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LIST OF SYMBOLS AND TERMS

a ~ radius to inside wall

b - radius to outside wall

r - radius to any point in the wall

P - radius of the elastic-plastic interface
0D -~ outside diameter of ring

ID <~ 1ingide diameter of ring

Y ~ angle of opening of the ring at the slit
M ~ moment needed to close slit opening of the ring
0g -~ tangential stress

Oy = yield strength

deg = change in tangential strain

BC -~ Dbore closure; loss of bore expansion

BE -~ bore enlargement

E - modulus of elasticity = 30 x 10 psi

Yexperimental

Separation Argle Ratio =~
El oy
-—= g
e

O8experimental
Residual Stress Ratio =~ ~e—w———wcwana=

Bore Enlargement Ratio = ====——=<-
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INTRODUCTION

In any prestressed structure the loss of prestress in service can result
in improper functioning or in failure. In pressure vessels the loss of
autofrettage-induced residual stresses cdn result in permanent contraction of
the bore and in redurtion of the improvement in fatigue life provided by the
compressive residual hore stress. Relaxation may be brought about by ylelding
at the elevatad bore temperature ac the result of a thermal stress gradient
caused by internal heating and e~xternal cooling. Although relaxaticn cannot
be totally prevented, it can be controlled by limiting the autofrettage
overatrain to suit the severity of the thermal gradient.

A 1969 paper by Dawson and Jacksonl studied the relaxation of residual

stresses in autofrettaged cylinders subjected to oven heating in a salt bath

up to 850°F for as long as 72 iours., They found "that for a given temperature

and time the bore tangenf.1al stress relaxes in a manner that can be predicted
by means of creep data.," They concluded that "the autofrettage process could
be used to signlficantly extend the creep life of an autoclave provided that

there 18 proper control of pressure and temperature,” and “that the design of
autofrettaged autoclaves 1is amenahle to an analytical approach.” Their study,

however, did not include a temperatura gradient in the cylinders.

lpawson, V. C. D. and Jackson, J. W., "Irvestigation of the Relaxation of
Residual Stresses in Autofrettaged Cylinders,"” Trans. of ASME, Jour. of Basic
Engineering, Vol. 91, Series D, No. 1, pp. 63-66, March 1969,
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OBJECT

The present experimental study was initiated to determine the amount of
overstrain permissible without causing excessive bore closure due to
temperature effects in pressure vessels. Our purpose was Lo measure the
amount of permanent bore contraction resulting from the combination of lowered
yleld strength, thermal stress gradient, and residual stress gradient at a
variety of bore temperatures and temperature distributions. Work has been
continued toward finding ways to evaluate the changes in residual stresses as
functions of the bore temperature, the temperature gradient, and the starting
amount of autofrettage overstrain., Recently, analytical approaches have
become available, involving relations between thermal and residual stress
distributions, superposition techniques, and finite element analysis, which
can provide solutions for these problems.

The following experimerical results and data analysis are informative in
themselves as to the nature and magnitude of the relaxation phenomena when it
occura in large pressure vessels., They are offered, as well, as material with
which to test and verify such analytical formulations. One important
application 1is in the evaluation of stress intensity factors for cracks in the

residual stress fields of autofrettaged thick walled cylinders for calculation

of fatigue lives.
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SPECIMENS

inches long.

OD/ID of 1.82.

pair had 50% overstrain,

listed in Table I.

TABLE I. DIMENSTIONS AND AUTOFRETTAGE BORE EXPANSIONS

oD/ID = 2,

14

oD/ID = 1,82

100% Overstrain
1D = 4,C22"
OD = 8.695"

Bore Expansion =

Yield Strength

0.0510"
166 Ksi

100% Overstrain
ID = 40042"

oD = 7.405"
Bore Expansion
Yield Strength

0.0300"
174 Ksi

75% Overstrain
ID = 4,042"
oD = 8,735"

Bore Expansion = 0,0330"
Yield Strength = 170 Ksi

75% Overstrain
ID = 4.060"
OD = 7.435"

Bore Expansion =

0.02n0"

Yield Strength = 168 Ksi

50% Overstrain
ID - 4.060"
oD = 8,775"

Bore Expansion = 0,0170"
Yield Strength = 169 Ksi

L

50% Overstrain
ID = 4,071"
oD = 7,455"

Bore Expansion = 0,0100"
Yield Strength = 164 Ksi

|

The bore closure studies were conducted using smooth-bore cylinders 25
These cylinders were machined with several bore sizes and outer
diameters so that autofrettage with a given size mandrel would produce three
pairs of cylinders with a diameter ratio, OD/ID of 2,14 and three pairs with
For each size, one palr had 100%, one pair had 75%, and one
The dimensions and permanent bore expansions are

A one~inch ring was cut off the end of each cylinder prior

to the heating experiment to be used for initial residual stress measurements.
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PROCEDURFE
For the purpose of heating, a large blowtorch was utilized as shown in i
Figure 1. A stainless steel cone was bolted to the specimen for concentrating E
the flame into the bore. This procedure produced nominal hore temperatures i
(Ta) of 950°F at the hot end station, 730°F at the mid-length, and 650°F at ?
the exit end station., Cooling was accomplished by means of an externally ]
mounited perforated coil, ?
é
-§

A N AR S

Figure 1. Heating and Cooling Arrangement
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The outside surface was cocled Ly either convection or using a coil for
alr-water mist or a water spray. Four test conditions were used, giving four
ranges of temperature difference, AT, between the ID and OD: (1) up to 100°F
with natural convection cooling, (2) from 100°F to 300°F with forced alr ccol-
ing, (3) from 300°F to 450°F with air-water mist and (4) ffom 450°F to 800°F
with water spray cvoling. The conditions were maintained for 15 minutes,

Temperature measurement was obtained during the heating—-quenching
operation by means of continuously measured chromel-alumel thermocouples,
welded to the OD surface and at two depths in the cylinder wall, mid-thickness
and 1/4 inch from the bore surface.

One inch thick rings were cut from the three stations for residual stress
measurement; these rings belng located at 5, 12,5, and 20 inches from the hot
end of the specimen. Residual stress measurement was performed by slitting of

the rings and measuring punch mark separation, by SR-4 strain gages mounted

adjacent to the slit, and by measurement of angle of slit opening. The strain
gage approach is felt to give the most accurate measurement of stress relief at

the cylinder surfaces.

While the angle of opening can be measured repeatedly to insure accuracy,

the stress relieved is calculated from the angle by substitution into ejguations
relating the stress to the moment required to close the gap in a curved beam.
Tnis permits calculation of stress values for any desired radii, but does not
give the actual stress relieved at a particular point in the cylinder wall.
For purpose of comparison, several rings from autofrettaged, non-heated

cylinders were exposed to steady state uniform furnace heating.
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RESULTS AND DISCUSSION

The strains relieved and the separation angles measured are listed in
Table II. 1In this table the bore enlargement, AD, is the difference bhetween
the original bore diameter prior to autofrettage and the final diameter
subgequent to the autofrettage and thermal treatment listed in Table II,
Percent overstrain 1is defined as %0S = 100(p-a)/(b-a) where p is the
elastic-plastic interface ratius and b and a the external and internal radius
respectively,

The relaxed residual stress measured after thermal exposure is compared
with the theoretical residual stress calculated using the distortion energy
theory yleld criterion of von Mises, The equations2 for tangential residual

stress 0y and radial residual stress o, are:

20 2 2 2_1,2 241,2
y  a b p4~b p p4+b p
——— {-5-—5 1+ =3) [u-—E— - fn -] + [===5- = 2n -1}
Y3 b4-a r 2b a 2b r
gg = akr<p (D
20 b2 p? a2 p2-p2 p
—-Z (1 + -] {-'--i + =373 ["——-E- - 4 -]} pS<r<b
/3 r2 2b2  b2-a2  2p a
20 2 2 ,2.42 212
y a bé  pe-b p pe- P
=== {[=5==3][1 = =3][===3= = & =] + [===== = fn -]}
3 b2-a? r 2b a 2b r
Op = as<r<p
20 bl pz al p2,_b2 0 (2)
el LS Y B oS
3 r2 22  b%-a?  2p a

where gy 18 the yleld strength, a is the inside radius, b is the outside

radius and p 18 the radius to the elastic-plastic interfacae,

2pavidson, T. E., Barton, C. S., Reiner, A. N., and Kendall, D. P.,
"Overstrain of High Strength, Open End Cylinders of Intermediate Diameter
Ratio," Proc. Jst International Congress on Experimental Mechanics, pp.
335-352, Pergamon Press, Oxford, 1963.
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TABLE IIla.

STRAINS RELIEVED AND SEPARATION ANGLES

OD/ID = 2,14
Bore Strains Separation Punch Mark
Enlargement Relieved Angle Separation
Type (in,) Ae {u in/in) (deg.) (in.}
100% 0S8 AD ID oD X oD
Unfired 0.0510 +4213 -1927 3.90 0.325
Ta = 648"F 0.0464 - - - -
AT = 422
Ta = 736 0.0451 +3477 -1920 - 0.245
AT = 541
Ta = 932 0.0362 +2288 =20 1.85 0.130
AT = 673
75% 08
Unfired 0.0330 +4953 ~1147 3.63 0.280
H Ta = 685°F 0.0295 - - - -
L\ AT = 490
ﬁ Ta = 760 0.0289 +4152 -1156 3.20 0,230
k. AT = 516
Ta = 947 0.0176 +2700 -654 2.08 0.160
AT = 726
50% 08
Unfired 0.0170 +4357 -1104 2,96 0.200
Ta = 638°F 0.0143 - - - -
AT = 418
Ta = 733 0.0142 +3295 -1387 2,66 0.175
AT = 456
Ta = 969 0.0079 +144 =145 1.56 0,095
AT = 740
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TABLE IIb.

STRAINS RELIEVED AND SEPARATION ANGLES

oD/ID = 1,82

TUET, St ET A 4w o

LR TGN, T = T

TR T o

Bore Strains Separation Punch Mark
Enlargement Relieved Angle Separation

Type (in.) Ae (u in/in) (deg.) (in,)

100% 08 AD 1D oD X oD
Unfired 0.0300 +4870 - 5.25 0.315
Ta = 656°F 0.0287 +4195 -3272 4.87 0.295
AT = =
Ta = 793 0.0288 +3090 -2805 4.59 0.270
AT = 574
Ta = 1123 0.0239 +957 -1441 2.20 0.295
AT = 802

75% 08
Unfired 0.0200 +4065 -2445 4,42 0.260
Ta « 641°F 0.0198 +3745 -2325 4.37 0.250
AT = 409
Ta = 798 0.0190 +3117 -1698 3.85 0,245
AT = 532
Ta = 956 0.0149 +861 -1552 2.80 0.160
AT = 726

50% 08
Unfired 0.0100 +1523 -1708 3.60 0.170
Ta = 650°F 0.0098 +2903 ~-1045 3.38 0.175
AT = 466
Ta = 745 0.0090 +2818 -1552 - 0.165
AT = 452
Ta = 939 0.0070 +1567 -887 2,00 0.110
AT = 722
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The tangential residual stress og 1s of main intevest because of the
beneficial effects of comprecsive residual stress og at the bore, which

results in enhanced resistance to yielding and to fatigue.

Calculation of the stress relieved by slitting the rings, using strain

. ¥
\ndR, e L A el il i el _MnmmJ

gage measurements, employed the unlaxial stress-strain relationship

gg = E(Aeg)
f where E 1s 30x10® psi and Aeg 18 the change in strain measured with a
} - tangential strain gage in microinch per inch.

e From the angle y of opening of the ring at the slit the residual stress

is caleculated by meaans of the moment M required to close the gap to form a

closed ring. The ring is assumed to act elastically as a curved beam and to

s

g require a pure bending moment on the slit surface.3 ‘This moment js given by

G2 o

YE (bZ2-a?)2 - 4a?bZ(2n(b/a))?

E -

3
8n 2(b%-a?) )

The stress at any radius r 1s then calculated from

~4M  -a?h? . ) 2 3 ,
{: gg = S [_-;5- Zn(b/a) + b<an(xr/b) + a“in(a/r) + b<=a) (4)
g
2 ~4M -a’bh?
o = - [-=5-= &n(b/a) + b%2n(r/b) + a?in(a/r)) (5)
r

where N = (b2-a?) - 4a2b2(&n(b/a))?

i M coapiln i

i-ca o CAE Rl

Rk

a 1is the radius to the inside surface and

b 18 the radius to the outside surface.

Lot vhaaced

AT TS

. 3Timoahenko, S. and Goodier, J. N., "Theory of Elasticity,” Second Edition,
C McGraw Hill, NY (1951), pp. 60-69, Third Edition, McGraw HILll, NY (1970),
J pp. 68-80.
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Equations (4) and (5) do not apply for cases other than 100% overstrain, hence
further analysis 1is necessary to evaluate the stresses in partially
overstrained cylinders.

The following graphs show the expected and measured residual stresses,
bore closure and their variation with thermal gradient test conditions in
cylinders of two diameter ratios, 2,14 and .82,

Figures 2 and 3 respectively show the theoretical distribution of
resldual stress for 2,14 and 1.82 diameter ratio, for percent overstrains of
25%, 50%, 75%, and 100%.

Figure 4 shows the temperature distribution through the thickness of the
cylinder wall. The data points are for forced air cooling of the 2.14
diameter ratio cylinder. The curves are plots of the theoretical logarithmic
steady-state temperature distribution? calculated for the temperature
difference AT which was measured between the ID and OD with imbedded
thermocouples. The good agreement between data points and theory indicates
that the test conditions were close to the steady-state. This thermal
condition produces an assoclated stress distribution of the same shape as that

for 100% overstrain, with compression at the bore and tension at the 0D that

increase with increasing AT.

4Kreit.h, F., "Principles of Heat Transfer," International Textbook Co.,
Scranton, PA, 1958, pp. 25-29.
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Figure 5 shows the measured bore closure and i{ts dependence npon the

temperature difference AT between the ID and OD for the three bore

JRCE T I IR T

temperatures which were measured a*t the front hot end, the mid-length and the

v rear exit end of the cylinders. The data points are plotted at increasing AT

o sl s e SR

values corresponding to the progressiveiy increasing cooling of natural

i .

convectlion, forced convection, alr-water spray, and water spray. The curves

may be approximated by an equation of the form y = A(l-eB(AT)). For example, é
with a bore temperature of 730°F the approximation is expressed by

BC = 0,006(1-e~+0165(5/9AT)) | where BC 1s bore closure in inches and AT is 1n

-t

Y
vl .o st

degrees Farenheit,

It is apparent that the bore closure rises rapidly with small increase in
; AT but approaches a limit asymptotically as AT is increased beyond 200°F.
This zraph 1is for 100% overstrained cylinders of the 2.14 diameter ratio. 1In

this case the limit is 0.006 inch for the bore temperature of 730°F. For the

T
orreuy

L 950°F bore temperature the limit is more than twice as big.

Figure 6 shows a similar dependence ur bore closure on AT for the 75%

B . T et LTINS

overstrained cylinders of 2.14 diameter ratio. This data did not show the

e e,

well defined asymptotic nature seen in Figure 5. Also, the bore closure

i

corresponding to any AT is much suwaller, by a factor of about one-half at AT

of 200°F for instance, than those for 100% overstrain,

e . sk

e

of 2.14 diameter ratio. These measured bore closures are not much different

from those in the 75% overstrained cylinders. Thus, reduction from 75% to 50%

A

!

1

E ] Figure 7 shows bore closure versus AT for the 50% overstrained cylinders
£

|

1

E

|

| overstrain does not significantly reduce the bore closure for this diameter

P ratio.
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Figure 8 is a graph of the bore closure dependence on AT for 100%
overstrained cylinders of the 1.82 diameter ratio, piotted for the hot end,
the mid-length and the exit end bore temperatures, For phis diameter ratio
the maximum bore closures measured at AT near 600°F, corresponding to water
cooling, are about 0.006 inch, while those at the lower bore temperatures’ are
much less than that, Thus, the bore closures in tne 1,82 diameter ratio
cylinders are less than half as large as those in t'.e 2.14 diameter ratio
cylinders.

Figure 9 shows similar results for the 75% overstrained cylinde:s of 1.82
diameter ratio. For bore temperatures less than 730°F the bore closure 1s
very small,

Figure 10 shows similar results for the 50X overstrained cylinders of
1.82 diameter ratio. The maximum bore closure was only about 0.103 inch even
at the 950°F bore temperature.

Figure 11 18 a plot of bore closure versus percent overstrain for a given
AT of 200°F in the cylinders of 2,14 diameter ratio., The large increase in ’
bore closure for percent overstrain greater than 75% is readily apparent here
for each of the three bore temperatures., This is attributed to the larger
amount of yielding during heating because of the greater depth and magnitude
of ID compressive residual stress and the larger OD tensile residual stress in

the 100% overstrained cylinders, see again Figure 2,
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Figure 12 is a plot of bore closure versus percent overstraln for ;
I
{

one-inch thick rings which were subjacted to furnace heating for two hours at

o L Lk et o 10

each of the sucressive temperatures from 600°F to 1000°F shown., These rings :

were cut from cylinders of 2.14 diameter ratio after autofrettage. Note that

the bore closure scale on this graph is 1/5 that on Figure 11, These graphs

indicate that the thermal gradient for a AT of 20’ .epresented in Figure 11

,
o

causes bore closures about five times greater for the 100% overstrain and

about three times greater for the 757 overstrain than did the uniform
temperature from two hours of furnace heating represented in Figure 12, [

The effect of such bore closures is not only to constrict the cylinder

opening, hut to reduce the residual stress levels by ralaxation. The residual

stress remaining was measured by slitting rings from the three locations in

the cylinders.

Figure 13 1is a graph of the ring separation angle ratio plotted versus

S

percent overstrain, The ratio 1is formed by dividing the separation angle
measured after slitting a riag of the partially overstrained specimen by the
theoretical angle for 100% overstrain., From Equations (1), (3), and (4) the

theoretical angle 18 found to he expressed in degrees hy:

B R S i R e R

8oy (360)
Yr00% = === (5=
3 g 27

T

o ren At i e sl . i ol o

—

and is theoretically independent of the diameter ratio OD/ID of the ring.

Here oy 1is 170,0C0 psi and E is 30x10® psi, hence Yooy = 4./10 degrees.

TR

The upper data points were obtained from the separation angles of rings

of 1.82 diameter ratio after slitting. The lower data points were obtained

similarly from slitting rings of the 2.14 diameter ratio, and the single data

23
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point from a 100% overstrained eight inch tube was from a ring of 2.09
diameter ratio. These are compared with a curve from an analysis by A. P.

Parker? which expresses the ratio of the moments, Mps for partial overstrain

and Mjyg for 100% overstrain, required to close the angular gap resulting from

slitting rings of 2,00 diameter ratio. The analytical curves for all other
diameter ratios discussed here should be within 1% of that shown in Figure 173.
The ratio of the separation angles predicted by analysis should he the same as
the ratio of the moments.

Comparison of the experimental results with the curve for 2.00 diameter
ratio indicates that there is a reduction of angle as the diameter ratio
increases from 1.82 to 2.14, It is belleved that non-ideal Bauschinger
effects of reverse yielding occurring during the autofrettage process account
for the discrepancies betwaen the data and the analytical curve. Greater
tensile yielding and more reversed yielding would occur at the bore of the
larger diameter ratio cylinders during autofrettage, resulting in less than
expected residual stress. The discrepancy from the theory 1is greatest at 100%
overstrain, which 1s logical because the blggest Bauschinger effect should
accompany the largest overstrain., This discrepancy at 100% overstrain is even
more pronounced in the graphs of residual stress obtained from strain gage

data which are shown 1in Figures 14 and 1i5.

5parker, A, P,, Underwood, J. H., Throop, J. %., and Andrasic, J. P., "Stress
Intensity and Fatigue Crack Growth in a Pressurized Autofrettaged Thick
Cylinder," presented in the ASTM l4th National Symposium on Fracture
Mechanics on June 130, 1981, UCLA, Los Angeles, Ca.
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Figure 14 shows the theoretical variation of tensile residual OD stress

in the upper portion and that of the compressive residual bore stress in the
lower portion, plotted versus percent overstrain for cylinders of 2,14
diameter ratio., Experimental measurements of residual stress relieved at
strain gages next to the sawcuts when the rings were slit are also plotted for
the unfired as—autofrettaged cylinders and for the thermally treated
autofrettaged cylinderas. At 100% overstrain the plot shows a lavge difference
between the theory and the unfired data, in both the IDAand 0D residual
stresses, The differences from theory are much greater than for the 75% and
50% overstrained cylinders., This 1is attributed to greater losses in the 100%
overstrained cylinders caused by the Bauschinger effect during the
autofrettage process.

It 1s also significant that at the elevated bore temperatures of 730°F
and 950°F and the AT corresponding to water cooling, large losses in residual
stress occurred in the 15 minute thermal exposure.

Figure 15 shows a similar graph of residual stress versus percent
overstrain for the 1.82 diameter ratio cylindera., Here there is no great
difference between the strain-gage measured residual stresses in the unfired
autofrettaged cylinders and the theory. However, the losses of residual
stress at the elevated bore temperatures and AT corresponding to water cooling
;re just as severe as in the 2.14 diameter ratio cylinders. They indicate
that even for this smaller diameter ratio, water cooling of the hot cylinders

can cause large loss of autofrettage residual stresse: in a few minutes.
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Figure 16 shows the residual bore stress ratio expressed by the ratio
(0g experimental)/(cg theoretical) for the 2.14 diameter ratio cylinders
plotted versus the bore enlargement ratio expressed by the ratio

(final bore enlargement)/initial bore enlargement for each percentage

overstrain.

The results from the unfired cylinders plot at the bore enlargement ratio
of 1.00 and show about 30% loss from the theoretical residual bore stress in
the 100% overstrained cylinders, about 15% loss in the 75% overstrained
cylinders and about 10% loss in the 50% overstrained cylinder.

At the elevated bore temperatures and AT corresponding to water cooling

the loss in residual bore stress 1s even greater, and 1s greatest in the 100%

overstrained cylinders. Note that data points for some test conditions are

migsing in Figure 16 due to experimental problems,

Informaticn such as in Figure 16 may provide a useful measure of thermal
damage to autofrettaged cylinders, permitting one to estimate how much of the
autofrettage residual bhore stress remains in a cylinder after thermal treat-
ment or after prolonged firing and cnoling in service. From measured bore
diameters before and after autofrettage and after thermal exposure one can
determine the bore enlargement ratio and from that estimate the ratio of
remaining residual stress to the theoretical autofrettage residual stress.

Figure 17 shows a similar graph of residual bore stress ratio versus bore

enlargement ratio for the cylinders of 1,82 diameter ratio. The results for
the unfired cylinders show very small loss in residual bore stress compared to
the theoretical expected values, as mentioned earlier 1in regard to Figure 15.

On the other hand, at the elevated bore temperatures and AT corresponding to

B
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water cooling a 25% decrease in bore enlargement ratio from 1.00 to 0.75 is
accompanied by an 80%Z drop in the residual bore stress ratio, not only for the

100% overstrained cylinders but also for the 757 overstrained ones. This

indicates that for the thinner wall cylinders water cooling of tubes from bore

temperatures near 1000°F may practically eliminate the autofrettage residual

bore stresses. At the 650°F bore temperature, however, the loss of residual

bore stress is only about 20% for a decrease of about 107 in the bore

enlargement ratio resulting from water cooling.

CONCLUSTONS

l. Tn the presence of high th_.rmal gradients, residual stress relaxation

and bure closure can occur in large diameter ratio cylinders with overstrain

as low as 507.

2, The magnitude of relaxation 1s significantly greater in the presence

of thermal gradients as compared to uniform heating. This indicates that the

primary mechanism 1s reverse ylelding due to the combined compressive
autofrettage residual and thermal stresses near the bore,

3. The magnitude of relaxation increases wita increased overstrain even

though there 1s little difference in actual compressive residual bore stress
between 757 overstrain and 100X overstrain.

4, The amount of bore closure increases with measured overstrain,

thermal gradient and bore temperature, The magnitude of residual bore stress

relaxation 1s a function of the initial residual strass level and is not

directly related to percent overstrain in cylinders of large diameiar ratios.
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