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I

Summary of Technical Effort

This report summarizes the theoretical development of a new

approach to calculating molecular ground and excited adiabatic potential

energy surfaces and their nonadiabatic coupling matrix elements. The

fundamentals of the method will be briefly described herein; the details can

be found in the published papers resulting from our investigations, which are

included as Appendices to this report.

Methods based on single-reference many-body perturbation theory

(MBPT) have been shown to give highly accurate results for a large number of

molecules. These methods have become widely used, and the diagrammatic

theory has provided an understanding of correlation effects that has led to

the now almost universal practice of adding approximately correcting terms to

energies calculated by configuration interaction methods. However, the

single model-function methods are not appropriate for many systems of

chemical interest or for excited states in general. These methods cannot

describe the breaking of multiple bonds, and they can obtain only a single

state of a given symmetry. Since most geometrical arrangements of a

polyatomic system do not have any symmetry, this means that no excited states

may be calculated. Furthermore, the proper description of ground states of

open shell species often requires more than a single model function. A

method with the capability of treating open shell systems and excited states

is a necessary tool for the theoretical investigation of many chemical

phenomena. In turn, the basic and detailed understanding of these processes

is critical to many areas of defense technology.

The development of multidimensional many-body perturbation theory

retains the beneficial characteristics of MBPT and extends the potential

applicability to all of the cases described above. This generalization

ultimately requires a prescription for the energy denominators in the

diagrammatic expansion. In place of the single zeroth-order model-state

1 0 1 1 __1 1 1 I
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energy required in MBPT, a set of differing energies, each appropriate for an

excited state of interest, must be incorporated. There are several

alternatives for this. We have chosen to base our method on a canonical van

Vleck formalism. This leads to equal treatment of the states of interest,

which are obtained from a single diagonalization of an inherently symmetric

effective Hamiltonian matrix. This formalism is presented in detail and

compared with other approaches in Appendix A. Our efforts in this phase of

development included the adoption of a concise notation which simplified the

I( description of our formalism, as well as that of others. This was important

because so many different notations and diagrams have been employed by

various authors that the similarities and relationships among their

approaches have often been obscured.

We chose to implement the van Vleck formalism analogously to the

MBPT method; i.e., in terms of diagrams drawn with respect to an SCF (self-

consistent field) determinant. These diagrams provide a compact visual

representation and classification of the terms in the arithmetic expressions

for each order of the effective Hamiltonian matrix elements. Diagrammatic

rule can be set forth which make them entirely sufficient for construction of

these matrix elements to any order for an arbitrary set of model space

determinants. Appendix B demonstrates the diagrammatic implementation of the

method through second order for a model space of non-, singly-, and doubly-

excited model states.

Traditionally, quantum chemists and chemical physicists could be

divided into two mutually exclusive groups: electronic structure specialists

and dynamicists. So far, the interaction between these two factions has been

limited to the former providing potential energy surfaces (PES), usually for

ground states, to the latter. However, many chemical phenomena involve more

than one electronic state. Some of the most interesting processes involve ii

the avoided crossing of states of the same symmetry. The accurate simulation

_ _ _ - -"nl. . . .. "
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of such phenomena requires not only the PES but also the nonadiabatic

coupling matrix elements. These quantities are not ordinarily calculated;

even when they are, a problem arises from their coordinate system dependence

because the structure calculations use a different system from the dynamical

one. The last phase of our method development was devoted to narrowing this

iLformation gap.

Appendix C gives the details of a novel scheme: the diagrammatic

perturbative determination of nonadiabatic coupling matrix elements. This

approach prescribes the couplings directly in terms of expressions (or

diagrams) whose components consist of (1) components of the effective

Hamiltonian matrix elements (i.e., two-electron integrals and orbital energy

differences) and (2) a set of one-electron-type integrals. With this method,

the wavefunction is never explicitly calculated or differentiated. The

perturbative approach prescribes the direct construction of increasingly

accurate values of the couplings. Furthermore, the same set of diagrams can

be used to obtain all of the information required to transform between

coordinate systems by simply substituting different one-electron integrals.

Thus, the theoretical foundation necessary for the accurate study of

dynamical systems using ab initio electronic states and couplings has been

laid.

In addition to the subjects of the published works in the

Appendices, considerable effort has been devoted to detailed examination of

the cancellation of unlinked diagrams and the form of the renormalizatiou

! terms in third and higher orders. We have also begun implementation of the

method into a computer code. Although we do not have final results yet, the

results of similar effective Hamiltonian methods indicate their potential

successful application to systems of technological interest. To our

knowledge, the diagrammatic perturbative calculation of nonadiabatic

couplings is unprecedented.

I-i,
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/uasidegenerate perturbation theories. A canonical van
Vleck formalism and its relationship to other approaches

Isaiah Shavitt
Battelle Columbus Laboratories. Columbus Ohio 43201
and Department of Chemistry, Ohio State University. Columbus. Ohio 43210

Lynn T. Redmon

Battelle Columbus Laboratories Columbus. Ohio 43201
(Received I I June 1980; accepted 22 August 1980)

Three forms of quasidegenerate perturbation theory are discussed and compared in terms of a common
general formulation based on a similarity transformation which decouples the model space and
complementary space components of the Hamiltonian. The discussion is limited to formal, rather than many-
body (diagrammatic), aspects. Particular attention is focused on a "canonical" form of van Vleck
perturbation theory, for which new and highly compact formulas are obtained. Detailed comparisons are
made with the Kirtman-Certain-Hirschfelder form of the van Vleck approach and with the approach based
on intermediate normalization which has been used as the basis for most of the diagrammatic formulations of
quasidegenerate perturbation theory.

I. INTRODUCTION call "canonical" VVPT. (Klein, as well as Primas, 3' 39

Quasidegenerate perturbation theory (QDPT) has been treated the case of exactly degenerate, rather than
receiving increasing attention in recent years (for sev- quasidegenerate, zero-order subspaces.) Combining
eral excellent discussions and reviews see Refs. 1-10). some elements from the treatments of Primas3' 3 9 andIt provides the perturbation theory analog of "mutiref- of JUrgensen, 4,41 we shall present a simple derivationerence" configuration interaction (CI) techniques, f.- of the canonical VVPT formalism, and obtain highlywhich have proved effective in the treatment of potential compact expressions for the decoupling operator andthe resulting effective Hamiltonian. We shall comparesurfaces and excited states of molecular systems. this formalism with another version of VYPT discussed
"One-dimensional" perturbation theory (based on a sin- by Kirtmani 3 w" and Certain and Hirschfelder, 45 and
gle-configuration zero-order function) has been quite shall present simple derivations of explicit equations
successful in applications to many near-equilibrium connecting canonical VVPT with the more common
ground state systems and in some other cases in which QDPT formulation based on intermediate normaliza-
a single configuration provides a reasonably adequate tion and a ion ma n o Hm itoni a 2 -starting point (for some examples see Refs. 13-21). tion and a non-Hermitian model Hamiltonian. 2-iO The

different quasidegenerate approaches will be discussed
Practically all such applications have used the many- in terms of a common general formulation (see also
body form of Rayleigh-Schri5dinger perturbation theory Klein 5 and Brandow4) which clearly shows their relation-
,(RSPT) (for reviews see, for example, Refs. 22 and shins nl B r mal aspects o the eaions23). This approach has significant advantages over Cl ships. Only the formal aspects of the QDPT expansions23).Thi aproah hs sgnifcan adantgesove CI will be discussed here. We expect to discuss their
techniques because of its use of the linked cluster ex-

pansion24
,' and its "extensivity" property, 2,18,18..27 many-body realization in terms of diagrammatic ex-

i.e., its correct scaling with the size of the system. pansions in future contributions.

While coupled cluster techniquesas appear capable of The notation to be used and the common framework
extending the range of usefulness of single-configura- for the treatments of the different formalisms are pre-
tion based treatments considerably, 271n including some sented in Sec. I. Canonical VVPT is derived in Sec.
nearly degenerate or even fully degenerate cases, 30*31 III. The Kirtman-Certain-Hirschelder (KCH) form of
it still appears desirable to have practical computa- VVPT and the intermediate normalization form of QDPT
tional techniques based on a multidimensional "model are discussed in Secs. IV and V, respectively. The re-
space" as the zero-order approximation. (An alternative suIts are discussed in Sec. VI.
strategy is to use unrestricted Hartree-Fock zero-order
functions, 11,tO but this appears to have some serious dis-
advantages.27) In fact, QDPT may be expected to pro- II. COMMON FRAMEWORK FOR QUASIDEGENERATE
vide faster convergence and more general applicability PERTURBATION FORMALISMS

than one-dimensional perturbation expansions, and A. Notation
should become an increasingly important tool for the
calculation of highly correlated electronic wave func- The Hamiltonian H is partitioned into a zero-order
tions and energies of atoms and molecules. (A coupled part and a perturbation
cluster analog of QDPT has also been formulated. 7,32) H = H0 + V . (I)

In the present contribution we are concerned primari- The eigenfunctions of Ho will be written in the form It),
ly with a particular form of van Vleck perturbation the- with eigenvalues c,, asory '6 33-

42 (VVPT) which, in the spirit of Klein's treat-mentf (see also J6rgensen2 and Brandow4), we shall H0 i) = I) , (2)

J. Chen. Phys. 73111), 1 Dec. 1980 0021.9606/80/235711-07$01.00 Q 1980 American Institute of Physics 5711
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and the set of these eigensolutions will be partitioned UV)C=U&,(4
into two subsets

/tt, .... o= , 1.... U i, .... (3) w here

defining the "model space" to, .... } and its orthogonal j = {) Ca (15)
complement. The projection operator into the model
space is are the "bonne functions" referred to by Bloch" and by

J~rgensen and Pedersen. 0 .4 '
Rewriting Eq. (11) in the form

and its orthogonal complement is U3C=HU , (16)

= 1- P = ji) i (5) and splitting it into diagonal and off-diagonal blocks us-
"T"i ing Eqs. (8)-(10), we find that the condition (12) leads

Any operator A can be partitioned1 into a block diag- to the following implicit equations:

onal part AD and a block off-diagonal part Ax BoUX =-VX U,+ UX X) , (17)

A =ADA x ,(6) or, using the definition of IV in Eq. (12),
AD=PAP+QAQ, Ax =PAQ.QAP . (7) 1H 0, UX]=-VXU 0 -VDUX-u5"V , (18)

For a product of two operators we have and

(AB), =A, B,+AxB, , (AB)x =AD BX +Ax BD (8) W= [H0, U D] + VX Ux + V L"D - (U -1) W . (19)

For the Hamiltonian we note that, since H0 is diagonal, Expanding the operators in orders of the perturbation

HDH+DUt n) = =f 1") =Ho- t , (20)HX = V 0 • (10) -0 (20)

with
B. Quasidsgmnerate perturbation theory U'0 ) =1 , C(= Ho , K(")= WV" (n>0) , (21)

The essential feature of the various QDPT formalisms explicit recursive equations are obtained for n> 0:
is a similarity transformation which block diagonalizes I
the Hamiltonian [H0 , Ux" )] =- Vx U~"'-' - V U ('+ U"' W+"' '

JC=U'HU 2(11) 22)

with and

C =D=HO+w, CX=0. (12) WR,= (H,,+vxU D, U V.11 U -VDL.

This is not always the form in which the formalisms are (23)
presented (particularly for the intermediately normal-

ized form-1 0 ), but it provides a common and simple However, the decoupling operator U is not fully deter-
starting point for straightforward derivation of the equa- mined by the condition (12) or, equivalently, by Eqs.
tions for all of them. The decoupling operator U is (22) and (23) (note that no equation for U " ) has been ob-
unitary in the van Vleck formalisms and produces a tained). In fact, multiplication of U by any block diag-
Hermitian effective (or "model") Hamiltonian PJCP. It onal operator does not destroy the decoupling of JC.
is nonunitary in the intermediate normalization approach Different supplementary conditions on U (i.e., specifi-
(where it is referred to as the "wave operator") and cation of UD) then lead to the different QDPT formalisms
leads to a non-Hermitian C (which can easily be trans- discussed in the next three sections.
formed to a Hermitian form, if desired4

). The operator Different choices of U produce different model Ham-
W defined in Eq. (12) is referred to as the "level shift" iltonians, and, while they give the same infinite order
operator, particularly in the exactly degenerate case. eigenvalues and eigenfunctions [z, Eq. (14)], their

Obviously, 5C has the same eigenvalues as H, so that truncated (finite-order) results are not generally equiv-
diagonalization of the model Hamiltonian PICP provides alent. Thus, the choice of subsidiary conditions to com-

a subset of the eigenvalues of H. The perturbed model plete the specification of U may affect the rate of con-

functions are vergence.

U1 01) = It (tI( U(a) , (13) It is well known, of course, that once U0 has been
specified, Eq. (22) does provide an explicit equation

c ase)~~~~fo of) inr u g th e v a nl e n V cpcs ). T erore p n dtor~iI( 5and the overlap matrix between them is PUtUP (which is for U n through the resolvent operator
a unit matrix in the van Vleck case). The correspond- R 0) = Q )i (24)
ing eigenfunctions k, of H are obtained by transforming f. -H o  -E. -(2,
the perturbed model functions (13) with the matrix C of since
eigenvectors (right eigenvectors in the non-Hermitian
case) of Php. Uxo 73) ,NR' .11H, UDecembe (25)

. = 1 J, Chem, Phy$., Vol. 73, No. 11, 1 Decemb~er 1980

• I .. .. . . .. , . a, , •



6 I. Shavitt and L. T. Redmon: Quasidepenerate perturbation theories 5713

III. CANONICAL VAN VLECK PERTURBATION Bernoulli numbers B1. (see, for example, Abramowitz
THEORY and Stegun51 ):

The unitarity of the decoupling operator U in VVPT can =(
be ensured by expressing it in exponential form3 5

. = B . (3)

U=ea , (26) (Other notations for the Bernoulli numbers are also in
use; see, for example, Jolley. 5 ) The first few coeffi-

with G an anti-Hermitian operator cients in the series are

(27) c = 1, c, = , c = -k', c=€3. c = - 8.

The canonical form of VVPT (compare Klein,' Jrgen- (40)
sen, 42 and Brandow4) is obtained by completing the spe- Equation (38) can be expanded order by order:
cification of U through [Ho, G = Vx ,

G=Gx, G=0 . (28) [H,, G,' (VD,G,' ,

The decoupling operator and the transformed Hamilto-
nian obtained from this condition will be denoted by Uc G

and Xc = o+ Wc, respectively. [Ho, G (4 ] = - [VD, G M) - 3{[[Vx, G(' 1 , G (2 1

In order to obtain a compact formalism we shall use a + [[VX, G '1 , G<)I},
superoperator notation, '3, in which with any operator [H1G (3[)],G'1
A we associate a superoperator A defined by5 °  11o, G5)1= - V, -3 { f[x,G G

AX=[X,A J=XA -AX (29) [[V, G(2)], G '1) +[[Vx, G 131, a"]}

(where X is any operator). Positive powers of A pro- . * [[I[vx, G1i' 1, G 1 ) it G() 1, G 1 (41)

duce repeated commutators etc., and converted into explicit equations for the G(")
using the resolvent formalism [Eqs. (24) and (25)).

zx =[xAI, Aj , (30) (Note that G( ) =0.

etc.. and the zero power is the identity superoperator The transformed Hamiltonian jc = (5c)v can also be

A °X=X . (31) obtained compactly in terms of the hyperbolic functions

As noted by Primas, 38,63 this allows a compact repre- of the superoperator

sentation of the Baker-Campbell-Hausdorff expansion Cc = coshG 'D + sinhG Hx

1 coshG- I
eG =H+[HG+Fj [[H,G1,G]+ .... HD + sG-H, G + sinhd HX

6- H= e6H -(32) HD - (coshG -1) cothG Hx , sinhG Hr

-0"I = HD - cschG(cosh2G - coshG - sinhG) Hx
It is convenient to partition this expansion into even and
odd functions of G: =H o -cschG(l -coshG)Hx

e a = coshG -sinhG . (33) HD + tanh( G) Hx , (42)

Then, if G satisfies Eq. (28), we find that or
W = V + tanlh(-2L G) Vx

(5'c)o = (e' H)D = coshG I'D sinhG Mx (34)

(Pc)x = (eG H)x = coshf, Hx + sinhG H. (35) =V o + t,(V +)a,*tVx , (43)

The decoupling condition (12) can now be written in the where the power series coefficients t, are also related
form to the Bernoulli numbers

sinhG 2-
0 = (-c)x = coshG Hx + - [HD, G (36) ___&"2(2 - B)

(2n + 2)! z,,'z (44)
(note that the superoperat. function G' sinhG involves The first few coefficients in this series are
no inverse powers of 6 in its power series expansion).
We thus obtain a commutation relation for G: to =], =-, 1z,2=. t =-.3 , /4=& (45)

[H,, G =- cothGH , (37) The order-by-order computation of W¢ (and of kc )

or, noting Eqs. (9) and (10). easily follows:

[Ho, G=- [V, G 1- coth6 VX C D
__, w ' ='.Iv., (1) I

=- [ls, Gj - C.o ,.;" , V~ (38) t, = '-V , G '

where the power series coefficients c, are related to the ",' (4 M 3 1 L[ ,

J. Chem Phys., Vol. 73, No. 11. 1 December 1980 I



5714 I. Shavitt and L. T. Redmon: Quasidegnerate perturbation theorie 7

S [vx,G( 4)]-h-[[[vx, G(i) ],G(1, G( By repeated use of this relation, together with Eq.
[[[VyCM)I, G(21,],G11 II.[VX, G(2)],G 01],011 , (49), it is possible to convert Eq. (23) into a form in

which W,"" and Wkbi) are expressed in terms of UP",
(46) m = 1, 2, ... , n. The resulting equations can be written

etc. We observe that W,: depends on G "), m = 1, 2.... , in the form55

n - 1. The operator Uc, and thus the perturbed model
functions (13), cw be obtained from Eq. (26) to the same WK~' 4 (U-Iz)V U t UK 5

0
order as G. n t/" U

It is clear that the canonical VVPT forn.alism is en- , (U U
tirely expressible within the domain of a Lie algebra, (7(-&it (n---,bI ()1

and should thus lead to fully linked diagrammatic expan- + (UKo ..k WK (52)

sions which satisfy the extensivity requirement order by WM-D = (U "' vu ))
order. 2611,39 

K(7 )

IV. THE KIRTMAN-CERTAIN-HIRSCHFELDER FORM . 6 2 ,. W(U' U1 )
OF VVPT + U U~bi) 0 w ;y , (53)

The canonical form of VVPT was derived from the

choice G0 =0. In some earlier work on the van Vleck and represent an extension of Wigner's (2n + 1) rule to

approach,53 and more recently in the work of Kirtman43'"4  quasidegenerate perturbation theory. This should result
and of Certain and Hirschfelder 45'4 (KCH), a different in computational economies, and is the principal advan-

choice was made to complete the specification of the de- tage of the KCH formalism. "s" It does not appear pos-
coupling operator. It does not appear possible to spe- sible to obtain a similar result for the other QDPT for-

cify this choice in terms of a single order-independent malisms.
equation, so it is stated as a condition connecting dif- The unitary transformation which connects UK and Uc
ferent orders of U. can best be expressed in terms of an operator 31, de-

The unitarity condition of U through any order n> 0 fined by

can be stated in the form UKe =e
G e" = Uc e' (54)

: U()(U.)=0 ) (47) This operator is block diagonal (31x =0) and anti-Her-
.4o mitian, and tedious order-by-order comparison of the

The sum in Eq. (47) can be split into two parts equations for UK and Uc shows that

SU"-)' U1 ",-", = 2.° (1 -~ ~'M. (,U-U),--) . =M (1) ='1 1 121 0,
(4--l zf )6...) M ,3)=tG UGZ))

M (3) = L [G ', G') ,

j+.6.. (1 6-...) U t' U ( ) U (48) .xIs =_ [G,", G",1 +_ [G'2 1 , C,3 4

where [x) denotes the integral part of x. The KCH ortho- +- [0 ), (G(l)) 3 --1 G(l)[(). G(2)lG() , (55)
normalization condition for the perturbed model func-
tions (13) can be obtained by requiring that the diagonal e fond.
blocks vanish for each of the two sums on the rhs of be found.
Eq. (48) separately. Denoting the resulting decoupling A recent diagrammatic treatment4' of the KCH formal-
operator and transformed Hamiltonian by UK and JCK ism finds that the expressions for IV/ can be written in
=Ho- WIK, respectively, we get" fully linked form through fourth order, but that some

unlinked diagrams remain in fifth order. It appears
" (1 - -5,,.) U '-) 0 (n >0) • (49) likely that this is related to the lack of an order-inde-

pendent equation for UK (or, equivalently, for K or .1),
Together with thi. uecoupling condition (12), or with Eqs. since it can be shown that any formalism in which -C can
(22) and (23), this completely specifies UK. It is pos- be expressed in the exponential form (32) satisfies the
sible to write UK in exponential form separability theoremn 81 and is thus fully linked, order

UK =e , (50) by order, provided general order-independent equations
for the exponential operator exist.

with K-- Kt , but there appears to be no advantage for
this form in the KCH treatment. -'6 V. INTERMEDIATELY NORMALIZED QDPT

Using Eqs. (16) and (20), we can derive the recursion The most widely used form of QDPT is based on in-
relationst termediate normalization and leads to a non-Hermitian

m) nmodel Hamiltonian. 2-10 We shall denote the decoupling
UTM? VU' )U( VU 4  '(') U ) U )  operator (wave operator) and the transformed Hamilto-

nian obtained from the intermediate normalization con-
- U ( '.  ,- )  dition by Ut and P:h = H + IV,, respectively. This condi -

k0.o tion takes the simple form

NOJ.Chm Phs 0 :,N. 11, 1 DeCember 1980 _
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(U)D =1 . (56) I"c = 'eG He

It is convenient to define an operator5-6,(U' U ; U,(Lt, url t 2

X = (U)X = U, - 1 .(57) =(ut'r1UUi'C'u

Substituting Eqs. (56) and (57) into Eq. (19) and then = (UP )/,(U" U-112
Eq. (18) provides a very simple direct derivation of the (1 X2)" 25(l -X 2 )-"1 (68)
equations determining X and W,: or57

W,=VD+VXX (58) 3C1=coshG 3Cc sechG . (69)

XI- V, , XV, X .(59) An equation for the direct determination of the Hermitian

We also find from Eq. (59) that X is anti-Hermitian: model Hamiltonian Mc in terms of X instead of G is given
in the Appendix.X = -X' (60)

Order-by-order equations for X and W, follow directly VI. DISCUSSION

from Eqs. (58) and (59): Three forms of quasidegenerate perturbation theory

[H, X (' ) I- V, have been examined here in terms of a common general
[H., X(2) 1=_ [v,, X (formulation based on a similarity transformation of the

Hamiltonian. This approach, together with the sym-

[Ho, X " - -[V,X") I+ (.) X=Vr XVXX - t  metric treatment of the P and Q subspaces represented
by the D-X (block-diagonal/off-diagonal) partitioning of

n-2 operators, has enabled simple and direct derivations of
t 

)  (n> 2) (61) the relevant equations and has clearly brought out the
S 2) ( relationships between the different QDPT forms. This

wt= V , derivation bypasses the complications of the usual de-
velopment of the intermediate normalization formalism

W'= V1 X"M'" (n>1) . (62) which often involves iterative removal of energy depen-

dence from the denominators and treatment of zero-
Comparing the recursion relations (61) for X with order energy differences as perturbations (see, for ex-

those for G (Eq. (41)1, we find that ample, Kvasni~ka, a but see also his more direct "al-

G 1) =X ( 1), G (2 =X (2 . (63) gebraic theory" in See. IIIC). The use of the D-X par-
titioning also allows us to avoid the extensive use of pro-

A more tedious comp~arison shows that jection operators, which tends to obscure the formalism

G(3)=X(3) t XM)3 (see, for example, Klein').

G(4) =X4 + {(X" M)fXt 2 ) + X1MX 2)X" + X(2)(x(It))z " Except in the Kirtman-Certain-Hirschfelder fo rmal-
3ism, 43-48 in which order-independent formulation is not

( possible, the equations for the wave (or decoupling) op-

In fact, these are special cases of the general relation- erator and for the transformed Hamiltonian have been
ship between G and X, proved in the Appendix, obtained initially in order-independent (implicit) form,

I =from which recursive order-by-order equations for all
G = arctanhX, (65) orders easily follow. The use of a superoperator nota-

1tion and hyperbolic functions of the superoperator has
or allowed a very compact and simple derivation of the

general equations for the canonical VVPT formalisr-.
S=X tanhG = t, Ga (66) The infinite-order model Hamiltonians of the different

formalisms are related by similarity transformations.
[ [see r.,s. (44) and (45)1. Since arctanhx=2 In[(l +x)/ but when these model Hamiltonians are truncated at a
0 ( .- , we have"7  finite order, the similarity transformation relationships

i x V=X/2  are no longer exact. Thus, they would generally pro-
Uc =ea= Yi 2 duce different results order by order, with possibly dif-

ferent convergence characteristics. The selection of
= (I X)(I - X2) " /Z the method to be used would thus be governed by con-

vergence behavior as well as by computational consid-

U( )"' 2 
. (67) erations.4 In this regard the KCH formalism has the

As seen in Sec. 11, U; U, is the overlap matrix for the advantage of the (2n - 1) rule, So while the other forms

perturbed functions I, f). Thus, as noted by Brandow 4  benefit from having fully linked diagrammatic expan-
petbd7cize, Kl, asnted and sions in all orders. The intermediate normalization

(see also des Cloizeaux, Klein, 5 Kvasnicka, 8 and form (with or without Hermitization) appears to be the
Levy'0 ), the canonical van Vleck functions Uc i a) may most convenient for applications involving infinite order
be viewed as the result of the symmetric orthonormal- partial summations.
ization" of the U, ia functions. The connection between
the corresponding model Hamiltonians is then Equation (AS) of the Appendix provides a hybrid ap-
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proach for QDPT calculations, using the intermediate where
normalization formalism for the determination of the 2nwave operator U, = 1 + X, but obtaining the Hermitian q.= 2 (A6)

model Hamiltonian 3A =H0 + W c . This type of approach n

has been advocated by Brandow.4 is the coefficient of .e" in the binomial power series for
(1- x)" 2 . The first two terms in these expressions
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Multidimensional many-body theory: Diagrammatic
implementation of a canonical van Vieck formalism

Lynn T. Redmon and Rodney J. Bartlettal
Battelle Columbus Laboratories. Columbus. Ohio 43201
(Received 25 August 1981: accepted 4 November 1981)

A size-extensive multidimensional many-body theory is developed from an order-expanded van Vleck
transformation. This provides an effective Hamiltonian in a model space consisting of a set of determinants
whose zeroth-order energies may be nondegenerate. Expressions for the effective Hamiltonian in terms of the
perturbation and a set of resolvents generalized from the Rayleigh-Schrddinger form are given. Perturbative
evaluation of the resultant formulas via diagrammatic expansion is illustrated and discussed. The diagrams
required through second order for a model space consisting of a Hartree-Fock solution plus selected singly
and doubly excited determinants are presented, and their relation to those employed in the method of Hose
and Kaldor is discussed.

I. INTRODUCTION The connection of RSPT to diagrammatic perturbation

Two problems of current theoretical interest are (1) theory and the linked cluster theorem of Goldstone

the calculation of highly correlated excited state ener- provides a solution to these problems. Each diagram

gies and potential surfaces for molecules and (2) the possesses the important property of size extensivity.

description of ground states of multiply-bonded or This means that approximations consisting of evaluation

open-shell species. The first ab intio method used of subsets of the full set of diagrams for a given order

for these purposes was that of configuration interac- will also have this property as long as complete dia-

tion (CI). 1 Original applications involved only a few grams are included. Furthermore, diagrammatic

selected configurations, but today they routinely include studies have enabled the observation that often the ma-
alsngleed oublexcations o ate o ieinue jor function (in fourth order) of including the CI quadru-all single and double excitations relative to a given ple excitations is merely to cancel the spurious (un-configuration or set of reference configurations, linked) parts of the effect of double excitations in CI,

In recent years, the CI approach has been joined by which are not included in the linked cluster expan-
many-body perturbation theories (MBPT)2- 5 [based on sion. 10,17 Most importantly, diagrammatic perturbation
Rayleigh-Sche'ddinger perturbation theory (RSPT), dia- theory has led to formulations for the further effects
grammatic expansions, and the linked cluster theorem of quadruple excitations which are feasible to calcu-
of Goldstone3 ], including iniinite-order coupled-cluster late. 10,11
techniques. a-10 MBPT calculations based on a single Although one-dimensional MBPT has been shown to
determinant have become routine for ground states of provide highly accurate binding and activation ener-
many systems, , and their usefulness for a wide vari- gies, '8-20 potential surfaces, 21-25 and spectroscopic
ety of molecular problems has been demonstrated. 12-15 parameters, such as the quartic force field of the water

In MBPT, it has proved convenient to adopt a dia- molecule, 13 it is not universally applicable, particularly
grammatic formulation since, just as it is not feasible when exact or near degeneracies are encountered in a
to solve the full CI problem in a basis of sufficient size molecular problem. For example, even with unre-
to quantitatively study interesting molecular systems. stricted Hartree-Fock reference functions, it is usual-
the RSPT energy expansion must be truncated. The ly insufficient for potential surfaces involving the dis-
linked diagram expansion provides a useful subdivision sociation of multiple bonds, I and it is not ordinarily
of the terms to be evaluated or neglected. Even so, applicable to excited states other than the lowest state
complete evaluation of fourth order involves terms from of each symmetry. The study of these problems neces-
triple and quadruple excitations (relative to the Har- sitates a multidimensional treatment.

tree-Fock ground state). Various fourth-order ap- Several multidimensional perturbative methods have
proximations (or particularly the analogous CI treat- been proposed. The completely degenerate case was
ments) are still formidable problems. On the other considered by Bloch and HoroWitz, 2 and later by

hand, stopping with third-order RSPT does not include Morita, 27 The first thorough quasidegenerate linked-
any effects of single excitations or higher-than-double diagram approach was formulated by Brandow.28
excitations. Furthermore, any less-than-full CI treat- Lindgren presented a direct and particularly trans-
ment or nondiagrammatic RSPT approximation, which parent development of the theory. which he then ex-
is not complete to a ziven order, will suffer from size tended to a multidimensional generalization of the

inextensivitv (also called size inconsistency or un- infinite-order coupled-cluster approach. 9 More recent-
linked cluster) errors; i. e., the energy is not propor- ly, Hose and Kaldor (HK), 30 Mukherjee et al. '31 and
Itonal to the number of noninteracting subsystems. . others3 2" 3s have contributed to this field of study. The

I results of Freed and co-workers, " Kaldor, '4 Hegarty
* Present address: Quantum Theory Project, Department ot and Robb, I" and HK3 8 indicate the promise of these

Chemistrv, Universitv oi Florida, Gainesville, Florida 3"i2l1. theories.
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TABLE I. Characterization of methods. dence of the effective Hamiltonian initially, and yield
h a non-Hermitean order-by-order perturbation expan-

Method a b c d sion for the wave operator, without considering BW
Brandow* I N C S(C) denominators. In addition, when the cluster operator

Freed' I S C N es is put into normal-product form, a convenient de-
velopment of multidimensional coupled-cluster theory

Hose and Kaldor"1 I N G T emerges.

Lindgren' D N C S(C) The approach of Hose and Kaldor 3° differs in two

Present D H G S(HF) significant ways from the earlier methods. First, it
permits a general model space rather than a complete

aDirect (D) or indirect (1) formalism for denominators. space. This flexibility is important for reducing com-
5Hermitean (H), non-Hermitean (N), or symmetrized (S) effec- putation time and for handling the problem of intruder

live Hamiltonian formalism, states. Also, it specifies each matrix element in per-
cGeneral (G) or complete (C) model space implementation. turbation theory with respect to its ket vector (e. g. , the
'single reference state (S), such as core state (C) or Hartree-

Fock determinant (HF); or transition (1) diagrammatic nota-
tion; or nondiagrammatic implementation (N). state. This approach introduces some cancellations that

'Reference 25. are not present in the Brandow development. These
tReference 35. authors handle their energy denominators as Brandow

'Reference 30. does, in a quasidegenerate fashion.
I 'Reference 38.'Reference 29. The approach proposed in this paper appears to have

advantages over these earlier techniques. We believe
it is necessary that multidimensional methods be size-
extensive, permit arbitrary choices of model func-

The relationships among these methods can be ex- etnie emtabtaycocso oe uc
lions, and still retain clearly defined hole and particle

amined on both formalistic and implementational levels, labels so that categories of higher excitations may be
One formal difference involves whether the energy easily identified. A method that offers these elements
denominators are obtained directly (D) or indirectly and is manifestly Hermitean is the canonical van Vleck
(I, employing a degeneracy-breaking perturbation and transformation. 10-42 Brandow has discussed the simi-
resumming). Also, formalisms can lead to Hermitean larity of this method to his apprach, 39 but he has not
(H) or non-Hermitean N) effective Hamiltonians. Some considered the generality of the method for arbitrary
of the former are explicitly Hermitean, while others model spaces.
are symmetrized by brute force (S). This aspect is oer paces.
analogous to the choice of fully or intermediately nor- Another diagrammatic (noncanonical) van Vleck ap-
malized perturbed model functions. It has been proach has been proposed by Kirtman. 3 This formalism
shown39 .' 40 that the canonical van Vleck functions can (referred to as KCH in Ref. 40) has the advantage of a
be viewed as the symmetrically orthogonazed version 2n I rule; i.e., The (2jn- l)th-order effective Hamil-of the intermediately normalized functions. tonian can be expressed in terms of the nth-order per-

turbed functions. His results are size-extensive through
On the implementational level, the basic difference fourth order, but not in higher orders, in which only a

is whether a complete valence model space is required "quasicancellation" of unlinked diagrams occurs unless
(C) or the model space is allowed to be general (G, the model states are exactly degenerate.
or incomplete). A related matter for the specification In the following, we implement the canonical van Vleck
of diagrams is the choice of reference state(s) from tnsfolaon formlmen tencal van
which particles and holes are defined. The options here transformation formalism for nondegenerate MBPT in
are the use of a single state (S), which could be a core an a m ltidim tic epa e. We prsent
state with less than N orbitals or a given state (e.g. , ane o f The diagmmati enon hreuiThe
the Hartree-Fock determinant, as in the present meth- od rd Th e ad anefetis mto a d.method yields a Hermitean effective Hamiltonian and.
od), or the use of several different states [as in the HK thus, a set orthoconal eienvectors; (2) the resultant
transition (T) method]. Each of the various methods of- ergs z s pecifiedaby nexpnso f t sze-

fers a combination of these features. Table I sum- extesie specifie; b3 n exps .

marizes the characteristics of several approaches, in- . .
elu g te pwe observe cancellations that do not occur in thp other
above." methods; (4) because we construct all diagrams witn

reference to a Hartree-Fock determinant UHF t)- a:;
Brandow's 1 non-Hermitean wave operator approach open-shell problem). hizher-exciltation conir:I:atic'.

uses a core reference and a complete model space. It are easily identified, and useful approxm.tins :,,r
expands the Brillouin-Wigner (BW) denominators. rela- actual computations mav be more readil; app.,rv'i!:
tive to a reference energy, and incorporates a de- (5) a single evaluation and diaconaiza,,:,n of tne el-
i-eneracv-breakina perturbation, from which a Ray- fective Hamiltonian will v -i.d a set ,t neari" equiva-
lei.,h-Schrdiner size-extensive expansion is re- lentlv treated states (was resultini :rewm the ctioice t
itained via resummation techniques. Although it is orbitals, a conimen problom shared id all multistat
equivalent to Brandow's approach, Lindtren's for- methods, is not considered here): and (6' implementa-
nmalisni uses a generalization of the degenerate Block- lion within a general model space of selected deter-
Horowitz2 . method to dispense with the energy depen- minants increases the practicality of applications.

J. Chem. Phys.. Vol. 76, "4o. 4 15 Februarv 1982
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II. THE CANONICAL VAN VLECK (CVV) along with Eq. (7), and analogous terms for the blocks
TRANSFORMATION of H, V and U, we have

Multidimensional perturbation theories begin from the Hz =V z , (14)
specification of a model space spanned by functions H, =H1O1+ V, (15)
(*,, y,= 1, di. If the b's are orthonormal, the projectors - (
P for the model space and Q for its orthogonal comple- and we define" W by
ment are given by

d =H1 °1 + W. (16)

P= ,)'j .,- (4,,j = Iv)( , (1) Partitioning Eq. (11) into diagonal and off-diagonal
blocks leads to

Q=E >*l,>(, li><ij. (2-) [H', Ux]=-vxu,,-VDU, +u,,W, (17)
and

P and Q are idempotent and self-adjoint, and form a

resolution of the identity. The objective is to solve for UDW=HW", U0 ]-I+ VXUX + VDUD . (18)
a subset of eigenvalues (and eigenvectors) of the Schr6-
dinger equation When U and C (or W) are expanded in orders of the per-

H* =*E (3) turbation with

by means of an effective Hamiltonian equation in a space U 0 ) = 1 , (19)
of reduced dimension, that of the model space (0) = H 0) ,(20)

C = W"1  (n>0) , (21)
3C.If is composed of matrix elements within the model these equations lead to explicit recursive equations for
space of a transformed operator U" ) and Wi) (for n >0):

X= U"HU , (5) ,,

D is a matrix of eigenvectors, and E is a diagonal ma- (H" , U"'i- - V= UA"" - VDUP' 1 + N
trix of eigenvalues. The transformation U is required (22)
to be unitary and to decouple the P and Q spaces 43

U-1 = Ut, (6) 4"'=H1 01 , ti'I+ V1 X.-I)+ Vu - 1 -U D
r-I

icE --- Q + QJCP=0. (7) (23)

The exact eigenfunctions, if needed, are given by Unitarity is ensured by defining

*= UP4D. (8) u (24)
with G being anti.-Hermitean

The unitarity of U results in full normalization since

() G =- Gt . 25)
(*I*)>= Dr K*IPUt UPn) D =1I. (9) 5

It is then convenient to obtain ordered equations in terms
We identify P41) as the perturbed model functions V: of G rather than U. We note that U has not yet been

,0=P0D=Ue* . K0) completely specified. This is accomplished by the Kem-

Using Eqs. (10) and (5) in the form ble condition," requiring that

HU=UC , G,= 0 . (26)

Eq. (4) is easily derived by the following sequence of This ensures that G has the least possible effect upon the
Eq.(4)nisais d d by te fmodel functions 3 q and that the perturbed model eigen-
manipulations of Eq. (3): vectors optimally resemble the exact ones.39,

H*=*E ,

HU*=UU'*E From Eqs. (24) and (5), it follows6 .
3 that

HU*' = U*&E C = e'GHe'G =(Her-)L (27)

UCA= E,() he subscript L means that all effective Hamiltonian
Matrix elements are represented entirely in terms of

,,'= ,'E , "linked" diagrams. In general, linked diagrams must
P'P9D= P*DE ,not contain separate closed parts. However. diagrams

consisting solely of noninteracting open lines and a
'PCPD =DE . single closed part (which appear on the diagonal) are

considered linked. Disconnected open diagrams are
Perturbative expressions for U and iC may be obtained also permitted. The meaning of "open" is given in

from Eq. (II). Using the notations of Ref. 40 Sec. 11.

Pp - Q , (13) As is shown elsewhere0 the expansions of G = G, and

and the usual separation of the Hamiltonian H=H ( ° ' 
- , C are given in commutator form by

J. Chem. Phys., Vol. 76, No. 4, 15 February 1982
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[H(o), YD' l (;(v[I ) 

, o,

0),, G)1)), G1)1 ,R'0 V V, G ,]P -P, V, G2R R'

[W 'O, 'oV=-[ v , (; "I - 1 x, C' 1, G ,' 1 G , = R (0 ([ V0. (2)1 [[v , '1)], G("' )P,---- x 0 1 ) G- 11L~,1 ] Y, Z ( , G 2,].. (,

[ G (5, ' s' = -[ V 1 , G (4) 1 -i [ vt , G " ) , G 13 )] - P ~tV o , G ' 'l -3L [[[ V x , G ' "1, ,, = ,

+[H V, G' 2 ] , G' I]+ R G(3G4 G()] G ( {R Q '([VI, G 3)1 + 1 ([[V X, G"), G)2]

+V
(28) '' [[v ; '2 , P,, P,

and ... same terms... )R(, } . (33)

'0 1= H'0 ' , These expressions are sufficient to obtain the energy
= W = V0, through fifth order. The equations are quite Lengthy in

t.-r Rayleigh-Schrdinger form, so we shall give the
, ) 1 [V G(1) ] , results only through third order:

e4)= w()= 'x G(2)1OB 
-"

c " w ' v x , ;' 1) 1' -11 . 1

-(1/24) [[[V , G("], G"'] G', 'C(2) = i , "o ),,-,, =1, .[, [,% G().. 2.,,-R=O' V , ,,

( / 2 4 ) [ [ v x , G '" , G 1 ] , G ( 2 ]- . I v P ) ( , , i V R (' W = ,.
+ [v,, X , G" ] G'"

VR.10 VRI 0 V4,1

+[[[Vx, G], G')I, G"))1  . (29) (1= Vo)R 0o)

The Hermiticity of the expansion for3C,, is apparent, - J (4'= I e 4 %; ,%. V-Pe) (34)
and no explicit symmetrizing procedure need be applied.

Unlike Kirtman's generalized van Vleck approach, 33 no Each order ( 3) includes renormalization terms simi-
powers of G("' appear within the commutators of Eq. lar to those resulting from the bracketing theorem of
(29). 05 Thus, the results of the canonical van Vleck ordinary RSPT, except for the specific combinations of
model will be size-extensive since ;c is represented in the various model state resolvents. Through third or-
the domain of a Lie algebra. 16 Furthermore, this prop- der, the CVV effective Hamiltonian of Eq. (34) is exactly
erty is not dependent on using a complete reference equivalent to a Hermitized combination of the Hamil-
space. Thus, this treatment incorporates a flexibility tonian of Lindgren"0 or HK. 3 It already differs from
crucial to solving the multidimensional many-body prob- Kirtman's Hamiltonian in third order.
lem.

The explicit diagrammatic construction of the effec- III. DIAGRAMMATIC EXPANSION
tive Hamiltonian matrix elements follows conveniently,
as in the one-dimensional MBPT case, from expres- in te r mlas for we o btaine etermn-
sions given in terms of the perturbation V and, in this dinger type formulas for the order-by-order determina-
case, a set of generalized Rayleigh-Schr~dinger resol- tion of an effective Hamiltonian matrix, which when dia-
vents. These resolvents arise in C from the commuta- gonalized will yield a set of ground and excited states.
tor with H' in the equation for G. The expressions for At that point, the type of model functions and the dia-

(are realized by substituting Eq. (28) into grammatic expansion were left unspecified. The main
objectives of a multidimensional treatment are (1) to

Gx R 0 o, IP-Pobtain sets of uniformly described excited states and[ (2) to properly correlate ground state potential surfaces,

(30) which require more than a single reference function be-
where cause of spin symmetry requirements, breaking of

P,= (3)(1) multiple bonds, or open-shell products, etc. We will
consider, as an example, a model space consisting of a

and R(,0' is a generalized Rayleigh-Schrddinger type Hartree-Fock (SCF) determinant plus selected singly
resolvent involving the zeroth-order energies of the and doubly excited determinants.
complementary states and a particular model state: We begin by specifying the separation of the Hamil-

I.)i , tonian. In second quantization, the electronic Hamil-
[,~-~, (32) tonian is given by

These energies will be specified in the following section, H=E hp' q + t I q's , (35)
Thus, P 4 Mrs

J. Chein. Phys., Vol. 76, No. 4, 15 February 1982
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where TABLE U. Zeroth-order effective Hamiltonian
matrix elements.

A , HF I HF:
\4O 1H, 4,0) =EHo"

'pq rs,= J X-(1) :(2)r (1 -P12) X,(l) X.(2)dtd 2 , 
HF I SE =U

(37)
and we have designated the creation and annihilation HF1DE=0

operators by their subscripts alone. In terms of quan- SE I SE.
tities in normal product form, " H is given by €&-H,'j = b [ F+, ,

H = le + ((ko Hu) , (38) SE IDE=O

where DE I DE:pq I H C) -=62~ 6 [H + t-kj -E,

le H1, vo (39) 41-]hlbo [E0

HN= hf [,+ P, :t :t ].,I[ q, (40)

I Pq rsjV[p'qesr] • (41) lines. A diagram containing open lines may also be
4 ftrsdescribed as open. The cony rition of not redefining

The use of the VN potential significantly reduces the hole and particle labels results in allowing open lines

number of diagrams when a SCF orbital basis is em- on either side of the diagrams.
ployed. 4' Alphabetically, (a, b, ....) will be reserved

for virtual orbitals of the Hartree-Fock solution, A. Zeroth and first orders
(i, )... ) will be for those orbitals originally occu- The zeroth-order effective Hamiltonian
pied, and (p, q.... ) will be undesignated. Particle or
hole designation is always defined with respect to 40. -KoL = b 'HoN 4- ) + 6., E'F (50)
The SCF orbitals satisfy is diagonal. Matrix elements between the non-, singly-,

and doubly-excited determinants (HF, SE, and DE,
h + (pt!Iqt\ = (42) respectively) are evaluated using the generalized Wick's

theorem. 4 The results relative to EOF for the chosen
so that model space are given in Table II. We see that H acts

H (43) as an excitation operator.

Thus, we have the separation The first-order contributions

H=11° + V1 , (44) ilf) =(4. VNlA

are evaluated similarly. For the Hartree-Fock deter-
with minant

H°=H'+EgO . (5) V"oo)= o, (52)

The model states are defined in terms of creation because of the normal product form of VN. In ac-
and annihilation operators working on the Hartree-Fock cordance with Brillouin's Theorem, we obtain
determinant. A singly excited state will be denoted

bj;=N[atij ,bo. (46) (44 )=(,4o " E ,pq rs)

Similarly, a doubly excited model determinant is given xN Vptq'sr-N [ati Ico,= 0 , (53)
by because the two normal products cannot be fully con-

(47) tracted. The diagrammatic analog is that there is no

Note the equivalences way to properly connect the Hartree-Fock bra (no
lines), the perturbation interaction (four lines), and a

N[atij=ati , (48) single excitation ket (two lines).

N[at bt ji]= a~btji =.4 ab , (49) The first-order interaction between the Hartree-Fock
determinant and a double excitation from it is given by

resulting from the designation of occupied and virtual
labels. o V N 

M  (4 0  " -1 pq rs ,,,pq t sr1

Diagrammatically, each model function is represented
by a diamond vertex with appropriately labeled particle "N[a~b'fi] 0 ,
and hole lines entering and leaving. Thus, any vector 1 Pq rs

, 2

originating or terminating at a diamond vertex will = 4 Kpq s
represent a specific orbital rather than an index of

summation. These lines are the so-called "open" =ij' ab, (54)

J. Chem. Phys., Vol. 76. No. 4, 15 February 1982
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16 L. T. Redmon and R. J. Bartlett: Multidimensional many-body theory 1943

TABLE 1U. First-order effective Hamiltontan matrix from the diagrams. As usual, it is necessary to ex-
elements. pand the (antisymmetrized) Hugenholtz diagrams to (anti-
HFIHF=O symmetrized) Goldstone form in order to determine the

sign of the contribution. Through second order (in
HFISE =o which no folded diagrams or equivalent complications

HFI DE: arise) the sign is (- 1) ' ", where h is the number of
(01 v" = ijb) hole lines and I is the number of loops. For the pur-

pose of loop counting, double- and higher-excitation
SE I SE: diamond vertices must be split into two and more (re-

4. I V
N 4 ) 

= (ic 11ak) spectively) single particle-single hole vertices, with

SE I DE: the pairing of open Lines corresponding to the second-
SIquantized definitions; for example, a with i and b with

(4t IV
t
' 4 ) ={6~5 a(agIk)Icd))-{phr} j in Eq. (49). A factor of 1 must be included for each

DE I DE: pair of equivalent lines. Note that the open lines of
( eI V 

N 
qcd the model states are never equivalent. The factors of0 11 2in Eq. (34) are in addition to those above.

+{6, (ab 11 cd)} + {phr

B. Second-order theory

where the 61 notation is defined by The second-order effective Hamiltonian is given as
62, 2 e ') =, 4.1V R ° o)VNba (58)

60 , -60d 6q - 6# 6 .4 (55) I V ) (

Proceeding as in these examples, we find the results The numerators, which comprise most of the informa-

listed in Table 111, where the notation tion explicitly illustrated in a diagram, are identical
for these two terms. However, in second order, we en-

61,)V(1k)IIX) = 6,.(Xl IXX)-5,.Xk I[XY) (56) counter the first summations and denominators of the

has been used. Similarly, resolvent. We may rewrite Eq. (58)

6(s)ca)()V (dc) (ab)X) = 6b, Xd aX) - 6,(Xc faX) jeD = 1 1
S2 (s)( INb VO? E. -E Ej -E-4(Xd Vb) + 6.(XcIbX) . (59)

(57) where E0 is defined by
Thus, the first term of the last matrix element in Table H°'4 = E' , d, (60)
IUl represents 16 possible terms, all of which have the
same Hugenholtz diagrammatic skeleton, and 4, is an external (i. e., nonmodel or complementary)

The first-order effective Hamiltonian energy diagram state determinant. We find that if 4a is a single exci-
tation, the interactions may contribute if a is a single.

forms are summarized in Fig. 1. Note that terms in- double, tre eation. f c i i, su excie.
volved in the parenthetic notations always share a com- double, or triple excitation. If 4, is doubly excited,

mon form. Forms related by particle-hole reversal, m bna Euarthe eoita tion oa
which will be omitted for brevity in subsequent figures, ol btho ortalne0 rge dewichtorrepondto l e
have been shown explicitly. only those orbital energies c which correspond to labeled

particle and hole lines in the diagram. For example,

The algebraic expressions can, of course, be derived the numerator of the matrix element between two sindv

HF SE DE

HF ZERO ZERO

SE ZERO
FIG. 1. First-order ettectjve Hwni!-
tonian matrix element diazram...

..-- -- -Lines above boelo\) the horizonx-
midline o the aagan:ams repres
particles 'hoh so. The arr ., -

vided for clart, .:' e red.:n: tn ,,
this notati 7e r

-E
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1944 L. T. Redmon and R. J. Bartlett: Multidimensional many-body theory 17

excited determinants involving a singly excited inter- where the sums over h and p designate all hole and

mediate state is particle lines which would be intersected by a vertical

Vline drawn between the two interaction vertices. In

h ch IE (al cI ! bk. the case of a singly excited intermediate state, these

(61) sums consist of a single orbital index each.

The prime is a reminder that model states are not to be

included in the sum. The "denominator" factor [which The algebraic expressions for the second-order ef-

multiplies Eq. (61)1 is given by fective Hamiltonian matrix elements are given in Table

I.1 IV and their diagrammatic forms are shown in Fig. 2.
C, - fj) 44 C, -To save space, we have indicated roughly halt of the

[D 'required diagrams as particle-hole reversals (phr) of
+ (62) the illustrated diagrams. From top to bottom, the sub-

( - ) - - -E, , (62) divisions correspond to the HF IHF, HF ISE, SE ISE,

TABLE IV. Second-order effective Hamiltonian matrix elements.

HF I F:

(410 1 V" R' VN = * ' efI 1 n)2

HF I SE:

,0 vH1 (R+R') vK .=- ' (cellmn) (nm Ike) ((m+n -e-c) "I+(m+n-e-k)"[ - {phrj

SE ISE:

f lv o V rN v (R) = + R] <an, 4ti><ce>la . (e+) m- e"

+' 6 0 (amife) (efl 1 mc) [(,n +a -e -- +(m +c -e -f") - 6 , cei nm) ,m llae [DI, 1 +D1_

(kallef) elIc [(k+a-e-f')- +(i+c -e-f)It] + ( celam) (kell mi) [(a+m -e-c "

I eI OM

S(i+,, -k -e)tl 4 {phrs}+ _ , 'kn lice) (aeIlim) [Dl' +DQ
"tI+ ef, ,11mn 

2

HF I DE:

2o 4VM (RlVo 4,)VN,4, - ((dc)el(klm) ?)(cdhiekl) [ l+m -d-e' +tc +m -k -'-11

+' (killef)(efllcd)[(k+l-e-f)'etc+d-c-f)'l+{phr

SE I DE:

V' (R0 +Ro VNf)= R , (f a(lk)lie) (e RI)l1dc [(a + i-e)-' +(c+d-k -e)-) + Iphr}

' 6 I ((killnalef <eflcd [a +(kt) -e -rr1t+(ed-e- fV't - ki I ,.k~ ~ aci e d

El c

3m~de (et~h as~i

• dlk+ t .ie) +tcl +d-a- )'!l+ I (aqkl:c(dc) (kIh, tlcd}l'
I (ftcis t IA Cl

[ (a 1-I-(dec)c't+ (cdl +i - (ki)-cl + ,5q aml (drc' Iqklh' I(cdln

I hr 1 - f '.'. ' (rf d),

• (D'411 c-1, t 
+ c ) m - - t U,,,' + (rd)s; - e - ....dpII

Al(l +(cd)- '-fr'-) 
-  sldc ,

I ""

- cdl ,,(1k) ((kl i0 ai ji + e(1 ,,,-()'l - a-1 -(phrs;
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TABLE N (Continued)

DE I DE:

W, (A0 +RO)VN *c4) = *' 
01J1,Z) abI (i)e ((kL)eilcd1(a +b - (i)-,')" +(c +d-(kl)-e)" . jphr;

+ 6 
6

Sit)(dC ) , ((ab)mz I t/)e> ((kl)e I cdhnt((ab) +,n - (j)- e)'t +(cd) 
m
-n, -

e
(ki)

+ 1 62 Fj ablef) (ef iIcd)[(a-b -e -f)-' ic'-d-e -)-'

-- M ((i-dc) 11 (ab)n ) ((cd)n I (k)(bal) [(i + (ab) - U 0 - (dc)r' + (no + c(d)- (k) - (bar';

[ ti,)t de)(,/L 4)

+ 6 fl ' ab le(dc)) (e(kl) ii )cd)) [a - e-'4c) '((cd) + (i) - (0) - e)'1

+ ' (kL)(ab)lle(i) (e(ba)ilcd)[((abl+(kl)-lti)-e)
- l 

'(c
+ d

-e-(bab'J' -jphrsI LOba)ehll

+ 1 62j, 6(.)4 Fj (efi1 (ab)nz) (c)no fl ef [(tab ) +noi -e -f)-1 + (ted) + on -e -f
Cfm

- j , (e(dc) I (ab)pnh ((cd)l II eMba)) 1((ab) +-in - e - (dc))-' + ((cd) + n -e - (ba)' I

+i 
6

)ij)(1h) 
6(ob)(dc) F lef !I (h )tba)) (W(cd)(i) lIef)[((ba) +W() -e -_W1 +((cd) +tji) -e -.f)'!

of

+ 6q( ) j . etdc) 11 WARPlk {(cdl)OI elba)) R (ab) +(1k) -e -(dell
"
- + (Wc) + 00d -e - Oba))_'t

+1 
6 (ij)(h1I) F. " (cd)(i) 1 (Lk)m) ((dc)m ilab [(n +(1k) -(Ji) - (cd))

l 
+ (?I + (dc) -6 -a)-I

t

- 6 ) k) (ban 1 cd) (ij)n 11 (ab)(Lk)) ((Pn + (ba) - c -d)- 1 + (in + (ii? - (1k) - (ab))'1

6
(b.)(,) 6)j ) 54 1) (ij)e II ?in(k)) (in(dc) I (ab)e) ((no + (1k) - (ij) - e- + (in + (d ) - e - (ab))' * -,phrs}

(e2 I mn> 
0 ab)(edf) (0in (I (6a0c) (e dWO I[ tit(1k) [tt~_ +Dd)_

DeL

+j 
6
O.b)(,, )  \ (ba)eilmin)(no lle(dc))[n1 D e-'+n()D -li+1 i I \ab -: i 1, i c tDab,' -Dd'

en," "'

-6(a.b c (FIll (ab)e)(e(dc)1llk) [D - 
+ ' +

+If 4(I%) is a model SE, include

- ((l)tba) llcd)((ab)(1k)ll ij)[((ba) +(kl) -c -d)' +(i + - (!k) -(ab))1 ]-}+{phrI

1f 4clis a model DE and i t4blsnot, include (ijIlkL)(cdilab[(k+l -i-.it- +(c+d-a-b)l'i!,+phr}

+If t is not a model DE and "(4b)(Cd) is, include i ab icd)(k lliii[(a+b -c -d) "'+(i - k -l)"t

+j (ijltah ) (cd11kt)(Dfjb +O-r'

HF IDE, SE IDE, and DE IDE blocks. The SE IHF, In the table, {phrsj represents the phr contributions

DE IHF, and DE ISE diagrams could be obtained by analogous to the terms in the immediately preceding

time reversal of the HFISE, HF IDE, and SE IDE dia- brackets. Except that the phr terms are grouped to-

grams, respectively, but they are not required because gether, the order in the table corresponds to that in

of the Hermiticity of 3Ce.*. Except for the denominator Fig. 2. The algebraic expressions for the phr terms

factors (which are not shown in the figure) and the ground are obtained by exchanging (relabeling) a and i. b and

state term on the diagonal, the SE ISE diagrams are j, etc. in the illustrated terms. Sign changes. when

equivalent to those of Paldus and dliek. " Each inter- required (due diagrammatically to a change in the parity

mediate state (in Fig. 2) has been labeled as singly factor with particle hole reversal when the numbers t
(S), doubly (D), triply (T), or quadruply (Q) excited, of particles and holes are not both even or both odd),

relative to *bo. have been explicitly indicated. Since the type of inter-

J. Chem. Phys., Vol. 76, No. 4, 15 February 1982,,, * .. .: -' , .. .



1946 L. T. Redmon and R. J. Bartlett: Multidimensional many-body theory 19

Note that the parenthetic notations sometimes appear
without delta functions. In these cases, they indicate
multiple terms which must all be included. Terms con-
taining parenthetic notations are indicated in the figures
by single diagrams, since with unlabeled lines their

__ skeletons are identical. The negative double excitation
_ .energy notation

/ l =,j (, c, - Fa - i€b (63)

< .has been employed within the table, and orbital energies
have been indicated by their subscripts alone.

We see that the second-order (closed) ground state
correlation contribution appears along the diagonal.
These terms are considered linked, since noninteracting
open lines merely represent delta functions which, in

___ "this case, indicate that the diagram contributes only to
diagonal elements. They arise from triply excited
intermediates for singly excited determinants, and from

- :-. .... . r, - quadruply excited states for doubly excited model states.
- Since each intermediate (including the open line parts)

is doubly excited relative to the model state, the de-
.. ... .... nominator dependence on the model state is removed and

the denominators are identical to those of the ground
state terms. Assuming that the model space does not

,, . * -, contain any triply or quadruply excited states, the
value of this term is exactly equal to that obtained from
ordinary MBPT, except that, in the HF IHF matrix ele-
ment, the contributions from any doubly excited deter-

-~' rz j ... , minants included in the model space must be omitted.
D These omitted terms correspond to the couplings (i. e.,

- off-diagonal effective Hamiltonian matrix element) be-
- ,-.,- " ' tween to and the doubly excited model states, which are

explicitly included. The identical terms contributing to
the excited state diagonal elements are not omitted.

-, Subtraction of the full ground state diagrams from the
diagonal gives the effective excitation energy matrix
relative to the one-dimensional MBPT ground state
energy.

In the second order, the diagrammatic differences
between general and complete model space implementa-

V .' tions appear. We find that because the general methods
allow the Q space to include states that are related to
(i.e., consist of particle and hole labels in commonh i with) the selected P space states, certain disconnected

0 "irreducible"30 diagrams must be included. These dia-
grams consist entirely of open lines, and thus they are

i' "=t.<A " trivial to calculate because no summations are required.
- - In addition, many of them cancel each other. These dis-
_connected diagrams are those in the last two rows of

l . 4) Fig. 2 for DE IDE matrix elements. The last diaran,S-with to as the intermediate state labeled X, is not
used when the model space includes 4o. However, ifi FIG. 2. Second-order effective Hamiltonian matrix element t0 is included in Q rather than P, this diagram is con-diagrams. sidered and is found to cancel the immediately pre-
ceding quadruple intermediate diagram exactly, so that
neither diagram need be calculated. In fact, close

mediate state is not always obvious in the algebraic examination reveals that none of these disconnected dia-
form, the superscripts and subscripts of the terms to grams would remain if the complication of excluding the
be omitted from the primed sums when they correspond model states as intermediates did not arise. We find
to model states have been enclosed in curly brackets for the case that the model space has no singly excited
below the summation sign. The level of excitation is states that the single and triple intermediate diagrams
determined by the number of labels provided, of the penultimate row cancel each other. However, if

J. Chem. Phys.. Vol. 76, No.4, 15 February 1982



20 L. T. Redmon and R. J. Bartlett: Mutidimensional many-body theory 1947

the model space does include singly excited deter- The provision for deleting the possibly large numbers
minants, the corresponding terms must be omitted from of more highly excited model states from P is an attrac-
the S diagram. Assuming that the model space does not tive practical feature of general model space methods.
include triply excited states, the related terms from the This greatly reduces the number of effective Hamiltonian
T diagram do appear and must therefore be calculated, matrix elements to be evaluated, and also the number
since they are not cancelled. Thus, in Table IV the of potential intruder states. The method is not restricted
sixth term from the end (counting phrs, i.e., the first to the single and double excitation model space illus-
"conditional" term) gives the net contribution of S and trated in this paper, and could be applied to other prob-
T in the presence of model singles. lems.

Similarly, the last two D diagrams need only be con-
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Perturbative determination of nonadiabatic coupling matrix elements
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Equations for the first- and second-derivative coupling matrix elements between the
adiabatic electronic wave functions of a canonical Van Vleck approach are derived for the

case of a single nuclear coordinate. Expressions for their order-by-order evaluation,

analogous to the multidisr. "nsional perturbative expansion of the effective Hamiltonian

(given elsewhere) are presented. Diagrammatic notations useful for enumerating certain

components of the derivatives are introduc-d, and the diagrams required through first

order are shown.

t6

I. INTRODUCTION Hellmann-Feynman theorem - or the Sidis formula6

The Born-Oppenheimer adiabatic approxima. (both valid for exact states) in the case of practical
tion' is one of the most fundamental and widely (inexact) wave functions have been made. Numeri-

used approximations in the theory of molecular cal methods based on finite-difference formulas,' 8

structure. When the electronic wave function is although applicable to any type of wave functions,
slowly varying with respect to nuclear displace- need repetitive solutions of the electronic problem,
ments, solution of the electronic Schridinger equa- a nontrivial requirement when highly correlating
tion leads to accurate calculations of the properties methods are employed. The approach of fitting a
of molecules. Adiabatic potential energy curves polynomial followed by analytical evaluation of the
and surfaces are used in the interpretation of spec- derivatives' 9 becomes cumbersome for large CI
troscopic data, the prediction of thermochemical wave functions and/or for systems with high coor-
quantities (heats of reaction and formation and ac- dinate dimensionality.
tivation energies), and in the approximate descrip- The present paper derives analytical expressions
tion of the dynamics of molecular collisions (at en- for the nuclear derivatives between electronic wave
ergies of chemical interest) usually involving a sin- functions employed in multidimensional diagram-
gle electronic state. Nonadiabatic treatments matic perturbation theory. As in that theory, ex-
(direct solution of the unseparated Schr6dinger plicit calculation of the wave functions is unneces-
equation) have also been pursued. 2 The Born- sary. The approach uses a formulation for the
Oppenheimer adiabatic representation can still be first derivatives that avoids numerical differentia-
used to accurately describe dynamical phenomena, tion procedures and provides an order-by-order
such as radiationless transitions between electronic prescription for obtaining increasingly accurate
states of bound molecules or electronic transitions values. The theory incorporates the effects of con-
in molecular collisions, by consistently including figurations omitted from the model space and is, in
the nonadiabatic coupling terms in the process of principle, exact.
solving the nuclear Schridinger equation.' The For comparison, the expressions for the matrix
most important coupling terms for many systems elements of the first- and second-derivative opera-
(and those generally most difficult to obtain) are tors using CI wave functions are given in Sec. II.
the matrix elements of the nuclear derivative opera- In Sees. III and IV the nonadiabatic coupling ma-
tor.4  trix elements corresponding to 'he perturbative ex-

Recently there has been increasing interest in the pansion of the electronic wave function are de-
calculation of nondiabatic couplings for ab inith rived. In Sec. V the evaluation of these matrix ele-
electronic states.3- l' Analytical methods of ments at the orbital level for a specific illustrative
evaluation must, of course, be derived spcifically model space is presented in the conventional and
for each electronic-structure method. Those ad- second-quantized notations, and diagrammatic no-
dressed thus far are the Hartree-Fock self-consis- tations for the required elementary components are
tent-field (SCF) and configuration interaction (CI) introduced. The derivation of an exact Hellmann-
methods. Investigations of the utility of the Feynn.an-like relation is included as an Appendix.
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II. DERIVATIVE MATRIX ELEMENTS case of a diatomic molecule. These couplings in-
IN THE CI FORMALISM volve derivatives of the electronic wave functions

with respect to the single internuclear coordinate
Solution of the full Schr6dinger equation can be R, (T. I aP'/aR ), and (Ta I a2'PaR 2 ), where we

accomplished by separating the Hamiltonian into have dropped the superscript on !El. In the Ci
nuclear and electronic parts framework the first derivative is given by

H HuH (1) ( R7= a
and assuming a sum-of-products form of the total a-
wave function

|t

%ploRtN(& (2) VCt/ I-'- , 1
. I

We use the subscripts I a,B,y... to indicate the (7)
members of the set of states of interest. The
Born-Oppenheimer functions j 'i' are solutions where we use the convention that the derivativeof the electronic Schr6dinger equation operator may not operate beyond the ket of an in-

tegral.ofteel eoi elrdne quto erl

(He-E e)%P=0. (3) It is well known that the coefficient derivative in
the first term become large in regions of avoided

In principle, a complete set of 'I""'s is required, but crossings (between states of the same symmetry).
for practicality it is assumed that a reasonably This might cause difficulties for a numerical
small number of electronic states j 6;'=a,3... evaluation scheme. If so, it is expected that the
will form a sufficient expansion. In the CI matrix elements of the Hamiltonian would be more
method, the electronic wave functions may be ex- well behaved than the coefficients, so that numeri-
pressed in a basis of determinants (or of configura- cal methods based on an exact Hellmann-
tion state functions) Feynman-like relation (see the Appendix)

_ (4) &o~YC _c a--c, E-.'cav - o, c,

where a ,.... are labels for a complete expan- € tRR.?I ,
sion. The coefficients I C0,, I are solutions to the (8)
secular problem

could be used. In this notation, the derivative
S=CE e , (5) operator must stop at the right parenthesis, and Eg

where is a specific element of Ed. Although Eq. (8) is

H- = (0, I He"4>) } (6) valid for any wave function satisfying Eq. (5), this
approach is cumbersome since obtaining accurate

and I (P, I are orthonormalized functions, such as energies requires the dimension of ff to be large;
Slater determinants formed from Hartree-Fock or- e.g., the basis of Eq. (4) might consist of a given
bitals. An explicit dependence on the nuclear coor- set of determinants and all single and double exci-
dinates R arises because these coefficients as well tations from that set.
as the expansion coefficients (not shown) of the )'s The integral in the second term is zero for a*r
in terms of the primitive atomic orbital (AO) basis if 10, and 4), differ by more than one orbital, and
are different for each nuclear arrangement. An for --r if the O's are real. Some treatments have
implicit & dependence of I results from the assumed that these terms vary slowly with R and
nuclear-centered nature of the AO basis. The best have neglected them. In fact, however, they can be
solution for a given AO basis is obtained when the of a magnitude comparable to the first term.9

"full CI problem" is solved; that is, the sum in Eq. When the 40's are chosen to be Hartree-Fock deter-
(4) (and, thus, the dimension of R) is over all pos- minants, the derivatives in the second term can be
sible determinants (excitations) within the basis. expressed in terms of quantities used in and ob-
However, in practice, the CI problem is almost al- tained from the coupled perturbed Hartree-Fock
ways truncated. (CPHF) method,'- which is commonly applied

For simplicity, we examine the form of the ma- for the determination of energy gradients. Alter-
trix elements of the nuclear Hamiltonian for the natively, they have been obtained by numerical9 or,

1l
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in some cases, analytical 7' 1 means. For the pur- ration derivatives.
poses of the present paper, we shall assume that The second derivatives are more complex.
the derivatives of the form in the second term are Direct differentiation of Eq. (4) leads to the expres-
available and refer to them as standard or configu- sion

St a 2  t4>"

Xco ;- Ce+2.jCa~o __ooL,,e,~ . ~

2 C0 5 -R2C aR 4R R 2 (9)

An alternate formulation is III. DERIVATIVE MATRIX ELEMENTS IN THE
' r') ° j a V CANONICAL VAN VLECK FORMALISM

'a -R " In the past few years methods for the determina-W R (P I*R e)tion of potential energy surfaces have envolved,

a-  such as direct CI,'5 unitary group C,'"6 single-state
, i many-body perturbation theory (MBPT),1'7" mul-

I ticonfiguration SCF (MCSCF),19 and:(10) MCSCF + C. 19 For many applications MBPT

where the first term would be obtained numerical- has several advantages over the CI approaches.
ly. If the full CI problem is solved, the second However, a perturbative treatment based on a sin- ,
term can expanded bl i gle (SCF) determinant is restricted to the lowest

of the identity state of a given symmetry. It may even be expect-
ed to encounter difficulties for that state in regions

= Io( 'o of avoided crossings, where more than one confitu-
ration is important. In addition, this method is

- ) + + I.,)( 1 ,v) ( 20) not well suited for many applications involving
r open shells or multiple bonds. One solution to

(where the subscripts IL,v ... I indicate members these problems is the canonical Van Vleck ap-

of the complement to I a,,... I) to obtain an ex- proach to quasidegenerate perturbation theory.' 0

pression entirely in terms of first-derivative matrix When the canonical Van Vleck formalism is im-

elements 4 : plemented via a diagrammatic expansion,21 the en-
ergies obtained from approximate solutions of Eq.

/*i a \ = a rI la \ 11 ' (3) will be size extensive,22.' unlike energies of
\WPa '/ P _L (a I &RR./ J non-full-CI calculations. In addition, perturbation

theory provides a means of decreasing the size of
+ lthe Hamiltonian matrix, which must be diagonal-

\/a I ized, and a prescription for obtaining increasingly

. accurate (and, in principle, exact) results.
(12) In this formalism, the (exact) correlated electron-

Otherwise this formula is only approximate. Note / ic state of interest are given by

that it requires additional first derivatives - , (13)

where the basis for expansion has been restricted to

a selected set of states 1 46 ) corresponding to the
i.e., couplings between the basis states of interest states of interest and referred to as the model
and those "not of interest." The effect of trunca- space. The A dependence will not be indicated in
tion of this sum might be particularly severe be- subsequent equations. The I D61 I are the eigen-
cause the first term of Eq. (10) includes the second, vectors of the effective Hamiltonian:
Thus, for an approximation to Eq. (12), the intend-
ed cancellation might be incomp'ete. This would I ', (14)

cause spurious contributions from the first term to and Ul) I are the perturbed (improved) model
remain, functions. U is the unitary decoupling operator

re A -- me "
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which transforms the Hamiltonian operator H to
block diagonal form XV. In principle, the exact %,_%f r - y
eigenvalues will be obtained because the effects of

the complementary states will be contained in U. +IDYr.D&D, (19)
In practice, U will be determined such that the 1'b
transformed Hamiltonian operator where

A-= Ut W U (15) Yin(v U 8R U4a. (20)

is block diagonal through a certain order. Then 1/

the effective Hamiltonian rff, formed of matrix can be thought of as matrix elements in the ori-

elements of Y', 1 O .1 "Y4 p) 1, will be diagnonal- ginal I basis of a transformed derivative operator,
ized. or as derivative matrix elements in the basis of per-

Actually, an order-by-order prescription for 2__ff turbed model functions Ut.
is given, and U is not explicity calculated. Howev- With the reduced dimensions of this approach it
er, for comparative and derivational purposes, the should be practical to calculate the first term of
formulatiOn of the wave functions may be exam- Eq. (19) by the analog to Eq. (8):
ined. Inserting the resolution of the identity in the ,
form 3R TV.

I= I ,)<'t,,I(21)

Again, this expression is an exact equality (at any
-- I r )(*r +1 I'M)( J (16) order) because of Eq. (14). However, the exact

r I couplings will only be obtained (from Eq. (19), op-
into Eq. (13), we can see that 1,. may be written tionally incorporating Eq. (21)] when the infinite-

%Py=, 10I )(0, I U4))Day . (17) order effective Hamiltonian is used. Although the
0.S summations in these equations run over only the

model-space dimensions, the effort of evaluating
Comparing Eqs. (4) and (17) we find the relation the couplings is hidden in the determination of Yj'.
between the full CI coefficients and the exact The expansion of this term will be examined in de-
(infinite-order) effective Hamiltonian eigenvectors: tail in Sec. IV. We note that only the lower tri-

angular parts of Y_' and 8g___ff/aR need be calcu-
C ,,,, = (( I UOS))Day (18) lated since J! is anti-Hermitian and r is Her-

6 
mitian.

Starting from Eq. (13), we find (since U is uni- The matrix elements of the second-derivative
tary) that the first derivatives are given by operator obtained by direct differentiation are

.= -;- (22)

where

4 t= U 6Us). (23)

Equation (22) can be expressed alternatively (by substituting Eq. (13) into Eq. (10)] as

8',,R " V6 M O

- 11.. (24)

Equation (12) could be used, truncated to a sum over y only (since the remaining states are not determined

I



in the effective Hamiltonian method), but the previously stated criticism of this procedure would apply.
The second derivative of the coefficients in Eq. (22) can be alternatively obtained by similar techniques. We
write it as

-f DV DVD1, KD vI Dfo (25)
Y 8RRI Y 8R 8R 3R

where the first term is to be obtained numerically. Inserting the identity into the second term and substitut-
ing Eq. (21) gives

---,T2 D aRD~ J f6 D60'

~DvI;D.e (EVE.)'D Lafi' D 6(EDE)-D_ D (26)

The latter process can also be applied to the second an is given by20

term of Eq. (24). The choice between Eqs. (22)
and (24) is then further influenced by observing ='= Sr&=oy ,

that Eq. (24) requires the additional matrix ele- Ao"= (Orj VO5)
ments I JF ), while Eq. (22) calls for " matrix ,
elements. These off-diagonal I' matrix elements = r1 [V,G'1t]4'a) , (29)
can be obtained analogously to the model-space di- A -
agonal block of Z'; however, there will, in general, " ''

be many more of them. The perturbative determi- where
nation of ' and Y" will be given in Sec. IV. G -O

IV. PERTURBATIVE EXPANSIONS G('=It R°VP-PVRO j, (30)

The first-derivative matrix elements in the effec- G(:)=o R[V, ')]Pr- oPr[Va)]R  I
tive Hamiltonian formalism are prescribed by Eq. r rVE
(19). The coefficient derivatives (first term) can be
calculated numerically or from derivatives of aff and
via Eq. (21). In the latter case, an ordered evalua- He.=H°+ V,
tion scheme emerges. In the canonical Van Vleck
method it is convenient to define the transforma- H04 =E°rO, (31)
tion U by

U!e' (27 = ) ( I

with Y Is o -, (E-E ,)lG = -G . (28)
S(28 It should be noted that G has no block diagonal

Then, through third order, the effective Hamiltoni- (D) parts:

GD =. )(O yG4 I +l '0,)(4,i GO,) (4,: =0. (32)
y.6 j.V

Thus G is completely specified by its off-diagonal pan Gx:
Gx I , I -) (Or I G .) (Oo I, + I Od)(Om I GOY) (Orl (33)

V.DWFM
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It is then straightforward to see that the derivatives of t"ff involve only derivatives of the two-electron it,-
tegrals and the (zeroth-order) orbital energies:

a o 8 a g

aR (< y y i ,

a lary I~.O~.t 1y(b4
- 6-R = -- -E1-Ev ) (E- :) +(EO-EE)-1.] -3E

a 3 [ (0, V (OmI VE )(04>, Vd (O VV ,)(0. Vo) (, vs)

y6 2.I (E -E )(E-E .) C(E-E)(E-E) )

These derivatives may be determined by the CPHF method as implemented by Pople and co-workers. 12

I' may also be examined in an ordered fashion. When U is expanded, I' may be given by a Hausdorf
expansion: (by°, { + -L,1+G I -, ,1,I + ..- .4 (35)
where the derivative operator is allowed to work all the way through to the ket. Then we find

=0I9A.0i+KI IG I -j1D f[ IxGx 6 + +[ [ I8 , (36)

+24I~GXIGX]+... los).
When G is expanded by order we find the low orders of L' to be

, ( (Or G ,js)

&~2)O~ aR~l+I~ ~(~ o''. 14. Fk "' ,(2) 1 = -Lr G'21 1.0 +(37G )1X 1 I1'

GM +) (2) + 12 01),aR 2+R X2a- I I°' L.°"° I I}"I I
+ _L (1 GM G(1 J j o +... jos)

Thus, by multiplying Eqs. (34) and (37) by the appropriate eigenvector components, prescribed by Eqs.
( 9)-(2 1), the coupling matrix elements can be obtained to an order consistent with that of the effective

I U) . . .



Hamiltonian. Explicit contruction of the wave functions is unncessary.
The transition from the notation above, involving operator derivatives, to the basic expressions is straight-

forward, although fairly complex. However, a shortcut is available for those terms involvitig the diagonal
block components, such as the leading terms above. Since GD =0,

- (00 1G(%.) =0 ,(38)

and, therefore,

- 0R G 1. (39)

These equations are valid for each order. For example, at first order

( m -- o o . o (40)r6 CE06-E ,) (EO -E ,)

The integrals I (110 V0 ) J are the same ones required for Aj), and the derivative matrix elements are a
subset of the standard ones used in Eq. (7). In this form, considering the derivative operator as a one-
electron operator, S, (1 can be easily diagrammed, as will be demonstrated in Sec. V. The nested derivatives
involving (aG/R)D may be expressed similarly.

However, terms with (aG/R )x must be handled directly, substituting and differentiating the components
of Eqs. (30) and (31):

a8 ((2i)e( (2)V4)

JR1  a (ori I4~ (foj ) (OM f( V4V63

Alhug.hi esl i ail opiaed, th+tr in olin 0h tw-leto inerladeegoeia

(Ey -EO,) (E6 -EO,)

from UO to G:0,4

+. 7(1 Vol a (O I v w ) ,j
(E -O (E__E, +E -R 0 0EO

(rIOO(11 R ( , -. -E 0) E-E)

0 [[G(41)
IA,. (EO- E O) S- E O)

Although this result is fairly complicattdth terms involving the two-electron integral and energy deriva-
ives are the same ones required for aj! f_2/aR in Eq. (34)]. The remaining terms of 1.'21 can be di-A
agrammed similarly to the first-order terms, although there are quite a number of them.

The I"° matrix elements called for in Eq. (22) can also be examined in an ordered fashion by converting

rom U to'O 8RIaG: a

.-(,I I oI [ o oI ..-.>..L
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Then, expanding G by orders and collecting terms we obtain

S 6{ A G~I) 4 + 2  [ aRG R - ,4V8) (43)

I I I8R I K)
I~ an aR ,

. y G"l -05 + (Ir -G( I .L

Examples of the evaluation of I.' and J:' in terms of orbitals are given in Sec. V.

V. DIAGRAMMATIC REPRESENTATION

We present an orbital formulation of the nonadi-
abatic couplings between electronic states obtained in the conventional, second-quantized, and di-
from a diagrammatic implementation of canonical agrammatic forms serves as a convenient introduc-
Van Vleck perturbation theory, illustrated for the tion to the many-body techniques employed herein.
model space chosen in Ref. (21), which consists of It is well known that the configuration deriva.
a Hartree-Fock determinant plus selected single tives in Eq. (36) [or Eq. (7)] are zero if y and 8 (or
and double excitations. The effective Hamiltonian a and r) are identical and ! is real, or
matrix elements have been given both formallr'- o differ by more than one orbital. For example,
and diagrammatically. 2' These diagrams are useful let 0. and 06 be singly excited determinants,
for showing which subsets of integrals are required which diay be expressed in terms of annihilation
for evaluation of the matrix elements and (as in or- and creation operators (indicated by orbital labels,
dinary MBPT calculations) for providing size- appropriately daggered) working on the Hartree-
extensive approximations and efficient algorithms Fock determinant o:
for their evaluation. The derivatives of these ma-

ttrix elements required for the evaluation of the 4'.) =a" joc) , (44)
.. ~~~coefficient derivative part of the nonadiabatic cou- a)bj o,

plings using Eq. (21) will be obtained via CPHF, as
mentioned earlier. The terms in I' can be di- where a, i, b, and j, refer to s~cific one-electron
agrammed using the one-electron nature of the spin orbitals (with I ,j,k... j and I a,b,c .... I
derivative operator working on a Slater deter- labeling occupied and virtual orbitals, respectively).
minant. Examination of the derivatives of .' (', Then the matrix element is represented convention-
i.e., the standard configuration derivatives ally by

; -4' - .a'1,2,..., (n -2,a,j I , (.. -2),i,b 1 (4S)

where orbital a(b) has replaced orbital i(j). Since The sign of the first term arises from the permuta-
i,j 1,2... In -2),ab ), I tion of orbitals required to match up the remaining

aj orbitals when i#j. When i =j, no rearrangement

-Lot) - 8 (46) is necessary (second term). Again, the diagonal
matrix elements are zero if ! is real. In second

+8jj a b uanizatonwe resprese t af8R as a one-electron
operator:
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S(4 gained diagrammatically by interpreting the deriva-
aR tive interaction symbol as (outgoing vector I 8/aR

S.I incoming vector) with a sign factor {-1)Ik,

where where I indicates the number of loops and h the
number of hole lines. Thus the two terms of Eq.

q,=(s a .(48) (46) are represented by the SE ISE diagram of Fig.
I and its particle-hole reversed (phr) diagram.

Then, following the usual procedures (and indicat- Since the integrals in Eq. (46) involve two orbitals
ing only the orbitals which differ from those in of the same type (occupied or virtual), the entering
00) and leaving vectors of the differential operator go

in the same direction.
The derivative parts of the .','1 terms in Eq.+a -b + =qg( ias+bti) (40) are diagrammed and derived similarly. TheIaR usual two-electron interactive perturbation V' (represented by a solid dot and referred to as V"" in

=Sijqab -Sbqi+ +8~q ,qu Ref. (21)] in the right-hand part of the first termK _must have two vectors entering and two leaving.

=5ij b) -b. occur in the evaluation of this term for a model
space consisting of the Hartree-Fock determinant

(49) plus selected singly and double excited deter-
minants. The diagrams for the second term are

The nonzero configuration derivatives within the obtained by time reversal (TR) (left-right mirror
chosen model space are shown digrammatically in imaging) of the ones shown. The off-diagonal
Fig. 1. In these diagrams an open dot represents block diagrams will come from TR of their conju.
the differential operator, which (because of the or- gate blocks; e.g., TR(SEIDE) yields the DESE di-
bital product form of the model functions) acts as agrams. We note that the DEISE terms in the fig-
one-electron operator. Thus, each open dot must ure can have triply excited intermediate states
have one vector (a particle or hole line) entering (wher the SEIDE terms cannot) because of the
and one leaving. Particle (hole) lines are oriented ordering of the two operators. Of course the oppo-
from right to left (left to right). The terms re- site holds when the order is reversed.
quired are specified diagrammatically by forming The diagrams in Fig. 2 may be derived algebrai-
all possible connections of the bra and ket model- cally in the following manner. Let us examine the
state vertices with the differential operator. The case of a SEISE (single-excitation diagonal block)
bras and kets are indicated by diamonds with equal matrix element. Take the definitions in Eq. (44)
numbers of specifically labeled particle and hole a be
lines (the so-called "open" lines) which describe the
model states with reference to the Hartree-Fock

I -*.) ctk I (O) . -(50)determinant. The algebraic expressions are re-

Then

______________ _ -L~0,.) -6., (k ~i) +81k (a -Lc

SE , Next, we determine that

- --------------- - (0,! Vb) =-(bj I Ick (52)

since 8b 8jk is not allowed (i.e., 0,, must not be a

FIG. I. Zeroth-order diagrams for the first derivative model state). The combination of Eqs. (51) and
pan ,! of the nonadiabatic coupling matrix elements. (52) yields two types of terms

______
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HF SE DE

HF

SE: I -

SI S S

I -

I cz

I -~

FIG. 2. First-order diagrams for the first-derivative part V of the nonadiabatic coupling matrix elements.

SE 4 ) 4 '.) ( ' A1 V (D ) ( k 1 2 i) (a i I Ib k > - ( a I - j b i , (53 )

which are graphically given by the first SEISE diagram of Fig. 2 and its phr. The remaining orbital sum-
mation corresponds in the diagram to the vector not touching a model-state vertex (indicated by a diamond).

Similarly, if <V, is a double excitation

I4,,) -ctdtlk I%), (54)

then

<qyIS~), :T<I ,,.. ( - 'aK ~ -=-.[ l2 ..., ,(n - )icd]l(,

may be reduced to

Kr *;P)+6tLikh6Ci (1k) -!R(dc) (56)
8R 8



32

where the notation

5j, kh (Ik )) =5 6I I 1 -8 Ia k )(57)

is used. Taken together with

( 4Iy I VI) -j(kj)( (lk)b Icd )+ b(td)((dc)j I Ik), (58)

Eq. (56) gives

)(mb iae + a~ e(ejI im)

BR lae)-! \"b (aj 1im . (59)

The first two terms of Eq. (59) correspond to the second diagram (in Fig. 2) and it phr. The last two are
represented by the remaining SE'SE digram and its phr.

The second-derivative matrix elements may be derived similarly. From the form in Eq. (43) we substitute
for G'"' and obtain at low order

-)--1'<>, a , (60)1

+2 ,07,BR O, ( >) I + ( O! / B1

6 j) aK) (EO-EO) 2 aR ) aR (EO ) (E) -EO) \
The complexity of successive terms grows rapidly; the second-order part consist of 17 terms.

Let us convert the zeroth-order contribution to orbital form. In second quantization we represent a2/aR 2
by a/BR operating twice:

B st Bu v*B (61)
aR ,..,.\ aR "

Then we find for single excitations, for example, that

8 R -KI a)

- < 2 m -b _ j-a Lb

-2(a (ab)(,-jLi)+2 a - i)Q (jLb) . (62)

These terms are prescribed diagrammatically by the SEiSE block of Fig. 3. Diagrammatically, the necessary

terms consist simply of all possible proper connections of the SE bra and ket with two derivative operator

symbols. Note that the intermediate states here can be model-space states since they are part of the resolu-

tion of the identity in the form

(63)

The factors of 2 on the last two terms of Eq. (62) arise diagrammatically when it is observed that the last

two diagrams are equivalent, as are the third from the last and its phr. The remaining diagrams are only 1
i,,L---'-'--- ---' "
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reconcilable with Eq. (62) after combining the terms with matching delta functions. This is accomplished
by inserting the resolution of the identity into the even numbered terms, and separating the sums over occu-
pied and virtual orbitals; e.g.,

$The first two terms cancel leaving ate the first-order f" terms. The integral and en-
ergy (first) derivatives are the same ones already

8 8 Vb (65) use inLI EI . (34 and (4)-uttiktm)he r

Themultiplied by ..' t°-like terms. These terms aren-

which then corresponds exactly to the first SEISE the ones required for 2 .'in Eq. (40). , "2 ) will
require second derivatives of the two-electron in- t

diagram. The other two diagrams are obtained tegrals, but these are also available. 12

similarly. Comparison with a conventional deriva- If the nuclear Schr6dinger equation is to betion is straightforward, and uses the anti-tin roero aR; eg solved exactly, either (1) the couplings must be cal-
culated in the coordinate system in which the

a a scattering problem is to be solved, which is not thea ---- - . (66) usual case, or (2) a complementary set of coupling
I matrix elements of similar one-electron operators

The elementary second derivative terms must be provided to enable a transformation of
[/ 2 coordinates.3 The diagrams presented in this paper

are sufficient in either case. As derivatives withrespect to various coordinates are caled for, one-

which are similar to the t.'(O) matrix elements, are electron equations analogous to Eq. (47) may be
the only additional component necessary to evalu- defined. However, the diagrams required will be

HE SE DE
0 1HFO ~ Phr 0

?> *Phr oCjp7 o .ph

SE. Ph O<>O

ph, phr

o~j~.phr

DE phr .PtV h
DEI

.phr p

FIG. 3. Zeroth-order diagrams for the second derivative part g" of the nonadiabatic coupling matrix elements.
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the same for any one-electron operator. A comple- ferentiate each side of Eq. (A2) with respect to R
mentary set of couplings may be obtained in the 'representing this by a prime symbol):
same fashion. Similarly, cross-term matrix ele-
ments arising in the transformation can be evaluat- (_ * )'  B (A3)
ed using the second-derivative diagrams if the two Using Eq. (Al) and reorganizing, we obtain
one-electron interactions are appropriately labeled. B ! = ' (B )' ME -_FB f. (A4)

From differentiating the normalization equation
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APPENDIX: AN EXACT MATRIX iI B BI' la - HBa (ca:-P) W A)
- _ (EpEa)

HELLMANN-FEYNMAN RELATION i When A_ is real,

Write the eigenvalue problem in the chosen dBa b= O. (A8)
model spaceThen 

using Eq. Qa8) in Eq. (A6) gives
HB=BE (A(9) ,(B*)a,, ~= -:B,(B* Y , (A9)

(with Z diagonal) as r r

BH.B ---Z . (A2) so that

(aB can be/-HC of .A---f-- from the text.) Then dif- I B B_' j.c=0 •(A 10)
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