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Preface to the final report. - H. L. Kuo, the principal investagator

As stated in our renewal proposal, our tasks during the first year of

this contract are synthesis of shallow and deep convection systems and for-

mulation of tractable dynamic models of the squall-line type thunderstorms,

and the tasks during the second year are to analyze the influences of the

vertical shear of the mean wind on the organization of these meso-scale

thunderstorms and the integration of the squall-line models formulated, plus

investigations of other subjects related to severe storms. We have by and

large followed this research scheme and the results we obtained are presented

in the four papers included in this final report.

It is well known that all squall-line type thunderstorms are prominently

two-dimensional in structure even though new cells often form at the leading

edge and old cells decay at the trailing edge along the line, so that the

variation in the direction parallel to the squall-line is also of some impor-

tance. Further, the velocity in the direction parallel to the squall-line

is often also of importance both for the generation and for the development

of the storm system and it usually varies significantly both in the direction

parallel to the line and perpendicular to the line, as examplifled by the

moisture leaden southerly current from the gulf of Mexico for most of the

squall-line type storms in mid-west United States. In order to include

these effects and yet avoid the use of the very complicated and time consuming

three-dimensional model, a multi-two-dimensional model has been developed by

the principal Investigator in which the variable X(x,y,z,t) is approximated

by the sum of its projections XI(x,z,t) and X2 (yz,t) on the xz- and the yz-

planes. A third component X3 (xy,t) can also be added to the system to

X3J
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represent the prominent z - Independent part of the flow field such as the

rotational motion in tornadoes. We shall use this model to investigate the

various aspects of the squall-line type storms, especially those aspects

which are related to the development and the structure of these storms and

the formation of new disturbances. This model and the results obtained from

It up to now are presented in paper (1).

One very characteristic and dynamically also very important feature of

the squall-line type thunderstorm is that the updraft and downdraft usually

slope upward in the direction opposite to the vertical shear of the mean

wind. Even though this aspect of the squall-line structure has been

discussed by many dynamic meteorologist, no satisfactory explanation has

yet been found for it. Here we shall consider it as one of our major goals

of this research. Our analyses on the various factors which influence the

vertical structure of these prominently two-dimensional squall-line type

storms indicate that this arrangement is the result of water loading and

precipitation because, with the upshear slope, the precipitation process relieves the

liquid and solid water loading from the updraft and turns the downward drag

exerted by them to an accelerating force for the downdraft, thereby making

the storm system most efficient energetically whereas with either a vertical

or a downshear slope the downward drag always tends to destroy the updraft.

It is also evident that a sloped updraft-downdraft can be maintained in convec-

tive systems only when a vertically shearing mean wind is present. This .

conclusion can also be reached from their Influences on the vorticity field.
S.

We consider the verification of this hypothesis as one of our major goals of

our research, and shall treat it both as an integral part of the general squall-

line development problem by the use of our multi-two-dimensional squall-line



model in work (1) in the future and directly as a separate problem by the

use of the much simpler purely two-dimensional model. This latter approach

is more advantages so far as the upshear slope problem is concerned because

It addresses only to this problem and we have adopted it in paper (2). in

this approach, we start from a finite amplitude disturbance with updraft and

downdraft adjacent to each other and let It evolve into a steady state with

the influences of liquid and solid water loading and evaporation included,

and try to find out whether an upshear slope will result. A case study of

a real squall-line type storm is also included in this research both for

demonstrating the nearly two-dimensional structure of the real storm and to

Illustrate the unstable stratification of the atmosphere under which the

storm develops.

As in all meso-scale disturbance modellings, we always have to deal

with the boundary conditions at the side boundaries. Since no real boundary

Is presentany boundary condition Imposed may generate some ficticlous

responses. It is thought that the radiative boundary condition which allows

outward propagating disturbances to go out un-impedded will do least damage

to the results. Paper (3) Is concerned with the most advantageous treatment

of the conditions at these open boundaries.

Aside from these works which deal either with the dynamics of the squall-'

line type disturbance directly or is concerned with the most advantageous

treatment of the open boundary conditions used in the modeling, Dr. Raymond

and I have also worked on higher order similarity solution for the tornado-

like vortex, which represents an extension of my first order similarity

solution and allows the inclusion of the influence of variation of the

horizontal velocities with height on the vortex structure. The results of

this study is presented in paper (4).
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Multl-Two-Dimensional Model of Squall Line Type Disturbances

Abstract

A multi-two dimensional dynamic model has been formulated for the

simulation of the development of squall line type thunderstorms by

approximating every flow variable by the sum of three components defined

by averaging in y, x and z directions respectively, so that every compo-

nent taken by Itself represents a purely two-dimensional system. This

system of equations is integrated from an initial state characterized by

the geostrophic basic currents U(y,z) and V(x,z) to 24 hours under four

different conditions, namely, cases la and 2a are from the dry and wet

, versions of the purely two-dimensional model while cases lb and 2b are

from the dry and wet versions of the coupled two-dimensional model. it

Is found that in general the disturbance evolves to a cold front type,

and the variation of the flow variables in the direction parallel to theVJ
squall line enhances the intensity. Further, the vertical velocities in

the xz-plane usually show a double maxima, one at the 2.5 km level and

another at 7 km, while in the yz-plane the disturbance consists of a

number of cells with a horizontal scale of about 400 km.
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I. Introduction

It is well known that the structure of the squall line is predominantly

two-dimensional but some of the very important behaviors of the system, such

as the formation of new convection cells at the leading edge and the supply of

moist air to the storm, are also significantly influenced by the variation of

the flow variables in the direction parallel to the squall line. In order to

take these effects into account and yet avoid the use of the very time consuming

completely three-dimensional model, a multi-two dimensional dynamic model has

been formulated on the basis of the mean flow condition defined by the averages

of the flow variables in y, x and z- directions, which are taken as parrallel

and perpendicular to the squall line and In vertical direction, respectively.

That is to say, we replace or approximate the flow variable X by the variable

XS defined by

x (xyzgt) ' Xl(xtztt) + X2 (ytzvt) + x3 (xy't), (I)

and take Xi, X2 and X3 as the averages of X(X,y,zt) in y- and x- and z-directions,

respectively, viz.,

M x - I 1 2 d dx, I - X dz (la-c)
21 DJ0Xd , X X - IX

Through this splitting procedure, every dynamic equation Is replaced by three

seperate equations containing the two-dimensional variables in the particular

direction plus average values of other quantities.

2. The Governing Equations

On averaging the equations of motion, the heat equation, the water vapor



and cloud liquid water mixing ratio equations and the anelastic continuity

equation in x-, y- and z- directions we then obtain the following set of

equat ions
anr au

Dau fvj - xL + (2)

Dwj " " + ( v. ..W , (4)

I I

p Ji j ' + Txi-(+° I ) Tx:.L

a 9q.
qI j + V .( N , (7)

O1C1  " 6J + (ji +)'

j I  ip a 1

0 u 1  + -0 ,(Ba)

Sv2  'P. w2
+ r"- 0az (8b)

u3 + av3 ."iRe
ax avax3  + -a" , 18c)

where the diffusion terms involving the repeated Index I Imply suimtion over

I - 1,2,3. Here 7r - P/Pos i - R/cp, po - % (z ) Is the undisturbed density of

the air, e is potential temperature and 6 (z) Is its undisturbed value, ev -

- e + o.61q ( o)C Is the virtual potential temperature, q ad c are the water vapor

and cloud liquid water mixing ratios, vI and V 6 l are the ed4d viscosity and eddy

conduction coefficients In x.l -direction, L Is the latent heat of condensation

and sublimation, 6 Is the condensation rate, j a 1,2,3 and
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0 X I =X I + (u1 I +3) x1 + (W I + w2)XIz + V, "2 + X 3)Y (9a)

D2X2 'X2t + (v2 + ; + v3) 2y+ (w2 + w I 2z + u2 ()( +x 3 ) x  (9b)

D3 X3  3t (u 3 + 01 + u2 )X 3  + (v + Q + v2 ) X (9c)

3 3 3 2+ 3 1y2 x 3(92c3

where X stands for any one of the dependent variables u,v,w,e and q and the

subscripts t,x,y,z denote partial differentiations, and v! - v, u2

u2 -u 2 , For simplicity, we shall limit ourselves in this investigation to

the xz-plane and yz-plane systems only by assuming X3 = 0. According to the

continuity equations (8a) and( 8b), the velocities u1 and w1 and v2 and w2

can be expressed in terms of the momentum stream functions 1 and *2,

respectively, viz.,

Ul = - 10 fiz% Wl , o x (lOa)

v2 = - ao 42z' w2 = ao *2y (lOb)

where a° - 1/po . For convenience, we shall eliminate the pressure gradient

terms in (2) - (4) by cross-differentiation between (2) and (4) and between

(3) and (4) to obtain the equations for the vorticities rl] and 112 in y- and

x-directions, and write the two sets of prognostic equations as

* ~TI1 01 ) + 1 "2 + u1 w2  v w2  + (Vj 2 )It I I I XUz +lz 2z "Vlx W1 y + - f viz- gC1 I
+ VZ nI  0 1i)

v V " 1 (v i) + azwlv - f ui - v12y + V4 l v1 , (12)

q t 1(ql) + aZWq - v I2y + V2 1 + . _()' 61 (13)
it I I I2

Clt (q " IPC ) + zWlqi - vl q'2 +  Ve~~ q, 61 '(14)

n2 -2(c2) + zllz V1 U2y +eI + 61 (15)

(nu w +(ux X + 40 + f u Zg
2t 2 2)x + y2y U2z )

+ n2  2 (16),2
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U - -o 2 (u2 ) + azw2U2 + fV2 - u Ulx+ 1  ' u2 , (17)

e2  2O)+ w2  - U1  + V 2 +
2

q2t 2 +  W2 z - u2 qe2 +  e62 q2 - 62. (19)

+ - - 'lx + V C 2 + 62  (20), C2t "=gP{ 2 )  z Oz2C2  UzCx 2

where 61 and 62 are the contributions of the two two-dimensional flow fields

to the total condensation rate a - S = 01 + 02, L is the latent heat of conden-

sation and sublimation and T1,2, az and the operators , 9 1  and are

given by

._ = - Ulz a + + az iz , (21a)
-T' nl Wl U a o(I + + (Y(21b

2 =  2y - V2z o 2yy + '2zz + 0z 2z) * (21b)

z o Ooz i' 1 X1 m KXlxx + Xlzzl 22X2 
= X2yy + 2zz'(21c,d,e)

= 'P(X) = x(% X -)z (%X1) +- XIx + x1 z w (2if)

22(X2) - 2y(%X z) - * 2 z (c'oX2 )y + VI X y + wI X2z. (2 g)
2 2

Here the factor k in) 1 and 1 is introduced to represent the difference in

the values of the eddy diffusion and eddy conduction coefficients in horizontal

and vertical directions.

The condensation rates 61 and 62 in (13) - (20) are calculated by the

scheme developed by Kuo and Qian( 1981) which is to compute the temperature

and humidity T' and q' at time t tAt from the above mentioned equations with

6 and 62 deleted, and then determine the amount of condensation during the time

*from t tot t/t when q - q, (ttAt)+q2ttAt) is higher than k times the saturation

mixing ratio q (T') where T- - TI (ttAt)+T2ttAt) and k is taken as slightly less

than 1 to take into account the situation where condensation takes place only

in a fraction of the area represented by the discrete grid point. Our formula

used for calculating 6j is
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[q' - kqj4T')] Aq2. S S Aq

F I + kL 2  qs(T)l SCRT.' 2 s
p vT

provided the first factor is positive. When this factor is negative, 6. is

set to zero. When condensation takes place, the final temperature T.(t+tY is given 1yb3

TI(ttAt) + L6 At/C and the mixing ratio is given by q (T ), while the liquid
3 j p sJ

water mixing ratio C is calculated by (15) and(20). The detailed scheme of

C-calculation is given in Raymond and Kuo (T981).

3. The Initial State

In this preliminary study we have taken the initial perturbation vorticity

fields as zero and assigned the following horizontal velocity fields:

u1 (x,z) = 2 + 3-0 tanh (z/z1) (23a)

v (xz) = x o 11 - tanh[(x- cz- Xo)
*! x

22(2)

- Zo(x-X 0I.u2y~) rn~ -2 [y( - Z2 )' + Y2(y 0 )] (24.a)

22b

v2 (y z) u exp I.Zz ( 24b)
2m 3

where

B (48m) , a - -100 , RI  2,00O/2m , R2 - 10,000/4%

R 3  200O/12m , z0 - 4000m, zI - 5000m , ,0 m

x°  480 km, yo = 1440 km, Y - 0.03 , Y2 - 0.02 , y 3 - 8.0

vm 15 m s Urm M 25 m s

The eddy diffusion coefficients are currently taken as Ve = 5 m2 s-
2 -1

V - 3.5 m2 s and the factor K Is taken as 1000 for the dry case and 400

for the wet case. The density stratification factor az is taken as equal to

t 0 . 5 xl -4 m-l
0-95x10 m . Here only a small vertical shear Is assigned to uI because we

wanted to compare the results obtained from the purely two-dimensional system
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with X2 0 with the results obtained by Olanskl and Ross (1977) which were

based on a small shear in u, but a relatively large vertical shear has been

included in u2 in the second system. This apparent inconsistency will be

removed in our further investigations.

The initial temperature fields 61(x,z) and 01 Y,z) are taken as in thermal

wind balance with the initial velocity fields v, and u2 and hence they are

obtained from the following relations:

I I f Vl (25a)

1 ae2  f u2-S T - - " • (25b)

The initial humidity is expressed in terms of the relative humidty y

which is assumed to increase linearly from its surface value of 0.8 to its

maximum value of 0.90 at the 2 km level and then decreases linearly with

increasing height above this level according to the following formula:

y( 4 - 0.8 + 0.05 z for 0 < z < 2.0 km,

- 0.983333 - 0.04166 z for 2 km < z , (26)

where z is in km. The humidity field is taken as unaltered during the first

6 hours and the mixing ratio equations (14), (15) and (19) and (20) are acti-

vated at t - 6 hours.

4. The Boundary Conditions

4a. The bottom boundary conditions - The conditions we impose at the surface

level z - 0 are

*1 w 0, Ulz - 0, 6lz - 0, qlz - 0; (27a-d)

*2 0, V2z -0 ' '2z - 0, q2z - 0. (28a-d)

The first two conditions of these sets are equivalent to the vanishing of the

vorticities ni and n2 at the surface. The conditions forv and u2 are that

they satisfy the thermal wind relations ( 25a)and (25b) at the surface.



4b. Boundary Conditions At the Top z - H

At the top we assume that both j, rljz, jz' Vlz and u2z retain their

Initial values while qj(H) is obtained from linear extrapolation from below,

and 6 is taken as zero.jz

4c. The Side Boundary Conditions

The side boundaries x - 0 and x - b, y - o and y - DOof the system are

taken as open boundaries and the conditions we impose on the flow variables at

these boundaries are the following:

+ C + C I. 0, (29a)

ax,

.- 0 , m1 v1, 61, ql, l(2b

an2+C n2+ n2 .0(30a)
n 21 s 22 Tn2

- 0, X2 m u2 , 2, 2c 2  (30b)

Here C11 and C12 are taken as the x-component and the z-component of the phase

velocity ! of the vorticity field n, while C2 1 and C22 are the y-component and

the z-component of the phase velocity t2 of r2 , respectively. Further, we assume

that t and t2 are proportional to VI and V112 , respectively, so that we have

C -It lx C - t 'llz (31a,b)ell n" 2 n 12 n2 + T)2

nix + lz ix lz

- 2t n2y n - 2t 72z (32ab).21 2 + 2 2 + 2
rl2y 2z I2y 2z

The values of these phase velocity components at the boundaries are obtained

from extrapolations from the interior and the generalized multi-dimensional radiation

conditions (29a) and (30a) are applied only when C11 and C2 1 are in the outward111
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directions, whereas they are set to zero when the phase velocities are inward.

The advantages of this multi-dimensional radiation condition and the ways of

its Implementation have been demonstrated and described by the authors In

another paper (Raymond and Kuo, 1981).

5. Scheme of Integration

The prognostic equations (11) - (20) are integrated at discrete grid points
and time defined by xi I iAx, z. = jAz, Yk - kAy, t = nAt, with i, j, k ranging

from 1 to I, J, K, respectively, Ax - 20 km, Az - 500m, Ay - 40 km, and with I

and K both taken as equal to 73 and K - 29 in the first experiment and I - K

= 99, J - 37 in the second experiment in order to reduce the errors created by

the side and top boundaries. In our approach, the space variations are expressed

by finite element representation based on bilinear basis functions while the time

integration is by centered difference leap-frog method, with At taken as 100 sec.

The stream functions *, and 2 are obtained by solving the poisson equa-

tions (21a) and (21b) together with the boundary conditions for these variables.

However, since the mesoscale disturbances under consideration are quasi-hydro-

static in nature and since our use of the large horizontal grid sizes Ax>>Az

and Ay>>Az is based on this property, we can take the non-hydrostatic terms

*]xx and *2yy of (21a) and (21b) as small corrections and represent *, and *2

by series expansions in powers of the small parameter c - (Az/Ax), whereAx)

Az/Ax can be taken as representative of the ratio between the vertical and the

horizontal scales of variation of the disturbance. This scheme is equivalent

to the one adopted by Orlanski (1981), which is to represent *i by the following

series
*1 J0*j (33)

J-o
with the different components satisfying the following equations
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(z +  ( z m Ponl I (34a)

+ l. (34b)

Izz z *jz * j-lxx, a l . (1)

Here 10o represents the hydrostatic component of 4, while the *jls 9 Z10

are the non-hydrostatic contributions. In these forms, the various components

4,. are solved with respect to z only. The associated boundary conditions are
(1)

- o at z - o for all J, (35a)
(1) (1)

*0 - T - initial value of *' 0. - , J > 1 at z - H (35b)

Since e is rather small for the disturbances under consideration, the series

(33) converges rapidly and taking M - 2 is sufficient for our purposes.

At the lateral boundaries, say at x = o and x - 1, the right hand side
(I)

of (34b) must be approximated, or with 4j evaluatedfrom a given relation such
()

as wx - o. This procedure is utilized in the 4,3 and *2 calculations.

6. Some Preliminary Results

The system of equations given above have been integrated under

four different conditions in order to investigate the influences

of the variation of the flow variables in y-direction on the squall line type

disturbance, namely, cases la and 2a are from the dry and wet versions of the

purely two-dimensional (X2 - 0) model while cases lb and 2b are from the dry and

wet versions of the coupled multi two-dimensional model. Here we shall present

some of these preliminary results and discuss them briefly.

Case la and lb. Each of these two dry cases haj been integrated to 24 hours from

the initial conditions given by (23a) - (24b) and the thermal wind relations

(25a,b) and the vertical velocity wI(x,z) given by these two different versions

at t - 15 hr. are represented in Figures I and 2, respectively. From Fig. I we

see that the 2 units ( - 0.15 cm s-i) upward velocity given by the purely two-

dimensional xz-plane model reaches to just the z = 5.3 km level and Is centered

near the x - 700 km mark on the horizontal scale, and the maximum upward velocity
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in the xz-plane given by the coupled multi-two-dimensional model at t - 15 hr.

.reaches the z - 8.67 km level, and this w1 has two maxima instead of one,

namely, one at the 2.5 km level with Wmaxi - 0.49 cm s and another one at the

7.0 km level, with wmax 2 - 0.38 cm sl . These results show that the variations

of the flow variables in y-direction contributes significantly to the flow In

the xz-plane even under dry conditions in addition to their influences on the

flows in the yz-plane, and we expect that this influence will become larger

when condensation process is Included.

Case 2a. This moist purely two-dimensional case has been integrated for 45

hours and the results show that the vertical motion w1 develops rapidly just

after t - 6 hr. and the maximum upward velocity is reached at t - 16 hr., while

the intensity of the disturbance decreases gradually afterward. The distribu-

tions of the vertical velocity w1 and the northward velocity v, given by this

model at t - 15 hr. in the xz-plane are illustrated in figures 3 and 4, respec-

tively. From fig. 3 we see that in this moist case with condensation the

maximum vertical velocity reached at t - 15 hr is 9.25 cm s" which is about

19.2 times that of the dry case la and it also occurs at the 3 km level. From

fig. 4 we see that the positive and negative northward velocities are separated

by a surface which slopes upward toward west and therefore the disturbance is
-l

of the cold front type, and the northward velocity reaches 22.1 m s at the

5 km 4evel. IHere the vertical circulation in the xz-plane dissipates rapidly

after 18 hours but the Vl field dissipates more slowly as It is nearly in

thermal wind balance with the temperature distribution e1 (x,z).

Case 2b. This moist case has been integrated from the coupled multi-two-dimen-

sional model up to 24 hours and the results show that for this case the vertical

motion wl in the xz-plane did not start to increase until t - 12 hr. but it

continued to increase thereafter for a much longer time until t - 27 hr., and

its maximum value at t - 24 hr. is 27.5 cm s " which is about 3 times
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the 9.25 cm s"! value in fig.4. The maximum value of V1  given by this

model at t - 24 hr. is 25.2 m s" 1 which is only slightly higher than the 22.1 ms 1

Value given by 2a. The distributions of wI and VI in the xz-plane for this

case at t - 15 hr. and t - 24 hr. are illustrated in Figs. 5 and 6 and Figs.

7 and 8, respectively. From fig. 5 we also see that w1 has two maxima in

the vertical, one at the 2.5 km level and the other at the 7 km level. On

comparing fig. 6 with fig. 8 we see that the cold front has moved about 100 km

in 9 hours and the southerly jet has also widened somewhat during this time.

In addition, we also present the stream function *2 (y,z) for t - 24 hr. In

fig. 9 to illustrate the pattern of the meridlonal circulation. This figure

shows that this flow is composed of a number of cells on the forward northern

edge, with a horizontal scale of about 400 km, and the maximum value of the

vertical velocity w2 of this circulation is 9.32 cm s" , which is about 1/3

of w in fig. 8. These results show that the variations of the variables

in y-direction is very important for the development of the vertical circula-

tions in both the xz-plane and in the yz-plane for the squall-line type

disturbance. The cellular structure of the circulation in the yz-plane is

apparently the result of the instability of the vertical shear of the u2 profile

with regard to overturning or symmetric perturbation in the yz-plane, and the

location of these cells indicates that now cells are being generated on the

forward edge of the squall-line.
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Legend of Figures

Fig. 1. WI distribution given by la at t - 15 hr.

Fig. 2. Same as Fig. I but given by lb at t - 15 hr.

Fig. 3. Same as Fig. I but given by 2a at t - 15 hr.

Fig. 4. UI distribution given by 2a at t - 51 hr.

Fig. 5. WI distribution given by 2b at t - 15 hr.

Fig. 6. VI di.tribution given by 2b at t - 15 hr.

cov Sour Interval 4. m s.

Fig. 7. Wi *t1stribution given by 2b at t - 24 hr.

contour interval AwI - 10 cm s"1 .

Fig. 8. U., distribution given by 2b at t - 24 hr.

contour Interval Au, - 5 m s" .

Fig. 9. Stream function *2 in yz-plane given by 2b at t -24 hr.

contour interval - 7.0 x 105 m
2 s-I.
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The Dynamical Structure of Squall-Line

Type Thunderstorms

Abstract

The vertical structure of the squall-line type thunderstorm is

investigated through the use of a purely two-dimensional model and

the flow field is taken as occurring in an unstably stratified atmosphere

with a vertically shearing mean wind. A case study of a real squall-line

appears to justify this simple approach. The mechanism which leads to

the most characteristic upshear slope of these storms is attributed

to liquid and solid water loading and attempts are made in this work to

verify this hypothesis by integrating the dynamic model from a given

initial state to see whether it will evolve to such an arrangement,

and also by analysis of the influence of a reasonably chosen but

fixed liquid water distribution on the vorticity field in the

vicinity of the updraft-downdraft interface. The preliminary results

indicate that the proposed mechanism is working.

TI
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1. Introduction

This work constitutes a part of our effort to study the dynamics of the

squall-line type thunderstorm and it deals only with the usually observed up-

shear slope of this type of storms. The main thrust of this research is to

determine the cause of the upshear slope of the updraft-downdraft couplet in

the squall-line type thunderstorms under the influence of the vertically

shearing mean flow, and especially to find out whether this arrangement can be

attributed to the downward drag or load of the liquid and solid water and

evaporative cooling from the falling precipitation, which, according to the

reasoning of the senior author, indicates that the upshear arrangement is

most efficient energetically for the disturbance in the presence of precipi-

tation because it relieves the loading from the updraft and turns the precipi-

tation drag into an accelerating force for the downdraft, whereas with either

vertical or downwind slope these forces tend to destroy the updraft. Further,

it is evident a non-vertical slope can not be maintained without a vertically

shearing mean wind in the convective storm.

In order to illustrate the nature of the actual squall-line type storms,

a brief case study of a squall-line which moved through Chicago area recently

is presented in section 2. This is followed by a presentation of the model

and the numerical method used to solve it in sections 3 and 4, while section 5

discusses the results that have been obtained from the model. The influence

of the liquid water content on the slope is discussed further in section 6

on the basis of the vorticity n - aW/9x - au'. Plans for further Improvement

of the results and future works are discussed briefly in section 7, while a few

concluding remarks are added in section 8.
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2. Squall line case study

In the late evening of 6 August 1981 a squall line developed and moved

across the area of southern Wisconsin and northern Illinois. Although no

severe weather was reported In conjunction with this squall line, it did

produce high winds and heavy rain. The line formed along a trough line which

ran southwest from a surface low in northern Wisconsin to northern Mossouri.

The 0000 GMT 7 August 1981 souding from Peoria, IL, is shown in figure I.

Note that the atmosphere is nearly dry adiabatic below 900 mb and very dry

above 900 mb except for a few thin moist layers. This sounding shows the

atmosphere to be "ripe" for convection, and with a wind shear of about 40/m sec

through the depth of the troposphere, we would expect the convection to be

organized.

Figure 2 shows the Marsailles, IL radar PPI display for four times during

the squall line at approximately I h 10 m intervals, starting at 0037 GMT,

7 August 1981. At the earliest time shown, there is a line of broken indivi-

dual cells of moderate Intensity. As the cells increased in intensity, they

became elongated and began merging into an unbroken line. By 0148 GMT, portion

A of the line is over 25 miles long but less than 10 miles wide, and showed a

very uniform reflectivity along its length. The storm reached its peak

intensity at approximately 0256 GMT. At this time the line was very long and

uniform. The line remained like this for about 40 minutes before breaking up

Into the weaker cells shown in the last picture at 0405 GMT. In all, portion

A of this squall line was visible as long, thin, coherent line of at least

moderate Intensity for over 2 hours.

Figure 3 shows the hodograph plotted from the wind data of the 0000 GMT

Peoria sounding. The speed and direction of portion A, and the orientation
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of the squall line where determined from the radar pictures and are also shown

on this diagram. As can be seen, the winds were somewhat complicated but

show a generally unidirectional shear. That is, there is no systematic

veering or backing of the winds with height. One also sees that the cells

in the squall line move in a direction of approximately the mean wind.

It is common practice in studying squall lines to take a two-dimensional

cross-section perpendicular to the squall line. This "slab symmetry" approach

assumes that the line is uniform along its length so any motion into or out

of this plane is not important. In this case, however, the line is oriented

at an angle of nearly 45* to the plane of the mean wind. Thus, a cross-section

taken perpendicular to the line would have winds into and out of the plane of

the same magnitude as the winds in the plane. Even though this case shows a

striking uniformity along the squall line, it is not totally uniform and so

this slab symmetry approach does not seem appropriate.

A schematic representation of what appears to be happening in this case

is shown in figure 4. In the squall line the updraft and downdraft branches

of the circulation are confined to the plane of the mean wind, which is

parallel to the direction of motion. The line, however, is oriented at an

angle to this plane to form a sort of "snowplow" effect. With this view In

mind, it Is clear that the plane parallel to the direction of motion is the

physically relevant plane of cross-section. We shall use the term two-dimensional

In this sense, that is, the circulation Is approximately confined in a plane,

and therefore refrain from using the term slab symmetry since it does not

necessarily imply the same meaning.

Taking the cross-section parallel to the direction of cell motion and

defining a new coordinate system with x1 parallel to the plane and y' per-

pendicular to it, one can decompose the winds into the components u' and v'

as in figure 5. This shows the v1 component to be nearly zero in the mean
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and, therefore, probably insignificant to the organ(zation of the storm. The

u' component shows the storm to be imbedded in an environmental shear of about

-33.3x10 3 sec

Ludlum (1980) defines a Richardson number for storm circulations as

-Ri = CAPE (2.1)
(AU) 2

where CAPE is the Convective Available Potential Energy and can be expressed

as the positive area of a lifted parcel on a skew-T log-P thermodynamic dia-

gram. The quantity AU is the algebraic difference of the horizontal windspeed

of the parcel on outflow and inflow, or more simply, the difference between

the winds at the storm top and the surface. Using the Peoria sounding, the

Richardson number for the parcel lifted from the surface is -Ri = 1.98. If

the surface to 950 mb average values of temperature and moisture are used we

obtain -Ri = 1.45. Ludlum (1980) argues that - Ri < 5 implies organized super-

cell type convection since then the energy due to shear is comparable to the

energy released by latent heat.

The above case exhibits the features which are indicative of the squall-

line type supercell which is being investigated in this research effort. It

is quasi-steady, maintaining itself with little change for a period of 2 hours.

The circulation is two-dimensional In the sense that the environmental wind is

basically confined to a plane parallel to the direction of rotion. And, the

circulation is embedded in an atmosphere of moderate to strong shear, yielding

a small Richardson number for the storm.

3. Equations and boundary conditions

Instead of treating it as an initial value problem, here we shall seek the

* time dependent model and allowing an initial overturning circulation to converge

towards a steady state. This is an established method in this type of problem

(Roache, 1976). There is also no boundary between the updraft and

the down-draft. If a free-slip boundary was present between
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the updraft and downdraft, it would represent a sheet of infinite vorticity

and infinite temperature gradient. Clearly this is not the case in a real

thunderstorm and the generation of vorticity at this interface by the finite

temperature gradient Is a major dynamical feature of the storm. As well as

leading to a more realistic model, the removal of the interface simplifies

the numerical treatment of the problem.

The basic form of the equations is the same as that given in Seitter

(1980) but with density stratification included. They are

-5t +u i w 7 + 2w (-n + u.) T- - (3.1)
aZ2  V

3)T + aT + )T + r (z)L G (3.2)

t u 3 w + ' G (3.3)

at H pG M (3.4)

B+ u 3M+ w aM+ v 'M- w =pG(3)
at Tx r Tz Ho

where

u, w = horizontal and vertical velocities

n - momentum vorticity

T = temperature

q - water vapor mixing ratio

M - liquid water content

and

P = Ps exp(-z/Ho) - density

TV = (1 + 0.61q)T - virtual temperature

r - dry adiabatic lapse rate

L - latent heat of condensation
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Cp specific Jeat at constant pressure for dry air

B(z) - exp (z/Ho.R/c )

R - gas constant for dry air

Ho - density scale height

G - liquid water generation term (condensation rate for q)

V - terminal velocity of raindrops

The velocities, u and w, and the vorticity, n, can be written in terms

of a streamfunction

PU M= - (3.5a)

n V2* (3.5b)

where V 2  + The liquid water generation term is given byaX2  az2

( 0 q<qs, M-O

G = -E q < qs > 0 (3.6)aq q a qsaqq s

where E is the evaporation rate, a constant, and q is the saturation mixing

ratio, determined from the Clausius-Clapeyron equation. The terminal fall-

speed of raindrops is taken as a constant with a value of 7 m/sec (Seitter,

1980).

A schematic of the model circulation is shown in figure 6. The inflow

characteristics of F, T, q, and M are specified for both the updraft inflow,

0 < z < Z*u, and the downdraft Inflow, z*d < z < H. A condition on n is also

needed and is taken as - - 0. On outflow all quantities must satisfy

3ATn" 0 A =,T, q, M, and n (3.7)

The value of * is fixed on the top and bottom boundary with 4top - 4ottom -

%- The value of *b is determined such that 4 - 0 at the steering level z - z*
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for a 9iYen inflow shear, The values of T and q are fixed on the top and bottom

except when precipitation is present. Then if precipitation has reached the

lower boundary, a method similar to Schlesinger (1973) will be employed to

allow the boundary to cool and become saturated in response to the presence of

rainwater. At the top boundary no liquid water can be present so M = 0

aM
there, on the bottom boundary we set ,= 0 to allow rainwater to "fall through"

the surface.

With the advective terms written in the flux form no boundary value for

the vorticity need be specified on the horizontal boundaries since w - 0 on

them. However, if the Arakawa Jacobian is used or if a diffusion term of the

form VV2n is added to (3.1), a value of rl on the boundary is needed. Since

this model is intended to simulate a nearly inviscid atmosphere, a free-slip

condition is appropriate. Roache (1976) has stated that the proper free-slip

cncondition on the vorticity is - 0 for a finite difference formulation.

This form for the boundary condition gives a less viscous effect of the boun-

daries than the normally used n - 0 condition, even though the latter is

analytically correct.

4. Numerical Method

Equations (3.1) through (3.4) have been nondimensionalized and written in

finite difference form, with the velocities u and w written in terms of the

streamfunction using (3.5a). All space derivatives were written in centered

difference form. Care must be taken to write products of quatities in a

finite difference form which is consistent with the form of the advective terms.

These four equations and (3.5b) form a complete set in n, T, q, M and . The

method of solution consists of starting with an initial field for each of the

variables and Integrating (3.1) through (3.4) forward in time by an appropriate

method. Equation (3.5b) is solved by suctessive-over-relaxation (SOR) for the

new streamfunction field after each time step. This process Is continued for
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the desired time or until a steady state is reached.

Three methods of time integration have been used in the development and

testing of this model. A forward-in-time centered-in-space method was used

initially as a simple method to test the model. This method was soon abandoned,

however, since it required a large diffusion term for linear stability. The

inviscid equations were also Integrated using the two-step Lax-Wendroff method

(Richtmeyer, 1962). Although this method has been used with success in

meteorological problems (Houghten, et. a]., 1966), Lilly (1965) warns that

it can lead to severe inaccuracies in certain types of subsonic fluid flow

*problems. This seemed to be the case with the current problem, as it was

not possible to eliminate small, but accumulating, errors which are inherent

in the Lax-Wendroff method and which eventually destroyed the accuracy of

the integration. This method was ultimately abandoned, although some impor-

tant results were obtained while it was being used (see Section 6). The

very accurate method of Adams and Bashforth (Lilly, 1965) has been used with

success both in integrating the truly inviscid equations and in solving the

equations with an added viscosity term.

The Adams-Bashforth method can be written by considering the equation

for some quantity A,

3A

7t = f(4.1)5.= f

where f is a function of the other variables and their derivatives. We let

f(n) be the value of f evaluated by using the values of the variables at time

*t - nAt. Then the value of A at time t - (n + 1) At is given by

An+l) = A(n)+ At[3 f(n) f(n-l) (4.2)

This method is slightly amplifying and, therefore, not stable in the strict

sense of the word. The amplification factor is small, however, and does not
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pose a problem as long as the integration is not extended for too long.

The method can be stabilized by adding a viscous term of the form

vV2A. This is included by writing (4.2) as (Roache, 1976)

A(n+l) A A(n)+ Atrif(n) f(n-l) + AtVV2A ) (43)

L 2

Note that this is not equivalent to including a viscous term in f.

Since the Adams-Bashforth method can be used successfully on the fully

inviscid equations, the viscosity which is added can be made whatever size

is appropriate for the problem. This is preferable to the Lax-Wendroff method

that has a built in numerical diffusion which selectively damps small wave-

lengths.

The current version of the model has 21 grid points in the horizontal

and 11 in the vertical. The grid spacing is even and taken as I km in both

the horizontal and vertical, giving a domain of 20 km by 10 km. The choice

of a 10 km depth for the domain was somewhat arbitrary. Excluding the over-

shooting top of the updraft, observed thunderstorm circulations extend from

the surface to a height of 10 km to 14 km (Chisholm 1973, Ludlum, 1980).

The depth of the model makes very little difference when the density is held

constant, but in simulations in which the variation of density with height is

included, the depth of the model may have to be adjusted.

5. Numerical results

As discussed in Mon*rieff (1978), the case of a neutrally stratified,

incompressible atmosphere with M = 0 is quite simple. In this case the vorticity

equation reduces to

d TJ a 0 (5 .1)

dt 0

So, vorticity is conserved along a streamline. If we consider an environment

of linear shear, then on inflow the vorticity is given by

- y-- constant (5.2)
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aw
since r- 0 on inflow. Thus, the vorticity will be constant throughout the

circulation, and the steering level height will be at z u = Z*d = H/2.

Moncrieff shows that in this case the Interface between the updraft and down-

draft will be vertical. This situation Is shown in figure 7.

Figure 7 was determined by performing a relaxation on a vorticity field

which had constant vorticity everywhere except on the dividing streamline.

On the dividing stream line the vorticity was adjusted to yield a streamfunc-

tion value equal to that on the upper and lower boundaries. The nondimensional

streamfunction values marked on the figure correspond to a linear shear

2 x 10 3 sec 1.

The inviscid, incompressible form of the vorticity equation was integrated

forward in time as a test of the numerical model for this case. The flux form

of finite difference was used for the advective derivatives and the Adams-Bash-

forth method was used for the time integration. The vorticity field of figure 7

was used as the initial condition. After 20 minutes of simulated time the change

in this field was less than the initial errors in it. This demonstrates that

the flux form for the advective derivatives was able to accurately maintain

this known solution to the equations, and that the slight amplification inherent

in the Adams-Bashforth method was too small to pose a problem.

This is the only case in which the Adams-Bashforth method was used without

diffusion term as described in the preceding section. Without diffusion of

some sort, all disturbances must be advected out of the domain and very small

temperature variations can lead to large variations in the vorticity.

b. Dry, convectively unstable case

In order to further test the model by reproducing Moncrieff's results of

downshear orientation, the equations were reduced to the case of a dry, con-

vectively unstable, Incompressible atmosphere. Then the equations are

LA I
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an an n go L T

-rT T Tx

SaT w r = (5.4)

Since r is taken as a constant equal to 6.5 *C/Km, a constant environmental

lapse rate which is greater than this yields a convectively unstable atmos-

phere and exactly models the equations used by Moncrleff (1978).

Moncrieff defines a type of Richardson number given by

R - CAPE (55)
huO

2

where u is the horizontal velocity at the surface In the updraft inflow.

This Is rel'ted to, but larger In absolute value than, the Richardson number

defined by (2.1). Figures 8(a) and 8(b) show the results of Moncrieff's

calculations for R - using his analytical and numerical models, respectively.

The method of solution for the analytical result has been described previously

(Seitter, 1980). The numerical solution was found using a method similar to

the current model except that a staggered grid Lax-Wendroff integration scheme

was used.

The current model was run with an unstable lapse rate which gave R - .

The initial condition was given by the circulation shown in figure 7 and an

initially adiabatic atmosphere. Diffusion was included in the model with the

value of the eddy vis;osity set at 450 m /sec. While this is about an order of

magnitude larger than the value in cumulus clouds (Tag, 1979), it does not seem

to be too large in light of the measurements of kinetic energy dissapation in

thunderstorms (Frisch and Strauch, 1975), and is much smaller than the numeri-

cal diffusion Included In many previous models (Schlesinger, 1973). It was

found necessary to include a diffusion term because without it the generation

of negative vorticity at the updraft-downdraft Interface by the temperature
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gradient there formed a counterciculation at the interface.

The results of this model after 21 minutes simulated time are shown in

figure 9. There are some distinct differences between this result and those

of Moncrieff. The most notable difference being that the current result

* - shows the circulation sloping less steeply downshear. Also, the steering

level heights for both the updraft and downdraft are located at z - H/2. It

is felt that both of these differences are a result of the inclusion of diffu-

sion in the model. The diffusion of temperature weakened the gradients and

hence the production of vorticity, and the diffusion of vorticity "slowed down"

the flow. It is felt that this circulation represents the case in which the

instability is great enough to overcome the viscosity of the fluid but not

great enough to accelerate the flow appreciably and thus raise the steering

level height Z*u. Thus, the modeled flow represents a flow which would

correspond more directly to a smaller value of R and, hence, would slope down-

shear less steeply (Moncrieff, 1978).

Although the Lax-Wendroff method has a built in diffusion, it is felt that

this did not alter Moncrieff's results in the way it did in the current model

because the diffusion in the Lax-Wendroff method is highly selective toward

short wavelengths. This allows the method to prohibit the development of a

counter-circulation at the interface while allowing the rest of the flow to

remain virtually inviscid. This kind of selective damping can be incorporated

into the present model for a quantity A by replacing vV2A with KIV 2AIV 2A

(Cullen, 1976). It is felt at this time, however, that the simpler diffusion

term is preferable.

The shape of the Interface in the results of the current model more closely

resembles the shape of Moncrieff's analytical result (figure 8(a)) than does

Moncrieff's numerical result (figure 8(b)). This Is felt to be significant and

Is a favorable indication as to the accuracy of the current model..1
I
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Although no details are given in either his paper (Moncrieff, 1978) or

his thesis (Moncrieff, 1970), it is assumed that Moncrieff must have used a

much smaller grid spacing than the current model to overcome the problems

associated with the Lax-Wendroff method. The author has found that a very small

grid spacing does improve the Lax-Wendroff method, but the cost of increasing

the number of grid points substantially, as well as the inherent high cost of

this method (over twice as time consuming per time step as the Adams-Bashforth

method), make the Adams-Bashforth method more desirable.

6. The mechanism for upshear slope in the light of the vorticity 11

It has long been recognized that the upshear slope of the updraft in thun-

derstorms is beneficial to their maintenance from a thermodynamic point of view.

However, no adequate theory has been proposed which explains how the updraft is

able to oppose the shear in which it is imbedded. The framework of the present

model allows a dynamical theory for the upshear slope based on vorticity argu-

ments.

Consider the incompressible vorticity equation

an + u an 1n g _ Tv aM" -x+Ww " gPi'- T + gb'- (6.1)
vo

Now, consider a flow pattern as shown in figure 10(a), with the updraft-downdraft

int.-.rface vertical. Let the updraft have a positive temperature excess and the

downdraft have a negative temperature excess, and let there be precipitation in

the updraft. In figure 10(a), the precipitation is shown in the lowest half of

the updraft because it would tend to be heaviest there and thus have the most

dynamical effect In this region. As can be seen from (6.1), it is the horizon-

tal derivatives of the temperature and liquid water which are Important. The

circulation is driven by the temperature distribution, which produces negative
) an

vortlcity generation (-- < 0) along the interface and hence maintains the strong

shear across the Interface. Positive vorticity is generated (-. > 0) In both
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the updraft and downdraft branches away from the interface, and this also acts

to maintain the circulation. Now, consider the effect of the liquid water. On

the downdraft side of the precipitation column (-> 0), positive vorticity will

ambe generated, and on the updraft side of the column < 0), negative vorticity

will be generated. There are two ways that the updraft branch can respond to

this negative vorticity generation: 1) the shear can be reduced to make the

shear vorticity less positive; 2) the streamlines can curve less sharply as

they enter the updraft to reduce the curvature vorticity. Both of these

responses probably take place, and both tend to cause the streamlines to enter

the updraft at a more upshear, rather than vertical, angle. A similar argument

leads to the streamlines in the lower downdraft becoming more sharply curved as

they exit the downdraft, which is consistent with the entire circulation sloping

upshear.

Consider now the situation shown in figure 1O(b), which more closely resem-

bles the flow in a real thunderstorm. This diagram is very similar to the

schematic given by Ludlum (1963). The flow is still driven by the positive and

negative temperature excesses. (Now, the downdraft is shown to have a negative

temperature excess only in the region where rain water can cause evaporation

cooling, as is the case in real storms.) The streamlines show less curvature

in the updraft inflow where negative vorticity is being generated and more

curvature in the downdraft outflow where positive vorticity is being generated.

This vorticity generation by the liquid water term does not operate unchecked,

of course, it opposes the effects of the environmental shear which tends to tilt

the circulation downshear until a balance is established.

A simple means of testing this hypothesis is to Integrate (6.1) with fixed

distributions of temperature and liquid water. This was done while the model

was in the Lax-Wendroff phase of development.

Figure 11 shows the results of the integration after 14 minutes of simulated

time, starting with an Initially vertical interface. In this run, a temperature
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excess of 1.25 *C was fixed in the updraft and downdraft regions respectkyely

and no liquid water was present. The vertical shear on inflow was 2 x 10 3

sec 1 . This should, in a simple way, model the results of Moncrieff (which

were modeled more accurately in the previous section). Consistent with toncrieff's

results, the flow is oriented downshear. The flow is not steady at this time

but is intensifying and beginning to form a closed counter circulation between

the updraft and the downdraft (note the closure of the 96 streamline). The

steering level heights Z.u and Z*d reflect the fact that the flow is being

accelerated so the depth of the inflow must be greater than the depth of the

outflow.

Using the same temperature distribution and the same initial circulation,

a region of liquid water equalling 2g m was added to the lower half of the

updraft. Figure 12 shows the results of this run after the same period of

time. Now, the vorticity generation due to the precipitation has had a marked

effect on the flow. While the circulation does not have a truly upshear orien-

tation, the trend is definitely to oppose the effects of the shear. The flow

is also weakened in the updraft branch by the effects of the water loading and

the reverse circulation is inhibited except in the region above the precipita-

tion.

The previous results seem to strongly support the hypothesis that the

upshear orientation of the updraft-downdraft couplet is both caused and

maintained by the effects of the liquid water which is produced in the storm.

This would explain why strong thunderstorms which have the ability to produce

large amounts of rain exhibit an upshear slope and small showers and cumulus

clouds slope downshear.
7. Discussion and future plans

The preceding sections have shown the current model to reproduce the results

of Moncrieff fairly well. The differences can be explained by simple reasoning

based on the differences between the current model and Moncrieff's model. The
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simple model has also given insight into the mechanism which causes the upshear

slope of the updraft. These results give one confidence in the model and show

that the proposed extension of the model to include precipitation Is warranted.

This section will discuss the improvements which have been made in the model and

plans for its use in further Investigations, which will Include the addition of

the equations for water vapor and liquid water to the system of equations (3.1)-

(3.4) and their integration to a steady state. To improve the resolution, the

grid spacing will be cut in half. It is felt that a grid spacing of no greater

than 500 m in both the vertical and horizontal is necessary since large varia-

tions can occur over the distance of a kilometer or two, especially in the

interface region.

It is hoped that the compressibility of the atmosphere does not signifi-

cantly affect the qualitative behavior of the storm structure. This, however,

will haveto be tested. The equations were proposed in the anelastic form and have

been finite differenced in this form for the model. Most of the runs are

expected to be carried out with the density held constant due to the relative

ease in interpreting the results. A few compressible simulations can then serve

to show that the cualitative structure remains the same as well as providing a

more realistic picture of the storm's structure.

The moisture equations have been finite differenced and tested to prepare

for their inclusion into the model. Figure 13 shows the thermodynamic diagram

which is produced by the equations for an incompressible atmosphere. The dry

adiabatic lapse rate is taken as a constant with the value 9.76 *C/km. The

moist adiabats are reproduced quite accurately in the model. Diagrams like

figure 13 will allow an environmental profile to be plotted and the corresponding

RI to be calculated for each case using (2.1) and
H

CAPE - gf (in a - In 0e )dz (7.1)
0 I
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where 0a is the potential temperature of a parcel ascending from the surface and

0 is the environmental potential temperature.e

The situation of characterizing a flow by its value of RI will not be as

easy now compared to foncrieff's model in which constant lapse rates for both

the ascending parcel and the environment were assumed. Now, two Mery different

profiles could be constructed to yield the same numerical value of Ri. Differ-

Ing profiles of environmental moisture can also be expected to influence the

resulting flow. While it is not possible in this more complicated model to

completely characterize a flow by the value of Ri, this still is expected to be

an important parameter and will be continued to be used as a measure of the

relative importance of bouyancy and shear.

The first case to be run with the complete model will be for an environment

with a linear temperature profile having a surface temperature of 300 K and a

temperature of 237 K at 10 km (y - 6.3 *C/km). The moisture will be given by

90% relative humidity throughout the atmosphere, and the environmental shear

will be constant with a value of 4 x 10-3 sec- I (AU - 40 m/sec). This gives

a value of -Ri = 1.0. This situation is not meant to model an observed thunder-

storm environment, but is a simple environment with the appropriate Ri. This

case should provide a definitive test of the upshear slope hypothesis and provide

a benchmark for comparisons of runs with different environmental conditions.

8. Conclusions

After a good deal of effort, a numerical method which is reliable and

accurate has been developed and the basic results of earlier work (Moncrieff,

1978) have been reproduced. With the approval of a grant of time on the NCAR

system, it is now possible to Improve and complete the model. The full model

is currently being readied, and after testing, it will be run on its first

case. This case should confirm the hypothesis which was presented here; that

the effects of the liquid water act to produce and maintain the upshear slope

SI
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of the updraft which is thermodynamically necessary for the maintenance of the

squall-line type thunderstorm.
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Figure 8. Results of Noncrieff's analytical (a) and numerical (b)model for R = !I. Chain line in (a) represents the interfacebetween the updraft and downdraft. In (b) the nondimensional
temperature excess is shown as a chain line (From Moncrieff,
1978.)
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Figure 10. Schematic of overturning circulations. The solid
lines are streamlines, the dashed lines are isotherms of
positive or negative temperature excess, and the cross-
hatched areas represent heavy precipitation.
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A Radiation Boundary Condition for Multi-Dimensional Flows

Abstract

A 'n' dimensional radiation boundary condition for application at

open or computational boundaries is formulated and tested on three

two-dimensional problems (n=2). Two of these problems model a simple

wave propagation and possess analytic solutions so that the effective-

ness of the boundary condition can be measured in terms of a RMS

error. A more subjective analysis must be used in the final problem

which is the the simulation of an atmospheric cold front. The

proposed radiation boundary condition requires the scalar components of

the phase velocity. A formula for computing these components is given

and various numerical schemes are tested. The traditionally used one-

dimensional Sommerfeld radiation condition is recovered when n=l. The

higher dimensional radiation boundary condition is found to give signifi-

cant improvement over the one-dimensional method when the flow is

multidimensional.
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One of the problems facing modelers of meso and other small scale atmos-

pheric phenomena is that in these finite area simulations there Is a difficulty

in prescribing lateral boundary conditions since no true physical boundary exists.

The nature of the environment outside the region under investigation is also

unknown. This problem has been forced on many mesoscale investigators and a

variety of techniques have been utilized to help eradicate this difficulty, e.g.,

(a) a Sommerfeld radiation condition;

(b) an absorbing boundary;

(c) one sided differencing of the equations;

(d) various other types of extrapolation.

Commonly, these procedures are utilized on some very complicated problems where

analytical solutions do not exist hence the impact of any one of these boundary

conditons is not known fully- Forexample, Clark [2] using different expressions for

the phase velocity associated with method (a) has found, for flow over a bell-

shaped mountain, significant variations in the interior calculations.

What is needed in problems where advection or wave motions dominates, as

pointed out by Orlanski [91, is an 'open' boundary condition. Such a condition

entails determining if the 'flow pattern' is entering or exiting across a

boundary. In the latter case the disturbance should be allowed to propagate out

without reflection. It is in this spirit that Orlanski [9] and Pearson [11]

proposed to use the following form of the Sommerfeld radiation condition at the

boundary:

t + -0, (,)
r

where 0 is the variable, C the phase velocity, t the time and nr the coordinate per-

pendicular to the boundary in question. Pearson (11] proposed estimating C from

a linearized dispersion relation while Orlanski [9] proposed to determine C
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locally and hence to predict the boundary value of * without finding the disper-
sion relation which as a rule is unknown. It is clear that with the Orlanski

approach Eq. (1) can predict accurately one dimensional motion but it does not

seem adequate to represent the higher dimensional flows. In th;s study a In'

dimensional radiation condition is proposed and tested togetlcr with different

techniques in evaluating the components of the phase velocity on three two-dimen-

sional problems two of which possess analytic solutions. For more information

on other boundary techniques see, e.g., Engquist and Majda [3], Gustafsson and

Kreiss [4], Rudy and Strikwerda [13] and Schubert et al. [14].

Typically in limited area or mesoscale atmosphere studies the boundaries are

placed as far as possible from the center of activity. To test and evaluate the

proposed boundary condition a somewhat different philosophy is taken in that we

study the distortion as a phenomena nears and passes through a boundary.

2. A 'n' DIMENSIONAL RADIATION BOUNDARY CONDITION

According to the definition of the phase velocity t of the field €, in general

we have

V I - , i = 1,2,..., n, (2)ia1 i axi

* where Ci is the component of in the direction of x . For our three-dimensional

space we have 1 < n < 3. We shall use this relation as our general radiation

condition at the boundary provided t is directed outward from the boundary, and

determine Ci by applying the governing equation 0 which we shall write formally as

D6t= .-  Fix i ..... ,Xnt,o). (3)

Thus, on equating the two expressions of ao/,t given by (2) and (3) we obtain

n ,...,Xn , 
(

For the one-dimensional problem, CI can be obtained directly from this equation
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provided F is known. However, for the n dimensional problem with n > 1, we need

n equations to determine all Ci uniquely. To reduce the number of unknowns to one,

.:e make use of the property of C implied by the relation (2), namely t is parallel

to V0. In accordance with this property we assume that we have the optimal relation

Ci = t - , (5)

.here the constant of proportionality factor cL is the same for all i. On substitu-

ting this relation In (4) we then obtain a = F/ 0axi and therefore

-I. (6)
I t xi)

* Equivalently, we may write that each component of CXV0= is satisfied and together

with Eq. (4) this yields n equations and n unknowns with (6) as the solution. Thus,

the value of every CI at the boundary can be determined from the adequate forms

of ao/ax and F, such as equating F to the value of -a /at at one grid point

inside the boundary and one time step earlier, as proposed by Orlanski [91. This

approach will be tested together with the techniques in determining F, by applying

it first to two two-dimensional problems where solutions are known analytically,

and then to the more complicated two-dimensional cold front problem without known

solution.

3. THE THREE TESTING PROBLEMS

Problem A

A two-dimensional advection problem In non-dimensional form given by

au +  - U+  ;  au 0, 0 <X < , 0' y~i, t •>0 ,(7)
rtu ax -ru

is solved for u - v - I with initial conditions

u(x,y,o) - Asln2irxsln2wy. (8)
The boundary conditions along the inflow boundaries at y-O and x-O are made to

satisfy

u(x,y,t) - Asin2i(x-t)sin2(y-t) , (9)

which also represents an analytic solution of (7) for every point of the domain.
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This solution projects a pattern which moves at a 150 angle toward the upper

right corner.

Eq. (7) is solved numerically using a leap-frog scheme, with Robert's

* filter, for a time step of .01 on a 21 by 21 equally spaced grid having

AX=Ay=.05, and applying the open boundary conditions of the form discussed in

section 2 at the outflow boundaries along x=1 and y=l. The constant A

is assigned the value of 100. The RMS error is computed in the traditional

manner.

Problem B

Rossby waves, a commonly known large scale atmospheric motion feature

represented by the solution of the barotropic nondivergent vorticity equation

whose linearized version is given by

at ac- +u  + v' af 0 ,(10)
T + u *-jX Ty- WY

where u and v ere the basic currents in x and y directions, f is the Coriolis

parameter and u', v, and c' are the perturbation velocities and perturbation

vorticit.ywhich are expressed in terms of the perturbation stream function P by

u - DV a- Dav ' au, = 4 + a2L, 0a, ;'8= ax2  2

O < <j M .(11)

It is well understood that Rossby waves owe their existence to the variation of

the Coriolis parameter f with latitude.

For our testing purposes, i.e., calculations limited to a finite region,

we will assume a solution of the form

= A cos k (x t) cos m (y-Cyt) , (12)x y
- - A(k2+m2) cos k(x-C Xt) cos m(y-E yt), (13)

where k 2 2/ Is the zonal wave number, m 21TL is the meridional wave number

x y
while Lx and Ly are the wave lengths in the x and y directions, respectively. The

x component of the phase velocity is
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C - 1/ (k2+m2), (I

here a = Df/y, while the y component is given by

C= V.
y

The initial conditions are given by Eqs. (12) and (13) for t = 0 while the

boundaries along x = 0 and y u 0 are also obtained from the analytical solution.

The known outflow boundaries along xN = 3000 km and YI = 2250 km, for both the

vorticity and streamfunction calculations, are used for testing. The unknown

streamfunction boundary values are computed using the radiation formulation and

the phase velocity components obtained from the vorticity equation. A leap frog

scheme is used to solve Eq. (10) and SOR technique is used for Eq. (11). A 21 by 16

evenly spaced grid is used in the x and y directions respectively for a step

size of 150 km along with a time step of 2000 s. In addition 1 1.6XoI 1Sm1

8 2
10 i s ,u=15ms v =0 or 5 m s, L 6000 km andL - 3000 kPI.Sx y

Problem C

For the final problem we choose a purely two-dimensional anelastic moist cold

front model to simulate the circulation associated with an atmospheric cold front

(Ross and Orlanski [12]). A cold front represents a propagating disturbance that

can not be described completely as wave motion thus problem C differs from problems

A and B. The governing equations for the (xz) plane are of the form

at J(O,ctn) +i. v , + a+-( -) 'j- (16)
TF 0-o-r- f -D(Z K.x -.)+ a) 5 c

av 1% (

= . j(p, on) + a vW + fcu-Ug) + L (17)

e e v uaat= J ( °8) +zw + f+ -. +.,(KKK) + -ai(Kez0) +.. , (18)

f- - J(O,aoq) + azqw + . Nj(0K' + Z~K ~) -6 *(19)

ac.-J*ac KKac +a (eac w (20)

0 r. e R') TZ !!Z,) +6 + Cp
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Here u, v and w are the velocity components In x, y and z-directions, T - lax

- Bu / z is the y-component of vorticity,i, is the momentum stream function in xz-

plane, e is the potential temperature, g is gravity accelerationq and c are the

water vapor and cloud water mixing ratios, Ov M 8(1 + .608q), Ug Is the basic state

geostrophic wind, L is the latent heat of condensation, c,. the specific heat at

constant pressure. 6 is the condensation rate, v and K are the eddy viscosity

and eddy diffusivity coefficients, K is a constant used to enhance the horizontal

diffusivity, and Oz = - 31npo/az is the stratification factor of the undisturbed

density Pd. Details of how to calculate the condensation rate 6 can be found In

Ross and Orlanski (12) and Kuo and Qian (7).

* In terms of the stream function 4, the velocities u and w and the vor-

ticity n are given by

U alp w 21a,b)

POT + a NOk + (22)ax 2  3z 2  k

where 1/po and Po = P s u r f exp(-azZ) is the vertically varying density.

In our calculations the grid spacing is such that Ax>>Az. Under these condi-

tions the streamfunction has traditionally been calculated by neglecting the

ax2 term In Eq. (22) yielding the well known hydrostatic approximation. Orlan-

ski [10] has introduced a quasi hydrostatic approximation in which a correction

containing part of the non-hydrostatic contribution is added to the hydrostatic

solution. In the Orlanski [10] procedure the streamfunction is represented as

m
*E ' 4) i (23)

mj=o 

(

and the components of P are obtained from the following equations:

A+ 0 Po rti (24a)
3z2



72.

+ _- j > (24b)
z zx 2

Here 4o is the hydrostatic component and the j's, j > 1, are an approximation

to the non-hydrostatic contribution. The associated boundary conditions are:

at z - 0, 1P-0, for all j , (25a)

at z H, pol To (25b)

4 j -0, j>I . (25c)

The series for i) converges rapidly provided Ax > .z. Taking m - 2 Is sufficient

for our purposes. Thus the solution of (22) is obtained successively from Eqs.

(24ab).

At the lateral boundaries the right hand side of Eq. (24b) must be approxi-

mated. Instead, as an alternative, we chooseto let 0 , j > 1, i.e., the
;x

non-hydrostatic terms do not contribute to the vertical velocity at the lateral

boundary. Otherwise, there are no lateral boundary conditions required by this

procedure.

For the problem in general at the lower boundary, z 0 0, slip boundary

conditions are utilized, e.g., rl = 0, 0 and v satisfies the thermal wind

relation given by

"v ae (26)

At the upper boundary, i.e., H - 14 km., we have a rigid lid so that w - 0, thus

T is a constant, and in addition ri,e and v keep their initial vertical gradients.

Conditions at the lateral boundaries are left for experimentation.

Initially, the thermal wind relation (.26) is taken as satisfied by v and 0,

andlU is given some vertical variation. Generally, our initial conditions and the

values used in the eddy viscosity formulation as well as all pertinent details for

q and c are similar to those used by Ross and Orlanski [123 and thus will not be

presented here.

I.
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The general numerical approach is composed of a lumped finite element

scheme with a leap frog time Integration. The Arakawa representation of the

Jacoblan J(*,O), where

J ) T 0 -(27)

is obtained when blllnearelements (chapeau) are used in the finite element

formulation. This was first Identified by Jesperson [5]. The diffusion terms

are lagged one time step and a Robert's filter is used to reduce the tendency

of time splitting. A grid utilizing Ax = 20 km and Az - 500 m is used along with

a 100 s time step. The value of 7 used in Eq. (25b) depends only on the initial

u velocity field, the latter is a function of the z coordinate only.

4. NUIMERICAL PROCEDURE

Radiation boundary conditions of the form of Eq. (2), for the case n - 2 are

to be used in the model problems at the appropriate boundaries as Indicated in

section 3. For notational purposes rewrite Eq. (2) for the n - 2 case as

a+Cx*aL + cyC °  . (28)

Eq. (28) can be used to predict the value of 0 on an open boundary provided the

value of C and Cy are known. These values can be obtained via Eq. (6), e.g.,

Cx = F4[ + 0 (29)

and -l

Cy -F (30)

The relationship between C xand C yIs given by

cx Cy a*,a /a,/ay .(31)

Two methods of evaluating Eqs. (29) and (30) are apperent and are now presented.

An Extrapolation Approach

The values of * at any lateral boundary, say WNJ-(XN.YJ),J -2,...,t - , as

predicted by Eq. (28) must be determined numerically. If Eq. ( 18) Is evaluated
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by a leap frog approach for a time step centered at t - T then the correct formu-

lation for C xTand C yTshould correspond to the phase velocity components at time

T and centered correctly in space. Provided these CxIs and C y's are not rapidly
varying in time and space an approximation based on previous interior values of

Scan be made, e.g., Orlanski [9] used CT CT- in the one dimensional radiation
N N-I

boundary condition cn - 1), where CN - C(x,,t-T). Other schemes are possible but

this approach has the advantage that it is Independent of the numerical procedure

used in the interior, i.e., to solve Eq. C3). However, various improvements can

be made and these will be indicated later.

Assuming, like Or)anski [9], that F is given by -ao/t centered at T -1

and} - we find that at the right most boundary(k,y.), excluding corners, of the

rectangle region bounded by o<xixN and o<y<yM that Eqs. (29) and (31) can be

approximated by -l

Cy c x1/4 , (32b)

where
T¢ [ ~ +  - 2~ T - ) A
R--j 2 - N-2 ,fx (32c)

and

N-.. +I" /N-,J/2AY (32d)

Thus each of the C x's and C ys are located spatially, in the upstream sense, at

(xN1IyJ) and about the T - I time step. The phase velocity components can be
.~

used to predict *N J via, e.g., an implicit formulation of Eq. (28), yielding,

(1 - C xAt/Ax) T-) 2C At/AxD ONJ + D N-lJ (33)

where D - + + CxAt/Ax and with the restriction given In Orlanski [9] expanded so

that
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c x  , ~ x -  x (34a)

AX/At Cx > AX/At

and

AY/At , Cy > Ay/A t

C= Cy -t : Ay/ t  (34b)

-AY/At , Cy < - Ay/At

Similar formula can be written down for the lateral boundaries at (xi y ),

etc. If corners are to be computed then both C and C must be computed using

one-sided differencing. Note that the Orlanski [9] formulation for the one

dimensional radiation condition Is recovered above if Cy 0 0. Also, if theyi

properties at an inflow boundary are known then Eq. (33) need not be used in that

situation.

Bannon [1] and Miller and Thorpe (8] have both proposed an upstream time

differencing scheme to evaluate the one-dimensional Sommerfeld radiation boundary

condition. The latter authorssuggest using

'+l " *- ( )
N N NI

where r C At/Ax, o < r < 1, and r is determined from

r - -N)/(-N-2 N) (36)

In addition, Miller and Thorpe [8] performed a truncation error analysis and found

that Improved accuracy Is obtained when

r- N- "O,, T T + (T T'-1 I 4T'1) (37)

N- I(* - 2 N- N N ) "

We will make comparisons between both the leap frog and upstream time differencing

schemes.

Note that Eqs. (36) and (37) require an interior value evaluated for time step T+I.



If the interior calculations are made using a leap frog or some explicit scheme

then the computed solutions at time T+I can be utilized in the lateral boundary

calculations. Under these conditions T may be replaced with T+I in Eqs (32a)

through (33). The phase velocity components are then centered correctly in

ti-.e for the leap frog integration scheme given above. For some problems it

is possible to compute the phase velocity correctly in both time and space.

Equating To The Equation Technique

Again assume a leap frog time integration scheme for Eq. (28). If in Eqs

(29) and (30) It is possible to evaluate F(x,y,t,$), described by Eq (3), at

the boundary at time T using one-sided differencing then C and C are obtained
x y

centered spatially at (xN_ yj) and at the T time step. If F is a complica-

ted function then this one-sided differencing approach will be more involved than

the extrapolation procedure. In addition one sided differencing may itself

introduce large errors especially if the equation contains terms that are in a

state of near quasi balance, e.g. the geostrophic balance condition in the

pri-litive equations of motion and the thermal wind balance condition in the

vorticity equations. This error can be removed to a certain extent provided

higher order finite differencing approximationsare used at the boundaries. It is

best to avoid this type of error If possible.Nevertheless in our model problem A

and B this technique can be used to help measure the error introduced by using

the extrapolation procedure described above. Thus given the values of C and Cx y
T+I

for Eqs (29) and (30) the value of N'j is obtained as before via Eq (33).

5. DISCUSSION OF RESULTS

In order to test the 'n' dimensional radiation boundary condition, three dis-

tinct two-dimensional problems have been proposed. For problems A and B the use

of boundary conditions at the known outflow boundaries over specifies these problems

since they are first order in each of the independent variables. However this over

specification Is one possible method that can be used to test the ramifications of
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any technique that might be proposed for use at an open or computational boundary.

Results From Problem A

Starting with problem A we show in Table I the RMS error after one hundred

time steps. The results using both a one and two dime- -ional radiation condition

are shown for two methods of determining the phase velocities. The extrapolation

approach, described in Eqs (32a-d), as indicated goes back one time step from the

last known value at the boundary and Interior to the boundary one space step to deter-

mine the C Is and C 's while the equating to the equation technique evaluatesx y

these phase velocity components using one sided finite differencing of terms in

the governing equation. Orlanski 19) first proposed the extrapolation procedure

7: with the one dimensional radiation boundary condition. Under the extrapolation

approach note that there is a five fold reduction in the RMS error by increasing

the radiation boundary condition from one dimension (n-l) to two dimensions (n.2).

The RMS error is further reduced for both the one and two dimensional radiation

conditions by using the equating to the equation technique. For this problem

the two dimensional radtation condition has exactly the same form as the equation

being solved so it is not surprising that the RMS error is essentially identical

to that given by using one sided finite differencing. Limiting the radiation

condition to one dimension increases the error substantially. Using the known

analytical solution on all boundaries does not reduce the error, as shown In

Table 1, due to inaccuracies in the Interior numerical calculations.

In Fig. I values of C for the first fifty time steps are shown at location

,,). The solid line is for the one dimensional radiation condition while the

dashed curve is for the two dimensional case. Both are for the extrapolation leap

frog method of determining the Cxs or C's. The dotted curve represents the Cx's

obtained using the two-dimensional equated to the equation technique. For the two-

dimensional cases all values are to be compared against the analytically predicted

value of I.
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Substituting the analytical solution into the one dimensional boundary condi-

tion, Eq (1), yields an analytically predicted time dependent solution for the

phase velocity, i.e,

C = + tan27r(x-t) (38)

tan2Try-t)

which becomes Infinitely large In magnitude when

27r(y-t) -t.lT, j - 0,1,...

or

27r(x-t) =+hTr , h - 1,3,5...

This explains why in the numerical procedure the value of C (solid line) fluctuates

rapidly and is quasi periodic In time. Nevertheless the value of C must be re-

Ax
stricted (Orlanskl, [9]) i.e., o < C < -otherwise substitution of C back into

-At*

the formula (Eq 33, n-l) to predict the new boundary value of the dependent varia-

ble u would numerically make no sense.

Results for Problem B

In Table II some RMS errors are given for problem B, the Rossby waves, after

a total of one hundred time steps or 55.55 hrs. The results are presented in a

format similar to that given in Table I except two cases are given. The first two

columns of the RMS errors for the vorticity and streamfunction, respectively, are

for when the true phase velocity is entirely in the x direction, i.e. -y 0,

while columns three and four are for when the phase velocity has components In

both coordinates. The latter occurs when v is non zero.

In Table II note that when v - o the one and two dimensional methods give

approximately the same RMS errors in each category used to determine the phase

velocity. The extrapolation approach gives the largest errors, as compared to

the equating to the equation technique, and predicts changes along the y-

boundary when in fact no changes occur. When the mean flow contains components

In both the x and y directions the two dimensional radiation condition again

becomes superior as seen In columns three and four. Also notice that the two-



79.
dimensional equating to the equatton technique and one sided finite differencing

give nearly identical solutions. This implies at the known out flow boundaries

that the components of the phase velocity are predicting outflow and thus satisfy

the restrictions Imposed by Eqs. (34ab).

In Fig. 2 values of Cx along the boundary xxN are displayed at the fiftieth

time step. The solid and dashed curves are C's for n=i and C 's for the n=2 cases,x

respectively, obtained by the extrapolation approach. The dotted curve is found

from the two-dimensional equated to the equation technique. The analytically pre-

dicted value for the components of the phase velocity are C)xC x and Cy=Cy.

Substituting the analytical solution for the vorticity, Eq (13), into the one

dimensional radiation condition gives an analytically predicted value for the phase

velocity, i.e.,
Cx + Zy m tan m (y-Zyt an k(x-Ext) .(39)

Here our previous finding is again repeated since this equation predicts that in

the one dimensional case the phase velocity can take on values much in excess of

Ax
the acceptable upper limit, i.e., C = T-, and values much less than the lower

limit C = 0. The latter is obtained Inspite of the fact that the flow is con-

tinuously outward. The sharp spike in the solid curve, Fig 2, reflects this large

variability and is commonly found at least at one grid point at almost every time

step and often exceeds the maximum magnitude allowable. It is clearly seen in

Eq. (39) and in Tables I and II that theuseof the one dimensional radiation boundary

condition incursgreater errors as the flow becomes increasely multi-dimensional.

In Table III the RMS errors associated with the upstream time differencing

schemes of Miller and Thorpe [8] are given. The simplier of their two schemes,

computed using Eq (36) for n-1, gives nearly Identical results with the one-dimen-

sional (n-i) case evaluated using Eqs (32a-d) with T replaced by T + 1. Utilizing

the interior solutions evaluated at time Tr + I in the lateral boundary calculations

does not change the RMS error appreciatively either positively or negatively as
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seen by comparing Tables II and III. The interpolation of r and hence C by Eq (37)

does show definite Improvement except for the streamfunction calculations when

there is two-dimensional mean flow. With further integrations the large error in

the latter category will eventually deteriorate the vorticity solutions.

Some severe storm modelers have had success using a constant phase velocity

in the one-dimensional radiation condition, e.g., see Klemp and Wilhelmson [6].

Table IV shows the RMS errors when Cx and Cy are each held fixed. Using the

analytically predicted values of Cx M 12.082 and Cy i 0 or 5 in Eq (33) gives

RMS errors essentially identical to the one-sided finite differencing. From

Table IVwe also see that for one dimensional flow the error occurred by over

estimating C is less than when is underestimated. However this pattern isesimtig x isls hnwe x

not clearly reproduced when the flow is two-dimensional. With the higher dimen-

sional radiation condition it may also be acceptable, under some circumstances,

to use a fixed or constant value for each component of the phase velocity provided

enough information is available to determine the nearly correct magnitudes and

directions.

Results For Problem C

Problem C requires the numerical solution of several equations. Even though

conplicated by the release of the latent heat the procedure is nevertheless straight

foreward except for the conditions to be used at the open boundaries. At the lateral boun

daries we tested a variety of different conditions for the various equations. These

tests show that the procedure used by Clark [2], and many others, is very satisfac-

tory, i.e., the velocity component normal to the lateral boundary Is computed at

the boundary from the radiation condition while all other dependent variables have

zero normal gradients. Thus In our problem at the lateral boundaries e,q,c and v
I

satisfy ( ) - 0 while the radiation boundary condition is applied to the vorticity

equation from which the normal velocity component is computed via the streamfunc-

tion.

Our results for the atmospheric cold front simulation are very similar to



those obtained by Ross and Orlanski 112]. Details of the various fields, e.g.,*

vorticity, streamfunction, etc., are very involved and it Is not easy to gauge from

these the influence that the lateral boundaries might play. A-clearer picture

showing the Influence of the various radiation boundary condition formulations

Is gained by examining plots of an averaged quantity or spacial norm verses time.

Figs. 3 and 4 display our choices.

In Fig. 3 we plot u' verses time where u' Is the norm of the perturbation

velocity as defined by
N M

'1 I,. U -U1 (40)NM,j

Here u Is the computed x component of the velocity field while U is the geostrophic
g

wind which is a function of the vertical coordinate only. This norm is choosen

because it allows for an easy Interpretation of the magnitude of the perturbation

velocity.

In Fig. 3 the solid curve displays the results obtained using the two dimen-

sional radiation condition (n=2) for the extrapolation techniques while the dashed-

dot curve is the Orlanski procedure (n-l) and the dashed curve Is the Miller-Thorpe

technique using the improved estimates of r as given in Eq (37). The dotted curve

which is essentially identical to the solid curve uses phase velocity components

(n=2) centered correctly at time T for the leap frog scheme but still computed by

the extrapolation procedure. In these calculations only the radiation boundary

condition has been changed. Also the area of computation coincides with the

region over which the averaging is performed. The grid Is as defined In section 3

for the x and z coordinate system utilizing N-55 and M-29. The above mentioned

curves are to be compared and contrasted with the plus (+) curve which gives an

average over the same area but when the calculations are performed on a larger

area having N-73.

Two features are pronounced In comparing the various curves. First, there Is

* some adjustment to the initial conditions and all the curves show an increase in

magnitude which reaches a maximum at sixteen hours. During this process the curves
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are very similar. After the adjustment process the plus curve shows that a quasi

steady state exists. Here the small variations are due to the presence of internal

gravity waves. The second feature is-now apparent since the other curves reveal

that the lateral boundary has a large impact if the disturbance is too close. The

Miller-Thorpe procedure is particularly susceptible since boundary influences

cause the value of u to more than double the maximum magnitude observed in the

plus curve. The two dimensional radiation boundary condition (solid or dotted

curves) displays the smallest increases for times greater than thirty hours. The

small differences between the curves computed using the one and two-dimensional

radiation boundary conditions, before thirty three hours, can be explained by the

fact that away from the frontal zone the u component ofithe velocity is at least

two orders of magnitude larger than the vertical velocity component. Thus the

flow is essentially one dimensional except near the front. This is clearly seen

by the magnitudes of w in Fig. 4.

In. Fig. 4 values of w-, where

N M

I= .. = I jw. .1 (41)

are shown for calculations using the same radiation conditions as in Fig. 3 except

now the dashed curve is the Miller-Thorpe upstream technique computed using Eq(36).

Again the lateral boundary effects are clearly evident after thirty three hours in

the leap frog schemes which give very similar results and after twenty six hours

in the upstream procedure (dashed curve). The latter technique generates vertical

velocity averages twice as large as the leap frog scheme. The exact reason the

upstream procedure is less effective is unclear in light of its performance in

problem B (Table III). The flow pattern is however much more complicated in

problem C and it seems reasonable that a boundary procedure that uses the same

time integration scheme (leap frog) as used in the interior calculations would be

the most compatible for long time Integrations.

L
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In Eqs. (17) through (20) w appears explicitly in one term in each equation.

In our calculations we compute w from calculated streamfunction values via the

formula w - ao-x04x in finite element representation.

Along the lateral boundaries however the finite element technique predicts

each w using streamfunction values in a one sided differencing scheme from six

grid points. To test whether the reduced accuracy associated with the one sided

differencing scheme might be enhancing the error at the lateral boundaries we

replaced the direct calculation of w with the condition that - o. This

greatly reduces the noise generated at the lateral boundaries as seen by comparing
aw

values of w in Table V, computed using- x = o, against our earlier calculations of

w in Fig. 4 in which w was calculated at the lateral boundaries. All categories

of radiation boundary conditions show improvement with now almost no differences

between the n=l and n=2 cases. However the leap frog approach still remains

superior to the up-stream technique.

In our lumped finite element scheme every term in Eqs. (17) through (20) is

expressed in a nine point configuration except for the time term. Hence the

contribution from every term that includes w can be interpreted in terms of the

streamfunction as representing even more grid points since the calculation of

each w involves * on nine grid points. Consequently using w instead of the

streamfunction representation explicitly obviously results in some smoothing.

This fact is reflected in the values of w shown in Table VI. In the last two

lines in Table VI it is clear that when the calculations are performed using

Qo-4 explicitly in place of w the values of w are nearly a magnitude larger

after forty-eight hours. The differences are small during the first six hours

but as latent heat Is released at grid point locations in the condensation process

the differences grow. Unfortunately the intensified flow characteristics obtained

when using the streamfunction representation explicitly also enhances all noise and



the solutions become very noisy after twenty simulatton hours. Thus it Is

difficult to test radiation conditions when the meteorological fields deterio-

rate beyond the point of interpretation. Nevertheless the result for

displayed in Table VI agrees essentially with our previous findings.

To determine if the error at the lateral boundaries can be reduced even

further we tested several other ideas. For example, in an attempt to center

the phase velocity component correctly in space we computed two columns of

omponents adjacent to the boundary and then utilized a Taylor series expansion

to predict the value at the boundary. These calculations did not significantly

improve the results presented above. Using higher order approximations of the

derlvatives also did not significantly change our results. Also averaging all

quantities over six grid points, as computed via the finite element method withbi,

linear basis elements, yields essentially the same results. As previously

mentioned the equating to the equation technique cannot be utilized in this

problem because of the internal balance between two derivative terms in the

vorticity equation, i.e., the thermal wind relation.

6. SUMMARY

A 'n' dimensional radiation boundary condition has been tested on three

two dimensional problems. When the flow is outward across a lateral boundary

and when the pattern of movement is multi-dimensional the proposed radiation

condition has been found to be clearly superior to various formulations of the

traditionally used one dimensional Sommerfeld radiation condition. For outflow

the 'n' dimensional radiation boundary condition, as proposed, is equivalent to

one-sided differencing of the governing equation provided the components of the

phase velocity are correctly centered In time and space. When this centering

procedure is not feasible or gives unrealistic results extrapolation procedures

provide an alternative technique to determine the phase velocity components.
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TABLE I

RMS errors after 100 time steps for problem A.

Boundary Condition RMS error

(1) Extrapolated

+=C 0 (Ia) 2.024

~+c C 0+c C 0o(Ib) .3956at x x y ay

(II) Eauated to the equation

ao+ ca = 0 (Ila) .42

+ *l z+ Cy .0(lb 1383at x Tx- ya Ib

(III) One sided finite .1380
differences

(IV) Analytical exact value .2020
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TABLE 11

RMS errors after 100 time steps for problem B.

U 15 mn S- 15 m S-

v=0 =5 m S-1

Boundary 1
Condition Vortictty, 10 s Streamfunction, 1, Vorticity. 10~ Stream-

(1a) .7335 .8650 .5971 1.5072

(Ib) .1308 .7180 .1521 .2878

(Ma) .0112 .0296 .0674 .6995

(11b) .0112 .0270 .0475 .1929

(111) .0113 .0270 .0448 .1977



TABLE III

RIS errors after 100 time steps for upstream and leap-frog

-' radiation schemes used in problem B.

-i15 mns-1  =15 m S 1

v0 =5 mns1

Schemes Vorticity, 105s Streamfunction, 106  Votcy 10 Stream
m, S-1 s-i function

Up Stream .128 .8166 .561 1.4631

Eq. (37) .0298 .1245 .1300 1.6006

Leap Frog

n = 1.1285 .8171 .5864 1.5106

n = 2 .1287 .6861 .1642 .3212
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TABLE IV

RMS errors after 100 time steps for constant phase velocity components

in the radiation condition used in problem B

u = 15 m s 1  u = 15 m s -1

Boundary s10i = 0 = 5 m s - 1

Condition

Cy Cx  orticity, Streamfunction, 106 Vorticity, l0 Stream

m2s-1 function_.106 m2 s-1

0.0. 12.082 .0114 .0298 .6846 1.2197

5.0 12.082 .0434 0.1974

0.0 5.0 .1521 .6614 .8748 1.4602

0.0 25.0 .0640 .3658 .6116 1.6686
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TABLE V

Values of i(10.2) computed for problem C when a =a 0 at

the lateral boundaries.

Time (hrs)

Scheme 25 30 35 40 45 48

Upstream

Eq.(36) .319 .509 .638 .554 .379 .319

*Eq.(37) .413 .457 .467 .360 .340 .228

Leap frog

*n =1 .298 .286 .308 .263 .245 .267

n =2 .299 .296 .318 .268 .247 .260

Large area

n =2 .247 .259 .283 .265 .222 .211
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TABLE Vi

Values of (10-2) computed for problem C when w is replaced with aoWa

in Eqs (17) through (20) or when w is used explicitly.

Time (hrs)

1 48 16 24 28 48

using L

Up stream .104 .203 .339 2.431 2.098 2.565 3.577
Eq. (36)

Eq. (37) .104 .203 .341 2.584 2.353 2.418 1.4 89

Leap frog

*n =*I .104 .206 .342 2.374 2.459 1.897 1.502

n = 2 .104 .207 .342 2.376 2.464 1.929 1.556

Large area

n =2 .104 .202 .305 2.344 1.918 1.818 1.491

using w

* Large area

n=2 .098 .184 .222 .452 .273 .283 .211
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List of Figures

Fig. I. Values of the phase velocity components are displayed for the first

ftfty time steps for location (xNy 1 2 ) in problem A. Values computed

using the one dimensional, n-l, (solid curve) and two dimensional,

n=2, extrapolated (dashed) and equated to the equation technique

(dotted) are to be compared against C -1.

Fig. 2. Same as Fig. I except for problem B and computed for the fiftienth

time step along the right lateral boundary. The known analytical

solution Is shown by the Cx - C curve.

Fig. 3. For problem C values of ul verses time are shown when in the radiation

condition n-2 (solid and dotted curves), for n=l (dashed dot) and for

an upstream time differencing scheme (dashed curve) using Eq. (37).

Fig. 4. Same as Fig. 3 except for w and the upstream scheme uses Eq. (36).
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Simulation of Laboratory Vortex Flow

by Axisymmetric Similarity Solutions

Abstract

A similarity approach is utilized to investigate a simple

axisymmetric steady-state model of the convergence region of

a laboratory vortex. The resulting simplified set of equations

are solved for a range of swirl angles by varying the tangential

or radial velocity component at the outer rim. By increasing the

swirl angle the flow is found to go from a one cell to a two cell

configuration, i. e., the vertical velocity changes from'everywhere

positive to negative in the vicinity of the axis. Correspondingly

the vertical vorticity maximum moves from the axis toward the radius

of maximum tangential velocity, making the flow barotropically

'instable with respect to unsymmetric perturbations.
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1. Introduction

A variety of rotating or swirling motions are observed in the atmosphere.

Of particular interest dynamically are the tornado type vortices. Various

theories on the nature of the internal dynamics within these strong vortex flows

have been discussed (e.g., see Davies-Jones and Kessler, 1974), but actual mea-

surements are almost impossible to obtain due to the severity of the motions. To

answer some of the major questions a number of laboratory vortex experiments have

been conducted, e.g., Turner and Lilly (1963), Ying and Chang (1970), Ward 1972,

Jischke and Parang (1974), Leslie (1977), Church et al. (1977), etc. One of the

advantages of the modern vortex generator is its ability to reproduce the multiple

vortex phenomena in an environment where it can be intensely studied, e.g., Ward

(1970, 1972). Fujita (1971, 1972) first proposed that the cyloidal markings

observed in tornado damage paths are produced by these secondary rotations. The

presence of multiple vortices within some tornadoes has now been widely accepted

and analysed in various studies, e.g. Agee et al. (1975) and Forbes (1978).

Because of the success of the laboratory simulations, a few elaborate numeri-

cal reproductions of the vortex generator have been attempted, e.g., Harlow and

Stein (1974) and Rotunno (1977, 1979). These studies certainly have helped to

identify various features of the dynamics, but questions still remain, e.g., what

is the relationship between the vertical motion near the axis and the inflow angle

at a large distance from the axis, and what is the nature of the instability that

allows multiple vortices to generate. To help refine answers to these and other

questions, a simple analytical-numerical steady-state model is investigated.
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2. Formulation of the Problem

Our goal Is to simulate In a simple manner a steady-state vortex

similar to those produced In modern laboratory vortex generators and

to study its behavior. These laboratory vortices are created mechanically

in a specially designed arrangement which contains an exhaust fan and a

rotating screen. Air is drawn radially inward,by the fan through the

rotating screen till it reaches a central cylinder where it is allowed to

rise through the cylinder and Is expelled at the top.

The rotating screen imparts a background angular momentum which is

nearly conserved as the air moves radially inward giving rise to a con-

centrated vortex core. The laboratory experiment is constructed so that it

is geometrically and dynamically similar to conditions found in the atmosphere

during, for example, a tornadic event, This similarity is established by

requiring that the non-dimensional numbers that govern the flow in the

mechanically generated vortex be in the same range as those observed in the

atmosphere. Lewellen (1962) found three nondimensional parameters that govern

the nature of the swirling flow. These are: the radial Reynolds number

Rer = Q/21,v

an internal aspect ratio

a - H/R

and a swirl ratio

5 - tanO/2a

Here Q Is the volume flow rate per unit axial length, v is the viscosity

coefficient, H the inflow depth, R the radius of convergence and 8 Is the

swirl or Inflow angle. It Is known that the swirl ratio and radial
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Reynolds number describe the dynamics of the flow while the aspect ratio

describes the geometry.

If all three of these numbers are of equal importance then the geometry

of the simulator would have to be considered and/or duplicated in any

numerical simulation. Davies-Jones (1973) however points out that the

nature of the swirling flow is dominated by the swirl ratio. Because of

this there Is some hope that a restricted investigation ignoring the geometry

and only dealing with just part of the vortex simulator, e.g. the region

where convergence takes place, might be successful in explaining some of

the general behavior that is observed in the laboratory vortex and thus

consequently in the atmosphere. It is in this context that we adopt a

similarity approach to simplify the governing equations. The procedure has

been orchestrated so that we can examine the vortex flow configuration,

as described in the simplified similarity equations, for a range of swirl

angles.

3. The Mathematical Development

Assuming that the motion of the homogeneous fluid is steady and axi-

symmetric and that the Coriolis force can be neglected in comparison with

the centrifugal force, then the swirling flow satisfies the following

equations of motion in cylindrical coordinates (Kuo, 1966, 1969):

u+wV .av~Vvv (1)U('U" + X ) + W I_--V .
ar r zl

2 2u _+T WU Y_ " .-" + 'Vl u (2)

u !_ + wi"' "gI1 33r~~~ 2zr pr 2



(ur) + r3w 0 (4)

where

2 LI Dr a 32

3( -F mr + -i( )
az

r is the radial coordinate, z the vertical coordinate positive in the direction

opposite to the gravitational acceleration represented by g, and u, v and w are

the radial, the tangential and the axial component of velocity, p is the pressure

and p is the density.

The velocity components u and w can be expressed in terms of the stream

function * defined by
U W ..... A (5a,b)T ,57 r ar

From Eqs. (2) and (3) we obtain the following equation for the azimuthal vorticity

3 v u v2(*Ir) : (6a)
3r 3 z

ar DzUz T~r) r 3z VI (b

Equations (6b) and (I) together form a closed system for the dependent variables

v and * (after using (5a,b) and (6a) to eliminate u, w and c).

a. A Similarity Approach

Following the spirit of the similarity approaches utilized by Kuo (1966,

1969) the variables are first non-di.mensionalized by the following transformations:

U -Ur s h , z - hz*

m- Ursm* v - Usrsv* and x r2/4r2 (7)
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Here r is the radius of the rotating screen at the outer edge or rim, h is

a measure of the effective depth, ro is some measure in the radial direction

and Us is the radial velocity at the rim while m - vr denotes the angular

momentum. Note that v*, ,*, m*, z* and x are all dimensionless.

The dimensionless equivalent of Eq. (1) when written in terms of m*

becomes

1L 2m* + 30 am* = 2v* 2 * -I 2m*l (8)
az* ax ax z ax2  3z*21

while Eq. (6) reduces to

m* = X2 [2v* DJ*- (R2.* + J~*(~(9)

where the subscripts z* and x denote partial differentiations and

-h -2 0 *  a2 * + -1 a2p*6 -, h~r0  DX 3*

and D4** - D2(D2,). Observe from (9) that the merldional flow is influenced by

m* only through the variation of m* with z*. To include this effect, we follow

again the basic premise established by Kuo (1966,1969) by expanding the flow

variables in power series expansions in z*and including the zeroth order terms

mo and u0 in m* and u*. It can readily be shown that only the even order terms

of z* in m* and u* will contribute to these two variables and therefore we write

m* and in the following forms

m* - v*[m0 + 6z* 2m! + (6z*2)2M2 + ... ] (10)

- 2v*z*[F0 + 6z*2FI + (6z*2)2F2 + ... ] . (11)

Both m* and will be well defined provided the higher order terms are decreasing

in importance.

From Eqs. (5a,b), (7), (10) and (11) we arrive at the following
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expressions for u, w and m:

u - - .r [F0 + 36z*
2F1 + 5 (z*

2)2F2 + ... ] (12)

r;

m vr = vm o + 8z*2M + (Sz*2)2m + .

The prime denotes differentiation with respect to x.

Using the expansions (10) and (11) in Eqs. (8) and (9) and setting

the coefficients of the individual powers of 6 to zero the partial differential

equations are transformed into a system of coupled ordinary differential

equations with independent variable x which is proportional to r2. From the

angular momentum equation (8), we obtab:fcrm and m the second order differential

equations

x' + F -m' -2m , (15)
0 00

xm + Fore - 2Foi -3F'mI - 12m2 (16)

From the vorticity equation (9), we find that F and FI are each defined by a

fourth order differential equation,
m] m F1  120F2

[0F0,'' + (l+F0 ) FO*- F' 2 + 12F']' m - I - 6F2  1 2 (17)
0o1 2 0 ox

rXF."+ (1+%)F'' - 4F'F'l 3 ' +- F2
L 0o 3 0F1  6x( - )I

x 3 31 FoF 2 8OF

.In(m + 2 m2) - 20Fo (2)' + 60--- AU OF' " (18)
2(om2 +2 1 o x x2
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Equations for the higher order terms in (10) and (11), can also be obtained but

are not presented here. The system of equations becomes closed for any given

cut-off limit.

Solution by perturbation expansion

Instead of treating the system of highly coupled nonlinear equations (15) -

(18) directly, we shall solve them by expanding the dependent variables in powers

cf a coupling parameter a so as to separate the most fundamental part F o(x ) of

F (x) in (17) from the other variables to make F satisfy an uncoupled equation,

and obtain the coupling parts of the various functions by successive approximation.

The expansions which serve this purpose can be written as

F 0 Fo0 + Fo0 + c 2F02 + (19)

mo - moo + '01 + 2m902 +

F- a FIO+ CX2F! + F 12 +

ml W am10 + a2milI + cim 12...

F2 - i2F20 + a3F2 1 +

m2 - a'm20 + m2+ ... ,etc.

Substituting these expansions in Eqs. (15) - (18) and equating the coefficients

of the various powers of a to zero we then obtain the following system of equations:

(first set)

[1xF"" +(l.+ Fo) F F'2)' - 0 Co)
00 [00

[xF~d +(I + F00)FBI 4F' F10 + 3FIF1 ] -0 ,(20b)
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xm'' + F m' ,0 (20c)
00 00 00 (2c

xm; + F M1- 2F mlO =-3F m' (20d)
00 10 oo 100d)

(second set)

[xF0;' + (I + F )FO - 2F' l + FFO1

. m - 6F12  (x _F , _ 12F,, (21a)
2x2  0010 00 00

rxF'' )• ' - /.,F' :F' + 3FooF ]' =- F'-

Lx I; + (1-+ Fo)F + 00 11" (FO1  ;6 1 40 lF10  + 3F'O'Flo)'
1 F~2 F

J__( 2 +x 2 ( Fl O)'-2 F ( 20

2x2  10 2oo20 x3  00 x

+ 60 0020 4OF' (21b)x 20'i

xm" + F m; F m' - 2m10 (21c)
000 00 1

xmj + Fm~i - 2F' :m, -Foim'lO + 2F;1mlO - 3(Flomol + Fllml )-12m20

1001 oo 1m1]-0000

(21d)

(Set 3, limited to F0 2 and m0 2 for brevity)

02FI;)1 + (I +2F' F (m ,, +(m

LX + 1+ ;0 2 00 021 2X2  00 11 i01m10)
F2  F11  2 10o

LFoIF' + F']' - F  
- _I P , )' - 120 F2- (22a)

001O xF 00  F01  ol 1

xm +F m -2m, - on'o -F (22b)
m02 oom02 11 0 0 2mo 

Eqs. (20a) and (20c) are found in Kuo (1966, 1969) while (21b) and (21d) differ

somewhat from that given by Kuo due to the different 6 used. Observe that Eq. (20a) is

nonlinear but it contains F alone, hence It can be solved together with the boundary
00

conditions to yield F00 , while all the other equations are linear and contain lower

order functions as coefficients and non-homogeneous terms. Notice also that the

inclusion of the F1 term in (11) makes the tangential and the radial velocities coupled

through equations (20d) to (22b).
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c. The Boundary Conditions

At the axis we require that each of the variables be zero for the

axisymmetric flow, i.e., at x = 0

S = Fi = 0 ,i = 0,, ... (23)

mli = F = 0 , i = 0,1,

At the rim, x = xs , we assume the vertical velocity is zero, that the

radial inflow will vary slightly with height while the rotation rate does

not vary in the vertical. Also, we shall take all the radial inflow and

rotation in the first term in the a expansion, and none in the higher

perturbations. Therefore at xs the solutions satisfy

F" = 0 , i = 0,1,..., (24)

F - 0 , i = 1,2,...,

F''"= 0 ,0,1 ...,

of
m 0 , i=1,2

Fiji 0

F = 0 , i = 1,2,...,

SI 0 i = 
min = 0 , I - 0,1,...,

while Foo, FiO and moo are assigned non-zero values. The condition on the

third derivative Is needed to complete the requirement of four boundary

conditions for the fourth order equations. Integrating (20a) from 0 to xs o

applying the boundary conditions given above and solving for F" (xs) yields

(xs) F'o(0) - FO(0)

(l+Foo (xs)) 
(25)

This relation shows that Fo(x ) Is non-zero If F'' (0) i0 F 2 (0). A similar
00 00 00

procedure applied to Eq. (20b) reveals that
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(xe) .Fl (0) - 4Fo (0)F;0 (0) - 3F (x)F 0 (x) (26)

(I + F(x))

which is also non-zero if the numerator Is non-zero.

At the rim the swirl angle e can be written In terms of mo0 and F°

since Eqs. (12), (14) and the boundary conditions (24) give at the z* 0 level

e- tan -I (v/u) = tan -I(m/2Fo)

Note also at the rim we have mo(xs) - 0 (xs) and Fo(x s) = Foo(xs).

d. Details of the Numerical Procedure

The non-linear ordinary differential equations described by Eqs. (20),

(21) and (22) with their corresponding boundary conditions (23) and (24)

are solved numerically, in the order listed above, using a shooting

technique (Conte and de Boor, 1972). Each equation is rewritten as a

system of first order equations and then discretized using the midpoint

rule (Kreiss and Oliger, 1973). Thus, e.g., each fourth order equation is

reduced to a system of four first order equations that must be solved

iteratively. A fine grid is employed near the axis, e.g., Ax - 10- 4

but t'is spacing is allowed gradually to expand to a much coarser net near

the rim, say Ax = 10j 1. As an example, a total of 575 grid points are used

on the interval x -0 to 20. Tests using nearly double this number of grid

points yields no significant differences.

Utilizing a shooting technique to solve the fourth order differentlal

equations for the various F's requires that initially a guess be made for

the first and second derivatlvesat x - 0. Using these guesses the third

derivative at x - 0 is then computed directly from the equation. The

* system of four first e'der equat'2ns are solved for all x using standard

procedures and then the -" ;ue. for Fij and its first derivative at x xs
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are compared with the desired boundary conditions. If the differences exceed

a specified small value, say 10- , the process is again repeated using new

estimates to replace the values of the first and second derivatives at

x - 0. These new values are obtained using Muller's method (Conte and

de Boor, 1972).

We have only two degrees of freedom so the condition on the third

derivative at the rim can not be strictly enforced but we except only those

solutions for which the required condition Is naturally approximately

satisfied, i.e., F'Oj' 0, i = 0,1,..., J = 0,1,... The error introduced

by this procedure is quite small since, e.g., the calculated value of F' (xs)
00 5

varies from that predicted by Ea. (25) typically only in the fourth significant

decimal place.

Our equations actually possess multiple solutions that satisfy all

the above stated boundary conditions, e.g., two separate solutions for

Fm, Eq. (20a), are known to exist and more may be possible. Using initial

guesses with F;o(0) > 0 and F'" (0)< 0 we obtain a solution which contains
00 00

all positive values of F' (one cell vortex) while the second solution,
00

obtained using initial guesses F' (O)< 0 and Foo(0) > 0, contains negative
00 00

values of F1 near the axis and positive values further away (two cell
00

vortices). Kuo (1967), examining a vortex in an unstably stratified atmos-

phere, shows similar two cell solutions for the special case when all the

derivatives are zero at the rim. Our two cell solutions remain essentially

unchanged near-the axis as the rim Is moved further and further away. This

behavior Is not observed In the laboratory vortex (Ward, 1972 and Church

et al., 1979), so In this study we disregard this solution and utilize only

initial guesses that satisfy F'o(0) > 0 and F" (0) < 0. The exact magnitude00

for these choices depends on the strength of the Inflow at the rim.

The solution of the m equation Is straight forward and does not change
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significantly with the change of the vertical velocity at the axis and there-

fore it will not be presented here.

4. Discussion of Results

In this study a similarity approach is utilized to obtain the solution of

the two-dimensional nonlinear vortex equations for comparison with the results

11 obtained from laboratory vortex simulators, so that the vertical and radial

variations are uncoupled. For simplicity, the geometry of the vortex simulator

is ignored and only the nature of the flow within the convergence or inflow

region is investigated for a range of swirl angles. Care must be exercised

in interpreting our results however since the similarity transform ignores

the geometry and by limiting this study to within the convergence region we

also ignore the source of the convergence, i.e., the exhaust fan, and thus

there is no guarantee that different rim rotation rates, with the same

specified radial inflow, will experience the same volume flow rate. Fortunately

Davies-Jones (1973) has shown that within the experimental ranges for the

three nondimensional quantities, namely, the radial Reynolds number, the

aspect ratio and the swirl ratio, it is the swirl ratio that most

strongly contrcls the laboratory vortex flow configuration. In our calculations

some small variations of the aspect ratio and radial Reynolds number are inherent

because of the nature of the similarity approach but these changes are thought

to be minimal and should not distort the general conclusions. Also our model

includes the viscous or diffusion terms but does not include the boundary layer

explicitly since the motion predicted at z* = 0 is non-zero and not the no-slip

flow required in boundary layer theory. The zero value for z* should be

interpreted as occurring near the top of the surface boundary layer.

We will vary the boundary conditions at the rim (x - x ) representing
S

changes in the strength of the radial velocity or inflow (F (x s)), the

vertical variation of the radial velocity component (F(xs),F 20(X s), ...)
vli c
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and the strength of the rotation or tangential velocity (mo(Xs)), and

observe the predicted flow pattern. Note that the height dependency is

determined by the first and higher order terms in Eq. (11) and is established

by the choice of boundary conditions at the rim. Results will be presented

normally for two boundary parameters fixed while the third is varied over

some range. The resulting flows may not always be observed since In the

laboratory vortex there may be some natural compensation at the rim in the

vertical variation, for example, as changes occur there in either the

strength of the radial inflow or rotation rate. Nevertheless we can clearly

show the trends produced by individual changes in these boundary parameters.

Our results illustrated in Figs. I through 11 are displayed in terms of

the dimensional radial variable r = r* or in (r*) 1/2 scale to better visualize

the predicted flow pattern near the axis. The first 10 figures are for an

intense vortex similar to those produced in modern laboratory vortex

simulators. The outer rim is located at r*(x s ) = 1.932 m while the last

figure shows a weaker configuration with maximum radius of 0.642 m. Be-

cause the intensity of the inflow and rotation at the outer rim greatly

effects the location of the maximum tangential velocity in the x coordinate

an appropriate choice for r0 must be established for each of the two cases

to convert our calculations in x back Into r = r* scale. The scaling factor
= r 2 ,(2r ) 2

r is calculated once for each case via the formula xymax = rvmax 0

by selecting 0.15 m as the appropriate radius for the maximum tangential

velocity, in approximate agreement with laboratory simulations (Church

et al., 1979). Both radii given above correspond to a maximum value for

x of 20. This value is selected as typical from a large number of tests.

Using numerical results representative of each case the scaling factor for

the more intense flow is determined as r = 0.215 m while the weaker case uses

- 0.0728 m. The equations for F 0 , themselves are independent
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of ro, 6 and v but to convert back to the dimensional variables requires some

appropriate choices. The radial distance is labeled r* in the figures indicating

that our choice of r0 has been used to convert from the x coordinate back into

the dimensional r = r* coordinate.

Radial profiles of F' and its components are shown in Fig. 1. These are

computed using Foo(xs)  250, F10 (xs) = -0.8 and mo (xs) s 194 and are presented
in auniorm(r*1/2

in a uniform (r*) scale. F1 and its components should be Interpreted as a
0

measure of the vertical velocity (Eq. 13). The solid curve labeled F' , obtained

from (20a) has its maximum value at the axis, i.e. r* = 0, and by itself is typical

of the profile found in a one-cell vortex (Kuo, 1966). When higher order expansion

terms, obtained from Eqs. (21a) and (22a) are included in F' F.' + F' +2F '
o oo 01 02

with a taken as one, the profile is radically different since F0 = 0 at r* = 00

and thus represents the initial stage of a two cell vortex. The latter is generally

characterized by negative vertical velocities at and near the axis with non-negative

values further away. For our purposes three terms will be sufficient to approximate

F. or F', since e.g., the dotted curve representing F 2 is significantly smaller in
0 6

magnitude than either F' or Fl Indicating the decreasing importance of higher
00 01

order terms in the a expansion. Higher order terms in the (6z* 2)power series

expansion Eqs. (10) and (11) like F1, where F1 = aF1 o + 1
2F1 , are similarly much

smaller than the zeroth-order terms. Note that IO.Fjo as plotted in Fig. I is

still small in magnitude. The second term in F, i.e. F,,, is even smaller. We

will neglect the very small contributions of F2 and other higher order terms.

Included in Fig. I is the dashed-dot curve showing the radial profile of Fl
0

when terms generated by verticat diffusion are removed from the calculations. The

resulting differences in F' are clearly small as seen by comparing the dashed-dot
0

and solid curves and do not change the two cell nature of the vortex which results

when radial and tangential motions are coupled. Our calculations show that as the
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vortex becomes more intense this small contribution is reduced even further (not

displayed) while In the convergence region of a weak vortex vertical variations

are more pronounced so that vertical diffusion becomes more important, as shown

in Fig. 11. In this weaker vortex configuration, Fig. 11, the ratio of FlO/Foo

at x is an order of magnitude larger than that used to compute the more intense

vortex described in Figs. I through 10.

According to Hall (1972) the vortex core is characterized, above the boundary

layer, by a slight spreading out of the core with height hence a small decrease

in radial and tengential velocities with height and the development of an adverse

pressure gradient.

We tune our model to produce similar behavior by choosing FI as minutely

negative at the rim, hence negative over the entire radius, giving an increasingly

negative contribution with increasing height to the radial velocity component and

consequently to the tangential velocity. Fig. 2 shows that the value of F' is
0

sensitive to changes in FI since non-zero F I values allow the tangential velocity

and radial motions to be coupled. If FI is identically zero everywhere then F°

wiil be identically Foo, I.e., the radial motion becomes independent of the rota-

tion rate. The magnitude of FI is chosen so that the coupling effects of F1 and

mI produce nearly zero values at the axis for F', solid line, when the swirl
0

angle, e - tan- I m/2Fo , is in the neighborhood of twenty degrees in approximate

agreement with results found in laboratory simulations (Church et. al., 1979,

Church and Snow 1979).

In Fig. 3, radial profiles of F1 are presentf.d for four different rotation
0

rates at the rim, i.e., with moo(xs) - 170, 194, V.0 aod 280 while Foo(xs) - 250

and FiO(xs) - - 0.8 are each held fixed. This Is etpilvilent to varying the swirl

angle at the rim from 18.780 to 29.25* (z* - 0) by adjusting the tangential velo-

city. It should be noted that laboratory simulations measure their swirl angle

I___
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somewhere between the rotating screen and the updraft core and not at the rim

exactly. For the smaller value of m (xs) of 170 the F' profile, given by the

00 5 0

dashed curve, is positive throughout the entire radius but already significantly

reduced near the axis as seen when compared with the solid curve labeled F'00

which does'not include the coupling effect of the tangential flow. As the rota-

tion rate is increased F becomes increasingly smaller at the axis and is nearly
0

zero when moo(xs) = 194 (solid line). Further increases in the rotation rate

produce negative F' values at the axis typical of the two celled vortex. Note
0

that the profile away from the axis, say r* > 0.25 m, remains almost uneffected

by variations in the swirl angle. In the laboratory simulator where the volume

flow rate is unchanged in the experiment there would be somewhat more of an

Al increase in this outer region, of the order of 10%, to compensate for the down-

watf motion at the axis. Thus our results for increasing values of m at the

boundary have a small decreasing volume flow rate for the same radial inflow

rate. This may be interpreted as having a slightly decreasing aspect ratio and

radial Reynolds number. Consequently the swirl ratio S will increase more than

that predicted due to changes in the swirl angle alone since S is inversely pro-

portional to the aspect ratio.

In Fig. 4 values of xl F2F , which is proportional to the radial velocity,

are given up to a radius of 0.28 m. The two cell flow is very evident in the

dashed-dot (m = 240) and dotted curves (moo - 280) since both have negative

values next to the axis. The solid curve labeled x- 1/2 0F shows the smallness

of the negative first order term when compared with zero order terms.

The development of the downward vertical motion at the axis is clearly seen

to descend from high levels of z, in agreement with laboratory findings (Church

et al. 1979), since negative vertical motion is possible when small positive

zeroth-order and negative first-order terms are combined provided at some z* > 0
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the expression 16z* 2F;l > F' in Eq. (13) Is first satisfied. This occurs when
0

F1 is much subdued but still positive at the axis, e.g., as does occur as shown
0

in Fig. 3. The combination of zeroth and first order terms would then lead to

a reduction with height in the vertical velocity, a stagnation or zero point

and finally negative vertical motion above that level. This type of motion is

clearly seen in the laboratory simulations of the vortex (Church et al., 1979,

Ward 1972).

Profiles of the tangential velocities are shown in Fig. 5 for the same cases

discussed in Figs. 3 and 4. As the swirl angle at z* = 0 is increased in value

for four cases between 18.78 to 29.25, corresponding to the dashed through

dotted curves respectively, the tangential velocity maximum moves further from

the axis, a feature commonly observed in laboratory simulations (Church et al.,

1979). Outside the radius of maximum tangential flow the shapes of the profiles

are very similar. This follows since the value of the zeroth order angular

momentum, m o = Vor, remains nearly constant. For example with a value of 194 at

the rim the value of m0 is 192.8 at r* = 0.2422m which is very close to the radius

of maximum velocity at O.15m. This means that the vertical velocity is confined

within a region certainly less than twice the radius of the maximum tangential

velocity. The flow behavior very near the axis is in a state of near solid

rotation thus Fo 0, m ... each are nearly proportional to x as shown in Table I

for the case moo(xs) - 194. Obviously the slope there will vary as the swirl

angle is changed. Note that as mo(x s) is increased from 170 to 194, dashed and

solid line respectively In Fig. 5, the slope of the tangential velocity is

slightly reduced near the axis but enhanced as it approaches its maximum value.

Further Increases In the swirl angle continue to steepen the slope just inside

the radius of maximum velocity.

• The tangential velocity Is observed to become negative in the region of the

MWI-
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core where the two cell vortex contains negative vertical velocity and outward

radial velocity and hence gives rise to an advective loss of angular momentum

in the core. In the laboratory simulator the downward motion at the axis in

the two cell vortex appears to descend downward through the baffling near the

top of the vortex generator down to the lower surface. Obviously our model

which is restricted to the convergence region of the vortex cannot duplicate

this behavior. The configuratic : given by the dashed-dot and dotted curves in

Fig. 5, representing predicted rotational flow for a two celled vortex, will

give rise to inertial instability since the gradient of the circulation changes

signs (Rayleigh, 1916 and Synge, 1938).

Another type of instability is revealed in Fig. 6 by the radial profiles

of m', here ml is proportional to the vertical vorticity and the prime denotes

a derivative with respect to x. Even for the smaller boundary value of m0 (xs) =

170 (dashed curve) the gradient of m' changes sign revealing that the flow
0

configuration is barotropically unstable. The slope of the uncoupled or zeroth

order term ml is of the same sign thus the instability portrayed in other curves
00

arises because of the coupling effect of the radial and vertical flows back on

the tangential motion. Note that the maximum value for ml occurs at the axis
00

while in the other curves, representing m for increasing swirl angles, the

maxima are achieved progressively further away from the axis and closer to the

tangential velocity maxima. In fact these maxima occur where the gradient of

the tangential velocity is very large as seen when comparing Figs. 5 and 6.

These results indicate that azimuthally varying three-dimensional disturbances

precluded from the present axisymmetric model will be created under these unstable

conditions, which will even out the negative vorticity and negative rotation in

the core to make them not observable in laboratory simulation. The possibility

that the barotropic instability of the tangential flow profile may lead to
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generation of suction vortex type disturbance in tornadoes as suggested by

Fujita (1972) has been investigated by Staley and Gall (1979). Snow (1978) has

postulated the other alternative, i.e., an inertial instability.

Table I. Values of Fo , Fit, 0, m and their components at two locations near

the axis. All F and m values are to be multiplied by 10-5 .

x r* Foo FO0 F02 FIO F FI  m
001010 o 1 o

0.0001 0.0043 196 -146 -49 -0.6 1.1 -0.9 13736

0.001 0.01359 1976 -1453 -499 -6.4 15.0 -8.6 109742

x m I

0.0001 -165

0.001 -1625
a _ _ _ _ _
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The radial profile of the scaled velocity magnitude (IvV -' 10- 2) at

level z = 0 and its tangential and radial component are represented by the

continuous, the dashed and the dotted curves in Fig. 7 respectively. This

form of presentation is taken since a conversion to actual velocity would

require the knowledge of the viscosity coefficient v. Our model predicts

less than a four-fold increase in the velocity magnitude from the rim to its

maximum value. This appears to agree very well with laboratory simulations

(Church et a]., 1979). Also note that the radial component's contribution

to the velocity magnitude is very small inside the radius of maximum tengen-

tial velocity but dominates near the rim.

For very small swirl angles (not shown), our model, in agreement with

laboratory findings (Snow et al., 1980) gives weakly swirling flows without

a central core. In this case the tangential component increases with radius

right up to the rim.

Radial profiles proportional to the vertical velocity, the tangential

velocity and the vertical vorticity are shown in Fig. 8 through 10, respective-

ly. Three different values of the swirl angle ranging from 17.92 to 23.320

(z* = 0) are used by varying the radial inflow component while keeping the

rotation rate at the rim constant. As the boundary value of F is decreased00

from 300 (dashed curve) to 225 (dotted curve) while mox s) 194 and

F10(xs) = - 0.8 are each held constant, the vertical flow is found to change

from all positive values to the two cell configuration, in agreement with what

happens as the swirl angle is increased. Correspondingly, the tangential

velocity (Fig. 9) shows a decrease in magnitude with an outward expansion of

the radius of the maximum value in accordance with the law of conservation of

angular momentum. The curves in Fig. 10 show a similar pattern to that

discussed earlier for the vertical vorticity.
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Our equations are non-linear So the nature of their solutions might vary

somewhat as the magnitudes of the boundary values are varied but we find that

for-a large range of boundary conditions they still behave similarly. A

weaker flow configuration using Foo (x) = 25 is shown in Fig. 11, but even

in this case it still is possible to have the vertical velocity change from

all positive (dashed line, mo (xs) = 10) to that found in a two-celled vortex

(dotted line, moo(xs) = 30) by changing the tangential velocity at the rim.

No negative tangential velocities are qe.arated for this case where the swirl

angle is varied from 11.31 to 30 .960. Tests using Foo (xs) - 500 also

generate the two-celled vortex with the appropriate choices of m (x ). Note
00 5

that when our results are conveteJ ;ico actual velocities the choice for the

value of viscosity, used in scaling the equation, does not determine the nature

of the flow since the same flow characteristics are found over a broad range

of boundary values.

5. Conclusion

In this study a model of the convergence region of a laboratory vortex

is investigated via a similarity approach. The predicted flow is shown to

vary significantly only near the axis as the swirl angle at the outer rim

is changed. This type of response appears to be exactly similar to that

observed in the laboratory. Of course, not all the details of the flow

found in the laboratory vortex generator can be reproduced here, but the

nature or trend of changes predicted in this study appears to be generally

valid.
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List of Figures

Fig. 1. Radial profiles of F' which is proportional to the vertical

01velocity, and Its components are given. F1o is also displayed.

First subscript denotes the 6z2 expansion while the second Indicates

location in a expansion, Boundary values: F - 250, m = 194

and F - -0.8. Dashed-dot curve is F1 when vertical diffusion is Ignored.
10 0

Fig. 2. Radial profiles of F1 computed using three different boundary
0

values for Flo, I.e. (solid) FO0  -0.8, (dotted)Fo .-L.I and

(dashed) FI0  -0.6. Other boundary values same as in Fig. 1.

100Fig, 1. Radial profiles of F1 computed for four different swirl angles

obtained by varying the tangential velocity. Boundary values used are

(solid) moo = 194, (dashed) moo = 170, (dashed-dot) moo =240 and

(dotted) m0 0  280. Other boundary values same as in Fig. I.

-1/2
Fig. 4. Same as Fig 3 except showing x F 0, which is proportional to

the radial velocity, on a linear scale near the axis.

Fig. 5. Same as Fig. 3 except showing x- /2m which is proportional0

to the tangential velocity.

Fig. 6. Same as Fig. 3 except showing ml which is proportional to the
0

vertical vortlcity.

Fig. 7. Radial profiles (time 10 
2) of (u2+V2) 

1/2 vI (solid), vv l

(dashed) and uv- I(dotted). Boundary values same as used in Fig. 1.

Fig. 8. Radial profiles of F1 for three swirl angles obtained by varying
0

the radial velocity component. Boundary values: (solid) F - 250,
00

(dashed) F. a 300 and (dotted) F - 225. Other boundary values

same as Fig. 1.
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Fig. 9. Same as Fig. 8 except showing x'i/2m 00

Fig. 10. Same as Fig. 8 except showing m'.
0

Fig. 11. Radial profiles of F1 for three swirl angles. Computed using
0

boundary values (solid) m 00  20, (dashed) m = 10 and (dotted)O00

m = 30. Otherwise Fl(x 25 and F (xs) -0.3. The dashed-dot

curve is F' when vertical diffusion is ignored.

2 .1



124I

20

16-

.41

01
-4-

F'
-8 02 F 0

-12

0 .04 .16 .36 .64 1.0 1.4 1.96

Fig.r



125

20

161

12-

8
-,NP0

0 4

2 Is
0V 0 1 3 6 * M 19

Fig. 2



126

20

16

12 if

-

-16 t0 o04 A .36 064 1.0 IM 1.96
Fig. 3 

r

WEr



127

12 '

10-

6-/

4

01

0 0 0

00

0 .04 A0 912 .16 .20 .24 .28
Fig. 4r



128

5 -0

3

0 1,

0 04 66 . 6410 1*4 19

SFg 
5



129

4-,

3m
3- 00

2-

;00,0

-2-

-3*

4*

0 o~~04 1 1 2 2 2

Fi .0



130

10-

8

6r

4-

2-

0 .04 A1 A3 .64 I.0 IM4 1.96

Fig. 7 r



131

24

20 /

16

12

F'8

00

-4

-8 III
:40 .04 .16 .3 .64 1.0 .1.44 1.96

Fig. 8 r



132

ff 0*a

00



133

CNIJ
0)

* 0

*b 
0

00

2.01 IN~



134

cl C ~-rc-F-T-Fo Co

j Sj

Cl (S9

LA.


