K_MAP call. This specifies the
capability index where the <capability to the block {s
located, and one of the oprocess’ virtual pages, which must
be unused., The kernel in response sets the memory
management hardware ¢to make the block appear at the

The SDC Coinmunications Kernel August 1941

peginning of that pade ot the process’ virtual address
space, qiving the process read =»nd write access to the
block. This is called "mapping -tre plock in".

The process ¢cd4n nNow read and write the bPtlock, using
references 10 a data structure which is forced to reside at
the approoriate location in the rrocess’ virtual aAaddress
space.

NOw, this segquence ofr operatiors is a natural palr: when a
process gets a datda plock, it will almost certainiy want to
"map the block in" to access it, Thus, these two <calls can
be compined for greater eftficency, This is in ftact what has
veen done, That 1s, the A_GET_NDATA block call has
additional rcarameters which will allow the calling process
to map the tlock in as part ot the call.

The process then makes a KJUENQGUEUF call, The parameters
here are the capacility {index nparing the block, and the
capability index naming the enqueue end of the queue, (The
queue is defined, and the capabilitv to the queue is given,
by the superlinker.) 1In response, the kernel removes the
capability to the hlock from the tirst process’ capaoility
list, puts the block on the queue (wnich 1is maintained
entirely by the kernel), and unmaps the block, So that the
process no longer has access to {it, It posts a notification
to the secona process that the queue has something on {t,
and wakes the second process {f it is asleep,.

The second process makes a K_DEQUEUE call. The parameters
here are a capability index to the dequeue end of the Qqueue,
and a capabllity index to an unusea slot in {its capability
list. The Kernel removes the block from the queue, and puts
a capability to that block In the specified slot. The
normal sequence of events is that a receiving process will
first degqueue a block and then map it in, similiar to tne
situation in the <case o0f the K_GET_DATA_BLOCK call.
Therefore the K_DEQUEUE call has optional parameters by
which the <calling process asks tne kernel to map the
dgequeued plock In to a specitied virtual paqge.

The second process can now read the acata in the block.

The second process finally makes a K.LRELFASE_DATA_BLOCK
kernel call, specitying the capability index at which tne
capability referring to the block is located. The Kernel
removes the capabiiity, unmaps the block from the process’
virtual memory space, clears the block and returns {t to the
free pool,

The apbove description {s one of the simplest of the

P-16

The SDC Communications Kernel Ayaqust 194}

interprocess communications mechanisms provided by tne SiC
kernel, une of the more interestinad variations is the
ability of the kernel to regulate write=access bv a rrocess
to the contents ot a block on a8 basis of A finer aranularity
than the whole prlock itself.

This facility might be nuseful it there were a process that
should bpe allowed to modify certain filelds In a bplock, but
not other fields., It might be the case that some process
receives a block from another via a gqueue, and should bpe
dllowed to modity a "heAader" fiela witnin the block, but no
other part ot the olock,

This can pe achjeved in the SDC kerre] as follows: Special
instructions are placed in the superlinker control file.
These instructions include a specitication (namely, a bite
mask) of which bytes of the blocks acegueued from a certain
gueue tne process In question is to be aole to alter, The
superlinker then contfigures the kernel’s tables in a special
way. NOw when the process dequeues a olock from the queye
in gquestion, the process gets a read-only capability to the
block. «#hen the process uses the K_MAP call to "map the
block in", the kernel sets the hardware mappina reqisters so
that the process gets only read-access to the block, The
process sets the fields it is permitted to set by making a
KoWRITE.BLUCK call. The parameters to this call are the
capability index to the block, along with (the address of) a
buffer of 128 bytes in the process’ data space. The Kkernel
will then copy ¢from that buffer to the block those bytes
which are 1indicateada by the bitemask supplied to the
superlinker by the superlinker control file,

This kind of fineegranularity control must be implemented by
the kernel software, since the 11/70 memory nanagement
hardware does not have the necessary capabilities,

7.0 Iige

The kernel maintains a 48=-bit "tast"™ <clock which is
incremented every 10 microseconas, usina the DEC KWill=P
clock device, This can be read ry a process, using the
K.GET_TIME Kernel call,

The kernel also maintains for each process a "slow"™ clock.
This is a counter in the process’ communications block which
is incremented every halfe-second, Ky setting variables in
its communications bloCck, A process can arrange for the
kernel to give it (the process) an "alarm" notification
atter a specitied number of haltesecond ticks.

The S0C Communications Kernel Auqust 1941

By using the slow clock and the associated alart mechanisnm,
a process can implement any sort of tacilities for
maintaining multiple named timers, as it chooses. Note that
using the slow cloCk and the alarm mechanism do not require
system calls. The associated system overhead is thus guite
low,

The kernel allocates time among processes by time slicing at
one=tenth second intervals.,

8.0 lmnlemen;a:inhs acd Resullis

The SDC kernel has so far been implemented on the PDP 11/70,
11/34, 11723 and 11703, (The 11/23 and 11/03
implementations are modifications: the 11/23 version allows
interrupts, while the 11/03 version is more properly viewed
as a kernel emulator,)

The code is written in a modified version of Pascal, as used
in the UCLA kernel, with small amounts of assembly lanquage,

The 11/70 version of the code comprises approximately 2500
Pascal statements, 1including drivers for the DHil, DL1Y,
kRX01, RPOS5, TE16, and other devices, This becomes
approximately 30000 bytes ot instructions., (Total kernel
size, including all tables, is extremely dependent on the
system being configured: the number of processes, the sizes
ot their capabi{lity lists, the number of queues, etc,)

The times required for some kernel calls is shown below,

The SDC Communications Kernel Auqust 1931

11770 11734

K GETOTIME 0,81 1.8 milliseconds
(Read fast clock.,)

f_GET_UATALBLLOCK 1.5 2.7 milliseconds
(Get nlock and
map it in.)

KENQUEUF 1.7 3.1 millisecnnds
(Put hlock on

queue.)
K LDEQGUEUF 1.9 3.5 milliseconds

(Get block oft
queue and map
it in.)

KaRELEASE_DATA_BLUOCK 2.0 4.4 milliseconds
(Clear block ana
return to pool.)

The only one of these calls which has an equivalent {n the
Unix system {s the K_GET_TIME call., The Unix "time" system
call takes ,31 milliseconds on tnhe 11/70, (3]

we can use these numbers to get estimates of the pandwidth
of the engueue/degueue interprocess commrunication path under
several assumptions,

First ot all, consider the following situation:

| I I | | [
| A '--.---)' E '------)l C |
| | | ! 1 !

Here, we are supposing that the blocxs 3re prepared by A,
processed by B, and consumed and released by C. TIhe total
Kernel <call overhead assoclated witn B receiving and
transmitting one 128«byte block s

[(3) All times discussed below will be for the
11770, unless specified otherwise,

The SUC Comaunications Kernel Aygqust 1941

tire tor K_DEQUEUE 1.9 ms
time for K_ENQUEUE 1.7 ms

total 3.6 ns

This corresponds to & throuzhput of about 35K bytes per
second,

A secona situation is the following:

[| | |
] A [ELEEEED N []
| | | |

Here, we suppose that A jets a4 block, onrepares a messade,
and engueues the block to B, b dequeues the message, reads
it, and then releases the plock. The total kernal call time
per 128=byte oblock here {s

time for KR_GET_DATA_BLOCK 1.5 ms
time for K_EnyUEUE 1.7 ms
time for K.DEQUEUR 1.9 ms
time for KoRELEASE_DATA.BLUCK 2.0 7s

total 7.1 ms

This corresponds to a throughput of aoout 18K bpytes per
second.

This calculation does not allow for the ¢time necessary to
switch processes SO0 as to allow A and R to both run, and
tnus may seem unduly optimistic., However, it s actually
quite realistic., when a system {s heavily loaded, as {s the
case of interest for throughput calculations, process A
would typically have a number of external events to process
wnen [t wakes up. A will then process all of -these events,
producing a number of blocks which it engueues to B, before
it (A) goes to sleep, letting B run. B then will process all
these 1nput blocks at one schedullng, Thus the time
required to switcn from A to B 1Is divided among this number
ot blocks, and so does not greatly atfect the throughput,

The time required to switch processes is, however, of some
interest. The experiment

P-20

s P LIN PPPTRIry g

1
§
!
|
}

The SDC Communications Kernel August 1981

{ | | |
' A l----.-)' B i
| l i |

was re=run in such a way as to force b to be scheduled every
time A sent one block. The tollowing figure shows the times
used to send one block., Note that both processes used the
standard "main"; the test did not separate out the time in
main from the time actually in the kernel],

(ewons process A woese) €LY process B eseoaad
Engqueue Kernel Dequeue
]) |
Get | Exit i Enter | Release
block | main | main | block
| { | | | | {
v v v v v v v

< 1'5 > (£ 1.7 > {eonccanca 10 weseasvsened 1.9 > (£ 2.0 >

(wonsceseresesssesrnseenun 17 LA A L AL L LA AL AL A LA LE TR B

Tnis shows a worst-~case time of 17 milliseconds for a 128-
byte block. 1Thls corresponds to a throughput of 7.5K bytes
per second.

It should pe remembered that these throughputs are based on
the use ot 128=pyte plocks, as in our current
implementations, The use of larger blocks would be a minor
change, and woulad result in proportionally 1larqger
bandwidths, since kernel call times are independent of the
size ot the block. [4]) For example, if 256~byte blocks were
used, the throughputs above would nearly double, giving
values ot 70K, 36K, and 15K bytes per second,

In considering these speeds and throuahputs, it should also
be pointed out that the SDC kernel, although {t has been in
use for some time, has not been extensively worked over to
increase {its speed, Effort in this area would undoubtedly
pay off.
(4] with the exception of the K_.RELEASE.DATA_BLOCK
call.

P-21

A e e e i ! _ L

The SDC Communications Kernel August 1981

In comparison, the throughput of a Unix pipe, on an
otherw#lse=idle 11/70, 1is about 25K bytes per second, This
i{s the rate when a sending process sends in unjits of 128
bytes. Increasing the send unit to 1280 bytes leaves the
throughput rate approximately unchanged.

9.0 denial gf Serxice

The SUC kernel does not attempt to deal with denjal=of-
service threats. That is, a malicious process could cause
CPU usefulness to be so degraded that tne CPlU could perform
no uyseful work., For example, a process could (protentially
put improbably) get and Keep a large nuwper of blocks,
{This threat is somewhat limited: a process cannot get more
vlocxs than {t has slots in its carapility list, This is a
per=process parameter in the superlinker control file,)

Facilities could be added to the SDC kernel to address some
denial-oteservice 1issues, out It should be pointed out that
it is consistent with tne objects of the sSDC kernel not to
worry about depnilalw=of-service {ssues. The reason is that
there are no "optional” vuwprocesses 1n a8 communications
processor of the Kkind that the kerne]l was constructed to
support. That is, the correct tunctioninag of each process
Is necessary for the system to provide correct service, It
any process is not verforming its tasks <correctly, service
will be denied, and the kernel cannot do anythina about it,
However, security is preserved regardless of service
denials.

10.0 currept Status

The SDC xernel was coded several years ago, It s currently
operational for the VULepartment of Defense on a runrber of
CPUs functioning as special comrunications controllers and
network front ends tor AKPANEIl=like packet network terminal
and host interftaces. Uur experience so tar shows that the
resulting system provides throughput whicn is competitive
witn otner systers not using A Kernelizeg architecture,

The SDC Communications Kernel August 1981

11.0 Reterepces

Kampe, M,, et al., The UCLA Data Secure Operating System.
Tech. Rep,, UCLA, July 1977,

Popek,G., and Farber, D. A Model for Verificatlion of Data
Security in Operating Systems, Comm, ACM, 21 9 (Sept 1978)
737=749. (Contains other pertinant references.)

walton, E. The UCLA Kernel, master’s Tr,, Comptr., Sci,.
Dept.., UCLA, 1975,

P=23

THE SDC COMMUNICATIONS KERNEL

® AIMED AT SUPPORTING SECURE COMMUNICATIONS APPLICATIONS:

— FRONT-ENDS
— TERMINAL ACCESS SYSTEMS
— ETC.

® TYPICAL PROCESSES RUNNING SUPPORTED BY THE KERNEL WOULD BE
COMMUNICATIONS PROTOCOLS, ETC:

- TCP
P

@ SUBJECTS OF THIS TALK:
— SECURITY POLICY
— SOME KERNEL MECHANISMS

— CURRENT STATUS AND RESULTS
System Development Corporation

FEATURES

GENERAL ‘'KERNEL'' FEATURES:

o MINIMAL OPERATING SYSTEM, PROVIDES
— PROCESS ENVIRONMENT
— SCHEDULING
— HARDWARE OPERATION
— DEVICE DRIVERS
— INTERRUPT HANDLING

o NON-INTERRUPTABLE
o INTENDED TO BE VERIFIABLE

e CAPABILITY-BASED
Syutem Development Corporastion

FEATURES (Cont’d)

SPECIALIZED FOR COMMUNICATIONS ENVIRONMENT

o NO DYNAMIC CREATION OF PROCESSES

o NO SWAPPING
» ® EXTENSIVE INTERPROCESS COMMUNICATIONS FACILITIES
e SECURITY POLICY

HUMAN DECIDES 'NEED TO KNOW''~ AMONG PROCESSES WHEN LOAD
IMAGE IS BUILT

ALLOWABLE INTERPROCESS PATHS SPECIFIED BY HUMAN WHEN
LOAD IMAGE IS BUILT

KERNEL SUPPLIES AND REGULATES INTERPROCESS COMMUNICATIONS
PATHS AS SPECIFIED

KERNEL DOES NOT DISTINGUISH BETWEEN ~"TRUSTED "~ AND
“UNTRUSTED ' PROCESSES, ALTHOUGH HUMAN MAY

KERNEL DOES NOT KNOW ANYTHING ABOUT SECURITY POLICIES SUCH
AS THE ~'STAR PROPERTY""

System Developrment Corporation

A TYPICAL APPLICATION

UNCLASSIFIED CLASSIHIED
TERMINAL TERMINAL

—

LINE DRIVER
(PART OF THE KERNEL)

K]

UNCLASSIFIED CLASSIFIED
TELNET TELNET
(A PROCESS) (A PROCESS)

¥] ¥ []

UNCLASSIFIED CLASSIFIED
we cp

SECURITY
MUX/DEMUX
(A PROCESS!

]

NET DRIVER
EDGE OF CPU (PARY OF THE

KERANEL)

I
I
I
|
|
I| IA PROCESS) (A PROCESS)
I
I
I
|

HOW THE HUMAN SPECIFIES
COMMUNICATION PATHS

{Piacing into the kernel his decisions about need-to-communicate
among the processes)

® THE SUPERLINKER CONTROL FILE

SAMPLE SITUA TION:

PROCESSES A, 8. C. D

“QUEVES " X. Y

HOW THE HUMAN SPECIFIES
COMMUNICATION PATHS

THE SUPERLINKER CONTROL FILE

system DEMO
cpuis an 1170 with bytes ot memory

process A
wants

€NQUEUS BCCESS 10 gueus X

code
a oty

process B
wanty
dequeus 8CCO8s 10 queue X

code

b oby

process C
wants

SNQUEUS BCCOSS 10 Queus Y

cods
c oly

process O
wanty

dequeue acCest to queus Y

code
¢ oby

System Development Corporation

SUPERLINKER FUNCTION

OBMCT CODES OBJECT CODE OF
Of PROCESSES KEANEL WITH TABES
U TIALLZ

SUPERLINKLR
CONTROL FRLE

(ornas obyi (demo alina)

i)

SUPERLINKER PROGRAM RUNMNING ?

UNDER OFVELOPMENT SYSTEM L —_— |
(PWE LX) i

3

HUMAN READABLE (%)

i

TOTAL
SOURCE FOR KERNEL SYSTEM QUKD
ARLES

£

COMPILE TABLES LINK {TC ‘[
RUNNING UNDER DEVELOPMENT SYSTEM \
(PWB UNIX) ‘

MEMORY WMAGE FRE
(REANEL TABLES
NOW WITIALIZED!
@ INITIALIZED TABLES TELL THE KERNEL
WHNAT PROCESSES EXIST
WHAT QUEUES EXIST
WHAT PROCESSES HAVE ACCESS TO WHAT QUEUES.
ETC ETC

@ SUPERLINKER AND OTHER SYSTEM-BUILD UTILITIES TRUSTED IN SAME
SENSE AS COMPLIER

System Oisvelopment Corporstion

THE BOTTOM LINE
HUMANS ARE RESPONSIBLE FOR:

® DESIGNING SYSTEM

® DECIDING WHICH PROCESSES MUST BE TRUSTED
{i.e. BY THE HUMAN, NOT THE KERNEL)

® APPROPRIATELY VERIFYING (OR?) THESE PROCESSES
® WRITING THE SUPERLINKER CONTROL FiLE

KERNEL IS RESPONSIBLE FOR

ALLOWING PRECISELY THE INTERPROCESS COMMUNICATIONS SPECIFIED

BY THE SUPERLINKER CONTROL FiLE

® THE KERNEL DOES NOT ITSELF IMPLEMENT ANY PARTICULAR
SECURITY POLICY ("'STAR PROPERTY'' OR . . .}.

® THE KERNEL HAS NO NOTION OF "TRUSTED" OR '‘NON-TRUSTED'' PROCESSES.

(CERTAIN PROCESSES MAY BE TRUSTED BY THE HUMAN)

® THE KERNEL DOES NOT PROTECT AGAINST "'DENIAL-OF -SERVICE'' THREATS.

System Development Corporation

P-2/

e SIS R A St

PROCESS STATES

ASLEEP: THE PROCESS HAS NOTHING TO DO AND GETS NO
CPU TIME UNTIL SOME EVENT EXTERNAL TO THE
PROCESS CAUSES THE KERNEL TO AWAKEN THE PROCESS

THE PROCESS WILL GET CPU TIME.
THE AVAILABLE CPU TIME IS ALLOCATED AMONG
ALL THE AWAKE PROCESSES IN A ROUND-ROBIN

) FASHION, IN 1/10-TH SECOND SLICES

ASLEEP

PROCESS MAKES EVENT EXTERNAL TO
K- SLEEP SYSTEM PROCESS ARRIVES TO
CALL 8E PROCESSED

PROCESS VIRTUAL ADDRESS SPACE
(IN A PDP 11/34)

COMMUNICATIONS | PROVIDES COMMUNICATIONS
8LOCK BETWEEN THE PROCESS AND THE
{“COMM BLOCK ') THE KERNEL

177777(8)

PAGE 7
160000(8)

PAGE 6
14000018} PAGES NOT USED FOR LIBRARY,
PROCESS CODE OR DATA. OR THE
PAGE 5 “"MAPPABLE " COUMMUNICATIONS BLOCK. ARE
“"MAPPABLE PAGES'' THERE ARE AT
120000(8) MOST THREE OF THESE

PAGE 4 “'MAPPABLE "
100000(8)
PAGE 3

“"MAPPABLE"

CODE AND DATA

60000(8) PROCESS' CODE AND DATA

OCCUPY AT LEAST THREE
PAGE 2 | CODE AND DATA PAGES - MORE IF THE PROCESS
40000(8) IS LARGE

PAGE 1 CODE AND DATA

20000:8) :nocsss GETS READ-ONLY ACCESS
- O COMMON LIBRARY SUBROUTINES
PAGE 0 LIBRARY (FOR EXAMPLE, SUBROUTINE TO
CONVERT MACHINE TIME TO HUMAN
0000018 DATE AND TIME)

System Development Corporation

KERNEL-TO-PROCESS COMMUNICATIONS

(1} BEFORE EXTERNAL EVENT

COMM ¢ COMM SUMMARY = FALSE
BLOCK COMM.TYPE a EVENT = FALSE

PROCESS EXECUTING. PROCESSING
SOME PREVIOUS EVENT

(2) EVENT OF TYPE a, EXTERNAL TO THE PROCESS, OCCURS
NERNELSETS [comm COMM SUMMARY _ TRUE
.‘;A:}{Sg'fsss BLOCK COMM TYPE a EVENT - TRUE
WERE ASLEEP,
KERNEL WOULD
AWAKEN (T. SN PROCESS CONTINUES EXECUTING,
s UNDISTURBED
(3! PROCESS LOOKS AT ITS COMM BLOCK

Corm PROCESS FINISHES PROCESSING
BP&: PREVIOUS EVENT. LOOKS AT COMM
K BLOCK, CLEARS VARIABLES:

COMM SUMMARY = FALSE
COMM.TYPE _a EVENT = FALSE

AND BEGINS PROCESSING THE
NEW EVENT

System Development Corporation

PROCESS TOP-LEVEL LOOP

NITIALIZATION

ANY EXTERNAL PROCESS
EVENTS TO — EXTERNAL
PROCESS® £y ENY

PROCEDURE MAIN
BEGIN
INITIALIZE
WHILE (TRUE) DO
BEGIN
COMM SUMMARY FALSE
WHILE (THERE ARE UNPROCESSED EXTERNAL EVENTS) DO
BEGIN
If (COMM TYPE 8 EVENTI PROCESS a
iF (COMM TYPE b EVENT) PROCESS b
END
K SLEEP
END
END

1 COMM SUMMARY IS TRUE WHEN THE K SLEEP CALL (5 MADE THE PROCESS DOtS
NOT ACTUALLY SLEEP THE K SLEEP CALL RETURNS IMMEDIATELY

System Development Corporation

PP OV

INTERPROCESS COMMUNICATIONS BY QUEUES

STEPS:

1. PROCESS A MAKES K - GET - DA7A --BLOCK KERNEL CALL TO GET A
BLOCK FROM THE CPU-WIDE FREE POOL.

PROCESS A WRITES MESSAGE IN THE BLOCK.

PROCESS A MAKES K - ENQUEUE KERNEL CALL TO PLACE THE
BLOCK ON THE QUEUE.

PROCESS A LOOSES ALL ACCESS TO THE BLOCK.

THE KERNEL MAINTAINS THE QUEUE.

PROCESS B MAKES K - DEQUEUE KERNEL CALL TO GET THE
BLOCK FROM THE QUEUE.

PROCESS B READS THE MESSAGE.

PROCESS B MAKES K —RELEASE - DATA —BLOCK KERNEL CALL.

PROCESS B LOOSES ALL ACCESS TO THE BLOCK. THE KERNEL
CLEARS THE BLOCK AND RETURNS IT TO THE FREE QUEUE.

System Developmeant Corparation

ACCESSING A BLOCK

SUPPOSE: PROCESS HAS GOTTEN A BLOCK
CAPABILITY REFERRING TO BLOCK SPECIFIED BY SOME INDEX,
SAY 17
PROCESS: K- MAP(17,140000(8));
17" SPECIFIES BLOCK
“140000(8) SPECIFIES ONE OF THE PAGES OF THE
PROCESS' VIRTUAL ADDRESS SPACE

KERNEL: IN RESPONSE TO THE CALL, SETS HARDWARE MAPPING REGISTERS
OF THE PROCESS SO THAT

160000(8)
PAGE 6

140000(8) “‘—-’:

128 BYTES OF A
VIRTUAL ADDRESS REFERS TO pligoie o ¢
SPACE AT 14000018}

NOTE: SOMEWHAT DEPENDENT ON PDP- 11 MEMORY MANAGEMENT SCHEME

BUT: HAS BEEN EMULATED ON 11/03!"
System Development Corporation

- 10

PROCESS PROGRAMMER'S SETTING

STANDARD “"MAIN"* PROVIDED TO EVERY PROGRAMMER

PROGRAMMER WRITES THE PROGRAM UNITS CALLED FROM MAIN:
INITIALIZE (INITIALIZE PROCESS)
PROCESS —a (PROCESS EXTERNAL EVENTS OF TYPE a)
PROCESS - b {PROCESS EXTERNAL EVENTS OF TYPE b

PROGRAMMER'S CODE IS NEVER (LOGICALLY) INTERRUPTED. THE PROGRAMMER
DOES NOT HAVE TO DEAL WITH RACE CONDITIONS, ETC

THE PROGRAMMER'S CODE MAKES KERNEL CALLS DIRECTLY. THERE IS NO
ATTEMPT TO PROVIDE A FAMILIAR PROCESS ENVIRONMENT, SUCH AS A
“UNIX EMULATOR"’

THE PROGRAMMER MUST HAVE SOME UNDERSTANDING OF MEMORY
MANAGEMENT IN ORDER TO USE THE INTERPROCESS COMMUNICATIONS
MECHANISMS

System Development Corporation

STATUS

WRITTEN IN MODIFIED PASCAL.
NOT FORMALLY SPECIFIED
INTENDED TO BE “'VERIFIABLE "’

VERSIONS FOR

POP 11/70
PDP 11/34

PDP 11/23 (INTERRUPTABLE)

PDP 11,03 (KERNEL "EMULATOR"’)

11/70 VERSION, INCLUDES DRIVERS FOR
DH. DL (SERIAL LINE INTERFACES)

RP (DISK)

RX {FLOPPIES)

TE (TAPE)

AND MORE

~2%00 PASCAL STATEMENTS
~30.000 BYTES OF CODE

DATA SPACE SIZE EXTREMELY DEPENDENT ON THE NATURE OF THE SYSTEM
NUMBER OF PROCESSES. QUEUES, ETC

IN USE SUPPORTING FRONT-ENDS, ETC, FOR A SPECIAL DoD ARPANET LIKE SYSTEM
System Developmeant Corpoaretion

o

INDIVIDUAL CALL TIMINGS

ALL TIMES IN MILLISECONDS

o
;

K GET TIME
K GET DATA - BLOCK

K ENQUEUE

K - DEQUEUE

K - RELEASE - DATA -8LOCK

buwwn -
brou®
Nkt 2 O
[=1"-RNR¢ K.]

KERNEL CALL TIME TO SEND ONE 128-8YTE DATA BLOCK
11/34

GET- DATA BLOCK
ENQUEUE
DEQUEUVE
RELEASE - DATA BLOCK

XXX
PUUN
b
N = d
SO~

13.7

9.3 18X ~ 25K {PIPE)

DEDUCED BANDWIDTH (BYTES/SEC)

KERNEL BANDWIDTH WOULD INCREASE PROPORTIONALLY IF BLOCK SIZE WERE
INCREASED PAST 128

UNIX PIPE BANDWIDTH SAME IF READS AND WRITES WERE DONE IN UNITS OF
1280 BYTES iNSTEAD OF 128

System Development Corporation

SCHEDULING SPEED

4——— PROCESS A ———» ¢tSSB ——»

«———— PRO

ENQUEVE KERNEL DEQUEUE

GET RELEASE
BLOCK MAIN MAIN BLOCK

v } v N

+
—t t M N

&
r

<+
-+

+— 15— «— 17 —» « i0 > +— 19—» ¢«— 20 —»

{ALL TIMES FOR 11/70, IN MILLISECONDS)
Syatem Development Corporation

SUMMARY

® OPERATIONAL FOR A NUMBER OF YEARS

® HOPEFULLY VERIFIABLE OPERATING SYSTEM KERNEL.

® REASONABLE SPEED IN CLASSIFIED DoD APPLICATIONS,
COMPETITIVE WITH NON-KERNEL SYSTEMS.

® REASONABLY HOSPITABLE ENVIRONMENT FOR A
COMMUNICATIONS SYSTEM

System Development Corporatior:

P-33

MITRE IR&D
Project 95130
Secure Packet Switch

Chris Hisaen
The MITRE Corporation

Motivation

® Survey of Commercial Architectures

® Exploration of Multiprocessor Machines and the Impact of
Security Kernels on Them

® Impact of Multiprocessors on Security Kernels

Problem

® Verification of Large Amounts of Software

® Performance Overhead of the Security Kernel

® Economics of Minicomputer Based Switch
Survivability of Few Node Network

Approach

Functional Partitioning of Packet Switching Tasks
Assignment of One Processor per Function
Interprocessor Communication Minimized

Processors that Handle More Than One Packet
Simultaneously Will Have Their Code Verified

Most Processors Handle One Packet at a Time and Then
Have Their Memory Scrubbed Betore Handling the Next
Packet

The Functional Partitioning and Communication Limitations
Enforce the Security Policy

Modular Node with Many Microprocessors Ensures
Survivability at Lower Cost

Model Switch

To/From
Hosts

Control Control) Network Network
Pod Pod

Switch
—e——-—=} —— _ Control

Bus
Packet
Data
Bus

‘ Model Switch
1 :

. To/From
Network

Switch

b t Control
1 L o Bus

Packet
Data
Bus

1osFiom Torkrom
rows Notworn

*

Network Pod

Packel Output Link Packet -
Processor

Cont Input
(Tandem) ontrol Processor

' {

-
]
1

Input
Butter
{Tandem,

¥

Packe!
Header Scan
Processor 1

Output C:ﬂosol Collector
-
Bufter Element Butfer

Switch -
ControlBus - - R - - - - 4
ke

Dot Rue

]
i

Pog
Router
Processor

'--1-|-_1--

- A st e s i) annsatatiiiiliseen: = N

Packet Output

Host Pod
N

Pachket

Processor

Link

{Destination}

Control
| E—

-
1]
[]
']

High Level

input
Processor

Input

Protocol
Processor

Pod
Router
Processor

Pod

Switch
Control Bus

Control
Element

Switch Control Pod

)= — — - —

-

T Switen i Tswich Packet
" Conhguiation | 1 utpul

y Processar | Pracessor

' 't

1

Bulter
(Source)

Packet
Header Scan
Processor

Coltector
Butter

—]

Switch
Command
Processor

NCU

toput

' Switch Pache!
Processor

Input
Butter

Handle

Switch "
Router :
Processor ‘l

-

High Level
Piotocol
Peacessor

' Collecior
Butter

! 508 |

' i

H

Pod
Aoute:

Processor
)

[}
L]
Pod
Cont
Erement

(Soutce)

Packet
Headet Scan
Provessor

!
[
1

Pachet
Data Bus

-
|

..

i

I

i
Oulput H
1

Butte
Switch uiter

Control
Rus

T

Colte e
RAutte:

|

Status J

FIFO Input
Word Por

Control

= Store
(ROM)

J

Program
Slore

1

(RAM) internal

Header

Packet
Header

“uUw®HO®eNoO-~T

[FIFO Output
Port

Status
__Word
[

® PLA Programmable Logic Array
Packet Header Scan Pr
Network Pod

Status]

i (B
- { fFOmpur |
(1 wo | Pont

Input DMA
"~ Controlter

P B
Control Intermnast 1
- Header J

T

i
'

=3

1

Pod
Comirol = ~
Bus

iﬂ'.ﬂ;.l n
Hasder
a ,IJ

[

1
Pachet
Hesder

i - .

J

~cemeno-~v
]
&

Variabies
Store
(RAM)
A

r
|

1.
Pactke

|

- {emez)

1
L-{ Vou |

£1£0 Output
Port

@ PLA—Programmable Logic Array
Input Bufter (Tandem) .
Network Pod

0=5

Microprocessor Usage

Microprocessors Per Pod

— Network Pod: 9
— Host Pod: 10
— Control Pod: 15

There Are Only Four Classes of Processor

— Packet Processor

— Packet Butfer

— Control Elements
Fake Hosts

Microprocessor Usage, Continued

@ Microprocessors for an Arpanet Style Packet Switch
Node

— 4 Trunk Lines
— 4 Host Lines
Translates To

— 6 Network Pods 54 Microprocessors
— 6 Host Pods - 60 Microprocessors
— 2 Control Pods 30 Microprocessors

144 Microprocessors

=ty

Open Technical Issues

Serial Bus or Parallel Bus

16/32 Bit Bus (Motorola VersaBus, Zilog Z-Bus,
Intel Multibus)

Performance as Function of Load for Various Access
Protocols (e.g., Polling, Contention, TDMA)

Bus Choice Must Satisfy Requirements for Control,
Addressing, and Data Transfer

Conclusions

The Design is Feasible
The Design Benefits from AUTODIN [} Experience

The Design is a Hardware Casting of the Trusted
Computing Base

The Design Has Less Software to Verify than a
Comparable Switch

Special Purpose Multi-Microprocessor Switches Have Been
Built Commercially

-7

i

..

EXPERIENCE WITH KVM

DoMOHINKE

SYSTEM DEVELOPMENT CORPORATION
SANTA MONICA, CALIFORNTIA

System Development Corporation

OVERVIEMW

@ KVM IS AGENERAL USE SYSTEM

@ KVM IS DESIGNED FOR LEVEL 4 CERTIFICATION
@ KVM ARCHITECTURAL STATUS

@ KVM OPERATIONAL STATUS

Systam Development Corporation

R-1

KVM IS A COMPLETE SYSTEM

@ COMPATIBLE WITH POPULAR UNMODIFIED
DPERATING SYSTEMS

0/8 DOS
CMs MVS
MVT ETC

@SUPPORTS EXISTING APPLICATIONS

FORTRAN JOVIAL
PL/I ASSEMRLER
TEXT EDITORS DATA MANAGEMENT SYSTEMS

System Davelopment Corporation

KVM IS DESIGNED FOR LEVEL 4 CERTIFICATION

@ KERNELIZED ARCHITECTURE
@ ENFORCES DoD SECURITY FOLICY
@ FORMAL VERIFIED SPECIFICATIONS

@ CORRESPONDENCE BETWEEN SPECIFICATIONS
AND CODE

Systam Development Corporation

KERNELIZED ARCHITECTURE

@ KERNEL & TRUSTED PROCESSES

- FORMALLY SPECIFIED AND VERIFIED
- INTERPRET &8 ENFORCE SECURITY POLICY

@AUDITED GLOBAL PROCESSES

- CONTROL SHARED SYSTEM RESQURCES
- CONFINED AND UNPRIVILEGED

@NON KERNEL CONTROL PROGRAM

Problem
State

- SUPPORTS USER VIRTUAL MACHINES
- REENTRANT ,UNPRIVILEGED, UNTRUSTED

Syatem Developmant Corporation

YM/370 ARCHITECTURE

VM/370 - (P

Virtual Real
Supervisor Supervisor
State State

System Development Corporation

R-3

KVM/ 370 ARCHITECTHRE

GLOBAL
SCHEDULERS

NN

KvM/370

NKCP2 SECURITY

KERNEL
SECRET

I

TRUSTED
PROCLSSES

TOP SECREY

~

~—
Virtual Supervisor State Real Supervisor
State

System Development Corporation

KVM DATA VIEW

System Development Corporation

KVM ENFORCES DoD SECURITY POLICY

@ MANDATORY
4 HI-ERARCHICAL LEVELS + 62 COMPARTMENTS

@ DISCRETIONARY
ACCESS CONTROL LISTS + PASSWORDS

@ MULTI-LEVEL ACCESS TOMINIDISKS

System Development Corporation

VERIFIED FORMAL SPECIFICATIONS

@ SPECIFICATIONS WRITTEN IN INA JO ™ FOR
ALL TRUSTED CODE

@ VERIFIED TOP LEVEL SPECIFICATIONS
- 780 LINES OF SPECIFICATIONS
- 494 PAGES OF PROOF EVIDENCE

@VERIFIED SECOND LEVEL SPECIFICATIONS
- 2,910 LINES OF SPECIFICATIONS
- PROOFS ARE IN PROGRESS

System Deaveslopment Corporation

SPECIFICATION-TO-CODE CORRESPONDENCE

MAP INA JO CONSTANTS & VARIABLES TO JOVIAL DATA,

MAP INA JO TRANSFORMS TOQO JOVIAL PROCEDURES,

. MAP INA JO ASSERTIONS 10 JOVIAL SECURITY CHECKS.

MAP INA JO TRANSITIONS TO JOVIAL ASSIGNMENT
STATEMENTS.

. RESOLVE DISCREPANCIES.,

. VERIFY ALL SECURITY CHECKS ARE PERFORMED BEFORE
ANY ASSTIGNMENTS ARE MADE,

. AUDIT UNMAPPED SOURCE CODE FOR SECURITY-RELEVANT
CODE.

System Development Corporation

ARCHITECTURAL STATISTICS

YM/370 REL 3 PLC 15

134 mODULES 130,000 LINES ASSEMBLER CODE

FUNCTIONAL AREA MODULES TOTAL LINES
campooLs 47 3,139 Javial
KERNELS 107 11,590 JOVIAL/ASMB
AUTHORIZATION 32 3,637 JOVIAL
“ACCOUNTING 2 204 JOVIAL
*OPERATOR 22 2,017 JOVIAL/AS™ER
*UPDATER 3 264

» TRUSTED 213 20,821

NKCP 116 129,754
GLOBAL PROCESSES _20 17,230
e UNTRUSTED 126 146,984

* UNDER DEVELOPMENT

System Development Corporation

R~

KVM ARCHITECTURAL STATUS

KVM IMPLEMENTS

@ MESSAGE PROTOCOL DRIVEN SYSTEM
- INTERNAL COMMUNICATION

@ MULTI-LEVEL RELATIONAL DBMS
- USER,DEVICE,PROFILE DIRECTORIES

@ CAPABILITY BASED SYSTEM
- ACCESS PERMITTED ONLY IF USER HAS A “GRANT”

@ ABSTRACT DATA TYPE MONITORS
- NO CENTRAL SYSTEM TABLES-

System Development Corporation

KVM OPERATIONAL STATUS

@ UNDERGOING FORMAL DETAILED SYSTEM TESTING
- SYSTEM DEVELOPMENT CORPORATION [BM 4331-11
- NAVAL ATR TEST CENTER,AMDAHL V7/A

@ INPROGRESS & CONTINUING NEXT 12 MONTHS WITH
NEW FEATURES

System Development Corporation

OPERATIONAL PERFORMANCE

@ CONTRACTUAL MEASUREMENT TASK

@ESTABLISH MEANINGFUL BENCHMARKS

@ CONTRAST THROUGHPUT OF VM vs KVHM

System Development Corporation

PERFORMANCE EXPERIMFNTS

{

R < R B
w Q | f ¥

KVHM

System Development Corporation

T T

@ KVM IS A COMPLETE GENERAL USE SYSTEM

@ KVM WILLBE A LEVEL-4 SYSTEM

@ WE CAN LEARN ABOUT KVM WHILE USING KVM

System Development Corporation

SCOMP (KSOS-6)

DEVELOPMENT EXPERIENCE UPDATE
LESTER FRAIM

HONEYWELL

FEDERAL SYSTEMS OPERATION
AUGUST 12, 1981

TOPICS

® PROJECT OBJECTIVES

® HARDWARE DESIGN OVERVIEW
® SOFTWARE CESIGN OVERVIEW
@ PERFORMANCE EXPERIENCE

® VERIFICATION EXPERIENCE

Honeywel!

PROJECT SUPPORT

NAVELEX
KERNEL AND HARDWARE DE VELOPMENT
TRUSTED SOFTWARE
ce
HONEYWELL
KERNEL INTERFACE PACKAGE
1822 IMPLEMENTATION
HARDWARE PRODUCT DEVELOPMENT

Honeywell

R T e e

PROGRAM OBJECTIVES

® DEVELOP ADD-ON HARDWARE TO COMMERCIAL
LEVEL 6 WHICH MAKES IT EASIER TO BUILD
SECURE SYSTEMS

® DEVELOP TRUSTED COMPUTER BASE
(TCB) SOFTWARE
- ENFORCES DOD SECURITY POLICY
- FORMALLY PROVABLE (TLSONLY)
- SUPPORTS VARIOUS APPLICATIONS

® DOD CERTIFICATION

® DEVELOP THE SCOMP PRODUCT

POTENTIAL APPLICATIONS

® FREE-STANDING TIME SHARING SYSTEM

® “GUARD" BETWEEN TWO NETWORKS AT DIFFERENT
SECURITY LEVELS

® SECURE NETWORK FRONT-END

® SECURE DATA BASE MACHINE

® MILITARY MESSAGE SWITCH

® SECURE WORD PROCESSOR

Honeywell

SCOMP HARDWARE BASE

® LEVEL 5 MINICOMPUTER
® SECUR'TY PROTECTION MODULE 1SPM)

® VIRTUAL MEMORY INTERFACE UNIT VMILY
® 1822 ACLA “INE ADAPTER

® STANDARC LEVEL 6 PERIPHERALS

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTHAL
| PHOCESS0#
SLVAS

SECURITY PROTECTION MODULE FEATURES

® [ALT PROCESS SWITCHING
PROCESS DE SCRIPTOR TREE DE FINITION VIA DESCRIPTOR
BAGE ROOT
AUTOLOAD OF DESCRIPTORS
® 1 3LEVEL MEMORY DESCRIPTOR SYSTEM
RW FCONTROL AT ANY LFVEL
SEGMENT 2K WORDS (91
PAGE S 120 WORDS
® IOMEIHATE N
CPUTODEVICE
DEVICE TOMEMORY
® MUI TICS Tk RING STRUCTURE
2 PRIVIEEGED, 2 HON PRIVILEGED RINGS
READ. WRITE EXFCUTE AND CAL L BRACKE TS
RING CROSSING SUPPORT INSTRUCTIONS
® PAGH T AL T RECOVFRY SUPPORT

KSOS-6 SOFTWARE

® SECURITY KERNEL

® TRUSTED S)FTWARE

® SCOMP KERNEL INTERFACE PACKAGE

® TRANSMISSION CONTROL PROTOCOL (TCP)

-

Honeywell

- TEL L e TmREITL . -

SYSTEM DESIGN

® NON-FILE SYSTEM IO OUTSIDE KERNEL
® FILES CONSTRUCTED EXTERNALLY USING
SEGMENTS
©® DEMAND PAGING VIRTUAL MEMORY
® NON-DISCRETIONARY ACCESS CONTROL -
BELL AND LaPADULA
- PRIVILEGE
- ACCESS ATTRIBUTES NOT FIXED

Honeywell

SYSTEM DESIGN (CONT)

® DISCRETIONARY ACCESS CONTROL
- UNIX R, W, E FOR OWNER, GROUP. OTHER
- RING BRACKETS FOR OWNER, GROUP. OTHER
- SUBTYPES
® KERNEL INTERRUPTIBILITY
- KEANEL OPERATIONS MAY BLOCK
- KERNEL OPERATIONS NOT INTERRUPTED
- NO PROCESS SWITCH
- SEGMENT ACCESS RECHECK

Honeywell

SYSTEM DESIGN (CONT)

©® INFORMATION CHANNEL CONTROL
- UPGRADED ARGUMENT
- READABIUTY DETERMINES RESPONSE
- SYSTEM HIGH GARBAGE CAN SEGMENT
- DELAY ON RESOURCE EXHAUSTION

wr

Honeywell

A L e
i . ol

i KSOS-6
,j TRUSTED SOFTWARE

i ® USER SERVICES
. - SECURE INITIATOR

} - SECURE SERVERS

i - ACCESS AUTHENTICATION FUNCTIONS
; LOGIN

| CHANGE GROUP

‘ SET ACCESS LEVEL
CHANGE DEFAULT ACCESS LEVEL
LOGOUT

. - FILE DISPLAY AND ACCESS MODIFIER

: - PASSWORD MODIFIER

' 812613

' Honeywell

KS0S-6
TRUSTED SOFTWARE (CONT)

® OPERATIONS SERVICES
- SECURE STARTUP
- AUDIT COLLECTION
- SECURE LOADER
- OPEFATOR COMMANDS
SET SYSTEM CLOCK
SWITCH ACCOUNTING FILES
CHANGE DEVICE ACCESS
SET DISK DEVICE STATUS
SYSTEM SHUTDOWN

Honeywell

KSOS-6
TRUSTED SOFTWARE (CONT)

® MAINTENANCE SERVICES

- MAKE FILESYSTEM

- TRUSTED DATABASE EDITORS
USER ACCESS
GROUP ACCESS
TERMINAL ACCESS
SECURITY MAP
MOUNTABLE FILESYSTEMS
FILESYSTEM DUMP

- FILESYSTEM RESTORE
FILESYSTEM CONSISTENCY CHECK

Honeywell

SCOMP KERNEL INTERFACE PACKAGE
(SKIP)

© PURPOSE
- PROVIDE AN EFFICIENT LOW LEVEL INTERFACE
FOR USE BY APPLICATIONS SOFTWARE
- PROVIDE A HIERARCHICAL FILESYSTEM
" - PROVIDE PROCESS CONTROL

® ATTRIBUTES
- CODE RESIDES IN KERNEL ADDRESS SPACE
WITH RING 2 EXECUTE PERMISSIONS
- ACTS AS A FILTER FROM USER RING TO KERNEL
GATES TO PROVIDE FILESYSTEM AND PROCESS
CONTROL INTEGRITY

Honeywell

SKIP
FILE SYSTEM FEATURES

® ENTRY NAMING SYSTEM

® MONOTONICALLY INCREASING SECURITY

@ INCREASE SECURITY LEVEL THROUGH
UPGRADED DIRECTORY OR FILE

® MULTICS LIKE LINK SUPPORT

® FILESYSTEM INTEGRITY MAINTAINED IN RING 2

® NO PATHNAME AWARENESS

o FILE DATA MANIPULATION IN USER RING

e

Honeywell

SKP
PROCESS CONTROL FEATURES

® PROVIDE CLASSICAL EVENT WAIT/NOTIFY
SYNCHRONIZATION

® ALLOW SPAWNING OF CHILD PROCESSES

® PROVIDE IHECHANISM BY WHICH USER RING

" CODE CAN HANDLE INTERRUPTS AND FAULTS

(S ERTEN

Honeywell

s A———

KSOS-6
TRANSMISSION CONTROL PROTOCOL
(TCP)

- BASED ON BBN-TCP4

- 1822 ASYNCHRONOUS LINE ADAPTER

- WILL USE THE SKIP
812619

Honeywell

KSOS-6

KERNEL PERFORMANCE ENVIRONMENT
- LEVEL 643
- HARDWARE MONITOR
- TOTAL EXECUTION TIME
- 11O TIME
- NUMBER OF DMA TRANSFERS

Honeywell

SAMPLE KERNEL
PERFORMANCE RESULTS

GATE EXECUTION TIME (MS)
READ_. SYSTEM_ CLOCK 1.06
GET_SYSTEM__ PARAMETER 146
GET_PROCESS__ACCESS 262
GET __PROCESS __STATUS 1.46
SEND _MESSAGE 4%
RECEIVE _ MESSAGE 1.74
MAP_ SEGMENT 16.20
UNMAP__SEGMENT 1.70
CREATE _PROCESS 46829
RELEASE_ PROCESS 1.36
CREATE_ SEGMENT 19.79

Honeywell

P"'*

SAMPLE KERNEL

PERFORMANCE RESULTS

TEST EXECUTION TIME
MISSING SEGMENT FAULT
RECOVERY 16 26

CONTEXT SWITCHING 1 efh

Honeywell

KERNEL VERIFICATION
STATUS/RESULTS

® PROOF OF DESIGN COMPLETE

® TWO MODULES CAUSE STORAGE FAULTS IN
FORMULA GENERATOR
- CREATE PROCESS
- INVOKE.. PROCESS

® FALSE THEOREMS CHANNEL MINIMIZED BY
- DELAY ON RESOURCE EXHAUSTION
- EXCEPTION REPORTING ON WRITE-UPS
- PRIVILEGE CHECKS

Honeywell

KERNEL VERIFICATION
STATUS/RESULTS (CONT)

® DIFFERENCES FROM IMPLEMENTATION
- PRIVILEGE IS REMOVED
@ TOOLS
- ENHANCEMENT REQUIRED
. ISOLATING REASONS FOR FALSE THEOR. S
IS TEDIOUS

8126238

Honeywell

$-8

-

SUMMARY

® HARDWARE
PROTCTYPE DEVELOPMENT COMMLETE
PRODUCTION DEVELOPMENT
® SOFTWARE
KERNEL
TAUSTED SOFTWARE
- SKiP
@ TESTSITE LELIVERY FIRST QUARTEH 1442

Honeywell

-

KSOS-11

Summarvy And

Update

John Woodward

The MITRE Corporation

KSOS-11 History

PROTOIYPES INFTIAL DETAIED DESIGN AP IC ATHONS
DESIGN AN DINVELORNEN
IMPLEMENTATION

MITRIE

RIS AN

o —— D S ——
AL DAREA Ny
IARPA A

N

KSOS Summary and Update — Overview

Project Goals
Project Status
Insights Into Trusted Computing

Kernelized System

PROCESS BOUNDARY

! HUMAN

INTERFACE
0s TRUSTED
USER SOFTWARE UTILITIES PROCESSES
. . . . - 0S SVC
0S SOFTWARE NOT PROTECTION-RELATED INTERFACE

KERNEL SVC
INTERFACE

KERNEL

HARDWARE

Project Goals — KSOS

Requirements Summary

Production - Quality System
Provable Security

UNIX Compatibility

Efficiency Comparable With UNIX

Administrative Support Features

General-Purpose Kernel

Broad Applicability

Project Goals — KSOS Kernel
Architecture

Functions

Processes Segments 10
fork invoke spawn build release device function
release remap mount unmount
post receive message rendesvous create file
signal open close
mierrupt refurn link unlink file
walh process table read write block
nap
troant

hasls

qetl set slatus qet set status qel sel status

qet seq tevel get set level qet set level

Project Goals — KSOS Kernel
Architecture

Non-Kernel System-Related Software

User Services

seLure initiator

secute server

lagim logout

file access modifies
change access level
<hange group

level presering copy print

secute mail

Operations & Maintenance

file sustem dump restore
pack imtiahization

extent initialization
modify control entry
consistancy, checkers
boot <opy

direclory manager
network controliers
system startup shutdoun
system generation
process bootstrappet
mount unmount

assign deassign device

fine printer spooler

kernel-to-pathname mapper

Project Goals — KSOS Security
Assurance

Administration

imaugration
user cantrol
privleqe control
security mep
terminal protlde
desice profite
sustem profile

audit capture

OLOGY

FORMAL
METHOD-

FORMAL
TESTING

MODERN
SOFTWARE
ENGINEERING

Project Status — Versus Requirements

Production - Quality System

Provable Security
UNIX Compatibility
Efficiency Comparable With UNIX

Administrative Support Features

General-Purpose Kernel

Broad Applicability

Project Status — Provable Security

Design Proofs
Spec Checking
Theorem Proving
Analysis of False Theorems
Flow Analysis

Code Proofs
Example module only

Project Status — KSOS
Efficiency

Performance

Size

Project Status — KSOS
Implementation Completion

Kernel
Emulator
NKSR
TCP

e R i~ e R e e o A S

Insights Into Trusted Computing

Modula As the Implementation Language
Multiple Representations
Formal Methods

Hardware Base

Security Model

Insights Into Trusted Computing

It Can Be Done!

Importance of Corporate Commitment

Utility and Benefits of Formal
Specifications

Need for More Experience in Code Proofs

Need for Additional Tools and Concepts

Mike Soleglad

Log¢icon

ACCAT AND FORSCOM

GUARD SYSTEMS

18

LOGICON

ACCAT/FORSCOM GUARD

PRESENTATION

o THE PROBLEM

& THE SOLUTION

ACCAT GUAHD
o HARDWARE CONFIGURATION AND
FOHSCOUM GUARD

o SOFTWARE MECHANISMS

e STATUS

ACCAT GUARD

(@]
o
<
=
)
[
<
O
&)
<

=
w
-
aQ
Q
o
w
X
-

ML TELE YL SE LY LURK

D PAR T ON : LOW PAG T It

KERNEL BASED
TRUSTED
_SUEIWAHE

T e
L A
oy b

AR K SECURILY Waton
LERICER

RYTRINETS

ACCAT GUARD

FUNCTIONAL DESCRIPTION - TRANSACTIONS

“TRANSACTION " ORIENTED
ALL TRANSACHIONS ARE SUBMITTED VIA "NETWORK MAIL"

ALL HESULTS ARE HETURNED VIA "NETWORK MATLL "

. SIX THANSACTION TYPES

LOW TOHIGH
MAIL
CCANONICAL " QUERY

TENGUISH T QUERY

HIGH T LOW
MAI
TCANONICAL . GUERY

FMGUINIE (1IEHY

ACCAT GUARD

FUNCTIONAL DESCRIPTION - PERSONNEL

SECURITY WATCH OFFICER {SWOQ)

VIEWS ALL HIGH TO LOW DATA TRANSFERS

INTERFACES WITH “TRUSTED SOFTWARE " FOH " DUWNGHRADING” OF DATA

SANITIZATION PERSONNEL {SP)

SANITIZES LOW TO HIGH QUERY RESULTS
TRANSLATES ENGLISH QUERIFS TO “CANONICAL " FORM

INTERFACES WiTH “HIGH SIDE” UVTRUSTED SOFTWARE

ACCAT GUARD

SECURITY POLICY

DATA SEPARATION (DoD SECURITY MODEL)
SIMPLE SECURITY CONDITION ("READ" RULE)
* PROPERTY CONDITION {("WRITE"* RULE}

TRANQUILITY CONDITION (“ALTER” RULE) k :;(:gRCED

DATAINTEGRITY ("DUAL" OF DoD SECURITY MODEL)
DISCRETIONAHRY ACCESS (A1 A UNIX)

MANUAL DOWNGRADE POLICY (VIOLATES * PROPERTY)
SECURITY WATCH OFFICER (SWO) VIEWS AL L DAT A
SWO ACCEPTS DOWNGHADE TRUSTED

SOF TWARE
SWO CONFIRMS DECISION ENFORCLD

AUDIT ALL HIGH TO LOW DOWNGHRADES

(A1a HASE

ACCAT GUARD

HARDWARE CONFIGURATION

Cow nost

WL TG oW
Lada biuw

kLI

KLY H

L} .
HGH

1
THUSTED

SUF TWAHE ALURT GUARD SYSTEW

ANZEN

SLCURLTY
WATCH
EICER

ACCAT GUARD

SOFTWARE MECHANISMS

N

VNLANILLE
ata
SANTLIZED SENCZEL

bata A
&
‘ - AL RNOWL LR

SANEEIZE MOWNGHA N

\ g .
LUITOR (VHUSTEL SOF Twen
: SANITIZED -
DATA
PRIVATE ’

Ctkyi

ARt

ALXNUWE O

BANETIZEH SLCURITY
WATCH
kbR

-5

.7 AD~A113 348 OFFICE OF THE UNDER SECRETARY OF DEFENSE FOR RESEARCH==ETC F/§ 9/2
PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT—ETC(U)

1961
UNCLASSIFIED N

S8 25

B EX:

122

2

122 llLs nie

N
. .
. NVIRRDN PP .U S A

ACCAT GUARD SOFTWARE CONFIGURATION

ACCAT GUARD

STATUS: PRESENT AND FUTURE

PRESENT

HARDWARE INSTALLED AT NAVAL OCEAN SYSTEMS CENTER (NOSC)
ALl SOFTWARE COMPLETED — DEMONSTRATABLE UNDER UNIX
THUSTED SOFTWARE FORMALLY SPECIFIED AND VERIFIED
THREAT/VULNERABILITY ANALYSIS COMPLETED

KSOS 11 INSTALLATION UNDERWAY

TUTURE

KSOS 6 INSTALLATION PLANNED
AUTOMATED SANITIZATION/TRANSLATION ELIMINATES SANITIZER
VERIFICATION OF AUTO SANITIZATION - ELIMINATES SWO

OTHER LOW/HIGH HOST SUPPORT PLANNED

U-6

— e R R i e i s

R bt s o

FORSCOM GUARD

FORSCOM GUARD

THE PROBLEM

|

%
7

I

E

!

|

FORSCOM GUARD

THE SOLUTION

MULTHLEVEL SELUNE
FORMOM SECORITY MONTTOR
v
I *
KEHNEL BASED
THUSTEG
SUH I WARE

tun
® SHCUNITY LEvhy
USE RS

L]
KEANEL BASED

THUSITED
MU IWANE

HIGH SELURITY b
LEVEL USEHY

5t HEENEHY

FORSCOM GUARD

FUNCTIONAL DESCRIPTION

o “INTERACTIVE” QRIENTED

MEDIATES BETWEEN ALL LOW USER AND HIGH SYSTEM DIALOGUES
PROVIDES BOTH "MANUAL" AND "AUTOMATIC” DOWNGRADE MECHANISMS

PROVIDES LOW USER INPUT “FILTER" MECHANISM

e SCREENER PERSONNEL

VIEWS ALL "MANUAL " HIGH TO LOW DATA TRANSFI RS
INTERFACES WITH "TRUSTED SOF TWARE” FOR "DOWNGRADING” OF DATA

FORSCOM GUARD

SECURITY POLICY
DATA SEPARATION (DoD SECURITY MODEL)
-~ SIMPLE SECURITY CONDITION (“READ"* RULE)
- *—PROPERTY CONDITION (“WRITE" RULE}
- TRANQUILITY CONDITION {"ALTER" RULE)

DATA INTEGRITY (“DUAL" OF DaD SECURITY MODEL)
DISCRETIONARY ACCESS (A LA UNIX)

MANUAL DOWNGRADE POLICY (VIOLATES * -PROPERTY)
SCREENER VIEWS ALL DATA
SCREENER ACCEPTS DOWNGRADE
SCREENER CONFIRMS DECISION

AUTUMATIC DOWNGRADE POLICY (VIOLATES * —PROPERTY)
ALL DATA IS RECOGNIZABLE IN PROPER CONTEXT
“BANDWIDTH" NOT EXCEEDED

ACCEPT USER INPUT POLICY (A “FILTER")
DATA IS RECOGNIZABLE IN PROPER CONTEXT

AUDIT ALL HIGH - TO-LOW DOWNGRADES

FORSCOM GUARD

HARDWARE CONFIGURATION

UL DUEEVEL 3 UM
FORSCOM SECHMITY MONLT R

[e
r‘—’ *.m;.n:'m;.' -]
i

THUSTED
¥ Swant

]

[

PG SECUMITY LEVEL GSERY

SHEENERS

KSOS
ENFORCED

TRUSTEL
SOFTWARE
ENFORCED

i
E}

e i

on s o an

FORSCOM GUARD

SOFTWARE MECHANISMS

AL RUSVITITRY GUAHDIAN;SCHEENE R MIGH SLCUHITY LEvEr
CEVEL st TRUSTED SOF TWARE ANG CONTEX T TABLES WML S NOBI

:

1 RECOGNIZABLE HiKEL WML LR S MLy

USEH IECL U5 WML S KL SPONSE — ANLE BANDWIOIN' NOL EXCERDED

W OHECOGNIZABLE ANU VARIABLE
O BANDWIDTH EXCEEDED
SLREEN

USEH HECEIVES WWMC S HESPUNSE — I ALCEP T ACRNGWE E Lt
l HE NOT HECOGNIZABLE UM WML LT RO e
ISEH R

FORSCOM GUARD

SOFTWARE MECHANISMS

COMW BB R b

e
WML

Lyatem
sku et
INpPLT
WML CS
outp
LATA SINEL ML DLNIZABLE DATA

R
e

VARIABL
DATA

accery
et T

L r' s CONTEXT

. 1 4
SCHEENER Asibs
THUSTED PRULE N

St HEENER

Uu-10

FORSCOM GUARD

SOFTWARE MECHANISMS

RN FRPITRaT)

LONTENT TaBien

[T

(SRR TR AT

FORSCOM GUARD

STATUS: PRESENT AND FUTURE

PRESENT

e HARDWARE INSTALLED AT FORCES COMMAND, FT.GILLEM
e SOFTWARE OPERATIONAL DEMONSTRATABLE UNDER UNIX

o FORMAL SPECIFICATION OF TRUSTED SOFTWARE UNDERWAY

FUTURE

e KS0S 13 INSTALLATIIN PLANNED
e VELRIFICATION OF TRUSTED SOF TWARE

e OTHEH WWMCCS APPLICATIONS PL ANNED

VOREEA T i

A Security Model for a Military Message System

Carl E. Landwehr

Computer Science and Systems Branch, Code 7590
Information Technology Divison
Naval Research Laboratory
Washington, D.C. 20375
[Portions of this work were sponsored by

the Naval Electronics Systems Command,
Code 8144, H. 0. Lubbes.]

Outline
What security models are good for
History of security models
Experience with Bell and LaPadula model
An application-based approach
Security model for a military message system:
Current version
Definitions
Model of operations

Security Assumptions
Security Assertions

Regimes for accessing objects within containers

Outstanding Issues

Plans

V-1

What security models are good for

Define what "security" means in a given system
Provide basis for understanding system operation

Provide basis for proofs

History of security models

Operating system protection models

Models incorporating DoD security
Access Control (Bell and LaPadula)
Information Flow (Denning)

Revised Bell and LaPadula

Experience with Bell and LaPadula model

MME - trusted job
KSOS —~ NKSR

Guard - trusted processes

V-2

An application-based approach

User's view of the system

Components of an ipplication-based model
Definition of terms 3
Model of operations
Assumpt ions
Assertions

How the model can be used

Current version of the MMS model
Definitions

Classification - disclosure and modification levels

Clearance - user disclosure level
User ID - one per user
Role - function performed by user

Access control list - pairs (UserID or Role, Access mode)
access modes include read, write, exccute,
may be attached to objects, containers

Object - smallest unit with explicit classification
(single level)

Container - has classification and may contain objects
or other containers (multi-level)

Entity - object or container. Each entity can be
designated by unique ID or pathname

Program - sequence of machine-executable instructions
may have an associated clearance and User1D

Message

a particular type of container

s Examples of objects

Date-time group
Subject
Precedence

| Examples of containers:
Text

Message
Message File

Address list
Comments

Sore operations applicable to messages

Compose Edit

Output Update

Send Release
Forward Distribute
Coordinate Chop
Readdress Reclassify
Delete Undelete
Destroy Assign-action

V-4

Entities that might be containers in one system and objects in another

o AN

Model of operations

- User gives UserID and is authenticated by the system

User invokes programs to perform the functions of the
message System

The programs a user may invoke depend on the user's role

- A user with the role of System Security Officer
controls the clearances and roles assigned to UseriDs

- Programs a user invokes may read, write, or invoke
objects or containers

The system enforces the security assertions listed below
(prevents users from performing operations that would
contradict them)

Secur ity assumptions

Al. Security officer assigns clearances and roles properly
to users.

A2. User enters appropriate classification when composing,
editing, or reclassifying text.

A3. User exercises proper control of access control lists.

Security assertions

Disclosure of information

Dl. A user can only view objects with disclosure level
less than or equal to glb(UserID,Role,Output Device).
For objects within containers, either the container's
disclosure level or the object's disclosure level
will be checked, depending on the type of the container
and the mode of access (by unique ID or pathname).

Secur ity assertions (cont'd)

Modification of information

Ml. Users can only modify objects with modification level
less than or equal to the glb of User, Role, and
Input Device modification levels.

M2. The disclosure level of any container is
always at least as great as the maximum of
the disclosure levels of the objects and containers
within it.

M3. No classification marking can be downgraded except
by a user with the role of downgrader.

M4, The clearance recorded for a UserID can only be
set or changed by a user with the role of system
security officer.

M5. No message can be released except by a user with
the role of releaser.

M6. No user can invoke a program for which his UserID

or role is not on the access control 1list with an
access mode of execute.

Notewor thy aspects of the model:

Multi-level objects {containers) are defined
Simple security condition is reflected in Dl.

*—property is not included, but "write-downs" are controlled
via M2 and M3

Integrity is included as modification level

Login level is not included, but T1/0 device abstractions
can provide this effect

Programs, not processes, are included because they are
more recognizable to users

Implementation concepts (e.qg., capabilities) are
avoided, but model is designed to be implementable

V-6

Example regimes for accessing objects within containers

1. Access to object is allowed only if the user and
role clearances equal or exceed the classification of
the container. 1If data is copied from the object to
another entity, that data is treated as though it had
the same classification as the container.

(Apply this regime to aggregation-sensitive data.)

2. Like (1), but data copied from the object is treated
as though it has the same classification as the object,
regardless of the container's classification.

[Apply this regime to extraction of a paragraph of text from
a message.]

3. Like (2), but only the user's clearance must equal or
exceed that of the container.

[Apply this regime to viewing of messages within a message file.]

Outstanding issues

Mathematical properties of the model
Possible abstraction of model for proofs

Development of design and implementation from model
Detailed design questions --

Determine whether each abstraction is
an object or a container

Determine appropriate regime for each
type of container

Determine mappings between family members
that make different container/object
choices for a given entity

T T s e ittt

Plans
Refine/revise the security model

Integrate with MMS Intermediate Command Language
Specification

i Consider man-machine interface questions

Design and develop prototype system based on
this model

Bibliography

1. Llandwehr, C.E., "Formal Models for Computer
Security," to appear, ACM Computing Surveys,
September, 1981. Also available as NRL Report 8489.

A comprehensive survey of previous formal models.

2. Miller, J.S., and Resnick, R.G., "Military
Message Systems: Applying a Security Model,”
. IEEE Symposium on Security and Privacy, April,
: 1981.

A discussion of an earlier version of the MMS
security model, with an application to a message
system based on an Intermediate Command Language
specification. Introduces three regimes for

i accessing entities within containers.

3. Landwehr, C.E., "Assertions for Verification of
Multilevel Secure Military Message Systems,"
Verification Workshop, SRI, 1980, reprinted in
ACM SIGSOFT Software Engineering Notes, Vol. 5
No. 3, July 1980, pp.46-47.

Presents the motivatio: for application-
based models and the first version of a
security model for military message
systems. Still useful, but somewhat
dated, as the version of the model
presented does not include the concept of
roles and leaves several issues
unresolved.

4. Heitmeyer, C.L. and Wilson, S.H., "Military
Message Systems: Current Status and Future
Directions," IEEE Trans. on Comm., Vol COM-28,
No. 9, Sept. 1980, pp.1645-1654.

Discusses the family of message systems for which
the security model is defined. Describes the
application of the program family principle to
the design of message systems.

v-8

EUCLID AND VERIFICATION
IAN GRIGGS
I1.P. SHARP & ASSOCIATES, LTD.

THE (ORIGINAL) EUCLID LANGUAGE
e MAJOR APPLICATION:
PROVABLY SECURE SOFTWARE
e SYSTEM IMPLEMENTATION LANGUAGE

e ALLOWS VERIFIABLE PROGRAMS
TO BE WRITTEN

EUCLID AND VERIFICATION

e THE EUCLID LANGUAGE

e INTEGRATED VERIFICATION SYSTEM
(EUCLID + VERIFICATION TOOLS)

e FUTURE DIRECTIONS

HISTORY

DESIGN COMMISSIONED BY DARPA
DESIGNED BY EUCLID COMMITTEE
PASCAL + VERIFICATION FEATURES

PDP-11 COMPILER FOR TORONTO EUCLID
SUBSET IMPLEMENTED BY:

- 1.P. SHARP ASSOCIATES

- UNIVERSITY OF TORONTO C.S.R.G.

¢ TORONTO EUCLID BOOTSTRAPPED TO VAX

MODULES

e RECORDS WITH ATTACHED ROUTINES

e INTERFACE TO OUTER PROGRAM
EXPLICITLY SPECIFIED

e SUPPORT INFORMATION HIDING,
ABSTRACT DATA TYPES

VISIBILITY AND ACCESS CONTROL
e MODULES AND ROUTINES
IMPORT GLOBAL NAMES
e MODULES EXPORT INTERFACE NAMES
e READ/WRITE OR READONLY ACCESS

ANNOTATIONS

e ASSERTIONS
e PRE. POST FOR ROUTINES
e MODULE INVARIANT

RESTRICTIONS TO HELP VERIFIER
e NO ALIASING: ONE NAME FOR
EACH DATA ITEM
e NO OVERLAP
e NO GO TO STATEMENT
e LEGALITY ASSERTIONS

PDP-11 TORONTO EUCLID COMPILER

OBJECT CODE EFFICIENCY: VERY GOOD
e COMPILER SPEED: SLOW
- STRICT CHECKING TAKES TIME

PROGRAMMER EFFICIENCY: VERY GOOD
- STRICT CHECKING SPEEDS UP PROGRAMMING

AVAILABLE: NOW, FROM IPSA

OBJECTIVES:
e EUCLID AS IMPLEMENTATION LANGUAGE

INTEGRATE EXISTING VERIFICATION
TECHNOLOGY

USER-FRIENDLY CONSISTENT SYSTEM
RE-USABLE VERIFIFIED SOFTWARE MODULES

MAJOR APPLICATION:
PROVABLY SECURE SYSTEMS

INTEGRATED VERIFICATION SYSTEM

STEPS IN VERIFICATION — SPECIFICATIONS

l

FORMAL
SPECS
REQUIREMENTS ANALYZE - MODIFY
(INFORMAL) SPECS SPECS
—— - —
SECURITY
MODEL
THEORIES
STEPS IN VERIFICATION — IMPLEMENTATION
PROOF
THEORIES \\\\\ RULES
'
Y
CHECKED VERIFY - OK? - VERIFIED
SPECS IMPLEMENTATION ' SYSTEM
VS

PROGRAM

IMPLEMENT

N

MODIFY
PROGRANM

OTTAWA EUCLID

IMPLEMENTATION EUCLID

TORONTO EUCLID MORE
EUCLID
o EXISTING
PDPA1 1 FEATURES
COMPILER

SPEC
+
THEORY
EXTENSIONS

SEPARATE
VERIFICATION
+
COMPILATION

NOILYTIdINOD
+
NOILVIIdIH3A
3A1vHvd3S

SNOISN31X3
AHO3HL
+
Jo3adS

S3dNLv3ad
arnon3
JHON

437IdWNOD
I -dad
ONILSIX3 o

alron3a OLNOHOL

aiInON3 NOILVLNINITdNI

aron3i vmvilio

TORONTO EUCLID
RESTRICTIONS REMOVED

e FUNCTIONS CAN RETURN STRUCTURES
e PARAMETERIZED TYPES
e LEGALITY ASSERTIONS CHECKED

ENHANCED ASSERTION LANGUAGE

e QUANTIFICATION
e IF EXPRESSIONS

e SPECIFICATION FUNCTIONS AND
VARIABLES

¢ LEMMAS AND AXIOMS

SEPARATE VERIFICATION /
COMPILATION

e STUB FOR EXTERNAL MODULE
= SPECIFICATION

e LINK-TIME CHECK OF
STUB VS. IMPLEMENTATION

ADVANTAGES

e ONE CONSISTENT LANGUAGE
e TYPE-SAFE SPECIFICATIONS
AND THEORIES

e RE-USE EX!STING COMPILER
SOFTWARE FOR TYPE CHECKING

FUTURE DIRECTIONS

1.S1t GUARD
CONCURRENCY
OTTAWA EUCLID ZOMPILER

FIRST IMPLEMENTATION: VAX 11
AVAILABLE: MID 1983

ADAPT EXISTING TOOLS TO
OTTAWA EUCLID

Wo b

w-—-mm_

THE EVALUATION
OF THREE
SPECIFICATION
and
VERIFICATION

METHODOLOGIES

by

Richard A. Platek

Digicomp Research Corp. Ithaca,

N.

Y.

Digicomp Research Corp. 1is presently under contrack
with DoD through the Rome Air Development Center (RADC) to
study and evaluate three specification and wverification
methodologies, They are HDM (SRI Internaticnal), FDM (or
Ina Jo, SDC) and Gypsy (UTexas). This thirty month effort
which began Sept. 1980 has three main phases:

a. Impartial, critical analyses of
the methodologies with special attention
paid to their present state of usability
by persons not directly associated with
the developers and an evaluation of the
expertise required 1in such a technology
transfer.

b. Recommendations for enhancements
some of which will be subcontracted
to the major developers through Digicomp
(subject to qgovernment approval) while
others will be wused to drive further
funding through other agencies.,

c. The design, implementation and
verification of a secure data base
management system wusing each of the
methodologies. The mathematical model of
such a secure DBMS is based on previous
work by I. P. Sharp.

The first and most of the second of these phases have
been completed while the third is underway. 1In this talk I
would like to describe some of our findings so far. The
work has been performed by Tanya Korelsky, Len Silver and
myself. As an indication of our backgrounds I should state

that all three of us have Ph.D.s in Mathematics but no prior

experience in verification.

em) . R cr o aers s e

Like many developing software systems thece
methodologies’ documentation sometimes contain features
which have not yet been implemented. <Considering the fact
that these implementations are ongoing our remarks could
best be treated as time-stamped snapshots of evolving
systems. Furthermore, since these tools have not been
subjected to extensive use ocutside of their places of origin
it is 1important to obtain independent evaluations based on
sustained hands-on experience. The comparative method that
has been chosen seems to us and cur sponsors to be the best
technique for revealing the strengths and weaknesses of the
existing methodologies and for making recommendations that
could' be incorporated in future specification and

verification work.

Although we will briefly review the paradigms which
underlie each of the methodologies our time constraint
forces us to assume that the hearer has been exposed to more
detailed descriptions of the methodologies as they have been

described by their developers at these and similar meetings.
I. HDM

The present situation with HDM 1is quite complicated
due, in our opinion, to the large turnover in extremely
talented personnel at SRI who have been involved over the
years with the HDM project and the absence of a central

authority who would have had the power to curtail creativity

in the interests of consistency. While such a production

system orientation i3 inconsistent with research qoals and
verification as a whole has benefited from SRI's experimonts
it is a fact that HDM presently consists of several well
thought out and engineered components that lack integration.
Althouah SRI 1s aware of this problem and it is currently
being addresse?d by onjoiny work i*% is fair te say that at
bresent an outs der can not use HDM to desiqgn, implement and
verity a program from beginningy to end. Although car sty
was completed last March and reflects the system as it wao

then we've kept abreast of the more recent changes.

HDM specifications are written in SPECIAL 1
non—précedural strongly typed assertional lanquaje bhased on
first~order logic., The unit of specification is the madule
which 1is an encapsulated abstract data type. Following
Parnas modules are described as abstract automata defined in
terms of states and state transforms. (We prefer the terms
"state" and "transform” to the awkward "V Function™ ani "0
Function" terminoloay; unfortunately SPECIAL maintains the
original Parnas nomenclature which 1is <confusing to new

T

users. lna Jo uses the terms “"variable" and "transform",
the state being the values of all the variables at any given
moment.) These modules are grouped together to form virtual
machines which in turn are levels in a hierarchy. The top
level of this hierarchy 1is the user interface while the

bottom is the "machine" on which the system is to run; the

latter is not necessarily a physical machine but can be a

combination of hardware and software, for example a PASCAL

or ADA machine. Adjacent levels are relited by mappings
which are of two kinds. The state or data mappings srovi fe
an image, Image(S), on the upper level for each lower levol
state 5. These are described usingy SPECIAL expressions.
The transform or procedure mappings express each higher
level state transform T as a program P(T) which "runs" an
the lower level machine and calls lower level stare
transforms. P{T) i3 correct if whenever it drives the lawer
state 51 to the lower :tate 52 then T(Image(S1)) is
T{lmage(S2}). Said simnly this means that the projram P (T)
simulates T on the lower machine. The proagram P is written
in the target HOL. 1In the original #HDM concention a new
programming language, 1ILPL, was desianed for this purpsse
but this approach has been abandoned. When all the P (T)
have been verified to be correct the transform mappings can
be composed to yield a complete verified implementation of
the top level virtual machine aon the bottom, The
composition of transform mappings is reflectedl in the

resulting program by procedural call nesting; the iepth of

this nesting beinqg essentially the length of the hierarchy.

Unfortunately the specification lanquaje SPECIAL comes
in several variants. First there is the original version of
SPECIAL which we will call Yandbook SPECIAL. The publicly
available HDM automated tools which <check for syntax
correctness, hierarchical consistency and certain forms of

completeness are written to this SPECIAL. These tools

contain bugs which were discovered in the course of out

testing. These bugs have not been corrected for reasons

outlined below.

Handbook SPECIAL contains many features which its
designers thought would be wuseful in specifying complex
systems. This compcunding of features led to a lanjuaqe
without a clear semantics (or perhaps a better way to say it
would be a language susceptible to several overlapping
semantics). For example, a. First order .cogic is used to
express system states before and after transforms are
called, b. A New operator creates new objects of a certain
kind or type when called, c. Exception conditions for
transforms must be evaluated in a certain order, d. There
are unusual constructs like "Delay Until". Because of the
incompatibility of the various semantics of these lanquages
it was found to be necessary to subset SPECIAL whenever any
design or code verification issues arose. For example, SRI
produced a multilevel security information flow analysis
tool. This works on the top level SPECIAL spec and uncovers
information flow. The tool 1is wvery conservative and
considers an information flow to occur between variables
whenever the former is referenced in any way by the latter
(e.g9., in the assignment statement vl := 0*v2 information is
assumed to have flown from v2 to vl). 1In order to make this
analysis it was found necessary to restrict the kind of
expressions that occur in specs. This gives rise to MLS
SPECIAL. Every wvariable at the top level is assigned a

security level and the MLS tool checks that information only

N~t

flows upward 1in level, To do this it produces formulas
which are handed over to the Boyer-Moore theorem prover.
The latter has its own language designed acceocrding to very

different principles than those that govern SPECIAL.

HDM's original attempt at code wverification 1invclved
the use of a pseudo-assembly lanquage CIF (Common Internal
Form) set up within Boyer-Moore thecory. A MODULA translator
translated MODULA <code into CIF and the latter was proved
correct within Boyer-Mcore theory. In order to do this the
SPECIAL specs had to also be translated into Boyer-Moore. A
very impoverished subset of SPECIAL was developed called
VSSL. No automated tools were provided, the program had to
be respecified in VSSL. There are many discrepancies
hetween SPECIAL and VSSL. VSSL and CIF for example
understand integer to be non-negative while SPECIAL and
MODULA understand integer to be positive or negative. VSSL
does not allow any existential quantifiers in the effects
section of a transforms spec. Furthermore all the code
verification required large amounts of manual intervention
to add statements necessary to achieve a proof. The
smallest programs tookh an enormous amount of time to verify
and when done it was not clear what had bheen verified since

VSSL was not SPECIAL and CIF was not MODULA.

As part of the SIFT project SRI is developina a PASCAL

verification system for HDM, This has 1involved a new

version of SPECIAL, Pascal SPECIAL, and toocls to check it.

tois lar]LIV becaase of this effart o hagit g poew Lt
the above montioned biags in the oxiat g Spwooar o b

net o been tixed, Fhe concept ot T by b 0 o e,
[nstead a Meta-Veog has bheen built which asces S A

definition of a programming language, code Dt o oo
and specs and then generates VOs Jdirectiv., N SPUR TS LI IR B P
VC= were in Boyer-Mcoore theory. Bover and Moore oave oooth
recently left SRI to join the University of Texas, Ao
resnlt SRI has begun adapting UM to run with the sShostak
thevrem prover. The Meta-vea for example will outyput Vo in
either Rover-Moore or Shostak theory. We have not had any
experience with the latter. Jntortunately Pascal SPECTAL
daes not contain MLS SPECIAL as a subset oo that the Pascal

system as it now stands can not be used for security proofs,

A a result of these ancertainaties Niqicomp
subcontracted with Sytek tao do a staids of the SPECIAL
dialects and make recommendations for staniardization, Th =
study is being directed hy Rich Felertag a former SR1 member
and principal designer of the MLY tool. Ttowill be
completed in Sent., We hope someone will he in a position to
act on the recommondations in the report which from what

we've scen is very thoughtful,

At SRI work is proceeding in matching the HDM tools
more closely with the Shostak theorem prover, in developing
proof rules to deal with full concurrency, ani with

developing a new specification language called ORDINARY,

FOM i caperticially cimilar to HDM aleh agh in oaney
ways this similarity is mislteading. Like DM, B0 snecifies
a system using a series ot levels cach tescribed in copm of

states and transtforms with o adliacon! Towve b re g by

mappings. But anlike HDM the top 1oveld [Yo T
intertace. Instend it is to he thooaht of it
incomplete abstract Jdescription of the finil Ve tem W]t

omits certain design decisions and contains ~thers o, more
mathematically, the top level is a specificarion o8 4 camity
of systems one of which 15 the intended final system, v
subsequaent level also defines a family of aystem-, Ao i
HDM the mappings between levels relate the utates of the
lower to the states of the higher and the transforms ot the
higher to the transforms of the lower. They are 531! t, be
correct for each adjacent pair {if the family of susterms
specified by the lower is a subset of the family «f <vster

specified by the upper relative to the mappinas whi-

like a dictionary enabling one to tr.aslate higher o)
expressions into lower. Thus each level can bhe theoight ’
as a refinement of its predecessor. This retines o

proceeds by adding further detail and concretion.

Levels are described using 1Ina Ja, a specificatiun
language similar to SPECIAL but cleaner in syntax ind
semantics. !nlike SPECIAL only one kind of semantics s

involved, namely first order logic. This leads to

[

i dng

simplicity in expression and ease of provahility. The cost
is lack of expressiveness but 1Ina Jo is presently being

upgraded to include more extended expressiveness,

Ina Jo provides a means for proving that the top level
spec satisfies user supplied design criteria. These are
written in Ina Jo and are syntactically part of the top
level spec. Only experience will show whether this approach
is adequate fcr the expressing of linteresting security
properties. In order to prove these desiqn criteria for the
top level one submit: “he spec to the lanquage processor
which produces candidate theorems the truth of which imply
that the criteria holds of all systems that satisfy the top
level spec. These theorems are proved using the associated
ITP (Interactive Theorem Prover). The latter is simple to
use and well integrated 1into the system. It is not very
powerful but is continually being upgraded. It contains,
for example, very little arithmetic since there has been
very little need for it in the projects SDC has used Ina Jo

on.

State mapping between adjacent levels are essentially
the same as HDM but the transform mappings are logical
rather than procedural. It T is an upper level transform

then the mapping of T, M(T), is essentially

IF CONDl1 THEN D1 ELSE

IF COND2 THEN D2 ELSE

IF COND3 THEN D3 where the COND's are 1Ina Jo
Boolean expressions describing subsets of the lower level
state space and the D's are lower level transforms. With
respect to these mappings one proves that each subsequent
level is a refinement of its predecesscor. As in the case of
the proof of the top 1level design criteria candidate
theorems are produced by the language processor from each

pair of adjacent levels and these are proved using the ITP.

All that we have described so far is implemented but we
should remark that when all this proving is completed one
still has not verified any HOL code let alone written it,.
This is not meant to imply that describing, refining, and
proving the specifications in this way is without value., We
did not encounter serious difficulty in using the system.
Since the ITP is weak many "self-evident" axioms had to be
manually added to finish proofs. This 1is obviocusly a
dangerous procedure in verification since "self-evident"”
sometimes turns cut to be false. We have made SDC aware of
all bugs and unimplemented details we have come across and
they intend to act on them. FDM was produced primarily with
internal SDC funds and is a proprietary product. Since it
is fashionable in Washington nowadays to extol the spiritual
values of capitalism one should remark here that private

property tends to be kept up by its owners.

X-11

i
3
1
3

We now describe SDC's intentions with respect to coie
verification. In FDM all code verification will be done
after all ievels have been designed and proved. Beneath the
bottom level 1Ina Jo spec there will be an implementation
level which relates the bottom level Ina Jo variables and
tr-nsforms to the names of HOL variables and transforms. An
extensior. of the language processor not yet implemented will
take this level and generate entry and exit conditions for
the HOL procedures. These together with HOL code will yield
VCs when passed through a VCG (a MODULA VCG for Ina Jo entry
and exit conditions is near completion). In aitition in
order to show that the resulting program is an instance of
the family of systems specified by the Ina Jo s - it will
be necessary to check that in the resulting mascter proyran
the entry conditions for each HOL prace wure nhold whenover it
is ~called. The reason the mappingys of transforms between
levels are restricted to the form we escribed 13 to make it
possible to assemble mechanically the entry conditions for
each HOL procedure. This is a subtle point not menticned in
5DC Adocumentation and was the cause of some misunderstanding

among ocutside students of Ina Jo.

Much work remains to be done to complete the code
verification aspects of Ina Jo and Digicomp expects to fund
some of it. It is premature to make judgements but our
experience with HDM leads wus to suspect that code
verification is not as simple as some would maintain. For

example since the present version of FDM does not aimit

X=12

modularity the amount of work to bhe done at ~ode
verification time may be inordinately larje and various
means to structure it may have to be devised. The theorem
prover will need to be upgraded to handle the full spectrum

of mathematics that occurs in program verification.

ITI. GYPSY

Unlike HDM and FDM Gypsy is both a programming and
specification languaje. Gypsy text appears like a Pascal
program in which specifications are interspersed at key
points., For example, every procedure and function has entry
and exit assertions and every loop is broken by at least one
assertion. Verification conditicns are qgenerated from these
specifications and code, and these VCs are submitted to an
integrated theorem prover. This is the central locp of the
Gypsy Verification Environment (GVE). This environment is
quite congenial. It contains a library manager which keeps
track of the various parts of the verification process and
their status, an internal structured editor and links to
external editors like emacs, facilities to incrementally

write and prove code, etc.

As a result of the integrated lanquage there 1is no
strict separation of design and implementation in Gypsy.
The user can shade a Gypsy source text heavily towards the
one or the other. 1t could be pure specification with n.
code or pure code with no specification. The latter is

compilable with PDP-11 object code.

X=13

As mentioned above the Gypsy environment lends itself
to incremental usage. Pieces of program are written and
verified. Some of these pieces are high-level routines and
some low-level. The bodies of the latter may be left
pending while their entry and exit assertions are used to
prove the correctness of the high 1level routines. The
system could be used as a vehicle for many design strategies

such as "stepwise refinement”, top-down", etc.

Gypsy also provides a limited form of concurrency
through the wuse of buffers that simultanecus running
processes can send to or get from. Proof techniques have
been developed to handle the logic of this kind of

concurrency.

Gypsy's claim to fame is that one can actually produce
verified code. The main caveat seems to be that since the
specification is so close to the implementation level it is
not simple and abstract encugh tc get a firm grasp on what
has been proved about a large system. It lacks for example
Ina Jo's facility of expressing a design criteria at a high
level and then wusing mappings as a dictionary to
unabbreviate it down to a <condition on actual program
variables. Gypsy does recognizes the need to provide
mechanisms of abstraction so that the intent of the code
becomes more transparent. But it seems that this goal was

given a lower priority than the the admirable o¢ne of

producing a system in which one can develop verifiable and

compilable code. One such abstraction mechanism is a form
of abstract data types using access lists., 1t is described
in the Gypsy language manual but hitherto not implemented.
This is one of the enhancements currently being funded by

Digicomp.

Although Don Good and his senior assistant Rich Cohen
have been with the system since its inception many people
have worked on Gypsy as graduate students at UTexas. This
is reflected 1in a certain uneveness in the components. An
embarrassing example 1is that although unproved lemmas
sometimes have to be added to the knowledge base in order to
complete proofs their status as unproved can be forgotten by
the system. Digicomp is funding a top level
reimplementation which will address some of these issues.
This will be done in a yet to be finalized dialect of LISP
with portability a major concern in the choice. The present
version is written in UCI LISP running under Tops-20 and
runs into space problems when verifying medium size

programs.

From a logician's point of view the major criticism of
the system is that it deals only with partial rather than
total correctness as these terms are used in the field of
program verification. This means that is no mechanism is
provided to prove termination of subroutines. All functions
are dealt with by the theorem prover as if they were total

and in this way an unsoundness could be introduced. The

ST i

|
|

MODULA-CIF version of HDM attempted to deal with this
problem through the use of a user supplied clock functinan.

Ina Jo has not faced this issue yet.

[would now like to mention some areas for possible

research.

L. There is a need for an understandable, intellijible
specification lanjuage. The present specification languaaes
are like the "machine languaqe" of specification languades.
They are difficult to read, too homogencous. 1t seems the
vroper constructs peculiar to specification remain to be

discovered.

2. Theorem proving is the big bottleneck in code
verification. Proof checkers are too pedestrian and the
automatic ones run away. The ideal would be a system which
could take a skz2tch of a proof and expand it into a real
procf. 1 don't believe this is an 1impossible qoal, 1 do
believe it is a necessity if large scale code verification
is to become a reality but 1 also feel it 1requires a
significant breakthrouagh in the field of automatic theorem
proving. The latter 1is a pure research area involving

mathematics, logic, und artificial intelligence.

3. 1Integration seems to he the key to success in this
area, Ina Jo is weaker piece by piece than HDM but the
integration the system has compensates. Gypsy is the most

satisfying to work with because of its integration.

N-16

4. Finally T would like to mention

using approachas to code wverification

generation. There are several such methods

allo one to use the vrogram text

ireelf

the

than translations of it into another

advantages of the vcg approach is
purpose theorem provers since the
ordinary mathemat.cal language.
VCG approach is further integration
translation from cne lanquage to an

for sucoesns.,

rhat

ve s
Vs

Tr e

an

S her

e

he

ather

i

aviilable

T Proots

Lanyaaa.e,

AN et

SEAaAtenen

pussibility

ot

rhan V7
whiloh
rathon

coner

0

.

Advantare Lt e

anity, The

b

t

1
i

Tre ey

COMPUTER SECURITY RELATED PUBLICATIONS

Listed below are titles and accession numbers of some computer security
related publications which are now available from the Defense Technical
Information Center (DTIC), Defense Logistics Agency, Building 5, Cameron
Station, Alexandria, Virginia 22314 (Phone 202-274-7633, AUTOVON 284-7633).

Firms or individuals registered with the DTIC may obtain copies for a flat fee
per document. Those who are not registered with the DTIC may obtain copies
from the National Technical Information Service, 5285 Port Royal Road,
Springfield, Virginia 22161 Orders may be placed or price quotations may be
obtained for each document by calling 703-~487-4650.

AD A101 996 Proceedings of the Third Seminar on the DoD Computer Security
Initiative

AD A101 997 Proceedings of the Second Seminar on the DoD Computer
Security Initiative

AD A101 998 Proceedings of the Seminar on the DoD Computer Security
Initiative - (First Seminar)

AD 076 617 Security Controls for Computer Systems Report of DSB Task
Force on Computer Security (Rand Ware Report, October 1979)

AD A103 399 TRUSTED COMPUTER SYSTEMS - Needs and Incen“ives for Use in
Government and the Private Sector (Rand Turn Report, June
1981)

AD A095 409 Modernization of the WWMCCS Information System (WIS) (DCA)
January 1981

AD A108 829 Trusted Computer Systems-Glossary (Huff, MITRE), March 1981

AD A108 827 Computer Security Bibliography (Discepolo, MITRE) November
1980

AD A108 828 Industry Trusted Computer System Evaluation Process (Trotter
and Tasker, MITRE) May 1980

AD A108 830 History of Protection in Computer Systems (Tangney, MITRE),
July 1980

AD A108 831 Specification of a Trusted Computing Base (TCB) (Nibaldi,

MITRE) November 1979

Proposed Technical Evaluation Criteria for Trusted Computer
Systems (Nibaldi, MITRE) Uctober 1979

Formal Specifications of KVM/370 Kerneli and Trusted
Processes (Gold and Thompson, SDC) May 1978

Final Report VM/370 Security Retrofit Program-Detailed
Design and Implementation Phase {Gold and others, SDC)
May 1978)

Semi-Formal Description of KVM/370 Trusted Frocesses
(Thompson, SDC) December 1977

