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1. Introduction

In numerical weather prediction problems it is customary to

apply boundary conditions of the form w = 0, w = 0, or = 0 or

a modification of either of these at the upper level. Examples

are Kasahara and Washington (1971), Somerville et al. (1974),

Ramanathan and Grose (1977), Staniforth and Daley (1977) and

Donahue (1980). The purpose of this report is to highlight some

difficulties of these boundary conditions and to suggest a

possible alternative.

It is convenient to consider the boundary conditions that

have been applied under two separate headings:

(a) an infinite atmosphere where boundary conditions are

applied at Z = - (identical to P = 0), and

(b) a finite atmosphere.

(a) Top boundary condition for an infinite atmosphere

For the discussion to follow it is worthwhile to note the

difference between a true boundary condition and a statement of

fact. As an illustration we consider the solution of the

equation

d2 0+2 dO + a0 = 0 M,.d-- _ 2B .+Q0(1).
dZ2  dZ

If both a and 8 are real and positive, a statement like "Q

tends to zero as Z tends to infinity" is not a boundary

condition; rather it is a statement of fact.. This is because
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there is no way of combining the two different possible solutions

to Eq.(l) without necessarily making Q tend to zero as Z tends to

infinity.

On the other hand, if a were negative, the statement would

be a boundary condition. For in this latter case one of the two

possible solutions increases very rapidly as Z tends to infinity

while the other tends to zero. The statement "0 tends to zero as

Z tends to infinity" therefore discriminates between the two

solutions.

Now let us consider the linearized equations of motion in

the P-system of co-ordinates;

au- fv + a -*@ 0

+ fu + 4j = 0

do T

--- + W. MY -T- = 0
0 o (2).

RT' -

au +v aw

Here, u, v and w are the two horizontal components of velocity

and DP/Dt respectively, P is pressure, * and T are geopotential
and temperature, f is Coriolis parameter and R the gas constant.

The primed quantities are perturbations over those with

subscript zero such that for example T To + T', IT'I << T0 .

Some algebraic manipulations yield
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a (P' '*) + -0
UJ H2N2 aP gh n

ivP2 34n
'I - (3)

N2 H2 OP

awhere a solution of form = iv is assumed and

= E n ; w wn
n n

Each of the *n and w n are the spectral Hough components

of 4' and w respectively and hn is the corresponding equivalent

depth defined in laplace's tidal theory (see for example Wilkes,

1949); H is pressure scale height and N, the Brunt-Vaisala

frequency, is given by

N2H2  RTo do0
p-r-= -p °  (4).

Consider an isothermal atmosphere. The solutions to Eqs.

(3) give

wn -p m mR)/ 2 ±(1 4 - lH) (5)

n

where y is the ratio of the two principal specific heats of air.

Now mesoscale phenomena and a large number of synoptic scale

motions have positive equivalent depth. From Eq. (5) it is clear

that if hn is positive, the real parts of the two possible values

of m are necessarily positive. That is to say that as P tends to

............ . . . . .. .. . . . -..-........
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zero w tends to zero for all possible solutions.

We could have arrived at this conclusion intuitively as

follows. Following the argument of Staniforth and Daley (1977)

that T remains bounded as P tends to zero, and noting from Eq.
TO dO0

(4) that - d- tends to infinity as P tends to zero, we can see

immediately from the third equation in Eq. (2) that w is

necessarily zero at P = 0.

Thus we see that the statement "w = 0 at P = 0" is in fact

not a boundary condition for many of the possible motions in the

atmosphere. Rather for such motions the statement is only a

property of the equations of motion.

Similarly if a = P/Ps where Ps is surface pressure, the

statement "; = 0 at a = 0" is not a boundary condition for

mesoscale and other motions of positive equivalent depths. This

can be shown as follows. Note that

-/ P 5 /P2

Since w = 0 at P = 0, i.e. at a = 0 , the first part of R.H.S. of

this equation is zero at a = 0. The second part is also zero

at a = 0; and so once again the statement c = 0 at a * 0 cannot

be a boundary condition.

(b) Top boundary condition at P > 0

Let us solve Eq. (3) completely. As an illustration, apply

the boundary conditions

- .t , L + , +++ .... ~ r~ o: + +-7- , . . . . .. ... . . . . . . :. .
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w w s at P = P, and aw +b = 0 at P = PT

where Ps and PT are respectively the surface and top pressures of

the model atmosphere and a and b are some constants to make the

top boundary condition general. The solution of Eq. (3) becomes

S A(P/PT) - B(P/PT)- (

n =  s A(Ps/PT) _ B(Ps/PT)_

where A = aPT+ M -A)b, B = aPT + ( + A)b, X2  1/4 -l H
n

We can discuss Eq. (6) under the two special cases of A real

and X imaginary.

.r Case (a): X real

This case is relevant for large equivalent depths. If the

top is high, i.e., PT very small, Eq. (6) at lower levels become

W= W * ( P() A (7)

which is independent of the top boundary condition.

Thus provided the level (at which the top boundary condition

is applied) is high enough and Eq. (3) is not oscillatory in the

.vertical, the particular boundary condition and the level at

which it is applied have little or no effect on the solution to

the equation.
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Case (b): A imaginary

This is the case for equivalent depths such

that hn < 4 1:l H. In this case (P/PT)X is not only a reciprocaln YT

of (P/PT)-A but also, is a complex conjugate of the other. So

reducing PT does not make one solution more important than the

other - rather both solutions go through series of maxima and

minima as PT is altered. The overall effect is that wn at a

particular P is critically dependent on PT and on a and b. That

is, the solution depends very strongly on the boundary condition

and the level at which it is applied. This is clearly

undesirable as it makes the final solution very sensitive to the

parameter (boundary condition) of which we are uncertain.

It may also be noted from Eq. (3) that the boundary

condition w = 0 implies that a8,/aP = 0. Apart from W = 0 which

may be interpreted as a rigid lid representing the inversion at

the tropopause, it is difficult to think of some physical

processes represented by other boundary conditions like w = 0 or

3'/3P = 0 or a = 0.

This difficulty in choosing the upper level boundary

condition is common in geophysical problems. In the case of the

atmospheric diurnal tides, the solution was to choose a condition

that was consistent with the effect of damping due to diffusion

of heat and momentum; see for example Pekeris (1937), Giwa

(1967). This procedure is reasonable since whenever there is

some motion there is necessarily some diffusion. Therefore in

the next section we shall introduce vertical eddy diffusion of

the horizontal components of velocity and heat into the
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linearized equations of motion.

2. Inclusion of eddy diffusion in the linearized primitive

equations of motion

(a) Governing equations

In order to simplify the derivation to follow we shall in

the first instance consider meso-scale motions; that is we shall

neglect Coriolis acceleration in comparison to 3/at terms. It

will be shown later that the conclusions arrived at will be

equally applicable if the Coriolis terms are included. Indeed it

can be deduced that the effect of the Coriolis terms is to modify

the horizontal constant of separation which is often represented

by the equivalent depth.

Using standard notation the linearized primitive equations

of motion in the "P" system are

au 3*1 a

- + = 2a(nP (8)

a1+ RT =0 (10)

dO 0 T+ U y- +v (1 )+- + = 0 (12)

. _ , i .. . . . . , . -'' l _.- - - . , i , , - . _ - - " L : - - ? - ' - " - " - .. . . . . ..+ . . . . .. . . .



8

where g is acceleration due to gravity, Cp is specific heat at

constant pressure, n and K are the eddy coefficients of viscosity

and conductivity and the remaining symbols are as defined in Eq.

(2).

From Eqs. (8) and (9) we have

g2 (npo L) , II + = 0 (13).

V2 ~a2 +2
7 x2 +y 2

Differentiating (13) with respect to P and using (12) to

eliminate au + av, we have

[[a -g2 8 (Tip 0 3-&)law] + RV 2T* = 0 (14).

Combining Eqs. (11) and (14) to eliminate T' we have

,a g2 a ( {p)[E 12W- g 28 Tp 215

t Tp -F- 0T- RW TEP P ap 2

T dO

0

Now the purpose of this discussion is to investigate the

modification of the basic equations by diffusion. Therefore we

shall assume that the diffusion terms are an order of magnitude

less than the other terms. In particular we shall neglect

products of the diffusion terms. Also we shall consider an

isothermal atmosphere in order to obtain analytic solutions in
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terms of simple functions. It may be noted that upper boundary

conditions are applied in the region of the tropopause which is

very nearly isothermal.

With these approximations and assuming a temporal variation

of the form exp(ivt) and noting that in an isothermal atmosphere

dO T - 1 Eq. (15) becomes

V2 32 + iVg 2[& f{Kpo ~p~! + fp 2 (nP
3P2  p p0

y-l gH V2W = 0 (16).
Y IF-

If for the sake of obtaining an analytic solution we make the

reasonable assumption that the kinematic coefficients of

diffusion are constant with height, i.e., K/p0 = K*/p* = constant

'r and n/p0 = =/p, constant, and noting that the equivalent depth

h is given by

gV2 = -V2 /hn

we have

2w_ iK* p a 32wn  in* p2 2( .p 2Wn) +-1 H
+PC _ T{P2p. } * L.(p22A) + Y=0

9 p2  p H2  3P P H2 aP2  aP2 Rnn

3

which can be simplified to give

a2W_ a4Wo ;)3t ;2w
n. . p4 N + 4P3 -n + 2p2  -n) + y-1 H2_ + iNpD(P Y - W n 0o (17)

ap2 a4 ap ap2n
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where the non dimensional constant ND, representing the effect of

diffusion, is given by

_ rK, n,*
D vH2 

p  p

(b) Solution of the equation and application to upper level

boundary condition

Eq. (17) is homogeneous in P and hence we can seek a

solution of form

W zpM (18)n

When this is substituted into Eq. (17) we have

y-1I

M(M-l) + iNDM2 (M-1)2 + -- :- H = 0 (19).

The discussion to follow is perhaps best done in terms of

the Z system of coordinates. ALso it is convenient to define a

new quantity

Q = W/P (20)

Since Po seZ/H (Ps-mean surface pressure), substituting Eq.

(18) into Eq. (20) gives

SeZ/H A -l-M (21)
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so Eq. (19) in terms of X gives

AX(-l) + iN X2 (,-l) 2 + Y-1 H = 0 (22).D Y If

Eq. (22) is a fourth order equation and hence has four

possible independent solutions, two of which do not exist if the

damping coefficients are set to zero. Henceforth we shall refer

to these two solutions as the diffusion terms. The other two

solutions will exist even when the coefficients of diffusion are

zero and they are the solutions which have always represented the

normal modes of atmospheric motion. The purpose of this

discussion is to see how these other two solutions are modified

as a result of the inclusion of diffusion.

Before proceeding with the discussion it is worthwhile to

note some salient points.

(1) The total kinetic energy in a column of air from the

bottom to the top of the atmosphere (at Z = ZT) is proportional

to

f T  Q2P dZ where Q is defined in Eq. (20). Since the
0

atmosphere is of finite mass, the total energy must be finite

even as ZT tends to infinity. This means that 0 should increase

less rapidly with Z than 01/2decreases. From the expression for Q

in Eq. (21) and since P0 a e-Z/H, the finiteness of kinetic

energy means that the real part of X should be less than /-

(2) A wave that is generated as a result of reflection from

the top should have its amplitude decreasing more rapidly (as it

propagates downwards through the viscous atmosphere) than if
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there were no diffusion. The obvious implication of this is that

the amplitude of a wave reflected from above should increase

faster in the positive vertical direction than the fundamental

wave whose source is the energy from the lower levels.

Table 1 gives solutions of Eq. (22) for different values of

H/h and ND. The first value for each A is the real part and the

second represents the imaginary part. It should be noted that

since Eq. (22) is fourth order in A there are four different

A's for each solution except the special case ND = 0, which has

two different A's. From the table it can easily be seen that

the first set of values for A in each box are physically

impossible since these will result in unbounded energy as ZT

increases. This set is in fact one including the diffusion

terms. We can easily identify the solutions involving diffusion

terms from an examination of Eq. (22). As ND is made smaller and

smaller the corresponding A for the diffusion terms increases in

magnitude very rapidly - whereas A for the other two terms tends

to a solution of the equation

A2 - + r-l H . 0.

Thus we can see that the second set of values in Table I also

belong to the diffusion term.

Let us for convenience call the remaining set of values

AA and AB; AA being the 3rd set and AB the fourth set. A

statement of our problem is to see which of AA and AB is

physically realizable in an atmosphere with an open top. From

-. . . .. . .. -
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Table I we see that the real part of AA increases as the

coefficient of diffusion increases. Thus this wave has its

source of energy from above (i.e. reflected wave) and in

propagating downwards it damps out more readily as the

coefficients of diffusion are increased.

For AB the real part decreases as the diffusion coefficients

increase. Hence this is a wave coming from the lower levels.

This is in fact the only wave that satisfies the following

conditions:

(1) It does not vanish when the coefficients of diffusion

are zero;

(2) its existence is not a consequence of reflection from the

,P top.

Thus the suggested boundary condition at the top is that

/p 0Q shall behave as exp i(vt + kz). This means that at the

top the phase velocity should be directed downwards. It may

appear paradoxical that the phase velocity is directed downwards

when the source of energy is from below. As shown by Wilkes

(1949) such a system is in fact consistent with energy

propagating upwards.

We note that since the solution does not contain either PT

or ZT, the boundary condition is independent of the level at

which it is applied.



14

Table 1: Complex solutions for A (Eq. 22) for various values of ND and H/h.

H/h ND 0 0.01 0.1 1.0 10.0

7.58 7.06 2.76 2.21 1.30 0.62 1.01 0.10
-6.58 -7.06 -1.76 -2.21 -0.30 -0.62 -0.01 -0.10

0-00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7.58 7.06 2.77 2.21 1.31 0.62 1.03 0.10
-6.58 -7.06 -1.77 -2.21 -0.31 -0.62 -0.03 -0.10

0.10 0.97 0.00 0.97 0.00 0.97 0.00 0.97 0.00 0.97 -0.01
0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.01

7.58 7.06 2.77 2.20 1.33 0.61 1.06 0.11
-6.58 -7.06 -1.77 -2.20 -0.33 -0.61 -0.06 -0.11

0.25 0.92 0.00 0.92 0.00 0.92 -0.00 0.92 -0.01 0.95 -0.02
0.08 0.00 0.08 0.00 0.08 0.00 0.08 0.01 0.05 0.02

7.58 7.06 2.78 2.19 1.36 0.59 1.09 0.12
-6.58 -7.06 -1.78 -2.19 -0.36 -0.59 -0.09 -0.12

0.50 0.83 0.00 0.83 0.00 0.83 0.00 0.84 -0.03 0.92 -0.05
0.17 0.00 0.17 0.00 0.17 0.00 0.16 0.03 0.08 0.05

7.59 7.06 2.80 2.18 1.42 0.58 1.12 0.14
-6.59 -7.05 -1.80 -2.18 -0.42 -0.58 -0.12 -0.14

1.00 0.50 -0.19 0.50 -0.19 0.52 -0.19 0.67 -0.18 0.88 -0.10
0.50 0.19 0.50 0.19 0.48 0.19 0.33 0.18 0.12 0.10

7.61 7.04 2.85 2.14 1.54 0.58 1.18 0.18
-6.61 -7.04 -1.85 -2.14 -0.54 -0.58 -0.18 -0.18

2.50 0.50 -0.68 0.50 -0.68 0.54 -0.68 0.69 -0.54 0.83 -0.21
0.50 0.68 0.50 0.68 0.46 0.68 0.31 0.54 0.17 0.21

7.63 7.01 2.94 2.08 1.68 0.60 1.25 0.21
-6.63 -7.01 -1.94 -2.08 -0.68 -0.60 -0.25 -0.21

5.00 0.50 -0.09 0.51 -1.09 0.59 -1.07 0.77 -0.77 0.82 -0.34
0.50 1.09 0.49 1.09 0.41 1.07 0.23 0.77 0.18 0.34

7.68 6.97 3.12 2.02 1.85 0.65 1.33 0.26
-6.68 -6.97 -2.12 -2.02 -0.85 -0.65 -0.33 -0.26

10.00 0.50 -1.62 0.52 -1.61 0.70 -1.53 0.87 -1.02 0.84 -0.49
0.50 1.62 0.47 1.61 0.30 1.53 0.13 1.02 0.16 0.49

8.71 6.46 4.54 2.16 2.72 0.97 1.79 0748
-7.71 -6.46 -3.54 -2.16 -1.72 -0.97 -0.79 -0.48

100.00 0.50 -5.32 1.10 -5.06 1.57 -3.51 1.31 -2.04 1.02 -1.10
0.50 5.32 -0.10 5.06 -0.57 3.51 -0.31 2.04 -0.02 1.10
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3. Comparison with similar work and conclusion

Lilly and Kennedy (1973) observed that waves with small wave

numbers tend to propagate through the troposphere with little

reflection of energy. This led Klemp and Lilly (1975) to apply a

boundary condition which allowed energy to propagate upwards.

Thus the observation of Lilly and Kennedy agreed with our

theoretical discussion here and an old suggestion of Weekes and

Wilkes (1947) in which they pointed out that since most of the

tidal energy is supplied at lower levels, the direction of energy

flow at ZT should be positive.

Lindzen (1974) applied a radiation condition at the top of

the atmosphere. He applied a condition which made wave velocity

positive in the direction of increasing Z. The basis for

preference of positive wave velocity as opposed to negative wave

velocity was not discussed. On the other hand, as discussed

above, Wilkes (1949) showed that a negative wave velocity was

consistent with energy propagating upwards.

Using the Sommerfeld radiation condition, Orlanski (1975)

proposed a boundary condition by assuming that each of the

variables satisfies a wave equation of form

at the top boundary. The value of C was calculated from previous

values of * at the boundary and one spatial grid away from the

* boundary. Orlanski showed that by this procedure, if the problem

was linear and consisted of a single wave, there was no reflected
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wave. If however there is more than one wave, as is always the

case, there is bound to be some reflection. This reflection will

take place at the level at which the boundary condition is

applied. And so the resulting solution for a non-linear and non-

monochromatic system will be sensitive to the level at which the

boundary condition is applied. Also, since the calculated wave

velocity depends on previous values of the variables, there may

be a cumulative carry over of errors from one time step to the

next.

The boundary condition suggested in this paper is free from

the above problems. However, we have assumed here that the

numerical analysis is in terms of spectral Hough functions. The

application of this boundary condition in other methods of

solution, like finite difference methods, is a problem worthy of

further investigation.
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Appendix: Inclusion of Coriolis terms

Eqs. (8) and (9) when Coriolis terms are included become

ivu~ - fv4 + Jpe L_ ( Tp i) (23)

ivv~ + fu 4 + W~- a~ (nP 0 ~ (24

where u+ =u- u a i(P , v = v - a o V)

and f is the Coriolis prameter.

The R.H.S. of Eq.(27,' is one order of magnitude less than

each of the terms on the L.H.S. We can therefore approximate the

R.H.S. of the equation '-o be FI(*') where FI(*') is the
,, expression forgf2 a

expression for IV in the solution of the equations

i VU- fv + a ' 0

i V + fii + .' = 0

This approximation in effect neglects products of the diffusion

coefficients which is in keeping with the assumption (in the main

text) of small coefficients of diffusion.

Similarly, the R.H.S of Eq. (24) becomes F2(*'). On

combination we have

3 u+ av+ X15')
0+ + o (25)

where

* I
'5J



18

- ' +F- F2 (w')} + +
- 1- f2/v2  25)

a F2(4i')l -I( )I-~
+ [ 1 - f2 /v2

From the definition of u+ and v+ Eq. (25) becomes

liv - g2 (ip 0 a Ia + ')+ F(*') = 0 (26)

which is the equation corresponding to Eq. (13) with

L1'') replacing V
2 '.

The replacement of V2#' by F(#') is possible if f(4') does

not contain operations like T. • However, in view of the fact

that the TP terms in the F operator are small, the replacement

will introduce only a very small error which will not

significantly modify the conclusions we arrived at in the main

text.

I
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