
AD-AIIS 1014 BOEING COMPUTER SERVICES CO TUKWILA WA F/6 12/1
IMPLEMENTATION OF THE GIBBS POOLE-STOCKMEYER ALGORITHM A*D THE --ETC(U)
JAN 82 J B LEWIS F49620-B1-C-0072

UNCLASSIFIED AFOSR-TR-82-0264N

I flfflflfflflC



11111 _L15_ -



7 lip, NCASSIIED
SECURITY CLASSIFICATION OF THIS PAGEt (lit-r f'w.,,, I i

REPORT DOCUMENTATION PAGE !-E1 l V INz

1. REPORT NUMBER 2. GOVT A:; ESSI2N NO. 3-RECIPIEt.T S CAT OLZZ ,. waER

*FOR.TR. 82-0264 'i.4'~
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PEPI:O Co.wEPn: 'Z

IMPLEMENTATI ON OF THE GIBBS-POOLE-STOCKMEYER TECH IVCAL.,

ALGORITHM AND THE GIBBS-KING ALCORITHM
6. PERFORMING O'RG. REPG)RT NuMBER

AUTHOR(s) S. CONTRACT OP GRANT N VBRP~

John Gregg Lewis F49620-81 -C-GeT?

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PRCGRAM E.EVENT. PRCOJECT, AS-C0 Boeing Computer Services Co. AEA6ORJNTN'BS

565 Andover Park West .61102F; -304/,L3 I

Tukwila WA 98188 ______________

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Mathematical & Information Sciences Directorate TArJ SA-
Air Force Office of Scientific Research 13. NJMBER OF -AGES

Boiling AFB DC 20332 17

4. MONITORING AGENCY NAME b ADDRESS(if different from~ Conf-Hing Office) IS. SECURITY CLASS. (of 11-.reot

IS.. DECL ASIFICA7TCN- DO*NGRADING
SCHECULE

S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2), if different fromt Report) D I

D
19. KEY WORDS (Continue on reverse aide if necessary end identity by block nucrber)

Bandwidth reduction, profile reduction, wavefront reduction, sparise matrix,

banded matrix, matrix reordering.

c.,201 ABSTRACT (Continue on reverse aide If necessary end idenmify by blork nu.mber)
Implementations of two effective matrix reordering algorithms ,-:(r0 published in

S this paper as Algorithms 508, which implements the Gibbs-Poole-S'tockme,-iyer, 7
algoih for reducing the bandwidth of a matrix, and 509, w-hich implements the I

Gibbs-King algorithm for reducing the profile of a matrix. Reduction of ma-trix "

profile is more often required than bandwidth reduction, but Algorithm 509 is

substantially slower than Algorithm 508. Consequently, the Gibbs-Poole-
Stockmeyer algorithm has been recommended and used in contexts (CONTINUED)

DD I IM7 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION, OF THIS PAGE "I~h V-, L'e' wered)



-0 UNCLASSIFIED
SECURITy CLASSIFICATION OF THIS PAGE(Whon Date Entered)

Vi

ITEM #20, CONTINUED: where the b.t ter pro filt r I iuc' ,n ,r . ,, i .. ' -
King algorithm would be more appropriate. In add:,.' :L, ,.., r 'm.
both contain unnecessary restrictions on problem,1 si.: , i.'d ir 4

checking. The authors describe a ne-...' FORTRAN imp 1c mr, n'*t:-n l i-, .
algorithms which is portable, faster, more reliablo i-, ,- r-.- . i,

,~ ' the original implementations. The ne. implement ati n of "i, nbbm-1>'ri,
algorithm is much faster than Algorithm 509, generall.-:, . 7%," ' .thlan .
Algorithm 508 and nearly as fast as the new., implementainn -hib-! --F: ,-Stockmeyer algorithm.

Acoes slo Foir

XTIS, GRA&I
DTIC TAB 0
Unannounced ]
JUStitfication

Distribut ion/
Availability Codes

Avail and/or
Dist SpecialI.I

copy
1148PECTED

UNCLASSIF I ED
S-CuR.TY CLASSIFICATIOV OF . PAGE(Uhn Dots Eepdt



IFM-TR- 82-0 264

IMPLEMENTATION OF THE GIBBS-POOLE-STOCKMEYER ALGORITHM

AND THE GIBBS-KING ALGORITHM

John Gregg Lewis

Boeing Computer Services Co.

Implementations of two effective matrix reordering algorithms were

published in this journal as Algorithms 508 [11, which implements the Gibbs-

Poole-Stockmeyer algorithm for reducing the bandwidth of a matrix, and 509 [9],

which implements the Gibbs-King algorithm for reducing the profile of a matrix.

Reduction of matrix profile is more often required than bandwidth reduction, but

Algorithm 509 is substantially slower than Algorithm 508. Consequently, the

Gibbs-Poole-Stockmeyer algorithm has been recommended and used in contexts

where the better profile reduction provided by the Gibbs-King algorithm would be

more appropriate. in addition, Algorithms 508 and 509 both contain unnecessary

restrictions on problem size and provide little error checking. We describe a

new FORTRAN implementation of both reordering algorithms which is portable,

faster, more reliable and uses less storage than the original implementations.

The new implementation of the Gibbs-King algorithm is much faster than Algorithm

509, generally slightly faster than Algorithm 508 and nearly as fast as the new

implementation of the Gibbs-Poole-Stockmeyer algorithm.

Key Words and Phrases: bandwidth reduction, profile reduction, wavefront

reduction, sparse matrix, banded matrix, matrix reordering

CR categories: 5.14, 5.32

The Algorithm: The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for

Reordering Sparse Matrices. ACM Trans. Math. Softw.

Author's address: Boeing Computer Services Co., Mail Stop 9C-51, 565 Andover

Park West, Tukwila, Wa. 98188. This work was supported in part by the Air Force

Office of Scientific Research under contract F49620-81-C-0072.

Approved for public release'
distribution unlimited.

1 'h-



1. Introduction

Many algorithms and programs which solve sparse linear equations use

Gaussian elimination in combination with a reordering of the coefficient matrix

to preserve sparsity. One common approach for problems where the coefficient

matrix is symnetric or structurally symmetric is to use symmetric row and column

interchanges to reduce the bandwidth, the profile, or the wavefront of the

matrix. This approach is known to be less than optimal for large problems

derived from regular finite element discretizations. There is much recent

literature on algorithms which use more sophisticated data structures than

those of a "banded" matrix to achieve lower costs for the numerical

factorization and solution phases of very large problems (see [2] for an

excellent survey). Determining the reordering and setting up the data

structures for these algorithms is substantially greater in cost than for the

banded reorderings provided by the Gibbs-Poole-Stockmeyer algorithm (GPS) and

the Gibbs-King algorithm (GK). For moderately large problems the banded or

variable banded linear equation solvers often have smaller total cost than their

more sophisticated counterparts. Problems for which banded orderings are

appropriate occur frequently in finite element analyses of structures (see [4],

[8], [12] for examples).

Banded orderings have obvious virtues on vector computers like the CDC

CYBER 205 or the CRAY-1, where band Gaussian elimination can take much more

advantage of the vector operations than can more general sparse elimination

schemes. The simplicity of banded data structures favors band algorithms, even

for large problems, on sequential machines like the CDC CYBER 175 computer where

arithmetic is fast and memory accesses are slow. Very large problems can be

2



solved with sophisticated sparse solvers which use banded algorithms to solve

subproblems [7]. These are reasons enough to return our attention to bandwidth

reduction algorithms.

The Gibbs-Poole-Stockmeyer algorithm [1], [11] has been shown to be an

effective tool for reducing the bandwidth and profile of finite element matrices

arising in structural engineering problems [4], [101, [16]. The Gibbs-King

variation [9] of this algorithm provides better reduction of the profile and

wavefront. However, this latter algorithm, as implemented as Algorithm 509, is

often much slower in execution than its predecessor, Algorithm 508, which

implemented the GPS algorithm; speed of execution is an important virtue of

Algorithm 508. In this paper we present a new implementation, GPSKCA [14], of

both algorithms. The new implementation executes more quickly than either

Algorithm 508 or 509. The speedup for the GK algorithm is dramatic, and reduces

its execution time to nearly that of the quick GPS algorithm. In addition, the

new implementation provides better bounds checking, improved diagnostics for

erroneous inputs, and more efficient use of space.

A working knowledge of the original Gibbs-Poole-Stockmeyer paper [11] is

assumed throughout this paper. Definitions of the graph-theoretic terms in this

paper will be found therein.

2. Outline of the algorithms

We assume that the coefficient matrix is symmetric or at least has its

nonzero entries occurring in symmetric locations. Further, we assume that

diagonal pivoting (symmetic row and column interchanges) does not produce

numerical instability. These assumptions make it possible to carry out the

3



reordering algorithms in the context of the graph of the matrix: each equation

corresponds to a single node in the graph; there is an edge or arc connecting

nodes i and j only if the ij-th element of the matrix is nonzero.

The two reordering algorithms consist of three phases, and they differ only

in the last phase. The phases are:

1. find a pseudo-diameter of the graph (a heuristic for finding two nodes

far apart in the graph)

2. combine the level structures rooted at either end of the pseudo-

diameter into a more general level structure.

3. number the nodes according to their locations in the level structure,

using a generalization of

a. the reverse Cuthill-McKee algorithm (GPS), or

b. King's algorithm (GK).

Discussions of the details of these phases are given in [9] and in [11].

3. Appropriate data structures

The key operations performed by these algorithms involve creating or

operating upon level structures. A level structure for a graph is an ordered

list of equivalence classes of nodes such that, for every node v, all of v's

immediate neighbors are in the same equivalence class, the immediately

preceding class or the immediately succeeding class. Rooted level stuctures are

level structures whose first level consists of a single node u, and where all

succeeding levels consist of nodes with equal minimum distance to u. There are

two obvious and compact representations for such structures in FORTRAN:

1. an n-vector containing in each entry the level number at which the

corresponding node is found

4



2. a list of the nodes in each level, with as many lists as there are

levels, represented by an n-vector of node numbers together with a

shorter vector giving the index of the initial node in the

corresponding level.

These two representations provide equivalent information with differing costs.

The first form is efficient for deciding to which level a particular node

belongs. The second form provides easy access to the set of nodes forming a

given level. Each representation requires O(n) operations to extract the

information for which the other representation is efficient.

In the GPS algorithm the second representation of a level structure is the

more appropriate form for phase 1. The first representation is more efficient

for phase 2. The third phase can be performed most easily if both

representations are available. Only the first representation is used in the

original implementation. Our new implementation uses whichever representations

are more appropriate for each phase. Between phases the representations are

transformed from one form to another. The overhead of the transformations is

recovered by using more appropriate data structures in other parts of the

algorithm, particularily in phase 3. The use of the second representation also

reduces the storage requirements in phase 1 for symmetrically reducible

matrices, which are encountered with surprising frequency in structural

engineering contexts.

An opportunity for improving the choice of data structures is particularly

evident in phase 3b, Gibbs' variant of the King algorithm. In this numbering

scheme there are three sets S2, S3 and Q, which are described as "queues" of

integers. Neither S2 nor S3 is a queue. Both are priority queues [13]:

while additions occur only at the end of the queue, deletions are made on the

5,



basis of a merit function which depends only partly on location within the

queue. Our implementation of the Gibbs-King algorithm represents S2 and S3 by

simple linked lists, which reduces the complexity of the deletion operations

which occur on both priority queues. These priority queues are represented

awkwardly by one-dimensional (unlinked) vectors in Algorithm 509.

The interaction between the data structures and the Gibbs-King merit

function provides the most dramatic improvement over the original

implementation. The merit rule for the numbering is: number the first node in

S2 with the fewest connections to nodes in S3, then delete from S3 all nodes

connected to the newly numbered node. This latter operation makes the

connection counts from S2 to S3 dynamic. It is in repeatedly computing

connection counts that King's numbering is more complex than the Cuthill-McKee

numbering. In Algorithm 509 these connection counts are recomputed each time a

new node is to be numbered, with membership in S3 being determined by a

sequential search through a list. We compute the connection counts in the new

implementation only at the beginning of an outer iteration (once for each

level). On each inner iteration (numbering of a node), we update the counts for

only those elements in S2 which connect to elements being deleted from S3.

This is performed efficiently by using the connectivity information for S3

together with an encoding of both membership in S2 and connectivity counts in

the n-vector holding the first representation of the level structure.

4. Storage Requirements

The changes in data structures produce faster algorithms without problem

restrictions, but also necessitate different calling sequences for the

6



algorithms. Two major changes in the representation of the problem have been

made, both of which usually reduce the overall storage requirements of the

algorithm. The first change is to the workspace needed for the reordering. The

variety of internal data structures are all created in a contiguous workspace

provided by the user. Consequently, all working space for the reordering is

given as a single vector, whose length is specified by the user; the new code

checks that it does not access elements beyond this length. A vector of length

6n+3 will suffice for any problem, but a vector of length 4n suffices for most

problems. The actual space used for any particular problem is reported back to

the user. (The space required ranges from 2n at one extreme, a diagonal

matrix, to 6n+3 at the other extreme, a tridiagonal matrix.) By contrast,

Algorithms 508 and 509 require 5n + 802 words of working storage for any

problem, and will be unable to correctly reorder certain sparse symmetric

matrices.

A more dramatic reduction in space requirements has been made by changing

the representation of the graph or the connectivity structure of the matrix to a

more compact form. The matrix is represented by a connectivity or adjacency

table in both implementations. This table gives a list of the nodes to which

each node is connected. Equivalently, we require for each row of the matrix a

list of the columns in which nonzero entries occur off the diagonal. Algorithms

508 and 509 require that this table be a rectangular array, with n rows and at

least as many columns as the maximum degree of any node (the maximum number of

off-diagonal nonzeroes in any row). An additional n-vector gives the actual

degree for each node. This table is given to the new implementation as a list of

lists, where the connections for each node are given in consecutive locations.

This requires a vector of length nz, the total number of off-diagonal

7 [



nonzeroes. (The full symmetric structure is needed in both cases for

efficiency.) We also require one additional vector, of length n, giving in

each entry the index in the connectivity table of the first node in the sublist

for the corresponding row. A second vector giving the degree of each node (the

length of the corresponding connection list) is still needed. This form can

never require more than n words more storage than the original and will

require much less storage whenever the number of nonzeroes in rows varies

significantly. It also permits the use of compressed subscript storage schemes

[31 and is quite similar to the structure used in [6].

The storage savings provided by the compact representation of the

connection table dominate the differences in space requirements between the new

and old implementations, as reported in the following section. The reasons for

preferring this format are evident. However, for compatibility with Algorithms

508 and 509, a version of the new implementation which uses the old format for

the connection table is available from the author (not through the ACM

distribution service). This alternative provides the time savings and the added

reliability of the new implementation, but little of the storage savings.

5. Empirical results

The original and the new implementations of the two reordering algorithms

were compared on 30 test matrices collected by Everstine [4]. These test

problems are an outgrowth of the 19 problems used in the original papers (9] and

[111. Everstine has reported the comparative timing and effectiveness of

Algorithm 508 and other banded reordering strategies, but his paper excluded

Algorithm 509 because of its relatively poor execution speed. The following

8



results show that excluding the Gibbs-King algorithm is unwarranted; an

efficient implementation of the Gibbs-King Algorithm compares very well in

terms of both speed and effectiveness.

We give three sets of results in this section. First we give relative

timings for the new imnplementation of the GPS algorithm and the GK algorithm,

and for Algorithms 508 and 509. The second set of results is the relative

effectiveness of the reorderings, in the same form as reported in [4j. This

makes it possible to include the Gibbs-King Algorithm in the comparisons in [4].

Finally we give the storage requirements for the new and the old implementations

of the algorithms.

The timing results are given in Tables I and 2. The times in Table 1

were obtained on a CDC Cyber 175 computer, using the FTN 4.6 FORTRAN compiler

with optimization level 2. The times in Table 2 were observed on an IBM 3032,

using FORTRAN H Extended with optimization level 2, using full length integers.

Both tables clearly show the increased speed of the new implementation and also

demonstrate that an efficient implementation of the GK algorithm can be nearly

as fast as an efficient implementation of the GPS algorithm.

Table 3 contains the reordering results from the GK algorithm needed to

complete Everstine's comparison of banding reordering algorithms. These

results show that, on half of the test problems, the GK algorithm performs

better than all of the algorithms considered by Everstine. Everstine concluded

that Algorithm 508 was the best algorithm because of its effectiveness and

speed; the Gibbs-King algorithm always performs at least as well as the Gibbs-

Poole-Stockmeyer algorithm on these test problems, and is faster in its new

implementation than the version of Algorithm 508 used by Everstine.

9



The new implementations are more efficient in storage requirements. In

Table 4 we give the minimum storage requirements for all of the vector arguments

to the reordering algorithms, including the representation of the adjacency

structure of the matrix. For the new implementation, this is based on the

minimum workspace requirement reported back by the code, which is less than what

the user would need without apriori knowledge. The actual runs used a vorking

vector of length 5n; the last column of Table 4 gives the minimum length (in

units of n), which is used to compute the first column of this table. The

requirements for the old implementations are those of the vector and matrix

inputs, plus 801 words for the required named C01MON areas. We also give the

workspace requirements for a machine like the IBM 370 series, where short

integers suffice to store numbers as large as n. We assume in Table 4 that the

longer integer representation requires twice as much storage as the shorter

representation. The results are given in "long integer words". Thus, the

actual requirements in bytes for an IBM 370 or DEC VAX 11 computer would be four

times as large.

The space requirements do not include the space occupied by the reordering

codes, which is clearly a system dependent quantity. As a single benchmark, the

code produced by the FTN compiler for the CDC CYBER 175 required 2163 vords

for the new algorithms and 1434 words for the old algorithms. Even though the

new, faster implementation requires more storage for the code itself, the total

space required will usually be less.

10



6. Concluding Remarks

The use of more appropriate data structures leads to reordering algorithms

which are more efficient in time and space. The new implementation is more

robust than are the original implementations because the change in data

structures, and the concomitant use of a single workspace array, makes it

possible to remove several hidden restrictions on the matrices which can be

reordered. The new implementation also has significant internal error checking

for improper input. Both implementations, for example, require that the

structure of the matrix be symmetric -- the i,j-th element is nonzero if and

only if the j,i-th element is nonzero. Neither implementation checks this

explicitly because of cost, but in most cases the new implementation will detect

an inconsistency in its data structures and halt the reordering.

There are possibilities for further enhancement of the speed of these

algorithms. Several of these were considered in the development of these codes,

but rejected. The new implementation uses insertion sorts for the numerous

lists which are sorted; an asymptotically faster method like quicksort [15)

might provide some speedup. However, the lists to be sorted are usually short

and the total time spent in sorting is small. The use of quicksort would gain

little in time while requiring additional space for code. Further, the

instability [13] of the sorting algorithm would change the strategies for

breaking ties, thus changing the final reordering. For these reasons, the new

implementation uses insertion sorts and produces the same reorderings as

Algorithms 508 and 509.

A more significant change in the algorithm is suggested in [5] and [61.

The initial phase of both algorithms, finding a pseudo-diameter or a pair of

1 [



pseudo-peripheral nodes, is critical to the success of the reordering, but it

can also be expensive. George and Liu examine several modifications to the

heuristic used in [9], [10], and [11]. They conclude that a quicker heuristic

is also more effective, at least in the context of the orderings they consider

in [6]. We experimented with their recommended "S2" heuristic, but took

advantage of the context of algorithms 508 and 509 to begin the pseudo-diameter

calculation with a node of minimum degree rather than an arbitrary node. This

selective choice of starting node improves the performance of both pseudo-

peripheral node finders, especially the original GPS heuristic. We concluded

that the faster heuristic also carries the risk of significantly reducing the

effectiveness of the algorithm. The implementation published in [141 uses the

same heuristic for computing the pseudo-diameter and produces the same

reorderings as the original implementations of algorithms 508 and 509.

ACKNOWLEDGMENT

The author wishes to thank W. G. Poole, Jr. for making available copies of the

original implementation of the algorithms and for his helpful criticism of this

paper. D. S. Dodson and A. M. Erisman also helped to improve the presentation,

and G. C. Everstine provided his collection of test matrices.

REFERENCES

[1] Crane, H. L. Jr., Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K.
Algorithm 508. Matrix Bandwidth and Profile Reduction, ACM Trans. Math.
Software 2, 4, (Dec. 1976), 375-377

[2] Duff, I. S. A Survey of Sparse Matrix Research, Proc. IEEE 65, 4, April
1977, 500-535

12



[3] Eisenstat, S. C., Schultz, M. A., and Sherman, A. W. Efficient
Implementation of Sparse Symmetric Gaussian Elimination, Proceedings of
the AICA International Symposium on Computer Methods for PDE's, 1975, 33-
39

[4] Everstine, G. C. A Comparison of Three Resequencing Algorithms for the
Reduction of Matrix Profile and Wavefront, International Journal for
Numerical Methods in En ineerinq14, 1979, 837-353

[5] George, A. Solution of Linear Systems of Equations: Direct Methods for
Finite Element Problems, in Sparse Matrix Techniques, Copenhag-en 1976,
Dold. A., and Eckman, B., ed., Springer-Verlag, Berlin, 1977

[6] George, A. and Liu, J. W. H. An Implementation of a Pseudoperipheral Node
Finder, ACM Trans. Math. Software 5, 3, (Sept. 1979), ?84-295

[7] George, A. and Liu, J. W. H. Algorithms for Matrix Partitioning and the
Numerical Solution of Finite Element Systems, SIAM J. Numer. Anal. 15, 2,
April 1978, 297-327

[8] George, A., Liu, J., and Ng, E. User Guide for Sparspak: Waterloo Sparse
Linear Equations Package, Dept. of Computer Science, University of
Waterloo, Waterloo, Ontario, 1979

[9] Gibbs, N. E. Algorithm 509. A Hybrid Profile Reduction Algorithm, ACM
Trans. Math. Software 2, 4, (Dec. 1976), 378-387.

[10] Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K. A Comparison of
several Bandwidth and Profile Reduction Algorithms, ACM Trans. Math.
Software, 2, 4 (Dec. 1976), 322-330.

[11] Gibbs, N. E., Poole, W. G. Jr., and Stockmeyer, P. K. An Algorithm for
Reducing the Bandwidth and Profile of a Sparse Matrix, SIAM J. Numer.
Anal. 13, 2 (April 1976), 236-250.

[12] Jennings, A. Matrix Computations for Engineers and Scientists, John Wiley
and Sons, London, 1977

[13] Knuth, D. E. The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison-Wesley, Reading, Mass., 1973.

(14] Lewis, J. G. Algorithm . The Gibbs-Poole-Stockmeyer and Gibbs-King
Algorithms for Reordering Sparse Matrices, this journal

(15] Sedgewick, R. Implementing Quicksort Programs, Comm. ACM 21, 10, October
1978, 847-856

(16] Thierer, A. A Comparison of Ordering Schemes for Profile Minimization of
Sparse Symmetric Matrices, Center for Numerical Analysis, University of
Texas report CNA-146, Austin, Texas, 1978

13



Table 1

Relative Execution Times for the New and Old Implementations

Of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms

(CDC Cyber 175)

n Time in Seconds Relative Execution Time for
for New GPS Old GPS New GK Old GK

59 .006 1.3 1.4 2.4
66 .006 1.5 1.4 2.1
72 .006 1.3 1.4 2.3

87 .009 1.4 1.5 4.6
162 .017 1.5 1.5 4.2
193 .078 2.1 1.3 12.2
198 .036 1.7 1.2 2.5
209 .026 1.5 1.5 16.6
221 .030 1.5 1.4 4.2
234 .033 1.9 1.3 3.1
245 .031 1.5 1.4 14.1
307 .045 1.6 1.4 22.1
310 .044 1.6 1.4 3.7
346 .059 1.5 1.4 16.2
361 .035 1.7 1.5 7.3
419 .055 1.5 1.5 14.5
492 .059 1.8 1.4 6.2
503 .069 1.6 1.7 36.2
512 .163 2.1 1.2 3.9
592 .101 1.6 1.4 9.2
607 .123 1.7 1.3 16.5
758 .120 2.1 1.3 5.2
869 .202 1.6 1.3 7.6
878 .223 1.6 1.2 7.6
918 .188 1.6 1.3 9.6
992 .555 1.6 1.2 6.7
1005 .136 1.6 1.6 50.6
1007 .271 1.6 1.2 7.4
1242 .321 1.5 1.3 34.0
2680 .448 1.7 1.5 32.6

*Relative to time for the new implementation of the GPS algorithm.

14



Table 2

Relative Execution Times for the New and Old Implementations

Of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms

(IBM 3032)

n Time in Seconds Relative Execution Time for
for New GPS Old GPS New GK Old GK

59 .008 1.2 1.2 1.9
66 .009 1.4 1.2 1.9
72 .008 1.3 1.4 2.1
87 .012 1.3 1.4 2.8
162 .024 1.4 1.3 2.6
193 .111 1.6 1.3 5.1
198 .052 1.5 1.2 1.9
209 .037 1.3 1.5 7.1
221 .042 1.4 1.3 2.6
234 .044 1.6 1.2 2.3
245 .043 1.3 1.4 6.6
307 .064 1.3 1.3 9.1
310 .061 1.5 1.3 2.4
346 .083 1.3 1.4 6.7
361 .047 1.6 1.5 4.1
419 .078 1.4 1.4 6.3
492 .084 1.6 1.3 3.5
503 .095 1.5 1.6 13.9
512 .208 1.7 1.1 2.5
592 .139 1.5 1.3 4.5
607 .164 1.5 1.3 7.4
758 .164 1.9 1.3 3.2
869 .286 1.4 1.2 3.7
878 .312 1.3 1.2 3.7
918 .266 1.4 1.2 4.5
992 .773 1.3 1.2 3.1
1005 .192 1.5 1.5 19.3
1007 .385 1.3 1.2 3.6
1242 .458 1.3 1.3 13.0
2680 .601 1.7 1.4 13.4

Relative to time for the new implementation of GPS algorithm.

15



Table 3

Bandwidth, Profile and Wavefront Computed by
the Gibbs-King Algorithm

n Bandwidth Profile RMS Max Average
Wavefront

59 11 255 5.53+ 8 5.32*
66 3 127 2.94+ 3 2.92*
72 12 172 3.46+ 4 3.39
87 20 595 8.24+ 12 7.84*
162 17 1417 10.09 13 9.75
193 45 4416 24.86 36 23.88
198 11 1115 6.95+ 9 6.63*
209 48 3823 20.40 32 19.29
221 20 2002 10.53 17 10.06
234 18 1115 6.29 12 5.76
245 48 3568 16.64 27 15.56
307 63 7825 27.36 35 26.49
310 28 2696 9.85 16 9.70
346 55 7335 23.29 34 22.20
361 14 4699 14.23+ 15 14.02*
419 41 7654 19.96 30 19.27
492 37 5021 11.99 22 11.21
503 69 14539 32.22+ 50 29.90*
512 29 4309 11.43+ 23 9.42*
592 47 10333 19.70+ 33 18.45*
607 78 14153 27.25+ 38 24.32*
758 25 7417 12.01+ 25 10.78*
869 62 14859 19.87 37 18.10*
878 40 18818 22.60+ 25 22.43*
918 64 19580 23.39+ 39 22.33*
992 35 33076 34.66+ 36 34.34*
1005 135 39136 44.80 89 39.94*
1007 54 21422 22.60+ 33 22.27*
1242 129 51710 46.26 84 42.63
2680 89 96746 38.03+ 60 37.10*

+ would supplant best algorithm for reducing RMS wavefront
in Everstine's Table 2 [4].

* would supplant best algorithm for reducing average
wavefront or profile in Everstine's Table 3 [4].

16



Table 4

Workspace Requirements for Old and New Implementations

of the GPS and GK Algorithms

Unpacked Integers Packed Integers* Workspace
Factor

n Old New+ Old New+ (*n)

59 1510 607 1363 332 3.76
66 1594 752 1429 408 4.55
72 1594 651 1450 361 3.96
87 2455 1021 1933 553 3.52

162 3232 2064 2584 1112 3.44
193 7750 4485 4952 2338 3.14
198 4366 2544 3277 1370 3.82
209 5609 2830 3937 1519 3.20
221 4780 2821 3565 1520 3.39
234 4546 2208 3493 1220 3.87
245 5457 2743 3987 1493 3.23
307 5407 4103 4179 2204 3.15
310 6072 4121 4522 2215 3.40
346 9452 5300 6338 2822 3.99
361 6217 4854 4773 2607 3.27
419 8763 5730 6249 3074 3.17
492 9166 5859 6706 3175 3.49
503 16395 8617 10359 4559 3.15
512 11554 6542 7970 3526 3.94
592 13234 8181 9090 4386 3.20
607 12942 8718 8997 4662 3.91
758 13688 10105 9898 5431 3.42
869 18182 11807 12534 6337 3.20
878 14850 11964 10899 6420 3.14
918 18244 12106 12736 6511 3.14
992 24610 ?1800 16178 11395 3.10
1005 33967 13754 20902 7379 3.11
1007 16914 13757 12383 7381 3.15
1242 23158 16735 16327 8988 3.08
2680 67802 38657 43682 20668 3.09

* Number of full length integer words required when integers

are packed two to a word or half-length integer words are
used.

+ In the new implementation the storage requirements for the
Gibbs-Poole-Stockmeyer algorithm and the Gibbs-King
algorithm may differ slightly; they are identically the same
in all of these examples.

17




