

APO MIAMI \$4004

UNITED STATES ARMY TROPIC TEST CENTER

Approved for multim release; distribution adjusted.

AD A113162

August 414

A. A. 5.15

16.

PDVL F (4**

CHARACHTPLICATION OF TIDE 12A/186435220

METHODOLOGY INTERCATE OF

nu La **ga ga d**e la constante e ga ga constante e de La constante e diga ga constante e de la constante e de

DISPOSITION INSTRUCTIONS*

Destroy this report when no longer needed. Do not return it to the originator.

DISCLADER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The use of trade names in this report does not constitute an official endorsement of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

* These disposition instructions do not amply to the record copy (AR 340-18).

		READ INSTRUCTIONS
REPORT NUMBER	RT DOCUMENTATION PAGE	ISEPORE CUMPLETING FORM
TELUM Project No	5. 7-CO-RD9-TT1-004 1 11 4 / 3	
Hethodology Inve	ationtica.	S TYPE OF REPORT & PERILD COVERE
	of Test Environment	Di1
	OF REST PROTOGRAPHIC	Pinal
		USATTC Report No. 790801
AUTHORYA		B CONTRACT OR GRANT NUMBERS,
A. A. Rula		
PERFORMING ORGANI	ZATION NAME AND ADDRESS	10 PROGRAM EL EMENT PROJECT, TASP
US Army Tropic T ATTN: STETC-GTG	;	ARÊÂ 8 000k UŭIY NUMBERS
APO Miami 34004		
CONTROLLING OFFIC		12 REPORT DATE
	Evaluation Command	August 1979
ATTN: DRSTE-AD-	••	127
A NONITONNE AGENCY	Ground, MD 21005	
	•	
		Leiclassified 15- DECLASSIFICATION DOWNARADING SCHEDULE
		None
Approved for pub	ENERT (of the Appen) olic release; distribution unlimite ENERT (of the observer entered to Steek 10, 11 difference i	
Approved for pub	olic release; distribution unlimite	
Approved for pub	blic release; distribution unlimite	
Approved for pub 2 DISTRIBUTION STATE 8 SUPPLEMENTARY NO 9. KEY NORDS (Continue	Dic release; distribution unlimite ENENT for the abore of antered in Stock 10, 11 different P DTES	ten Alepulti
Approved for pub 2 DISTRIBUTION STATE 8 SUPPLEMENTARY NO 9. KEY NORDS (Continue Mapping	Dic release; distribution unlimite ENENT for the abstract antword in Stock 20, 17 although P DTES Terrain Pactor Maps	Tropic Environment
Approved for pub 2 DISTRIBUTION STATE 3 SUPPLEMENTARY NO 3 XEV NORDS (Commun Mapping Canal Zone	Dic release; distribution unlimite ENENT for the abstract antword in Stock 20, 17 although 2 DIES Terrain Pactor Maps Remote Sensing	Tropic Environment Tropic Test Center
Approved for pub	Dic release; distribution unlimite ENENT for the abstract antword in Stock 20, 17 although P DTES Terrain Pactor Maps	Tropic Environment
Approved for pub 2 DISTRIBUTION STATE 3 REV NORDS (Continue Mapping Canal Zone Methodology A ABSTRACT (Continue In October 1979,	Dic release; distribution unlimite Euclipt (of the observe) entered in Stock 20, 11 different 6 Dics of reverse of the recovery and identify by Mach make Terrain Pactor Maps Remote Sensing Ground Truth Data movements of the recovery and identify by Mach make the Gambos A-1 area reverts to t	Tropic Environment Tropic Test Center Humid Tropics
Approved for pub 2 DISTRIBUTION STATE 3 SUPPLEMENTARY NO 3 REV NORDS (Commun Mapping Canal Zone Methodology 4 AdSTRACT (Commun In October 1979, New area has bee	Dic release; distribution unlimite Euclipt (of the absence entered in Stock 20, 11 different 6 Dick of reverse of the increasery and identify by Mack make Terrain Pactor Maps Remote Sensing Ground Truth Data memory of the increasery and identify by Mack make the Gambos A-1 area reverts to t in assigned to USATTC for environme	Tropic Environment Tropic Test Center Humid Tropics
Approved for pub 2 DISTRIBUTION STATE 3 SUPPLEMENTARY NO 3 XEV NORDS (Commun Mapping Canal Zone Methodology 4 ABSTRACT (Commun In October 1979, New area has been a pilot program	Dic release; distribution unlimite Euclipt (of the observe) entered in Stock 20, 11 different 6 Dics of reverse of the recovery and identify by Mach make Terrain Pactor Maps Remote Sensing Ground Truth Data movements of the recovery and identify by Mach make the Gambos A-1 area reverts to t	Tropic Environment Tropic Test Center Humid Tropics
Approved for pub 2 DISTRIBUTION STATE 3 SUPPLEMENTARY NO 3 SUPPLEMENTARY NO 5 REV NORDS (Continue Mapping Canal Zone Methodology 4 ABSTRACT (Continue In October 1979, new area has bee a pilot program of future studie Approximately o	Dic release; distribution unlimite Euclipt (of the absorble entered in Steck 20, 11 alternate Dice reverse of the distribution of Steck 20, 11 alternate Dice reverse of the distribution of Steck 20, 11 alternate Terrain Pactor Maps Remote Sensing Ground Truth Data mereous of the distribution for Steck number the Gambos A-1 area reverts to t in assigned to USANTC for environme accomplished with limited resource	Tropic Environment Tropic Test Center Humid Tropics he Republic ma, and ntal testing report is as to determine the direction reain in the new area. e negotiated by foot without

HINLEANDER LED

SECURITY CLASSIFIL ATION OF THIS PAGE(Then Date Entered)

Block 20 cont

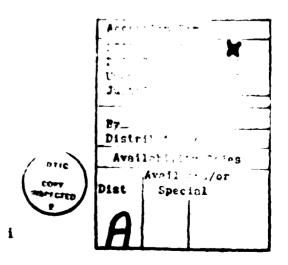
and surveillance detection; variations in relief provide adequate conditions for testing communication devices. Areas are very limited for testing munitions penetration and explosives because of proximity to the Panama Canal and Gamboa, and the lack of grasslands.

Recommended actions were to collect additional terrain data to permit a better definition of boundaries of terrain factor maps, obtain new 1:10,000 aerial photographs to assist in refining terrain unit boundaries, and develop a flexibility to test in a variety of areas on an ad hoc basis rather than in a single area.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Date Entered,

TNBLE OF CONTENTS


																												Page
Pore	Porewordi															ii												
						5	BC	<u>F1</u>	<u> </u>	1	•	9	M	-	<u>Y</u>													
1.1	Background	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	1
1.2	Background Objectives Summary of	 Proo	-		•	٠	•	٠	٠	٠	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	٠	•	1
1.4	Summary of Conclusions	Resu	lt		•••	•	•	•	•	•	•	:	•		•	•	:	•	:	:	•	•	•	•	•		•	3
1.5	Conclusions Recommendat		•	• •	•	•	٠	٠	٠	•	•	•	٠	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	4
1.0	HECOMMERCE	1011	•	• •	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	2

SECTION 2. DETAILS OF INVESTIGATION

2.1	Description of New Gamboa Test A	rea .	• •				•			•			•	•	7
2.2	Data Collection		• •			•								•	12
	Preparation of Terrain Factor Ma														
2.4	Application of Terrain Pactor In	forma	tion	•	• •	•	•	• •	•	•	•	•	•	•	17

SECTION 3. APPENDIXES

A	Methodology Investigation Directive and Proposal
8	Areal Terrain Measurements and Data Processing
	Procedures
С	Mapping Techniques for Selected Terrain Factors
D	Data Collected
E	Terrain Pactor Map Portfolio
F	Photographs of Data Sites
G	Symbols
Ħ	References
1	Distribution List.

•

POREMORD

The investigation was conducted by the Gamboa Task Group of the US Army Tropic Test Center (USATTC) during the period May to August 1979. The Task Group consisted of USATTC staff, contract personnel and Student Assistants temporarily employed for this project. Students participating were: Harold J. West, James A. Saffold, Thomas S. Wallace, Ricardo Garcia, Mitchell Pierson, William Roger, Jr., Mary Kelleher, and Marla A. Hinman. The task force was assembled to produce appropriate environmental data necessary to locate, describe, plan, and construct new environmental test facilities within allotted funds. The facilities are required by USATTC to execute its RDTE mission, because the areas on which the present facilities are located will revert to the Republic of Panama in October 1979.

This report includes a synthesis of available environmental data selected to describe the environment of the area in appropriate terms, procedures used to collect and process available ground truth data collected specifically for this investigation, application of data, and procedures used to portray the information on terrain factor maps.

To ensure that the state-of-the-art was used for collecting, analyzing, and portraying the terrain data in terms usable as input to available mathematical models, J. H. Robinson and D. Andrews of the US Army Engineer Waterways Experiment Station and M. Satterwhite and P. Henley of the US Army Engineer Topographic Laboratory participated in the study and preparation of the data base, terrain factor maps, and Appendix C of this report.

Time constraints did not permit completion of the field work or complete analysis of the data, as originally planned; therefore, some data bases and their terrain factor maps lack a good distribution of data to ensure a high level of reliability. Also, some proposed factor maps were not initiated because of lack of data and personnel.

Field work should be continued to expand the present data base and to include in the data base those factors such as soil strength that are seasonal in nature; and the present terrain factor boundaries should be refined as data permit.

The concepts and methodology pursued in achieving the objectives of this study should be continued in the future and the study should be considered a living thing. It provides a sound basis on which research and development can improve methods and techniques for testing, and for evaluating Army materiel in the humid tropics in an orderly and meaningful manner.

Ħ

SECTION I. SUMMARY

1.1 BACKGROUND

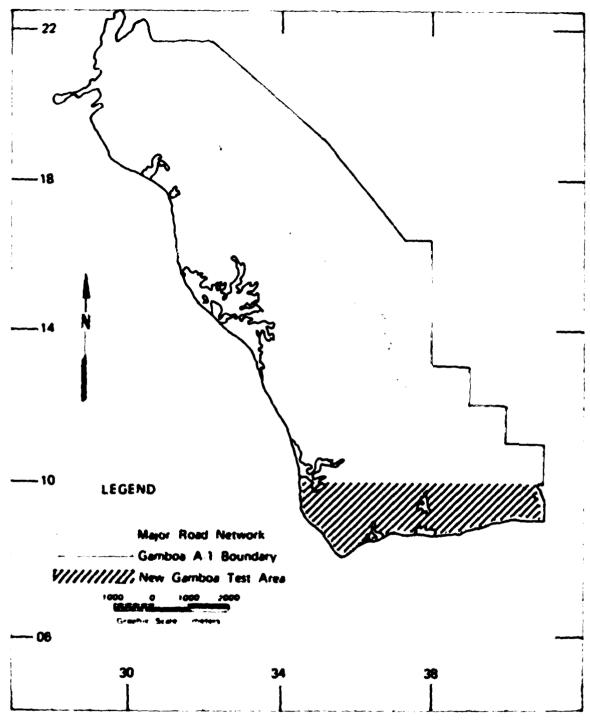
a. After 1 October 1979 most of US Army Tropic Test Center (USATTC) environmental test areas located in the Gamboa A-1 area (figure 1) will revert to the Republic of Panama in accordance with terms of the 1977 Panama Canal Treaty. A new area (Cerro Pelado) has been assigned USATTC for environmental testing and study purposes. Therefore, it was necessary to establish an environmental data base of the new area.

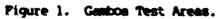
b. Although implementation of the Treaty will limit access to areas suitable for future environmental testing in the humid tropics, the mission of USATTC remains unchanged. As in the past, the final analysis of quality assurance evaluations of many categories of Army material can best be achieved with confidence through realistic developmental and operational testing, coupled with mathematical performance prediction models. The process ensures that the specified performance criteria are met in a variety of climatic categories. Thus, for meaningful environmental tests, facilities are required to evaluate known and perceived effects which will influence the performance of man and material when tested against mission profiles.

1.2 OBJECTIVES

The primary objective of the investigation was to characterize the terrain in the new area assigned USATTC to conduct environmental materiel tests.

Secondary objectives were to:


a. Establish uniform procedures for equipment care and use, collection, tabulation and portrayal of terrain data (Appendixes B and C).


b. Establish a foundation for a sound terrain data base (Appendix D).

c. Prepare appropriate terrain factor maps using available data, air photo analysis and mapping techniques, and data collected specifically for this study (Appendixes C and E).

1.3 SUMMARY OF PROCEDURES

a. To fulfill the terrain characterization requirements, a literature search was conducted and information pertinent to this study was evaluated and summarized for each terrain factor of interest. Most of the usable data were contained in a previous USMTIC methodology investigation (Davis, et al., January 1979) (reference 1) which characterized the terrain in the former Gamboa A-1 area which forms part of the new area. The terrain factors and factor classes used to portray selected terrain factors are similar in many respects.

b. After maps such as geology, landform, drainage, slope, and soil types were prepared, these plus aerial photographs were used to select sampling sites that would provide a range of data for terrain factors for which maps would be prepared at a scale of 1:10,000. For example, soil types, geology and slope maps were used to locate sites in each soil type and at high, medium, and low topographic positions because topographic position contributes to soil wetness which in turn affects soil strength. Panchromatic and infrared aerial photography at scales of 1:10,000 and 1:20,000 were used to select vegetation sampling sites on the basis of tone and texture patterns. The final selection of sample sites was made by the survey team chief who determined if the sampling sites met the site selection criterion.

c. At each site, data were recorded to locate and adequately describe the surface composition, surface geometry and vegetation characteristics. The procedures used to collect, tabulate, and process the data are given in Appendix B. An example of the specific data collected is found in table B-1.

d. The total terrain data base, including maps and aerial photographs, was used to establish mapping units. The techniques used to establish and portray mapping units for several factor maps are discussed in Appendix C.

1.4 SUMMARY OF RESULTS

a. Maps at a scale of 1:10,000 delineating areas of designated terrain factor class values or descriptions were prepared for all terrain attributes listed below:

General

- (1) Topography
- (2) Landform
- (3) Geology
- (4) Surface Drainage

Soil Type

- (5) USDA
- (6) USCS

Soil Strength

(7) Cone Index, 0- to 6-inch depth
(8) Cone Index, 6- to 12-inch depth
(9) Rating Cone Index, 0- to 6-inch depth
(10) Rating cone Index, 6- to 12-inch depth
(11) Slope

Vegetation

- (12) Tropic Porest Life Zone
- (13) Physiognomic
- (14) Stem Density

NOTE: The Terrain Pactor Maps at Appendix E are not a part of this report but can be requested from USATTC by authorized agencies.

b. Uniform procedures were established for collecting, tabulating, and portraying terrain data.

c. A sound terrain data hase was initiated and terrain factor and factor class values were arranged in such a manner that they can be used as input to mathemetical models simulating material performance.

d. The data for the terrain factors listed above were mapped at a scale of 1:10,000 (Appendix D). The factor classes and ranges used to map each factor are shown on the maps. For those terrain factors that were mapped with some confidence, the area occupied and the frequency of occurrence of each factor class mapped were determined.

1.5 CONCLUSIONS

a. The factor maps and the data base assembled for this study provide the RDTE community with a ready update of available terrain information for the new USATIC environmental test area.

b. Statistics derived from the data base, such as areal occupancy and frequency of occurrence of terrain factor classes, are useful in establishing limits of realistic conditions against which material performance can be tested.

c. Individual factor maps can be used to select, with greater confidence, test areas in which a cause-effect relation may exist among the soldier, test item and terrain characteristics.

d. Approximately one-half of the new area cannot be negotiated by foot without difficulty because of steep slopes or soft soil/dense tangled vegetation conditions. Vegetation characteristics such as density, stem size, stem spacing and canopy cover do not afford a wide enough range in characteristics for good testing of canopy penetration and surveillance detection. The variation in relief and elevation should provide adequate conditions for conducting tests with communications equipment. Although variation in soil type is small, a range in seasonal soil strength occurs for testing penetrations of munitions and other devices providing the vegetation is part of the testing requirement. Proximity of the test area to the Panama Canal and Gamboa, and the lack of grasslands limits the area's use in testing munitions penetration and explosives.

1.6 RECOMMENDATIONS

a. This study should be extended to permit collection of additional terrain data for a better definition of boundaries of terrain factor maps and test courses.

b. New 1:10,000 panchromatic and infrared aerial photography should be obtained for photo analysis purposes and refinement of map units.

c. Data in this report should be used for background information for future revisions of Test Operations Procedures 1-1-154, Ground-to-Ground Target Detection in Tropic Forests; 1-3-550, Man-Pack Portability Testing in the Tropics; and other TOPs considered appropriate.

SECTION 2. DETAILS OF INVESTIGATION

2.1 DESCRIPTION OF NEW GAMBOA TEST AREA

a. The location of the new and former Gamboa test areas is shown in figure 1, above. The original Gamboa test area occupied about 18,000 acres (7,450 hectares) whereas the new area occupies about 3,500 acres (1,450 hectares). When the area occupied by the 1,000-foot (307 m) perimeter right-of-way is subtracted, about 2,500 acres (1,035 hectares) are available as a test area. It is understood that the perimeter area is available for testing on an ad hoc basis.

b. The area is located near the town of Gamboa. It is bounded by the Rio Chagres on the east, the Panama Canal Railroad on the south and west, and by the 10-grid-line on the north. An aerial oblique of sections of the area is shown in figure 2. Photographs of the terrain data sites are shown in Appendix F.

c. Most of the area west of the Cerro Pelado Military Reservation (CPMR) has been mapped geologically as a bouldery conglomerate composed of sand, silt, and boulder mixture. This formation is characterized by a dendritic drainage pattern with hills of low to intermediate relief. Intrusive igneous rocks occur along the western part of the area in which are formed steep-sided ridges. Just west of CPMR is a fairly large area of flat-lying sedimentary rocks which have formed rolling hills. The area north and east of CPMR contains tilted tuffaceous sandstone which exhibits angular to trellis drainage patterns, and high hills with sharp crests and steep sloping drainageways. The eastern part of the area contains undifferentiated igneous rock forming steep, sloping, rounded hills and drainageways. Natural and manmade alluvium occurs along the eastern, southern and western boundaries. A large alluvial area is located in the northwestern part of the area.

d. The predominate landform in the area is composed of hills with local relief from 100 feet (30 m) to 300 feet (92 m). The hills have sharp crests and steep slopes--40 to 70 percent slopes are not uncommon. The orientation of the hills is usually in a north-south direction except east of CPMR where the orientation is generally east to west. The highest hills occur near CPMR where the elevation is approximately 600 feet (185 m). Hill-line spacings vary from 0.1 miles (160 m) to 0.5 miles (810 m). Bottomland flats occur along the perimeter of the area. Marshes occur along the eastern and western boundaries and hydraulic fill areas along the southern boundary adjacent to the Canal.

e. The streams all drain into the Panama Canal or into the numerous lakes which occupy about 6 percent of the area. The drainage pattern is primarily dendritic but some angular to trellis patterns are found. Most of the drainageways have very steep-sided slopes and present a significant barrier to movement. The streams are spaced from about 0.1 mile (160 m) to 0.5 miles (810 m) apart. The orientation of the stream is rather random.

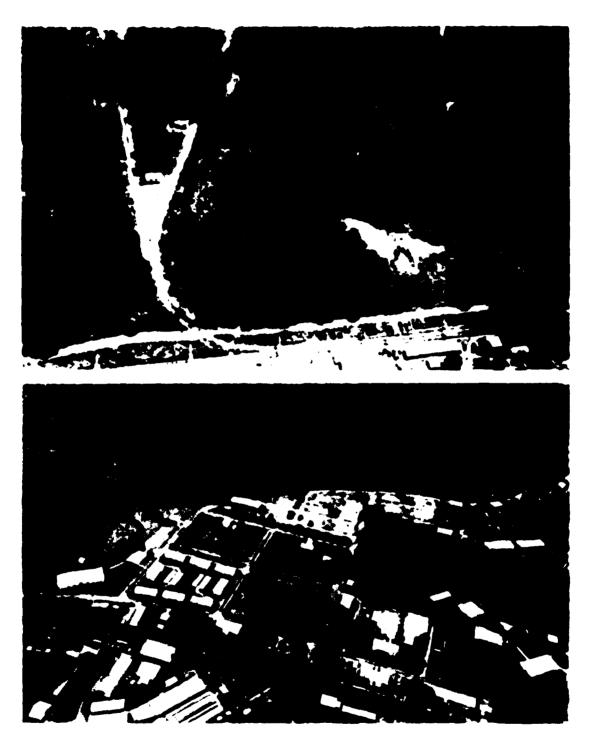


Figure 2. Fastern Section of Test Area.

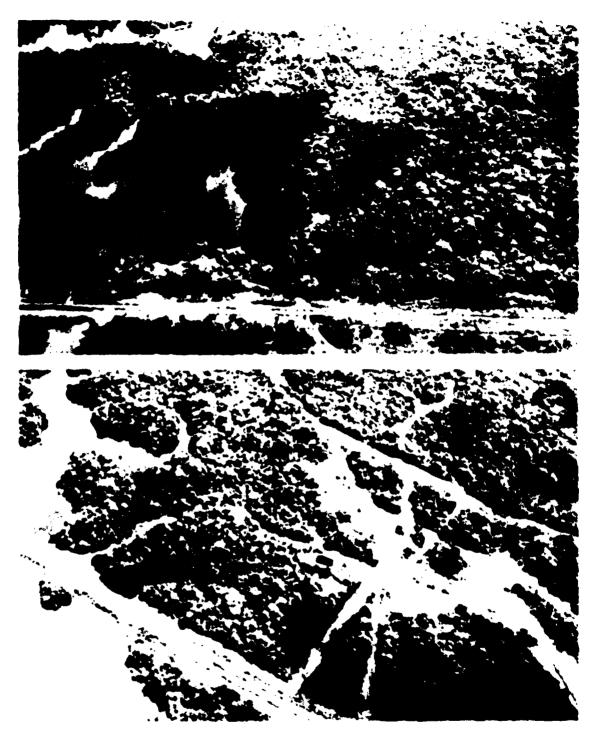


Figure 3. Central Section of Test Area.

Figure 4. Western Section of Test Area.

f. Although various parent materials are found in the area, the weathering processes have formed fine-grained soils with the clay fraction being dominate over the silt and sand. The USDA soil types are primarily Arraijan clay with some patches of Santa Rosa clay and Paraiso clay. Wet, highly organic soils are found in the marshes. According to the Unified Soil Classification System (USCS) the upland residual soils are silty clay (MH) and silty clay and fat clay mixture (MH-CH). Like USDA soil types, organic soil (OH) occurs in the marshes.

g. In the topographic positions that afford good surface drainage, the cone index of the surface to 6-inch layer ranges from about 60 to greater than 300. The cone index usually increases in strength with depth. Although the soils are reasonably firm in the wet season, they are slippery when the surface is wet because of their silt and clay content. The cone index in the wet marshes is 10 or less.

h. The topography of the area is highly variable because of the randomness of the hills and the variations in relief. Flat or bottomlands occupy 12.8 percent of the area, slopes of 2 to 20 percent occupy 32.2 percent, slopes of 20 to 60 percent occupy 37.2 percent, and slopes greater than 40 percent and water bodies occupy 17.8 percent of the area.

i. The vegetation according to the Holdridge Life Zone Classification System is Tropical Moist Forest. Accordingly, the vegetation in the western section is predominately secondary association of disturbed vegetation 5 to 15 years old, but islands of vegetation less and greater than 5 to 15 years old also are found in the area. Several fairly large patches of tall grasses occur in the western section. East of Lake Calamito and extending to CPMR the vegetation is similar to the vegetation described above except that it is more mature; several islands of grassland also occur. East of CPMR tall multistratal mature forests are found. Mangroves and grass marshes are located along the Rio Chagres. The physiognomic or shape and form characteristics of the vegetation on the test area have been described as mostly mature or semimature forest stands; except in areas where the soil is turned or recent burning occurred, producing a secondary life tree growth. Tree height ranges from 50 to 150 feet (15 to 45 m). Cane-like semiwoody stemmed grass species are common in the open areas along the Panama Canal Railroad and Pipeline Road where periodic cutting and burning have maintained the grasslands. Grasslands are also found on semiupland areas that have been cleared of the tree cover and are used for siting canal navigation markers or communication towers. Grass or tangle areas occupy the low marshlands.

j. The climate in the environmental test area is humid tropic. The climate is described in detail for the dry and wet season for the basic weather parameters. Mean wet and mean dry season rainfall are given in figures 5 and 6.

Parameter	Dry Season a/	Wet Season b/
Temperature -°F (°C)		
Open temperature - daytime	82-89 (28-32)	80-86 (27-30)
Open temperature - nighttime and		
during heavy rain	65-70 (18-21)	70-73 (21-23)
Highest temperature ever measured	95 (35)	95 (35)
Lowest temperature ever measured	60 (16)	68 (20)
Jungle temperature - daytime	78-81 (26-27)	79-82 (26-28)
Jungle temperature - nighttime	74 (23)	74 (23)
Dew Point - all day	70 (21)	73 (23)
Relative humidity - percent		
Average lowest daily c/	56	71
Duration of sunshine - hrs		
Daily average	8.2	4.5
Global radiation -		
langleys (Joule/meter ²)	435	315
Horizontal plane - daily average	$(1820.04 \times 10^{\circ})$	(1317.96 x 10 [°])
Direct solar radiation -		
langleys (Joule/meter ²)	275	130
Horizontal plane - daily average	$(1150.60 \times 10^{\circ})$	(543.92 x 10 [*])
Indirect solar radiation -		
Langleys (Joule/meter ²)	160	185
Sky radiation on horizontal plane -		
daily average	(669.44 x 10 ⁴)	(774.04 x 10 ⁴)
Prevailing wind direction	N	NNW
Mean wind speed - mph (kph)		
Noon	6 (10)	5 (8)
Night	0 (0)	0 (0)
Rainfall - inches (cm)		
1-hour maximum	2.5 (6.4)	3.5 (8.9)
24-hour maximum	8.4 (21.3)	17.0 (43.2)
Monthly maximum	12.0 (30.5)	37.0 (94.0)
Monthly average		9-12 (22.9-30.5)
Yearly average	10	5 (267)

a/ Data apply to February and March-the driest months.

b/ Data apply to June through November. c/ Maximum relative humidity of 95 to 100 percent is reached nightly for several hours.

2.2 DATA COLLECTION

1

a. Thirty-one data sites were sampled. At each site complete surface composition, surface geometry, and vegetation data were collected, as required, as input to various mathematical models for predicting performance of various items of Army materiel.

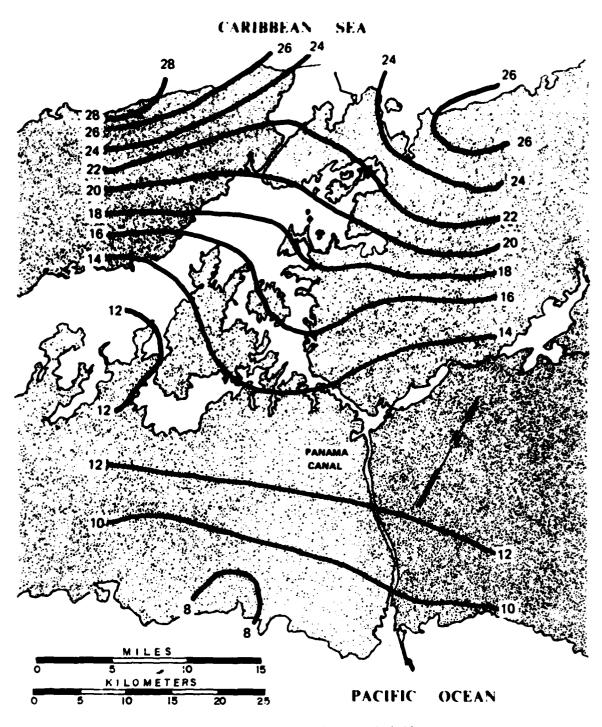


Figure 5. Mean Wet Season (November) Rainfall (Inches).

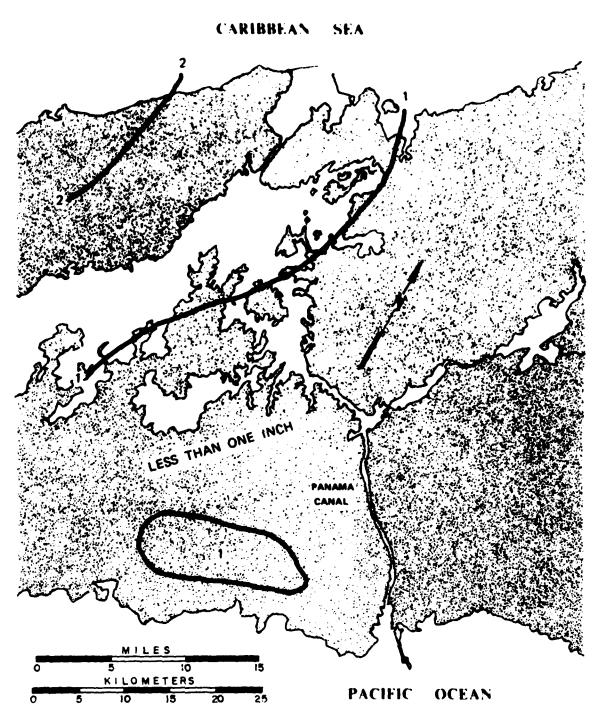


Figure 6. Mean Dry Season (March) Rainfall (Inches).

b. The data collected for this study are summarized in Appendix D. The tables contain the following data:

- D-1 Summary of Site Description Data.
- D-2 Summary of Surface Composition Data.
- D-3 Summary of Surface Geometry Data.
- D-4 Summary of Vegetation Data--Structural Cell Method.
- D-5 Summary of Vegetation Data-Modified Quarter Method.

c. The procedures used to select the data sites, and detailed procedures for collecting, tabulating, and summarizing the terrain data are given in Appendix B. Some of the data collected are portrayed in Appendix E as terrain factor maps at a scale of 1:10,000.

d. The equipment used to collect terrain data operated effectively in the local climate, except for the Hvorslev Sampler used to obtain moisture content/density and remolding samples. Apparently, the adhesion of the soil entering the sampler tube is greater than the shear strength of the soil requiring a sample tube penetration of about 6 inches to obtain a 3-inch-long sample. For this reason, the data shown in Appendix D contain few density and remolding index measurements.

2.3 PREPARATION OF TERRAIN FACTOR MAPS

a. Conventional air photo interpretation methods and techniques, supplemented with existing maps and specific terrain data measurements, were used in the preparation of areal terrain factor maps. The technique consisted of preparing an aerial mosaic at a scale of 1:20,000, using February 1973 panchromatic photography. Color infrared aerial photography was also used to map vegetation characteristics in the eastern half of the area. To expedite the transfer of terrain factor class boundaries to base maps, the scale of the photos was reduced to 1:10,000.

b. Boundaries were drawn around areas that exhibited patterns identifiable according to tone, texture and geometry. Because the area being mapped was primarily forested, all of the patterns identified primarily reflected differences in vegetation characteristics. After the various patterns were identified, the association of vegetation type, topographic position, surface drainage, soil type, geology, climate, and landform to available quantitative terrain data (Davis, et al.) was established where possible.

c. Where old or new ground truth data occurred within a pattern, a number for the class factor range was assigned, as well as for similar patterns that occurred on the mosaic. The factor class intervals used to describe terrain for ground mobility purposes were used for slope, soil type and soil strength. Vegetation and surface geometry class ranges required could not be obtained with air photo interpretation techniques; therefore, a compromise was reached to face the reality of producing some useful data. Vegetation factor maps were prepared using the life zone and physiognomic descriptors. Obstacle and microgeometry characteristics could not be inferred to the degree of detail required from the mapping techniques used; therefore, no factor maps were prepared.

.... -

~ ...

-

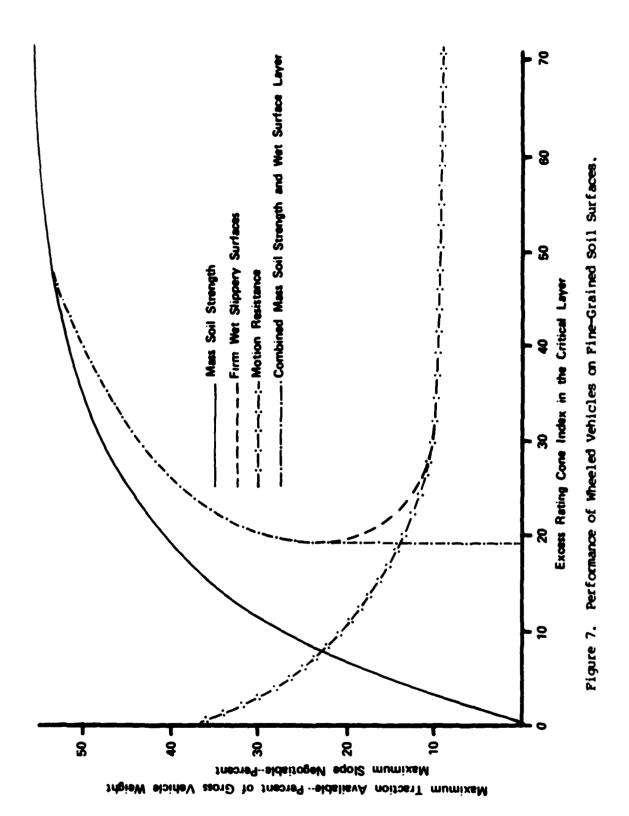
d. Techniques and information used to prepare factor maps varied as indicated below.

Terrain	A	vailable		
Factor	Maps	Ground Truth	Air Photos	New Ground Truth
General				
Topography	X			
Landform	X X		X	X
Geology Surface	X		x	x
Drainage	x		x	x
Soil Type				
USDA	x		x	x
USCS	x		X	X
Soil Strength				
Cone Index,				
0-6 in.				
depth	X	X	x	X
Cone Index, 6-12 in.				
depth	x	X	X	x
Rating Cone				
Index, 0-6				
in. depth	X	X	x	x
Rating Cone				
Index, 6-12				
in. depth	X	x	x	x
Microgeometry				
Slope	x			
Vegetation				
Tropic				
Forest Life 20ne	x		x	x
Physiognomic	~		X	x
Stem Density	x	x	x	x
Deem Denotey	А	n	~	ň

In addition to the above techniques, information such as soil moisturestrength prediction relations developed by McDaniel* for Panama Canal Zone soils was used to obtain estimates of soil strength.

e. Once a terrain factor was mapped on the 1:10,000 aerial photographs, the boundaries were transferred to a base map (Appendix E). Where the boundaries were reasonably accurate, the factor classes mapped were measured to obtain information on the areal occupancy and frequency of occurrence of each factor class mapped.

2.4 APPLICATION OF TERRAIN FACTOR INFORMATION


a. A terrain factor map portrays the distribution of factor classes which have been assigned class ranges according to the effect they may have on the performance of a number of military activities. These maps have a variety of uses.

b. Once an activity is known, along with the terrain factors that influence its performance, the appropriate factors can be combined to produce a terrain factor complex map, if convenient, or each factor can be analyzed independently. If a mathematical model or a nomograph is available to predict performance, the terrain data can be obtained from the factor maps.

c. Statistics such as areal occupancy and frequency of occurrence of terrain factors are most useful in selecting test areas or courses to ensure that the item will be tested in a realistic and representative environment. On the basis of single factors, the areas can be delineated in which item performance will be zero or areas in which it can be expected to have no effect on activity performance. The remaining areas would then be considered, along with other limiting terrain and logistical factors, for testing.

d. Relations among soil conditions and vehicle characteristics, and traction and slope performance, are illustrated in figure 7. If it is known that ground-crawling vehicles cannot negotiate slopes greater than about 55 percent because of power stall, and cannot travel on a soil strength having a rating cone index of 25 or less, nor negotiate wet, fine-grained soil slopes greater than 8 percent, then the slope, soil type and rating cone index factor maps are used to identify go, no-go areas. Likewise, if a level, grass area containing deep, fine-grained soils in a well-drained topographic position is required for explosive testing, then soil type, physiognomic vegetation and slope maps are consulted to identify the areas that meet the desired terrain specifications.

^{*} McDaniel, A.R., Misc. Paper No. 4-355, <u>Trafficability Predictions in Tropical Soils, Report 3, Panama Study No. 2 (Oct 1961-Sept 1963)</u>, US Army Engineer Waterways Experiment Station, Vicksburg, Miss., August 1966.

Slope Class	Class Range	Areal C	ocupancy	0000	rrence
	percent	acres	percent	number s	frequency
1	0 - 2	451	12.8	u	2.8
2	2.1 - 5	95	2.7	5	1.3
3	5.1 - 10	260	7.4	31	7.9
4	10.1 - 20	778	22.1	117	29.8
5	20.1 - 40	823	23.4	81	20.7
6	40.1 - 60	846	13.8	62	15.8
7	60.1 - 70	218	6.2	37	9.4
8	>70	208	5.9	27	6.9
Water		201	5.7	21	5.4
		3,520	100.0	392	100.0

e. The statistics derived from the slope factor map are shown below.

This tabulation shows that slopes greater than 60 percent occur in 12.1 percent of the area, and that there are 64 patches of slope classes 7 and 8 with a frequency of occurrence of 16.3 percent. From the above information it can be deduced that slope alone will deny vehicle passage over 12.1 percent of the area. Other factors such as soil condition and vegetation combined with slope will also deny passage of additional areas.

SECTION 3. APPENDIXES

APPENDIX A. METHODOLOGY INVEST ATION DIRECTIVE AND PROPOSAL

(COPY)

DEPARTMENT OF THE ARMY HEADQUARTERS, U.S. ARMY TEST AND EVALUATION COMMAND ABERDEEN PROVING GROUND, MARYLAND 21005

DRSTE-AD-M

20 April 1979

SUBJECT: Directive, Characterization of Test Environment, TRMS No. 7-CO-RD9-TT1-004

Commander US Army Tropic Test Center ATTN: STETC-TD-O APO Miami 34004

1. Reference is made to TECOM Regulation 70-12, dated 1 June 1973.

2. This letter and attached STE Forms 1188 and 1189 (Incl 1) constitute a directive for the subject investigation under the TECOM Methodology Improvement Program 17665702D625.

3. The information at Inclosure 2 and the attached guidance at Inclosure 3 are the bases for headquarters approval of the subject investigation.

4. Special Instructions:

a. All reporting will be in consonance with paragraph 9 of the reference. The final report, when applicable, will be submitted to this headquarters, ATTN: DRSTE-AD-M, in consonance with Test Event 52, STE Form 1189.

b. Recommendations of new TOPs or revisions to existing TOPs will be included as part of the recommendation section of the final report. Final decision on the scope of the TOP effort will be made by this headquarters as part of the report approval process.

c. The utilization of the funds provided to support the final investigation is governed by the rules of incremental funding.

d. The addressee will determine whether any classified information is involved and will assure that proper security measures are taken when appropriate.

DRSTE-AD-M 20 April 1979 SUBJECT: Directive, Characterization of Test Environment, TRMS No. 7-C)-RD9-TT1-004

e. Upon receipt of this directive, test milestone schedules will be immediately reviewed in light of known other workload and projected available resources, in accordance with provisions of paragraph 2-4 to TECOM Regulation 70-8. If rescheduling is necessary, this headquarters, ATTN: DRSTE-TO-O, will be notified by 1st Indorsement not later than 4 May 1979. If schedules can be met, a P8 entry will be made directly into TRMS master file by that date.

f. The Methodology Division point of contact is Mr. Roger L. Williamson, ATTN: DRSTE-AD-H, AUTOVON 283-2170/2375.

FOR THE COMMANDER:

3 Incl as /s/SIDNEY WISE /t/SIDNEY WISE C, Meth Imprv Div Analysis Directorate

(END COPY)

(COPY)

March 1979

1. TITLE. Characterization of Test Environment

2. CATEGORY. Environmental Testing

3. INSTALLATION. US Army Tropic Test Center P. O. Drawer 942 APO Miami 34004

4. PRINCIPAL INVESTIGATOR. To Be Designated Materiel Test Division STETC-TD AUTOVON 313-285-5412

5. STATEMENT OF THE PROBLEM. A quantitative terrain factor mapping study of a new environmental test area (Cerro Pelado), using standardized methods and techniques, is required to characterize selected terrain features (slope, soil type, soil strength, vegetation, visibility, surface microgeometry, etc.) from which a terrain factor complex map will be prepared. A terrain factor data base is required to establish realistic standard reference test courses such as man-pack portability and input to computerized soldier/item/activity models.

6. BACKGROUND. As a result of the implementation of the Panama Canal Treaty it is necessary to relocate USATTC's environmental test area and associated testing facilities and test courses. In order to establish meaningful test courses on the new area, information is required about the basic terrain features that have an effect on activities and materiel to be tested in a human tropic environment.

7. GOAL. The investigation will develop terrain factor maps or newly selected test area. Standardized methods and techniques will be used so that meaningful comparisons can be made.

8. DESCRIPTION.

a. Terrain data bases will be prepared using terrain factor mapping standardized methods and techniques developed by the US Army Corps of Engineers. Areal and linear terrain factor complex maps will be prepared. The linear terrain factor complex maps will include roads, trails, and drainage features. The areal terrain maps will include all other areas. The test course data base will include mobility traverses in cross-country travel, roads, and trails, man-pack portability, etc. Availability of this data base will allow for adaptation of available terrain-item performance models such as the Army Mobility Model (AMM), communications, scatterable mines, engineer equipment, river-crossing equipment, sensors, etc.

A-3

b. Once tropic terrain data bases are prepared for use as input to computerized soldier/item/activity models, meaningful studies can be conducted. For instance, the areas occupied and the frequency of occurence of terrain units mapped in the test area can be determined. From scenarios of given military posture (defense, offense, retrograde) mission profiles can be established of selected activities and the effectiveness of these activities can be determined by applying appropriate performance/activity models. The information can also be used to establish realistic and more meaningful standard reference test courses.

c. The output from validated performance models can be used as a guide in designing meaningful tests and in evaluating the results. For example AMM can be employed to determine where the XML Tank or any other vehicle could go or not go, as well as identify speed if able to traverse. The AMM also identifies the reason a vehicle cannot negotiate a specific terrain unit. Changes in vehicle characteristics can be introduced to determine the degree of improvement in performance achieved, if any. The vehicle performance predictions can be used as a guide to select meaningful test sites.

d. Single factor data, such as soil type and strength, can be used to predict the performance of engineer equipment, scatterable mine soil penetration, etc. Activity performance comparisons can also be made for the various areas for which terrain and equipment/item data are available. All of the above plus many other activity studies can be obtained very inexpensively, because large sums of R&D dollars have already been spent by DARCOM, TRADOC and OCE on developing and refining engineering performance models and data bases to feed them.

e. Investigation plan outline.

lst Qtr Initiate interagency contract or agreement 2nd Qtr Prepare terrain factor maps using available data 3rd Qtr Collect and analyze terrain factor data 4th Qtr Prepare final report

f. This investigation will develop terrain factor maps of a selected Canal Zone area.

9. PROGRESS. This is a new investigation.

10. JUSTIFICATION.

a. The investigation will provide terrain factor maps using standardized techniques of a selected Canal Zone area. With this information it will be possible to establish realistic standard reference test courses and mission profiles for testing and evaluating material in the humid tropics. TECOM's tropic environmental testing capability would be greatly enhanced and would place TTC at the state-of-the-art.

A--4

b. Dollar Savings. Improved soldier/item/activity testing would result in mission effectiveness and dollar savings, but are impossible to estimate at this point.

c. Current and likely future tests which would benefit from this effort are shown in the following schedule:

		FISCAL	YEAR	
	<u>80</u>	<u>81</u>	<u>82</u>	<u>83</u>
Roland II		PQG		
Mortar Locating Radar TPQ-36		PQG		
Artillery Locating Radar TPQ-37		PVG		
High & Mod Persis Obscurants				POG
Remotely Monitored Sensor System		PQG		
XM1 Main Battle Tank		PQG		

d. Recommended TRMS Priority: 01.

e. Association with Requirements Documents: N/A

- 11. RESOURCES.
 - a. Financial.

(1) Funding Breakdown

Dollars (Thousands)

	FY79	FY80
Personnel Compensation		
Travel	2	
Contractual Support	17	20
Consultant and Other Services	5	5
Materials and Supplies	4	
Equipment	2	
	30	25

(2) Explanation of Cost Categories:

Contract Support. USATTC contract personnel will be used for field data collection and processing.

Consultant and other Services. Available mapping services will be obtained from organizations such as Waterways Experiment Station or Engineer Topographic Laboratory.

b. Anticipated Delays. None.

c. Obligation Plan

			FY7	-		
Obligation Rate:	FY Qtr	1	2	3	4	Total
				10	20	30

d. In-House Personnel

	Man-Hours	-	Study Hours
	Number	Required	Available
Physical Science Admin, GS-0801	1	80	80
Gen Engr, GS-0801	1	200	200
Engr Tech, GS-0802	1	300	300
Soils Spec, MDS 51G20	1	<u>300</u> 880	<u>300</u> 880

......

12. INVESTIGATION SCHEDULE.

	FY79							FY80									
	М	J	ſ	J	A	1	S	0	N	D	J	F	М	A	M	J	J
In-House	-	-	-		-		-	-	-	-	-	-	-	-	-	-	R
Contract	-	-	•	-	-		-	-	-	-	-	-	-	-	-		
Consultant	-	-	•	-	-								-		-		

13. ASSOCIATION WITH TOP PROGRAM. N/A.

/s/WENDELL	L.	PRINCE			
/t/WENDFILL	L.	PRINCE			
Colonel, Armor					
Commanding					

(END COPY)

APPENDIX B. AREAL TERRRAIN MEASUREMENTS AND DATA PROCESSING PROCEDURES

			Page
I	INT	RODUCTION	B-2
	A	Objective and Scope	B- 2
	В	Location and Selection of Sites	B-2
	С	Sampling of Site	B-2
II	EQ	UIPMENT	B-2
	A	Cone Penetrometer (0.5-sq-inch Cone)	B-2
	в	Cone Penetrameter (0.2-sq-inch Cone)	B-4
	С	Hvorslev Soil Sampler	B 5
	D	Remolding Equipment	B-8
	E	Sheargraph	B10
	F	Oakfield Punch	B-14
	G	Other Equipment	B-15
II	t T	TEST ROUTINE	B-15
	A	Data Collection Procedures and Site Layout	B-1 5
	в	Surface Composition	B-16
	с	Surface Geometry	B-19
	D	Vegetation	B-19
IV	TA	BULATION OF DATA	B-24
	A	Surface Composition	B-24
	В	Surface Geometry	B- 29
	с	Vegetation	B-30

I. INTRODUCTION

A. OBJECTIVE AND SCOPE

The objective of this document is to establish uniform procedures for equipment care and use, collecting, tabulating, summarizing and portraying topographic, soil, obstacle and vegetation data required as input to mathematical models which are used to predict or evaluate the performance of man and materiel performing specified tasks or missions in the humid tropics.

An example of a completed field data form for collecting terrain data is given in Annex I. The data forms include site description information, as well as specific data required to describe and classify selected terrain factors in appropriate terms.

B. LOCATION AND SELECTION OF SITES

Sites are located to provide data on a range of terrain conditions representative of the humid tropics in the vicinity of Gamboa, Republic of Panama. Sample sites will be located on the basis of landform components, such as bottomland and upland flats, lower and middle slopes and so on. These will be selected on a topographic map, with aerial photographs and other mapping information used to insure homogeneity in vegetation cover, soil type and slope. The site will be located near the center of the landform component. In areas covered with trees or obstacles, the landform component to be sampled should be large enough to locate a circular sampling area of approximately 100 feet in diameter. Accessibility is also an important consideration in site location.

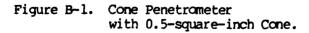
C. SAMPLING OF SITE

Each landform component should be sampled several times in the wet season and dry season to establish the range in seasonal variation and the average seasonal values for such terrain factors as soil strength which is largely dependent upon soil moisture content.

II. EQUIPMENT

A. CONE PENETROMETER (0.5-sq-in Cone)

Description


The cone penetrometer (figure B-1) consists of a 30-degree right circular cone of 0.5-square-inch (3.2-sq-cm) base area mounted on one end of a 36-inch (91.4-cm) staff, and a proving ring with dial gage and a handle mounted on the opposite end. The diameter of the staff is 5/8 inch (1.6 cm). The cone is forced manually into the ground and in so doing the proving ring is deflected in proportion to the force applied. A load of 150 pounds (68.0 kg) deflects

B--2

the proving ring approximately 0.1 inch (0.025 cm) to give a cone index reading of 300. The cone index is considered an index of the shearing resistance of the soil.

Use

The penetrometer should be checked before use to insure that all nuts, bolts, and joints are tight. The instrument must also be zeroed. То zero the penetrometer, it is held by the handle and allowed to hang vertically. In this position, the dial face is rotated until "O" on the face lies under the needle. If the cone is then allowed to bear on a surface and the instrument is balanced in a vertical position using the fingertips, the dial will be found to read approximately 5 $(2 \ 1/2 \ 1b \ or \ 1.13 \ kg)$, which represents the gross weight of the penetrometer. Penetrometer readings are, therefore, absolute readings which include the weight of the instrument. In use, the tip of the cone is placed on the ground surface where the readings are to be taken. Next, the palm of one hand is placed directly over the handle and the other palm is placed over the back of the first hand. The instrument is then forced into the soil at a slow, constant rate. The desired rate is 6 feet-per-minute (1.8 m) or 12 inches (30.5 cm) in 10 seconds. Readings are taken as the base of the cone enters the ground (surface cone index), and at depths of 3, 6, 9, 12, 15, and 18 inches, unless the capacity of the instrument (cone index 300) is reached at a lesser depth. If the soil strength exceeds the capacity of the penetrometer at a prescribed depth, 300⁺ is recorded for that depth and all remaining depths.

B--3

Reading

The penetrometer staff is divided into 1-inch (2.5-cm) increments for the first 6 inches (15.2 cm) and then into 3-inch (7.6-cm) increments to 18 inches (45.7 cm). To read the cone index at the proper depth, focus the eyes on the ground surface next to the staff, and as the staff penetrates the depth at which the reading is prescribed, focus the eyes on the dial and read the value indicated by the dial hand. This process is repeated for each depth until a set of readings is completed. The readings called out by the instrument reader are written by the recorder on the proper form. The penetrometer is withdrawn from the soil by grasping the staff and pulling upward.

Adjustment and Care

The penetrometer needs little adjustment or care beyond keeping it clean and free of rust, keeping all parts tight, and frequently checking the zero of the instrument. The penetrometer should be cleaned thoroughly each day after use, with particular care taken to see that no grit is caught between the extensometer arm of the dial gage and the bottom bearing block. If either or both pairs of bearing blocks should be loosened and moved, they must be adjusted to lie on a diameter of the ring and then retighened.

B. CONE PENETROMETER (0.2-sq-in Cone)

Description

This cone penetrometer is similar to the penetrometer with a 0.5-squareinch cone except that the cone base is 0.2 square inch (1.3 sq cm) in area and is mounted on a staff 18 inches (45.7 cm) long and 3/8 inch (0.95 cm) in diameter. A 150-pound load on the 0.2-square-inch cone corresponds to a cone index of 750. If the 0.2-square-inch cone is used with a 300 maximum dial face, the readings are multiplied by 2.5 (2.5 x 300 = 750) to obtain the correct cone index.

Use

This instrument is substituted for the penetrometer with 0.5-square-inch cone measuring the strength of the soil whenever cone index measurements greater than 300 are obtained. If the soil strength exceeds the capacity of the instrument with 0.2-square-inch cone at a prescribed depth, 750^+ is recorded for that depth and all remaining depths.

Adjustment and Care

Instructions for the adjustment and the care of this instrument are the same as those indicated for the penetrometer with the 0.5-square-inch cone.

C. HVORSLEV SOIL SAMPLER

Description

The Hvorslev soil sampler is designed for taking undisturbed (or only slightly disturbed) samples from comparatively soft soil. It may be used satisfactorily on nearly all cohesive soils when the cone indexes range from about 5 to about 150, except those containing gravel or other root obstructions. The lower limit is reached when the soil becomes soft enough to flow out to the cylinder. The upper limit is determined by the operator's ability to force the cylinder into the soil with a smooth, continuous motion.

The Piston

The primary purpose of the piston is to maintain a partial vacuum above the sample and thus prevent its compression as the cylinder is forced into the soil. The piston also prevents moisture loss by drainage in noncohesive soils. A secondary purpose is to force the sample out of the cylinder. The face of the piston can be taken off to facilitate removal and cleaning of the piston ring. Before use, the bottom of the piston should be even with the cylinder's cutting edge and the base of the disc handle should fit tightly against the "T" handle support.

The Cylinders

The cylinders are made of noncorrosive metal. Their inside diameters are machined to close tolerance for accuracy in computation of constants for unit weight determination. The cylinder walls and cutting edges are comparatively soft and should be handled with some care. If the cutting edge becomes badly nicked, a new cutting edge can be turned and the piston reset, or a new cylinder can be used.

Handle

The smooth handle is screwed snugly into position and should remain fixed at all times. The knurled handle serves as a handle and as a lock to hold the piston rod in any position desired.

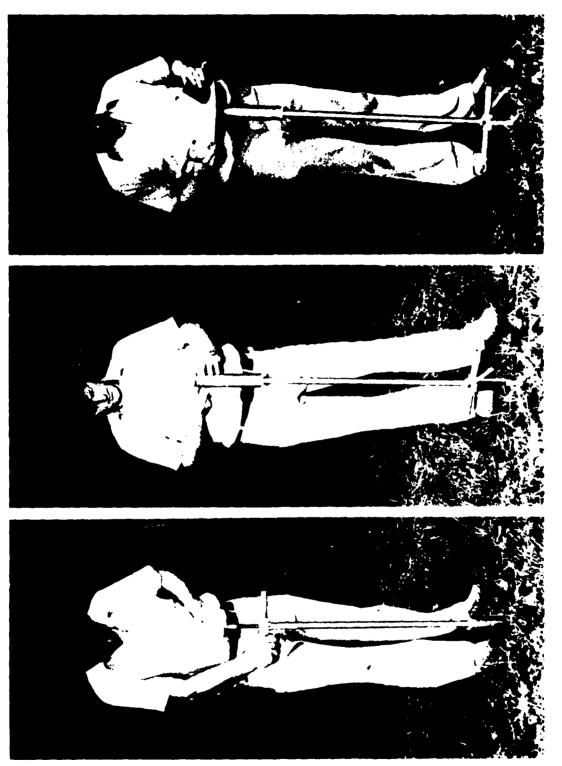
Sampling Instructions

Sampling with this instrument can be accomplished most expeditiously by a comparatively husky technician and, under some conditions, one helper. In taking a sample, the technician holds the disc handle at the top of the piston rod firmly against his body with one hand while forcing the cylinder smoothly into the soil with the other, being careful to permit no downward movement of the piston. Figure B-2a shows this operation. The sampler is pushed to a depth of slightly more than 6 inches (15.2 cm). The technician then locks the piston rod with the knurled handle, twists the sampler slightly to break the soil free, and withdraws the cylinder from the soil. To obtain 3-inch (7.6-cm) samples for moisture-density determinations, the technician unlocks

the piston rod, places the pin through the hole in the piston rod 6 inches (15.2 cm) below the bottom of the disc handle support, inverts the instrument, forces out the small quantity of soil in excess of 6 inches until the pin is snug against the "T" handle support, and then cuts away this soil as waste (figure B-2b). When this operation is completed, the technician places a plate over the cutting edge of the cylinder to catch any falling fragments of the sample, disengages the pin in the piston rod, places it through the hole 3 inches from the bottom of the disc handle, and forces out the soil by pushing the sampler down until the support of the "T" handle is in contact with the pin. The sample is cut off flush with the cutting edge of the cylinder with a wire cutter or knife (figure B-2c). To obtain the second 3-inch sample the technician disengages the pin in the piston rod, places the pan over the cutting edge of the cylinder to catch the sample, and forces out the soil by pushing the sampler down until the base of the disc handle is in contact with the center support of the "T" handle. Each extruded soil sample represents a sample length of 3 inches and therefore a known volume. Each sample is carefully placed in a container for transportation to the laboratory.

Further Investigations

The procedures described in the preceding paragraph are followed when the sampler can be inserted into soil to a depth of slightly more than 6 inches (15.2 cm). If the sampler cannot be pushed to a depth of 6 inches because of the firmness or stickiness of the soil, samples should be obtained in 3-inch vertical increments. The first hole that appears in the piston rod next to the disc handle mounted on the piston rod is used to obtain the sample; otherwise, sampling procedures are the same.


Care

To insure efficient operation, it is necessary to clean the instrument after each day's use, and for certain soil conditions more frequent cleaning may be required. To clean the sampler, remove the cylinder and thoroughly rinse it and the piston assembly with water. Oil the piston assembly and rod with light lubricating oil. Reassemble the sampler.

Adjustment

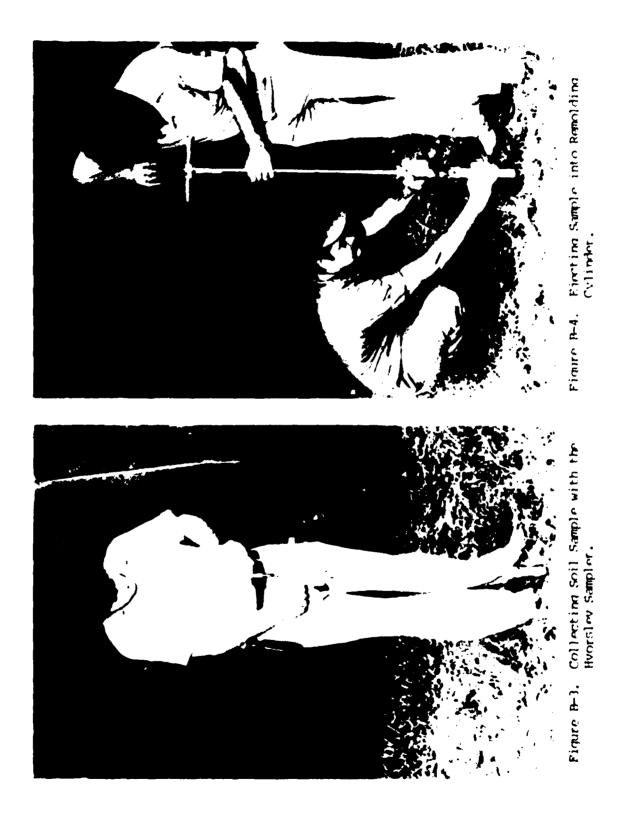
To obtain samples of the correct length with the Hvorslev sampler, two items must be checked on the sampler before it is used: (a) When the base of the disk handle is in contact with the "T" handle support, the face of the piston is flush with the cutting edge of the cylinder, and; (b) the distance between the base of the disc handle and the bottom of the first hole drilled through the piston rod is 3 inches. If the sampler is out of adjustment, the following steps are taken:

(1) Check the distance from the base of the disc handle to the bottom of the first hole drilled through the piston rod. If this distance is not 3 inches, loosen the set screw on the disc handle, screw the disc handle up or

down until the distance between the bottom of the disc handle and the bottom of the first hole drilled through the piston rod is 3 inches, and then tighten the screw.

(2) Push the piston rod down until the base of the disc handle is in contact with the "T" handle support. If the piston head is not flush with the cutting edge, measure the difference, remove the cylinder, and loosen the nut next to the piston. If the piston head protrudes beyond the cylinder cutting edge, back off the nut to the distance measured before the cylinder was removed, screw the piston head next to the nut, and tighten the nut. If the piston head is inside the cylinder tube, loosen the nut next to the piston head the required distance, and tighten the nut. Replace the cylinder and recheck. If the piston is not flush with the cutting edge, repeat the process until the piston head is flush with the cutting edge.

(3) If the tube is to be replaced, check the tube length before it is used. To obtain the proper sample lengths, the tube must be at least 9.25 inches (23.5 cm) long.


D. REMOLDING EQUIPMENT

Description

The remolding equipment (figure B-3) consists of a cylinder of the same diameter as the Hvorslev sampler mounted vertically on a base, and a 2 1/2-pound (1.13-kg) drop-hammer which travels 12 inches (30.5 cm) on an 18-inch (45.7-cm) shaft, fitted with a circular foot on one end and a handle on the other. A cone penetrometer with an 18-inch (45.7-cm) shaft and a Hvorslev sampler are needed to conduct tests.

Procedures for Fine-Grained Soils

A 6-inch long soil sample is obtained from the desired layer with the Hvorslev sampler and ejected into the remolding cylinder (figure B-3 and B-4). The sample is then pushed to the base of the cylinder, using the drop-hammer foot. Cone penetrometer readings, using a 0.5-square-inch cone, are measured in the sample (figure B-5) at the surface (where the base of the cone enters the soil) and at each successive inch to a depth of 4 inches (10.2 cm) at a rate of 6 feet-per-minute. If a reading over 300⁺ (capacity of penetrometer) is reached at a depth of 2 inches or more, 300 is assigned to the depth and the remaining depths. If a reading over 300 is reached at a depth of 1 inch or less, instructions given below are followed. Next, remolding the sample is accomplished by applying 100 rapid blows of the drop-hammer (figure B-6). The top of the hammer should touch the base of the handle with each blow to insure a 12-inch drop. Penetrometer readings are taken again at the surface and at each succeeding inch depth to 4 inches.

Use of 0.2-Square-Inch (1.3-cm²) Cone

Occasionally, a fine-grained soil sample obtained in the manner just described cannot be penetrated by the 0.5-square-inch cone beyond the 1-inch depth. In such a case, a new sample is obtained and the penetrations are made with the 0.2-square-inch cone. If a reading greater than the capacity of the cone penetrometer (750) is reached at a depth of 1 inch or less before and after 100 blows are applied, the test is not valid. The size of the cone used must be noted on the field data sheet.

Procedures for Fine, Poorly Drained Sands

The remolding test procedures for these soils are the same as for finegrained soils except that cone index measurements are made with penetrometer with the 0.2-square-inch (1.3-sq-cm) cone, and the sample is remolded by dropping it (along with cylinder and base) 25 times from a height of 6 inches (15.2 cm) onto a firm surface. Loss of water during the remolding process will influence the test results; therefore, the tube and metal base should be scaled with a clay plug about 1 inch long placed at the bottom of the tube. On the data sheet cross out "100 blows" and insert "25 drops."

E. SHEARGRAPH

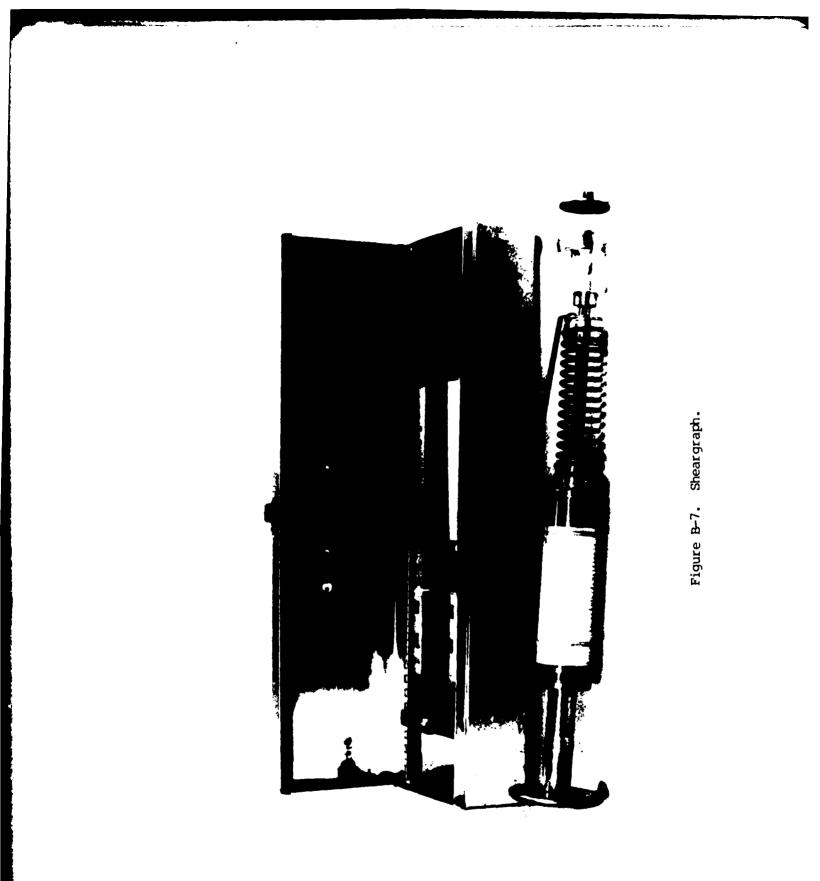
Description

The sheargraph (COHRON) is designed to obtain horizontal shearing strength parameters of surface soils in conventional soil mechanics terms when soil failure is not produced by the vertical load. The instrument (figure B-7) provides data from which the resistance to shear is described by empirical parameters relating the shear stress to the normal stress.

The initial (ϕ_i, C_i) and residual (ϕ_r, C_r) shear strength parameters are linearized. The linearized shear stress-normal stress relations for a soil that exhibits both apparent cohesion and frictional resistance to shear is defined by Coulomb's equation:

$$\tau = c + \delta \tan \phi \qquad (Eq. B-1)$$

where:


 $\tau = \text{shear stress, psi}$ $\delta = \text{normal stress, psi}$ c = soil apparent cohesion at zero normal stress $\phi = \text{angle of soil internal friction}$

An estimate of traction (DBP) can be obtained from the following formula:

$$DBP = Ac + W \tan \phi \qquad (Eq. B-2)$$

where:

- A =ground contact area, square inch.
- W =total weight on shear area, pounds.

Shear Values

The sheargraph is provided with grouser, and smooth metal and rubber shear-heads. The smooth shear-heads are used to obtain soil-to-metal and soil-to-rubber shear values. The subscripts used to identify the various shear values are listed below:

 c_i = peak soil-to-soil cohesion

 c_r = residual soil-to-soil cohesion

 ϕ_i = peak soil-to-soil angle of internal friction

 ϕ_r = residual soil-to-soil angle of internal friction

 a_{rm} = residual soil-to-metal adhesion

 $a_{im} = peak soil-to-metal adhesion$

 P_{im} = peak soil-to-metal angle of friction

 P_{rm} = residual soil-to-metal angle of friction

 $a_{ir} = peak soil-to-rubber adhesion$

 a_{rr} = residual soil-to-rubber angle of friction

Use

The sheargraph should be checked before it is used to insure that components are properly fastened and in operating condition. The chart is placed on the drum in such a manner that the stylus point is at zero, both on the shear stress and normal stress axes, with the normal stress axis placed along the length of the drum. The chart is held in position with a rubber band placed at the top and bottom of the drum.

Soil Selection

The soil selected for sampling should be free of rocks and gravel materials, and the surface cleaned of grasses, litter and roots. The smooth metal and rubber shear-heads are placed on the soil surface but the vane or grouser shear-head is inserted in the soil until the vanes are completely submerged. The grouser shear-head is inserted by applying a normal load on the handle. On slopes, the instrument is positioned perpendicular to the surface. Care must be taken during the vane insertion to avoid shearing the soil prior to the application of shearing stress. In sticky soils (clays and silts), the soil around the outer edge of the vane shear-head should be removed because the soil adhering to the outer edge will influence the shear stress reading.

Instructions

Once the shear-head is inserted properly into the soil, a normal stress is applied by pushing downward on the handle to the desired load. Observe the normal stress axis to assure the correct normal load and motion of the shear-head and that the stylus is producing a readable trace. The hand should be placed on the handle in such a manner that for a given normal load the wrist will permit rotating the sheargraph approximately 180 degrees in a counter-clockwise direction. Then rotate the handle until the shear-head begins to rotate. The value obtained upon initiation of rotation is peak shear stress. The instrument is unloaded, the hand repositioned, the same normal stress applied, and the handle rotated counter-clockwise to reinitiate motion of the shear-head to obtain a value for ultimate or residual shear stress. After cleaning the shear-head, the process is repeated for at least four normal stress loads, or until an acceptable straight-line relation for normal stress versus shear stress can be drawn on the chart for initial peak and residual ultimate shear stress data.

Sampling

The sampling pattern to be followed is largely dependent upon soil type and moisture content. For example, in a moist-to-dry clay soil, a peak shear stress measurement might be obtainable only for normal stresses less than 5 pounds-per-square inch (psi). In this case ultimate shear stress should be attempted for normal stress values less than 5 psi and so on. In soft clay soils, a normal stress of 10 psi may shear the soil. In such conditions all shear stress measurements should be restricted to normal stresses less than 10 psi. If the soil fails for a given normal stress, the normal stress at which the soil failed should be recorded on the chart.

Adjustment and Care

The sheargraph requires no adjustment if the instrument is kept clean and all parts are kept tight. The instrument should be calibrated occasionally to check the normal and shear stress against the chart scale.

F. OAKFIELD PUNCH

Description

The Oakfield punch is a device designed to rapidly obtain small soil samples for moisture content determinations. It consists of a tube (figure B-8) with a cutting edge and a cut-out sidewall mounted on a shaft with a handle. Depth indicators are inscribed on the tube.

Instructions

The punch is pushed into the soil in a normal position to the desired depth. The handle is turned to break the soil column and the punch is withdrawn from the soil. The soil is removed from the tube through the sidewall opening with the fingers or a spatula and placed in a soil can.

Three samples are usually taken from each layer if the soil sample is in 3-inch (7.6-cm) vertical increments. The punch should be kept clean at all times.

Figure B-8. Oakfield Punch.

G. OTHER EQUIPMENT.

<u>Use</u>

Standard equipment and devices are used to measure distance, angles, direction, slope, cross sections, and size and spacing of obstacles. The instructions provided with standard equipment are used as directed in use and care of equipment.

III. TEST ROUTINE

A. DATA COLLECTION PROCEDURES AND SITE LAYOUT

Collection Procedures

The data items listed on the Data Form (Annex I) will be collected at each sample site if the terrain factor is present and the specific parameter to be measured does not exceed the capacity of the instrument. In the event a specific set of data cannot be measured, the maximum instrument capacity with a plus sign should be indicated on the data form and appropriate comments made in the remarks.

Order of Collection

The order in which terrain data are collected is important because excessive personnel traffic on the site can destroy or influence the data results; i.e., human traffic on forested sites will destroy small plants which in turn influence visibility measurements. To minimize the effects of traffic on the measurement of terrain data, visibility or recognition distance data should be collected first, followed by surface composition with soil strength measurements, then vegetation measurements, and finally surface geometry measurements.

Site Layout

A sampling site is laid out on an assumed homogenous landform component (figure B-9). The center and principal axis of the site are laid out with appropriate measurement devices along with as many as eight radii spaced 45 degrees apart, if necessary, to identify sampling locations. The center of the site will be located at station 0 + 50 if the site is on flat terrain and has no identifiable orientation of surface features (rows or dikes). The principal axis is located along a north-south grid. On sloping terrain the principal axis is located at right angles to the contour lines. If the site selected is on a narrow landform component such as a narrow bottomland terrace, the principal axis is located along the length of the terrace.

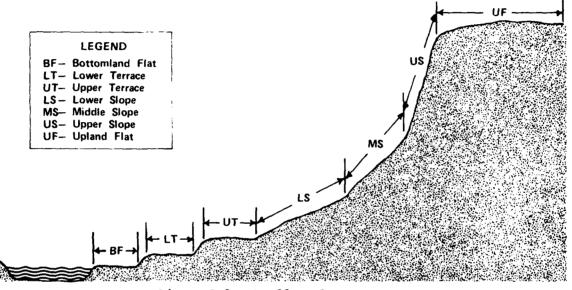


Figure B-9. Landform Components.

B. SURFACE COMPOSITION

Cone Index

At each site 10 sets of cone index measurements will be made at 10-foot horizontal intervals, beginning at station 0 + 00 and ending at station 0 + 90 along the principal axis. Station zero is located at the south end of the site on flat areas and at the bottom of the slope on sloping terrain. A set of readings includes cone index measurements taken at the surface, and at depths of 3, 6, 9, 12, 15, and 18 inches (7.6, 15.2, 22.9, 30.5, and 45.7 cm).

When cone index readings greater than 300 are obtained with the 0.5-square-inch cone at prescribed depths and at several locations, the 0.2-square-inch cone is used to measure cone index. If the 0.2-square-inch cone is used with a dial that indicates a maximum reading of 300, be sure to note

on the data form the size of the cone and maximum dial reading so that the appropriate conversion can be made. For instance, readings obtained with a 0.2-square-inch cone and dial maximum reading of 300 must be multiplied by 2.5 to obtain the correct cone indexes.

Remolding Index

The cone index data recorded in paragraph 2g(1) (Annex I) are examined to determine which set of cone index readings contained the lowest in the 0- to 12-inch depth. The remolding index data are taken at the same location as the other soil data.

The sampling pattern is given in figure B-10. Care should be taken not to disturb the soil at the location selected for detailed soil sampling. The remolding test will be made on a sample obtained from the 0- to 6-inch and 6to 12-inch layers. Procedures described under remolding equipment will be followed in conducting the test. Two remolding tests are conducted for each layer. If the difference in remolding index values between test 1 and test 2 is greater than 0.12, a third test is run and all three index values are averaged. (NOTE: If a 6-inch long sample cannot be obtained with the Hvorslev sampler, or if the soil sample in the tube is too firm to penetrate with the 0.2- square-inch cone, it is so noted on the form.)

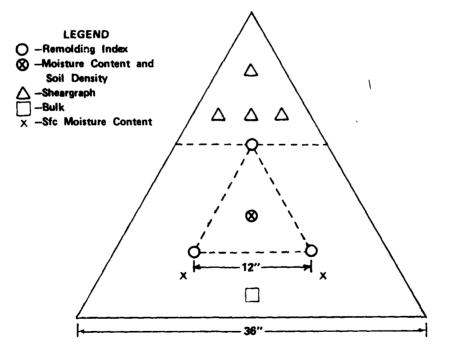


Figure B-10. Soil Data Sampling Pattern.

Sheargraph

Sheargraph measurements are made on the soil surface at each site in accordance with procedures discussed earlier and the sampling pattern shown in figure B-10, above. A set of readings is taken of the natural soil moisture during the time of sampling and after the surface has been artificially wetted with water. A sufficient number of peak and residual shear values are obtained for the range of normal stress shown on the chart to define a linear relation between normal stress and shear stress.

Density and Moisture Content

Samples for density determinations will be taken with the Hvorslev sampler in accordance with procedures outlined under care and use of samples. The density samples will also be used for moisture content determinations. One sample at each test site will be taken from each layer—0 to 3 inches (0 to 7.6 cm), 3 to 6 inches (7.6 to 15.2 cm), 6 to 9 inches (15.2 to 22.9 cm), and 9 to 12 inches (22.9 to 30.5 cm). The sample is placed in a soil can and sealed with a plastic tape.

Location

Location of sampling points is given in figure B-10. If the soil is too firm to sample for density, the Oakfield punch or similar device is used to obtain moisture content samples; notes such as "too firm to use Hvorslev sampler" should be recorded on the data sheet.

Water Table

The depth to groundwater is measured to the nearest 0.5 inch (1.3 cm) with a yardstick or similar device in the holes made to obtain remolding or density/moisture content samples prior to leaving the test site.

Laboratory Samples

After all soil measurements have been taken, bulk samples are selected for laboratory analysis of pertinent soil properties. About a 500-gram sample of each is taken from the 0- to 6-inch and 6- to 12-inch layers at one location using the Hvorslev or a suitable soil sampling device. The soil is placed in a plastic bag. Each sample is identified by site, depth of sample, and date of sampling. Laboratory determination of Atterberg limits and mechanical analysis will be made.

Pertinent Notes

Pertinent notes including weather and surface soil conditions will be recorded on the field data sheet as indicated. The presence of free water on the surface of sample sites, floodings, the presence of surface cracks caused by drying, and other pertinent observations will be noted. Data pertinent to location, drainage, land use, soil parent material and profile and an index and explanation of photographs taken will be recorded at each site.

C. SURFACE GEOMETRY

Descriptions

Surface geometry describes the topographic surface. Macrogeometry describes the topographic surface as generated by a contour interval of 10 meters, or only those features that are recorded by 10-meter contour lines; whereas microgeometry provides a description of those attributes of the topographic surface that are small enough not to be revealed by 10-meter contour lines. The latter is usually referred to as micro relief or surface roughness.

Macrogeometry

Macrogeometry is measured with an Abney level along the principal axis of the site. If the principal axis does not lie at right angles to the contours, the maximum slope and azimuth between the maximum slope and principal axis are also measured and recorded on the Data Form (Annex I). Slope is recorded to the nearest percent.

Microgeometry

Microgeometry is measured with a measuring tape 100 feet (30.5 meters) long, stretched tightly along the principal axis with station 0 + 50 at the center of the site. The tape should be fastened to a firm obstacle 2 feet (50.4 cm) above the ground at stations 0 + 00 and 1 + 00 and supported at each end, and at quarter points, if required to prevent sagging. The slope along the principal axis is measured from station 0 + 00 to 1 + 00, and on surface geometry data form.

Measurements

Measurement of microgeometry is made at 1-foot horizontal intervals along the stretched tape with the vertical distance measurement perpendicular to the stretched tape. These measurements are recorded in paragraph 3b(2) (Annex I).

Obstacles

If obstacles occur on site, they are described by measuring the perpendicular distance from the principal site axis to the center of the obstacle. A compass can be used to establish direction. The obstacle is also described in terms of its type, length, width, height, and approach angle. Obstacles that occur within the 100-foot diameter site are measured and described as above. Special data forms are provided for recording data describing linear and random obstacles.

D. VEGETATION

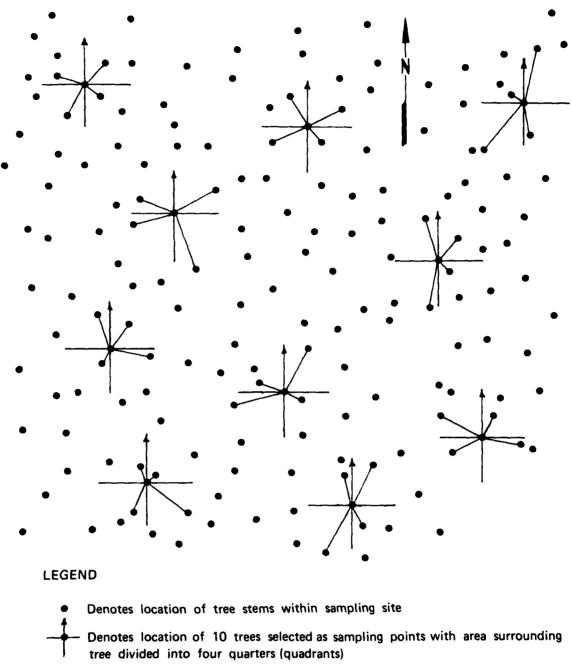
Description

The vegetation at each site will be described in conventional botanical and structural attribute terms. The sampling routines used to provide data on selected structural attributes are discussed, because these data are commonly used in modeling vegetation effects on a test activity. The two methods are the structural cell and the modified quarter. In both methods, stem diameter will be measured at breast height (DBH), 4.5 feet (1.37 cm) above the ground.

Structural Cell Method

At the center of the site, estimate a cell diameter that will include approximately 20 stem sizes in class 1 (less than 1 inch) described in paragraph 4f of the Data Form. If 20 plants of class 1 occur in the cell, record the cell diameter; and, if not, add a small annulus to the cell diameter to obtain 20 stems of class 1 size. The process is repeated for all stem diameters until each class contains 20 stems or until a cell diameter of 100 feet is reached. Once the stem count of 20 is reached for a given stem diameter class, the stem sizes in that class are no longer counted in satisfying the stem count for the next stem size classes. The stem data are recorded on the form shown in paragraph 4f (Annex I).

Modified Quarter Method


At each sampling site the modified quarter method will be used to obtain a measure of stem spacing and density of stems equal to or greater than 1-inch DBH. Ten trees within the sampling site (100-foot diameter) are selected at random as the centers of sampling points and appropriately marked (figure B-11). Each sampling point is subdivided into four quadrants using a compass with orientation of one axis identical to the principal axis of the test site. At each sampling point, measure the distance, (nearest neighbor distance (NND)), between the tree used as the center of the sampling point and the nearest tree in each quadrant, and the stem diameter (DBH). These data are recorded on the form given in paragraph 4g (Annex I).

Marking Trees

Once a tree is included in the data base it is marked with spray paint or flagging to avoid recounting. As the cell diameter gets larger, it may be necessary to establish additional radii to properly identify the location of plants and size of sample cell.

Vegetation Clumps

Occasionally, clumps of vegetation stems will be encountered. To measure clumps of vegetation, count the number of stems in the clump, measure the stem diameter (DBH) and record in the appropriate section of the data form. During

 Denotes distance between tree selected as sampling point and the nearest tree to it in each of the four quadrants

the data tabulation process, clump-stem diameters are converted to an effective single-stem diameter using a special empirical formula.

Vegetation Types Common in Canal Zone

In providing a general description of the Holdridge forest life zone associations required in paragraph 4c (Annex I), the descriptive keys below should be used to identify major tropical vegetation types that occur within the study area.

Secondary and Edaphic Associations

The system is based on vegetation structure (type) which is primarily dependent on temperature and precipitation with modifications from nonclimatic secondary and edaphic associations:

a. <u>Secondary Associations</u>: Areas recently cut, burned or disturbed by man in other ways (grasslands, Heliconia or Palmetto areas, jungle tangle).

b. <u>Adaphic Associations</u>: Associations resulting from or influenced by factors inherent in the soil, i.e., flood plains, areas frequently inundated with fresh, salt or brackish waters, slope and ridge associations, and areas well drained with shallow soils (e.g., freshwater palm swamps, catival forests, mangrove swamps).

Structural Descriptions

The following structural descriptions of the life zones listed above are for mature forests in well drained upland associations.

a. <u>Tropical Moist Forest</u>. General: Tall multistratal semideciduous or evergreen trees.

Canopy: Trees 130 to 160 feet (40 to 50 m) tall with wide crowns, slender trunks, often with buttresses, and boles unbranched for 80 to 110 feet (25 to 35 m).

Subcanopy: Trees up to 100 feet (30 m) tall with narrow crowns; palms are common to abundant. Density of subcanopy is variable depending on length of dry season and site factors.

Understory trees: Trees 25 to 65 feet (8 to 20 m) tall with round to conical crowns.

b. <u>Premontane Wet Forest</u>. General: Tall to intermediate semievergreen trees with two or three strata. Strata are not always easily distinguishable.

Canopy: Trees 100 to 130 feet (30 to 40 m) tall with round to spreading crowns and slender to stout trunks. Buttresses are common but smaller than in Tropical Moist and Tropical Wet Forests. Subcanopy: Small trees and shrub layers are evergreen.

Small Tree Stratum: A dense layer of trees 30 to 65 feet (10 to 20 m) tall. Stilt roots are common and tree ferns occasional.

Shrub layer: A dense stratum of single-stemmed small trees 6 to 10 feet (2 to 3 m) tall; small palms are rare.

c. <u>Premontane Moist Forest</u>. General: Two-layered, semideciduous, seasonal trees of medium height. Canopy trees mostly deciduous; understory trees and shrubs, evergreen.

Canopy: Trees about 80 feet (25 m) tall with characteristic broad flat or umbrella-shaped crowns, and short stout trunks sometimes with thorns.

Understory trees: Trees 30 to 65 feet (10 to 20 m) tall, everyreen with round to conical crowns and short twisted or crooked boles.

Shrub layer: Dense woody plants, 6 to 10 feet (2 to 3 m) tall, single and multistemmed, often with spines and occasional bamboo-like grasses.

d. <u>Tropical Wet Forest</u>. General: Tall, multistratal evergreen trees. A few canopy trees may be briefly deciduous, especially when flowering. Number of tree species is very large.

Canopy: Trees 145 to 180 feet (45 to 55 m) tall with occasional larger emergents. Crowns are round to umbrella-shaped, usually not in contact with each other. Clean boles up to 100 feet (30 m) and high buttresses are common.

Subcanopy: Trees 100 to 130 feet (30 to 40 m) tall fill spaces between upper canopy trees. Crowns, round; trunks, slender; large buttresses lacking.

Understory: Trees 30 to 80 feet (10 to 25 m) tall with slender stems, often twisted or crooked; narrow conical crowns. Stilt-rooted palms are abundant.

Shrub layer: Dwarf palms 5 to 8 feet (1.5 to 2.5 m) tall with undivided leaves usually abundant. Giant herbs with banana-like leaves are prevalent, especially in disturbed areas.

e. <u>Tropical Dry Forest</u>. General: Seasonally semideciduous trees of low to intermediate height with two-tree strata.

Canopy: Trees mostly 65 to 80 feet (20 to 25 m) with wide-spreading, often flat-topped, crowns. Trunks are short, often strongly but-tressed and occasionally armed.

Shrub layer: Shrubs 6 to 10 feet (2 to 3 m) tall, dense only in openings; often with multiple-armed stems. Wood vines are common.

f. <u>Flood Plain Associations--Nonsaline</u>. Slightly elevated or seasonably fresh water-flooded, fertile, alluvial soil.

(1) Predominately one-grass species with numerous thorny vines in the area, tall grass appearing as a canefield with canes 3/8 inch (1 cm) in diameter. Usually 10 to 13 feet (3 to 4 m) tall. Marsh grass areas. Predominately one species, ragged, grassy appearance from the air, thorns on slender stem, green foliage. Bactris.

(2) Predominately one species, dark green foliage, precumbent boles, rosette foliage distribution on low, round crowns, understory open. Corozo Palm.

g. <u>Low Terrace Associations--Nonsaline</u>. Slightly elevated terrace, less frequently or seasonably fresh water-flooded, with a fertile alluvial soil.

Predominately one species, dark green foliage, slightly uneven canopy, rounded crowns, terete boles, understory usually open. Mature trees 65 to 100 feet (20 to 30 m) tall. Cativo.

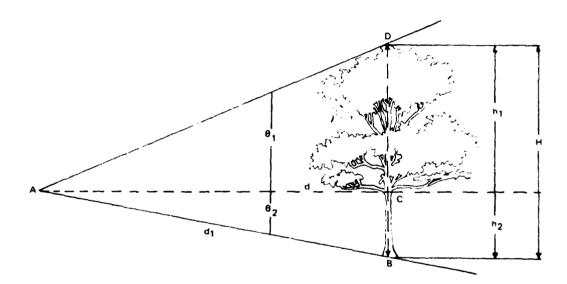
Recognition Distance

Recognition distance data are obtained at test sites where a significant obstacle of the ground would be obstructed by vegetation. A measure of the light intensity is obtained with a photographic light meter along the paths on which recognition distance is measured. Average values for f stop, shutter speed, and ASA film rating are recorded in paragraph 4f of the Data Form (Annex I). The target to be recognized is a five-pointed flat-black star that can be inscribed in a 1-foot (25.4-cm) diameter circle.

Measurements

Once the principal axis of a test site is located and the site has been divided into four quadrants, recognition distance measurements are made first to avoid effects of personnel traffic on vegetation characteristics. Measurements are made along four radial lines from the sample cell center, usually at 45 degrees, 135 degrees, 225 degrees and 315 degrees if the principal axis lies along a north-south line. The observer stands at the center of the sampling cell as the target is moved away from him, the distance is recorded at which he can distinguish clearly three points of the star when the star is placed flat on the ground, and when its center is placed vertically at 1 foot (25.4 cm) and 5 feet (1.3 m) above ground. To convert available ambient light to footcandles, the maximum aperture (f) for the camera used, f stop, shutter speed, and ASA film rating must be recorded.

Canopy Cover


In estimating the percent of canopy cover, the observer will walk through each of the four quadrants of the test sites and record in each quadrant a value for the percent of sky that is not visible. These values are recorded in paragraph 4i (Annex I).

Vegetation Height

Tan

11

Tree height is computed from measurements of a baseline distance from the tree and the line-of-sight angle to the top of the tree and the use of trigo-nometric relations of right triangles. On sloping terrain, the slope angle is measured and used in the computation as illustrated in figure B-12.

Level Ground	Slope Adjustment
an $\theta_1 = CD/d$ h ₁ = d Tan θ_1	$\begin{array}{rll} \text{Tan } \theta_2 &= \text{BC/d} \\ h_2 &= d & \text{Tan } \theta_2 \end{array}$

Sloping Terrain

 $H = h_1 + h_2 = d (Tan R_1 + Tan \theta_2)$

Figure B-12. Computation of Tree Height.

Estimation of Heights

When a line-of-sight to the tree top is not visible, an estimate of tree height can be obtained from a relation between stem diameter and tree height for mature tropical wet, and mature and immature tropical moist forests from the curve shown in figure B-13.

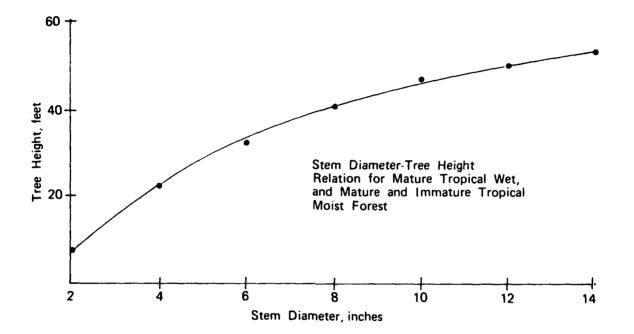


Figure B-13. Estimation of Tree Height.

IV. TABULATION OF DATA

A. SURFACE COMPOSITION

Procedures

The rules and procedures to be followed for computing and tabulating terrain data collected in the field are described in the following paragraphs.

<u>Cone Index</u>. Cone index is an index of the shearing resistance of a medium obtained with a cone penetrometer. The procedures for computing and averaging cone index are as follows:

a. Prior to tabulating the data, all the readings for a given depth are examined for consistency. For example, if a reading of 300^+ occurs in a

range of data from 50 to 150, the 300^+ is not included in determining the average for that depth. If a low reading occurs in an array of high readings, it also is eliminated from the averaging procedures. Such outliers indicate the presence of thin hard layers, rocks or voids in the soil.

b. The cone index readings are totaled and averaged for the surface, and the 3-, 6-, 9-, 12-, 15-, and 18-inch layers. If any of the cone index measurements used in determining an average include values that exceeded the capacity of the instrument $(300^+ \text{ or } 750^+ \text{ depending upon cone size used})$, place a plus sign after the average.

c. The average 0- to 6-inch cone index for the site is obtained as follows:

(sfc average) + (3-inch average) + (6-inch average) 3

d. Averages for the 6- to 12-inch and 12- to 18-inch indexes are obtained by averaging the 6-, 9-, 12-inch and 12-, 15-, 18-inch average cone index readings, respectively. The averages are recorded to the nearest whole numbers.

<u>Remolding Index</u>. The remolding index is the ratio between remolded and natural strength of the soil, as determined by a special remolding test. This is done by dividing the sum of the penetrometer readings taken after remolding by the sum of the readings taken before remolding. The remolding index is recorded in decimals to the nearest 100th.

<u>Computing Index</u>. Procedures used in computing remolding index (RI) and examples of their application are:

a. Cone index readings do not exceed the capacity of the instrument.

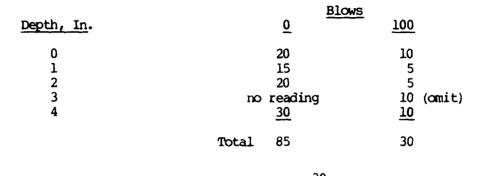
0.5-Sq-In Cone

		Blows	
Depth, In	<u>0</u>		00
0	70		40
1	85	(60
2	110	ç	90
3	150	12	20
4	170	14	40
	Total <u>585</u>	49	<u>40</u> 50

$$RI = \frac{450}{585} = 0.77$$

b. Because of the firmness of the soil sample, readings will exceed the capacity of the instrument and special computation procedures are used, as illustrated:

		0.5-Sq-	In Cone	0.2-Sq-In	Cone
Depth, In.		<u>0</u> <u>B1</u>	<u>.ows</u>	<u>0</u> <u>Blows</u>	100
0 1 2 3 4		- 110 180 240 * <u>300</u> + <u>300</u> +	90 150 220 <u>260</u> 300+	150 290 750+ <u>750</u> + 750+	120 210 580 710 750+
	Total	830+	720+	1,940+	1,620+
	RI	$=\frac{720}{830}=0$.87	$RI = \frac{1620}{1940} = 0.84$	


*Data above the line only are used in obtaining the total. In order for the test to be valid, the before and after-remolding readings at two or more depths must be less than the capacity of the instrument for one or both of the paired readings; see example (1) below. If the test conducted with the 0.5-square-inch cone is not valid, the test is repeated using the 0.2-squareinch cone; see examples (2) and (3) below.

(1) Test 0.5-Sq-:	Valid		(2) t Not Vali -Sq-In Con		Test	3) <u>Valid</u> -In Cone	
Depth, In.	<u>Blo</u>	ws 100	<u>Bl</u>	<u>ows</u> 100		Blo 0	ws 100
0 1 2 3 4	100 <u>300</u> + <u>300</u> + 300+ 300+ 300+	50 <u>150</u> 300+ 300+ 300+	100 <u>300</u> + <u>300</u> + 300+ 300+ 300+	50 300+ 300+ 300+ 300+ 300+		90 450 520 <u>650</u> 750+	45 290 320 <u>750</u> + 750+
Total	400+	200+				1,710+	1,405+
R	$I = \frac{200}{400}$	≈ 0 . 50			RI =	$\frac{1405}{1710} =$	0.82

c. It is to be noted that 300^+ or 750^+ is used in the computation only when it pairs with a less-than-instrument-capacity value obtained either before or after remolding at the same depth.

d. The same number of cone index readings at their corresponding depths are used before and after remolding, as illustrated below.

0.5-Sq-In Cone

 $RI = \frac{30}{85} = 0.35$

<u>Average Index</u>. An average remolding index is determined for each site and designated layers.

<u>Rating Cone Index</u>. The rating cone index is the product of the measured cone index and the remolding index for the same soil layer. If the soil is too firm to sample or a valid test cannot be performed, a remolding index of one is used to compute rating cone index.

<u>Surface Shear Strength</u>. The sheargraph provides a set of data that defines, for selected normal stresses, initial or peak and residual or ultimate shear patterns, as follows.

The lines drawn are linearized and values for ϕ_i , ϕ_r , C_i , and C_r are obtained and recorded on the data form.

<u>Density</u>. Dry density will be computed only for core samples obtained with a Hvorslev sampler that have a prescribed length and known volume. The procedures are:

a. Compute the dry density to the closest 0.1 lb/cu ft for the same 3inch long samples used in the computation of moisture content using the following equation:

Dry density (lb/cu ft) = weight of dry soil (gm) X 0.46 (constant)

(Bq. B-4)

b. Record the data in paragraph 2e of the Data Form (Annex I). If the sample length is changed, a new constant (K) must be determined using the following equation:

$$K = \frac{1728}{453.6 \pi r^2 h}$$
 (Eq. B-5)

where r is the radius (0.937 in) of the inside diameter of the sampler tube and h is the height of the sample in inches. For example, if the net dry weight of a 3-inch-long sample is 190 grams, the density of the soil from which that sample was extracted is 0.46 X 190 grams or 87.4 lbs/cu ft or 1.40 gm/cu cm.

Moisture Content. The data for computing moisture content are given and recorded in paragraph 2e (Annex I). The procedures are:

a. Remove tape from can, weigh can and wet soil to the closest 0.1 gram for each sample and record for given can number.

b. Place can lid on bottom of can, place can in oven, and ovendry to 105°C for at least 24 hours.

c. Weigh can (with lid) and dry soil to the closest 0.1 gram and record.

d. Subtract weight of "can and dry soil" from weight of "can and wet soil" and record weight of water.

e. Record tare weight of can.

f. Subtract weight of "can" from weight of "can and dry soil" and record weight of "dry soil."

g. Compute moisture content using the following formula:

Moisture content, $% = \frac{\text{weight of water}}{\text{weight of dry soil}} \times 100 \text{ nearest 0.1}$ (Eq. B-6)

h. Determine average moisture content values for layers 0 to 3 inches (0 to 7.6 cm), 3 to 6 inches (7.6 to 15.2 cm), 3 to 9 inches (15.2 to 22.8 cm), and 9 to 12 inches (22.8 to 30.5 cm), and record in the proper columns.

Soil Classification. Most soils in the environmental test are residual clays and silty clay soils; therefore, Atterberg limits only are used to establish soil type according to the Unified Soil Classification Systems. Standard laboratory procedures are used to classify other soil types.

B. SURFACE GEOMETRY

Macrogeometry

Data collected to define the macro-slope require no tabulation.

Microgeometry

Data collected are used to describe the metro relief or surface roughness at the test site. The reference line is fastened to stakes at stations 0 + 00and 1 + 00, 24 inches above ground. To process the data for tabulation purposes, 24 inches are subtracted from each of the elevation readings given in paragraph 3b of the Data Form (Annex I). The corrected elevation data are processed to obtain a measure of the sample standard deviation. The basic equation used is as follows:

$$s = \sqrt{\frac{\Sigma (y-\overline{y})^2}{N}}$$
 (Eq. B-7)

where: s = Sample standard deviation

y = Elevation data point

y = Mean

N = Number of data points

Root mean square is also computed for mobility purposes using a USAWES calculating procedure.

C. VEGETATION

Procedures

The data collected for the structural cell and the modified quarter methods, recorded in paragraphs 4f and 4g of the Data Form (Annex I), require different tabulation procedures. The tabulation procedures used are dependent upon data use.

<u>Structural Cell</u>. The number of stems counted in each stem diameter class are totaled and recorded in the column marked "total" on the Data Form (4f) (Annex I). The stem spacing is calculated for each class using the formula:

$$S = D / \sqrt{N_c}$$
 (Eq. B-8)

where: S = Spacing, ft

- D = Diameter of expanded cell, ft
- N_{C} = Number of stems in a given diameter class, or in a given diameter class or greater, or in a given class or less

Density. Stem density is computed by:

Stem density = Number of stems/acre = $\frac{\text{Number of stems}}{\pi r^2/k}$ (Eq. B-9)

where: r = Sample cell radius, ft
 k = Constant, 43,560 sq ft/acre

<u>Data Reduction</u>. If clumps of vegetation stems are recorded on the field data form, these data must be reduced to an effective stem diameter. Stem diameter for common woody plants can be estimated by computing the work to override the average diameter of a single stem in the clump. Multiply the number of stems and then convert to a single stem diameter. The formula used is:

$$W_{t} = Kd^{3}$$
 (Eq. B-10)

where:

 W_t = Override total work in foot-pounds

- \bar{K} = 100.0 for common trees; it varies with the unit cross section stress
- d = Stem diameter in inches

This relation is expressed in the following table.

	Total Work
Stem Diameter, in	Work, ft/1b
1	101
2	803
3	2,706
4	6,410
5	12,514
6	21,617
7	31,506
8	51,220
9	69,770
10	100,017

For example, if 16 2-inch diameter woody stems occur in a clump, the effective stem diameter is computed by the following method:

Total Clump Override Work = W_t (single stem) X no. of stems

= 803 X 16 = 12,848 ft-lbs. Effective size = 5-inch stem (from table above)

<u>Summary Data Tables</u>. Other computations of data recorded in paragraph 4f of the Data Form (Annex I) are made for each stem diameter class recorded in summary data tables. The data recorded in paragraph 4f of the Data Form are tabulated and presented in the following columns, as an example—Summary of Vegetation Data, Structural Cell Method:

(1)	(2)	(3)	(4)	(5)
Stem Dia Class	<u>Cell Dia</u> (feet)	Stems (no.)	Total Stems <l in.="">l in.</l>	Stem Spacing (feet)
1 2 3 4 5 6 7 8	100 100 100 100 100 100 100	525 725 84 31 7 4 0 13	525 864	4.36 3 71 10.91 17.96 37.80 50.00 >100.00 27.74
(6)	(7)	(8)	(9)	(10)
Stem Dia Class	Cum Stems; < Dia Class	Cum Stems; <u>> Dia Class</u>	Stem Spacing; <u> <</u> Dia Class (feet)	Stem Spacing; <u>></u> Dia Class (feet)
1 2 3 4 5 6 7 8	525 1,250 1,334 1,365 1,372 1,376 1,376 1,389	1,389 864 139 55 24 17 13 13	4.36 2.83 2.74 2.71 2.70 2.70 2.70 2.70 2.68	2.60 3.40 8.48 13.48 20.41 24.25 27.74 > 27.74

The data in the previous tables are obtained in the following manner.

Column (1). Transfer directly from paragraph 4f of Data Form.

Columns (2) and (3). Transfer from paragraph 4f of Data Form all cell diameters equal to 100 ft, equate data for any cell diameter less than 100 ft to 100-ft diameters. For example, a 20-ft cell diameter with 24 stems is equivalent to a 100-ft cell diameter with 600 stems (25 X 24 = 600).

Column (4). < 1 inch enter class 1 total stems. > 1 inch enter total of classes to 8 inclusive.

Column (5). Compute using equation B-9.

Column (7). Cumulate column (3) no. of stems by classes.

Column (8). Enter total number of stems in class 8 (13) and for each successive class, add the number of stems to the preceding accumulative total to obtain the accumulative number of stems > than that class.

Column (9). Use equation B-7, cell diameter given in column (2), and cumulative number of stems given in column (7) for diameter classes and compute spacing.

Column (10). Use equation B-6, 100 feet expanded cell diameter, and cumulative number of stems given in column (8) to compute spacing for diameter classes given in column 6.

<u>Modified Quarter Method</u>. Each of the data sets in paragraph 4g of the Data Form (Annex I) for stem spacing, stem diameter and stem height are totaled, averaged and recorded in the appropriate columns.

<u>Mean NND and Stem Density</u>. The sample size at each sampling site consists of 10 random points each containing four nearest neighbor distance (NND) measurements. These 40 NND measurements are used to determine the mean (NND) and stem density using the following equations:

$$NND = \frac{\Sigma D}{40}$$
 (Eq. B-11)

where: ΣD = The sum of the measured nearest neighbor distances

Number of Stems per Unit Area =
$$\frac{A}{(NND)^2}$$
 (Eq. B-12)

where: A = unit area

The data recorded in paragraph 4g of the Data Form (Annex I) are used to illustrate the application of the previous equations.

NND =
$$\frac{\Sigma D}{40} = \frac{318 \text{ ft}}{7.95 \text{ ft}}$$

Number of Stems per Unit Area = $\frac{A}{(NND)^2} = \frac{43,560}{7.95^2} = 689$ stems/acre

<u>Recognition Distance</u>. The data shown in paragraph 4h (Annex I) are simply averaged for the 1- and 5-foot target heights and recorded in the last column.

Light Intensity. The film and light meter data recorded in paragraph 4h of the Data Form (Annex I) are used to obtain a value for light intensity at the sampling site during the time that photographs are taken. The following table is used to convert the common film light sensitivities, shutter speeds, and exposure values (EV) to light intensity in terms of footcandles for cameras having a maximum camera aperture opening (f stop) from 1 to 2.8.

FILM 1	<u>TYPE:</u> BW TRI- ASA 400		FILM TYPE:	Extra Chrome ASA 200	Daylight,
Shutter <u>Speed</u> (1 sec)	Exposure Value	Footcandles	Shutter <u>Speed</u> (1 sec)	Exposure Value	Footcandles
		<u>f</u> St	<u>op = 1</u>		
30 60 125 250 500 1000	3 4 5 6 7 8	0.1 0.2 0.4 0.8 1.6 3.2	15 30 60 125 250 500 1000	3 4 5 6 7 8 9	0.1 0.2 0.4 0.8 1.6 3.2 6.5
		f Stop	= 1.4		
15 30 60 125 250 500 1000	3 4 5 6 7 8 9	0.1 0.2 0.4 0.8 1.6 3.2 6.5	8 15 30 60 125 250 500 1000	3 4 5 6 7 8 9 10	0.1 0.2 0.4 0.8 1.6 3.2 6.5 13.1
		f Stop	= 2.0		
8 15 30 60 125 250 500 1000	3 4 5 6 7 8 9 10	0.1 0.2 0.4 0.8 1.6 3.2 6.5 13.1	4 8 15 30 60 125 250 500 1000	3 4 5 6 7 8 9 10 11	0.1 0.2 0.4 0.8 1.6 3.2 6.5 13.1 16.1
			= 2.8		
4 8 15 30 60 125 250 500 1000	3 4 5 6 7 8 9 10 11	0.1 0.2 0.4 0.8 1.6 3.2 6.5 13.1 26.1	2 4 8 15 30 60 125 250 500 1000	3 4 5 6 7 8 9 10 11	 0.1 0.2 0.4 0.8 1.6 3.2 6.5 13.1 26.1

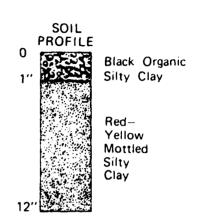
	PEN	DIX B-ANNEX I. USATTC TERRAIN DATA COLLECTION FORMS-AREAL TERRAIN
]	Ide	ntification and Site Description:
i	a.	Site No. 12 Date 6-28-79 Time 0945
ł	b.	Party Chief R. Johnson
¢	с.	Location:
		Map Reference: AMS Series E965 Airphoto Reference No. 203
		Grid Coordinates 42730945
C	d.	Elevation: Ft. 188 Local Relief: Ft. 110
e	e.	Weather: Clear Cloudy Partly Cloudy X Rain
f	£.	Landform Component: Middle slope
ç	g.	Principal Axis, Deg: Az: 270.0 Grid Az: 266.5
i	h.	Topographic Position <u>Middle slope</u>
		Slope, %: 24
		Shape and Size, Ft., of Sample Site: Rectangular
ŀ	k.	Landuse: Tropical forest
1	REM	ARKS:
		face Composition:
č	a.	
		Type and %: Organic_X % 100 Inorganic %
L	-	other
		Surface wetness: Dry Moist Wet X Flooded
C		Water Table Depth, In. >18 in
	d.	Soil Depth: In. >18 in Measured Estimated X
Ċ		
	REM	ARKS

B-I-1

e. Moisture Content and Density

	Layer (inches)	0-0.5"	0-0.5"	0-3"	0-3"	3-6"	3–6"	" 6-9	 -9	9-12"	9-12"
	Can No.	K232	J	K138	1	K173	1	131A	I	!	I
	Wet & Can	145.7	ł	283.4	1	306.9	1	347.0	1	1	1
SIM	Dry & Can	115.5		215.6	1	246.5	ł	285.5	1	1	1
CB/	Water	30.2	1	67.8	1	60.4	ł	61.5	1	1	1
	Can Wt	58.4	1	59.1	1	59.0	1	0.66	1	1	1
	Dry Soil Wt	57.1	1	156.5	1	187.5	1	186.5	1	1	1
	MC, &	52.9	1	43.3	1	32.2	ł	33.0	1	1	1
	Dry Den. lb/ft ³	1	1	72.0	1	86.2	1	85.8	I	1	1
	Avg MC, 8	52.9	6	43.3	m	32.2	5	33.0	0	"	
	Avg Den, lb/ft ³	1		72.0	0	86.2	2	85.8	80		-

....

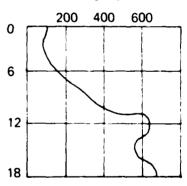

f. Soil Classification:

(l) Field

	Classification				
Depth	US	5DA	T		
In	Series	Texture	USCS		
0-6	Arraijan	Clay	MH		
6-2	Arraijan	Clay	MH		
12-18	Arraijan	Clay	MH		

(2) Laboratory:

Depth	At	terberg L	imits, %	
0-6 In.	LL 74 .	PL 38.	PI 36 .	USCS MH .
0-12 In.			PI <u>31</u> .	USCS MH .
12-18 In.	ш <u>.</u> .	PL	PI	USCS.
REMARKS:				

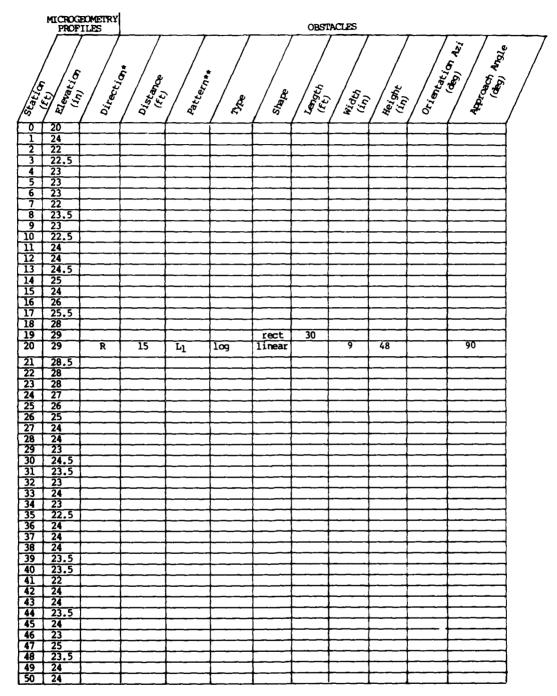

÷

g. Soil Strength:

(1) Cone Index (CI) Cone Size: 0.2 in² Dial Size: 750

Reading		·	I	epth,	In.		
	0	3	6	9	12	15	18
1	40	130	190	300	750+		
2	60	90	190	600	550	750+	
3	50	100	160	230	480	580	750+
4	70	180	430	750+			
5	40	80	220	180	170	260	750+
6	80	130	230	220	200	750	
7	80	90	110	280	540	550	750+
8	80	100	500	430	410	450	350
9	70	100	130	130	120	140	140
10	50	90	140	180	140	130	190
Total	620	1090	1370	1750	3760	3340	2600
Avg	62	109	171	219	627+	557+	650+

NOTE: Circled numbers amitted


B-I-3

		_	dex: (RI	Dia	e Size 1 Rang	je:	0.5		-			
LAYER		0-6" 0-6"				0-6" 6-12"			··	6-12"		
SURFACE	<u> </u>	<u>A</u> 60	<u> </u>	<u>A</u> 50	<u>B</u>	<u>A</u>	<u> </u>	<u>A</u>	<u> </u>	<u> </u>	<u> </u>	
1"	130	85	135	70					**************************************			
2"	125	<u> </u>	145	90								
3"	128	105	100	120					TOO DIFFICU	LT TO		
4"	140	130	120	130	- <u></u>				SAMPLE			
TOTAL	623	475	565	460								
RI		0.76		0.81								
AVG			0.79			_						
(3)	Rating	Cone	Index (RC	21):								
LAYER	0-6"					0-12"				12-18"		
CI	114					339+				611+		
RI		0.79					1				1	
RCI		90				339+				611+		
REMA	RKS: RC	ots a	nd firm s	soil we	re enc	count	tered	in 6-	-12 in layer.			
(4)	Sheargr	aph:	Type of	foot:	Vane_			Rubbe	er <u>X</u> M	etal		
10 10 10 10 10 10 10 10 10 10												
Normal Stress, psi						Normal Stress, psi						

B-I-4

	(a)	Natural Wetness Cohesion (c), psiInitial, $c_i \ 0.5$ Residual, $c_r \ 0.1$ Angle of Internal Friction (ϕ), degInitial, $\phi_i \ 31.2$ Residual, $\phi_r \ 19.6$
	(b)	Artificial Wetness Cohesion (c), psiInitial, $c_i \ 0.1$ Residual, $c_r \ 0$ Angle of Internal Friction (ϕ), degInitial, d 28.0Residual, $d_r \ 24.2$
3.	Surf	face Geometry:
	a.	Macro
	(1)	Slope, %
	(2)	Direction Azimuth, deg. Magnetic 90 Grid 86.5
	b.	Micro
	(1)	Profile Orientation: Az, deg: Magnetic 90 Grid 86.5
	(2)	Pattern of Features: Random X Linear
	REMA	NRKS:

4

LEGEND

والمتحجين والمتعاد والمترج فالكلاف والمتحدين المراجع فالمحافظ

* L - Left of principal axis
* R - Right of principal axis
** L₁ - Linear

** R1 - Random

	MICROG _PROI	EOMETRY FILES					OB	STACLES				
Scatt	(in) (in) (in) (in) (in) (in)	Direction	Distance	Pattern**	ere ere	Shello	4364 1264 1264 1264 1264	Width	Height (11)	Orientar	(20) 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/ 12/	er is
51	24.5	f	<u> </u>	<u> </u>	<i>(</i>	1	<u> </u>	<i>[</i>	f	<u> </u>	f	{
52	24				f	+			<u></u>		ŧ	ł
53	23.5				t	1		<u> </u>	1		<u>†</u>	1
54	24											1
55	24]
56	24					<u> </u>	<u> </u>	ļ	ļ			4
57	23 23				<u> </u>	+				<u> </u>	 	ł
59	23				┢────	┥	↓	├ ───-	÷	<u> </u>	<u> </u>	ł
60	21.5				f	f	<u> </u>	(┢╌╼╌╌╴	f	<u> </u>	1
61	21				t	<u>+</u>	<u>+</u>	<u>├</u> ───	t		t	1
62	22										1	
63	22											
64	22.5			ļ			+	├ ───	ļ			4
65	22.5				<u> </u>	<u> </u>	{	<u> </u>			╉──────	{
67	22				<u> </u>	∮ −−−−		<u> </u>	<u> </u>	<u> </u>	t	{
68	21.5				<u>}</u>	+	+	<u> </u>	{	 	t	1
69	20.0					1	1	f		t	1	1
70	20.5]
71	21,5				ļ		·			I		1
72	21				<u>↓</u>	+		[ļ	<u> </u>	4
74	20 21				<u> </u>	╆	┥	<u> </u>	<u> </u>	┢────	<u>↓</u>	4
75	21				<u>├</u>	+	+	<u> </u>	<u> </u>	f	<u> </u>	t
76	21				<u>†</u>	1	1		f	f	1	ţ
77	22											I
78	21.5				ļ	L	<u> </u>	ļ	ļ	ļ		ļ
79	22	<u> </u>	L	ļ_ <u>.</u>			45		+	 	+	ļ
80	24			Ll	log	rect	43	24	36	1	90	
81	23								L	ļ	ļ	
82	23						+	<u> </u>	}		·	ĺ
83 84	22 23				┝───	+	+	├ ────	 	<u> </u>	 	1
85	23		h		+	+	+		+	<u> </u>	+	1
86	22					1	1		1		1	1
87	23					1						
88	23.5					+	+		}	·	+	
89 90	24 23				1~	rach	25			<u> </u>	90	
-		L		Ll	log	rect	1	5	5			
91	23.5	Ř		L	10g	rect	10	18	24		90	
92	23				1	1	1		1			
93	23										L	
94	24	ļ					<u></u>		<u>↓</u>			
95	25			Ll	log	rect	40	10	12		90	
96	25.5											
97	25				L				ļ		L	
98	26	└────		<u> </u>	f	┫	<u> </u>	<u> </u>	┟────	<u> </u>	+	
99 100	24.5 20			Ll	log	rect	10	12	12	┣	90	
Ľ.	<u> </u>		L		L	<u> </u>			L	L	1	l

NOTE: WES Root Mean Square = 1.10

LEGEND

- * L Left of principal axis
 * R Right of principal axis
 ** L₁ Linear

** R1 - Random

4. Vegetation:

a.	Туре:	Forest X	Brush	Grass
	Predominant Species:			<u> </u>
c.	Composition, %.	Deciduous 85		Nondeciduous
		Palm 15		Mixed
	Canopy Height, Ft	8*		Closure, % 90
e.	Forest Life Zone Asso	ciation Tropical	Moist	
REM	ARKS <u>*Lower</u> canopy fo	rmed by understory j	oalms and s	mall trees.

f. Structural Cell Method:

2,912
1,787
466
172
39
22
0
78

REMARKS: Trees over 10 inches in diameter: 18, 12, 17, 12, 16, 11, 25, 21, 13, 13, 15, 11, 14

g. Modified Quarter Method:

		Ŝt	em			S	tem			St	em		Average Stem								
	Sp	ac	ing	,		Dia	mete	r		Hei	ght,	5				Dens-					
Sample] -		t	•	ļ		In				÷Ē		Spac-			ity					
Number	Qu	ad	ran	t		Qua	dran	t		Quad	rant		ing,	Dia,	Ht,	sten/					
	1	2	3	4	1	2	3	4	1	2	3	4	Ft	In	Ft	acre					
1	26	4	14	4	5	3.	52	1	29	22	13	13									
2	4 1	5	4	7	14	4	2	1	54	30	16	9									
3	43	5	9	6	3	3	4.	5 2.5	9	15	23	19									
4	61	1	4	8	19	1.	53	1	44	11	24	13									
5	21 1	2	4	14	5	18	3	15	33	28	5	55									
6	31	1	4	5	4.	56	1	6	23	40	7	48									
7	6	9	14	18	12	5	2	5	48	31	16	42									
8	3	1	3	3	1	1	15	1	8	11	18	12									
9	9	2	13		2	1	6	2	11	14	38	14									
10	4	6	4	2	3	1	1	4	27	13	9	37									

REMARKS:

والمستعدية فالشكر وحور خاول مرور فالمتعا

h. Recognition Distance (12-in Star Target) Area: Open_____Forest___X

	Reco	gnit				
Target Height, Ft		Average Ft				
	1	2	3	4	5	
0	15	15	15	17		15.5
1	20	18	18	18		18.5
5	25	22	33	27	1	26.75

REMARKS:

PHOTOGRAPHIC DATA

ASA Film Rating BW TRI-X Pan 4		400
Shutter Speed, 1/sec_1/60_ f Stop Used_2.8	Camera Max. Aperture 2.8]

Roll	Exposure No.	Grid Coordinate	Direction	Description
3	7	42730945	East	Site Overview
	8	42730945	West	Site Overview
	9	42730945	North	Site Overview
	10	42730945	South	Site Overview

B-I-9

APPENDIX C. MAPPING TECHNIQUES FOR SELECTED TERRAIN FACTORS

I. INTRODUCTION

BACKGROUND

Authority for this study was given in response to the US Army Tropic Test Center's request for support as specified in: Letter, STETC-AO, US Army Tropic Test Center, 18 May 1979, subject: Request for Terrain Mapping Support, as described by Letter, ETL-PRO, US Army Engineer Topographic Laboratories, 22 June 1979, subject: US Army Engineer Topographic Laboratories (USAETL) Support to the US Army Tropic Test Center (USATTC) in Panama.

This support involved two individuals, a botanist and a geologist, who conducted a 2-week laboratory and field study to identify and describe selected vegetation, soils, terrain and geological factors as requested by USATTC to establish a data base for the new USATTC environmental test area at Gamboa (figure 1 of basic report).

PURPOSE

Aerial photographic interpretation and analysis techniques were used to establish a resources inventory/selected terrain data base for the area selected for relocating the USATTC test area. This data base permitted:

a. Identification and description of various plant communities by their invsiognomic, height and canopy closure characteristics.

b. Description of selected soil conditions associated with the plant communities; soil texture, soil color and parent materiel.

c. Description of selected geological and terrain conditions found within the site, which included: major bedrock types, percent slope, and direction of slope.

II. PROCEDURES

The aerial photography used in this study was 1:20,000 scale panchromatic aerial photography, IV IAGS USAF M-06, USAF 72-27R6 dated 7 and 10 February 1973. Color infrared photography covering the eastern two-thirds of the study area was loaned by the Panama Canal Company and the Agency for International Development, Panama. The scale of this photography was 1:20,000, dated March 1979. Using this imagery and available terrain data, various mapping units were identified for preparing drainage, landform geology, and vegetation maps.

DRAINAGE

All drainageways were delineated on an overlay while viewing the photographs stereoscopically. The analyst also observed the longitudinal and cross-sectional profiles of the valleys and gulleys. By carefully marking out the drainage, two objectives were accomplished: a. The analyst became familiar with the topographic characteristics of the area.

b. Areas of distinct drainage patterns which correspond to different material types and geologic structures were observed and identified.

LANDFORM

A landform overlay was produced by delineating areas of similar landform. That is, areas that were homogeneous in relief, slope, and profile. By comparing the drainage and landform overlays, areas of different roterial types were delineated and inferences made as to composition and geole structure. Sites were then selected for field verification. After field cock any problems in characterizing areas were resolved and the overlay map units were adjusted accordingly.

GEOLOGY

After completing photo analysis of the area, most of the units described by Woodring (1957)* were delineated. However, in the area just west of Gamboa and along Cerro Pelado the photo analysis did not agree exactly with Woodring's boundaries. The area mapped by Woodring as the Las Cascadas member agglomerate and volcanic rock appear on the photos (Unit 2) as distinctly imbedded deposits dipping to the west. This was determined by the drainage character (trellis-like), the asymmetry of the ridges and the formation of flat irons along the apparent dip slope. Investigation of outcrops along the Cerro Pelado road showed an apparent tuffaceous sandstone and hard mudstone. The drainage and ridge patterns extend to the north, well into the areas shown by Woodring as altered basalts and andesites. Further field work is needed in this area to refine boundaries.

There are also areas within the mapped (Unit 3) Bohio formation (Tbo) that do not show the characteristic landform development and drainage pattern used by the analyst for delineation of this unit. The area of small lakes just north of the Chagres Airport and the low NW-SE trending ridge at the head of these lakes appear to be lower in elevation with a more gentle slope than the rest of the area mapped as Bohio formation.

Lineations along this ridge may indicate faulting which could change the surface expression in this area. The area was not field checked and therefore was included in the conglomerate unit (Bohio formation) as shown by Woodring.

^{*} Woodring, W.P., <u>Geology and Paleontology of Canal Zone and Adjoining Parts</u> of Panama, <u>Geological Survey Professional Pager 206-A</u>; US Government Printing Office, Washington, 1957.

DESCRIPTION OF GEOLOGY MAP UNITS

The units established to describe the geology of the area are as follows:

- Unit 1—Alluvial and fill material—Generally flat areas along the Panama Railroad and banks of the Canal. Much of this material is fill used in building and maintaining the railroad and Canal and is composed of poorly sorted gravels, sands and clays. There are two areas of natural alluvium in the area, along the Chagres River at the east end of the area and near the mouth of the Frijoles River in the western portion.
- Unit 2--Tilted, coarse-grained bedded rocks--Predominates on the western face and to the north of Cerro Pelado. These tuffaceous sandstone agglomerate and mudstone dip to the west forming asymmetrical ridges with typical flat-iron topography formed on the dip slope. The drainage is angular to trellis, being controlled by the bedding. This unit forms high hills with sharp crests with the east face being steeper than the west.
- Unit 3-Boulder conglomerate--A weakly cemented conglomerate made up of sand, silts and basaltic boulders. This forms an area of hills with a dendritic drainage pattern. This unit is predominately west of Gamboa.
- Unit 4—Intrusive igneous rocks—These are basaltic dikes intruded into the conglomerate. They form very steep sided ridges that, being more resistant, rise above the surrounding hills. Basaltic blocks and outcrops are present at the surface. This unit produces the steepest slopes encountered in the field.
- Unit 5---Undifferentiated igneous rocks--Altered basalts and andesites forming steeply rounded hills.
- Unit 6—Flat lying or gently dipping sedimentary rock-shale, sandstone, and mudstones forming rolling lowlands—the low area in the Frijoles River Basin is formed on these softer sediments. Drainage is dendritic with small flood plains formed along major streams.

VEGETATION

The aerial photography permitted the identification of forest, shrub and grass/herbaceous lands. Trees were defined as woody stemmed plants greater than 16 feet (5 m) in height and ± 0.6 inches $(\pm 2 \text{ cm})$ diameter at breast height (DBH); shrubs were woody stemmed plants less than 16 feet (5 m) in height and with multiple stems, and grasses/ herbaceous plants were nonwoody plants usually less than 3 feet (1 m) in height. The tall, 16 to 26 feet (5 cm) in the grasses and herbaceous Heliconia and Catalea species were included in the grassland classification.

C-3

The majority of the new test area was forested in which several sub-units were identified using tree height, and percent canopy/closure cover of the dominant or upper tree canopy. Significance was given to the height class having the greatest percent closure. The tallest tree class having +25 percent canopy closure was assigned the greatest importance and used to describe the plant community and the map symbol. The various height and cover classes and the corresponding mapping symbols and criteria were:

Map Symbol	Height Class	Cover Class
1	Short - less than 52 to 63 ft (less than 15 to 20 m)	Less than 30% cover
2	Medium - 64 to 98 ft (20 to 30 m)	30-60% cover
3	Tall - greater than 98 ft (greater than 30 m)	61-90% œver
4	greater than 90% cover	

The mapping units and their descriptions are in table C-1. No attempt was made to characterize the species composition of the various mapping units, because it was nearly impossible from the scale of photography used. The minimum size mapping unit was about 6 acres (2 hectares).

The size of the tree canopies was determined from aerial photography for each of the mapping units. The tree heights, crown diameters and stem DBH of 4.5 foot (1.4 m) of selected trees were determined during the field reconnaissance. Detailed data describing vegetation structural characteristics at selected sample sites were collected by USATTC in the test area. The data were used as appropriate.

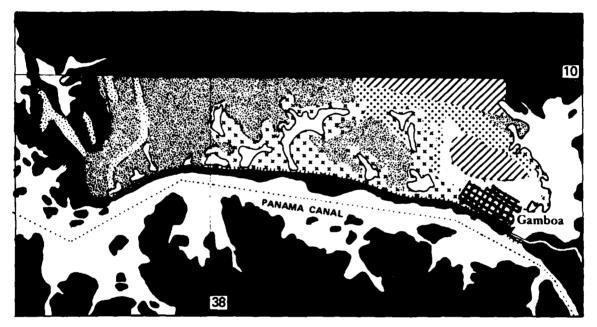
Physiognamic Unit	Map Symbol	Description
	General Cat	tegories:
Grasslands	100	Grass lands; primarily Panacum maximum, other cane-like grasses and herbaceous species.
Shrublands	200	Shrublands; woody stemmed plants less than 15 feet (5 m) tall and less than 1 inch (2 cm) DBH.

Table C-1. Land Cover Mapping Units For Gamboa Test Study Area

C-4

Table C-1 (concluded)

Physiognomic Unit	Map Symbol	Description
	General Cat	egories:
Forest Lands	300	Woody stemmed plants more than 5 m tall and greater than 2 cm DBH.
Water Bodies	500	Lakes and rivers.
Wet Lands	600	Areas found between water and uplands that are inundated for most of the year.
Urban/Built-Up Areas	900	Areas of a high concentration of human activity, i.e., residential, commercial, industrial areas.
	Forest Cat	egories:
Short	312	Trees 15 to 60 feet (5 to 20 m)
	313	tall, 30-60% canopy closure. Trees 5 to 20 m tall, 60-90% canopy closure.
Medium	321	Trees 60 to 100 feet (20 to 30 m) tall and less than 30% canopy closure.
	322	Trees 20 to 30 m tall and 30-60% canopy closure.
	323	Trees 20 to 30 m tall, and 60-90% canopy closure.
Tall	331	Trees more than 30 m tall and less than 30% canopy closure.
	332	Trees more than 30 m tall and 30- 60% canopy closure.
	333	Trees more than 30 m tall and 60- 90% canopy closure.


Because of the limited time alotted for field work, no attempt was made to identify all species within the various mapping units; at best only the more common species were identified.

C-5

III. RESULTS

GEOLOGY

Woodring described seven major rock and substrata types found in the study area (figure C-1), most of which are of igneous or depositional origin. Altered basaltic and andesitic volcanic rocks and tuff unit (KV), which includes diorite and dacite, intrusive rocks; and the Gatuncillo (Tgo) sedimentary rock formation which includes mudstones, siltstones, and limestones occur along the northern border of the test area. This KV unit forms the mountains/hills in the north, west and east portions of the study area. The elevations in these areas range from 200 to 230 meters and may reach 240 meters.

- LEGEND: (after W. P. Woodring, 1957)
- Alter basaltic and andesitic volcanic rocks and tuff Kv Kv
- Gatuncillo formation
- Tgo Gatuncillo fo
- Tho Bohio formation
- Tb Intrusive and extrusive basalts
- Tc Undifferentiated, Calamitio formation
- 🛄 Qma Marine deposits, alluvium, artificial fill

Figure C-1. Geological Map of the Test Area.

The Tgo unit forms the Rio Frijoles Basin, and the western and southern flanks of the KV unit along the western edge of the test area. This unit also comprises the mid-slopes of small hills lying between the Panama Railroad and the uplands areas.

The Bohio formation (Tbo), consisting of conglomorate and sandstone, forms the lower elevation hills that lie between the Canal and the Frijoles River Basin.

The Intrusive and Extrusive basalts (Tb) are found along the western edge of the study area generally as discontinuous ridges just east of the railroad tracks and as small islands in Gatun Lake on the western slope of the study area.

The undifferentiated Calamitio formation, (Tc), consisting of tuffaceous siltstone, tuffaceous sandstone, tuff, conglomerate, and limestone, forms the low-lying areas on the western edge of the study area, generally between and along the railroad tracks and the Rio Frijoles.

The Las Cascadas agglomerate (Tcl), consisting of agglomerate and tuff, is a small unit at Gamboa and the immediate surrounding upland areas, and is localized distribution.

The marine deposits, alluvium, artificial fill (Qma), containing silts, sand, and gravels are found along the southern edge of the test area and adjacent to the Canal. These areas are flat-lying and include several small lakes, an air strip, and the railroad bed. This unit contains fill from the construction of the Canal and subsequent maintenance dredging.

LAND COVER

Land cover in the test area was characterized by the physiognomic characteristics of the vegetation: trees, shrubs and grass/herbaceous; and by the urban/commercial and surface water bodies. Areas composed primarily of shrubs or grass species were not further subdivided beyond this initial "break out," because these land-cover units were generally small and too difficult to map at a scale of 1:10,000. Also the data needed to verify their characters required substantial ground truth data. The forest lands were the major land cover unit within the study area. Forested areas were characterized by differences in the height and percent canopy closure of the forest cover, from information acquired from the stereoscopic view aerial photography. The mapping symbols and definitions of each mapping unit are shown in table C-1, above.

Most grassland areas were found along the Panama Railroad right-of-way, on fill material, the hills along the southern margins of the test areas, and along the pipeline and Pipeline Road. Several small upland grasslands were present in the western areas and on some hills near the Pipeline Road. These grass areas are maintained for viewing the Canal navigation markers placed on upland areas. The grass cover in the marshlands was dense, with stem diameters ranging from 40 to 60 stems per-square-yard, and was 10 to 15 feet (3 to 5 m) tall. Some grass-dominated wetlands were established on and along the Canal and in the margins of lakes.

Shrub species were not usually found over areas large enough to be mapped. The largest shrubland areas were found between the Darien and Frijoles Railroad stops. Here, sizeable upland areas had been cleared of their forest cover for agricultural purposes, corn and banana culture. These sites are now either abandoned or poorly maintained; in either case, tree samplings that were less than 15 feet (5 m) are now being reestablished in these areas.

FORESTED LANDS

Most of the area comprises tropical moist rain forest, species which form two-story tree canopy. The percent ground cover of the forest floor is 100 percent with tree canopy ranging from 75 to 100 percent canopy closure in the two-story canopy. Ground reconnaissance of several forest mapping units revealed considerable diversity in the percent ground cover of the less than 30 feet vegetation strata.

The major species were semi-woody stemmed species, two of which were Panicum maximum and P. giganta. Another grass specie (unknown) was observed which was 3 to 12 feet (1 to 4 m) tall, had a large plumed paniculated influrence and was found primarily in wet areas. P. maximum and the tall plummed grass species were found on upland cleared areas, commonly associated with the navigation markers or on steep slopes. They were also found in wetland areas on slightly higher micro-relief just above the continuously inundated wetland communities. P. giganta was found primarily on saturated soil.

The shortest forest type, map unit 312 and 313, was 15 to 60 feet (5 to 20 m) tall. This forest type was found on upland slopes, in the western end of the test area and in the upland west of Cerro Pelado, and south to Juan Grande Creek. This forest unit had a canopy cover of 60 to 90 percent, and a dense understory which made field survey difficult.

Most of the forests covered in the test area were of medium height, 60 to 90 feet (20 to 30 m) with 30 to 50 (10 to 16.5 m) diameter crowns, map unit 322. This forest type was found south of the MTP 10-grid-line and west of the Calamito Lake. A more dense canopy, 60 to 90 percent in the medium height forest, was observed on higher elevations between Cerro Pelado and Rio Chagres.

Tall trees had variable size crowns of 50 to 150 feet (10 to 50 m) and DBH of 20 to 48 inches (50 to 127 cm). Measurements of an <u>Enterlobium</u> species near sample site 23, had crown diameter of 155 feet (50 m). A <u>Ceibo</u> tree at sample site 19 had a DBH of 4.5 feet (1.3 m). Much of the medium-sized height forest contained some tall trees which were few in number, but generally comprised less than 10 percent of the tree canopy of the mapping unit. Where

large trees comprised 10 to 30 percent of the overstory cover, these were indicated as a separate mapping unit 332/331.

The tallest forested areas which also had the largest tree crowns were found along the Rio Frijoles and its major tributaries, in upland isolated areas on steep east facing slopes (60°) and in the uplands just north of the study area, above the 10-grid-line. Generally, the tall forested areas had the least undergrowth, medium height forests an intermediate amount, and the short forest the most undergrowth. This gradient in the density of the undergrowth suggests a successional sequence in the maturation of the forest, with the tallest and oldest forest having the least ground cover. The composition of understory contained a large number of palm species, <u>Meliconic</u> and Calthlea, and seedlings of shade tolerant overstory species.

RECOMMENDATIONS

Future investigations should:

a. Develop a method for predicting soil texture-parent material relations from landform components identified from aerial photography.

b. Conduct a geobotanical study to investigate the distribution of plant communities as affected by species phenology, soil-plantwater relationships and geological and terrain factors, and evaluate those relationships suitable for making predictions in tropical environments using remote sensing techniques.

c. Conduct soil moisture studies for the various soil-landform conditions present in the study area and evaluate existing models for predicting soil moisture using soil textural data.

d. Evaluate existing models describing relationships between (1) stem diameter and tree height, (2) crown diameter and tree height, and (3) crown diameter and stem diameter, for tropic-moist forest.

APPENDIX D. DATA COLLECTED

DATA	
DESCRIPTION	
OF SITE	
UMMARY	
TABLE D-1. S	

	Landuse		None	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Fores ⁺	Forest	Forest	Forest	Forest	None	Forest	Forest	None	Forest	None	Forest	Forest	Forest	Forest	None	Forest	Forest	Forest	Forest	Forest	Forest	Forest		
Drainage	Vegetation		Grass	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Forest	Tree/grass	Forest	Forest	Grass	Forest	Grass	Forest	Forest	Forest	Forest	Grass	Forest	Forest	Forest	Tree/grass	Forest	Forest	Forest		
	ernal		Fair	Fair	Excellent	Fair	Fair	Fair	Fair	Fair	Excellent	Excellent	Good	Good	Excellent	Poor	Good			llent	Poor	_	Good	Good	Gond	Fair	Fair	Good	Good	Fair	Good	Good	Good		
Topography Orai	Surface		Fair	Fair	Excellent	Fair	Fair	Fair	Fair	Fair	Excellent	Excellent	Good	Good	Excellent	Poor	6003	Good	Fair	Excellent	Ponr	Good	6000	Good	Good	Fair	Fair	Good	Good	Fair	Good	Gond	Good		
Topog	Slope	(X)	2.0	1.0	50.0	2.0	0.6	10.0	13.0	13.5	64.0	50.0	28.0	24.0	50.0	1.0	18.0	12.0	1.0	70.0	4.0	18.0	18.0	22.0	18.0	1.0	10.0	40.0	35.0	15.0	35.0	26.0	25.0		
	Position*		۲S	LS	LS	۲S	۲S	LS	LS	۲S	MS	MS	MS	MS	SU	BF	MS	BF	BF	MS	BF	MS	LS	۲S	۲S	BF	MS	WS	MS	SU	MS	LS	N		
	Landform		Terrace	Terrace	Terrace	Terrace	Terrace	Terrace	Terrace	Terrace	Intermediate hills	Intermediate hills			Intermediate hills	Bottomland	Intermediate hills	Terrace	Terrace	Intermediate hills	Bottomland	Intermediate hills	Low hills	Low hills	Terrace	Manmade lowlands	Intermediate hills	Intermediate hills	Intermediate hills	Low hills	Intermediate hills	Low hills	Low hills		
turned	Material		Alluvium	Alluvium	Alluvium	Igneous rock	Igneous rock	Alluvium	Igneous rock	Alluvium	Igneous rock	Alluvium	Igneous rock	Igneous rock	Igneous rock	Aîluvium	Igneous rock	Igneous rock	Alluvium	Agglomerate	Alluvium	Conglomerate	Conglomerate	Conglomerate	Conglomerate	Alluvium	Conglomerate	Conglomerate	Alluvium	Conglomerate	Agglomerate	Sedimentary rock	Conglomerate		
[670]	Relief	(ft)	450	434	466	466	418	450	418	388	200	200	232	290	362	199	377	409	373	158	285	178	269	285	321	495	417	420	417	472	342	235	178		
	Elev	(ft)	114	130	86	86	146	114	146	72	260	260	228	170	260	<u>98</u>	163	146	114	150	<u> 8</u> 6	205	114	98 86	62	16	169	166	169	114	244	148	205	e Flat	
بر بر م	Coordinates		43250905	43080911	43150948	42900941	42960921	43020925	42960908	43390932	43100884	43290949	43260944	42730945	42650956	43010932	42850966	42800917	43450920	42560972	43050975	40970916	39330918	39400913	39650870	37700857	35450810	36350870	41250897	40320852	42260908	40480985	40580937	LSLower slope MSMiddle slope USUpper slope BFBottomland flat	
0 + i 0	No.			2	m	4	Ś	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	R	31	* LS BLS	

TABLE D-2. SUMMARY OF

													A	t Dept	h in I	nches				
								_												ing
					ificat								_				Remol			me
Date	Site	Grid	6		6-12							one In					Ind		Inc	
1979	No.	Coordinates	USDA	USCS	USDA	USCS	SFC		6	9	12	_15_	18	0-6	6-12	12-18	0-6	6-12	06	6-12
6-20	1	43250905	Clay	MH	Clay	MH	55	120	126	146	154	252	214+	100	142	224	0.70	0.77	70	109
6-20	2	43080911	Clay	MH	Clay	MH	48	110	142	172	246	282	305	100	187	278	1.00	1.00	100	187
6-21	3	43150940	Clay	MH	Clay	MH	12	26	42	46	62	54	58	27	50	58	0.69	1.00	18	50
6-21	4	42900941	Clay	MH	Clay	MH	17	43	72	89	107	100	101	44	89	103	0.64	0.81	28	72
6-22	5	42960921	Clay	MH	Clay	MH	52	111	156	192	230	248	281.5	106	193	253	1.00	1.00	106	193
6-22	6	43020925	Clay	MH	Clay	MH	39	93	110	132	174	270+	285+	87	139	243+	0.86	1.00	70	139
6-25	7	42960908	Clay	MH	Clay	MH	43	91	129	158	182	210	227	88	156	206	1.00	1.00	88	156
6-26	8	43390932	Clay	MH	Clay	MH	44	88	133	166	219	352	344+	88	173	305+	0.91	1.00	80	173
6-26	9	43100884	Clay	MDH	Clay	MH	42	94	127	126	125	141	152+	87	126	139+	1.00	1.00	87	126
6-27	10	43290949	Clay	MH	Clay	MH	48	106	272	387+	516+	684+	687+	142	392+	629+	1.00	1.00	142	392+
6-27	11	43260944	Clay	MH	Clay	MH	28	107	118	114	144	266+	345+	84	125	252	1.00	1.00	84	125
6-28	12	42730945	Clay	MH	Clay	MH	62	109	230	322+	411+	511+	593*	134	321+	505+	0.79	1.00	106	321*
6-28	13	42650956	Clay	MH	Clay	MH	47	48	Ц7	127	157	20 9	273	81	134	213	0.59	1.00	48	134
7-2	14	43010932	Clay	MH	Clay	MH	11	34	57	54	59	80	105	34	57	81	0.51	1.00	17	57
7-2	15	42850966	Clay	MH	Clay	MH	52	140	195	245	306	325	408+	129	249	346+	1.00	1.00	129	249
7-3	16	42800917	Clay	MH	Clay	MH	28	82	108	212+	335+	297*	325*	73	218+	319+	1.00	1.00	73	218*
7-3	17	43450920	Clay	MH	Clay	MH	46	137	255	460+	715+	749+	750+	146	477+	738*	1.00	1.00	146	477+
7-5	18	42560972	Clay	MH	Clay	MH	63	105	195	328	388	422+	52 9 *	121	304	446+	1.00	1.00	121	304
7-5	19	43050975	Clay	MH	Clay	MH	23	66	106	93	117	141	153	65	105	137	0.88	1.00	57	105
7-10	20	40970916	Clay	MH	Clay	MH	43	186	222+	235+	225+	259+	293+	150+	227+	259+	1.00	1.00	150+	227*
7-11	21	39330918	Clay	MH	Clay	MH	62	129	199	245	275	351	412	130	240	346	1.00	1.00	130	240
7-12	22	39400913	Clay	MEH	Clay	MH	54	122	131	178	167	158	191	102	159	108	0.99	1.00	101	159
7-12	23	39650870	Clay	MH	Clay	MH	42	83	123	147	176	222	314+	83	149	237+	1.00	1.00	83	149
7-12	24	37700857	Clay	MH	Clay	MH	36	122	188	323+	389+	466+	655+	115	300	503	1.00	1.00	115	300+
7-13	25	35450810	Clay	MH	Clay	MH	42	75	123	150	178	216	317	80	150	237	1.00	1.00	80	150
7-13	26	36350870	Clay	MH	Clay	MH	34	69	84	167+	189+	232+	254+	62	147+	225+	1.00	1.00	63	147
7-16	27	41250897	Clay	MH	Clay	MH	21	65	99	109	116	143	153	62	108	137	1.00	1.00	62	108
7-17	28	40320852	Clay	MH	Clay	MH	43	80	220	255+	300+	354+	358+	114	258	337	0.83	1.00	95+	258*
7-17	29	42260908	Clay	MH	Clay	MH	75	201	260	350+	433+	459+	584+	179	348+	492+	1.00	1.00	174	348
7-18	30	40480985	Clay	MH	Clay	MH	52	107	143	162	160	194	216	101	155	190	1.00	1.00	101	155
7-18	31	40580937	Clay	MH	Clay	MH	57	110	133	150	144	284+	287+	100	142	238+	0.82	1.00	82	142

SURFACE COMPOSITION DATA

	raph at Su			_						Conte		_		sity			
C1	ural Wetne Cr	<u>85</u> 01	¢r.	<u> </u>	C Free W	ater øl	¢r	<u>De</u> 0-3	<u>pth in</u> 3-6	Inche 6-9	9-12	0-3	<u>epth i</u> 3-6	<u>n Inch</u> 6-9	9-12	Soil Depth	Water Table
	$\frac{Cl}{(1b/in^2)}$	(deg)	(deg)	(1b/in ²)	$\frac{cl}{(lb/in^2)}$	(deq)	(deg)		<u> </u>	8)	9-12	0-3	(1b/cu		9-12	(in)	(in)
		-										<i>.</i>					
1.1	0.5	15.2	15.3	1.1	0.5	15.2	13.7	59.5	49.7	-		61.3	73.1		-	£24 £24	f 24 f 24
0.8	0.6	12.0	11.6 29.0	1.8	1.3	9.0	9.0	68.1	65.3			56.1	46.8 74.2			f 24	f 24
1.2 1.0	0.3	28.5 11.5	29.0 12.7	0.1 1.2	0.0 0.6	26.4 19.6	24.5 18.4	59.8 72.7	44.1 64.4	39.2		55.1 53.7	62.8	68.6	~	124 f24	f 124
1.4	0.4	19.5	19.5	0.8	0.0	23.0	21.7	57.2		_		61.0		_	_	124 f24	f 24
1.4	0.5	20.0	19.5	0.4	0.0	15.0	13.0	57.2	45.6	_	_	60.4	69.0	_		£24	f12
0.8	0.7	20.0	19.7	0.4	0.0	20.5	17.5	73.2	45.0	_	_	52.2	61.9	=		£24	f 24
0.8	0.3	25.7	24.3	0.2	0.0	24.0	20.6	71.7	62.1	58.7	52.3	50.9	59.3	62.9	66.6	f 24	f 24
2.6	2,1	25.5	24.0	0.4	1.9	11.0	9.5	57.2	53.2	., 	54.5	54.1	60.5		00.0	f 24	f24
0.6	0.1	21.0	19.3	0.2	0.0	21.5	18.0	36.3	2.4	27.2	_	66.2	90.7	78.8	_	£24	f 24
0.2	0.0	31.5	27.0	0.2	0.0	23.0	19.7	63.0	50.0	43.0		56.8	65.7	71.4	69.8	f24	f24
0.5	0,1	31.2	19.6	0.1	0.0	28.0	24.2	43.3	32.2	33.0	-	72.0	86.2	85.8		£24	f 24
0.8	0.3	28.0	24.4	0.9	0.4		164.4	66.8	69.5	67.6	63.6	67.7	66.6	66.3	57.3	£24	£24
0.2	0.0	25.5	22.5	0.2	0.0	24.0	20.6	78.0	-			51.8				£24	£24
0.5	0.1	24.5	22.0	0.8	0.4	27.0	23.3	49.3	51.1	59.2	66.3	73.4	76.3	65.5	75.6	£24	f24
1.3	0.7	21.6	19.4	0.4	0.0	14.5	12.3		67.0							£24	£24
1.2	0.6	26.0	23.0	0.2	0.7	28.0	24.1			_			_	_		£24	£24
0.0	0.0	29.0	25.0	1.2	1.8	24.0	20,2	69.6	54.8	_		55.7	54.3	_		£24	£24
1.3	0.5	10.0	11.4	2.3	0.0	3.0	2.3	103.3	67.2	58.8	56.7	60.8	56.5	59.6	64.1	£24	£24
1.8	1.3	19.5	18.4	0.1	1.8	16.0	14.6						_	_		£24	f 24
3.8	3.6	21.5	19.0	2.2	0.8	23.5	23.0							-		£24	£24
1.0	0,8	28,5	23.0	1.1	0.6	18.0	16.0					-		-		£24	£24
3.0	2.0	15.5	15.5	1.0	0.6	20.5	18.5		_							£24	£24
2.0	1.0	27.0	26.0	0.8	0.6	22.5	20.5	49.3	18.5	-		65.1	84.7	-		£24	£24
1.8	1.0	16.0	17.3	1.3	1.3	14.7	11.4	45.0	43.0		—	100.7	80.3	-		£24	£24
2.5	2.2	24.5	22.0	1.2	1.2	21.0	18.0	61.2	45.2	32.0	31.5	96.2	108.2	108.4	94.0	£24	£24
			_					60.5	41.7	30.3		59.1	78.9	99.9	~	£24	£24
1.9	0.6	24.0	25.0	0.9	0.7	20.0	16.0	23.7	38.1	23.3	-	88.8	77.2	81.7		f24	£24
2.2	1.8	8.5	8.5	1.0	0.8	11.0	8.5	28.7	25.9	25.3		89.9	98.4	96.2	-	£24	f24
2.1	1.7	21.5	21.0	3.1	2.3	10.5	8.0	78.3	44.0			49.9	80.5	-		f24	£24
2.0	1.6	12.5	10.0	1.4	1.0	21.0	16.0	55.9	46.8	48.7	48.5	64.9	75.6	57.5	/0.00	£24	f24

Ť

1

TABLE D-3. SUMMARY OF SURFACE GEOMETRY DATA

Date Site		Std.			Station							Axis	Approach
1979 No.	Coordinates	Dev.	Res of	Direction <u>b</u> /	No.	Distance	8. 4	Shape c/	Length	Width	Height	₽.	Angle
						(ft)			(in)	(in) ((ii)	(deg)	(deg)
6.20 1		ł	1	ł	۱	ł	ł	1	ļ	1	ł	ł	i
20 2	43080911	7.54	0.8	ł	ł	ł	۱	ļ	ł	1	ł	ł	1
6-21 3		14.35	1.6	ł	ł	ł	ł	ł	ł	1	1	1	ł
		1		I	۱	ł	}	١	ł	ł	ł	1	ł
		31 0		1264	010	ç	ĺ	o	ļ	5	36	ł	0
		cT-c	0.0	Terc		√ 8	SCUMPS	4 6	ļ	4	R 9		28
		1	1	lett	11 5	2	stump	× 1	ł	20	9	1	33
		I	ł	right	0+10	ອ	stump	æ	۱	18	60	ł	06
		1	1	left	0+20	8	stump	æ	ł	21	24	ł	6
		1	ł	left	0+20	30	stumo	æ	۱	24	36	ł	06
		1	ļ	riaht	0+20	8	stumo	£	1	24	48	١	06
		ł	ł	left	0+30	6	stump	æ	ł	18	24	}	06
		1	ł	left	0+40	5	stumo	, ox	{	12	18	ł	6
		ł	۱	left	0+40	ĸ	stumo	: <i>p</i> 4	ł	ជ	24	ł	06
		ł	ł	left	0+60	4		:0	60	12	}	ł	6
		1	1	left	06+0	17	stumo	ex,	ł	24	36	١	06
		١	ļ	richt	0+100	, m	100	U	180	48	ł	1	06
		}	1	left	0+100	15	stumo	2	1	60	12	1	06
6-22 6	43020925	14.15	1.0	left	0+0	m	stumo	æ	ł	4	21	1	06
		1	1	left	940	10	, Lock	0	60	54	24	1	45
		ł	I	left	9	п	rock	0	120	8	60	ł	75
		١	ł	right	0+0	18	log	U	240	12	١	ł	06
		ţ	ł	left	0+10	15	<u>8</u>	U	240	48	١	ł	90
		ł	I	right	0+10	4 0	001	υ	240	12	ł	ł	06
		ł	I	left	0+20	51	rock	0	24	18	12	I	75
		I	1	left	0+20	17	rock	0	24	18	9	ł	80
		ł	1	left	0+20	19	stump	æ	ļ	4	18	ł	06
		1	ł	right	0+20	17	6 0	U	240	~	{	ł	06
		ł	١	right	0+20	15	<u>5</u>	0	60	~	l	ł	06
		I	ł	right	07+2	14	50	υ ·	300	m ;	1:	ł	6 6
		ł	ł	left	0+30	2	Х С	0	84	60	48	1	45
		1	ł	right	0+30	8	Yock	0	42	90	8	ł	60
		ł	ł	left	0+40	35	Х С	0	24	ac -	و ف	ł	80
		ł	ł	left	0+40	35	rock	0	24	80	12	١	60
		ł	١	right	0+40	22	50	υ	Ж	8	ł	ł	8
		ł	ł	right	0+40	22	<u>8</u>	U	84	υ	1	١	06
		ł	ł	left	0+40	40	žoci V	0	24	Ж	77	١	60
		1	ļ	left	0+40	40	rock	0	õ	12	18	١	75
		ł	ł	left	0+20	4	rock	0	48	12	12	ł	45
		ł	١	left	0+20	22	žų Jo	0	18	12	ដ	١	40
		ł	1	left	0+20	16	rock	0	90	12	18	١	60
		}	1	right	0+20	22	rock	0	18	18	12	١	75
		ł	۱	left	0+60	35	stump	æ	ł	98	18	١	8
		ł	۱	left	0+60	40	<u>fo</u>	υ	360	18	18	١	6
		1	1	left	06 1 0	ଛ	stump	æ	1	18	8	I	8
		1	1	1064				1					

8888888888888888888888888 8	8886888	, , , , , , , , , , , , , , , , , , ,	38888888 8
* * * * * * * * * * * * * * * * * * * *			1 1
2251 12 6 18 6 25 25 1 12 48 	5		۱۱۱۱۲° ۱
૱ ૢઌઌઌઌૡૡૢૡૡઌૡ	, האיזייייייייייייייייייייייייייייייייייי	*~~~388;	, 8444064
8181241181865555411	82666669	180 360 144 146 144	24 300 540 88 300 54 54 54 54 55 54 55 55 55 55 55 55 55
U & U & U U & A & A & C U U & C U & A & A & C & C U & C & C & C & C & C & C & C &	×ບບບບບu		
log stump stump stump stump log stump stump stump	quarts 201 201 201 201 201 201 201 201 201 201	ទី៩៩៩៩៩៩៩	
៰ ៳៷៰ ៜៜ ៹ ៷៷៹៰៹៹៹៹៷	៰៰៰៰៷ឣ៰	25 5 085555	888°°3 4 89
9+6 9+23 9+33 9+33 9+33 9+33 9+33 9+33 9+33	0+0 0+0 0+8 0+8 0+8 0+8 0+8 0+8 0+8	045 045 045 045 045 045 045 045 045 045	0450 0450 0450 0450 0450 0450 0450 0450
right left right right right right right right	right left left left	right right left right right	lert right right right left left
<u>z</u>	131111	6.2 1 1 1 1	וקוווקו
80 20 20 20 20 20 20 20 20 20 20 20 20 20	2.51	9.46 8.65	18.76 1.83
42960908	43390932	43100884 43290949	43260944 42730945
~	œ	9 10	ដ ដ
6-25	6-26	6-26 6-27	6-27 11 6-28 12

والمعارجة المتكاف والمتحالية والمتحالية والمتحالية

ż

b/ Left or right of Principal Axis c/ R - Round C - Cylinder O - Oblong

a/ Data Detrended using a USAWES program

Table D-3 (concluded)

ومناقبه والمتحد والمتحرج والمحافظ

Were Site Station Sta				MICROC	JEOMETRY				OBSTACLES	3					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Date 1979	Site No.	Grid Coordinates	Std. Dev.	RMS a/	Direction b/	Station No.	Distance	Type	Shape c/	Length	Width	Height	Axis Az.	Approach Angle
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1			(ft)			(ii)	(11)	(I1)	(deg)	(deg)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$]		laft	UOTU	¢,	2	ſ	300	Ľ	1	I	00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						LCLU			<u></u>) ر		ģ		ł	29
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1 1911		58	52) (100	22			2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				J	1	r 19nc	C610	8	₫,	، ر		3 2	ł	i	200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ļ	ł	right	001+0	£1	<u>6</u>	ບ	120	12	1	ł	56
14 4301032 4.71 2.44 Left 0.49 27 Los C 360 4 - <td>628</td> <td>E</td> <td>42650956</td> <td>5.77</td> <td>2.61</td> <td>left</td> <td></td> <td>20</td> <td><u>8</u></td> <td>υ</td> <td>960</td> <td>13</td> <td>1</td> <td>1</td> <td>06</td>	628	E	42650956	5.77	2.61	left		20	<u>8</u>	υ	960	13	1	1	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-02	14	43010932	4.71	2.44	left		13		υ	360	4	ł	۱	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ł	1	left		27	rock	υ	48	36	1	١	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						STREAM COES	THROUGH	ENTIRE SITT							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-02	5		4.63	0.19	1	0+40]		œ	40	12	12	ł	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-03	19		11.26	1.31	left	0+40	02	8	: C	432	1	; ;	ł	1
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	3	2			1	1066			5) C	ACC	. u	1	ł	00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						TALL	0100		5	, c		o ç			ç Ç
19 47360972 4.65 1.94 Units 50000 1.94 1.00 7.00 5.000 1.94 1.00	2	5	1140000			Terc			61	، ر	001	3.	ļ	ł	- c
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-03	11	43400420	0.4/	U.8/	right	100 10 10		scump	¥		4]	}	90
10 4.25003/2 4.4.0 1.94 Units Over and any origination of the form o		ç	0000100			-76 NOTIVIC				4			2		00
19 4305075 7.02 2.90 VINES COME BATTLE STRE 20 40070016 15.90 2.11 119 1 109 1 109 1 109 1 109 1 109 1 109 1 100	ŝ	18	7/609575	4.65	1.94	left	0+/9	9	stump	х	{	74	74	1	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1		VINES COVE	RENTIRE S	ITE							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-02	61	43050975	7.02	2.90	left		l	<u>10</u>	υ	168	80	ł	ł	06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1	1	left	0+52	7	<u>fo</u> l	υ	180	7	;	ł	06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-10	20		15.89	2.31	ſ	1	١	ļ	۱	I	1		۱	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7-11	51		11.89	2.11	right	9 1 0	10	rock	0	60	36	2.5		06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				I	ł	left	1+0	0	rock	0	24	36	24	۱	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				۱	ł	left	0+24	10	rock	0	7	36	12	ł	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ł	1	left	 5	10	<u>1</u> 0	U	240	80	ļ	ł	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				۱	ł	left	0+49	13	rock	0	14	14	9	ł	40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				١	ļ	left	0+50	13	5	ပ	72	4	ļ	1	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ł	I	left	0+53	9	8	υ	84	ъ	ļ	ł	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$!	١	right	0+55	14	8	υ	96	12	ł	ł	06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				۱	I	right	0+57	22	stump	ĸ	1	96	0 M	ł	06
22 39400913 left 0+60 0 log C 264 72 left 0+33 20 log C 264 72 1				I	١	left	0+58	27	50	U	144	ۍ	ł	I	06
22 39400913 - left 0+83 20 log 0 12 l8 left 0+83 20 log 0 12 l8 left 0+93 1 l093 C 600 6 l l6 l l6 1 l l093 C 600 6 l l6 1 l l093 C 20 l093 C 200 l09 C 216 l8 l l6 1 l l99 l l l093 C 216 l9 l9 l l9 l9 l l9 l l9 l l l9 l l l l9 l9 l l l9 l9 l l l9 l9 l l l9 l9 l l l l l l l l l9 l l l9 l l l l l l l <td< td=""><td></td><td></td><td></td><td>I</td><td>1</td><td>left</td><td>0+60</td><td>0</td><td>0</td><td>U</td><td>264</td><td>72</td><td>1</td><td>1</td><td>06</td></td<>				I	1	left	0+60	0	0	U	264	72	1	1	06
22 39400913 - right 0+100 40 log C 600 6 - 23 39400913 - right 0+100 40 log C 600 6 - - 1 log C 600 6 - - 1 log C 206 42 - - 1 log C 206 42 - - 1 log C 206 5 1 1 log C 206 5 1 1 log C 206 5 1				ł	١	left	0+83	20		0	12	18	ł	1	60
22 39400913 - - left 0+3 26 stump R - 6 42 1 - - right 0+3 26 stump R - 6 42 23 39650870 4.16 2.10 left 0+97 1 log C 216 48 - - 6 42 23 39650870 4.16 2.10 left 0+99 15 log C 228 60 - 6 42 - - 25 35450810 14.26 - 12 12 12 12 12 12 - - - - - - - - - - - - - - - - 12 12 1				1	I	right	0+100	40	8	U	600	9	ł	۱	60
23 39650870 4.16 2.10 1 109 C 216 48 - 23 39650870 4.16 2.10 1eft 0+99 15 109 C 2288 60 - - - 24 3.700857 - - - 109 C 2288 60 -	7-12	22	39400913	1	ł	left	0+3	56	stump	æ	1	9	42	1	6
23 39650870 right 0+98 15 log C 288 60 24 37700857 right 0+99 0 log C 288 60 25 35450810 4.16 2.10 left 0+95 5 rock 0 12				ł	l	right	10+97	1	8	υ	216	48	١	ł	06
23 39650870 4.16 2.10 left 0.499 0 log C 240 78 24 37700857 3.66 - 12 12 12 12 12 12 25 35450810 14.26 - - - -				1	١	right	86+0	15	log	U	288	60	ł	1	06
23 39650870 4.16 2.10 left 0+85 25 rock 0 12				۱	ł	right	66+0	0		U	240	78	1	١	06
24 37700857 - 3.66 - <t< td=""><td>7-12</td><td>23</td><td>39650870</td><td>4.16</td><td></td><td>left</td><td>0+85</td><td>25 25</td><td>rock I</td><td>0</td><td>12</td><td>12</td><td>12</td><td> </td><td>80</td></t<>	7-12	23	39650870	4.16		left	0+85	25 25	rock I	0	12	12	12		80
25 35450810 14.26 - left 0+0 2 log C 240 60 - - - - left 0+15 25 log C 150 4 - - - - - left 0+15 25 log C 150 4 - - - - - right 0+70 13 log C 150 6 - <t< td=""><td>7-12</td><td>24</td><td>37700857</td><td>1</td><td></td><td>ł</td><td>1</td><td>I</td><td>1</td><td>ı</td><td>ł</td><td>]</td><td>ł</td><td>1</td><td> </td></t<>	7-12	24	37700857	1		ł	1	I	1	ı	ł]	ł	1	
	7-13	25		14.26	I	left	0 1	2	Jog	υ	240	60	I	١	06
				ł	١	left	0+15	25	Joj	υ	150	4	I	ł	06
26 36350870 35.0 right 0+70 13 log C 150 6 - left 0+0 0 ditch V 1200 72 60 250 left 0+3 4 rock 0 8 8 5 - right 0+70 12 rock 0 24 12 12 -				١	I	right	0+20	33	rocks	R	144	24	12	1	6
26 36350870 35.0 - left 0+0 0 ditch v 1200 72 60 250 left 0+3 4 rock 0 8 8 5 - right 0+70 12 rock 0 24 12 12 -				I	ł	right	0+10	13	log	υ	150	9	ł	ł	06
left 0+3 4 rock 0 8 8 5 - right 0+70 12 rock 0 24 12 12	7-13	26		35.0	l	left	9	0	ditch	>	1200	72	60	250	6
right 0+70 12 rock 0 24 12 12				ļ	١	left	0 1 3	4	rock	0	æ	æ	5	1	60
				ł	١	right	0+10	12	rock	0	24	12	12	ł	65

88888811888
120 120 170 175
۵ä4∞ä ۵
۵۵۵۵ ⊾⊑ ۵۵۵۵ ۵۵۵۵
60 84 180 180 180 240 144 144 214
00002011000
9 19 19 19 19 19 19 19 19 19 19 19 19 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F
0+0 0+10 0+14 0+15 0+15 0+25 0+25 0+25 0+27 0+27 0+27 0+27 0+27 0+27 0+27 0+27
left 0+0 left 0+10 right 0+14 right 0+15 right 0+25 left 0+25 left 0+25 left 0+27 right 0+30 right 0+30 right 0+31 right 0+31 right 0+31
SEINTY
5.57 2.88 left - - left - - right - - left 6.30 1.88 - 5.80 2.71 - - - left - - right 18.49 4.16 LARGE VINES
2.88 left - left - right - right - right - right - left 1.88 - 2.71 right - left - right - right - right - left - right
5.57 2.88 left

a/ Data Detrending using a USAWES program

b/ Left or right of Principal Axis

⊆∕R - Round C - Cylinder O - Oblang

JARTER METHOD
MODIFIED QU
N DATA -
VEGETATIO
SUMMARY OF
TABLE D-5.

Light	Intensity	(CD/ft,)		1.60	0.80							0.80								3.20								3.20							0.40							
. 5 g 5	s			11.00	36.50							25.00								43.75							2	c7.0#							53.25							
Average Recognition Distance for Target Heights	-	(ft)		 8	22.25							16.50								31.25								N							40.75							
- 1	-			 8	13.00							10.75								12.50							:	71.50							24.00							
Stem Spacing, ft, for Dia Classes	^1			3.38	5.13	8.87	12.60	18.26	26.73	37.80	40.82	3.52	5.98	8.03	14.29	20.41	21.82	26.73	27.74	6.70	10.10	17.15	19.61	22.36	22.94	24.25	24.23	5 ° 5			16 22	18 26	18.90	21.23	3.44	5.83	8.94	12.80	16.01	28.87	28.87	28.87
Stem Spacing, Pt, for Dia Classes	v١			4.47	3.65	3.50	3.44	3.40	3.39	3.39	3.38	4.56	3.92	3.64	3.57	3.57	3.55	3.55	3.52	8.94	7.27	7.12	7.02	2.00	6.97	6.97	6.70	59.5 24.5		2.0	5 F		2.2	3.23	4.26	3.73	3.57	3.52	3.47	3.47	3.47	3.44
	D1ams >			877	377	127	63	ନ୍ନ	4	2	e	805	280	155	49	24	21	14	13	223	8 6	R :	5 6	ន	61	11	112	ניי	115	AK.	;	3 8	2 8	32	844	294	125	61	6 E	12	12	12
	Diamis <			<u>8</u>	750	814	847	863	870	871	877	525	650	756	181	784	161	792	805	125	189	197	203	204	206	206	223	5/9 020	0.00	210	614 200	220	120	659	550	617	783	805	832	832	832	844
Stem Class	Spacing	(ft)		4.47	6.33	12.55	17.45	25.00	37.74	100.00	40.85	4.37	8.95	9.71	20.00	57.80	37.73	100.00	27.70	8.95	12.50	35.34	40.81	100.00	70.92	0	24 . 27	. 8.	8.	12.00			40.82	21.12	4.26	7.69	12.50	21.32	19.23	0.0	0.00	28.87
Total Stems								377								280								8							278	2/7							294			
				ŝ								525								125								5/9							550							
Sten D	Density			2,774.0	1,384.0	354.0	239.0	491.0	39.0	5.5	33.0	2,913.0	692.0	588.0	139.0	17.0	39.0	6.0	72.0	693.0	354.0	44.0	33.0	2.0	11.0	0.0	61.0	3,745.0						122.0	3.051.0	934.0	354.0	122.0	150.0	0.0	0.0	66.5
	Stems			ŝ	250	64	33	16	7	-1	9	525	125	106	22	m	2	l	ព	125	64	80 1	و	-	2	0	5	\$ \$		6 a	0 0	• •	4 42	° 2	250	169	64	22	27	0	0	21
Cell	Dia	(ft)		01 01	8	100	100	001	8	001	100	100	100	01	20	ğ	<u>10</u>	100	ខ្ល	<u>6</u>	8	8	8	ខ្ល	8	01	3	39	3	36	39	35	32	82	0	100	001	100	100	8	01	<u>8</u>
Stem Dia Class	∿ হ ব		Grass	-	2	m	4	\$	و	٢	80	-	7	m	4	ŝ	9	٢	œ	-	7	m ·	4	ŝ	9	~	x 0 ·		N 0	∩ =	• •	ש ר	• •	- 00	. –	0	m	4	ŝ	¢	2	80
Grid	Coordinates		43250905	43080911								43150940								42900941								42960921							43020925							
Site	ð		I	7								m								4							,	'n							9							
Date	1979		6-20	6-20								6-21								6-21								77-9							6-22							

D-8

•

برالباهم متعاقد

and a state of the second s

1.60	0.10	1.60	1.60	1
37.25	21.50	23.25	19.25	37.50
29.25	14.00	17.75	10.10	33.50
17.25	7.75	os.e	8.75	20.00
4.03 4.12 11.11 11.11 11.11 11.11 11.11 11.12 11	25.82 25.82 25.82 25.82 25.82 25.82	3.52 3.54 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	2.02 2.03 2.03 1.04 1.00 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2	5.88 7.05 8.25 11.18
7.29 4.15 4.09 4.07 4.07 03 6.06				0.66 8.39 6.91 6.17
616 428 197 81 34 11 11 9	241 241 252 243 241 241 241 241 241 241 241 241 241 241	224 224 332 55 14 12 22 23 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	1,137 387 387 387 387 387 387 387 387 387 3	289 201 80 80
188 535 598 605 605 605 605 605	550 725 766 776 779	791 575 767 767 785 785 785 788 788 788	750 1,039 1,039 1,111 1,125 1,125 1,127	88 142 209 263
88898788		0 r m r O 4 4 0 4		
7.9 37.25 37.5	2522232-7	31.6.6.6.7 35.331.6.6.7	21.05 5.88 5.88 5.88 21.32 28.90 29.55 5.88 5.88 5.88 5.88 5.88 5.88 5.88	10.70 13.60 13.60
428 737. 737.	241 23.6 23.6 23.6 23.6 23.6 23.6	31.6 8 4.1 8 4.1 20.4 31.6 35.3 31.6 35.3	387 221-35 14-13 14-13 100-06 100-06 31-65	10.70 13.60 12.21 13.60
188 6. 428 37. 370.			387	88 10.70 13.60 12.21 13.60
1 88 428	550 241	575 224	387	8
1,038.0 188 1,280.0 188 646.0 560.0 89.0 39.0 11.0 50.0	3,051.0 550 969.0 128.0 128.0 55.0 17.0 11.0	3,190.0 575 727.0 575 199.0 133.0 53.0 224 44.0 224	750 387	485.0 88 300.0 372.0 300.0
188 1,038.0 188 231 1,280.0 116 646.0 16 646.0 16 89.0 7 39.0 2 11.0 9 50.0	550 3,051.0 550 175 969.0 23 128.0 18 100.0 10 55.0 3 17.0 241	510 55.0 575 131 527.0 575 37 199.0 575 124 133.0 10 533.0 8 44.0 8 44.0 8 52.0 524	4,160.0 750 1,603.0 277.0 122.0 387 17.0 387 55.0 387	88 485.0 88 54 300.0 54 372.0 54 300.0
100 188 1,038.0 188 100 231 1,280.0 188 100 116 646.0 646.0 100 16 646.0 100 100 16 646.0 100 100 16 99.0 428 100 7 39.0 428 100 2 111.0 112.0 100 2 111.0 112.0	100 550 3,051.0 550 100 175 969.0 100 23 128.0 100 18 100.0 100 3 17.0 100 3 17.0 241	100 10 55.0 100 575 3,190.0 575 100 131 727.0 575 100 37 199.0 575 100 37 199.0 575 100 24 133.0 524 100 8 44.0 224 100 8 52.0 224 100 8 52.0 224	750 4,160.0 750 289 1,603.0 750 22 122.0 277.0 3 17.0 387 1 5.0 387	100 88 455.0 88 100 54 300.0 100 57 372.0 100 54 300.0
100 188 1,038.0 188 100 231 1,280.0 188 100 116 646.0 646.0 100 16 646.0 100 100 16 646.0 100 100 16 99.0 428 100 7 39.0 428 100 2 111.0 112.0 100 2 111.0 112.0	100 550 3,051.0 550 100 175 969.0 100 23 128.0 100 18 100.0 100 3 17.0 100 3 17.0 241	100 10 55.0 100 575 3,190.0 575 100 131 727.0 575 100 37 199.0 575 100 37 199.0 575 100 24 133.0 524 100 8 44.0 224 100 8 52.0 224 100 8 52.0 224	1 100 50 4,160.0 750 2 100 289 1,603.0 750 3 100 50 277.0 387 4 100 12 67.0 387 5 100 12 67.0 387 6 100 12 67.0 387 7 100 1 5.0 387	100 88 455.0 88 100 54 300.0 100 57 372.0 100 54 300.0
1 100 188 1,038.0 188 2 100 181 1,280.0 188 3 100 116 646.0 660.0 4 100 16 566.0 690.0 5 100 16 290.0 428 6 100 7 39.0 428 7 100 2 111.0 428	1 100 550 3,051.0 550 2 100 175 969.0 550 3 100 23 128.0 550 4 100 18 100.0 6 6 100 13 17.0 241 7 100 2 11.0 241	8 100 10 55.0 1 100 13 55.0 2 100 131 727.0 3 100 37 199.0 4 100 24 133.0 6 100 14 133.0 7 100 24 133.0 6 100 8 44.0 7 100 4 224	43290949 1 100 50 4,160.0 750 3 100 50 1,603.0 750 3 100 50 277.0 387 5 100 12 677.0 387 6 100 12 677.0 387 7 100 1 5.0 5.0 8 100 1 5.0 387	1 100 88 485.0 88 2 100 54 300.0 4 100 54 300.0

_

Light Intensity	(CD/ft*)					1.60							1.60							1.6.0							0.80							11 10				
, te e d						26.75							24.00							14.5							50.00							40 EN				
Average Recognition Distance for Target Heights	(£t)					18.50							16.25							13.25							46.25							30 25				
P Re						15.50							9.75							11.00							18.25							00 00				
Stem Spacing, ft, for Dia Classes ,		19.61	25.00	25.82	28.87	3.18	4.66	8.48	13.48	20.41	C7.82	27.74	5.01	6.51	8.22	13.36	20.85	24.25	20.02	1.98	12.70	18.26	25.00	31.62		20.05	3.02	3.95	5.69	15.25	22.35	10.02	50.15	30.10	9.37	13.74	15.62	20.85
Stem Spacing, Ft, for Dia Classes		6.05	6.04	6.01	5.88	436	3.44	3.28	3.22	3.21	12.5	3,18	7.86	6.32	6.42	5.16	5.12	5.1	10	2.00	1.98	1.98	1.98	1.98	1.90	1.97	4.71	3.57	9°.6	3.05			5.0	16.67	10.15	9.50	8.87	8.70
Cum Stem Number for		56	16	15	12	986	461 3.10	651 51	5	5	12	32	396	236	148	8	23	11	1	2.562	62	S S	16	10	e u) 1	1,093	642	60 2	6 4 3	32	71	12	150	114	53	41	ន
Cum Stem Number For		273	274	277	289	525	847	931	8 62	66	5/6	986	162	250	342	375	381	383	40C	2,500	2, 532	2,546	2, 552	2.554	0CC /7	2,562	451	784	1,050	1,073	1.001	790,1	1,003	560/1	6	109	127	132
Stem Class Spacing	(Ft)	31.60	00.00	57.80	28.90	4.37	5.57	10.92	17.95	51.75	33	PU-0	7.86	10.67	10.42	17.47	40.82	70.92	74. 74	2.00	17.67	26.74	40.81	70.92	26.07	20.05	4.71	5.57	6.12	20.83	55°55			20.10	12.82	28,90	23.58	44.64
																	236.0						;	62						,								150
Stems >1 in		201							5	461							23							•							642							
Total		201				525			Ş	461			162				23			2.500							451				642			36	R			
Stem b/ Total Stems Pressity 21 in 31 in		55.0 201	5.0	17.0			1, 787.0	466.0	172.0		0.27	0.07			510.0			11.0		13.866-0 2.500	177.0	78.0				22.0		1,848.0	1,479.0			n u n				67.0	100.0	28.0
Total			1 5.0		66.0				172.0		0.22		0.006	488.0	92 510.0	182.0			14 78 0	2.500 13.866.0 2.500	177.0	14 78.0				4 22.0	2,504.0		266 1,479.0	128.0		UUUUUUUUUUUUU				12 67.0		5 28.0
No Cell of Stem <u>b</u> / <u>Total</u>	(ft)		-	m	12 66.0	525 2,912.0	322 1,	5	31 172.0 2	0.65	4 C	<u>ה</u>	162 900.0	88 488.0	92	33 182.0	6 3.3	2	7	2.500 13.866.0	32 177.0	14	6 33.0	2 11.0	<i>ч</i> с	100 4 22.0	451 2,504.0	333	266	23 128.0	8 44.0	-4 -	- <u>c</u>		61 338.0	17	18 100.0	ŝ
No I of Stem <u>b</u> / <u>Total</u> :	(ft)	10 55.0	-	m	12 66.0	525 2,912.0	322 1,	5	31 172.0 2	0.65	4 C	<u>ה</u>	100 162 900.0	100 88 488.0	100 92	100 33 182.0	100 6 3.3	100 2	7	100 2.500 13.866.0	100 32 177.0	100 14	100 6 33.0			1 4	100 451 2,504.0	100 333	100 266	100 23 128.0					61 338.0	100	18 100.0	100 5
No Stem <u>by Total</u>	(tf)	10 55.0	-	m	8 100 12 66.0	525 2,912.0	322 1,	5	31 172.0 2	0.65	4 C		100 162 900.0	2 100 88 488.0	100 92	100 33 182.0	100 6 3.3	100 2	1001	100 2.500 13.866.0	2 100 32 177.0	100 14	100 6 33.0			100	100 451 2,504.0	100 333	100 266	100 23 128.0					2 100 61 338.0	100	100 18 100.0	100 5
Steam Dia No Class Cell of Steam <u>b/Total</u>	(ft)	10 55.0	-	m	8 100 12 66.0	1 100 525 2,912.0	322 1,	5	31 172.0 2	0.65	4 C		1 100 162 900.0	2 100 88 488.0	100 92	100 33 182.0	100 6 3.3	100 2	1001	1 100 2.500 13.866-0	2 100 32 177.0	100 14	100 6 33.0			100	1 100 451 2,504.0	100 333	100 266	100 23 128.0						100	100 18 100.0	100 5

Table D-4 (cont)

	26.10							1.60								1.60								3.20							
	40.00							26.00								24.74								3.00							
	22.50							17.50								13.00								3.00							
	19.25							9.50								13.00								з.00							
23.57 25.82 27.74	14.43	16.22 21 22	26.73	35.36	40.82	50.00	50.00	3.56	6.18	9.45	10.98	17.68	26.73	30.15	35.36	3.47	9.71	13.36	17.68	25.00	26.73	31.62	44.72	1.56	5.08	12.31	16.01	19.25	31.62	50.00	10.71
8.54 8.54 8.16	31.16	19.61	15.81	15.43	15.07	14.43	14.43	4.17	3.71	3.64	3.52	3.49	3.48	3.47	3.46	3.71	3.59	3.54	3.50	3.50	3.49	3.48	3.47	1.64	1.58	1.57	1.57	1.57	1.56	1.56	1.56
81 51 13	8	8 £	12	œ	9	4	4	787	262	112	83	32	14	11	80	831	106	ጽ	32	16	14	10	ŝ	4,088	386	6 6	3 6	27	10	4	2
50 50 50 50	9	× 7	5	42	48	44	48	525	625	654	705	723	726	729	787	725	775	661	815	817	821	826	831	3,700	4,022	4,049	4,061	4,078	4,084	4,086	4,088
57.32 70.92 27.73	62	88	38	92	8	8	8	11	20	8	8	9	R	2	\$ 0	れ	2	40	8	2	8	2	۶	64	5	33	87	5	83	22	2
522	E	ស ដ	3	5°.		°.	8	4.	œ.	18.	14.	23.	57.	57.	Е.	ŗ.	14.	20.	25.	ę.	ß	44.	44.	÷	ۍ.	19.	28.	3.	4 0.	20.	70.7
562	E	2 X	.04	38 70.		0	8.	4.	8.	18.		262 23.	57.	57.	35.	÷.	14.	20.	25.	106 70.	8	44.	44.	-	ч.	.61	28.	388 37.	40.	.02	7.07
57 70 21	10 31	23. *	.04	38 70.	0.	0.	.8	575 4.	8	18.			57.	51.	35.	725 3.	14.	20.	25.		<u>.</u>	44.			5.	19.	28.		40.	70.	7.07
17.0 57 11.0 70 72.0 27	10			88				575				262				725				106				3,700				388			
17.0 11.0 72.0	55.0 10		33.0	11.0 38	11.0	0.0	22.0	3,190.0 575	830.0	161.0	283.0	100.0 262	17.0	17.0	44.0	4,022.0 725	277.0	133.0	0.68	11.0 106	22.0	28.0	28.0	20,521.0 3,700	1,788.0	150.0	66.0	39.0 388	33.0	11.0	0.11
17.0 11.0 72.0	10 55.0 10	16 89.0 8 44 0	6 33.0	2 11.0 38	2 11.0	0.0 0.0	4 22.0	3,190.0 575	150 830.0	29 161.0	51 283.0	18 100.0 262	3 17.0	3 17.0	8 44.0	725 4,022.0 725	50 277.0	24 133.0	16 89.0	2 11.0 106	4 22.0	5 28.0	5 28.0	3,700 20,521.0 3,700	322 1,788.0	27 150.0	12 66.0	17 39.0 388	6 33.0	2 11.0	2 11.0
3 17.0 2 11.0 13 72.0	100 10 55.0 10	16 89.0 8 44 0	100 6 33.0	100 2 11.0 38	100 2 11.0	100 0 0.0	4 22.0	100 524 3,190.0 575	100 150 830.0	100 29 161.0	100 51 283.0	100 18 100.0 262	100 3 17.0	100 3 17.0	100 8 44.0	100 725 4,022.0 725	100 50 277.0	100 24 133.0	100 16 89.0	100 2 11.0 106	100 4 22.0	100 5 28.0	100 5 28.0	100 3,700 20,521.0 3,700	100 322 1,788.0	100 27 150.0	100 12 66.0	100 17 39.0 388	100 6 33.0	100 2 11.0	100 2 11.0
3 17.0 2 11.0 13 72.0	100 10 55.0 10	100 16 89.0 100 8 44.0	100 6 33.0	100 2 11.0 38	100 2 11.0	100 0 0.0	8 4 22.0	100 524 3,190.0 575	100 150 830.0	100 29 161.0	100 51 283.0	100 18 100.0 262	100 3 17.0	100 3 17.0	8 100 8 44.0	100 725 4,022.0 725	100 50 277.0	100 24 133.0	100 16 89.0	100 2 11.0 106	100 4 22.0	100 5 28.0	8 100 5 28 . 0	100 3,700 20,521.0 3,700	100 322 1,788.0	100 27 150.0	100 12 66.0	100 17 39.0 388	100 6 33.0	100 2 11.0	100 2 11.0
3 17.0 2 11.0 13 72.0	1 100 10 55.0 10	100 16 89.0 100 8 44.0	100 6 33.0	100 2 11.0 38	100 2 11.0	100 0 0.0	8 4 22.0	1 100 524 3,190.0 575	100 150 830.0	100 29 161.0	100 51 283.0	100 18 100.0 262	100 3 17.0	100 3 17.0	8 100 8 44.0	1 100 725 4,022.0 725	100 50 277.0	100 24 133.0	100 16 89.0	100 2 11.0 106	100 4 22.0	100 5 28.0	8 100 5 28 . 0	1 100 3,700 20,521.0 3,700	100 322 1,788.0	100 27 150.0	100 12 66.0	100 17 39.0 388	100 6 33.0	100 2 11.0	100 2 11.0

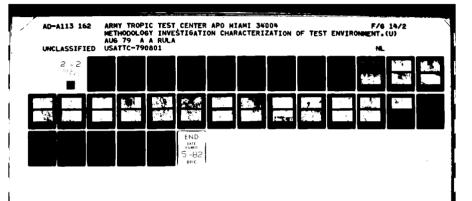

I.i.oht	Intensity	(CD/ft,)	1.60								ł							1.60								31 50 107-00								0.80							
, ē e ē ,	5		7.75								23.75							20.25							S	39 5 5 5								۲۰.0 <u>۲</u>							
Average Recognition Distance for Target Heichts	I	(ft)	6.25								12.75							14.50																35.00							
Re	0		5.50								9.25							9.50							2	13, 75								18.50							
Stem Spacing, ft, for Dia	C200017		2.19	3.70	11.18	16.01	20.00	22.94	25.82	28.87	3.34	01.0	15.43	18.90	20.85	22.94	24.25	3.41	6.88	10.78	16.01	20.41	8.52	28.02	F1 . 12	5, 81	06.6	15.08	18.26	21.32	26.73	30.15			67.9	12.40	10.22	26.12	10.02	25.25	05.65
Stem Spacing, Ft, for Dia Classes			2.72	2.24	2.21	2.21	2.20	2.20	2.20	2.19	4.00	9 .7	54.0 07 c	66.7	3.38	3.38	3, 34	3.92	3.59	3.49	J. 46	3.44	5. 44 5.	5 .4 5	14.01	7.18	6.30	6.13	6.04	5.95	5.92	5.87	5.81	4.47	3.61	9. 'A	2	20.0		00.0	9° 04
Cum Stem Number For	Diams 2		2,080	730	8	66	22	19	15	12	894 200	6	10 V	82	23	19	17	861	211	88	6	24	<u>ع</u> :	ដះ	1	2 9 6	102	44	œ:	22	14	ц,	0	522	522	0 0 0	8	32	7	م	o
Cum Stem Number for	Diams <		1, 350	2,000	2,041	2,055	2,061	2,065	2,068	2,080	625	857	702	871	875	877	894	650	775	822	83/	845	840	848	100	194	252	266	274	282	285	2 90	8 57	9 <u>7</u>	688	217 217	131			(#) 753	(()
Stem Claes	Spacing	(ft)	3.06	3.92	15.68	26.73	40.82	20.00	57.80	28.90	* 5 8 8		20.02 26.70	44.72	20.00	70.70	24.50	3.90	8.90	14.60	25.80 25	35.30 202	100.001	2.5	N. 17	7,18	13,15	26.73	35.36	35.36	57.73	44.72	40.82	4.47	 	19.25 27	8.9 9	20.10		10.00	06.00
to The to Start of the top of top of the top of	vl in						730							269								211								102							550	607			
Theal	in >l in >l in		1,350								625							650								194							201	ŝ							
Stem b/	Density		5,926.0	3,606.0	1,952.0	18.0	33.0	22.0	17.0	66.0	3,467.0	4/0.0	2.5	28.0	22.0	11.0	94.0	3,606.0	692.0	260.0	83.2	44.0		 - -	1.2/	1.076.0		0.8%				28.0	`	2, 7/4.0	1,042.0	0.021	0.25	0.00			
S S	Stems		1,350	650	4:	4	۰	4	m	12	625	77	1	, v	-	2	17	650	125	6:	រ ៤	×0 ~		72	3	8	ĸ	14	æ (æ «	~ '	ι Γ	e e	Ş	8	17	99	3 1	ר ר	- a	D
[[e]	Dia	(ft)	001	ខ្ល	8	8	8	8	8	200	8	33	32	8	001	8	100	3	0	819	39	33	39	33	35	36	100	100	8	100	3	201	BŞ	39	39	001	39	3	32	35	3
Stem Dia Class	No.			~ '		∢ 1	ιn ι	b 1	~	80	r	4 r	n 4	· ~	9	5	80	1	2	~ •	4 (<u>~</u> 、	0 r	~ a		-10	0	~	4	γ,	e i	r- a	×0 •	,	7	~) ~	† 1	. 4		- α	5
Griđ	Coordinates		39330918								39400913							39650870							11700957	35450810							0000000	0/ 2055 45							
et is	2		21								77							23							¥C.	5							ž	97							
Date	1979		7-11								7-12							7-12							7-13	7-13							:	<u>-</u>							

Table D-4 (concluded)

34.60 13.10 13.10 1.60 1.60 43.76 40.25 25.75 47.50 8 31. 28.25 19.25 S 25 11.00 õ. 20. 17.00 5.25 8 76 6.25 16. 16. ~ \$ 103 **8**8 121 221 53 278 600 322 200 128.0 150.0 150.0 150.0 150.0 150.0 177.0 155.0 155.0 155.0 177.0 155.0 177.00 5 **それららての1234507012~4~~010~2~4~~~** 40480985 40580937 40320852 42260908 41250897 28 27 28 8 Ξ 7-17 7-18 81-*:* 7-16 7-17

Inches Stem Diameter, Stem Diameter, Class

-----10.0-

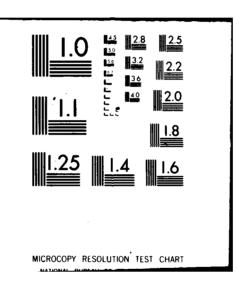


TABLE D-4. SUMMARY OF VEGETATION DATA-STRUCTURAL CELL METHOD

Concelinates 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 Specify, bilameter, bilamet	Site	e Grid		Ouad	rant		Ouadrant	Ouadrant	rant			Ouadrant	ant		Stem	Stem	Sten	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. Coordinates	-	~	-	4	-	2	h	4	L	2	٣		Spacing,	Diameter,	Height,	
1 4326005					ft)				(u			(Ft			(ft)	(11)	(in)	5
2 43060911 12.0 15.0 0.0	-20 1	43250905	ł	1	I	1	١	١	ł	ł	۱	ł	ł	ł	I	ł	1	ļ
2 43080911 12.0 10.0 4.5 9.0 10.0 4.5 9.0 10.0 4.5 9.0 10.0 4.5 9.0 10.0 4.5 9.0 10.0 10.0 4.5 9.0 10.0 10.0 4.5 9.0 10.0 10.0 4.5 9.0 10.0 10.0 4.5 9.0 10.0			I	I	ļ	1	I	1	ł	ł	1		ł	١	1	1	1	ļ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	1	ł	ł	I	١	ł	I	١		ł	1	ł	ł	ł	;
2 43000911 12.0 15.0 5.0 9.0 10.0 4.5 9.0 19.0 2.0 5.0			ļ	1	ł	1	1	ł	ł	1	١		ł		ł	I	ł	1
2 43060911 12.0 50.0 10.0 55.0			ł	ł	I	I	۱	١	۱	1	ł		۱	ł	ł	ł	1	;
2 43060911 120 150 900 110 645 550 850 750 <t< td=""><td></td><td></td><td>۱</td><td>I</td><td>I</td><td>1</td><td>ł</td><td>I</td><td>ł</td><td>ł</td><td>I</td><td></td><td>ł</td><td>I</td><td>1</td><td>ł</td><td>1</td><td>}</td></t<>			۱	I	I	1	ł	I	ł	ł	I		ł	I	1	ł	1	}
2 43060911 12 0 10 0			ł	I	1	ł	I	I	ł	ł	1			1	ł	ł		;
2 41060911 12.0 5.0 5.0 10.0 4.5 5.0 15.0 5.0			I	I	1	I	1	١	ł	I	ł		1	ł	ł	ł	۱	ł
2 413080911 12.0 15.0 9.0 15.0				1	1	I	1	١	ł	1	1		1	ł	ł		ł	;
2 43060911 12.0 15.0 5.0 15.0 15.0 5.0 15.0 5.0 15.0 5.0 15.0 5.0 15			ł	١	1	۱	۱	ł	ł	1	١		I	١	I	1	1	1
5.0 8.0 11.0 5.0 25 9.0 25 7.0 34.0 80.0 12.0 1 5.0 8.0 12.0 15 5.0 8.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 5.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 15.0		43080911	12.0	15.0	0.6	10.0	4.5	0.6	19.0	2.0	51.0		85.0	75.0	I	1	ł	;
3.0 4.0 2.0 5.0 3.0 <td></td> <td></td> <td>5.0</td> <td>8.0</td> <td>11.0</td> <td>11.0</td> <td>5.0</td> <td>2.5</td> <td>0.6</td> <td>2.5</td> <td>17.0</td> <td></td> <td>48.0</td> <td>21.0</td> <td>I</td> <td>ł</td> <td>I</td> <td>1</td>			5.0	8.0	11.0	11.0	5.0	2.5	0.6	2.5	17.0		48.0	21.0	I	ł	I	1
5.0 9.0 12.0 6.0 8.0 15 3.5 6.0 8.0 15.0 7.0 7.8 3.6 <td></td> <td></td> <td>3.0</td> <td>4.0</td> <td>2.0</td> <td>8.5</td> <td>1.0</td> <td>1.5</td> <td>1.0</td> <td>2.0</td> <td>15.0</td> <td></td> <td>18.0</td> <td>21.0</td> <td>I</td> <td>1</td> <td>1</td> <td>;</td>			3.0	4.0	2.0	8.5	1.0	1.5	1.0	2.0	15.0		18.0	21.0	I	1	1	;
5.0 3.0 5.0 5.0 7.0 15.0 7.0 20.0 7.82 3.62 29.00 7.0 6.5 5.0 4.0 5.7 3.0 5.0			10.01	0.6	12.0	6.0	8.0	1.5	3.5	6.0	48.0		32.0	37.0	ł	1	ł	ł
5 43150948 5:4 1.0 3.0 15.0 5.0 5.5 5.0 1.0 3.0 15.0 5.			5.0	0° С	6.0	6.0	7.0	1.5	2.0	1.5	40.0		7.0	20.0	7.82	3.62	29.00	712.00
7.0 6.5 5.0 4.0 5.0 2.5 4.0 5.0 2.5 4.0 5.0 2.5 1.5 5.5 2.5 1.5 5.5 2.5 1.5 5.5 2.5 1.5 5.5 2.5 1.0 <td></td> <td></td> <td>15.0</td> <td>5.0</td> <td>9.5</td> <td>0.6</td> <td>1.5</td> <td>2.0</td> <td>1.0</td> <td>3.0</td> <td>15.0</td> <td></td> <td>14.0</td> <td>28.0</td> <td>1</td> <td>1</td> <td>ł</td> <td>1</td>			15.0	5.0	9.5	0.6	1.5	2.0	1.0	3.0	15.0		14.0	28.0	1	1	ł	1
3 43150948 5.0 1.5 5.5 3.5 2.0 18.0 48.0 12.0 11.0 3.0 2.5 1.5 5.5 3.5 2.0 18.0 48.0 12.0 11.0 3.0 2.5 1.5 5.5 2.0 28.0 28.0 3.0 10 10.0			7.0	6.5	5.0	4.0	2.5	4.0	5.0	2.0	22.0		52.0	15.0	1	ł	١	}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.0	10.0	5.0	2.5	1.5	5.5	3.5	2.0	18.0		12.0	14.0	I	ł	I	ļ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			12.0	11.0	3.0	4.0	3.0	2.5	1.5	0.0 	18.0		18.0	26.0	ł	1	I	}
5 4110046 5.0 8.0 8.0 <td< td=""><td></td><td></td><td>2.0</td><td>0°2</td><td>8°2</td><td>8°0</td><td>5°2</td><td>5°-1</td><td>5°0</td><td>2.0</td><td>22.0</td><td></td><td>40.0</td><td>19.0</td><td>1</td><td>•</td><td>1</td><td>1</td></td<>			2.0	0°2	8°2	8°0	5°2	5°-1	5°0	2.0	22.0		40.0	19.0	1	•	1	1
5.0 9.0 1.0 5		4,3150948	4. (0. - (0.11	0.11	ם י יים	2.0	0.2	4 C	0.0		0°0	30.0	1	ł	1	1
9.0 14.0 10.0			0.02	0.0		0.0	<u>.</u>	10.5 2		5.2	0.0		0.8	24.0	1	ł	I	ļ
5.0 8.0 4.0 10 1.			5.0		0.91 91	0 C	- -	0.0	~ •	້	32.0		0.0	0.82	1	•	ł	}
5 42900941 8.0 5.0 <t< td=""><td></td><td></td><td>2.0</td><td>14.0</td><td></td><td></td><td></td><td>n u n r</td><td>1 u</td><td>0.v</td><td>0.62</td><td></td><td></td><td>14°0</td><td>ן ר</td><td></td><td>30 50</td><td></td></t<>			2.0	14.0				n u n r	1 u	0.v	0.62			14°0	ן ר		30 50	
4 42900941 8.0 3.0 4.0 11.0 1.0			0 C			8.0		0.0						14°0	<u>.</u>	<u>,</u>		
4 42900941 8.0 3.0 4.0 7.5 2.0 1.0 5.0 22.0 27.0 4.0 8.0 7.5 2.0 1.0 6.0 3.0 1.0 6.0 3.0 1.5 2.0 2.			1.0	3.0	4.0	11.0	1-0	1.5	1.0	6.0	0.6		12.0	27.0	1	ł		;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8.0	8.0	3.0	4.0	2.0	2.0	1.0	5.0	22.0		14.0	48.0	I	ł	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14.0	6.0	3.0	12.0	4.0	7.5	2.0	10.0	46.0		22.0	27.0	1	ł	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10.0	15.0	4.0	4.0	8.0	1.5	2.0	5.0	26.0		26.0	39.0	I	1	ł	ļ
9.0 15.0 4.0 5.0 5.0 4.0 20.0 58.0 26.0	-21 4	42900941	8.0	22.0	14.0	20.0	8.0	28.0	6.0	3.0	44.0		22.0	21.0	1	ł	1	}
45.0 22.0 17.0 20.0 4.0 7.0 6.0 4.0 30.0 43.0 36.0 26.0			0.6	15.0	4.0	5.0	4.0	5.0	5 . 0	4.0	20.0		20.0	24.0	I	1	I	1
			45.0	22.0	17.0	20.0	4.0	7.0	6.0	4.0	30.0		36.0	26.0	1		ł	}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.0	0.0 0	13.0	3°0	12.0	о. С	0. 6	5.0	65.0		41.0	27.0	I	I	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2.0	0.0 	14.0	15.0	о.е	12.0	2.0	14.0	20.0		24.0	32.0	15.75	7.70	35.90	176.00
60.0 35.0 25.0 40.0 12.0 6.0 10.0 12.0 66.0 28.0 48.0 48.0			15.0	3.0	22.0	15.0	r.	2.0	12.0	7.0	0.66		45.0、	26.0	١	I	ł	ł
4.0 5.0 6.0 50.0 12.0 6.0 10.0 14.0 25.0 26.0 40.0 53.0 <			60.0	35.0	22.0	40.0	12.0	0 .9	10.0	12.0	66.0		48.0	48.0	ł	1	١	
5 42960921 7.0 5.0 5.0 5.0 5.0 10.0 1.0 5.0 10.0 21.0 5.0 18.0 64.0			4.0	0.0	e-0	20.0	12.0	0.9	10.0	14.0	25.0		40.0	23.0	١	1	1	ł
5 42960921 7.0 9.0 15.0 4.0 10.0 2.0 14.0 2.0 14.0 2.0 15.0 16.0 12.0 3.0 12.0 3.0 12.0 3.0 12.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.			4.0	4.0	4.0	0. •	12.0	0.9	11.0	0.9 9	0.07	21.0	55.0	46.0	ł	١	1	ł
> 42960921 7.0 9.0 12.0 12.0 14.0 4.0 12.0 12.0 14.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0 12.0 10.0			15.0	0°0	22.0	4 .0	10.0	4.0	2.0	10.0	32.0	26.0	18 . 0	64.0	I	I	1	I
7.0 4.0 2.0 3.0 2.0 23.0 55.0 24.0 9.0 6.0 12.0 10.0 3.0 3.0 2.0 18.0 18.0 14.0 18.0 10.0 12.0 4.0 1.0 4.0 7.0 2.0 18.0 32.0 29.0 21.0			0.0	0.0	0.91	12.0	0.0 m	12.0	14.0	4 .0	32.0	55.0	9.50 8.0	26.0	ł	1	1	1
6.0 12.0 10.0 3.0 3.0 2.0 2.0 18.0 18.0 14.0 18.0			12.0	0.0	9	0.2	0.0	12.0	0.0 m	2.0	23.0	55.0	24.0	0.6	ł	I	١	ł
			15.0	0.0	12.0	0.01	0.0	0.0 m	2.0	2.0	18.0	18.0	14.0	18.0	1	1	ł	;
			4.0	10.0	12.0	4.0	I.0	4.0	0.7		د م	5			ł	ł	ł	ł

11	ļ	; !		}	ļ	ļ	}	667.00	ł	١	1	١	ł	1	1	1	1,030.00	1	1	ł	١	1	1	ł	1	١	ł	1	1,494.00	ł	ł	I	1	۱	١	ł	2,863.00	\	۱	1	۱	ł	۱	١	ł
11	{		[1	ł	1	I	28.40	ł	١	ł	1	{	ł	1	1	29.00	1	ł	l	ł	ł	ł	1	ł	ł	ł	1	18.60	ł	ł	1		1	ł	ł	28.20	1	ł	}	}	1	1	}	ł
11	1	1		1	ł	1	1	7.40	J	1	}	ļ	1	1	ł	ł	3.90	ł	ł	١	ł	1	ł	١	١	1	1	ł	2.60	1	1	ł	1 1	ł	1	ł	4.20	1	ł	ł	l	1	ł	1	(
	1	1	[1	1	۱	1	۱	8.08	ł	۱	1	1	ł	1	۱	ł	6.50	I	1	ł	ł	ł	ł	ł	ł	ł	ł	1	5.40	ł	ł	1	1	ł	ł	}	3.90	ł	1	1	I	1	1	1	1
20.0 28.0	0.0	0. 41	12.0	12.0	27.0	12.0	17.0	31.0	26.0	23.0	27.0	49.0	8.0	22.0	15.0	52.0	25.0	15.0	10.0	45.0	42.0	40.0	20.0	24.0	13.0	18.0	23.0	13.0	11.0	35.0	12.0	15.0		45.0	24.0	12.0	14.0	46.0	26.0	30.0	26.0	13.0	38.0	45.0	12.0
42.0 42.0	2 2 2 2	0.01 61 61 61 61 61 61 61 61 61 61 61 61 61	16.0	25.0	17.0	15.0	58.0	56.0	17.0	43.0	40.0	12.0	48.0	35.0	55.0	0.0 20	26.0	26.0	0.7	0.6	35.0	0.0 %	18.0	21.0	14.0	16.0	13.0	14.0	20.0	12.0	12.0	10.0	0.12	5	32.0	18.0	10.0	28.0	22.0	54.0	33.0	12.0	22.0	29.0	20.0
33.0	0.51 	0.41		30.0	42.0	28.0	55.0	18.0	22.0	28.0	30.0	17.0	28.0	20.0	22.0	15.0	55.0	26.0	45.0	15.0	26.0	28.0	24.0	17.0	48.0	15.0	13.0	28.0	14.0	48.0	13.0	12.0	5°0	18.0	13.0	36.0	11.0	28.0	12.0	48.0	10.0	15.0	15.0	17.0	13.0
12.0 16.0		0, 4 9, 4		31.0	14.0	16.0	12.0	17.0	59.0	13.0	30.0	44.0	7.0	15.0	22.0	25.0	22.0	35.0	32.0	20.0	48.0	20.0	52.0	8.0	18.0	0.6	15.0	15.0	13.0	16.0	15.0	15,0		45.0	30.0	40.0	30.0	13.0	12.0	0.6	58.0	12.0	13.0	16.0	50.0
10.0 10.0	0.22		0 0 • •		4.0	2.0	8.0	5.0	0°0	() ()	4.0	0°	1.0	3°0	2.0	0.6	2°2	0. N	2.0	18.0	4.0	4.0	1.0	1.0		1.0	3.0	1.0	2.0	0°2	0°0	0,1	0.21		2.0	1.0	2.0	7.0	2.0	1.5	а . 5	2.0	•	6.0	1.0
0 0 0 0 0 0																																													
17.0	0 .	0.1		4.0	6.0	6.0	7.0	24.0	3 . 0	э.0	0	20.0	3.0	2.0	3.0	1.5	0.7	0°7	5. m	1.5	2.0	2.0	1.5	1.0	7.0	2.0	1.0	3.0	1.5	0.8	2.0	0.0		0.6	1.0	3.5	1.0	3.0	1.0	0.6	1.0	2.0	0.1	1.5	1.0
3.0 3.0	0.1	0.8 1			2.0	2.0	2.0	20.0	8.0	2.0	3.0	7.0	1.5	1.0	1.5	5°.	9°2	0.0 	4	5. 1	7.5	4.0	18.0	1.0	1.0	1.0	3.0	2.0	1.5	5°1	2.0	2.0			2.5	3.5	0,0	2.5	1.0	1.0	14.0	1.0	1.0	1.5	6.0
10.0	•	0,0	, c	2.0	14.0	2.0	14.0	2.0	1.0	0.EI	11.0	8°0	8.0	0.6	7.5	ທີ່ ທີ່	5. m	0,0	5°.	7.0	13.0	7.0	4.0	3.0	4.0	3.0	1.0	5.0	0.	0.0	0.0	15.0		0.0	2.0	6.0	0.0	4.0	0.6	5.0	8.0	2.0	8	•	3.0
3.0	0.01 10.01			9.0	4.0	10.0	13.0	0.6	27.0	5.0	0.6	2.0	12.0	11.0	0.7	1.0	0.7	12.0	2.0	2.5	7.0	0.6	10.0	3.0	4.0	14.0	4.0	10.0	6.0	2.0	D. M	0.0			1.0	4.0	2.0	3.0	11.0	4.0	2.0	6.0	9,0	5.0	6.0
9 0 0 9 1 0	0.01			7.0	6.0	12.0	11.0	18.0	6.0	4.0	7.0	8.0	4.5	8.0	1.0	12.0	2.0	0.11.	8.0	0°	4.5	6.0	4.0	5.0	5.0	7.0	0.0	8.0	2.0	10.0	5.0	0.9 9	2 C 7 4		3.0	6.0	0.4	1.0	6.0	1.0	1.0	2.0	4	8.0	4.0
П.0 6.0) (2.0	7.0	3.0	З•0	0.6	6.0	4.0	3.0	8.0	2.5	6.5	4.0	0.7	0,0	4.0	4.0	6.0	4.0	4.0	2.0	5.0	з.0	5.0	8.0	3.0	4.0	0.0 0	0	0 .4		0.6	3.0	4.0	1.0	6.0	2.0	2.0	3.0	3.0	0. M	4	3.0
			A 200005	C740306									42960908										43390932										431UU684									43290949			
			v	þ									٢										80										•									2			
			5-22	77									6-25										5 8									2										6-28			

)

Table D-5 (cont)

Ś	Site	Grid		Stem S Ouad	pacing rant	<u>.</u>	Ň	ouadrant	ant			Ouac	Quadrant	_	Stem	Stem	Stem	
Date 1	ġ.	No. Coordinates	-	7	m	4	-	2	m	4		~	m	4	Spacing,	Diameter,	Height,	Density
			ļ		ft)				(in)			£	(t)		(ft)	(ii)	(in)	(stems/acre)
			2.0	7.0	6.0	6.0	3.0	18. 0	1.5	1.0	20.0	34.0	I5.0		5.20	2.90	21.00	1,610.00
			5.0	6.0	4.0	4.0	3.0	1.0	2.5	7.0	36.0	17.0	27.0		ł	I	ł	I
			8.0	4.0	1.0	8.0	1.5	2.0	1.0	7.0	0.6	23.0	12.0		1	1	ł	ł
			3.0	5.0	4.0	6.0	1.0	1.0	4.0	1.0	13.0	18.0	13.0		I	I	I	1
			0.6	4.0	6.0	4.0	6.0	3.0	1.0	ۍ م	42.0	17.0	13.0		1	ł	ł	ł
			10.0	12.0	8.0	4.0	2.0	2.0	1.0	2.5	14.0	22.0	12.0		ł	ł	ł	ł
67-9	ส	43260944	5.0	12.0	°.0	4.0	4.5	8.0	3.0	2.0	17.0	24.0	25.0		1	1	ł	ł
			3.0	5.0	0.6	6.0	29.0	3.0	2.0	4.5	75.0	14.0	10.0		I	ł	1	١
			16.0	4.0	4.0	12.0	2.5	2.5	17.0	4.0	27.0	7.0	88.0		1	١	ł	1
			7.0	4.0	7.0	2.0	2.5	4.5	4.0	4.0	25.0	26.0	27.0		1	1	ł	ł
			3.0	10.0	8.0	0.6	4.0	4.5	6.0	6.5	31.0	32.0	39.0		6.80	5.28	28.70	942.00
			6.0	4.0	0.6	0.6	8.0	0.6	5,5	6.0	47.0	53.0	26.0		I	I	1	1
			4.0	5.0	2.0	5.0	4.5	6.5	4.0	1.5	25.0	23.0	22.0		ł	ł	ł	1
			1.0	1.0	6.0	8.0	1.5	1.5	з.0	6.0	22.0	13.0	24.0		1	1	1	١
			20.0	4.0	13.0	11.0	6.5	5.0	4.0	3.5	29.0	27.0	22.0		1	ł	I	1
			1.0	14.0	6.0	6.0	3.5	5.0	4.5	4.0	17.0	29.0	0.6		1	1	1	١
6-28	ជ	42730945	26.0	4.0	14.0	4.0	5.0	3.5	2.0	1.0	29.0	22.0	13.0		ł	ł	ł	1
			4.0	15.0	4.0	7.0	14.0	4.0	2.0	1.0	54.0	30.0	16.0		1	ł	ł	ł
			4.0	35.0	0.0	6.0	3.0	3.0	4.5	2.5	0.6	15.0	23.0		1	1	ł	ł
			6.0	л. Г	4.0	8.0	19.0	1.5	з . 0	1.0	44.0	11.0	24.0		1	ł	ł	ł
			21.0	12.7	4.0	14.0	5.0	18.0	3.0	15.0	33.0	28.0	5.0		8.50	4.40	23.50	603.00
			3.0	•	4.0	5.0	4.5	6.0	1.0	6.0	33.0	40.0	7.0		ł	1	1	١
			6.0		14.0	18.0	12.0	0.0	2.0	5.0	48.0	31.0	16.0		ł	1	ł	ł
			о. С		0	з.0	1.0	1.0	1.5	1.0	8.0	11.0	18. 0		1	ł	ł	I
			ۍ 6		13.0	6.0	2.0	1.0	6.0	2.0	11.0	14.0	38.0		ł	1	1	1
	1		۰ ۴	o, '	4.0	2.0	0 ° 0	1.0	1.0	4.0	27.0	13.0	0.6		I	۱	ł	I
6- 28	1	42650956	2.0	0.1	0.8	11.0	4.0	2.0	0.1	0.0	28°0	19.0	0.6		ł	1	ł	ł
			17.0	7.0	9.0	4.0	5.0	2.0		0°2	24.0	0.4	0.6		1	I	I	1
			11.0		13.0	0.0 M	4	2°0	9°0	1.0	33.0	22.0	18.0		1	1	ł	ł
			0.0	14.0	0.0	0.6	0.7	4.0	0.4	D.0	0.51 1	40.0	0.6I		١	ļ	I	ł
			200	50	4		0,0		0.0	4	24.0	0°61	10.0		١		2	
				0 Q			0.0	200			0.47	0,0 0,0			0.80	3.90	08°6T	342.00
			2		, c				12.0			20.00	0 C					
			6.0	4.0	4.0	4.0	10	0.7	2.5	0.1	8.0	11.0	26.0		ł	1	ł	ł
			4.0	12.0	6.0	18.0	1.0	1.0	1.0	14.0	53.0	8.0	11.0		1	ł	I	1
7-02	14	43010932	I	1	ł	1	I	ł	ļ	۱	ł	ł	1		1	1	1	
			I	۱	I	ł	١	I	ł	I	ł	1	١		I	ł	ł	ł
			ł	1	ł	I	ł	ł	ł	1	I	ł	ł		ł	ł	I	1
			ł	1	ł	I	ł	ł	I	١	١	I	1		ł	l	l	I
			1	۱	I	ł	1	1	1	1	١	1	ł	1	1	1	ł	ł
			ł	1	I	ł	1	1	}	1	١	۱	I	ł	ł	ł	۱	ł
			ł	1	۱	1	1	ł	1	ł	1	I	I	ł	ł	ł	I	ł
				ł				i										

I

ł

ł

l

ł	1	1	I	ł	1	ł	1,814.00		1	ł	ł	!	1	ı	I	1	1,030.00	1	1	ł	I	ł	1	ļ	I	1	I	1	ł	ł	ł	1	ł	1	ł		00.021					ł	ł	١	1	00 000
l	ł	ł	l	1	۱	ł	22.50	ł	ł	١	ł	ł	ł	ł	ł	ł	23.80	ł	ł	ł	١	١	ł	١	!	١	ł	١	ł	1	١	١	ł	ł	١		24.50		1		١	ł	ł	١	١	
ł	1	I	ł	1	1	ł	3.70	I	I		I	ł	1	ł	I	ł	4.80	1	1	ł	ł	ł	I	ł	ł	}	I	I	1	ł	ł	I	1	ł	1	;	c' • 5						1	1	1	
ł	ł	1	ł	1	I	ł	4.90	I	1	1	I	1	I	1	I	ł	6.50		I	ł	1	ł	1	ł	1	I	I	ţ	1	ł	I	1	1	1	I	;	N. N			1	I	I	1	I	I	
ł	1	15.0	30.0	25.0	11.0	31.0	26.0	41.0	22.0	0.6	27.0	55.0	10.0	7.0	19.0	22.0	47.0	32.0	19.0	0.6	36.0	ł	ł	1	ł	١	ł	I	1	1	1	19.0	28.0	27.0	24.0	40.0	0.21	0.61 0.61	, 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.10	21.0	11.0	30.0	12.0	37.0	
ł	ł	24.0	27.0	40.0	43.0	20.0	14.0	22.0	28.0	18.0	18.0	29.0	47.0	31.0	26.0	21.0	6.0	27.0	20.0	1.0	27.0	ł	١	١	١	١	١	١	١	ł	ł	34.0	31.0	34.0	28.0	27.0	0°67	о С С		50.9	12.0	6.0	54.0	26.0	85.0	
I	I	28.0	14.0	7.0	27.0	12.0	11.0	19.0	17.0	21.0	12.0	19.0	13.0	6.0	7.0	39.0	33.0	22.0	27.0	36.0	37.0	ł	ł	I	I	ł	۱	١	I	I	١	19.0	29.0	14.0	19,0	12.0	2	24.0			48.0	0.0	28.0	55.0	6.0	
ł	ł	65.0	13.0	12.0	12.0	30.0	0.0	35.0	27.0	15.0	26.0	35.0	18.0	28.0	16.0	15.0	23.0	2.0	26.0	5.0	26.0	١	ł	1	١	ł	۱	1	ł	ł	١	23.0	48.0	31.0	31.0	0,0	2	14.0	20.02	17.0	28.0	32.0	6.0	19.0	90.06	
ł	1	1.0	5.0	3.0	1.0	1.0	4.0	L7.0	3.0	1.0	3.5	20.0	1.0	1.0	1.0	2.0	18.0	3.0	1.5	2.0	4.5	1	ł	I	ł	I	1	1	ł	1	ł	1.5	2.0	6.0	0°°	0.0) () (4.0	1.0	5.0	
																																												3.0		
																																												6.0		
																																												2.0		
																																												2.0		
																																												8.0		
																																			• •						-	-	·	3.0		
•	' 1	0.0																																										0.4		
•	•	ä	•	`	•	•		1	•	U,	Ű	Ŭ	•		,	Ű	v	•	2	v	ч	'	•	•	'	•	,	r	'	'	•			•,	•				Ju	. 6			4	(-)	Ξ	į
		42850966						•				42800917										43450920										42560972									43050975					
		15										16										1										18									6	}				
		7-02										7-03										03										7-05									7-05					

Table D-5 (cont)

「「大き」を読む

Į.

Mo. Correctinetes 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1	Site	e Griđ	Ś	tem Sr Quadr	Stem Spacing, Quadrant		S	Stem Diameter, Quadrant	meter, ant		U	stem He Ouadr	ant,		Average Stem	Average Stem	Average Stem	
	Date No.	. Coordinates	-	2	3	4	-	2	3	4	-	2	e	4	Spacing,	Diameter,	Height,	
20 6970915 20 10 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10				E .	(t)			()	î c			(ft	÷.		(ft)	(in)	(in)	(stems/acre)
23.0 14.0 4.0 3.0 1.0 </td <td></td> <td></td> <td>15.0</td> <td>10.0</td> <td>15.0</td> <td>15.0</td> <td>5.0</td> <td>4.0</td> <td>2.0</td> <td>1.0</td> <td>27.0</td> <td>18.0</td> <td>7.0</td> <td>7.0</td> <td>1</td> <td>ł</td> <td>ł</td> <td>ł</td>			15.0	10.0	15.0	15.0	5.0	4.0	2.0	1.0	27.0	18.0	7.0	7.0	1	ł	ł	ł
20 46970916 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 15.0 10.0 10.0 15.0 10.0 <			22.0	14.0	4.0	4.0	3.0	1.0	1.0	1.0	29.0	12.0	16.0	11.0	ł	ł	١	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10.0	15.0	20.0	8.0	4.0	2.0	6.0	75.0	30.0	20.0	80.0	ł	ł	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ł	1	1	1	1	ł	1	ł	1	۱	ł	I	ł	ł	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ł	1	I	١	ł	1	1	1	1	I	ł	1	1	ł	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ł	ł	ł	I	ł	1	1	1	۱	1	١	1	ł	ł	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	ł	ł	1	1	١	1	1	1	۱	1	1	ł	ł	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	1	ł	ł	I	1	1	I	١	١	ł	1	I	ł	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ł	1	1	1	1	1	1	١	ł	ļ	ł	ļ	ł	I	ł	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	ł	ł	1	١	۱	1	1	۱	i	1	ł	ł	ł	ł	١
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ł	1	I	1	1	ł	ł	1	١	ł	ł	ļ	ł	1	{
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	ł	ł	ł	1	1	1	1	ł	ł	ł	١	ł	I	I
21 39330918 1.0 3.0 8.0 19.0 10. 2.5 3.0 5.5 13.0 18.0 15.0 37.0 5.0 3.0 5.5 1.0 1.0 5.0 3.0 1.5 1.0 5.0 3.0 1.5 1.0 1.0 1.0 5.0 3.0 1.5 1.0 1.0 1.0 5.0 3.0 1.5 1.0 1.0 1.0 1.0 5.0 3.0 1.5 1.0 1.0 1.0 1.0 5.0 3.0 1.0				I	ł	ł	ł	1	1	1	ł	۱	1	1	1	ł	1	1
22 39400913 1:0:0 2:5 5:0 1:0:0 1:0:0 2:5 5:0 1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0				3.0	8.0	19.0	1.0	2.5	3.0	5.5	13.0	18.0	15.0	37.0	I	{	1	1
22 39400913 5:0				2.5	5.0	4.5	1.5	1.0	2.0	2.0	16.0	14.0	12.0	23.0	1	ł	!	ł
23 350 4.0 6.0 13.0 1.5 1.0 2.0 13.0 1.0				4.0	12.0	8.0	1.0	1.0	1.5	2.5	18.0	30.0	20.0	26.0	I	1	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				4.0	6.0	13.0	з• 0	1.5	1.0	2.0	18°0	14.0	15.0	27.0	ł	ł	1	1
23 3400913 3.0 1.0 1.5 5.0 3.0 1.0 1.5 5.0 3.0 1.0 1.5 5.0 3.0 1.0 1.0 23.22 20 1.0 1.0 1.0 1.0 1.0 5.0 1.0 1.0 23.21 65.0 11.0 11.0 23.66 23.60 23.70 23.70 23.70 23.70 23.70 23.70 23.70 23.70 23.70				2.0	20.0	2.0	6.0	3.0	4.0	1.0	37.0	20.0	15.0	11.0	I	ł	I	ł
23 3400913 31.0 11.0 5.0 31.0 11.0 5.0 31.0 11.0 5.0 31.0 11.0 5.0 31.0 11.0 5.0 31.0 11.0 5.0 31.0 11.0 5.0 31.0 15.0 5.0 31.0 15.0 5.0 31.0 15.0 5.0 31.0 15.0 5.0 31.0 15.0 5.0 31.0 15.0 5.0 15.0 5.0 15.0 5.0 15.0 5.0 15.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 17.0 5.0 5.0 17.0 5.0 17.0 5.0 5.0 17.0 5.0 5.0 17.0 5.0 5.0 17.0 5.0				1.5	2.0	3.0	1.0	1.0	1.5	4.0	12.0	8.0	14.0	37.0	6.30	29.60	23.22	1,097.00
22 39400913 3.0 1.0 <				12.0	6.0	8.0	1.0	15.0	2.0	1.0	11.0	56.0	31.0	11.0	I	ł	ł	I
22 33400913 5.0 4.0 3.0 1.5 3.0 0.0 3.5 12.0 5.0 4.0 3.0 1.5 1.0				4.0	6.0	1.5	1.0	10.0	1.0	1.0	0° 6	65.0	13.0	15.0	ł	ł	ł	ł
22 39400913 5.0 14.0 16.0 8.0 2.5 3.0 7.0 1.5 2.2.0 2.0 11.0 11.0 12.0 11.0 11.0 12.0 11.0 11.0 12.0 11.0 11.0 12.0 11.0 11.0 12.0 11.0 11.0 11.0 12.0 11.0 11.0 11.0 12.0 11.0 11.0 11.0 12.0 11.0 <td< td=""><td></td><td></td><td></td><td>0°0</td><td>4.0</td><td>з.0</td><td>1.5</td><td>0°0</td><td>10.0</td><td>3.5</td><td>12.0</td><td>21.0</td><td>68.0</td><td>21.0</td><td>ł</td><td>1</td><td>1</td><td>ł</td></td<>				0°0	4.0	з . 0	1.5	0°0	10.0	3.5	12.0	21.0	68.0	21.0	ł	1	1	ł
22 39400913 3.0 5.0 4.0 11.0 1.5 1.0 2.0 14.0 2.0 4.0 11.0 1.5 1.0 2.0 14.0 2.0 1.0 2.0 14.0 2.0 1.0 2.0 14.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0				14.0	16.0	8°0	2.5	Э . 0	7.0	1.5	22.0	23.0	64.0	17.0	1	1	I	ł
7.0 4.0 6.0 8.0 2.0 15 1.0 2.0 18.0 14.0 23.0 2.0 3.0 8.0 6.0 3.0 1.0 2.0 15.0 14.0 23.0 12.0 3.0 8.0 5.0 1.0 2.0 12.0 17.0 4.0 4.0				5.0	4.0	11.0	1.5	1.0	2.0	1.0	16.0	11.0	12.0	14.0	ł	ł	ł	ł
210 310 8.0 6.0 3.0 1.0 3.0 18.0 12.0 17.0 21.0 4.0 <				4.0	6.0	8.0	2.0	1.5	1.0	2.0	15.0	18.0	14.0	23.0	1	ł	I	ł
12.0 2.0 13.0 15.0 16.0 2.0 2.0 14.0 4.0				3.0	8.0	6.0	3.0	1.0	3.0	18.0	12.0	17.0	21.0	46.0	I	ł	1	ļ
23 3550870 8.0 3.5 1.0 2.5 1.0 18.0 9.0 21.0 12.0 5.825 3.30 17.72 3.0 12.0 5.0 4.0 1.0				2.0	13.0	15.0	16.0	2.0	2.0	2.0	46.0	29.0	14.0	4.0	ł	1	1	1
23 39650870 8.0 5.0 4.0 1.0 1.0 1.0 17.0 15.0 14.0 4.0				4.0	3.0	8.0	з.5	1.0	2.5	1.0	18.0	0.6	21.0	12.0	5.825	3.30	17.72	1,284.00
3.0 12.0 12.0 17.0 1.0 1.5 18.0 11.0 42.0 11.0 23 39650870 8.0 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 2.0 38.0 15.0 </td <td></td> <td></td> <td></td> <td>0.0</td> <td>5.0</td> <td>4.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>17.0</td> <td>15.0</td> <td>14.0</td> <td>4.0</td> <td>١</td> <td>1</td> <td>1</td> <td>ł</td>				0.0	5.0	4.0	1.0	1.0	1.0	1.0	17.0	15.0	14.0	4.0	١	1	1	ł
23 39650870 8.0 15.0 -10 10 10 10 10 23.0 9.0 38.0 15.0				12.0	12.0	7.0	1.0	1.5	18.0	1.0	18.0	11.0	42.0	11.0	ł	1	I	1
23 39650870 8.0 5.0 1.0 1.0 9.0 8.0 32.0				4.0	4.0	1.0	3.0	1.0	18.0	1.0	23.0	0.0	38.0	15.0	ł	ł	ł	ł
23 39650870 7.0 1.0 8.0 1.0 <				з•0	4.0	5.0	ь. Г	1.0	1.5	5.0	11.0	0.6	8.0	32.0	I	ł	1	ł
23 39650870 8.0 22.0 8.0 6.0 14.0 16.0 4.0 1.5 57.0 27.0 19.0 21.0				1.0	8.0	7.0	5.0	1.0	1.0	1.0	36.0	19.0	21.0	14.0	ł	1	1	ł
4.0 5.0 2.0 12.0 1.0 15.0 12.0 13.0 18.0 35.0 -				22.0	8.0	6.0	14.0	16.0	4.0	1.5	57.0	27.0	19.0	21.0	1	ł	ł	ł
6.0 11.0 1.0 3.0 8.0 1.5 1.0 52.0 19.0 14.0 15.0 -				5.0	2.0	12.0	2.0	1.0	1.0	15.0	12.0	13.0	18.0	35.0	ł	1	1	1
1.0 2.0 4.0 6.0 4.0 1.0 1.0 14.0 15.0 13.0 </td <td></td> <td></td> <td></td> <td>11.0</td> <td>11.0</td> <td>3.0</td> <td>8.0</td> <td>1.5</td> <td>1.5</td> <td>1.0</td> <td>52.0</td> <td>19.0</td> <td>14.0</td> <td>15.0</td> <td>ł</td> <td>1</td> <td>1</td> <td>ł</td>				11.0	11.0	3.0	8.0	1.5	1.5	1.0	52.0	19.0	14.0	15.0	ł	1	1	ł
12.0 3.0 2.0 5.0 1.0 1.0 1.0 14.0 16.0 6.45 2.80 19.03 2.0 4.0 3.0 22.0 4.0 1.0 1.0 25.0 <td></td> <td></td> <td></td> <td>2.0</td> <td>4.0</td> <td>6.0</td> <td>4.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>14.0</td> <td>14.0</td> <td>15.0</td> <td>13.0</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>				2.0	4.0	6.0	4.0	1.0	1.0	1.0	14.0	14.0	15.0	13.0	1	1	1	1
2.0 4.0 3.0 22.0 4.0 1.0 1.0 2.0 11.0 25.0 </td <td></td> <td></td> <td></td> <td>3.0</td> <td>2.0</td> <td>5.0</td> <td>1.0</td> <td><1.0</td> <td>1.0</td> <td>1.5</td> <td>13.0</td> <td>11.0</td> <td>14.0</td> <td>16.0</td> <td>6.45</td> <td>2.80</td> <td>19.03</td> <td>1,047.00</td>				3.0	2.0	5.0	1.0	<1.0	1.0	1.5	13.0	11.0	14.0	16.0	6.45	2.80	19.03	1,047.00
2.0 4.0 8.0 3.0 1.0 2.0 1.0 18.0 16.0 19.0 26.0				4.0	3.0	22.0	4.0	1.0	1.0	2.0	24.0	16.0	11.0	25.0	ł	1	1	ł
6.0 22.0 9.0 12.0 1.0 2.0 1.0 1.0 27.0 23.0 19.0 17.0				4.0	8.0	3.0	3.0	1.0	2.0	1.0	18.0	16.0	19.0	26.0	1	ł	I	ł
3.0 2.0 3.0 5.0 1.5 <1.0 1.0 1.5 14.0 8.0 14.0 16.0				22.0	0.6	12.0	1.0	2.0	1.0	1.0	27.0	23.0	19.0	17.0	ł	ł	1	1
2.0 4.0 6.0 3.0 2.0 3.0 1.0 3.0 12.0 24.0 13.0 7.0				2.0	з.0	5.0	1.5	<1.0	1.0	1.5	14.0	8.0	14.0	16.0	ł	ł	1	
31700857				4.0	6.0	3.0	2.0	3.0	1.0	3.0	12.0	24.0	13.0	7.0	ł	ł	ł	1
	24			I	ł	ł	I	ł	ł	ł	١	ł	١	ł	ł	1	ł	ł

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	}	}	1	ł	ł	ł	;	ţ	ł	١	1	1	ł	ļ	ł	ł	١	ł	ļ	١	ł	ł	ł	812.00	ł	1	١	ł	ł	ł	1	ł	ł	ł	ł	ł	١			1	1	I	1	ł	1	١	1	I
23 35450810 36 7 <th7< th=""><th>ļ</th><th>}</th><th>1</th><th>I</th><th>;</th><th>ł</th><th>1</th><th>ļ</th><th>1</th><th>1</th><th>1</th><th>1</th><th>1</th><th>20.30</th><th>}</th><th>1</th><th>١</th><th>ļ</th><th>1</th><th>1</th><th>1</th><th>ļ</th><th>J</th><th>23.70</th><th>1</th><th>1</th><th>ţ</th><th>ł</th><th>1</th><th>ł</th><th>ļ</th><th>ļ</th><th>ļ</th><th>29.80</th><th>I</th><th>}</th><th>I</th><th> </th><th> </th><th>1</th><th>}</th><th>١</th><th>}</th><th>25.00</th><th>ł</th><th>I</th><th>!</th><th>I</th></th7<>	ļ	}	1	I	;	ł	1	ļ	1	1	1	1	1	20.30	}	1	١	ļ	1	1	1	ļ	J	23.70	1	1	ţ	ł	1	ł	ļ	ļ	ļ	29.80	I	}	I			1	}	١	}	25.00	ł	I	!	I
25 35450810 35.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 1.0 5.	ł	ł	ł	1	ł	1	ł	ł	1	1	ł	1	ł	2.74	1	ł	1	ł	ł	1	1	1	1	4.60	ļ	1	ł	}	1	ł	1	ļ	1	6.56	ł	ł	ļ			1	ł	1	1	4.50	}	I	1	1
25 35450010 26 7 <th7< th=""><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>7.125</th><th>1</th><th>ł</th><th>1</th><th>1</th><th>I</th><th>1</th><th>ł</th><th>1</th><th>ł</th><th>7.325</th><th>1</th><th>1</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th><th>10.10</th><th>ł</th><th>ł</th><th>ł</th><th> </th><th> </th><th>1</th><th>ł</th><th>ł</th><th>1</th><th>6.35</th><th>ł</th><th>ł</th><th>ł</th><th>ł</th></th7<>	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	ł	7.125	1	ł	1	1	I	1	ł	1	ł	7.325	1	1	ł	ł	ł	ł	ł	ł	ł	10.10	ł	ł	ł			1	ł	ł	1	6.35	ł	ł	ł	ł
25 35450010 26 7 <th7< th=""><th>ł</th><th>ľ</th><th>1</th><th>ł</th><th>1</th><th>ł</th><th>1</th><th>ł</th><th>1</th><th>16.0</th><th>53.0</th><th>24.0</th><th>21.0</th><th>12.0</th><th>8.0</th><th>8.0</th><th>12.0</th><th>4.0</th><th>8.0</th><th>32.0</th><th>16.0</th><th>35.0</th><th>0.0</th><th>%.0</th><th>13.0</th><th>0.0</th><th>12.0</th><th>15.0</th><th>12.0</th><th>0.6</th><th>13.0</th><th>24.0</th><th>31.0</th><th>0.6</th><th>0.0</th><th>0.21</th><th>0°2</th><th></th><th></th><th>0.0</th><th>5.0</th><th>12.0</th><th>0.6</th><th>6.0</th><th>7.0</th><th>З.0</th><th>13.0</th><th>12.0</th></th7<>	ł	ľ	1	ł	1	ł	1	ł	1	16.0	53.0	24.0	21.0	12.0	8.0	8.0	12.0	4.0	8.0	32.0	16. 0	35.0	0.0	% .0	13.0	0.0	12.0	15.0	12.0	0.6	13.0	24.0	31.0	0.6	0.0	0.21	0°2			0.0	5.0	12.0	0.6	6.0	7.0	З. 0	13.0	12.0
33450810 7:0 6:0 10 10 10 7:0 6:0 10 10 10 10 20 9:0																																																
25 35450810 5.0 1.0 <																																																
25 35450810 50 10 40 50 10 40 40 7															-													-												-								
25 35450810 26.0 5.0 1.0 4.0 5.0 5.0 5.0 5.0	1	l	ł	1	ł	1	I	1	1	8.	.6	و.	15.	14.	ы.	14.	15.	н.	و.	8. 20.	°.	16.	. 6	ĕ.	26.	15.	23.	62.	ц.	35.	46.	29.	18.	65.	26.	б	- 8			5	51.	12.	29.	8	б. С	46.	.	43.
25 35450810 26 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 5.0 5.0 5.0 5.0 <t< th=""><th>١</th><th>I</th><th>١</th><th>۱</th><th>۱</th><th>1</th><th>۱</th><th>١</th><th>١</th><th>1.0</th><th>14.0</th><th>з.0</th><th>4.0</th><th>1.0</th><th>13.0</th><th>1.0</th><th>1.5</th><th>1.0</th><th>1.5</th><th>7.0</th><th>8.5</th><th>8.0</th><th>23.0</th><th>4.0</th><th>1.0</th><th>3.0</th><th>1.5</th><th>2.0</th><th>4.0</th><th>2.0</th><th>8.0</th><th>2.0</th><th>5.5</th><th>7.0</th><th>8.0</th><th>2°0</th><th>- i 1</th><th>ם קיי קיי</th><th></th><th></th><th>0.1</th><th>0.6</th><th>8.0</th><th>1.5</th><th>1.0</th><th><1.0</th><th>1.0</th><th><1.0</th></t<>	١	I	١	۱	۱	1	۱	١	١	1.0	14.0	з.0	4.0	1.0	13.0	1.0	1.5	1.0	1.5	7.0	8.5	8.0	23.0	4.0	1.0	3.0	1.5	2.0	4.0	2.0	8.0	2.0	5.5	7.0	8.0	2°0	- i 1	ם קיי קיי			0.1	0.6	8.0	1.5	1.0	<1.0	1.0	<1.0
25 35450810 26 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 5.0 5.0 5.0 5.0 <t< th=""><th>1</th><th>ļ</th><th>I</th><th>J</th><th>ł</th><th>1</th><th>I</th><th>١</th><th>ļ</th><th>з.0</th><th>1.0</th><th>4.0</th><th><1.0</th><th>1.0</th><th>3.5</th><th>2.0</th><th>4.0</th><th>6.0</th><th>4.5</th><th>2.5</th><th>2.5</th><th>4.5</th><th><1.0</th><th>1.0</th><th><1.0</th><th>20.0</th><th>2.5</th><th>2.5</th><th>5.0</th><th>1.0</th><th>5.0</th><th>3.0</th><th>1.0</th><th>2.0</th><th>7.0</th><th>6.0</th><th>0,0</th><th>- - -</th><th></th><th>- -</th><th>1.0</th><th>0.0</th><th>0.6</th><th>1.0</th><th>1.0</th><th>4.5</th><th>1.0</th><th>1.5</th></t<>	1	ļ	I	J	ł	1	I	١	ļ	з.0	1.0	4.0	<1.0	1.0	3.5	2.0	4.0	6.0	4.5	2.5	2.5	4.5	<1.0	1.0	<1.0	20.0	2.5	2.5	5.0	1.0	5.0	3.0	1.0	2.0	7.0	6. 0	0,0	- - -		- -	1.0	0.0	0.6	1.0	1.0	4.5	1.0	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																																																
25 35450810 26.0 5.0 1.0 4.0 26 35350810 26.0 5.0 1.0 4.0 26 35350870 26.0 5.0 1.0 4.0 27.0 6.0 6.0 6.0 1.0 7.0 26 36350870 26.0 5.0 1.0 4.0 27.0 8.0 7.0 8.0 1.0 7.0 27 410 9.0 15.0 8.0 1.0 7.0 27 41250897 5.0 18.0 1.0 1.0 1.0 27 41250897 5.0 18.0 1.0 1.0 1.0 28 40320852 5.0 14.0 10.0 10.0 1.0 1.0 28 40320852 6.0 1.0 9.0 1.0 9.0 6.0 1.0 9.0 29.0 12.0 9.0 14.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																																																
25 35450810 26.0 5.0 1.0 26 3550870 26.0 5.0 1.0 27 41250897 5.0 1.0 1.0 28 35350870 5.0 1.0 1.0 29.0 112.0 6.0 6.5 1.0 27 41250897 5.0 1.0 1.0 28 40320852 5.0 1.0 1.0 29.0 112.0 1.0 1.0 1.0 29.1 112.0 1.0 1.0 1.0 29.2 112.0 1.0 1.0 1.0 29.3 1.0 1.0 1.0 1.0 29.4 1.0 1.0 1.0 1.0 20.1 1.0 1.0 1.0 1.0 20.1 1.0 1.0 1.0 1.0 21.0 1.0 1.0 1.0 1.0 21.0 1.0 1.0 1.0 1.0 21.0 1.0 1.0 1.0 1.0 22.0 1.0																																																
25 35450810 26 5.0 5.0 26 36,350870 26.0 5.0 5.0 27 41250897 5.0 9.0 10.0 28 40320852 5.0 9.0 10.0 29 6.0 112.0 6.0 11.0 29 5.0 9.0 112.0 5.0 20 22.0 5.0 112.0 5.0 21 12.0 12.0 14.0 14.0 29 5.0 12.0 14.0 14.0 20 5.0 12.0 14.0 14.0 21 12.0 5.0 14.0 17.0 20 5.0 12.0 14.0 17.0 21 12.0 12.0 14.0 14.0 20.0 4.0 5.0 14.0 14.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 12.0 5.0 5.0																																																
25 35450810 26 0 26 36350870 26 0 27 41250897 25 0 27 41250897 25 0 28 40320852 66 0 28 40320852 66 0 29 66 0 20 70 0 20 66 0 20 70 0 20																																																
25 35450810 26 36350870 27 41250897 28 40320852	1	ł	ł	1	ł	1	I	1	1	5.0	6.5	10.0	8.5	6.0	4.0	6.0	3.0	0.0	4.0	7.5	12.0	18.0	3.0	8.0	2.0	6.0	3.5	20.0	4.0	17.0	4.0	5.0	3.0	15.0	19.0	4.0	0.0				5.0	0.11	5.0	0.0	4.0	3.0	13.0	3.0
38 5 3 58 52	I		ł	١	1	ł	1	١	ł	26.0	6.0	0.6	6.0	7.0	7.0	12.0	о • с	4.0	5.0	4.0	7.0	5.0	0.6	4.0	2.0	3.0	12.0	5.0	10.0	26.0	16.0	6.0	2.0	22.0	15.0	12.0	4 0		0 0 0 4		3.0	2.0	12.0	0.0 M	5.0	12.0	6.0	5.0
38 5 3 58 52										10										20										197				•					53	7								
										354500										36350										41250									403206	07004								
7-13										22										26										27									ä	2								
										7-13										7-13										7-16																		

).

Table D-5 (concluded)

Accordinates 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 3 3 1 3 3 1 1 2 3 1 <	5,	Site	Griđ		Stem St Ouadr	pacing		S	Stem Diameter Quadrant	ameter rant			Stem 1 Ouac	stem Height Quadrant		Average Stem	Average Stem	Average Stem	
	Date	ż	Coordinates	-	2	m	4	-	2	m	4		2	m	4	Spacing,	Diameter,	Height,	Density
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		{			=	(F)				in)			=	ft)		(ft)	(in)	(ii)	(stems/acre)
30 40480985 5.0		53	42260908	2.0	1.0	8.0	3.0	2.5	8.0	1.5	1.0	32.0	30.0		_	1	ł	ł	1
0.5 8.0 13.0 7.0 95.0 2.5 1.5 1.0 5.0 13.0 7.0 95.0 2.5 1.0				6.0	2.5	5.0	5.5	з.0	<1.0	<1.0	1.0	20.0	6.0			1	ł	1	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.5	8.0	13.0	7.0	95.0	2.5	1.5	1.0	50.0	21.0		_	}	ł	ł	ł
6.5 7.0 3.0 1.5 4.0 6.0 1.5 22.0 6.0 10.0 12.0 6.15 3.60 20.70 10 2.0 9.0 1.0 1.5 5.0 3.0 1.5 31.0 0.0 1.5 3.60 20.70 110 2.0 9.0 1.0 1.5 5.0 3.0 1.5 31.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 2.0 1.0 1.5 1.0 2.0 1.0 1.5 1.0 2.0 1.0 1.5 1.0 2.0 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.0 1.5 1.0				1.0	2.5	1.5	1.5	25.0	1.0	1.0	1.5	28.0	9.0			1	I	ł	۱
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				6.5	7.0	3.0	5.0	1.5	<1.0	1.0	1.5	22.0	6.0			6.15	3.60	20.70	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.0	2.0	0.6	4.0	6.0	Э.0	7.0	5.0	32.0	20.02			}	ł	ł	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				6.0	4.0	7.0	9.0	3.0	4.0	4.0	4.5	26.0	22.0		• •	ł	l	ł	١
30 40480985 5:0 1.0 8.0 15.0 1.0 3.0 1.0 <th1.0< th=""> 1.0 1.0 <th1.0<< th=""><th></th><th></th><th></th><th>1.5</th><th>10.0</th><th>1.0</th><th>1.5</th><th>5.0</th><th>2.0</th><th>3.0</th><th>1.5</th><th>33.0</th><th>20.0</th><th></th><th>• •</th><th>ł</th><th>ł</th><th>1</th><th>1</th></th1.0<<></th1.0<>				1.5	10.0	1.0	1.5	5.0	2.0	3.0	1.5	33.0	20.0		• •	ł	ł	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				6.0	1.0	8.0	15.0	<1.0	3.0	1.0	3.0	18.0	17.0		_	l	1	1	ł
30 40480985 9.0 7.0 1.0 5.0 4.0 15.0 1.0 1.0 1.0 1.0 3.0 4.0 19.0 3.0 4.0 19.0 3.0 4.0 19.0 3.0 4.0 19.0 3.0 4.0 19.0 3.0 1.0 <				1.0	8.0	6.0	6.0	1.5	1.0	2.5	1.0	12.0	14.0			١	ł	}	ł
5.0 3.0 4.0 5.0 2.5 5.10 1.0 16.0 11.0 12.0 8.0	7-18	R	40480985	9.0	7.0	1.0	5.0	4.0	16.0	3.0	4.0	33.0	44.0			1	I	١	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5.0	3.0	4.0	5.0	2.5	<1.0	1.0	1.0	16.0	11.0			ļ	I		ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1.0	4.0	15.0	12.0	1.0	1.0	20.02	°.0	0.0	12.0			ł	ł		1
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.61 18.90 4.0 6.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.61 18.90 5.0 6.0 3.0 1.0				8.0	3.0	2.0	5.0	2.0	1.0	3.5	<1.0	20.0	11.0			۱	1		ł
4.0 6.0 3.0 1.0 9.0 1.0 1.0 31.0 16.0 12.0 8.0 5.0 6.0 4.0 10.0 1.0 12.0 11.0 47.0 12.0 5.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				2.0	2.0	27.0	5.0	2.0	1.0	5.0	<1.0	19.0	0.6		_	5.70	3.61		ł
5.0 6.0 4.0 10.0 1.0 12.0 11.0 47.0 12.0 5.0 4.0 4.0 8.0 1.0				4.0	6.0	3.0	1.0	0.6	1.0	1.0	<1.0	37.0	16.0			١	ł		l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.0	6.0	4.0	10.0	1.0	12.0	1.0	<1.0	11.0	47.0			ł	ł		ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4.0	4.0	8.0	1.0	1.5	1.0	12.0	<1.0	14.0	12.0		_	i	ł		I
31 40580937 5.0 9.0 11.0 5.0 16.0 1.0 3.0 4.0 2.0 1.0				1.0	2.0	1.0	7.0	¢1.0	<1.0	7.0	2.0	7.0	11.0			t	ł		ł
31 40580937 5.0 9.0 3.0 4.0 2.0 1.0 7.0 1.0 <				12.0	0.6	11.0	5.0	16.0	1.0	з.0	<1.0	36.0	18.0			1	ł		ł
5.0 1.0 1.0 2.0 15.0 1.0 1.0 1.0 13.0 7.0 <td< td=""><th>7-18</th><th>R</th><th>40580937</th><th>5.0</th><td>0.6</td><td>3.0</td><td>4.0</td><td>2.0</td><td>1.0</td><td>7.0</td><td><1.0</td><td>12.0</td><td>11.0</td><td></td><td></td><td>ł</td><td>ł</td><td></td><td>ł</td></td<>	7-18	R	40580937	5.0	0.6	3.0	4.0	2.0	1.0	7.0	<1.0	12.0	11.0			ł	ł		ł
4.0 3.0 4.0 10 3.0 2.0 1.0 12.0 14.0 15.0 <th></th> <th></th> <th></th> <th>5.0</th> <td>1.0</td> <td>1.0</td> <td>2.0</td> <td>15.0</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>53.0</td> <td>11.0</td> <td></td> <td></td> <td>ł</td> <td>ł</td> <td></td> <td>ł</td>				5.0	1.0	1.0	2.0	15.0	1.0	1.0	1.0	53.0	11.0			ł	ł		ł
12.0 14.0 3.0 3.0 1.0 2.0 2.0 21.0 16.0 7.0 12.0 -				6.0	4.0	3.0	4.0	10	3.0	2.0	1.0	12.0	21.0			ł	ļ		1
4.0 3.0 7.0 5.0 1.0 1.0 3.0 38.0 8.0 9.0 23.0 4.60 2.69 17.50 1.0 5.0 6.0 <1.0 4.0 <1.0 6.0 7.0 5.0 5.0 -<				12.0	12.0	14.0	3.0	3.0	1-0	2.0	2.0	21.0	16.0			ł	ł		ł
1.0 5.0 6.0 <1.0 4.0 <1.0 6.0 7.0 26.0 5.0 </th <th></th> <th></th> <th></th> <th>3.0</th> <th>4.0</th> <th>3.0</th> <th>7.0</th> <th>5.0</th> <th>1.0</th> <th>1.0</th> <th>3.0</th> <th>38.0</th> <th>8.0</th> <th></th> <th>_</th> <th>4.60</th> <th>2.69</th> <th></th> <th>2,058.00</th>				3.0	4.0	3.0	7.0	5.0	1.0	1.0	3.0	38.0	8.0		_	4.60	2.69		2,058.00
3.0 1.0 5.0 (1.0 2.0 3.0 1.5 8.0 13.0 19.0 14.0				7.0	1.0	5.0	6.0	<1.0	<1.0	4.0	<1.0	6.0	7.0		_	ł	ł		ł
2.0 6.0 4.0 3.0 4.0 2.0 7.0 36.0 22.0 18.0 48.0				4.0	3.0	1.0	5.0	<1.0	2.0	3.0	1.5	8.0	13.0		_	1	١		ł
6.0 1.0 2.0 1.0 5.0 42.0 11.0 9.0				4.0	2.0	6.0	4.0	3.0	4.0	2.0	7.0	36.0	22.0			ł	1		ł
1.0 5.0 4.0 1.0 <1.0 4.0 8.0 5.0 7.0 21.0 37.0				8.0	6.0	1.0	2.0	<1.0	6.0	1.0	<1.0 <1.0	5.0	42.0			ł	ł		1
				3.0	1.0	5.0	4.0	1.0	<1.0	4.0	8.0	5.0	7.0			ł	1		1

APPENDIX E. TERRAIN FACTOR MAP PORTFOLIO

].

The Terrain Factor Maps are not part of this report but can be requested from USATIC by authorized agencies.

ŀ

A COLORED IN

APPENDIX F. PHOTOGRAPHS OF DATA SITES

a salahan dua

2

4

):

F.

Figure F-1. Site 1 Looking North.

Figure F-2. Site 2 Looking North.

1

月辺1111111111111

Figure F-3. Site 3 Looking South.

Figure F-4. Site 4 Looking West.

Figure F-5. Site 5 Looking East.

Figure F-6. Site 6 Looking West.

). /•

Figure F-7. Site 7 Looking North.

Figure F-8. Site 8 Looking South.

Figure F-9. Site 9 Looking South.

ł

.

Figure F-10. Site 10 Looking South.

Figure F-11. Site 11 Looking North.

ſ

Figure F-12. Site 12 Looking West.

Figure F-13. Site 13 Looking West.

مد بلا برق

Figure F-14. Site 14 Looking West.

Figure F-15. Site 15 Looking North.

Figure F-16. Site 16 Looking South.

Figure F-17. Site 17 Looking West.

Figure F-18. Site 18 Looking East.

Figure F-19. Site 19 Looking West.

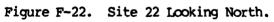



Figure F-20. Site 20 Looking North.

Figure F-21. Site 21 Looking North.

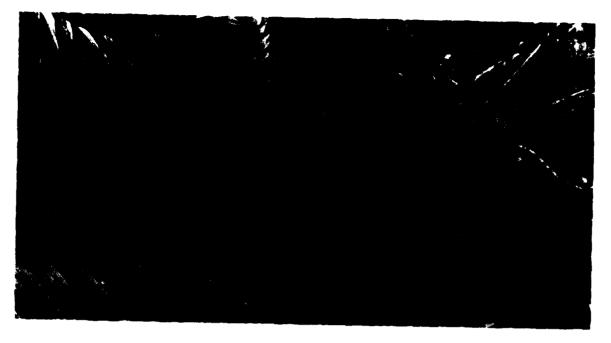


Figure F-23. Site 23 Looking East.

Figure F-24. Site 24 Looking North.

Figure F-25. Site 25 Looking North.

Figure F-26. Site 26 Looking North.



1

Figure F-27. Site 27 Looking West.

Figure F-28. Site 28 Looking East.



^ /•

Figure F-29. Site 29 Looking South.

Figure F-30. Site 30 Looking North.

No.

ステム しかいかん しろんいたいたい

7.

Figure F-31. Site 31 Looking North.

APPENDIX G. SYMBOLS

Surface Composition

USDA Textural Classes

C - Clay SiC - Silty Clay SiCL - Silty Clay Loam CL - Clay Loam Si - Silt SiL - Silt Loam L - Loam SC - Sandy Clay SCL - Sandy Clay Loam SL - Sandy Loam LS - Loamy Sand S - Sand

Fine-Grained USCS Soil Types and Sands with Fines

SM - Silty Sands, Sand-silt mixture SC - Clayey Sands, Sand-clay mixture ML - Inorganic Silts CL - Inorganic Clays of low to medium plasticity OL - Organic Silts and organic silty clays of low plasticity MH - Inorganic silts, elastic silts CL - Inorganic silts, elastic silts

- CH ~ Inorganic Clays of high plasticity, fat clays
- OH Organic clays of high plasticity, organic silts

Others

- MC Moisture Content
- LL Liquid Limit
- PL Plastic Limit
- PI Plastic Index

Soil Strength

- CI Cone Index
- RI Remolding Index
- RCI Rating Cone Index
- DBP Drawbar Pull
 - τ Shear Stress
 - δ Normal Stress
- C_i Initial Cohesion
- C_r Residual Cohesion
- ϕ_i Initial Angle of Internal Friction
- \emptyset_r Residual Angle of Internal Friction

G-1

Surface Geometry

- BF Bottomland Flat
- LT Lower Terrace
- UT Upper Terrace
- IS Lower Slope
- MS Middle Slope
- US Upper Slope
- UF Upland Flat
- Sd Standard Deviation of Sample
- x Mean
- N Number of Data Points
- L Length
- W Width
- H Height
- AA Approach Angle

Vegetation

- NND Nearest Neighbor Distance between trees
- DBH Diameter of a tree at Breast Height, 4.5 ft.
- SD Stem Density
- A Unit Area

Structural Cell

- SC Stem Spacing
- Dc Diameter of expanded cell
- Wt Total Work to override single stem
- d_S Stem Diameter

APPENDIX H. REFERENCES

- 1. Bennett, H. H., <u>Soil Reconnaisance of the Panama Canal Zone and Contiguous</u> <u>Territory</u>; US Department of Agriculture, Test Bulletin No. 94, January 1929.
- 2. Blades, Jr., Roy E., Environmental Mapping of Tropic Test Sites, Report I; <u>A Comparison of Three Methods for Predicting Vegetation Density in</u> <u>the Humid Tropics; TECOM Project No. 9 CO-009-000-013, AD 903802L</u>, <u>USATTC Report 7203001</u>, March 1972.
- 3. Broughton, J. D., E. E. Addor, <u>Mobility Environmental Research Study; A</u> <u>Quantitative Method for Describing Terrain for Ground Mobility, Vol.</u> <u>IV, Vegetation; USAWES, Vicksburg, MS, TR 3-720, March 1968.</u>
- 4. Davis, B. R., et al., <u>Methodology Investigation Final Report, A Computer-</u> ized Site Selection Methodology for Tropic Materiel Testing, Report <u>III: Gamboa A-1 Test Area</u>; TECOM Project No. 7-CO-RD5-TT1-015, USATTC Report No. 7605002, January 1979.

- 5. <u>Environmental Data Collection Methods</u>, Vol. IV, Instruction Manual I, <u>Vegetation Structure</u>; USAWES, Vicksburg, MS, Instruction Report No. 10, May 1968.
- 6. Grabau, W. E. and B. O. Benn, <u>Special Site Description Panama Canal Zone</u>; USAEWES, Vicksburg, MS, MP No. 4-909, July 1967.
- 7. Plan of Tests, Tropical Soil Studies, USAWES, Vicksburg, MS, October 1961.
- 8. Shamburger, J. H. and W. E. Grabau, <u>Mobility Environmental Research Study</u>, <u>A Quantitative Method for Describing Terrain for Ground Mobility</u>, <u>Vol. I, Summary</u>; USAWES, Vicksburg, MS, TR No. 3-726, May 1968.
- 9. TECOM Test Operations Procedures 1-1-052; Tropical Vegetation Measurements, AMSTE-RP-702-100, AD 770910, (USATIC), April 1973.
- 10. West, H. W., <u>Vegetation Structural Characterisitics at Selected Sites in</u> <u>the Panama Canal Zone and Thailand</u>; USAWES, Vicksburg, MS TRM-69-1, January 1969.
- 11. Woodring, W. P., <u>Geology and Paleontology of Canal Zone and Adjoining</u> <u>Parts of Panama, Geological Survey Professional Paper 306-A</u>; US Government Printing Office, Washington, 1957.

APPENDIX I. DISTRIBUTION LIST

7:

ي مندر المراجع ال

TECOM Project No. 7-CO-RD9-TT1-004 Characterization of Test Environment

Addressee	Report
Commander	
US Army Test and Evaluation Command	
ATTN: DRSTE-AD-M	3
Aberdeen Proving Ground, MD 21005	
Administrator	
Defense Documentation Center	
ATIN: DDC-T	2
Cameron Station,	
Alexandria, VA 22314	
Commander	
US Army Materiel Development and	
Readiness Command	
ATTN: DRCDMD-ST	1
DRCDE	3
Washington, DC 22333	
HQDA (DAMA-PPM)	1
Washington, DC 20310	
Commander	
US Army Missile Command	1
Redstone Arsenal, AL 35809	
Commander	
US Army Yuma Proving Ground	
ATTN: STEYP-MMI	1
Yuma, AZ 85364	
Commander	
US Army Forces Command	1
Fort McPherson, GA 30330	
Commander	
US Army Armament Materiel Readiness	
Command Rock Island, IL 61202	1

I-1

Addressee	Final Report
President	
US Army Armor and Engineer Board	
ATTN: Tech Director	1
Fort Knox, KY 40121	_
TRADOC Liaison Officer	
HQ, TECOM	1
Aberdeen Proving Ground, MD 21005	
Commander	
JS Army Aberdeen Proving Ground	
ATTN: STEAP-MID	1
Aberdeen Proving Ground, MD 21005	
Director	3
JS Army Materiel Systems Analysis	
Activity	
Aberdeen Proving Ground, MD 21005	
Commander	
JS Army Tank-Automotive Research	
and Development Command	
ATTN: DRCPM-FU DRCPM-MCV	1
DRCPM-GCM	1
Warren, MI 48090	1
Director	
JS Army Waterways Experiment Station	
ATTN: Tech Library	1
Vicksburg, MS 38180	-
Commander	1
US Army White Sands Missile Range	-
White Sands, NM 88002	
Commander	
JS Army Dugway Proving Ground	
ATTN: STEDP-SC	1
Dugway, UT 84022	
Commander	
JS Army Cold Regions Test Center	
ATIN: STECR-PL	1
NDC Contello 00722	

Addressee	Final Report
Commander	
US Army Engineer Topographic Laboratories	
ATTN: ETL-GSL	1
Fort Belvoir, VA 22060	
Commander	
193d Infantry Brigade (Panama)	
ATTN: AFZU-FE	2
AFZU-DPT	1
APO Miami 34004	
Commander	
US Army Tropic Test Center	
ATTN: STETC-TD-AB	6
STETC-TD-TB	20
STETC-TD (Tech Info)	30
STEIC-TD (Tech Ed)	2
STETC-MD-WPB	2
APO Miami 34004	

and a further by the line

) /• (

町の川

I-3

DATE ILME