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Summary of Technical Effort

This report summarizes the theoretical development of a new
approach to calculating molecular ground and excited adiabatic potential
energy surfaces and their nonadiabatic coupling matrix elements. The
fundamentals of the method will be briefly described herein; the details can
be found in the published papers resulting from our investigations, which are
included as Appendices to this report.

Methods based on single-reference many-body perturbation theory
(MBPT) have been shown to give highly accurate results for a large number of
molecules. These methods have become widely used, and the diagrammatic
theory has provided an understanding of correlation effects that has led to
the now almost universal practice of adding approximately correcting terms to
energies calculated by configuration interaction wmethods. However, the
single model-function methods are mnot appropriate for many systems of
chemical interest or for excited states in general. These methods cannot
describe the breaking of multiple bonds, and they can obtain only a single
state of a given symmetry. Since most geometrical arrangements of a
polyatomic system do not have any symmetry, this means that no excited states
may be calculated. Furthermore, the proper description of ground states of
open shell species often requires more than a single model function. A
method with the capability of treating open shell systems and excited states
is a necessary tool for the theoretical investigation of many chemical
phenomena. In turn, the basic and detailed understanding of these processes
is critical to many areas of defense technology.

The development of multidimensional many-body perturbation theory
retains the beneficial characteristics of MBPT and extends the potential
applicability to all of the cases described above. This generalization
ultimately requires a prescription for the energy denominators in the

diagrammatic expansion. In place of the single zeroth-order model-state




energy required in MBPT, a set of differing energies, each appropriate for an
excited state of interest, must be incorporated. There are several
alternatives for this. We have chosen to base our method on a canonical van
Vleck formalism. This leads to equal treatment of the states of interest,
which are obtained from a single diagonalization of an inherently symmetric
effective Hamiltonian matrix. This formalism is presented in detail and
compared with other approaches in Appendix A. Our efforts in this phase of
development included the adoption of a concise notation which simplified the

description of our formalism, as well as that of others. This was important

because so0 many different notations and diagrams have been employed by
various authors that the similarities and relationships among their
approaches have often been obscured.

We chose to implement the van Vleck formalism analogously to the
MBPT method; i.e., in terms of diagrams drawn with respect to an SCF (self-
consistent field) determinant. These diagrams provide a compact visual
representation and classification of the terms in the arithmetic expressions
for each order of the effective Hamiltonian matrix elements. Diagrammatic

rule can be set forth which make them entirely sufficient for comstruction of

these matrix elements to any order for an arbitrary set of model space
determinants. Appendix B demonstrates the diagrammatic implementation of the
method through second order for a model space of non-, singly~, and doubly-
excited model states.

Traditionally, quantum chemists and chemical physicists could be

divided into two mutually exclusive groups: electronic structure specialists
and dynamicists. So far, the interaction between these two factions has been
limited to the former providing potential energy surfaces (PES), usually for
ground states, to the latter. However, many chemical phenomena involve more
than one electronic state. Some of the most interesting processes involve -I

the avoided crossing of states of the same symmetry. The accurate simulation
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of such phenomena requires not only the PES but also the nonadiabatic
coupling matrix elements. These quantities are not ordinarily calculated;
even when they are, a problem arises from their coordinate system dependence
because the structure calculations use a different system from the dynamical
one. The last phase of our method development was devoted to narrowing this
in ormation gap.

Appendix C gives the details of a novel scheme: the diagrammatic
perturbative determination of nonadiabatic coupling matrix elements. This
approach prescribes the couplings directly in terms of expressions (or
diagrams) whose components consist of (1) components of the effective
Hamiltonian matrix elements (i.e., two-electron integrals and orbital energy
differences) and (2) a set of ome-electron-type integrals. With this method,
the wavefunction is8 never explicitly calculated or differentiated. The
perturbative approach prescribes the direct construction of increasingly
accurate values of the couplings. Furthermore, the same set of diagrams can
be used to obtain all of the information required to transform between
coordinate systems by simply substituting different one-electron integrals.
Thus, the theoretical foundation necessary for the accurate study of
dynamical systems wusing ab initio electronic states and couplings has been
laid.

In addition to the subjects of the published works in the
Appendices, considerable effort has been devoted to detailed examination of
the cancellation of unlinked diagrams and the form of the renormalization
terms in third and higher orders. We have also begun implementation of the
method into a computer code. Although we do not have final results yet, the
results of similar effective Hamiltonian methods indicate their potential
successful application to systems of technological interest. To our
knowledge, the diagrammatic perturbative calculation of nonadiabatic

couplings is unprecedented.
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Quasidegenerate perturbation theories. A canonical van
Vieck formalism and its relationship to other approaches

Isaiah Shavitt
Battelle Columbus Laboratories, Columbus, Ohio 43201

and Department of Chemistry, Ohio State University, Columbus. Ohio 43210

Lynn T. Redmon

Battelle Columbus Laboratories, Columbus, Ohio 43201
(Received 11 June 1980; accepted 22 August 1980)

Three forms of quasidegenerate perturbation thicory are discussed and compared in terms of a common
general formulation based on a similarity transformation which decouples the model space and
complementary space components of the Hamiltonian. The discussion is limited to formal, rather than many-
body (diagrammatic), aspects. Particular attention is focused on a “canonical” form of van Vleck
perturbation theory, for which new and highly compact formulas are obtained. Detailed comparisons are
made with the Kirtman-Certain-Hirschfelder form of the van Vieck approach and with the approach based
on intermediate normalization which has been used as the basis for most of the diagrammatic formulations of

quasidegenerate perturbation theory.

I. INTRODUCTION

Quasidegenerate perturbation theory (QDPT) has been
receiving increasing attention in recent years (for sev-
eral excellent discussions and reviews see Refs. 1-10).
1t provides the perturbation theory analog of “muitiref-
erence” configuration interaction (CI) techniques, !!* 12
which have proved effective in the treatment of potential
surfaces and excited states of molecular systems.
“One-dimensional” perturbation theory (based on a sin-
gle-configuration zero-order function) has been quite
successful in applications to many near-equilibrium
ground state systems and in some other cases in which
a single configuracion provides a reasonably adequate
starting point (for some examples see Refs. 13-21).
Practically all such applications have used the many-
body form of Rayleigh~-Schrédinger perturbation theory

(RSPT) (for reviews see, for example, Refs. 22 and

23). This approach has significant advantages over CI
techniques because of its use of the linked cluster ex-
pansion® ® and its “extensivity” property, % 18:1828:2
i.e., its correct scaling with the size of the system.
While coupled cluster techniques® appear capable of
extending the range of usefulness of single-configura-
tion based treatments considerably, >"% including some
nearly degenerate or even fully degenerate cases, 3*3!

it still appears desirable to have practical computa-
tional techniques based on a multidimensional “model
space” as the zero-order approximation. (An alternative
strategy is to use unrestricted Hartree~Fock zero-order
functions, '*° but this appears to have some serious dis-
advantages.?’) In fact, QDPT may be expected to pro-
vide faster convergence and more general applicability
than one-dimensional perturbation expansions, and
should become an increasingly important tnol for the
calculation of highly correlated electronic wave func-
tions and energies of atoms and molecules. (A coupled
cluster analog of QDPT has also been formulated. %)

In the present contribution we are concerned primari-
ly with a particular form of van Vleck perturbation the-
ory*%3-4% (vvPT) which, in the spirit of Klein's treat-
ment® (see also Jérgensen*® and Brandow"), we shall

J. Chem. Phys. 73(11), 1 Dec. 1980
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call “canonical” VVPT. (Klein, as well as Primas, 3%

treated the case of exactly degenerate, rather than
quasidegenerate, zero-order subspaces.) Combining
some elements from the treatments of Primas®*® 3% and
of Jdrgensen, ‘! we shall present a simple derivation
of the canonical VVPT formalism, and obtain highly
compact expressions for the decoupling operator and
the resulting effective Hamiltonian, We shall compare
this formalism with another version of VVPT discussed
by Kirtman*®# and Certain and Hirschfelder, **¢ and
shall present simple derivations of explicit equations
connecting canonical VVPT with the more common
QDPT formulation based on intermediate normaliza-
tion and a non-Hermitian model Hamiltonian. "% The
different quasidegenerate approaches will be discussed
in terms of a common general formulation {see also
Klein® and Brandow?) which clearly shows their relation-
ships. Only the formal aspects of the QDPT expansions
will be discussed here. We expect to discuss their
many -body realization in terms of diagrammatic ex-
pansions in future contributions.

The notation to be used and the common framewaork
for the treatments of the different formalisms are pre-
sented in Sec. II. Canonical VVPT is derived in Sec.
III. The Kirtman~Certain-Hirschfelder (KCH) form of
VVPT and the intermediate normalization form of QDPT
are discussed in Secs. [V and V, respectively. The re-
sults are discussed in Sec. VI.

11, COMMON FRAMEWORK FOR QUASIDEGENERATE
PERTURBATION FORMALISMS

A. Notation

The Hamiltonian H is partitioned into a zero-order
part and a perturbation

H=Hy+V . (1)

The eigenfunctions of H, will be written in the form !f},
with eigenvalues ¢,, as

Hoi.[)=(,“) [ (2)

@ 1980 American Institute of Physics 5711
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and the set of these eigensolutions will be partitioned
into two subsets

{t,ey . b=, 8, ... Ui, ...} (3)

defining the “model space” {a,3,...} and its orthogonal

compiement. The projection operator into the model
space is
p=y laXa| , (4)
a

and its orthogonal complement is
Q=1—P=Zi:fz’)(ii . (5)
Any operator A can be partitioned'” into a block diag-
onal part A, and a block off-diagonal part Ay
A=Ap+Ax , (6)
Ap=PAP+QAQ , Ay =PAQ +QAP . (7)
For a product of two operators we have
(AB)p=ApBp+Ax By , (AB)x=ApBx+AyB,. (8)
For the Hamiltonian we note that, since H, is diagonal,
Hy=Hy+Vp {9)
Hy=Vyg . (10

8. Quasidegenerate perturbation theory

The essential feature of the various QDPT formalisms
is a similarity transformation which block diagonalizes
the Hamiltonian

X=ULHU , 1
with
K=Hp=Ho+W, ¥Hx=0. (12)

This is not always the form in which the formalisms are
presented (particulariy for the intermediately normal-
ized form!"'%, but it provides a common and simple
starting point for straightforward derivation of the equa-
tions for all of them. The decoupling operator U is
unitary in the van Vieck formalisms and produces a
Hermitian effective (or “model”) Hamiltonian P¥ICP. It
is nonunitary in the intermediate normalization approach
(where it is referred to as the “wave operator”) and
leads to a non-Hermitian 5C (which can easily be trans-
formed to a Hermitian form, if desired!). The operator
W defined in Eq. (12) is referred to as the “level shift”
operator, particularly in the exactly degenerate case.

Obviously, JC has the same eigenvalues as H, so that
diagonalization of the model Hamiltonian PWCP provides
a subset of the eigenvalues of H. The perturbed model
functions are

Ulay=)_ [¢tlufa) , 13)
¢
and the overlap matrix between them is PU'UP (which is
a unit matrix in the van Vleck case). The correspond-
ing eigenfunctions J, of H are obtained by transforming
the perturbed model functions (13) with the matrix C of
eigenvectors (right eigenvectors in the non-Hermitian
case) of PWP:

J. Chem, Phys,, Vol. 73, No. 11, 1 December 1980
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Ya=Q Ul Cra=Ulad) , (14)
3
where
{@)=2_18)Coa (15)
8

are the “bonne functions” referred to by Bloch*® and by
Jérgensen and Pedersen. ‘**!

Rewriting Eq. (11) in the form

U=HU , (16}

and splitting it into diagonal and off-diagonal blocks us-
ing Eqs. (8)-(10), we find that the condition (12) leads
to the following implicit equations:

HyUg==Vy Up+UpC , (17)
or, using the definition of W in Eq. (12},

(Hoy Ugl==Vy Up=Vp Uy =Ty W, (18)
and

W={H Upl+ Vy Ug +VpUp ~(Up = 1DW . (19)
Expanding the operators in orders of the perturbation

U=‘:6 v, x:)__;sc‘"’mo-f:w‘"’. (20)
with ' | "

U9 =1 , JC‘°’=H0 , e - n>0), (21)

explicit recursive equations are obtained for »>0:
n=1

[Ho’ U‘(Yn)] ==Vy U,‘,"'” —V U, Z v woem

msl

(22)
and
. n=1
W = [Hy, U]+ Ve UFV -V, U8V - Z U e
msl
(23)

However, the decoupling operator U is not fully deter-
mined by the condition (12} or, equivalently, by Egs.
{(22) and (23) (note that no equation for Uy’ has been ob~
tained). In fact, multiplication of U’ by any block diag-
onal operator does not destroy the decoupling of .
Different supplementary conditions on U (i.e., specifi~
cation of Up) then lead to the different QDPT formalisms
discussed in the next three sections.

Different choices of U produce different model Ham-
iltonians, and, while they give the same infinite order
eigenvalues and eigenfunctions {:,, Eq. (14)}, their
truncated (finite-order) results are not generaily equiv-
alent. Thus, the choice of subsidiary conditions to com-
plete the specification of U may affect the rate of con-
vergence.

It is well known, of course, that once U, has been
specified, Eq. (22} does provide an explicit equation

for U through the resolvent operator
w9 L)l
@ Qea'HO—;ea'ti ’ (24)
since
Ugla)==R¥ (Hy, Ug ]l @) . (25)

"l~ !

]

1




1. CANONICAL VAN VLECK PERTURBATION
THEORY

The unitarity of the decoupling operator U in VVPT can

be ensured by expressing it in exponential form®*:4¢
U=e® , (26)
with ¢ an anti-Hermitian operator
G==G'. (27

The canonical form of VVPT (compare Klein,® Jérgen-
sen, % and Brandow?!) is obtained by completing the spe-
cification of U through

G=Gx, Go=0- (28)

The decoupling operator and the transformed Hamilto-
nian obtained from this coundition will be denoted by U/,
and ¥ =Fy+ W, respectively.

In order to obtain a compact formalism we shall use a
superoperator notation, *** in which with any operator

A we associate a superoperator A defined by5°
AX={X,A]=XA -AX (29)

{where X is any operator). Positive powers of A pro-
duce repeated commutators

A% =[[x,A) A], (30)
etc.., and the zero power is the identity superoperator
A%x=x . (31)

As noted by Primas, *** this allows a compact repre-

sentation of the Baker-Campbell-Hausdorff expansion
eCH % =H+[H,Gl+ 5t [[H,6], G+

:Z n—ll"(.;"H=€6H .

nsd

(32)

It is convenient to partition this expansion into even and
odd functions of G:

% = coshG + sinhG . (33)
Then, if G satisfies Eq. (28), we find that

(3} = (e® H)p = coshG Hp + sinhG Hy , (34)

(3 )g = (% H)y = coshC Hy + sinhG Hj, . (35)
The decoupling condition {12) can now be written in the
form

0= (3c)g = coshG Hy + i‘-"é‘-‘-’ (H,,G], (36)

(note that the superoperat : function G*'sinhG involves
no inverse powers of ¢ in its power series expansion).
We thus obtain a commutation relation for G:

[Hp, G|==G cothG &y , (37
or, noting Eqs. (9) and (10).
[Hoy Gl= = [Vp, G| =G cothG vy
== [Vp,Gl= 2 eGPV, (38)
nad)

where the power series coefficients c, are related to the

J. Chem. Phys., Vol. 73, No. 11, 1 December 1980
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Bernoulli numbers B,, (see, for example, Abramowitz
and Stegun®!):

o
Cp= (.Zn—)! By . (39)
(Other notations for the Bernoulli numbers are also in
use; see, for example, Jolley.%®) The first few coeffi-
cients in the series are

€g=1, L‘x‘-‘%y Cz"'"ﬁ', C;=§i'!. ’34:'1?‘8""' .
(40)

Equation (38) can be expanded order by order:
[Hoy G V)= ~Vy ,
[Ho, G®]= ~{vp, 6],
(Ho, G =~ V5, 6}~ §([Vx, 6], 6V},
{Hy, 6] = - [v5, 6]~ 3{[[Vy, G}, G*)
+[ve, %LV},
(Ho, 6= = [V, 6]~ 3{{[Vx, GV}, 6]
+[[Vx, 6¥L 6]+ [[vy, 6], 6 V]
+ & [l[ve, 61,6, 6V, 6V, 41)

etc., and converted into explicit equations for the G
using the resolvent formalism [Eqs. (24) and (25)).
(Note that G’ =0.)

The transformed Hamiltonian 3 = (3(;); can also be
obtained compactly in terms of the hyperbolic functions
of the superoperator

3C. = coshG Hy, +sinhG Hy

coshG - 1
[

= Hp = (coshG ~ 1) cothG Hy + sinhG Hy

=Hp+ (Hp, G|+ sinhG Hy

=H, - cschG(cosh?®G - coshG - sinh®G) Hy
=Hp - csehG(1 - coshG) Hy

= Hp + tanh( G) Hy , (42)
or
W = Vp + tanh(} G) Vy
=Vpe 3 LG Yy (43)
n=0

where the power series coefficients ¢, are also related
to the Bernouili numbers

2k 1)

= T Gnaan Cee (44
The first few coefficients in this series are
bo=1, l==3, ti=f, ti=-3k =38 . (45)

The order-by-order computation of . {and of &)
easily follows:

wd v,
W& =4 [V, 6, -
W& =1 vy, G ,'1
WO 4 (1, 69 = &[T, GVLGML 6™ ¢
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W <4 Ve, G- &{[[[Ve, GV, 6V, G

+[[[ve, GV G¥], 6V [+ [[[Ve, 6], 6L 6],
(46)
etc. We observe that W depends on G'™, m=1,2,...,
n - 1. The vperator U., and thus the perturbed model
functions (13), cz* be obtained from Eq. (26) to the same
order as G.

It is clear that the canonical VVPT forn:alism is en-
tirely expressible within the domain of a Lie algebra,
and should thus lead to fully linked diagrammatic expan-
sions which satisfy the extensivity requirement order by
order, 283839

IV. THE KIRTMAN-CERTAIN-HIRSCHFELDER FORM
OF VVPT

The canonical form of VVPT was derived from the
choice Gp=0. In some earlier work on the van Vleck
approach, *® and more recently in the work of Kirtman*>%
and of Certain and Hirschielder*>*® (KCH), a different
choice was made to complete the specification of the de-
coupling operator. It does not appear possible to spe-
cify this choice in terms of a single order-independent
equation, so it is stated as a condition connecting dif-
ferent orders of U.

The unitarity condition of U through any order n>0
can be stated in the form

Z Uimt e _g (n>0) . (47

ms0

The sum in Eq. (47) can be split into two parts

Zn-; U(m)' U(n-ﬂl) = Ii] (1 _% szm) U(m)' U(n-n)

n/21
+ (1 _% 62,".") U(n—m)Y U(n) , (48)
ﬁm-

where [«] denotes the integral part of x. The KCH ortho-
normalization condition for the perturbed model func-
tions (13) can be obtained by requiring that the diagonal
blocks vanish for each of the two sums on the rhs of

Eq. (48) separately. Denoting the resulting decoupling
operator and transformed Hamiltonian by Uy and 3¢y

= Hy+ Wy, respectively, we get'®

(n/21
(T =~ ﬁ (1~3 65, (UFTUE™Yy (n>0) . (49)

Together with the uecoupling condition (12), or with Egs.
(22) and (23), this completely specifies Uy. It is pos-
sible to write U/, in exponential form

Up=e® | (50)

with X = <K', but there appears to be no advantage for
this form in the KCH treatment. 3-*¢

Using Eqs. (16) and (20), we can derive the recursion
relation’*

mel

Uty Zpmelt il | Z FoW) g7 meel)t grin)
=0

”n

- z U(mﬂ)? U‘"'.)JC(” . (51)
&s0

J. Chem. Phys., Val, 73, No, 11,1 D'ecember_,weo

By repeated use of this relation, together with Eq.
(49), it is possible to convert Eq. (23) into a form in
which W and W ™*!? are expressed in terms of U™’,
m=1,2,...,n. The resulting equations can be written
in the form®*

W}&) =_;_ (UK =131 VU:') - U;n)' VU’((nd))D

o, Idd) 1 L (mhgprr=met)t prinen)
- (1 <3600 =% 8aa, ) (WU U™
ot =
AUy, Wt (52)
WY = (U VU
n m=1)/2})
- z (1 _% ﬁu.n-l) {W,‘{”(U,‘,’"""" )’ U(n-h))o
mel %20
. (U,(;‘.." U’((n-wnhll)o ‘V,(('”} , (53)

and represent an extension of Wigner’s (2n + 1) rule to
quasidegenerate perturbation theory. This should result
in computational economies, and is the principal advan-
tage of the KCH formalism.**~*® [t does not appear pos-
sible to obtain a similar result for the other QDPT for-
malisms.

The unitary transformation which connects Uy and U
can best be expressed in terms of an operator )M, de~
fined by ‘

Ug=eX=e®e=Uce" . (54)

This operator is block diagonal (My =0) and anti-Her-
mitian, and tedious order-by~-order comparison of the
equations for Uy and U; shows that

MO =P =u® =0,
.w(:l) =% [G(”, G(Z)] ,
‘W“) __.% [G(“, G(!i)) R
% [G(l), G(d)]+}z_ [G(z),c(:n]
*_,é_ [G(Z)’ (G(”)J] -%G“’[G“’, G(Z)]G(l) R (55)

etc. No simple, order-independent equation for M could
be found.

“1(5) =

A recent diagrammatic treatment** of the KCH formal~
ism finds that the expressions for W can be written in
fully linked form through fourth order, but that some
unlinked diagrams remain in fifth order. It appears
likely that this is related to the lack of an order-inde-
pendent equation for Uy (or, equivalently, for K or M),
since it can be shown that any formalism in which %' can
be expressed in the exponential form (32) satisfies the
separability theorem®® and is thus fully linked, order
by order, provided general order-independent equations
for the exponential operator exist.

V. INTERMEDIATELY NORMALIZED QDPT

The most widely used form of QDPT is based on in-
termediate normalization and leads to a non-Hermitian
mode! Hamiltonian.?™!® We shall denote the decoupling
operator (wave operator) and the transformed Hamilto-
nian obtained from the intermediate normalization con-
dition by U, and ¥ =Hy+ W;, respectively. This condi=
tion takes the simple form

) L

!
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(Up=t. (56) e =% HeC
It is convenient to define an operator®® (U U YRUTHU (U UV
X=(U)g=U;-1. (57 (UMl U e L) R

Substituting Eqs. (56) and (57) into Eq. (19) and then
Eq. (18) provides a very simple direct derivation of the
equations determining X and W;:

W, =Vp+ Ve X, (58)
[Hpy X]==Vy + XV X . (59)
We also find from Eq. (59) that X is anti-Hermitian:
X=-X'. (60)
Order -by-order equations for X and W, follow directly
from Egs. (58) and (59):
[Ho»-\’u)l ==Vy,

[HO)X(Z)]= = [me(“] ’
n-2
(Ho, X' = = [V, X9V )4 Z Xxim oy, xom-1

m=l

n-2
= _[VD,X(n-l)]+ Z X(nl) W;n-m) (n>2) , (81)

mal
W[(“=VD ,
W=V XY (n>1) . (62)

Comparing the recursion relations (61) for X with
those for G [Eq. (41)), we find that

G(l) =x(l), G(z) =x(2) . (63)
A more tedious comparison shows that
G =x1 3 xns
G“) -'-'-X“) + %{(Xu))zx(z) +X(l)x(2)x(l) +X(2)(Xd))z} .
(64)

In fact, these are special cases of the general relation-
ship between G and X, proved in the Appendix,

- 5 1 e
G =arctanhX —; el D G (65)
or
X =tanhG = 2_“6 £, G¥* (66)
e

[see 1s. (44) and (45)]. Since arctanhr =3 In[(1 +v)/
(1 ~x)], we have®’

1—;‘ 1’72
oG =
Uc=e (1-.\')

=(1-X)1=-Xx¥V/e

=Ly, (67)

As seen in Sec. II, U} L; is the overlap matrix for the
perturbed functions L, ). Thus, as noted by Brandow*
(see also des Cloizeaux, Klein,® Kvasni¢ka, ¢ and
Levy'®), the canonical van Vleck functions U, {a) may
be viewed as the result of the symmetric orthonormal-
ization®® of the t/, ) functions. The connection between
the corresponding model Hamiltonians is then

=(U! U,)”aW,(U;' ARG

=(1_x2)l/2x’(1_x2)-l/z , . (68)

) rS‘l

¥, = coshG X sechG . (69)

An equation for the direct determination of the Hermitian
model Hamiltonian 3¢, in terms of X instead of G is given
in the Appendix.

V1. DISCUSSION

Three forms of quasidegenerate perturbation theory
have been examined here in terms of a common general
formulation based on a similarity transformation of the
Hamiltonian. This approach, together with the sym-
metric treatment of the P and @ subspaces represented
by the D-X (block-diagonal/off-diagonal) partitioning of
operators, has enabled simple and direct derivations of
the relevant equations and has clearly brought out the
relationships between the different QDPT forms. This
derivation bypasses the comnplications of the usual de-
velopment of the intermediate normalization formalism
which often involves iterative removal of energy depen-
dence from the denominators and treatment of zero-
order energy differences as perturbations (see, for ex-
ample, Kvasnicka,? but see also his more direct “al-
gebraic theory” in Sec. IIIC). The use of the D-X par-
titioning also allows us to avoid the extensive use of pro-
jection operators, which tends to obscure the formalism
(see, for example, Klein®).

Except in the Kirtman-Certain-Hirschfelder formal-
ism, ¥*~* in which order-independent formulation is not
possible, the equations for the wave (or decoupling) op-
erator and for the transformed Hamiltonian have been
obtained initially in order-independent (implicit) form,
from which recursive order-by-order equations for ail
orders easily follow. The use of a superoperator nota-
tion and hyperbolic functions of the superoperator has
allowed a very compact and simple derivation of the
general equations for the canonical VVPT formalisr:.

The infinite-order model Hamiltonians of the different
formalisms are related by similarity transformations.
but when these model Hamiltonians are truncated at a
finite order, the similarity transformation relationships
are no longer exact. Thus, they would generally pro-
duce different results order by order, with possibly dif-
ferent convergence characteristics. The selection of
the method to be used would thus be governed by con-
vergence behavior as well as by computational consid-
erations.* In this regard the KCH formalism has the
advantage of the (2» - 1) rule, 3 while the other forms
benefit from having fully linked diagrammatic expan-
sions in all orders. The intermediate normalization
form (with or without Hermitization) appears to be the
most convenient for applications involving infinite order
partial summations.*

Equation (A5) of the Appendix provides a hybrid ap-

J. Chem. Phys., Vol. 73, No. 11, 1 December 1980

-

- ' 1




- - I

b ——— g o e

L dedd
s,

5716 I. Shavitt and L. T. Redmon: Quasidegenerate perturbation theories 9

proach for QDPT calculations, using the intermediate where

normalization formalism for the determination of the n

wave operator U; =1+ X, but obtaining the Hermitian qn = 2"‘( ) (A6)
n

model Hailtonian 3¢ =Hy+ W,.. This type of approach
has been advocated by Brandow.!
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APPENDIX

In this appendix we derive Eq. (66), connecting the
canonical van Vleck and the intermediately normalized
forms of the wave operator. We also present an equa-
tion expressing i - Hp (or, equivalently, W, -V,) in
terms of V, and X directly.

From Eqgs. (11) and (26) we have
H=e%3xce™¢
=(coshG + sinhG) ¥ (coshG - sinhG) . (A1)

Taking the block-diagonal and block off~diagonal parts
of this equation separately, we find

Hp = coshG i¢ coshG - sinhG 3¢ sinhG , (A2)
Vyx = = coshG 3 sinhG + sinhG ¥ coshG . (A3)
Therefore,

[H,, tanhG) = (coshG 3. coshG - sinhG X sinhG) tanhG
- tanhG(coshG ¥, coshG — sinhG i, sinhG)
=c0shG X sinhG ~ sinhG ¥ coshG
- tanhG(coshG 3. sinhG - sinhG ¥ coshG) tanhG
= = Vy - tanhG Vy tanhG . (A4)

Thus, tanhG satisfies the same commutation equation as
X [Eq. (59)]. Since also (tanhG), =0 [this follows from
Eq. (28) and the fact that tanhG is an odd function of G},
tanhG must be identical to the X operator.

The equation referred to above for W, -V, is obtained
by a lengthy and tedious sequence of algebraic manipula-
tions, beginning with Eq. (68) and using Eqs. (58) and
(59) and the properties of the binomial expansions of
(1-x)*!/2 The result can be expressed in any of the
forms

1< n
W.=V,+1 X[+ =~ [PV NLA D —
Ve=Vp+3[Vy. X 2 ZE (rn+ 200} (n + 2m1 + 1} TmTnom

ms0 ns}
X {‘YZM[VX , ‘\rhol ] ‘Ya' N ‘YhOI [VX s ‘Ybl-l l ‘\'h‘l‘l‘

=Vp+3([Vx, X]

—-_— 2m
= 2mns2mal) Iminem X

X[V X - XV, X*| X"
=Vp+ 5[V, X|

1 =% n-m 2m r n
‘E,,Z;;, TG m X VX - XV ) g X7
nem>0) (A5)
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is the coefficient of " in the binomial power series for
(1 -x)"V2, The first two terms in these expressions
represent the Hermitian average

(Wy=2 (W + W) =Vp+5 [V, X] . (A7)

The additional terms contribute to W, beginning in fourth
order. The third order form of this model Hamiltonian
has been used by Freed and co-workers® in their work
on the effective valence shell Hamiltonian.
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Multidimensional many-body theory: Diagrammatic
implementation of a canonical van Vieck formalism

Lynn T. Redmon and Rodney J. Bartlett”

Bautelle Columbus Laboratories, Columbus. Ohio 43201
Received 25 August 1981; accepted 4 November 1981)

A size-extensive multidimensional many-body theory is developed from an order-expanded van Vieck

transformation. This provides an effective Hamiltonian in a modei space consisting of a set of determinants
whose zeroth-order energies may be nondegenerate. Expressions for the effective Hamiltonian in terms of the
perturbatiun and a set of resolvents generalized from the Rayleigh-Schrodinger form are given. Perturbative
evaluation of the resultant formulas via diagrammatic expansion is illustrated and discussed. The diagrams
required through second order for a model space consisting of a Hartree-Fock solution plus selected singly
and doubly excited determinants are presented, and their relation to those employed in the method of Hose

and Kaidor is discussed.

1. INTRODUCTION

Two problems of current theoretical interest are (1)
the calculation of highly correlated excited state ener-
gies and potential surfaces for molecules and (2) the
description of ground states of multiply-bonded or
open-shell species. The first ab initio method used
for these purposes was that of configuration interac-
tion (CI).! Original applications involved only a few
selected configurations, but today they routinely include
all single and double excitations relative to a given
configuration or set of reference configurations.

In recent years, the CI approach has been joined by
many-body perturbation theories (MBPT)?*~® [based on
Rayleigh-Schrdinger perturbation theory (RSPT), dia-
grammatic expansions, and the linked cluster theorem
of Goldstone?], including infinite-order coupled-cluster
techniques. > MBPT calculations based on a single
determinant have become routine for ground states of
many systems, >!! and their usefulness for a wide vari-
ety of molecular problems has been demonstrated, '>~1%

In MBPT, it has proved convenient to adopt a dia-
grammatic formulation since, just as it is not feasible
to solve the full CI problem in a basis of sufficient size
to quantitatively study interesting molecular systems.
the RSPT energy expansion must be truncated. The
linked diagram expansion provides a useful subdivision
of the terms to be evaluated or neglected. Even so,
complete evaluation of fourth order involves terms from
triple and quadruple excitations (relative to the Har-
tree~Fock ground state). Various fourth-order ap-
proximations (or particularly the analogous CI treat-
ments) are stiil formidable problems. On the other
hand, stopping with third-order RSPT does not include
any effects of single excitations or higher-than-double
excitations., Furthermore, any less-than-full CI treat-
ment or nondiagrammatic RSPT approximation, which
is not complete to a zi1ven order, will suffer from size
inextensivitv (also called size inconsistency or un-
linked cluster) errors; i.e., the energy is not propor-
tional to the number of noninteracting subsystems, %4417

¥ present address: Quantum Theory Project, Department of
Chemistry, University of Florida, Gainesville, Florida 32611,
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The connection of RSPT to diagrammatic perturbation
theory and the linked cluster theorem of Goldstone
provides a solution to these problems. Each diagram
possesses the important property of size extensivity.
This means that approximations consisting of evaluation
of subsets of the full set of diagrams for a given order
will also have this property as long as complete dia-
grams are included, Furthermore, diagrammatic
studies have enabled the observation that often the ma-
jor function (in fourth order) of including the CI quadru-
ple excitations is merely to cancel the spurious (un-
linked) parts of the effect of double excitations in CI,
which are not included in the linked cluster expan-
sion. 1%17 Most importantly, diagrammatic perturbation
theory has led to formulations for the further effects
of quadruple excitations which are feasible to calcu-
late, 1011

Although one-dimensional MBPT has been shown to
provide highly accurate binding and activation ener-
gies, 1% notential surfaces, =% and spectroscopic
parameters, such as the quartic force field of the water
molecule, '3 it is not universally applicable, particularly
when exact or near degeneracies are encountered in a
molecular problem, For example, even with unre-
stricted Hartree-Fock reference functions, it is usual-
ly insufficient for potential surfaces involving the dis-
sociation of multiple bonds, !! and it is not ordinarily
applicable to excited states other than the lowest state
of each symmetry. The study of these problems neces-
sitates a multidimensional treatment.

Several multidimensional perturbative methods have
been proposed. The completely degenerate case was
considered by Bloch and Horowitz, *® and later by
Morita, 2" The first thorough quasidegenerate linked-
diagram approach was formulated by Brandow. %
Lindgren presented a direct and particularly trans-
parent development of the theory, which he then ex-
tended to a multidimensional generalization of the
infinite-order coupled-cluster approach.?® More recent-
ly, Hose and Kaldor (HK),*® Mukherijee et al..* and
others®?=% have contributed to this field of studv. The
resuits of Freed and co-workers, ’° Kaldor, ** Hegarty
and Robb, ’" and HK¥ indicate the promise of these
theories.

< 1982 American institute of Physics
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TABLE [. Characterization of methods,

Method a c d
Brandow® I N C S(C)
Freed' I S c N
Hose and Kaldor®® 1 N G T
Lindgren! D N C S(C)
Present D H G S(HF)

iDirect (D) or indirect (I) formalism for denominators.

®Hermitean (H), non-Hermitean (N), or symmetrized (S) effec~
tive Hamiltonian formalism.

‘General (G) or complete (C) model space implementation,

% ingle reference state (S), such as core state (C) or Hartree—
Fock determinant (HF); or transition (I) diagrammatic nota-
tion; or nondiagrammatic implementation (N),

*Reference 23.

fReference 35.

®Reference 30.

"Reference 38,

'Reference 29,

The relationships among these methods can be ex-
amined on both formalistic and implementational levels.
One formal difference involves whether the energy
denominators are obtained directly (D) or indirectly
(I, employing a degeneracy-breaking perturbation and
resumming). Also, formalisms can lead to Hermitean
(H) or non-Hermitean (N) effective Hamiltonians. Some
of the former are explicitly Hermitean, while others
are symmetrized by brute force (S). This aspect is
analogous to the choice of fully or intermediately nor-
malized perturbed model functions. It has been
shown?¥+4? that the canonical van Vleck functions can
be viewed as the symmetrically orthogonalized version
of the intermediately normalized functions.

On the implementational level, the basic difference
is whether a complete valence model space is required
(C) or the model space is allowed to be general (G,
or incomplete). A related matter for the specification
of diagrams is the choice of reference state(s) from
which particles and holes are defined. The options here
are the use of a single state (S), which could be a core
state with less than N orbitals or a given state (e.g.,
the Hartree-Fock determinant, as in the present meth-
od), or the use of several different states [as in the HK
transition (T) method]. Each of the various methods of -
fers a combination of these features, Table I sum-
marizes the characteristics of several approaches, in-
cluding the present one, using the notations introduced
above.

Brandow's*’ non-Hermitean wave operator approach
uses a core reference and a complete model space. It
expands the Brillouin-Wigner (BW) denominators. rela-
tive to a reference enercgy, and incorporates a de-
seneracy-breaking perturbation, from which a Rav-
leizh=8chrddinger size-extensive expansion is re-
sained via resummation techniques, Although it is
equivalent to Brandow's approach, Lindgren’s for-
malism®’ uses a generalization of the degenerate Block~
Horowitz®’ method to dispense with the energy depen-

dence of the effective Hamiltonian initially, and yield
a non-Hermitean order-by-order perturbation expan-
sion for the wave operator, without considering BW
denominators, In addition, when the cluster operator
¢® is put into normal-product form, a convenient de-
velopment of multidimensional coupled-ciuster theory
emerges.

The approach of Hose and Kaldor® differs in two
significant ways from the earlier methods. First, it
permits a general model space rather than a complete
space. This flexibility is important for reducing com-
putation time and for handling the problem of intruder
states. Also, it specifies each matrix element in per-
turbation theory with respect to its ket vector {e.g., the
ket vector of H,, is 13)), rather than to a single core
state. This approach introduces some cancellations that
are not present in the Brandow development. These
authors handle their energy denominators as Brandow
does, in a quasidegenerate fashion.

The approach proposed in this paper appears to have
advantages over these earlier techniques. We believe
it is necessary that multidimensional methods be size-
extensive, permit arbitrary choices of model func-
tions, and still retain clearly defined hole and particle
labels so that categories of higher excitations may be
easily identified. A method that offers these elements
and is manifestly Hermitean is the canonical van Vleck
transformation. *** Brandow has discussed the simi-
larity of this method to his apprach, % but he has not
considered the generality of the method for arbitrary
model spaces.

Another diagrammatic (noncanonical) van Vleck ap-
proach has been proposed by Kirtman.3 Thisformalism
(referred to as KCH in Ref. 40) has the advantage of a
2n+1 rule; i.e., The (2i~ 1)th-order effective Hamil-
tonian can be expressed in terms of the sth-order per-
turbed functions., His results are size-extensive through
fourth order, but not in higher orders. in which onlv a
“quasicancellation” of unlinked diagrams occurs unless
the model states are exactly degenerate,

In the following, we implement the canonical van Vieck
transformation formalism for nondegenerate MBPT in
an arbitrary multidimensional model space. We present
an example of the diagrammatic expansion throush sec-
ond order. The advantages of this method are: (1)The
method vields a Hermitean effective Hamiltonian and.
thus, a set orthogonal eigenvectors; (2) the resultant
energies will be specified bv an expansion of size-
extensive! diagrams; (3) inour diagrammuatic expansion.
we observe cancellations that do not occur 1n the other
methods; (4) because we construct all diagrams witn
reference to a Hartree~Fock determmant UHF for an
open-shell problem). higher-excitation contribations
are easilv identified. and useful approximatians inr
actual computations niav be more readilv appareat:

(5) a single evaluation and diaconalization of the of -

fective Hamiltonian will vield a set o1 neariv equiva-

lentlv treated states (bias resulting rrem the choice of

orbitals, a commoen problem shared by all multistate

methods. 1s not considered here): and (68) implementa-

tion within a general model space of selected deter- '
minants increases the practicality of applications.

J. Chem. Phys.. Vol. 76, No. 4 15 February 1982 R

sttt . .. a S

‘ ' ~
1' ‘ ‘.!. M




1940 L. T. Redmon and R. J. Bartlett: Multidimensional many-body theory 13

II. THE CANONICAL VAN VLECK (CVV)
TRANSFORMATION

Multidimensiunal perturbation theories begin from the
specification of a model space spanned by functions
{#,, y=1, d}. If the ¢’s are orthonormal, the projectors
P for the model space and @ for its orthogonal comple-
ment are given by
[

O DELSTCAT R CAED BRI ®
Q=2 |8 (® ] | = Z“, [i)(i] . @)
i>d

P and @ are idempotent and seli-adjoint, and form a
resolution of the identity. The objective is to solve for
a subset of eigenvalues (and eigenvectors) of the Schro-
dinger equation

HY =VE 3)
by means of an effective Hamiltonian equation in a space
of reduced dimension, that of the model space

¥, D=DE . 4)
ICor IS composed of matrix elements within the model
space of a transformed operator

X=U"HU, (5)

D is a matrix of eigenvectors, and E is a diagonal ma-
trix of eigenvalues. The transformation U is required
to be unitary and to decouple the P and @ spaces“"

vtt=u", (6)

K =PCQ+QIPL=0. n
The exact eigenfunctions, if needed, are given by

V=UP®D . (8)
The unitarity of U results in full normalization since

(¥|¥)=D'{@|PU'UPS)D=1. (9)
We identify P#D as the perturbed model functions ¥":

¥ =pPeD=U'V . ‘10)
Using Eqs. (10) and (5) in the form

HU=UX, -11)

Eq. (4) is easily derived by the following sequence of
manipulations of Eq. (3):

H¥y=¥E ,

HUU'" W =UUE

HU¥Y = UV'E ,

Uk¥’ =L¥'E , (12)
¥’ =V'E,

PWP¢D = PODE ,

&' PiP$D =DE .

Perturbative expressions for " and « mayv be obtained
from Eq. (11). Using the notations of Ref. 40

Wp = PuP ~ Que , 13)

and the usual separation of the Hamiltonian H=H‘"" + V',

along with Eq. (7), and analogous terms for the blecks
of H, V and U, we have

Hy=Vyg , (14)

Hy=H® + v, , . (15)
and we define' W by

W =HO+w. (16)

Partitioning Eq. (11) into diagonal and off -diagonal
blocks leads to

[H®, Ugl= - VeUp = VpUg + Uy W, , am”
and
UpW=[HY, Up]+ Ve Ug + VpUp . (18)

When U and < {or W) are expanded in orders of the per-
turbation with

v=1, 19)
}c(0)=H(0) , (20)
;c(n)=“,(n) (n>0) , (21)

these equations lead to explicit recursive equations for
U and W’ (for n>0):

(HD, U= = Ve U™ = vy Uil + Z Ui

mai

22)
ne1
W = [H O, Ufm ]+ v U1 + VUit - Z LI AL
m-1
(23)
Unitarity is ensured by defining
U=¢&, (24)
with G being anti-Hermitean
=-G'. {25)

It is then convenient to obtain ordered equations in terms
of G rather than U'. We note that [’ has not yet been
completely specified. This is accomplished by the Kem-
ble condition, ‘! requiring that

Gp=0 . 26)

This ensures that G has the least possible effect upon the
model functions®® and that the perturbed model eigen-
vectors optimally resemble the exact ones. 3%

From Egs. (24) and (5), it follows!s:3? that
C=eCHe = HP), . 27

‘The subscript L means that all effective Hamiltonian
matrix elements are represented entirely in terms of
“linked"” diagrams. In general, linked diagrams must
not contain separate closed parts. However, diagrams
consisting solelv of noninteracting open lines and a
single closed part (which appear on the diagonal) are
considered linked. Disconnected open diagrams are
also permitted. The meaning of “open” is given in
Sec. IIL.

As is shown elsewhere'® the expansions of G =G, and
w are given in commutator form by
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(', V= ~Vy,
[H(O)’ G(z)]= ‘[VD’ G(“] ,
[H(O)' U‘J)]-_-. "‘[Vbr G(Z)]‘";[[sz Gl“], G“)] ,
(B, 6= =[vo, ¢ - §{{Vy, GV, 67
#[Ve, 67, a1}
[H(OD’ G(SW: ‘[VD’ Gu)] _%{[[ Vx» G(“], G(.‘!l]
+[[Ve, 62 62)+ vy, 621, 60N}
+aaslllve, 61, 60), 6, 6
(28)
and
;C(Ol =H(0) ,
i\.’“) - W"“: VD
«.“’:W”’:%[Vx G(l)]
5\.‘(3) - w(:‘) =§[VX’ G(Z)I
K.‘“’ = W %[va G(S)]
- (1724)([[vy, G161, 6'Y),
;C(SD= W(S)'=§[Vx, G(i)]
- (1/24){[[[th G(l)]’ G(”], G(Z)]
+[[[VX1 G“)]r G(Z)]: G(“]
+{{[vy, 6], 6% 61} (29)
The Hermiticity of the expansion for }C,,, is apparent,
and no explicit symmetrizing procedure need be applied,
Unlike Kirtman’s generalized van Vleck approach, ® no
powers of G'”’ appear within the commutators of Eq.
(29).** Thus, the results of the canonical van Vleck
model will be size-extensive since i is represented in
the domain of a Lie algebra. ¥ Furthermore, this prop-
erty is not dependent on using a complete reference
space. Thus, this treatment incorporates a flexibility

crucial to solving the multidimensional many-body prob-
lem.

The explicit diagrammatic construction of the effec-
tive Hamiltonian matrix elements follows conveniently,
as in the one-dimensional MBPT case, from expres-
sions given in terms of the perturbation V and, in this
case, a set of generalized Rayleigh-Schr8dinger resol-
vents, These resolvents arise in i from the commuta-
tor with H” in the equation for G. The expressions for
G'" are realized by substituting Eq. (28) into

Gy=- Z R (A, G 1P, - P[4, G¢|R"},
(30)
where

and R" is a generalized Rayleigh~Schrédinger type
resolvent involving the zeroth-order energies of the
complementary states and a particular model state:

o 1)l
BP= D ErS R o2

These energies will be specified in the following section,
Thus,
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GW= 3[RV R, - PR

24

G = EJLR;(“[VD) G(“]P,—P,[Vo, G"’!R:o‘} ,

r
G““: Z {R‘,“’([VD, C(z’]-*%[["x, G“'], G“'])P,
k4
=PV, 6P )+ 4lllVe, 6L G DR,
GV = Z {R;‘”([VD, G“”]*‘%([[Vx, G‘”], 0&2)]
Y

+[[‘,Xs G(Z)]i G(“D)P'-P.,
*(-+. same terms - -- RV}, (33)

These expressions are sufficient to obtain the energy
through fifth order. The equations are quite lengthy in
t..~‘r Rayleigh-SchrBdinger form, so we shall give the
results only through third order:

W% = baa Ea

Was = (Pa | V) ,

Was =2 (®a| VIR + RS ] Ve,
Kas = %{’\@u |VRSVR V)

= 2 (e | VO, (&, VRIVRD Ve,
id
(9, VRV VRV )

- (<l>‘,\VR§°’R:°’V@,>(¢,:V¢,)% . (34)
r

Each order (> 3) includes renormalization terms simi-
lar to those resulting from the bracketing theorem of
ordinary RSPT, except for the specific combinations of
the various model state resolvents. Through third or-
der, the CVV effective Hamiltonian of Eq. (34) is exactiv
equivalent to a Hermitized combination of the Hamil-
tonian of Lindgren® or HK.¥ It already differs from
Kirtman's Hamiltonian in third order.

lIl. DIAGRAMMATIC EXPANSION

In the previous section, we obtained Rayleigh~Schri-
dinger type formulas for the order-by-order determina-
tion of an effective Hamiltonian matrix, which when dia-
gonalized will yield a set of ground and excited states.
At that point, the type of model functions and the dia-
grammatic expansion were left unspecified. The main
objectives of a multidimensional treatment are (1) to
obtain sets of uniformly described excited states and
(2) to properly correlate ground state potential surfaces,
which require more than a single reference function be~
cause of spin symmetry requirements, breaking of
mulitiple bonds, or open-shell products, etc. We will
consider, as an example, a2 model space consisting of a
Hartree-Fock (SCF) determinant plus selected singly
and doubly excited determinants.

We begin by specifying the separation of the Hamil~
tonian. In second quantization, the electronic Hamil-
tonian is given by

H=2 byt + 3 3 mllro)p'd'sr, (35)
] (]

8
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where TABLE II. Zeroth-order effective Hamiltonian
z : matrix elements,
= f N8 [-avz- —4] (Vdr,, (36
~ v 2;: % b S
- &, 1 H® &) =£HF
pq vsi= j G2 b =Py, () xRV drydry, 0 orTEe
HFISE=0
G HFIDE=0
and we have designated the creation and annihilation F -
operators by their subscripts alone. In terms of quan- SE I SE:
tities in normal product form, ** # is given by QGUHI QL) = by b, [EHF +e, =)
H=H" +{¢,|Hby) , (38) SE I DE =0
where DE | DE:
H =g~ (39) (BB H® BED) = Gjiay Opgcq [EF +e,mep =€~ €]
=3 [h,,+ 3 ;pr-ﬁqu]y[p'q] , {40)
[ ]
-~ 1 ’ . .t . . P .
=g Z pq vs; N{p'q'sr]. (41) lines. A diagram containing open lines may also be
mrs

The use of the ¥ potential significantly reduces the
number of diagrams when a SCF orbital basis is em-
ployed. " Alphabetically, (a, b,...) will be reserved
for virtual orbitals of the Hartree-Fock solution,

i, 7, ...) will be for those orbitals originally occu-
pied, and (p, q,...) will be undesignated, Particle or
hole designation is always defined with respect to &,.

The SCF orbitals satisfy

Trpg + Z (ptllgh=0by¢,, (42)
¢

so that

(&g |H! &0y = E§T . 43)
Thus, we have the separation

H=d’+V", (44)
with

H'=Hi+ £ . 45)

The model states are defined in terms of creation
and annihilation operators working on the Hartree-Fock
determinant. A singly excited state will be denoted

"¢} =N[d"i] ey . (46)

Similarly, a doubly excited model determinant is given
by

o8 =N[d'"¥ji)l ) . @7
Note the equivalences

N{d'i]=d"i, (48)

N{a'8'jil=ad'b"ji=d'ib'j, (49)

resulting from the designation of occupied and virtual
labels.

Diagrammatically, each model function is represented
by a diamond vertex with appropriately labeled particle
and hole lines entering and leaving. Thus, any vector
originating or terminating at a diamond vertex will
represent a specific orbital rather than an index of
summation. These lines are the so-called “open”

described as open. The conv ntion of not redefining
hole and particle labels results in allowing open lines
on either side of the diagrams.

A. Zeroth and first orders
The zeroth-order effective Hamiltonian
Wap = (@ HY®g) + bag EYT (50)

is diagonal. Matrix elements between the non-, singly-,
and doubly -excited determinants (HF, SE, and DE,
respectively) are evaluated using the generalized Wick’s
theorem. ¥ The results relative to ES¥ for the chosen
model space are given in Table II. We see that HY acts
as an excitation operator.

The first-order contributions
Cab =(®a |V %) (51)

are evaluated similarly. For the Hartree-Fock deter-
minant

(g VN) =0, (52)

because of the normal product form of ¥¥. In ac-
cordance with Brillouin's Theorem, we obtain

1
(| V¥81)=(&ol 5 2 {par rs)
pars

xN[p'g'srIN[a"il &4)=0, (53)

because the two normal products cannot be fully con-
tracted. The diagrammatic analog is that there is no
way to properly connect the Hartree-Fock bra (no
lines), the perturbation interaction {four lines), and a
single excitation ket (two lines), )

The first-order interaction between the Hartree-Fock
determinant and a double excitation from it is given by
1 .
(Sl VNoBY=(&y 7 2 (pa rsiN[p'q"sr]
4 =
SN[a'd'ji] @,
1 ' 1 M 2
= Z [ \pq s 6”:1 N
={ij'lab) , (54)
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TABLE I,
’ elements.
|

First-order effective Hamiltonian matrix

HFIHF =0
HFISE=0
HF 1 DE:
: ) (81 VH &) = Cijhab)
SE I SE:
(VY &) = (ic llak)
SE | DE:
(@3 1V &) ={6,(,,) (alk) licd)} - {pbr}
DE | DE:
(B VN D = 804 )00 Ses010an i) U (ab){IR))
+{8,14 (ablicd)} +{phr}

where the &6° notation is defined by

6:114 =85y 005 = 0y Bai - (55)

f Proceeding as in these examples, we find the resuits
listed in Table [II, where the notation

Byiany X UR)IXX) = 8, (X1 || XX) = 6, (Xk|[XX)  (56)
has been used. Similarly,
B8isartcar (X (de) || (@b)X) = 8y (Xd || aX) = 5pgX e || aX)

~ Bee (Xd || BX) + bg(Xc||0X) .

(57)
Thus, the first term of the last matrix element in Table
III represents 16 possible terms, all of which have the
same Hugenholtz diagrammatic skeleton,

The first-order effective Hamiltonian energy diagram
forms are summarized in Fig. 1, Note that terms in-
volved in the parenthetic notations always share a com-
mon form. Forms related by particle-hole reversal,
which will be omitted for brevity in subsequent figures,
have been shown explicitly.

The algebraic expressions can, of course, be derived
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from the diagrams. As usual, it is necessary to ex-
pand the (antisymmetrized) Hugenholtz diagrams 1o (anti-
symmetrized) Goldstone form in order to determine the
sign of the contribution. Through second order (in
which no folded diagrams or equivalent complications
arise) the sign is (- 1)’**, where # is the number of
hole lines and ! is the number of loops. For the pur-
pose of loop counting, double- and higher-excitation
diamond vertices must be split into two and more (re-
spectively) single particle-single hole vertices, with
the pairing of open lines corresponding to the second-
quantized definitions; for example, g with / and b with

j in Eq. (49). A factor of 3 must be included for each
pair of equivalent lines. Note that the open lines of

the model states are never equivalent. The factors of
£ in Eq. (34) are in addition to those above.

B. Second-order theory
The second-order effective Hamiltonian is given as
W2 =1 (. | VIRY + ROV, ) . (58)
The numerators, which comprise most of the informa-
tion explicitly illustrated in a diagram, are identical

for these two terms. However, in second order, we en-
counter the first summations and denominators of the

resolvent. We may rewrite Eq. (58)

1 1 1
A2y _ 2 N o Ny
=3 (;” (@, [VI90 (8,1 V7ay) ( g T E,’-Er)’

(59)
where E! is defined by

Ho¢‘=E2 ¢t 1 (60)

and &, is an external (i.e., nonmodel or complementary)
state determinant. We find that if &, is a single exci-
tation, the interactions may contribute if &, is a single.
double, or triple excitation. If ¢, is doubly excited.

$; may even be a quadruple excitation. Since E'f, and

E both contain EYF, the denominators are functions of
only those orbital energies ¢ which correspond to labeled
particle and hole lines in the diagram. For example,
the numerator of the matrix element between two sincly

HF SE OE
f T T 1 )
! ! |

WEL zERO L ZERO (o o ¢ \
e e T :

SE. ZERC | xTRT>e | @ FIG. 1.

First-order ettective Hamil-
tonian matrix element dinxrams.
Lines above {pelow) the horizontal
midline oi the dlagrams repres.
particles tholes), The arrows<, 1w - 4
vided tor claruty, are redanaan: o

this notaticn.
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excited determinants involving a singly excited inter-
mediate state is

T @t VY a5 (@ VY #h)= O (k] |ci)(cillok) .
c.h c,»

(61)
The prime is a reminder that model states are not to be

included in the sum. The “denominator” factor {which
multiplies Eq. (61)] is given by

where the sums over h and p designate all hole and
particle lines which would be intersected by a vertical
line drawn between the two interaction vertices. In
the case of a singly excited intermediate state, these
sums consist of a single orbital index each.

The algebraic expressions for the second-order ef-
fective Hamiltonian matrix elements are given in Table

IV and their diagrammatic forms are shown in Fig. 2.
To save space, we have indicated roughly half of the
required diagrams as particle-hole reversals (phr) of
the illustrated diagrams. From top to bottom, the sub-
divisions correspond to the HF |HF, HF |SE, SE|SE,

oo w3
+ [(e, -€) -(Z. € - Z,: e,)]-l}, (62)

TABLE IV. Second-order effective Hamiltonian matrix elements.

HF | HF:

lef tmn)?
(8| VNRYVN 0y =} 15 ioflmn}

efmn D‘,‘:.
HFISE:
§<¢o|v"mg+ag)v~¢:)=-;§ Y (celimn) {nm ike) ((m+n —e—c)' +(m+n —e =R)'] ~ {pbr}
{armnl

SE | SE:
L SIVRNRL+ROVY )= 4 T (amiie) (mellek) [(a+m —i=e)yl+ic+m~k —e)!]

tami
,..: ts, 'E {amlife) {efimc) [im+a—e=fVi+(m+c—e=N") =16, Q wcellnm) amllaed [D,;",,'1+D;-ll

"
{efim}

-4 2;' (katief) {fellic) ((k+a—e - +livc—e =)+ } Z'(cellam)(keﬂmi)[(a+m—e-c)"
&

{efin) (c:":,’
) - - { I
+{i+m -k -e)"l:- +{phrs}+ } T {kmiice) (aehim) (DE' +DEM+ % T AR
sm efm DY,

HF | DE:

5ot VR RIAROVY S =} T (dede WURIm) (micd) ekl (U +m ~d ~ )t +icem —k — o))

{tachat thm}
+14 Z/: (Rl ef) eflcd) [k +1 —e =f)™ +{c +d —e =NV} +{phr}
L}
03 1]
SE I DE:
S VYRR VN o) = : ¥ ; {aUk)Nie) (elkl de  lla+l =i—e) ' +ic+d~k ~e)Y) : +{phr}
felm)}

+ : Yopam 2o (EDaliefd leffledd la+ @kl —e = +ic +d—c =N =} 37 ki licMacicd:
(a?nn (u:m

g+l —i=e)ttlctd=a=e'l+ b T (alk)Ielde) {klde fical

(‘lc):i(lll'
el =tdey =)+ led) +i~ kD =) N * Y Sy O amldele GeDe edm
l(dc,)"ﬂml

Citaem = ey = el + edy £ m = =D | = {phrsy+ - Woefaer ed

‘3tde?
Ide) o
o7

~ [D‘;{.l +(i+{ecd)=¢ ‘_f)-l” : -3 igm *",“‘c) Z: kDot cf edhm
afmr

1 - N Lol
A [D'(’{;,m rinsled) = =N+ L0 0 I dedye kD e ERYe IDIEN U e = k) -
om

-} 3 edtmU)S (RDmiai {Dﬂ;l,,,, +i+m =k =@y ! ~{phes;

L]
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TABLE IV (Continued)
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DE | DE:

. , )
Loat N RO +ROVY 82 = 1 Y 5 0m Cabitine) (teDieteddla +b = i) —e) ' +lc +d ~kl) —e)') ¢ +{phr}
- iy a B8 ul 1 FiRiY!)

uG( 1
T ladmitipe> (ke eddm [(Lab) +m = (i) — )™ +(ed) + m = Gel) = e))

m
{og)dettim)

, .
+3 6450 0m Scparige

+ % [ X 2 cabiefd (eflicddila+b —e ~N +icrd—¢ -

a,
{efii}
> (ide) Hab)m ledm 1L BDba) ' {im + tab) = () ~ de)™ +(m + (1) = kD) ~ bay}

m
(Caa)de) it Im)

1
=3 0%Giwm

’

T abietde)’ (el t lifed))lHa + b = =1Ae) ™ + Ued) + (i) = kD) = &)™)

d
{acheis}

1
+3 SGiam

LT D &(kl)(ab)lle(ij))(e(ba)ilcd)[((ablﬂkl)-(u')—e)"v(c+d—e-(bab"]:v +iphrs}
((ba)ekil

+ : } 8ias Stpartac) e% (eftitabhm) (leddmiefd ((lab) +m —e =f 1V +led) +m ~e ~F)7]

-3 Sim gn) (etdc) 1 @bdnm> {ledm i e(ba)> [((ad) +m ~ e = (deD™" + ied) + m — e — (ba))™]

+1 645y0m Sapitae ;{) “of 1 RIMbA)) (led) (i) e H[(ba) + (kL) —e =F) 1+ (edd +(ji) — e = )7']

+4 S pan 53 teldc) 1 @BI @R ()Nl etbad) [ab) +Ek) ~ e — (de))™ + ((ed) + (i) ~ e ~ tbaD™}
¢

+4 bippan T3 e (i) 1 @kdm) (dehm 1 ab) [On + (k) = (i) ~ (cd))™ + (m + (dc) - & -a™
o

—§ Sypun L (badmiied) {lijbnli tab)QRD) (On +(ba) —c — A +Um + ) - @R ~ (@b
m

— 3 Siparian OUntan 2y Clijdelm k)Y (mide) i @able) {(m + Q) =~ if) — o)™ +m +{dc) —e —(ab)™) | = phrs}
em

{efh mn)*
e,

+1 &jiar Oac ’E *+3 O¢ippan Sanien RZ; (Gidm  (bade) (elde ) il mk) (DR D)
efmn m

+ : = 1 i Stamnteny 2 < (badelimn) (ol elde)) {Dgare™ +Dig 44 Shin 25 @b imnam e e +pef
emn L]
2 L -1 =10 r
~4 dapriend g} (ijl(able) {eldc) Itk (D{* ™ +Dge" 1 ¢ +{phrs}

+{1f #{%) is a model SE, include

3 GDGA led)(ab) R i) ((ba) + (k1) ~¢ ~d)™ + (i +j = Uk) = (o)™} +{phr!}

+{If #;¢is a model DE and &} is not, include }(ijlkl)(cdliab>((k+! —i=pt+lc+d=a 0"} +{phr}
+1f $IE) is not 2 model DE and ${8){5}) is, include } abilcd)(klNii*lla+b—c —d U=k =D

+} (ijlias) (cal k) (DB +DE)

HF IDE, SEIDE, and DE |DE blocks.

The SE [HF, In the table, {phrs} represents the phr contributions

DE |HF, and DE |SE diagrams could be obtained by

time reversal of the HFISE, HF |DE, and SE {DE dia-
grams, respectively, but they are not required because
of the Hermiticity of 3¢,,. Except for the denominator
factors (which are not shown in the figure) and the ground
state term on the diagonal, the SE |SE diagrams are
equivalent 1o those of Paldus and Gizek.'* Each inter-
mediate state (in Fig. 2) has been labeled as singly

(S), doubly (D), triply (T), or quadruply Q) excited,
relative to ¢,.

J. Chem. Phys,, Vol. 76, N
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analogous to the terms in the immediately preceding
brackets. Except that the phr terms are grouped to-
gether, the order in the table corresponds to that in
Fig. 2. The algebraic expressions for the phr terms
are obtained by exchanging (relabeling) @ and i, » and

J» etc. in the illustrated terms. Sign changes. when
required (due diagrammatically to a change in the parity
factor with particle hole reversal when the numbers

of particles and holes are not both even or both odd),
have been explicitly indicated. Since the type of inter-

0.4, 15 February 1982
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FIG. 2. Second-order effective Hamiltonian matrix element
' diagrams.
| mediate state is not always obvious in the algebraic
form, the superscripts and subscripts of the terms to
be omitted from the primed sums when they correspond
' to model states have been enclosed in curly brackets

below the summation sign. The level of excitation is
determined by the number of labels provided.
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Note that the parenthetic notations sometimes appear
without delta functions. In these cases, they indicate
multiple terms which must all be included. Terms con-
taining parenthetic notations are indicated in the figures
by single diagrams, since with unlabeled lines their
skeletons are identical. The negative double excitation
energy notation

m:=€(+€:‘€¢-€b (63)

has been employed within the table, and orbital energies
have been indicated by their subscripts alone.

We see that the second-order (closed) ground state
correlation contribution appears along the diagonal.
These terms are considered linked, since noninteracting
open lines merely represent delta functions which, in
this case, indicate that the diagram contributes only to
diagonal elements. They arise from triply excited
intermediates for singly excited determinants, and from
quadruply excited states for doubly excited model states.
Since each intermediate (including the open line parts)
is doubly excited relative to the model state, the de-
nominator dependence on the model state is removed and
the denominators are identical to those of the ground
state terms. Assuming that the model space does not
contain any triply or quadruply excited states, the
value of this term is exactly equal to that obtained from
ordinary MBPT, except that, in the HF |HF matrix ele-
ment, the contributions from any doubly excited deter-
minants included in the model space must be omitted.
These omitted terms correspond to the couplings (i.e.,
off -diagonal effective Hamiltonian matrix element) be-
tween ¢, and the doubly excited model states, which are
explicitly included. The identical terms contributing to
the excited state diagonal elements are not omitted.
Subtraction of the full ground state diagrams from the
diagonal gives the effective excitation energy matrix
relative to the one-dimensional MBPT ground state
energy.

In the second order, the diagrammatic differences
between general and compiete model space implementa-
tions appear. We find that because the general methods
allow the @ space to include states that are related to
(i.e., consist of particle and hole labels in common
with) the selected P space states, certain disconnected
“irreducible”® diagrams must be included. These dia-
grams consist entirely of open lines, and thus they are
trivial to calculate because no summations are required.
In addition, many of them cancel each other. These dis-
connected diagrams are those in the last two rows of
Fig. 2 for DE |DE matrix elements. The last diazram,
with ¢, as the intermediate state labeled X, is not
used when the model space includes ¢;. However, if
&, is included in @ rather than P, this diagram is con-
sidered and is found to cancel the immediately pre-
ceding quadruple intermediate diagram exactly, so that
neither diagram need be calculated. In fact, close
examination reveals that none of these disconnected dia-
grams would remain if the complication of excluding the
model states as intermediates did not arise. We find
for the case that the model space has no singly excited
states that the single and triple intermediate diagrams
of the penultimate row cancel each other. However, if

J. Chem. Phys., Vol. 78, No. 4, 15 February 1982
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the model space does include singly excited deter-
minants, the corresponding terms must be omitted from
the S diagram. Assuming that the model space does not
include triply excited states, the related terms from the
T diagram do appear and must therefore be calculated,
since they are not cancelled. Thus, in Table IV the
gixth term from the end (counting phrs, i.e., the first
“conditional” term) gives the net contribution of § and

T in the presence of model singles.

Similarly, the last two D diagrams need only be con-
sidered for special cases involving model intermediates.
The first is usuvally cancelled by its phr diagram. How-
ever, there may be instances in which the cancellation
is not permitted. For example, (assuming that 3} and
$%f are model states) if ¢4 is a model determinant but
®% is not, the term with 3} as intermediate must be
calculated while the term with ¢} is omitted. The re-
maining D form represents sixteen individual terms,
which cancel with each other unless, for example,
is a model state and $}$ is not.

ac
in

The last six diagrams are not required if a “com-
plete” model space is specified, i.e., if P contains
all possible excitations among a group of “active” or-
bitals {i, j--+ —a, b---}. In this event, the dia-
grammatic expansion has been described as “fully
linked.” Unfortunately, an undue stigma has been as-
sociated with the disconnected open diagrams which
must be included for the general (“incomplete”) model
space. These terms are necessary and are size exten~
sive. Hose and Kaldor have discussed the size ex-
tenssgvsiaty of similar terms which arise in their meth-
od, ™"

Although the present diagrams appear to be quite dif-
ferent because we have chosen to show the explicit dia-~
grams for the chosen model space and to include all of
the open lines in them, the diagrams we require are
analogous to the pure two-electron interaction forms
given by HK, "% except for our denominator combina-
tions. The complete equivalence through third order,
achieved by constructing Hermitean combinations of
their terms, may be easily verified. If one does not
make Hermitean combinations, the non-Hermitean for-
mulation requires that the entire effective Hamilitoaian
matrix be calculated, rather than its upper (or lower)
triangular part, Additionally, we find that the cancella-
tions described above for our disconnected diagrams
do not occur for the non-Hermitean form.

It appears that we have more diagrams than HK, but
this is because we explicitly show the various labelings
of the open diagrams that must all be included in either
method. Also, since our particle and hole states are
not redefined, unlike the HK transition method, it is
easier to recognize the modei states, which in either
method must be omitted as int:rmediates. For ex-
ample, the similar appearance of ¢, and of a quadruple
excitation from ¢,, when represented relative to a
double excitation {from «&,, can be confusing. Further-
more, with our convention, a given model state has one
definition rather than a set of definitions of the dimen-
sion of the model space. This should simplify program-
ming,

'
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The provision for deleting the possibly large numbers
of more highly excited model states from P is an attrac-
tive practical feature of general model space methods.
This greatly reduces the number of effective Hamiltonian
matrix elements to be evaluated, and also the number
of potential intruder states. The method isnot restricted
to the single and double excitation madel space illus-
trated in this paper, and could be applied to other prob-
lems,
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Perturbative determination of nonadiabatic coupling matrix elements

Lynn T. Redmon®
Battelle Memorial Institute, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 4320}
(Received 12 November 1981)

Equations for the first- and second-derivative coupling matrix elements between the
adiabatic electronic wave functions of a canonical Yan Vleck approach are derived for the
case of a single nuclear coordinate. Expressions for their order-by-order evaluation,
analogous to the multidim nsional perturbative expansion of the effective Hamiltonian
(given elsewhere) are presented. Diagrammatic notations useful for enumerating certain
components of the derivatives are introduc+d, and the diagrams required through first

order are shown.

I. INTRODUCTION
The Born-Oppenheimer adiabatic approxima-
tion' is one of the most fundamental and widely
used approximations in the theory of molecular
structure. When the electronic wave function is
slowly varying with respect to nuclear displace-

ments, solution of the electronic Schridinger equa- ;

tion leads to accurate calculations of the properties
of molecules. Adiabatic potential energy curves

|
|

|
|

|

and surfaces are used in the interpretation of spec-

troscopic data, the prediction of thermochemical
quantities (heats of reaction and formation and ac-
tivation energies), and in the approximate descrip-

tion of the dynamics of molecular collisions (at en- |

ergies of chemical interest) usually involving a sin-
gle electronic state. Nonadiabatic treatments
(direct solution of the unseparated Schrodinger
equation) have also been pursued.? The Born-
Oppenheimer adiabatic representation can still be
used to accurately describe dynamical phenomena,
such as radiationless transitions between electronic
states of bound molecules or electronic transitions
in molecular collisions, by consistently including
the nonadiabatic coupling terms in the process of
solving the nuclear Schrédinger equation.’ The
most important coupling terms for many systems
{and those generally most difficult to obtain) are
the :natn’x elements of the nuclear derivative opera-
tor.

Recently there has been increasing interest in the
calculation of nondiabatic couplings for ab initio
electronic states.’~!'  Analytical methods of
evaluation must, of course, be derived sp..cifically
for each electronic-structure method. Those ad-
dressed thus far are the Hartree-Fock self-consis-
tent-field (SCF) and configuration interaction (CI) .
methods. Investigations of the utility of the

|
Hellmann-Feynman theorem® or the Sidis formula®

{both valid for exact states) in the case of practical
{inexact) wave functions have been made. Numeri-
cal methods based on finite-difference formulas,”®
although applicable to any type of wave functions,
need repetitive solutions of the electronic problem,
a nontrivial requirement when highly correlating
methods are employed. The approach of fitting a
polynomial followed by analytical evaluation of the
derivatives®® becomes cumbersome for large CI
wave functions and/or for systems with high coor-
dinate dimensionality.

The present paper derives analytical expressions
for the nuclear derivatives between electronic wave
functions employed in multidimensional diagram-
matic perturbation theory. As in that theory, ex-
plicit calculation of the wave functions is unneces-
sary. The approach uses a formulation for the
first derivatives that avoids numerical differentia-
tion procedures and provides an order-by-order
prescription for obtaining increasingly accurate
values. The theory incorporates the effects of con-
figurations omitted from the model space and is, in
principle, exact.

For comparison, the expressions for the matrix
elements of the first- and second-derivative opera-
tors using CI wave functions are given in Sec. II.
In Secs. IIT and IV the nonadiabatic coupling ma-
trix elements corresponding to the perturbative ex-
pansion of the electronic wave function are de-
rived. In Sec: V the evaluation of these matrix ele-
ments at the orbital level for a specific illustrative
model space is presented in the conventional and
second-quantized notations, and diagrammatic no-
tations for the required elementary components are
introduced. The derivation of an exact Hellmann-
Feynn.an-like relation is included as an Appendix.
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II. DERIVATIVE MATRIX ELEMENTS
IN THE CI FORMALISM

Solution of the full Schrédinger equation can be
accomplished by separating the Hamiltonian into
nuclear and electronic parts

H=Hnu+Hel )

and assuming a sum-of-products form of the total
wave function

Vo= 3 WILRICMR) . | (2)
Y .

members of the set of states of interest. The
Born-Oppenheimer functions { ‘ll;' } are solutions

We use the subscripts { ¢,B8,7... } to indicate the ‘
of the electronic Schrédinger equation l

(HY~E5W5=0. (3)

In principle, a complete set of ¥*"s is required, but
for practicality it is assumed that a reasonably
small number of electronic states | t!z;';y=a.,8. ..}
will form a sufficient expansion. In the CI
method, the electronic wave functions may be ex-
pressed in a basis of determinants (or of configura-
tion state functions)

V= &,(r;R)Coy(R), 4
4
where | o,7... } are labels for a complete expan-

sion. The coefficients | C,, | are solutions to the
secular problem

HC=CEY, (5) :
where .
H={(d,|H®,) ] (6)

and { @, | are orthonormalized functions, such as
Slater determinants formed from Hartree-Fock or-

i
:
{
|

i

|

bitals. An explicit dependence on the nuclear coor- :

dinates R arises because these coefficients as well
as the expansion coefficients (not shown) of the ®'s

. . ele . . . I
in terms of the primitive atomic orbital (AO) basis

are different for each nuclear arrangement. An
implicit R dependence of @ results from the
nuclear-centered nature of the AO basis. The best
soiution for a given AQ basis is obtained when the
“full CI problem” is solved; that is, the sum in Eq. '
(4) land, thus, the dimension of H) is over all pos- |
sible determinants (excitations) within the basis. '
However, in practice, the CI problem is almost al-
ways truncated. :
For simplicity, we examine the form of the ma.
trix elements of the nuclear Hamiltonian for the !

!

case of a diatomic molecule. These couplings in-
volve derivatives of the electronic wave functions
with respect to the single internuclear coordinate
R, (W,[{3¥5/3R ), and (¥, |3*WgAR?), where we
have dropped the superscript on ¥¢. In the CI
framework the first derivative is given by

<w,

3

3y \N=Sct
3R Wﬂ)"‘?c“ 3R <

9
+02',CZ, <¢, l‘a—l(7¢f> Ces >
N
where we use the convention that the derivative

'opcrator may not operate beyond the ket of an in-

tegral.

It is well known that the coefficient derivative in
the first term become large in regions of avoided
crossings (between states of the same symmetry).
This might cause difficulties for a numerical
evaluation scheme. If so, it is expected that the
matrix elements of the Hamiltonian would be more
well behaved than the coefficients, so that numeri-
cal methods based on an exact Hellmann-
Feynman-like relation {see the Appendix)

3 - 3
;C;,a—RC,5=(Ep—E¢) IECZ, a—R-H,,, ]C,a

(8)

could be used. In this notation, the derivative
operator must stop at the right parenthesis, and Eg
is a specific element of E¥. Although Eq. (8) is
valid for any wave function satisfying Eq. (5), this
approach is cumbersome since obtaining accurate
energies requires the dimension of H to be large;
¢.g., the basis of Eq. (4) might consist of a given
set of determinants and all single and double exci-
tations from that set. :

The integral in the second term is zero for o7
if ®, and P, differ by more than one orbital, and
for o= if the ®’s are real. Some treatments have
assumed that these terms vary slowly with R and
have neglected them. In fact, however, they can be
of a magnitude comparable to the first term.’
When the ®'s are chosen to be Hartree-Fock deter-
minants, the derivatives in the second term can be
expressed in terms of quantities used in and ob-
tained from the coupled perturbed Hartree-Fock
(CPHF) method,'*!- which is commonly applied
for the determination of energy gradients. Alter-
natively, they have been obtained by numerical® or,

1




17.“

in some cases, analytica means. For the pur-
poses of the present paper, we shall assume that

the derivatives of the form in the second term are
available and refer to them as standard or configu- |

]
<~v
An alternate formulation is -

K 3 [/, 0 \
(v | (elee)] |

d 3
- < R || oR %>. ‘

. |
where the first term would be obtained numerical-
ly. If the full CI problem is solved, the second

term can be expanded by insertion of the resolution
of the identity

1=Elwa)(wd,

Srva) -3l

.,5+22C <

L 2

=3 ¥ ¥ [+ 3 | W] (11
Y [

(where the subscripts { g,v... } indicate members
of the complement to { a,8... }) to obtain an ex-
pression entirely in terms of first-derivative matrix

elements'*:
{
a Wﬂ> } | )

<‘l' aé:: W"> aie K |
3 (nl3w) (i)
(12

Otherwise this formula is only approximate. Note /
that it requires additional first derivatives !

)

i.e., couplings between the basis states of interest ,
and those “not of interest.” The effect of trunca-

tion of this sum might be particularly severe be-

cause the first term of Eq. (10) includes the second.
Thus, for an approximation to En. (12), the intend- !

‘ed cancellation might be incompiete. This would

cause spurious contributions from the first term to
remain.

9 3 +
6R >8RC”+,§C“<¢

ration derivatives.

The second derivatives are more complex.
Direct differentiation of Eq. (4) leads to the expres-
sion

al

f

II1. DERIVATIVE MATRIX ELEMENTS IN THE |

CANONICAL VAN VLECK FORMALISM

In the past few years methods for the determina-
tion of potential energy surfaces have envolved,
such as direct CI,'* unitary group CI,'® single-state
many-body perturbation theory (MBPT),!”!# muyl-
ticonfiguration SCF (MCSCF),"® and
MCSCF + CL" For many applications MBPT
has several advantages over the CI approaches.
However, a perturbative treatment based on a sin-
gle (SCF) determinant is restricted to the lowest

"state of a given symmetry. It may even be expect-

ed to encounter difficulties for that state in regions
of avoided crossings, where more than one configu-
ration is important. In addition, this method is
not well suited for many applications involving
open shells or multiple bonds. One solution to
these problems is the canonical Van Vleck ap-
proach to quasidegenerate perturbation theory.*°

When the canonical Van Vieck formalism is im-
plemented via a diagrammatic expansion,:‘ the en-
ergies obtained from approximate solutions of Eq.
(3) will be size extensive,”® unlike energies of
non-full-CI calculations. In addition, perturbation
theory provides a means of decreasing the size of
the Hamiltonian matrix, which must be diagonal-
ized, and a prescription for obtaining increasingly
accurate {(and, in principle, exact) results.

In this formalism, the (exact) correlated electron-
ic state of interest are given by

v, 2U(&)¢5( LRIDs(R) (13)

where the basis for expansion has been restricted to
a selected set of states | @5 ] corresponding to the
states of interest and referred to as the model
space. The R dependence will not be indicated in
subsequent equations. The { Dg, | are the eigen-
vectors of the effective Hamiltonian:

.al=DE", (14)

and | U|®;) | are the perturbed (improved) model
functions. U is the unitary decoupling operator

. —aR2¢,>c,,. ) .
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; J which transforms the Hamiltonian operator H to ( 3 . 3
, block diagonal form #. In principle, the exact <W, W\l’p>— ZDarﬁ'Drﬂ
" eigenvalues will be obtained because the effects of \ L4 . _
B the complementary states will be contained in U, ' Dl , (19) |
! In practice, U will be determined such that the ‘ : +?f'; o ”D”.
transformed Hamiltonian operator l where | .
t | s
Uiy as | I <q>, U'%Ud’;). Qo
1 is block diagonal through a certain order. Then ' ,
j the effective Hamiltonian ¥, formed of matrix ' can be thought of as matrix elements in the ori-
3 ! elements of ¥, { (g | F®g) }, will be diagnonal- ginal @ basis of a transformed derivative operator,
E ized. or as derivative matrix elements in the basis of per- \
Actually, an order-by-order prescription for ¥ turbed model functions U¢.
is given, and U is not explicity calculated. Howev- With the reduced dimensions of this approach it
er, for comparative and derivational purposes, the should be practical to calculate the first term of
» formulation of the wave functions may be exam- -} Eq. (19) by the analog to Eq. (8): 1
) ined. Inserting the resolution of the identity in the '
( fon'n ZDaraR Dyp=(Ep‘E )-IED a 1‘?’76 Daa .
1=§ [ D) { D, | Qn
_ . Again, this expression is an exact equality (at any
=2 (8] + 2 10 (%] (16) order) because of Eq. (14). However, the exact
. ] couplings will only be obrained [from Eq. (19), op-
into Eq. (13), we can see that ¥, may be written tionally incorporating Eq. (21)] when the infinite-
¥,=3 | ©,)(®,| Us)Ds, - un order effective Hamiltonian is used. Although the

summations in these equations run over only the ,
model-space dimensions, the effort of evaluating |
the couplings is hidden in the determination of ¥’.
The expansion of this term will be examined in de-
tail in Sec. IV. We note that only the lower tri-
angular parts of ¢’ and 0F%/3R need be calcu- -

Comparing Eqgs. (4) and (17) we find the relation
between the full CI coefficients and the exact
(infinite-order) effective Hamiltonian eigenvectors:

’ Coy=2( Dy | Uds) Dy, . (18) lated since ' is anti-Hermitian and #,qr is Her- |
. d mitian. '
Starting from Eq. (13), we find (since U is uni- The matrix elements of the second-derivative
! tary) that the first derivatives are given by ! operator obtained by direct differentiation are
' ‘ | ) N
g <‘Vﬂ 2 3R? > zpcr 7D B+2zbzr9;ﬁlpw+ SD5 I 1eDes » @2
H oR y oR v oR 75
:i where
1 “;" ={(® a = _ve : (23)
" Equation (22) can be expressed alternatively by substituting Eq. (13) into Eq. (10)] as
3 9 d () ) ]
(velor "> aR <“' ax"") {2 3R Do wo*Z * "]g"”“ Der¥ w3 Doe

-zp [zs,,s,.+zy LS

Dy } (24)

Equation (12) could be used, truncated to a sum over y only (since the remaining states are not determined

' CT ! to 7 {
: __4.-_&__‘_’__.‘[-‘.' ' ‘l s _EM




in the effective Hamiltonian method), but the previously stated criticism of this procedure would apply.
The second derivative of the coefficients in Eq. (22) can be alternatively obtained by similar techniques. We
write it as

-2

2
ZD' 2 D 2 lED' aDrﬂ
Y

ay a2 YrB= A p arap
> YaR* ™ AR |<T°TAR

-
3R

+

D,y

d
EEDyﬂ ) (25)

where the first term is to be obtained numerically. Inserting the identity into the second term and substitut-

ing Eq. (21) gives

The first-derivative matrix elements in the effec-
tive Hamiltonian formalism are prescribed by Eq.
(19). The coefficient derivatives (first term) can be
calculated numerically or from derivatives of X
via Eq. (21). In the latter case, an ordered evalua-
tion scheme emerges. In the canonical Van Vieck
method it is convenient to define the transforma-
tion U by

U=e%, 27
with '
G=-G'. (28)

Then, throug-h third order, the effective Hamiltoni-
J

'\

p -QZ—D,V,,.—. D Eg-E, spl, |2 Deg ‘ ‘
> ToR? 3R 2l &7 T T /
h l
+ 3 (Es—E.)"'DL, |-, ]D;s(Ep—Ea)"D;‘ B #on |Drs . 26)
r.d.eln 3R . oR
f
The latter process can also be applied to the second | an is given by®
term of Eq. (24). The choice between Eqs. (22) | O 5 EO
and (24) is then further influenced by observing : »=0pEy
. that Eq. (24) requires the additional matrix ele- g/‘y‘s’= (D, | V) , ’
ments | ¥y, ], while Eq. (22) calls for &" matrix 2y 1 o
elements. These off-diagonal ¥’ matrix elements Hp=1(9|[V.G'"]®s) 29
can be obtained analogously to the model-space di- V_ i 11V.6 e
agonal block of $’; however, there will, in general, = 7( | V.G 1),
be many more of them. The perturbative determi- where
nation of £' and " will be given in Sec. IV. G9=0
IV. PERTURBATIVE EXPANSIONS ! GM=3(ROVP,—P,VRS], 30)
' Y

GH=3 (RIV,GVIP,—P,[V.G'VIR} ],
Y

and
HeI=H0+ v,
H®,=E%®,, 31
Py=1®)(d, |, .

Rp=3 A2
~"(ES<E%)

It should be noted that G has no block diagonal
(D) parts:

Go=3 | $,){®,|GD) (D[ +3 | 9,)(D,1GD,) (D, =0. 32)
v.6 By

Thus G is completely specified by its off-diagonal part Gy:
Gr=2 1 1D){(®,1GP,) (D, | + D, )(D,|GP D, | | . . (33
v




——

27 _

(34)

B

3 é It is then straightforward to see that the derivatives of ¥, involve only derivatives of the two-electron in-
3 tegrals and the (zeroth-order) orbital energies:
f B_po_5 8 po
E | aR %1 =0w3g Er
=2 Ve,
d ’Y‘ZEEBE [2(«» A VOND, | VOIEF~E ' +(E§~E"] |,
i
3 p_ 13 s (&, VOND, | VO D, | VD) (D, VNP, | VDD, | V5)
3BRTTT 2R | & (ES—ESNES—~ES) (E§—EINE§—~ED)
_s (O, VOND, | VO (D VD) (D, VDD, | VD, ) (D, | VD)
= (E§—ESNEQ—ED) (E¢—EQNEY~E])

These derivatives may be determined by the CPHF method as implemented by Pople and co-workers.?
J' may also be examined in an ordered fashion. When U is expanded, §' may be given by a Hausdorf

|

/ 8
3'75= <¢y!a¢5>+ <¢7

1 oG
+ vy ;GX 9Gx yGX
24 HaR ¥
b When G is expanded by order we find the low orders of §' to be
. < )
¢ jﬁ’"(‘” 3R °‘>
1
3 ‘ TP
: .
;{ gr(a ‘= <¢T’ G b/ )
. D
. 9 a v l a
I Ar1] [$4] m (1
Y =<¢7 aRG p+2 [aRG X,G ]}‘bs
d 1 ) l 9
S 9~ s T 2
I ‘("’* akC |72 [aRG R AT
_l_ 3~ (| g ®
-+ [ aRG D,G ’v + . 8/

expansion:
‘e d ) l 9
l.‘f.,g—<¢y aR+ aR,G + aR Gl,Gi+... ¢5>,

G| _11]386 L
3R D+2H3R Lot
3

G(Z)l

where the derivative operator is allowed to work all the way through to the ket. Then we find
3G
oR

+...

b4

)GX
D

¢,> .

'GH)]

(35

|

(36}

(37

Thus, by multiplying Egs. (34) and (37) by the appropriate eigenvector components, prescribed by Egs.
{19)—(21), the coupling matrix elements can be obtained to an order consistent with that of the effective
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Hamiltonian. Explicit contruction of the wave functions is unncessary.

The transition from the notation above, involving operator derivatives, to the basic expressions is straight-
forward, although fairly compiex. However, a shortcut is available for those terms involving the diagonal
block components, such as the leading terms above. Since Gp =0,

%(¢,|G¢5)=0,

a—i—wﬂ |Go,)=0, (38)

and, therefore,

<¢, =G o¢°>=_’< =0, jc¢s>+ <¢,[GB%-¢5>], |
<q>,, =G D<p,>=--[<[£Q }!G¢> <¢,,EG-8%¢,>’. c9

These equations are valid for each order. For example, at first order

([

y'(l)_‘_ -—
v %: (E3—ES) (ES—E9)

3
3R ¢5>

The integrals { (®, | V®,) ] are the same ones required for #4¥, and the derivative matrix elements are a
subset of the standard ones used in Eq. (7). In this form, considering the derivative operator as a one-
electron operator, &' ‘! can be easily diagrammed, as will be demonstrated in Sec. V. The nested derivatives
involving (3G /3R )p may be expressed similarly.

However, terms with (3G /0R )y must be handled directly, substituting and differentiating the components
of Egs. (30) and (31):

s P
e I ],0‘2’¢5>—<¢,462’3R¢>

]]qz <¢,,|V¢s> (¢,;V¢><

“0)

3
o, (D VD,)
__.22< aR > ‘! R CALCRR NN
il b (EQ~EY 3R | (ES—ES) || (EJ—EO)
\
(0,] Vo, >< 9 >
lz (¢yly¢p> 2 aR +i <¢“IV¢5)
1< (EY-ED |4 (E‘,’-E,‘i) 3R | (EJ-E)
<¢,|V¢>< =0 ><¢vw¢,>
(41)

+
,?, (ES—EJNE§—E?)
Although this result is fairly complicated, the terms inv ol\mg the two-electron integral and energy deriva- 1

tives are the same ones required for 3224 /3R [in Eq. (34)]. The remaining terms of ' can be di- |
agrammed similarly to the first-order terms, although there are quite a number of them.

i

The .2” matrix elements called for in Eg. (22) can also be examined in an ordered fashion by converting J
from U to G:

Fy= <¢

a:
aRI’

]l

a!
TE —_—+ 4’5> . : (42)

|

{
i
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Examples of the evaluation of ' and " in terms of orbitals are given in Sec. V.,

V. DIAGRAMMATIC REPRESENTATION

We present an orbital formulation of the nonadi-
abatic couplings between electronic states obtained
from a diagrammatic implementation of canonical
Van Vieck perturbation theory, illustrated for the
model space chosen in Ref. (21), which consists of
a Hartree-Fock determinant plus selected single
and double excitations. The effective Hamiltonian
matrix elements have been given both formally*®
and diagrammatically.?! These diagrams are useful
for showing which subsets of integrals are required
for evaluation of the matrix elements and (as in or-
dinary MBPT calculations) for providing size-
extensive approximations and efficient algorithms
for their evaluation. The derivatives of these ma-
trix elements required for the evaluation of the
coefficient derivative part of the nonadiabatic cou-
plings using Eq. (21) will be obtained via CPHF, as
mentioned earlier. The terms in £’ can be di-
agrammed using the one-clectron nature of the
derivative operator working on a Slater deter-
minant. Examination of the derivatives of $' 7,
i.e., the standard configuration derivatives

(e,

where orbital a(b) has replaced orbital j{j). Since
il L2, (n~2)a,b), )

<¢ |2 ¢,>-—6.o l | wor |

”1 3R
3
o).

!
Iy

3
an°‘> émz (n-->,,11

r~ )

(k)]

in the conventional, second-quantized, and di-

29
e te. haid -
Then, expanding G by orders and collecting terms we obtain
2
0= (¢ D),
S < 4 aRZ 6>
3 3 3 |
F 0= <® [——G”’ d>5> +2 <<b l—G”’]—R¢5>, (43}
ol Y aRz > L4REY 3
2
a3 8 .l 3 4
.fr‘s‘\= ,<¢Y [—B_I-Q—zcm D¢5>+2<¢Y ls—G(‘)]— CD,, [ER—G”) ¢5> :"
1 (9, 2 510+ (o G‘” -—¢
+ 3 aRz 8 Y )

agrammatic forms serves as a convenient introduc-
tion to the many-body techniques employed herein. -

It is well known that the configuration deriva-

tives in Eq. (36) [or Eq. (7)] are zero if y and § (or !

|
|
B
|

o and 7) are identical and @ is real, or if ®, and
®; differ by more than one orbital. For exarnple,
let &, and ¥y be singly excited determinants,
which may be expressed in terms of annihilation
and creation operators (indicated by orbital labels,
appropriately daggered) working on the Hartree-
Fock determinant &,

[®,)=a"i|dy) , (44)
| ®5)=b"j| dp) ,
where a, i, b, and J, refer to specific one-electron
spin orbitals (with [i,/,k... } and {a,b,¢,... }
labeling occupied and virtual orbitals, respectively).

Then the matrix element is represented convention-
ally by

.qm 2,....(n=2),ib 1> , @)

The sign of the first term arises from the permuta-
tion of orbitals required 10 match up the remaining
orbitals when i==j. When i =, no rearrangement
is necessary (second term). Again, the diagonal
matrix elements are zero if @ is real. In second
quantization, we respresent 3/0R as a one-efectron
operator:

e e e e o e
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_—= y 7

3R %q,,s t 47
where

Qu= <S ‘a-aR—t> . (48)

Then, following the usual procedures (and indicat-
ing only the orbitals which differ from those in
D)

.+ ‘i +\ RSN
<1a)aij>-§q,,(x as'th'j)

=8ij‘1¢b —aal;ql'i +8absiiqus
s
J .| 9 .

{49)
The nonzero configuration derivatives within the
chosen model space are shown digrammatically in
Fig. 1. In these diagrams an open dot represents
the differential operator, which (because of the or-
bital product form of the model functions) acts as

"one-electron operator. Thus, each open dot must

have one vector (a particle or hole line) entering
and one leaving. Particle (hole) lines are oriented
from right to left (left to right). The terms re-
quired are specified diagrammatically by forming
all possible connections of the bra and ket model-
state vertices with the differential operator. The
bras and kets are indicated by diamonds with equal
numbers of specifically labeled particle and hole
lines (the so-called “open” lines) which describe the
model states with reference to the Hartree-Fock
determinant. The algebraic expressions are re-

v s o
e e g e LN
o€ _--.::;- @. @.

F1G. 1. Zeroth-order diagrams for the first derivative

part Z' of the nonadiabatic coupling matrix elements.

gained diagrammatically by interpreting the deriva-
tive interaction symbol as (outgoing vector ! 3/3R
incoming vector) with a sign factor (~1)'*%,
where [ indicates the number of loops and A the
number of hole lines. Thus the two terms of Eq.
(46) are represented by the SE | SE diagram of Fig,.
1 and its particle-hole reversed (phr) diagram.
Since the integrals in Eq. (46) involve two orbitals
of the same type (occupied or virtual), the entering
and leaving vectors of the differential operator go
in the same direction.

The derivative parts of the ¥''!' terms in Eq.
(40) are diagrammed and derived similarly. The
usual two-electron interactive perturbation V
[represented by a solid dot and referred 10 as V¥ in

. Ref. (21)] in the right-hand part of the first term

must have two vectors entering and two leaving.
Figure 2 shows all of the types of diagrams which
occur in the evaluation of this term for a model
space consisting of the Hartree-Fock determinant
plus selected singly and double excited deter-
minants. The diagrams for the second term are

, obtained by time reversal (TR) (left-right mirror
. imaging) of the ones shown. The off-diagonal
! block diagrams will come from TR of their conju-

" gate blocks; e.g., TR(SE(DE) yieids the DE'SE di-

agrams. We note that the DE!SE terms in the fig-
ure can have triply excited intermediate states
(whereas the SE|DE terms cannot) because of the
ordering of the two operators. Of course the oppo-
site holds when the order is reversed.

The diagrams in Fig. 2 may be derived algebrai-
cally in the following manner. Let us examine the
case of a SE|SE (single-excitation diagonal block)
matrix element. Take the definitions in Eq. (44)
and let ®, be a single excitation

[, =c'k [®) . - (50)
Then

l
a a_. 0
(“’r 3§'°">"6“ <" ia—x'> *ou < ER‘> :

{ (51)

Next, we determine that
(D, V) =—(bj| |ck), (52)
since 8y 8% is not allowed (i.e., ¢, must not be a

model state). The combination of Egs. (51) and
(52) yields two types of terms
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FIG. 2. First-order diagrams for the first-derivative part &' of the nonadiabatic coupling matrix elements.
3

SE J . ,
§<¢'r -5-1?¢”>(¢“| V<l>5)=§<kl3;¢>(aj] ]bk)—§<a

which are graphically given by the first SE|SE diagram of Fig. 2 and its phr. The remaining orbital sum-
mation corresponds in the diagram to the vector not touching a model-state vertex (indicated by a diamond).
Similarly, if ®, is a double excitation

3 Ny i
3R c>(c]| | bi) , (53)

|®,)=c'd Ik | D), (54) ]
then '
o, 20, =1 (711,2,... (n=Da k] | (2. (0 =Iisc,d | (s5)
YI3R * r yéy ’ » ’ 3R A ’ v44Cy )

may be reduced to

° )
<° ‘a?°u>'7'5nkn5md> <(Ik)I-3_E(dC)> '

~
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g 750)=}

where the notation

Bk | (KDY =Bye 112 =8 [ k) | (57
is used. Taken together with

(D, | V) =8;up(UKb | |cd ) +8picar((de)i | | K1), (58)
Eq. (56} gives

DE
§<¢, aaR >(d> |V¢5)——8,,2< ] >(mb| ,ae)+8,,,2 ‘a%e>(ej} lim)

+2<jia >(1bllae) 2<m'—b>(ajl|xm) (59)

The first two terms of Eq. (59) correspond to the second diagram (in Fig. 2) and it phr. The last two are

represented by the remaining SE|SE digram and its phr.

The second-derivative matrix elements may be derived sxmxlarly From the form in Eq. (43) we substitute
for G'™ and obtain at low order

o\
aR2¢‘> B | (60)
4 D, 1V0) | (9,1 VO :
(9| VO, [ a¢>_§_< Vo) | 0, ;.><¢F‘a’%>‘
(ES—EQ) \ *|[3R’

aR? *[ (E3-ES) (3R */ 3R | (E3-ED)
The complexity of successive terms grows rapidly; the second-order part consist of 17 terms.
Let us convert the zeroth-order contribution to orbital form. In second quantization we represent 3°/3R ?

by 3/0R operating twice: _
v /|38 ~
8R° ‘§”< > <"iaR v>u v. (61)

Then we find for single excitations, for example, that

WS (4»

“ .

(i) Gl a3 (i)
I
<203 (2 (e[ o) -0 [ o] 1 2)

o))

These terms are prescribed diagrammatically by the SE|SE block of Fig. 3. D:agrammatically, the necessary
terms consist simply of all possible proper connections of the SE bra and ket with two derivative operator
symbols. Note that the intermediate states here can be model-space states since they are part of the resolu-
tion of the identity in the form

=3 1)t . (63)

The factors of 2 on the last two terms of Eq. (62) arise diagrammatically when it is observed that the last
two diagrams are equivalent, as are the third from the last and its phr. The remaining diagrams are only

|




reconcilable with Eq. (62) after combining the terms with matching deita functions. This ts accomplished
by inserting the resolution of the identity into the even numbered terms, and separating the sums over occu-

'Hermitian property of 3/3R; e.g., ‘ P

pied and virtual orbitals; e.g.,

S [E () ()« (3
=825, l; <k ’—aail> <1 aiRk> + §I;<
3 ([ae 9 el

The first two terms cancel leaving '

3 d |
.-5,,,5,-1-§ <[a_Rfk] §C> <C _a_R‘k> ’ (65) :

which then corresponds exactly to the first SE|SE
diagram. The other two diagrams are obtained

similarly. Comparison with a conventional deriva- l

tion is straightforward, and uses the anti-
i

ioa2 :
0 —a—b> .66

! 3
<§E" {a">=-<" 3R |

The elementary second derivative terms ‘

[ /o 12 >
o, |Zoay) !,
\< UETIRS ‘
which are similar to the ¥ "% matrix elements, are ,

the only additional component necessary to evalu- |

HF. SE

-
3R

3
3R

(64)

ACON

ate the first-order ¥ terms. The integral and en-

. ergy (first) derivatives are the same ones already

used in E s. (34) and (41), but this time they are
multiplied by &' '%-like terms. These terms are
the ones required for ¥''" in Eq. (40). ¥ wiil
require second derivatives of the two-electron in- .
tegrals, but these are also available.! ¥
If the nuclear Schrddinger equation is to be *
solved exactly, either (1) the couplings must be cal-
culated in the coordinate system in which the
scattering problem is to be solved, which is not the
usual case, or (2) a complementary set of coupling
matrix elements of similar one-electron operators
must be provided to enable a transformation of
coordinates.’ The diagrams presented in this paper
are sufficient in either case. As derivauves with
respect to various coordinates are called for, one-
electron equations analogous to Eq. (47) may be
defined. However, the diagrams required will be

——— ——— — —— ———— . s . e i e
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FIG. 3. Zeroth-order diagrams for the second derivative part G of the nonadiabatic coupling matrix elements.
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the same for any one-electron operator. A comple-
mentary set of couplings may be obtained in the
same fashion. Similarly, cross-term matrix ele-
ments arising in the transformation can be evaluat-
ed using the second-derivative diagrams if the two
one-electron interactions are appropriately labeled.
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APPENDIX: AN EXACT MATRIX !
HELLMANN-FEYNMAN RELATION }

Write the eigenvalue problem in the chosen
model space

HB=BE (AD)
(with E diagonal) as
B'HB=E . (A2)

(HB can be HC of XD from the text.) Then dif-

ferentiate each side of Eq. (A2) with respect t0 R
‘representing this by a prime symbol):

(8" HB+B'H'B+B'HB'=E" . (A3)
Using Eq. (A1) and reorganizing, we obtain

B'H'B=E'—~(B'YBE-EB'B’. (A4)
From differentiating the normalization equation

B'B=1, (AS)
we can see that

(B'rg==8'8". (A6)

Realizing that E and thus £’ are diagonal, we ob-
tain from Eq. (A6) and the off-diagonal part of
Eq. (A4)

trre

(B’ ]¢a=%;£__i?7l (@s=B).  (AD)
When B is real, L

Boy=B . (A8)
Then using Eq. (A8) in Eq. (A6) gives |

S(BYyBya=~3 B,u(BL, ), (A9)

Y 14
so that

{B'B')aa=0. (A10)
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