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Preface to the final report. - H. L. Kuo, the principal investagator

sz' As stated in our renewal proposal, our tasks during the first year of
this contract are synthesis of shallow and deep convection systems and for-~
4 . mulation of tractable dynamic models of the squall-line type thunderstorms,
i E‘ and the tasks during the second year are to analyze the influences of the

| vertical shear of the mean wind on the organization of these meso-scale

thunderstorms and the integration of the squall-line models formulated, plus
'W% investigations of other subjects related to severe storms. We have by and

large followed this research scheme and the results we obtained are presented

in the four papers included in this final report.

-~’§ It is well known that all squall-line type thunderstorms are prominently
'- twb-dimensional in structure even though new cells often form at the leading
%{ edge and old cells decay at the trailing edge along the line, so that the

variation in the direction parallel to the squall-line is also of some impor-

tance. Further, the velocity in the direction parallel to the squall-line

-
;,E; is often also of importance both for the generation and for the development
|

§> of the storm system and it usually varies significantly both in the direction
g,

; paralle]l to the line and perpendicular to the line, as examplified by the

3

moisture leaden southerly current from the gulf of Mexico for most of the
squall-line type storms in mid-west United States. In order to include
these effects and yet avoid the use of the very complicated and time consuming
three-dimensional model, a multi-two~dimensional mode! has been developed by

. the principal Investigator in which the variable x(x,y,z,t) is approximated

by the sum of its projections x‘(x,z,t) and xz(y.z,t) on the x2- and the yz-

planes., A third component x3(x,y.t) can also be added to the system to
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represent the prominent z - independent part of the flow field such as the
rotational motion in tornadoes. We shall use this model to investigate the
various aspects of the squall-line type storms, especially those aspects
which are related to the development and the structure of these storms and
the formation of new disturbances. This mo&el and the results obtained from
it up to now are presented in paper (1).

One very characteristic and dynamically also very important feature of
the squall-line type thunderstorm is that the updraft and downdraft usually
slope upward in the direction opposite to the vertical shear of the mean

wind. Even though this aspect of the squall-line structure has been
discussed by many dynamic meteorologist, no satisfactdry explanation has
yet been found for it. Here we shall consider it as one of our major goals
of this research. Our analyses on the various factors which influence the
vertical structure of these prominently two-dimensional squall-line type

storms indicate that this arrangement is the result of water loading and

precipitation because, with the upshear slope, the precipitation process relieves the

liquid and solid water loading from the updraft and turns the downward drag
exerted by them to an accelerating force for the downdraft, thereby making

the storm system most efficient energetically whereas with either a vertical

or a downshear slope the downward drag always tends to destroy the updraft.

It is also evident that a sloped updraft-downdraft can be maintained in convec-
tive systems only when a vertically shearing mean wind is present. This
conclusion can also be réached from their influences on the vorticity field.

We consider the verification of this hypothesis as one of our major goals of

our research, and shall treat it both as an integral part of the general squall-

line development problem by the use of our multi-two-dimensional squall-line
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model in work (1) in the future and directly as a separate problem by the

use of the much simpler purely two-dimensional model. This latter approach

is more advantages so far as the upshear slope problem is concerned because

N L N S e
v -
-

it addresses only to this problem and we have adopted it in paper (2). In
this approach, we start from a finite amplitude disturbance with updraft and
downdraft adjacent to each other and let it evolve into a steady state with
the influences of liquid and solid water loading and evaporation included,

and try to find out whether an upshear slope will result. A case study of

a real squall-line type storm is also included in this research both for

Mg A

demonstrating the nearly two~dimensional structure of the real storm and to
illustrate the unstable stratif}cation of the atmosphere under which the

storm develops.

|
: } As in all meso~scale disturbance modellings, we always have to deal
| | with the boundary conditions at the side boundaries. Since no real boundary
! is present,any boundary condition imposed may generate some ficticious
g responses. |t Is thought that the radiative boundary condition which allows
; outward propagating disturbances to go out un-impedded will do least damage
to the results. Paper (3) is concerned with the most advantageous treatment
of the conditions at these open boundaries.

Aside from these works which deal either with the dynamics of the squall-

line type disturbance directly or is concerned with the most advantageous

PRI

.if treatment of the open boundary conditions used in the modeling, Dr. Raymond
and | have also worked on higher order similarity solution for the tornado-
;E like vortex, which represents an extension of my first order similarity

? solution and allows the inclusion of the influence of variation of the

horizontal velocities with height on the vortex structure. The results of

this study is presented in paper ().
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s Multi-Two~Dimensional Model of Squall Line Type Disturbances i
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Abstract

A multi-two dimensional dynamic model has been formulated for the i
simulation of the development of squall line type thunderstorms by

approximating every flow variable by the sum of three components defined

by averaging in y, x and z directions respectivély, so that every compo-
nent taken by itself represents a purely two-dimensional system. This
system of equations is Integrated from an initial state characterized by
the geostrophic basic currents U(y,z) and V{(x,z) to 24 hours under four

different conditions, namely, cases la and 2a are from the dry and wet

1%, versions of the purely two-dimensional model while cases lb and 2b are

e

from the dry and wet versions of the coupled two-dimensional model. It

is found that in general the disturbance evolves to a cold front type,

and the variation of the flow variables in the direction parallel to the

squall line enhances the intensity. Further, the vertical velocities in

-
o = TGN T RN

v the xz-plane usually show a double maxima, one at the 2.5 km level and

another at 7 km, while in the yz-plane the disturbance consists of a

number of cells with a horizontal scale of about 400 km.




S A b Ay romt iR PRSI A i AP I s
R, » . -wm'w- b Hl g 1 e gt 1 S R ».,,_”‘,_ e Rmi . .
‘, 8 L]
. l. Introduction
It is well known that the structure of the squall line is predominantly .

two-dimensional but some of the very important behaviors of the system, such
as the formation of new convection cells at the leading edge and the supply of
moist air to the storm, are also significantly influenced by the variation of

the flow variables in the direction parallel to the squall line. In order to

take these effects into account and yet avoid the use of the very time consuming
completely three-dimensional model, a multi-two dimensional dynamic model has

» been formulated on the basis of the mean flow condition defined by the averages
fq of the flow variables in y, x and z- directions, which are taken as parrallel
and perpendicular to the squall line and in vertical direction, respectively.
That is to say, we replace or approximate the flow variable x by the variable

Xg defined by

XS(X.Y.Z,t) = X‘ (X,Z.t) + XZ(Y’z't) + X3(an0t)' (l)
and take Xps Xp and x3 as the averages of x(x,y,z,t) in y- and x~- and z-directions,
respectively, viz.,

X =X=% X dy, X, = X = 5~ XdX, Xo = X =5 [ x dz (1a-c)
1 D 2 02 A 3 H
1 ] ()

Through this splitting procedure, every dynamic equation is replaced by three
seperate equations containing the two-dimensional variables in the particular

direction plus average values of other quantities.

2, The Governing Equations

On averaging the equations of motion, the heat equation, the water vapor




and cloud liquid water mixing ratio equations and the anelastic continuity

equation in x-, y- and z- directions we then obtain the following set of

equations

om, . du
d j
. R AR T g (v 3%, ) > (2)
om du
d
- IR e AU A )
0 ' o,
¥-e¢.)- 3¢
°j"j'9(# c) 7t Vi) )

where the diffusion terms involving the repeated index | imply summation over

i =1,2,3, Here T = p/po, K= Rlcp, Po ™ po(z) is the undisturbed density of

the air, 6 is potential temperature and eo(z) is its undisturbed value, 6 =

x
v 0+ O-SIq(%)o is the virtual potential temperature, qQ and ¢ are the water vapor

and cloud liquid water mixing ratios, vy and Voi 8re the eddy viscosity and eddy

conduction coefficients in x4 -direction, L is the latent hesat of condensation

and sublimation, 6 is the condensation rate, J = 1,2,3 and

C
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DyXy = Xy ¥ (uy +uy +Tugh Xy Gy ) Xy, +vp (g +Xg), (9a)
I~ PR v ” ' > +x )
DXy = Xy, + (v, + v + v3) X oyt (wy +w)) X, + uy (X, +X3)x ' (9b)
03X~3 = ¥3t + (u3 + 8, +G) X3 * (v3 + 0,0+ 0) )(3y , (9¢)
where X stands for any one of the dependent variables u,v,w,8 and q and the :
subscripts t,x,y,z denote partial differentiations, and v; =V -’T‘l, ué =
u, - 32. For simplicity, we shall limit ourselves in this investigation to
the xz-plane and yz-plane systems only by assuming x3 = 0. According to the
continuity equations (8a) and ( 8b), the velocities u; and w, and v, and w,
can be expressed in terms of the momentum stream functions wl and wz,
respectively, viz.,
Up =78 Vg W T 0 Yy : (10a)
Vo T T 0 Vg Wy =0, Yy (10b)

where a = l/po. For convenience, we shall eliminate the pressure gradient
terms in (2) - (4) by cross-differentiation between (2) and (4) and between

(3) and (4) to obtain the equations for the vorticities n and n, in y- and

x-directions, and write the two sets of prognostic equations as

- p— ~~ - ~ r~ - -
Me =B M)+ up, gy + oUWy, Y Wy (VTR ¢ Fhix ™ Vi Cix

+ \)Df noo. (1)
Vie = B )+ oy - fupm vy By (12)
O = ~)(8)) *+ om0 - vi Ty + v e + t—p(%)K % (13)
Ay, =~ a)) + 0wy - v Gy * v - 8, (1)
Cre = ~UC) +omE) - v T + v BC) + 5, (15)

2z

M2¢ ~ ’%(“2) * V2y V]z*'VZZW‘z "~ Y2y Yix +(u;le)z ¥ g:evzy *fu *ngy

+vpin, , (16)

o A I & PGS BT OT RS’ I OIS 3T - -
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1.

Uyy =~ uy) + O pu, + FY) - up uy w8, uy | (17)
Oy = “L,(6)) + 0,0, - uBy ve@:QZ + ?IE'p' (%)K‘Sz ' (18)
g = “F;(a)) + 0y, - wE +v D a, -5, . (19)
Cop = “Lfcy) + 058, - Uiy * "9: C;*+%, & (20)

where 61 and 62 are the contributions of the two two-dimensional flow fields
to the total condensation rate 0 = gg = 0] + 02, L is the latent heat of conden-

2
sation and sublimation and s nz, oZ and the operatorsﬁZﬂ,gzz,E%zz andEZ& are

given by
L i PO ulz = ao(¢lxx * wlzz * 9% wlz) ’ (21a)
Ny = w2y T V22 T ao(w2yy * lpZzz * 9 wZZ) ’ (21b)
% = po-l%z ’ Ezale = Kxlxx * XIzz’g)zxz = KXZyy * X222° (Zlcfd’e)
P,xg) = ¥y Laxy), = ¥ ,lex), + T x, Y X, (21f)
&5 (xg) = by (agxp), = Yo (o), + vy Xpy * vy Xp, (2ig)

Here the factor k in@: and@i is introduced to represent the difference in
the values of the eddy diffusion and eddy conduction coefficients in horizonta!
and vertical directions.

The condensation rates 6] and 62 in (13) - (20) are calculated by the
scheme developed by Kuo and Qian ( 1981) which is to compute the temperature
and humidity T' and q' at time t tAt from the above mentioned equations with
Gl and 62 deleted, and then determine the amount of condensation during the time

fromt to t rAt when q', = qi(trAt)+q;t*At) is higher than k times the saturation

S
mixing ratio qs(ﬁé) where Té = Ti(trAt)+T§tht) and k is taken as slightly less
than 1 to take into account the situation where condensation takes place only

in a fraction of the area represented by the discrete grid point. Our formula

used for calculating GJ is
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ql - kq (1) Aq,

8,0t = (s 2‘(15] = ( 22)
L zqs“'-)] 5
. chvTé )

provided the first factor is positive. When this factor is negative, GJ. is
set to zero. When condensation takes place, the final temperature Tj(t+At) is given by
T&(tht) + LtSjAt/Cp and the mixing ratio Is given by qs(Tj)’ while the liquid
water mixing ratio C is calculated by (15) and( 20). The detailed scheme of
C-calculation is given in Raymond and Kuo (t98!).
3. The Initial State

In this preliminary study we have taken the initial perturbation vorticity
fields as zero and assigned the following horizontal velocity fields:

u) (x,2) = 2 + 3:0 tanh (z/z]) : (23a)

vl(x,z) = - %i—ovmgl - tanh[B(x - az - xo)]

+v e | -RE [z - 2 )%+ vix - x)?1] 5 (23b)

- |20 & - 2))% + 1,0y - vg)?1] (242)
up(y,2) = upexp -Ryly, (2 - 2,)% + v (y -y )%}y a
v(y,z) = u_ exp :-R.z(z - zo)zg, (24b)

where
B= (48m) ', a=-100, R, =2,000/Zn , R, = 10,000/%m ,

Ry = 2000/Y2m , 2z, = 40OOm , z, = 5000m , 2z, = 9,000m

x, = 480 km , yo = 14b0 km , v, =0.03, Y, =0.02, y;=8.0,

- -1
vm-ISmsl, um-ZSms .

The eddy diffusion coefficients are currently taken as Ve " 5 m2 s-l,
v = 3.5 m2 S-I and the factor K is taken as 1000 for the dry case and 400
for the wet case. The density stratification factor o, is taken as equal to

O.SSxIO-" m-'. Here only a small vertical shear is assigned to Y because we

wanted to compare the results obtained from the purely two-dimensional system

e RN T AR T e - <y

& i oo
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with x, = 0 with the results obtained by Olanskl and Ross (1977) which were

based on a small shear in u but a relatively large vertical shear has been

included in u, in the second system. This apparent inconsistency will be

removed in our further investigations.

T o A sy e o g

. The initial temperature fields 9‘(x,z) and 64,9,2) are taken as in thermal
wind balance with the initial velocity fields vy and u, and hence they are

obtained from the following relations:

v
R il SR (252)
26 du
1 2 2
Y -9 (25b)

The initial humidity is expressed in terms of the relative humid ty v
which is assumed to increaseAlinearly from its surface value of 0.8 to its
maximum value of 0.90 at the 2 km level and then decreases linearly with

increasing height above this level according to the following formula:

Y(2 =0.8 +0.05 z for 0 <z<2.0 km,
= 0.983333 -~ 0.04166 z for 2km<z, (26)
where z is in km. The humidity field is taken as unaltered during the first

6 hours and the mixing ratio equations (14), (15) and (19) and (20) are acti-

e i

vated at t = 6 hours.

4, The Boundary Conditions

ha. The bottom boundary conditions -~ The conditions we impose at the surface

level z = 0 are

wl =0, u]z =0, © =0, q‘z =0; (27a-d)

12z

. Y =0, Vo, =0, 8y, 0, 0. (28a-d)

%Rz *
The first two conditions of these sets are equivalent to the vanishing of the

vorticities ub and ”2 at the surface. The conditions ﬂ)r\!I and u, are that

they satisfy the thermal wind relations ( 25a)and (25b; at the surface.
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X
} Lb. Boundary Conditions At the Top z = H
_‘. At the top we assume that both 4’1- njz"ejz’ Vi @nd u,  retain their
4 initial values while qj(H) is obtained from |inear extrapolation from below,
F | and sz is taken as zero. .
Le, The Side Boundary Conditions
The side boundaries x = 0 and x = Q} y =0 and y = D,of the system are ¥
: taken as open boundaries and the conditions we impose on the flow variables at -
: i
’: these boundaries are the following: |
| an, on, ony
‘. wtrtanw thewm ot 0 (292) :
. t
X, %
¥ F;(—" o, Xl = VI’ e]! q]) C]; (29b) g
on an on ;
2 2 2 3
 tlaw Yl ®mC0 s (30a) 4
i
axz
3;_. Y ’ XZ = uz’ 92' q2’ C2 . (30b)
3
i
Here CI‘ and C12 are taken as the x-component and the z-component of the phase §
velocity 3‘ of the vorticity field n while CZI and sz are the y-component and g
. the z-component of the phase velocity Eé of Ny» respectively. Further, we assume k
that Kl and 3é are proportional to Vh‘ and Vnz, respectively, so that we have
n n n n
- Jt ix -t 12z .
Cl‘ -T—_Z- » CIZ '—-'__2 . 2 » (3Ia:b)
Mx + Mz Mx ¥ M2 .
n,, n N, N
¢ - - Zt ZZ , c - - Zt 22 ) (32..b)
2] N2+ n 22 nZ +n2 v
2y 22 2y 22
{l , The values of these phase velocity components at the boundaries are obtained
i from extrapolations from the interior and the generalized multi-dimensional radiation

s
.! . conditions (29a) and (30a) are applied only when C,y and Cy, are in the outward
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directions, whereas they are set to zero when the phase velocities are inward.
The advantages of this multi-dimensional radiation condition and the ways of
its implementation have been demonstrated and described by the authors In
another paper (Raymond and Kuo, 1981).
5. Scheme of Integration
The prognostic equatiﬁns (11) - (20) are integrated at discrete grid points
and time defined by x; = iAx, zj = jAz, Y = kdy, t = nAt, with i, j, k ranging
from 1 to I, J, K, respectively, Ax = 20 km, Az = 500m, Ay = 40 km, and with I
and K both taken as equal to 73 and K = 29 in the first experiment and I = K
=99, J = 37 in the second experiment in order to reduce the errors created by
the side and top boundaries. In our approach, the space variations are expressed
by finite element representation based on bilinear basis functions while the time
integration is by centered difference leap-frog method, with At taken as 100 sec.
The stream functions wl and wz are obtained by solving the poisson equa-
tions (21a) and (21b) together with the boundary conditions for these variables.
However, since the mesoscale disturbances under consideration are quasi-hydro-
static in nature and since our use of the large horizontal grid sizes Ax>>Az
and Ay>>Az is based on this property, we can take the non-hydrostatic terms

Yy x 2Nd way of (21a) and (21b) as small corrections and represent b, and ¥,

by series expansions in powers of the small parameter € = (Az/Ax)z, where

Az/Bx can be taken as representative of the ratio between the vertical and the
horizontal scales of variation of the disturbance. This.scheme is equivalent

to the one adopted by Orlanski (1981), which is to represent wl by the following

series M .
j=o

with the different components satisfying the following equations

o
[N

b

e T




- (33) converges rapidly and taking m= 2 is sufficient for our purposes.

(1) (1) ‘ g
wozz to, woz = P o : _ (34a)
(1) (1) (V)

(34b) y

(1) ;
Here wo represents the hydrostatic component of w‘ while the wj's » 321, .

wjzz 9, wjz - wj-lxx, AL

are the non-hydrostatic contributions. In these forms, the various components

(1)

V. are solved with respect to z only. The associated boundary conditions are f

() :

wj =0 at z=o0 for all j, (35a)
(m () | | i
Y =¥ = initial value of ¥, y; =0, j>1atz=H (35p)

Since € Is rather small for the disturbances under consideration, the series

At the lateral boundaries, say at x(=)o and x = B, the right hand side
1 _
of (34b) must be approximated, or with wj evaluated from a given relation such
()

as w = 0. This procedure is utilized in the wl and wz calculations.

6. Some Preliminary Results

The system of equations given above have been integrated under

four different conditions In order to investigate the influences

of the variation of the flow variables in y-direction on the squall line type

disturbance, namely, cases la and 2a are from the dry and wet versions of the

purely two-dimensional (x2 = 0) model while cases Ib and 2b are from the dry and

wet versions of the coupled multi two-dimensional model. Here we shall present

some of these preliminary results and discuss them briefiy.

Case la and \b. Each of these two dry cases hai been integrated to 24 hours from

the initial conditions given by (23a) - (24b) and the thermal wind relations

(25a,b) and the vertical velocity wl(x.z) given by these two different versions

at t = 15 hr. are represented in Figures | and 2, respectively. From Fig. | we

see that the 2 units ( = 0.15 cm s-') upward velocity given by the purely two-

dimensional xz-plane model reaches to just the z = 5.3 km level and is centered

near the x = 700 km mark on the horizontal scale, and the maximum upward velocity
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In the xz-plane given by the coupled multi-two-dimensional model! at t = 15 hr. %

reaches the z = 8.67 km level, and this w) has two maxima instead of one,

namely, one at the 2.5 km level with wmaxl = 0.49 cm s-l and another one at the

7.0 km level, with Woax2 - 0.38 cm s~ '. These results show that the variations

x2

. of the flow variables in y-direction contributes significantly to the flow in
the xz-plane even under dry conditions in addition to their influences on the
flows In the yz-plane, and we expect that this influence will become larger
when condensation process is included.
Case 2a. This moist purely two-dimensional case has been integrated for 45
hours and the results show that the vertical motion Wy develops rapidly just
after t = 6 hr. and the maximum upward velocity is reached at t = 16 hr., while
the intensity of the disturbance decreases gradually afterward. The distribu-
tions of the vertical velocity W and the northward velocity i given by this
model at t = 15 hr. in the xz-plane are illustrated in figures 3 and 4, respec~
tively. From fig. 3 we see that in this moist case with condensation the

maximum vertical velocity reached at t = 15 hr is 9.25 cm s | which is about

19.2 times that of the dry case la and it also occurs at the 3 km level. From

fig. 4 we see that the positive and negative northward veloéities are separated
by a surface which slopes upward toward west and therefore the disturbance is
of the cold front type, and the northward velocity reaches 22.1 m s_' at the

5 km Jevel. Iere the vertical circulation in the xz~plane dissipates rapidly
after 18 hours but the Vi field dissipates more slowly as it is nearly in
thermal wind balance with the temperature distribution 9‘(x,z).

. Case 2b. This moist case has been integrated from the coupled multi-two-dimen-

sional model up to 24 hours and the results show that for this case the vertical
motion W in the xz-plane did not start to increase until t = 12 hr. but it

continued to increase thereafter for a much longer time until t = 27 hr., and

its maximum value at t = 24 hr. is 27.5 cm s ' which is about 3 times
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the 9.25 ¢cm s_l value in fig.4. The maximum value of Vi given by this

1 1

model at t = 24 hr. is 25.2 m s ' which is only slightly higher than the 22.1 ms~

value given by 2a. The distributions of w

i and v, in the xz-plane for this
case at t = 15 hr. and t = 24 hr. are illustrated in Figs. 5 and 6 and Figs.

7 and 8, respectively. From fig. 5 we also see that w) has two maxima in

the vertical, one at the 2.5 km level and the other at the 7 km level. On
comparing fig. 6 with fig. 8 we see that the cold front has moved about 100 km
in 9 hours and the southerly jet has also widened somewhat during this time.
In addition, we also present the stream function wz(y,z) for t = 24 hr. in
fig. 9 to illustrate the pattern of the meridional circulation. This figure ;;
shows that this flow is composed of a number of cells on the forward northern

edge, with a horizontal scale of about 400 km, and the maximum value of the

vertical velocity Wy of this circulation is 9.32 cm s ', which is about 1/3

Py o
(WY B

of w in fig. 8. These results show that the variations of the variables

1max
in y-direction is very iﬁportant for the development of the vertical circula-
tions in both the xz-plane and in the yz-plane for the squall-line type
disturbance. The cellular structure of the circulation in the yz-plane is
apparently the result of the instability of the vertical shear of the u, profile
with regard to overturning or symmetric perturbation in the yz-plane, and the

location of these cells indicates that new cells are being generated on the

forward edge of the squall-line,

e o
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Legend of Figures

‘} Fig. 1. wl distribution given by la at t = 15 hr.
Fig. 2. Same as Fig. | but given by lb at t = 15 hr,

Fig. 3. Same as Fig. 1 but given by 2a at t = 15 hr.

Fig.

3

Fig. 4. U‘ distribution given by 2a at t = 51 hr.
5. wl distribution given by 2b at t = 15 hr.
6

Fig. 6. Vl distribution given by 2b at t = 15 hr.

b Ml oo 135

. -1
cortour interval bms .

Fig. 7. W, :listribution given by 2b at t = 24 hr.

2 i
; contour interval Awl = 10cms l.

Fig. 8. U, distribution given by 2b at t = 24 hr.

contour interval Au; = 5m st

Fig. 9. Stream function ¥, in yz-plane given by 2b at t = 24 hr.
0S m2 s-I

contour interval = 7.0 x |
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The Dynamical Structure of Squall-Line

Type Thunderstorms

Abstract

The vertical structure of the squall-line type thunderstorm is
investigated through the use of a purely two-dimensional model and
the flow field is taken as occurring in an unstably stratified atmosphere
with a vertically shearing mean wind. A case study of a real squall-line
appears to justify this simple approach. The mechanism which leads to
the most characteristic upshear slope of these storms is attributed
to liquid and solid water loading and attempts are made in this work to
verify this Hypothesis by integrating the dynamic model from a given
initial state to see whether it will evolve to such an arrangement,
and also by analysis of the influence of a reasonably chosen but
fixed liquid water distribution on the vorticity field in the
vicinity of the updraft-downdraft interface. The preliminary results

indicate that the proposed mechanism is working.

1t AR L W AT oS -

31.

e




v A D 3 et PRI 22

T e e e

32.

1. Introduction

NS ———

This work constitutes a part of our effort to study the dynamics of the
squalli-line type thunderstorm and it deals only with the usually observed up-
shear slope of this type of storms. The main thrust of this research is to
3 determine the cause of the upshear slope of the updraft-downdraft couplet in
the squall-line type thunderstorms under the influence of the vertically
] shearing mean flow, and especially to find out whether this arrangement can be

attributed to the downward drag or load of the liquid and solid water and

d ' evaporative cooling from the falling precipitation, which, according to the

;‘% reasoning of the senior author, indicates that the upshear arrangement is
")

most efficient energetically for the disturbance in the presence of precipi-
tation because it relieves the loading from the updraft and turns the precipi-
tation drag into an accelerating force for the downdraft, whereas with either
vertical or downwind slope these forces tend to destroy the updraft. Further,
it is evident a non-vertical slope can not be maintained without a vertically
shearing mean wind in the convective storm.

in order to illustrate the nature of the actual squall-line type storms,
a brief case study of a squall-line which moved through Chicago area recently 1
is presented in section 2. This is followed by a presentation of the model
and the numerical method used to solve it in sections 3 and 4, while section 5

discusses the results that have been obtained from the model. The influence

Sl o

of the liquid water content on the slope is discussed further in section 6

on the basis of the vorticity n = aw/Bx - %§'. Plans for further improvement

.
oy

of the results and future works are discussed briefly in section 7, while a few

concluding remarks are added in section 8. s

- i
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2. Squall line case study

In the late evening of 6 August 1981 a squall line developed and moved
across the area of southern Wisconsin and northern (l1linois. Although no
severe weather was reported in conjunction with this squall line, it did ]
produce high winds and heavy rain. The line formed along a trough line which

ran southwest from a surface low in northern Wisconsin to northern Mossouri. ]

The 0000 GMT 7 August 1981 souding from Peoria, IL, is shown in figure 1. ; i
Note that the atmosphere is nearly dry adiabatic below 900 mb and very dry |
above 900 mb except for a few thin moist layers. This sounding shows the
atmosphere to be "ripe' for convection, and with a wind shear of about 40/m sec
through the depth of the troposphere, we would expect the convection to be !
organized. ;;
Figure 2 shows the Marsailles, IL radar PPl display for four times during
the squall line at approximately 1 h 10 m intervals, starting at 0037 GMT,
7 August 1981. At the earliest time shown, there is a line of broken indivi-
dual cells of moderate intensity. As the cells increased in intensity, they
became elongated and began merging into an unbroken line. By 0148 GMT, portion
A of the line is over 25 miles long but less than 10 miles wide, and showed a
very uniform reflectivity along its length. The storm reached its peak
intensity at approximately 0256 GMT. At this time the line was very long and
uniform. The line remained like this for about 40 minutes before breaking up
into the weaker cells shown in the last picture at 0405 GMT. In all, portion
A of this squall line was visible as long, thin, coherent line of at least
moderate intensity for over 2 hours.

Figure 3 shows the hodograph plotted from the wind data of the 0000 GMT

Peorfa sounding. The speed and direction of portion A, and the orientation
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of the squall line where determined from the radar pictures and are also shown
on this diagram. As can be seen, the winds were somewhat complicated but

show a generally unidirectioﬁal shear. That is, there is no systematic
veering or backing of the winds with height. One also sees that the cells

in the squall line move in a direction of approximately the mean wind.

It is common practice in studying squall lines to take a two-dimensional
cross-section perpendicular to the squall line. Thfs Y'slab symmetry' approach
assumes that the line is uniform along its length so any motion into or out
of this plane is not important. In this case, however, the line is oriented l
at an angle of nearly 45° to the plane of the mean wind. Thus, a cross-section 7
taken perpendicular to the line would have winds into and out of the plane of
the same magnitude as the winds in the plane. Even though this case shows a
striking uniformity along the squall line, it is not totally uniform and so
this slab symmetry approach does not seem appropriate.

A schematic representation of what appears to be happening in this case
is shown in figure 4. in the squall line the updraft and downdraft branches
of the circulation are confined to the plane of the mean wind, which is
paralle]l to the direction of motion. The line, however, is oriented at an 1
angle to this plane to form a sort of ''snowplow'' effect. With this view in
mind, it is clear that the plane parallel to the direction of motion is the
physically relevant plane of cross-section. We shall use the term two-dimensional
in this sense, that is, the circulation is approximately confined in a plane,
and therefore refrain from using the term slab symmetry since it does not

necessarily imply the same meaning.

Taking the cross-section parallel to the direction of cell motion and :
defining a new coordinate system with x' parallel to the plane and y' per-

pendicular to it, one can decompose the winds into the components u' and v'

as in figure 5. This shows the v' component to be nearly zero in the mean
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and, therefore, probably insignificant to the organization of the storm. The
u' component shows the storm to be imbedded in an environmental shear of about
3.3x1073 sec”.

Ludlum (1980) defines a Richardson number for storm circulations as

=Ri = ——= (2.1)

where CAPE is the Convective Available Potential Energy and can be expressed
as the positive area of a lifted parcel on a skew-T log-P thermodynamic dia-
gram. The quantity AU is the algebraic difference of the horizontal windspeed
of the parcel on outflow and inflow, or more simply, the difference between
the winds at the storm top and the surface. Using the Peoria sounding, the
Richardson number for the parcel 1ifted from the surface is -Ri = 1.98. |If } ;
the surface to 950 mb average values of temperature and moisture are used we “
obtain -Ri = 1.45. Ludlum (1980) argues that - Ri < 5 implies organized super-
cell type convection since then the energy due to shear is comparable to the
energy released by latent heat.

The above case exhibits the features which are indicative of the squall-
line type supercell which Is being investigated in this research effort. It
is quasi-steady, maintaining itself with little change for a period of 2 hours.
The circulation is two-dimensional in the sense that the environmental wind is
basically confined to a plane parallel to the direction of rmotion. And, the
circulation is embedded in an atmosphere of moderate to strong shear, yielding
a small Richardson number for the storm.

3. Equations and boundary conditions

Instead of treating it as an initial value problem, here we shall seek the

time dependent model and allowing an initial overturning circulation to converge

towards a steady state. This is an established method in this type of problem

e e S

(Roache, 1976). There is also no boundary between the updraft and

the down-draft. If a free-slip boundary was present between
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the updraft and downdraft, it would represent a sheet of infinite vorticity

and infinite temperature gradient. Clearly this is not the case in a real

thunderstorm and the generation of vorticity at this interface by the finite

T m wwp

temperature gradient is a major dynamical feature of the storm. As well as
leading to a more realistic model, the removal of the interface simplifies
the numerical treatment of the problem.

The basic form of the equations is the same as that given in Seitter

(1980) but with density stratification included. They are

%—Itl+ U%2+w-glz]- + 2w (-N + u z)‘ ge-wu-g—z=-gp.:. %H"" -g% (3.1) ‘
z 5
i
T , a1 (z) '
: +u +w +wl G (3.2)
- ot ox T
MeuHBewda-g (3.3)
4
: 3H+ %’-‘-+w§!+vr-wn‘= PG (3.4)
3
where E
u, w = horizontal and vertical velocities
n = momentum vorticity
| T = temperature

q = water vapor mixing ratio

M

liquid water content
and
P =0, exp(-z/Ho) = density . t
Tv = (1 +0.61q)T = virtual temperature

I' = dry adlabatic lapse rate

L = latent heat of condensation
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cp = specific heat at constant pressure for dry air
B(z) = exp (ZIHO-R/cp)

R = gas constant for dry air

Ho = denslty scale helght
G = liquid water generation term (condensation rate for q)
V = terminal velocity of raindrops

The velocities, u and w, and the vorticity, n, can be written in terms

of a streamfunction

] 9
ou = ¥ ow = - 2% (3.5a)
n= vy (3.5b)
2 _ 92 32
where V" = — + —— . The liquid water generation term is given by
ax? 3z?
‘ 0 9<q, M=0
6= ! -€ q<q, M>0 (3.6)
| = s :
1w zs qQ=q,
where E is the evaporation rate, a constant, and q is the saturation mixing
ratio, determined from the Clausius-Clapeyron equation. The terminal fall-
speed of raindrops is taken as a constant with a value of 7 m/sec (Seitter,
1980). i

A schematic of the model circulation is shown in figure 6. The inflow

characteristics of §y, T, q, and M are specified for both the updraft inflow, b

0<z< Z, and the downdraft inflow, < z<H. A conditiononn is also

2.4

needed and is taken as %2 = 0, On outflow all quantities must satisfy

B0 A=y, T, q M, andn (3.7)

The value of § is fixed on the top and bottom boundary with wtop = wbottom =

wb. The value of wb is determined such that y = 0 at the steering level z = z,
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for a given inflow shear, The values of T and q are fixed on the top and bottom

except when precipitation is present. Then if precipitation has reached the 9

lower boundary, a method similar to Schlesinger (1973) will be employed to
allow the boundary to cool and become saturated in response to the presence of

rainwater. At the top boundary no liquid water can be present so M = 0

there, on the bottom boundary we set %;“ 0 to allow rainwater to ''fall through“' j
the surface.
With the advective terms written in the flux form no boundary value for i
the vorticity need be specified on the horizontal boundaries since w = 0 on E
them. However, if the Arakawa Jacobian is used or if a diffusion term of the
form W?n is added to (3.1), a value of n on the boundary is needed. Since
this model is intended to simulate a nearly inviscid atmosphere, a free-slip
condition is appropriate. Roache (1976) has stated that the proper free-slip
condition on the vorticity is %2 = 0 for a finite difference formulation.
This form for the'boundary condition gives a less viscous effect of the boun-
daries than the normally used n = 0 condition, even though the latter is

analytically correct.

k., Numerical Method

Equations (3.1) through (3.4) have been nondimensionalized and written in
finite difference form, with the velocities u and w written in terms of the
streamfunction using (3.5a). All space derivatives were written in centered
difference form. Care must be taken to write products of quatities in a
finite difference form which is consistent with the form of the advective terms.
These four equations and (3.5b) form a complete set inn, T, q, M and ¢. .The
method of solution consists of starting with an initial field for each of the
variables and integrating (3.1) through (3.4) forward in time by an appropriate
method. Equation (3.5b) is solved by successive-over-relaxation (SOR) for the

new streamfunction field after each time step. This process is continued for
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the desired time or until a steady state is reached.

Three methods of time Integration have been used in the development and
testing of this model. A forward-in-time centered-in-space method was used
initially as a simple method to test the model. This method was soon abandoned,
however, since it required a large diffusion term for linear stability. The
inviscid equations were also Integrated using the two-step Lax-Wendroff method
(Richtmeyer, 1962). Although this method has been used with success in
meteorological problems (Houghten, et. al., 1966), Lilly (1965) warns that

it can lead to cevere inaccuracies in certain types of subsonic fluid flow

problems. This seemed to be the case with the current probiem, as it was
not possible to eliminate small, but accumulating, errors which are inherent
in the Lax-Wendroff method and which eventually destroyed the accuracy of
the integration. This method was ultimately abandoned, although some impor-
tant results were obtained while it was being used (see Section 6). The

very accurate method of Adams and Bashforth (Lilly, 1965) has been used with

success both in integrating the truly inviscid equations and in solving the
equations with an added viscosity term.
The Adams-Bashforth method can be written by considering the equation

for some quantity A,

A _

where f is a function of the other variables and their derivatives. We let

f(") be the value of f evaluated by using the values of the variables at time

t = nAt. Then the value of A at time t = (n + 1) At is given by
A1) _ () At[% s L f(n-n]

This method is slightly amplifying and, therefore, not stable in the strict

sense of the word. The amplification factor is small, however, and does not
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pose a problem as long as the integration is not extended for too long.
The method can be stabilized by adding a viscous term of the form

Vw2A. This is included by writing (4.2) as (Roache, 1976)

alr+l) () g At[% gn) . %-f(“'])] + Atvv2d) (4.3)
Note that this is not equivalent to including a viscous term in f.

Since the Adams-Bashforth method can be used successfully on the fully
inviscid equations, the viscosity which is added can be made whatever size

# is appropriate for the problem. This is preferable to the Lax-Wendroff method

k" that has a built in numerical diffusion which selectively damps small wave-

lengths.
The current version of the model has 21 grid points in the horizontal
and 11 in the vertical. The grid spacing is even and taken as | km in both

the horizontal and vertical, giving a domain of 20 km by 10 km. The choice

X
|
%

|

of a 10 km depth for the domain was somewhat arbitrary. Excluding the over-
;’é shooting top of the updraft, observed thunderstorm circulations extend from
é g the surface to a height of 10 km to 14 km (Chisholm 1973, Ludlum, 1980).

The depth of the model makes very little difference when the density is held
i constant, but in simulations in which the variation of density with height is
; | included, the depth of the model may have to be adjusted.

. 5. Numerical results

As discussed in MOnsrieff (1978), the case of a neutrally stratified,
! incompressible atmosphere with M = 0 is quite simple. In this case the vorticity

equation reduces to

d

E = (0 (S-l)

So, vorticity is conserved along a streamline. |I|f we consider an environment

‘ of linear shear, then on inflow the vorticity is given by

, n= %f-- constant (5.2)
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since %g-- 0 on inflow. Thus, the vorticity will be constant throughout the
circulation, and the steering level height will be at Zyw = Zag = H/2.
Moncrieff shows that in this case the Interface between the updraft and down-
draft will be vertical. This situation ls shown in figure 7.

Figure 7 was determined by performing a relaxation on a vorticity field
which had constant vorticity everywhere except on the dividing streamline.
On the dividing stream line the vorticity was adjusted to yield a streamfunc-
tion value equal to that on the upper and lower boundaries. The nondimensional

% streamfunction values marked on the figure correspond to a linear shear

;" 2 x 1073 sec_].

The inviscid, incompressible form of the vorticity equation was integrated
forward in time as a test of the numerical model for this case. The flux form
of finite difference was used for the advective derivatives and the Adams-Bash-
forth method was used for the time integration. The vorticity field of figure 7
was used as the initial condition. After 20 minutes of simulated time the change
in this field was less than the initial errors in it. This demonstrates that

{
i
{ the flux form for the advective derivatives was able to accurately maintain

this known solution to the equations, and that the slight amplification inherent

' f in the Adams-Bashforth method was too small to pose a problem.

e i

This is the only case in which the Adams-Bashforth method was used without

’ diffusion term as described in the preceding section. Without diffusion of
some sort, all disturbances must be advected out of the domain and very small :
temperature variations can lead to Iafge variations in the vorticity.

b. Dry, convectively unstable case

SRR S e o

In order to further test the model by reproducing Moncrieff's results of

1 e N e o g

downshear orientation, the equations were reduced to the case of a dry, con-

vectively unstable, incompressible atmosphere. Then the equations are

=t g e
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_82+ °r32+w—§2= - 8P ‘; Tal (5.3)
aT oT oT

Ftus twaztwl=0 (5.4)

Since I' is taken as a constant equal to 6.5 °C/Km, a constant environmental
lapse rate which is greater than this yields a convectively unstable atmos-
phere and exactly models the equations used by Moncrieff (1978).
Moncrieff defines a type of Richardson number given by
. capE
Lu 2

o]

R

where u, is the horizontal velocity at the surface in the updraft inflow.
This is related to, but larger in absolute value than, the Richardson number
defined by (2.1). Figures 8(a) and 8(b) show the results of Moncrieff's
calculations for R = % using his analytical and numerical models, respectively.
The method of solution for the analytical resglt has been described previously
(Seitter, 1980). The numerical solution was found using a method similar to
the current model except thaf a staggered grid Lax-Wendroff integration scheme
was used.

The current model was run with an unstable lapse rate which gave R = J,
The initial condition was given by the circulation shown in figure 7 and an
initially adiabatic atmosphere. Diffusion was included in the model with the
value of the eddy vis.osity set at 450 mzlsec. While this is about an order of
magnitude larger than the value in cumulus clouds (Tag, 1979), it does not seem
to be too large in light of the measurements of kinetic energy dissapation in
thunderstorms (Frisch and Strauch, 1975), and is much smaller than the numeri-
cal diffusion included in many previous models (Schlesinger, 1973). It was‘
found necessary to include a diffusion term because without it the generation

of negative vorticity at the updraft-downdraft interface by the temperature

(5.5)
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gradient there formed a counterciculation at the interface.

The results of this model after 21 minutes simulated time are shown in
figure 9. There are some distinct differences between this result and those
of Moncrieff. The most notable difference being that the current result

- shows the circulation sloping less steeply downshear. Also, the steering

level heights for both the updraft and downdraft are located at z = H/2. It

is felt that both of these differences are a result of the inclusion of diffu-
sion in the model. The diffusion of temperature weakened the gradients and

hence the production of vorticity, and the diffusion of vorticity "slowed down'

the flow. It is felt that this circulation represents the case in which the
3 instability is great enough to overcome the viscosity of the fluid but not

great enough to accelerate the flow appreciably and thus raise the steering

e ok v R

fevel height LI Thus, the modeled flow represents a flow which would L

correspond more directly to a smaller value of R and, hence, would slope down- ,;

shear less steeply (Moncrieff, 1978). |
Although the Lax-Wendroff method has a built in diffusion, it is felt that

this did not alter Moncrieff's results in the way it did in the current model

? ’ because the diffusion in the Lax-Wendroff method is highly selective toward

i i short wavelengths. This allows the method to prohibit the development of a

| counter-circulation at the interface while allowing the rest of the flow to

remain virtually inviscid. This kind of selective damping can be incorporated

into the present model for a quantity A by replacing W2A with KIVZAIVZA

(Cullen, 1976). It is felt at this time, however, that the simpler diffusion

term is preferable.

The shape of the interface in the results of the current model more closely

o mgm A W ety

resembles the shape of Moncrieff's analytical result (figure 8(a)) than does

Moncrieff's numerical result (figure 8(b)). This is felt to be significant and

is a favorable indication as to the accuracy of the current model.
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Although no details are given in either his paper (Moncrieff, 1978) or

his thesis (Moncrieff, 1970), it is assumed that Moncrieff must have used a
much smaller grid spacing than the current model to overcome the problems
associated with the Lax-Wendroff method. The author has found that a very small
grid spacing does improve the Lax-Wendroff method, but the cost of increasing
the number of grid points substantially, as well as the inherent high cost of
this method (over twice as time consuming per time step as the Adams-Bashforth

method), make the Adams-Bashforth method more desirable.

6. The mechanism for upshear slope in the light of the vorticity n

It has long been recognized that the upshear slope of the updraft in thun-
derstorms is beneficial to their maintenance from a thermodynamic point of view.
However, no adequate theory has been proposed which explains how the updraft is
able to oppose the shear in which it is imbedded. The framework of the present
model allows a dynamical theory for the upshear slope based on vorticity argu-

ments.

Consider the incompressible vorticity equation

an an an _ . ] _ 3lv M
YN T T % Y 9% (6.1)

vo

Ncw, consider a flow pattern as shown in figure 10(a), with the updraft-downdraft
int:rface vertical. Let the updraft have a positive temperature excess and the
downdraft have a negative temperature excess, and let there be precipitation in
the updraft. 1In figure 10(a), the precipitation is shown in the lowest half of
the updraft because it would tend to be heaviest there and thus have the most
dynamical effect in this region. As can be seen from (6.1), it is the horizon-

tal derivatives of the temperature and liquid water which are important. The

circulation is driven by the temperature distribution, which produces negative
vorticity generation 6%2 < 0) along the interface and hence maintains the strong

shear across the interface. Positive vorticity is generated (g% > 0) in both
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3 the updraft and downdraft branches away from the interface, and this also acts
to maintain the circulation. Now, consider the effect of the liquid water. On
the downdraft side of the precipitation column (gg-> 0), positive vorticity will
be generated, and on the updraft side of the column (%2-< 0), negative vorticity

. will be generated. There are two ways that the updraft branch can respond to

this negative vorticity generation: 1) the shear can be reduced to make the

shear vorticity less positive; 2) the streamlines can curve less sharply as

they enter the updraft to reduce the curvature vorticity. Both of these

responses probably take place, and both tend to cause the streamlines to enter

the updraft at a more upshear, rather than vertical, angle. A similar argument

leads to the streamlines in the lower downdraft becoming more sharply curved as

they exit the downdraft, which is consistent with the entire circulation sloping
QL upshear. i
1 Consider now the situation shown in figure 10(b), which more closely resem-
bles the flow in a real thunderstorm. This diagram is very similar to the g
schematic given by Ludlium (1963). The flow is still driven by the positive and

negative temperature excesses. (Now, the downdraft is shown to have a negative

temperature excess only in the region where rain water can cause evaporation

cooling, as Is the case in real storms.) The streamlines show less curvature i

2 ——manggan

in the updraft inflow where negative vorticity is being generated and more
curvature in the downdraft outflow where positive vorticity is being generated.
This vorticity generation by the liquid water term does not operate unchecked,
of course, it opposes the effects of the environmental shear which tends to tilt
the circulation downshear until a balance is established.

A simple means of testing this hypothesis is to integrate (6.1) with fixed
distributions of temperature and liquid water. This was done while the model
was in the Lax-Wendroff phase of development.

Figure 11 shows the results of the integration after 14 minutes of simulated

time, starting with an initially vertical interface. In this run, a temperature ?




excess of :RZS °C was fixed in the updraft and downdraft regions respectively

and no liquid water was present. The vertical shear on inflow was 2 x 10-3

sec-‘. This should, in a simple way, model the results of Moncrieff (which

were modeled more accurately in the previous section). Consistent with Moncrieff's

results, the flow is oriented downshear. The flow is not steady at this time
but is intensifying and beginning to form a closed counter circulation between
the updraft and the downdraft (note the closure of the 96 streamline). The
steering level heights Zy and 244 reflect the fact that the flow is being
accelerated so the depth of the inflow must be greater than the depth of the
outflow.

Using the same temperature distribution and the same initial circulation,

3 was added to the lower half of the

a region of liquid water equalling 2g m
updraft. Figure 12 shows the results of this run after the same period of
time. Now, the vorticity generation due to the precipitation has had a marked
effect on the flow. While the circulation does not have a truly upshear orien-
tation, the trend is definitely to oppose the effects of the shear. The flow
is also weakened in the updraft branch by the effects of the water loading and
the reverse circulation is inhibited except in the region above the precipita-
tion.

The previous results seem to strongly support the hypothesis that the
upshear orientation of the updraft-downdraft couplet is both caused and
maintained by the effects of the liquid water which is produced in the storm.
This would exélaln why strong thunderstorms which have the ability to produce
large amounts of rain exhibit an upshear slope and small showers and cumulus

clouds slope downshear.

7. Discussion and future plans

The preceding sections have shown the current model to reproduce the results

of Moncrieff fairly well. The differences can be explained by simple reasoning

based on the dlfferences between the current model and Moncrieff's model. The

e e
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simple model has also given insight into the mechanism which causes the upshear
slope of the updraft. These results give one confidence in the model and show
that the proposed extension of the model to include precipitation Is warranted.
This section will discuss the improvements which have been made in the model and
plans for its use in further investigations, which will include the addition of
the equations for water vapor and liquid water to the system of equations (3.1)-
(3.4) and their integration to a steady state. To improve the resolution, the
grid spacing will be cut in half. It is felt that a grid spacing of no greater
than 500 m in both the vertical and horizontal is necessary since large varia-
tions can occur over the distance of a kilometer or two, especially in the
interface region.

It is hoped that the compressibility of the atmosphere does not signifi-
cantly affect the qualitative behavior of the storm structure. This, however,
will haveto be tested. The equations were proposed in the anelastic form and have
been finite differenced in this form for the model. Most of the runs are
expected to be carried out with the density held constant due to the relative
ease in interpreting the results. A few compressible simulations can then serve
to show that the qualitative structure remains the same as well as providing a
more realistic picture of the storm's structure.

The moisture equations have been finite differenced and tested to prepare
for their inclusion into the model. Figure 13 shows the thermodynamic diagram
which is produced by the equations for an incompressible atmosphere. The dry
adiabatic lapse rate is taken as a constant with the value 9.76 °C/km. The
moist adiabats are reproduced quite accurately in the model. Diagrams like
figure 13 will allow an environmental profile to be plotted and the corresponding

Ri to be calculated for each case using (2.1) and

H
CAPE = gf (In 6, = In ee)dz (7.1)
[o]

i A swedio < L




where ea is the potential temperature of a parcel ascending from the surface and
ee is the environmental potential temperature.

The situation of characterizing a flow by its value of Ri will not be as
easy now compared to Moncrieff's model in which constant lapse rates for both
the ascending parcel and the environment were assumed. Now, two wery different
profiles could be constructed to yield the same numerical value of Ri. Differ-
ing profiles of environmental moisture can also be expected to influence the
resulting flow. While it is not possible in this more complicated model to
completely characterize a flow by the value of Ri, this still is expected to be
an important parameter and will be continued to be used as a measure of the
relative importance of bouyancy and shear.

The first case to be run with the complete model will be for an environment

with a linear temperature profile having a surface temperature of 300 K and a

temperature of 237 XK at 10 km (y = 6.3 °C/km). The moisture will be given by
90% relative humidity throughout the atmosphere, and the environmental shear
will be constant with a value of 4 x 10-3 sec-' (AU = 40 m/sec). This gives
a value of -Ri = 1.0. This situation is not meant to model an observed thunder-
storm environment, but is a simple environment with the appropriate Ri. This
case should provide a definitive test of the upshear slope hypothesis and provide
a benchmark for comparisons of runs with different environmental conditions.
8. Conclusions

After a good deal of effort, a numerical method which is reliable and
accurate has been developed and the basic results of earlier work (Moncrieff,
1978) have been reproduced. With the approval of a grant of time on the NCAR
system, it is now possible to improve and complete the model. The full model
is currently being readied, and after testing, it will be run on its first
case. This case should confirm the hypothesis which was presented here; that

the effects of the liquid water act to produce and maintain the upshear slope
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of the updraft which is thermodynamically necessary for the maintenance of the

squall-line type thunderstorm.
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Figure 1. The 0000 GMT, 7 August 1981 sounding for Peoria, IL.
The temperature is given by the heavy solid line and the
dewpoint temperature by the broken line.

re

-




LA - e 4y i . o
A DR s B o o PN e ) . [ L
iaa il R e W32 P2 oA S SRR ¥ el e sl

T e A~ e

52

‘\

‘1
|

|

!
3
|

180 '
‘ Figure 2. Marsailles, IL. Radar PPI display for four times -
4 during squall line passage. The reflectivity contours
are for levels 1, 3 and 5, and alternate between solid

! and dotted for sequental times. Times indicated are in
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Figure 8. Results of Moncrieff's analytical (a) and numerical (b) :
model for R = . Chain line in (a) represents the interface '
between the updraft and downdraft. In (b) the nondimensional
temperature excess is shown as a chain line (From Moncrieff,
1978.) E
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A Radiation Boundary Condition for Multi-Dimensional Flows

Abstract

A 'n' dimensional radiation boundary condition for application at
open or computational boundaries is formulated and tested on three
two-dimensional problems (n=2). Two of these problems model a simple
wave propagation and possess analytic solutions so that the effective-
ness of the boundary condition can be measured in terms of a RMS

error. A more subjective analysis must be used in the final problem

which is the the simulation of an atmospheric cold front. The

proposed radiation boundary condition requires the scalar components of
the phase velocity. A formula for computing these components is given
and various numerical schemes are tested. The traditionally used one-
dimensional Sommerfeld radiation condition is recovered when n=1. The
higher dimensional radiation boundary condition is found to give signifi-
cant improvement over the one-dimensional method when the flow is

multidimensional.
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1. INTRODUCTION

One of the problems facing modelers of meso and other small scale atmos-
pheric phenomena is that in these finite area simulations there is a difficulty
in prescribing lateral boundary conditions since no true physical boundary exists.
The nature of the environment outside the region under investigation is also
unknown. This problem has been forced on many mesoscale investigators and a
variety of techniques have been utilized to help eradicate this difficulty, e.g.,

(a) a Sommerfeld radiation condition;

(b) an absorbing boundary;

(c) one sided differencing of the equations;

(d) wvarious other types of extrapolation.

Commonly, these procedures are utilized on some very complicated problems where
analytical solutions do not exist hence the impact of any one of these boundary
conditons is not known fully. Forexample, Clark [2] using different expressions for
the phase velocity associated with method (a) has found, for flow over a bell-
shaped mountain, significant variations in the interior calculations.

What is needed in problems where advection or wave motions dominates, as
pointed out by Orlanski [9], is an 'open' boundary condition. Such a condition
entails determining if the 'flow pattern' is entering or exiting across a
boundary. In the latter case the disturbance should be allowed to propagate out
without reflection. It is in this spifit that Orlanski [9] and Pearson [11]
proposed to use the following form of the Sommerfeld radiation condition at the

boundary:

g%»,cg-ﬁ—-o, (1)
r

. where ¢ is the variable, C the phase veldcity. t the time and n

r the coordinate per-

pendicular to the boundary in question. Pearson [11] proposed estimating C from

a linearized dispersion relation while Orlanski [9) proposed to determine C




locally and hence to predict the boundary value of ¢ without finding the disper-
sion relation which as a rule is unknown. It is clear that with the Orlanski
approach Eq. (1) can predict accurately one dimensional motion but it does not
seem adequate to represent the higher_dimensional flow;. In this study a 'n'
dimensional radiation condition is proposed and tested together witrh different
techniques in evaluating the components of the phase velocity on three two-dimen-
sional problems two of which possess analytic solutions. For more information
on other boundary techniques see, e.g., Engquist and Majda [3], Gustafsson and
Kreiss [4], Rudy and Strikwerda [13] and Schubert et al. [14].

Typically in limited area or mesoscale atmosphere studies the boundaries are
placed as far as possible from the center of activity. To test and evaluate the
proposed boundary condition a somewhat different philosophy is taken in that we

study the distortion as a phenomena nears and passes through a boundary.

2. A 'n' DIMENSIONAL RADIATION BOUNDARY CONDITION
According to the definition of the phase velocity € of the field ¢, in general

we have

3 _ L 3 .
%_-8.v¢=- i§] ci?’%i-, i=1,2,...,n, (2)

where Ci is the component of 3 in the direction of X; For our three-dimensional
space we have 1 < n < 3. We shall use this relation as our general radiation
condition at the boundary provided ¢ is directed outward from the boundary, and

determine Ci by applying the governing equation ¢ which we shall write formally as

B Flxy oeeoky £40) (3)

Thus, on equating the two expressions of a¢/3t given by (2) and (3) we obtain

n
R TR

For the one-dimensional problem, Cl can be obtained directly from this equation




provided F is known. However, for the n dimensional problem with n > 1, we need
n equations to determine all Ci uniquely. To reduce the number of unknowns to one,

«~e make use of the property of E implied by the relation (2), namely 3 is paralle)

to V. In accordance with this property we assume that we have the optimal relation

L
#here the constant of proportionality factor a is the same for all i. On substitu-

2
ting this relation in (4) we then obtain a = F/ig (%2—) and therefore
i

3 D, fag \ 2 '
e [5() . @

Equivalently; we may write that each component of EXV¢=3 is satisfied and together
with Eq. (4) this yields n equations and n unknowns with (6) as the solution. Thus,
the value of every C‘ at the boundary can be determined from the adequate forms
of a¢/8xi and F, such as equating F to the value of —a¢/3t at one grid point
inside the boundary and one time step earlier, as proposed by Orlanski [9]. This
approach will be tested together with the techniques in determining F, by applying
it first to two two-dimensional problems where solutions are known analytically,
and then to the more complicated two-dimensional cold front problem without known
solution.

3. THE THREE TESTING PROBLEMS
Problém A

A two-dimensional advection probiem in non-dimensional form given by

9y , - du , - du
UtV =0 0xsl, 0ky<l, t>0, | 0))

is solved for u = v = | with initial conditions

u{x,y,0) = Asin2mxsin2my. . (8)
The boundary conditions along the inflow boundaries at y=0 and x=0 are made to
satisfy

u(x,y,t) = Asin2n(x-t)sin2=(y-t) , (9)

w«hich also represents an snalytic solution of (7) for every point of the domain. ‘
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This solution projects a pattern which moves at a 45° angle toward the upper

right corner.

Eq. (7) is solved numérically using a leap-frog scheme, with Robert's

filter, for a time step of .0} on a 2] by 2] equally spaced grid having

. Ax=Ay=.05, and applying the open boundary conditions of the form discussed in

section 2 at the outflow boundaries along x=1 and y=1. The constant A
is assigned the value of 100. The RMS error is computed in the traditional

manner.

Problem‘§

Rossby waves, a commonly known large scale atmospheric motion feature
represented by the solution of the barotropic nondivergent vorticity equation

whose linearized version is given by
[}
Zev o, (10)

where u and v are the basic currents in x and y directions, f is the Coriolis

" parameter and u', v', and ' are the perturbation velocities and perturbation

vorticitywhich are expressed in terms of the perturvetion stream function { by

u' = - Kl v' = Y g = av! _ du! 3%y + 8%y 0<x<x

Y, X, T O9x 3y A ay2’ N

0<y<yy - . (n)
It is well understood that Rossby waves owe their existénce to the variation of
the Coriolis parameter f with latitude.
For our testing purposes, i.e., calculations limited to a finite region,
we will assume a solution of the form
¥ =Acos k (x - Ext) cos m (y-Eyt) . ' (12)
z' = - A(k?+m?) cos k(x-éxt) cos m(y-Eyt), (13)
where k = ZR/Lx is the zonal wave number, m = 2“/L is the meridional wave number

Y

while Lx and LY are the wave lengths in the x and y directions, respectively. The

x component of the phase velocity is
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Ex = G - B/ (k2+m2), (l}')

here B = af/ay, while the y component is given by

Ey=\7.

The initial conditions are given by Eqs. (12) and (13) for t = 0 while the
boundaries along x = 0 and y = O are also obtained from the analytical solution.
The known outflow boundaries along Xy = 3000 km and Yy = 2250 km, for both the
vorticity and streamfunction calculations, are used for testing. The unknown
streamfunction boundary values are computed using the radiqtion formulation and
the phase velocity components obtained from the vorticity equation. A leap frog
scheme is used to solve Eq. (10) and SOR technique is used for Eq. (11). A 21 by 16
evenly spaced grid is used in the x and y directions respectively for a step

size of 150 km along with a time step of 2000 s. In addition B = l.6XIO-llsm-l,

a=108ni s i=5ms!, V=00r5ms ', L, = 6000 km and L= 3000 kn.
Problem C

For the final problem we choose a purely two-dimensional anelastic moist cold
front model to simulate the circulation associated with an atmospheric cold front
(Ross and Orlanski [12]). A cold front represents a propagating disturbance that

can not be described completely as wave motion thus problem C differs from problems

A and B. The governing equations for the (x,z) plane are of the form

86 '
on 9 an
-a—t-=-J(¢.aon)+g: W" —v"'ﬂé—(VK )"' ( )'9'5::? ’ (16)

.. °
-g—:-= - J(w,aon) ALY +f'\u-.Ug) + g—i (VK %) + -?rz(\)%% ), (172)

6 v U
0 _ _ o 3¢ 38, , LS
3 J(\p,aoe) + ozew + f - ,&_9. K l@&) + 4 3z Keaz + — cp" . ' (18).

3w syag + o s kKD ik 2 s (19)

%- - (o) + -g-; (KeK ?r; + -g; (Ke %:-) +46 + owc . (20)
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Here u, v and w are the velocity components in x, y and z-directions, n = a"‘lax
- au/az is the y-component of vorticity,y is the momentum st}eam function in xz-
plane, 6 is the potential temperature, g is gravity acceleration, q and ¢ are the
water vapor and cloud water mixing ratios, 6, = 6() + .608q), Ug is the basic state
geostrophic wind, L is the latent heat of condensation, <, the specific heat at
constant pressure. & is the condensation rate, v and Ke are the eddy viscosity
and eddy diffusivity coefficients, K is a constant used to enhance the horizontal
diffusivity, and o, =- axnpolaz Is the stratification factor of the undisturbed
density Py Details of how to calculate the condensation rate 6 can be found in
Ross and Orlanski (12) and Kuo and Qian (7).

in terms of the stream function y, the velocities u and w and the vor-

ticity n are given by

--o N .o O '

pn 2 + " + 0, 5% , (22)
where a_ = 1/

and Py = P exp(-ozz) is the vertically varying density.

p surf

(]
In our calculations the grid spacing is such that Ax>>Az. Under these condi-

tions the streamfunction has traditionally been calculated by neglecting the
32¢/3x2 term in Eq. (22) yielding the well known hydrostatic approximation. Orlan-

ski [10] has introduced a quasi hydrostatic approximation in which a correction

pEPE——————. ...

containing part of the non-hydrostétﬁc contribution is added to the hydrostatic

solution. In the Orlanski [10] procedure the streamfunction is represented as

m
Y= ,-Z:, 7 | (23)

and the components of | are obtained from the following equations:

a’wo P

: o
+ 0, 3 = PN, (24a)

922
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aw azw- l .
- - - . i>r. (24b)
——l + oz Tl ——.J —

9z z axz

} Here wo is the hydrostatic component and the gj‘s. J > 1, are an approximation

.
i
i
.
i
1
i
1

to the non-hydrostatic contribution. The associated boundary conditions are:
atz=0, y; =0, for all j, | 3 (250) -
st z=H, y =Y, | ‘ | (256)

,? U»'j =0, j>1 . . (25¢) i

'5% The series for Y converges rapidly provided Ax > 42, Taking m = 2 s sufficient '

for our purposes. Thus the solution of (22) is obtained successively from Eqs.

Eah

A

o (24a,b). : ‘ ;
2 At the lateral boundaries the right hand side of Eq. (24b) must be approxi-
o Y

: mated. Instead, as an alternative, we choose to let el 0,j2>1, i.e., the i

non-hydrostatic terms do not contribute to the vertical velocity at the lateral

boundary. Otherwise, there are no lateral boundary conditions required by this

procedure.

For the problem in general at the lower boundary, z = 0, slip boundary

conditions are utilized, e.g., n =0, %g-= 0 and v sétisfies the thermal wind

| relation given by
. ‘ dv. _ g 96
i 3z T9,0x °

At the upper boundary, i.e., H = 14 km., we have a rigid 1id so that w = 0, thus

(26)

7Y is a constant, and in addition n,0 and v keep their initial vertical gradients.
Conditions at the lateral boundaries are left for experimentation.

Initially, the thermal wind relation ( 26) is taken as satisfiec by v and 0,

andlg is given some vertical variation. Generally, our initial conditions and the

values used in the eddy viscosity formulation as well as all pertinent details for

q and c are similar to those used by Ross and Orlanski [12] and thus will not be

presented here.

W e

|

i
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The general numerical approach is composed of a lumped finite element
scheme with a leap frog time integration. The Arakawa representation of the

Jacobian J(¥,8), where

-2 2822
J0.8) 3z 3z x

is obtained when bilinearelements (chapeau) are used in the finite element
formulation. This was first identified by Jesperson [5]. The diffusion terms
are lagged one time step and a Robert's filter is used to reduce the tendency

of time splitting. A grld utilizing Ax = 20 km and Az = 500 m is used along with
a 100 s time step. The value of ¥ used in Eq. (25b) depends only on the initial

u velocity field, the latter is a function of the z coordinate only.

h. NUMERICAL PROCEDURE

Radiation boundary conditions of the form of Eq. (2); for the case n = 2 are

t6 be used in the model problems at the appropriate boundaries as indicated in

section 3. For notational purposes rewrite Eq. (2) for the n = 2 case as

3 3, . 3.
5% oty ° . (28)

Eq. (28) can be used to predict the value of & on an open boundary provided the

value of C and C are known. These values can be obtained via Eq. (6), e.g.,

)
o -r 3 T

The relationship between Cx and Cy is given by

Cx = Sy 5k / Bray . (31)
Two methods of evaluating Eqs. (29) and (30) are apparent and are now presented.

An Extrapolation Approach

The values of ¢ at any lateral boundary, say ¢N jE¢(xu,yj),j-2....,n-|, as
14

predicted by Eq. (28) must be determined numerically. If Eq.( 28) is evaluated
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by a leap frog approach for a time step centered at t = T then the correct formu- ij
lation for CxTand CyTshould correspond to the phase velocity components at time ’
T and centered correctly in space. Provided these cx's and Cy's are pot rapidly
varying in time and space an approximation based on previous interior values of

¢ can be made, e.g., Orlanski [9] used C' = ¢™} In the one dimensional radiation

N N-1
boundary condition (n = 1), where C; = C(xh,t=r). Other schemes are possible but
this approach has the advaqtage that it is independent of the numerical procedure

used in the interlor, i.e., to solve Eq. (3). However, various improvements can

et i e it

be made and these will be indicated later.

Assuming, like Orlanski [9], that F is given by -3¢,5, centered at T -1

R e s

and N -1 we find that at the right most boundary(ﬁu,xj), excluding corners, of the
rectangle region bounded by o<xsxy  and ofyij that Eqs. (29) and (31) can be

approximated by
cx--z%t-[ﬁ-,j-ﬁ: % [ 48] -
"' x’.éy/’fQ (32b)

S ———— .

where i
%%, [“’:«-u.j ;4’;:11 - ¢;:;’J/Ax , (32¢) E

and g
av - [ 1+ ¢;::.J'i|/ny | o

Thus each of the Cx's and Cy's are located spatially, in the upstream sense, at

(xN_l yj) and about the T - | time step. The phase velocity components can be
14

used to predict ¢;t} via, e.g., an implicit formulation of Eq. (28), yielding,

(1 G bt/80) 2¢_ At/dx

T=1 x T : :
N, " D Wt T %1y (33)
AtC ¢T _ ¢T
- "A;l [ N, j+1 - N,i-l] i

where D = | + Q‘At/Ax and with the restriction given in Orlanski [9] expanded so

that




R

F

O

0, ¢ <0, ' 5. ‘
Ca® 6 » 0202 Bxypy | (34a)
Bxppp v Oy 2 Bxppy
‘and
R R Y
c ={c L < <ty
y y ' AM-="y-=""/At , (34b)

7V 7Y

Similar formula can be written down for the lateral boundaries at (xi.Yh),
etc. If corners are to be computed then both Cx and Cy must be computed using
one-sided differencing. Note that the Orlanski [9] formulation for the one
dimensional radiation_condition is recovered above if Cy = 0. Also, if the
properties at an inflow boundary are known then Eq. (33) need not be used in that
si tuation.

Bannon [1] and Miller and Thorpe [8] have both proposed an upstream time
differencing scheme to evaluate the one~dimensional Sommerfeld radiation boundary -
condition. The latter authorssuggest using

T+]

T T T
¢N ¢N "_ r (¢N - ¢N_l) ’ (35)

where r = C At/Ax’ o<r 5;1, and r is determined from

o [B1 LT T T R
r (4’N-1 ¢N~1) / <¢u-2 "n-l) : (36)
in addition, Miller and Thorpe [8] performed a truncation error analysis-and found

that improved accuracy is obtained when
w [4TFV _ LT T _ 4T T _ TN JLT™) | 4T
r (¢N—l - l)/ é -2 ¢N-l) * (°N N (’u- 1T 4 ) (37)

1 T 1 -1
i (¢N-| i ¢N-I) ("N-z - °N-i) '

We will make comparisons between both the leap frog and upstream time differencing

.

schemes.

Note that Eqs. (36) and (37) require an interior value evaluated for time step 1+1.

e et it MBS L BN A e B we e s
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If the interior calculations are made using a leap frog or some explicit scheme

then the computed solutions at time T+! can be utillized in the lateral boundary
calculations. Under these conditions T may be replaced with T+1 in Eqs (32a)
through (33). The phase velocity components are then centered correctly in
ti—e for the leap frog integration scheme given above. For some problems it

is possible to compute the phase velocity correctly in both time and space. .

Equating To The Equation Technique

Again assume a leap frog time integration scheme for Eq. (28). |If in Egs
(22) and (30) it is possible to evaluate F(x,y,t,¢), described by Eq (3), at
the boundary at time T using one-sided differencing then Cx and Cy are obtained
centered spatially at (XN-%, Yj) and at the T time step. If F is a complica-
ted function then this one-sided differencing approach will be more involved than
the extrapolation procedure. In addition one sided differencing may itself
introduce large errors especially if the equation contains terms that are in a
state of near quasl balance, e.g. the geostrophic balance condition in the
prinitive equations of motion and the thermal wind balance condition in the
vorticity equations. This error can be removed to a certain extent provided
higcer order finite differencing approximationsare used at the boundaries. It is
best to avoid this type of error if possible. Nevertheless in our model problem A 1
anc B this technique can be used to help measure the error introduced by using
the extrapolation procedure described above. Thus given the values of Cx and Cy

for Eqs (29) and (30) the value of ¢;T} is obtained as before via Eq (33).

5. DISCUSSION OF RESULTS
In order to test the 'n' dimensional radiation boundary condition, three dis-
tinct two-dimensional problems have been proposed. For problems A and B the use
of Soundary conditions at the known outflow boundaries over specifies these problems

since they are first order in each of the independent variables. However this over

specification is one possible method that can be used to test the ramifications of

il AN e
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any technique that might be proposed for use at an open or computational boundary.

Results From Problem A

Rb o At DAy ot i TS e B S

Starting with problem A we show in Table | the RMS error after one hundred

| et e,

time steps. The results using both a one and two dime sional radiation condition

it

are shown for two methods of determining the phase velocities. The extrapolation
approach, described in Eqs (32a-d), as indicated goes back one time step from the

last known value at the boundary and interior to the boundary one space step to deter-

mine the Cx's and Cy's while the equating to the equation technique evaluates
these phase velocity components using one sided finite differencing of terms in

the governing equation. Orlanski [9] first proposed the extrapolation procedure

with the one dimensional radiation boundary condition.. Under the extrapolation
approach note that there is a five fold reduction in the RMS error by increasing
the radiation boundary condition from one dimension (n=1) to two dimensions (n=2).

The RMS error is further reduced for both the one and two dimensional radiation

condi tions by using the equating to the equation technique. For this problem (3

the two dimensional raditation condition has exactly the same form as the equation

being solved so it is not surprising that the RMS error is essentially identical
to that given by using one sided finite differencing. Llimiting the radiation
condition to one dimension increases the error substantially. Using the knqwn
analytical solution on all boundaries does not reduce the error, as shown in
Table 1, due to inaccuracies in the interior numerical calculations.

In Fig. 1 values of Cx for the first fifty time steps are shown at location

RO Pho e

(40'V|2)' The solid line is for the one dimensional radiation condition while the
dashed curve is for the two dimensional case. Both are for the extrapolation leap
frog method of determining the cx's or C's. The dotted curve represents the Cx's

obtained using the two-dimensional equated to the equation technique. For the two-

dimensional cases all values are to be compared against the analytically predicted

value of |.
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Substituting the analytical solution into the one dimensional boundary condi-
tion, Eq. (1), yields an analytically predicted time dependent solution for the

phase velocity, l.e.,

tan2n(x~-t)

C=1+ Sandnly-t

which becomes infinitely large In magnitude when

2m(y=t) = +jm, j =0,1,...

2m(x-t) =+hm , h = 1,3,5...
2 .
This explains why in the numerical procedure the value of C (solid line) fluctuates

rapidly and is quasi periodic in time. Nevertheless the value of C must be re-
stricted (Orlanski, [9]) i.e., 0<C 5_%f;otherwise substitution of C back into
the formula (Eq 33, n=1) to predict the new boundary value of the dependent varia-

ble u would numerically make no sense.

Results for Problem B

In Table II some RMS errors are given for problem B, the Rossby waves, after

The results are presented in a

a total of one hundred time steps or 55.55 hrs.

format similar to that given in Table I except two cases are given. The first two

columns of the RMS errors for the vorticity and streamfunction, respectively, are
for when the true phase velocity is entirely in the x direction, i.e. EY = o,
while columns three and four are for when the phase velocity has compcnents in
both coordinates. The latter occurs when v is non zero.

In Table II note that when v = o the one and two dimensional methods give
approximately the same RMS errors in each category used to determine the phase

velocity. The extrapolation approach agives. the largest errors, as compared to

the equating to the equation technique, and predicts changes along the y-“

boundary when in fact no changes occur. When the mean flow contains components

in both the x and y directions the two dimensional radiation condition again

becomes superior as seen in columns three and four. Also notice that the two-
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dimensional equating to the equation technique and one sided finite differencing
give nearly identical solutions. This implles at the known out flow bouﬁdaries ;
that the components of the phase velocity are predicting outflow and thus satisfy ;
the restrictions imposed by Eqs. (34a,b). 7
In Fig. 2 values of Cx along the boundary x=x\ are displayed at the fiftieth ?

time step. The solid and dashed curves are C's for n=1 and Cx's for the n=2 cases,
respect}vely, obtained by the extrapolation approach. The dotted curve is found
from the two-dimenstonal equated to the equation technique. The analytically pre-
dicted value for the components of the phase velocity are Cx=Ex and Cy=Ey.

Substituting the analytical solution for the vorticity, Eq (13), into the one

dimensional radiation condition gives an analytically predicted value for the phase

velocity, i.e.,

C= Ex + Ey E-tan m (y-Eyt)/:an k(x-Ext) . (39)

Here our previous finding is again repeated since this equation predicts that in
the one dimensional case the phase velocity can take on values much in excess of
the acceptable upper limit, i.e., C = %%, and values much less than the lower
limit C = 0. The latter is obtained inspite of the fact that the flow is con-
tinuously outward. The sharp spike in the solid curve, Fig 2, r;flects this large
variability and is commonly found at least at'ohe grid point at almost every time
step and often exceeds the maximum magnitude allowable. It is clearly seen in
Eq. (39) and in Tables I and II that theuseof the one dimensional radiation boundary
condition incursgreater errors as the flow becomes lncreasély multi-dimensional.
In Table III the RMS errors associated with the upstream time differencing
schemes of Miller and Thorpe [8] are given. The simplier of their two schemes,
computed using Eq (36) for n=1, gives nearly identical results with the one-dimen-
sional (n=1) case evaluated using Eqs (32a-d) with T replaced by T + 1. Utilizing

the interior solutions evaluated at time T + | in the lateral boundary calculations

POPT SRpr

does not change the RMS error appreciatively either positively or negatively as
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seen by comparing Tables II and IIL. The interpolation of r and hence C by Eq (37)

does show definite improvement except for the streamfunction calculations when
there is two-dimensional mean flow. With further integrations the large error in
the latter category will eventually deteriorate the vorticity solutions.

Some severe storm modelers have had success using a constant phase velocity
in the one-dimensional radiation condition, e.g., see‘Klemp and Wilhelmson [6].
Table 1V shows the RMS errors when Cx and Cy are each held fixed. Using the
analytically predicted values of Cx = 12.082 and Cy =0or 5 in Eq (33) gives
RMS errors essentially identical to the one-sided finite differencing. From
Table IV we also see that for one dimensional flow the error occurred by over

estimating Cx is less than when Cx is underestimated. However this pattern is

not clearly reproduced when the flow is two-dimensional. With the higher dimen-
sional radiation condition it may also be acceptable, under some circumstances,

to use a fixed or constant value for each component of the phase velocity provided
enough information is available to determine the nearly>correct magni tudes and

directions.

Results For Problem C

Problem C requires the numerical solution of several equations. Even though
complicated by the release of the latent heat the procedure is nevertheless straight
foreward except for the conditions to be used at the open boundaries. At the lateral boun
daries we tested a variety of different conditions for the various equations. These
tests show that the procedure used by Clark [2], and many.others, is very satisfac- i
tory, i.e., the velocity component normal to the lateral boundary is computed at
the boundary from the radiation condition while all other dependent variables have
zero normal gradients. Thus in our problem at the lateral boundaries 8,q,c and v
satisfy %;( ) = 0 while the radiscion boundary condition is applied to the vorticity
equation from which the normal velocity component is computed via the streamfunc-
tion.

Our results for the atmospheric cold front simulation are very similar to
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those obtained by Ross and Orlanski [12]. Details of the various fields, e.g.,

vorticity, streamfunction, etc., are very involved and it Is not easy to gauge from

these the influence that the lateral boundaries might play. A.clearer picture
showing the influence of the various radfation boundary condition formulations

is gained by examining plots of an averaged quantity or spacial norm verses time.

Figs. 3 and h'display our choices.
In Fig. 3 we plot u' verses time where u' Is the norm of the perturbation

velocity as defined by

N M
v R gyl (o)

Here u is the computed x component of the velocity field while Ug is the geostrophic

wind which 1s a function of the vertical coordinate only. This norm is choosen
because it allows for an easy interpfetation of the magnitude of the perturbation
velocity.

In Fig. 3 the solid curve displays the results obtained using the two dimen-
sional radiation condition (n=2) for the extrapolation techniques while the dashed-
dot curve is the Orlanski procedure (n=1) and the dashed curve is the Miller-Thorpe
technique using the improved estimates of r as given in Eq (37). The dotted curve

which is essentially identical to the solid curve uses phase velocity components

(n=2) centered correctly at time T for the leap frog scheme but still computed by
the extrapolation procedure. In these calculations only the radiation boundary
condition has been changed. Also the area.of computation coincides with the
region over which the averaging Is performed. The grid Is as defined in section 3
for the x and z coordinate system utilizing N=55 and M=29. The above mentioned
curves are to be compared and contrasted with the plus (+) curve which gives an
average oVer the same area but when the calculations are performed on a larger
area having N=73,

Two features are pronouﬁced In comparing the various curves. First, there is
some adjustment to the initial conditions and all the curves show an increase In

magni tude which reaches a maximum at sixteen hours. Ouring this process the curves
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are very similar. After the adjustment process the plus curve shows that a quasi

steady state exists. Here the small variations are due to the presence of internal
gravity waves. The second feature is.now apparent since the other curves reveal
that the lateral boundary has a large impact if the disturbance is too close. The
Miller*Thorpe procedure is particularly susceptible since boundary influences
~cause the value of u' to more than double the maximum magnitude observed in the
plus curve. Thé two dimensional radiation boundary condition (solid or dotted
curves) displays the smallest increases for times greater than thirty hours. The

small differences between the curves computed using the one and two-dimensional

radiation boundary conditions, before thirty three hours, can be explained by the
fact that away from the frontal zone the u component of the velocity is at least
two orders of magnitude larger than the vertical velocity component. Thus the
flow is essentially one dimensional except near the front. This is clearly seen

by the magnitudes of w in Fig. &.

In Fig. 4 values of w, where

‘N M
jgl Iwijl . (41)

W o=

1
N.-M i=]

are shown for calculations using the same radiation con&itions as in Fig. 3 except
now the dashed curve is the Miller-Thorpe upstream technique computed using Eq(36).
Again the lateral boundary effects are clearly evident after thirty threg hours in
the leap frog schemes which give very similar results and after twenty six hours

in the upstream procedure (dashed curve). The latter technique generates vertical
‘velocity averages twice as large as the leap frog schéme. The exact reason the
upstream procedure is less effective is unclear in light of its performance in
problem B (Table III). The flow pattern is however much more complicated in

problem C and it seems reasonable that a boundary procedure that uses the same

time integration scheme (leap frog) as used in the interior calculations would be

the most compatible for long time integrations.
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In Egs. (17) through (20) w appears explicitly in one term in each equation.
in our calculations we compute w from calculated streamfunction values via the
formula w = o %% in finite element representation.

Along the lateral boundaries however the finite element technique predicts
each w using streamfunction values in a one sided differencing scheme from six
grid points. bTo test whether the reduced accuracy associated with the one sided
differencing scheme might be enhancing the error at the lateral boundaries we
replaced the direct calculation of w with the condition that %%-c o. This
greatly reduces the noise generated at the lateral boundaries as seen by comparing
values of w in Table V, computed using %& = 0, against our earlier calculations of
w in Fig. 4 in which w was calculated at the lateral boundaries. All categories
of radiation boundary conditions show improvement with now almost no differences
between the n=l and n=2 cases. However‘the leap frog approach still remains
superior to the up-stream technique.

In oyr lumped finite element scheme every term in Eqs. (17) through (20) is
expressed in a nine point configuration except for the time term. Hence the
contribution from every term that includes w can be interpreted in terms of the
streamfunction as representing even more grid points since the calculation of
each w involves { on nine grid points. Consequently using w instead of the
streamfunction representation explicitly obviously results in some smoothing.

This fact is reflected in the values of w shown in Table VI. In the last two
lines in Table VI it is clear that when the calculations are performed using

Oy %% explicitly in place of w the values of w are nearly a magnitude larger
after forty-eight hours. The differences are small during the first six hours

but as latent heat is released at grid point locations in the condensation process

the differences grow. Unfortunately the intensified flow characteristics obtained

when using the streamfunction representation explicitly also enhances all noise and
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the solutions become very noisy after twenty simulation hours.. Thué it {s
difficult to test radiation conditions when the meteorological fields deterio-
rate beyond the point of interpretation. Nevertheless the résult for w
displayed in Table VI agrees essentially with our previous findings.

To determine if the error at the lateral boundaries can be reduced even
further we tested several other ideas. For example, in an attempt to center
the phase velocity component correctly in space we computed two columns of
components adjacent to the boundary and then utilized a Taylor series expansion
to predict the value at the boundary. These calculétions did not significantly
improve the results presented above. Using higher order approximations of the
derivetives also did not significantly change our results. Also averaging all
quantities over six grid points, as computed via the finite element method withbj:
linear basis elements, yiefds essentially the same results. As previously
mentioned the equating to the equation technique cannot be utilized in this
problem because of the internal balance between two derivative tefms in the

vorticity equation, i.e., the thermal wind relation.

6. SUMMARY

A 'n' dimensional radiation boundary condition has been tested on three
two dimensional problems. When the flow is outward across a lateral boundary
and when the pattern of movement is multi-dimensional the proposed radiation
condition has been found to be clearly superior to various formulations of the
traditionally used one dimensiona) Sommerfeld radiation condition. For outfiow
the 'n' dimensional radiation boundary condition, as proposed, is equivalent to
one-sided differencing of the governing equation provided the components of the
phase velocity are correctly“centered in time and space. Vﬁen this centering
procedure is not feasible or gives unrealistic results extrapolation procedures

provide an alternative technique to determine the phase velocity components,
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TABLE I

RMS errors after 100 time steps for problem A.

$ Boundary Condition RMS error
A :
' (1) Extrapolated
< ¥ac g%r- =0 (la) 2.024 i
3 3
% 4
4 3¢ 3¢ 3 . . 4
3 Tt gt G gy =0 (Ib)] 3956 h;
(11) Eauated to the equation
9 3y IIa
S+ cﬁr 0 (11a) 4224
1 3% 3 , ¢ 2.0 ()
3 1 T + cx = + C-y 5y 0 .1383
| |
(I11) One sided finite I 1380
, differences j
(IV) Analytical exact value .2020 I
;
:
‘ !
J ‘
é
i
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TABLE II
RMS errors after 100 time steps for problem B.
G=15ms’] G=15 ms™) }
v=0 v=5 ms :
Boundary 5 -1 6 | 5
_ Condition Vorticitys 10 °s™'| Streamfunction, 10°  Vorticity, 10~ |Stream-
.‘ ™) s-1 | functjon,
‘ 106 mcs
i
A (Ia) .1336 . 8650 5971 1.5072 i
§ (Ib) .1308 .7180 | .1521 .2878 '
(IIa) .0112 .0296 .0674 .6995 ﬂ
| (1Ib) - L0112 .0270 .0475 .1929 *
(111) .0113 .0270 .0448 1977
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TABLE II1 1
RMS errors after 100 time steps for upstream and leap-frog {
§ radiation schemes used in problem B. ‘
!
, G=15 ms") G=15ms™
j V=0 ve5 ms x
3 . _ :
: Schemes ~ Vorticity, 10755°Y streamfunction, 108 vorticity, 10| stream !
) 2 -1 -1} function R
{ m s S ]QG m2 s..] |
| Up stream .128 .8166 .561 1.4631 |
b Eq. (36) .
g .
Eq. (37) .0298 .1245 .1300 1.6006 ,
leap Frog :

n=1 ‘ .1285 817 .5864 1.5106
!
n=2 . 1287 .6861 . 1642 .3212
)
é:
b
[
1
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TABLE 1V
RMS errors after 100 time steps for constant phase velocity components

in the radiation condition used in problem B

5 ms™! =15 s
0 =5 ms)

Boundary
Condi tion

Vorticity, 10-55—1 Streamfunction, 106 Vorticity, 10“55"] Stream
‘ mzs-1 function
106 m s-1

0.0 12.082 . 1.2197
5.0 12.082 . 4 0.1974
0.0 5.0 . 1.4602

1.6686
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] ~ TABLE V
j Values of W (10'2) computed for problem C when Miax = 0 at
the lateral boundaries.
§ Time (hrs)
: Scheme 25 30 - 35 40 45 48
;
é Upstream
) Eq. (36) .319 .509 .638 | .554 379 .319
- Eq. (37) 413 .457 467 | .360 .340 .228
Leap frog '
n= .298 286 .308 | .263 245 .267
n=2 .299 .296 .318 | .268 ,247 .260 i
Large area | . -
n=2 247 | .259 283 | .265 .222 2N !
]
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TABLE Vj
Values of W (10"2) computed for problem C when w is replaced with a, aq;/ax
in Eqs (17) through (20) or when w is used explicitly.
Time (hrs)
| 4 8 16 24 28 a8
. _using ¢
Up stream .104 .203 .339 2.431 2.098 2.565 3.577
Eq. (36)
Ea. (37) .104 203 | .341 2.584 | 2.353 | 2.418 | 1.489
Leap frog
n="1 104 .206 . 342 2.374 2.459 1.897 1.502
n=2 - .104 .207 .342 2.376 2.464 1.929 1.556
Large area .
! n=2 .104 .202 .305 2.344 1.918 1.818 1.491
using w
Large area
n=2 .098 184 .222 .452 .273 .283 211
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List of Figures

Fig. 1. Values of the phase velocity components are displayed for the first

fifty time steps for location (x“,ylz) in problem A. Values computed 1

using the one dimensional, n=1, (solid curve) and two dimensional,

3 n=2, extrapolated (dashed) and equated to the equation technique

(dotted) are to be compared against c=l.

Fig. 2. Same as Fig. 1 except for problem B and computed for the fiftienth

time step along the right lateral boundary. The known analytical

S

solution is shown by the C = Ex curve.

Fig. 3. For problem C values of u' verses time are shown when in the radiation _ i
condition n=2 (solid and dotted curves), for n=1 (dashed dot) and for

an upstream time differencing scheme (dashed curve) using Eq. (37).

el e

Fig. 4. Same as Fig. 3 except for w and the upstream scheme uses Eq. (36).
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Simulation of Laboracory Vortex Flow

by Axisymmetric Similarity Solutions

Abstract

A similarity approach is utilized to investigate a simple
axisymmetric steady-state model of the convergence region of
a laboratory vortex. The resulting simplified set of equations
are solved for a range of swirl angles by varying the tangential
or radial velocity component at the outer rim. By increasing the
swirl angle the flow is found to go from a one cell to a two cell
configuration, i. e., the vertical velocity changes from everywhere
positive to negative in the vicinity of the axis. Correspondingly
the vertical vorticity maximum moves from the axis toward the radius
of maximum tangential velocity, making the flow barotropically

“mstable with respect to unsymmetric perturbations.

97.
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1. Introduction

A variety of rotating or swirling motions are observed in the atmosphere.
Of particular interest dynamically are the tornado type vortices. Various
theories on the nature of the internal dynamics within these strong vortex flows
have been discussed (e.g., see Davies-Jones and Kessler, 1974), but actual mea-
surements are almost impossible to obtain due to the severity of the motions. To
answer some of the major questions a number of laboratory vortex experiments have
been conducted, e.g., Turner and Lilly (1963), Ying and Chang (1970), Ward 1972,
Jischke and Parang (1974), Leslie (1977), Church et al. (1977), etc. One of the
advantages of the modern vortex generator is its ability to reproduce the multiple
vortex phenomena in an environment where it can be intensely studied, e.g., Ward
(1970, 1972). Fujita (1971, 1972) first proposed that the cyloidal markings
observed in tornado damage paths are produced by these secondary rotations. The
presence of multiple vortices within some tornadoes has now been widely accepted
and analysed in various studies, e.g. Agee et al. (1975) and Forbes (1978).

Because of the success of the laboratory simulations, a few elaborate numeri-
cal reproductions of the vortex generator have been attempted, e.g., Harlow and
Stein (1974} and Rotunno (1977, 1979). These studies certainly have helped to
identify various features of the dynamics, but questions still remain, e.g., what
is the relationship between the vertical motion near the axis and the inflow angle
at a large distance from the axis, and what is the nature of the instability that

allows multiple vortices to generate. To help refine answers to these and other

questions, a simple analytical-numerical steady-state model is investigated.

i
]
i
11
:
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2. Formulation of the Problem

Our goal is to simulate In a simple manner a steady-state vortex
similar to those produced in modern laboratory vortex generators and
to study its behavior. These laboratory vortices are created mechanically
in a specially designed arrangement which contains an exhaust fan and a
rotating screen. Air is drawn radially inward,by the fan through the
rotating screen till ft reaches a central cylinder where it is allowed to
rise through the cylinder and is expelled at the top.

The rotafing screen imparts a background angular momentum which is
nearly conserved as the air moves radiallY inward giving rise to a con-
centrated vortex core.. The laboratory experiment is constructed so that it
is geometrically and dynamically similar to conditions found in the atmosphere
during, for example, a tornadic event, This similarity is established by
requiring that the non-dimensional numbers that govern the flow in the
mechanically generated vortex be in the same range as those observed in the
atmosphere. Lewellen (1962) found three nondimensional parameters that govern
the nature of the swirling flow. These afe: the radial Reynolds number

Re, = /2mv
an internal aspect ratilo
a=HR ,
and a swirl ratio
S = tan8/2a .
Here Q is the volume flow rate per unit axial length, v is the viscosity

coefficient, H the inflow depth, R the radius of convergence and 6 is the

swirl or inflow angle, It Is known that the swirl ratio and radial

L
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Reynolds number describe the dynamics of the flow while the aspect ratio
describes the geometry.

If all three of these numbers are of equal importance then the geometry
of the simulator would have to be cénsidered and/or duplicated in any
numerical simulation. Davies-Jones (1973) however points out that the
nature of the swirling flow is dominated by the swirl ratio. Because of
this there is some hope that a restricted investigation ignoring the geometry
and only dealing with just part of the vortex simulator, e.g. the region
where convergence takes place, might be successful in explaining some of
the general behavior that is observed in the laboratory vortex and thus
consequently in the atmosphere. It is in this context that we adopt a
similarity approach to simplify the governing equations. The procedure has
been orchestrated so that we can examine the vortex flow configuration,
as described in the simplified similarity equations, for a range of swirl

angles.

3. The Mathematical Development

Assuming that the motion of the homogeneous fluid is steady and axi-
symmetric and that the Coriolis force can be neglected in comparison with
the centrifugal force, then the swirling flow satisfies the following

equations of motion in cylindrical coordinates (Kuo, 1966, 1969):

(e trendt )

(2)
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2 (ur) v :
Bl +rm=0 (%)

where
2 9 1 or 2
R0~ 5 gl =)

r is the radial coordinate, z the vertical coordinate positive in the direction
opposite to the gravitational acceleration represented by g, and u, v and w are
the radial, the tangential and the axial component of velocity, p is the pressure
and p is the density.

The velocity components u and w can be expressed in terms of the stream

function ¢ defined by

o
Zz

N

,_IP (5a,b)

v

-

2
"!l—
Q’

we- 1
r

From Eqs. (2) and (3) we obtain the following equation for the azimuthal vorticity

w _ 3u '
e - Moz 2 (6a)

2v Bv

¥ 3 (e - ry (e/r) + 2 L= v2 ¢ | (6b)

Equations (6b) and (1) together form a closed system for the dependent variables
v and ¢ (after using (5a,b) and (6a) to eliminate u, w and 7).

a. A Similarity Approach

Followfng the spirit of the similarity approaches utilized by Kuo (1966,
1969) the variables are first non-dimensionalized by the following transformations:

V= Usrshw* s, Z = hz*

m Usrsm* » Vo= U VR and x = r /lir° ] (7)

Y e

b ALt i s
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Here g is the radius of the rotating screen at the outer edge or rim, h is
a measure of the effective depth, fo is some measure in the radial direction
and Us is the radial velocity at the rim while m = vr denotes the angular

momentum. Note that v*, ¢y*, m*, z* and x are all dimensionless.

The dimensionless equivalent of Eq. (1) when written in terms of m*

vl e e Al

becomes
? Ju* om% |, Yk Im* 32m* -1 32m*
£ - = 2vy*% — o § (8)
8 * % ’
3 92% 9x Ix 9z P 3 2 az*zl
§ while Eq. (6) reduces to
Im* 2 DUy%x _ dyx ,D2y* vk D2yt
K ——— = % - ——
f mt ST = e fove - S () 3 ) (9)
;? where the subscripts z* and x denote partial differentiations and
2 - 32k -1 32p%
| a-hzroz, p2yx = x 2V 4 71 0

ax2 - 9z#%2 ]

and D%y* = D2(D%y*). Observe from (9) that the meridional flow is influenced by
m* only through the variation of m* with z*. To include this effect, we follow
again the basic premise established by Kuo (1966,1969) by expanding the flow
variables in power series expansions in z*and including the zeroth order terms
my anq u, in m* and u*. It can readily be shown that only the even order terms
of z* in m* and u* will contribute to these two variables and therefore we write b
m* and y* in the following forms |

mt = v*[m° + Gz*zmI + (Gz*z)zm2 +...], (10)

vr = 2viz[F  + 82#2F) + (82#2)2F, + ...] . (1)

Both m* and ¢* will be well defined provided the higher order terms are decreasing

in importance.

From Egs. (5a,b), (7), (10) and (11) we arrive at the following




expressions for u, w and m:

- 2 2

u= -5 [F +362%2F, +5 (6222)2F, + ...] , (12)
\Y

W= -—:~ [F) + 82#2F) + (s2#)2F) + ... ] , (13)
r
o

m=vyr= v[mo + éz"-'zml + (éiz*z)zm2 +...] . (14)

~ The prime denotes differentiation with respect to x.

Using the expansions (10) and (11) in Eqs. (8) and (9) and setting
the coefficients of the individual powers of § to zero the partial differential
equations are transformed into a system of coupled ordinary differential
equations with independent variable x which is proportional to r2. From the
angufar momentum equation (8), we ohtainﬁrnb and m, the second order differentia)

equations

xny * Fomy = -2m) (15)

')+ Fomy = 2Fgmy = =3Fjmg = 12m, (16)

From the vorticity equation (3), we find that F, and F, are each defined by a

fourth order differential equation,
m,m F 120F
' - p12 - O ) _ o2 ] 2
[xeot + () po - Rz e n2py] = Lo gp2 (L) - 2 ()

1 2x xF_

[xr"'+ (V+F )F!* - LF'F} + 3F''F ]' + 6x2 F%
1 o1 ol o1 (=)
X

F F'F 8L0F
1 1 2 o2 _ . 3
- —— (mol‘l‘l2 + 7 m%) - 2°F° ( < )' + 60 > 'OOFi' = - (18)

x2

o L Lo
- : srax sttt . .
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Equations for the higher order terms in (10) and (11), can also be obtained but
pl ' &re not presented here. The system of equations becomes closed for any given

cut-off limit.

5. Solution by perturbation expansion

Instead of treating the system of highly coupled nonlinear equations (15) -
(18) directly, we shall solve them by expanding the dependent variables in powers
cf a coupling parameter & so as to separate the most fundamental part Foo(x ) of

Fo(x) in (17) from the other variables to make Foo satisfy an uncoupled equation,

W —————

and obtain the coupling parts of the various functions by successive approximation.

The expansions which serve this purpose can be written as

ot %
-
"
-
+
[+
=

o™ Foo * OFgy * @iy * e, | (19)
my = Mg *+omy +ofmy,
. Fl=aFo+a®f  +aF, +. ...,
m = amo + o’my, + a’mlz... ,
_ Fy = a’Fyy + a'Fyy + .o ,
i m, = azmzo + a’m2| + ... ., etc.

Substituting these expansions in Eqs. (15) - (18) and equating the coefficients
of the varfous powers of a to zero we then obtain the following system of equationsﬁ

(First set) . ?f

gy +(e ) By = R =G, <

[xF'lg +(1 + F )10 = WF! Fio o+ 3FUF 1 =0, (20b)




i 05
1 3 xmio * FooMoo =0 » (20¢)
e ' - = -
il Mo * Foo™o = 2Fooa™o = “3F 100 - (204)
., :
/ (second set)
] '
- ) . [ + Y o )
3 [me (1 +F )Fyt = 2FL Fo o+ F(')")FOI]
1 = L mom. - 62 ("—T—-IF"’ )' - 12F12 (21a)
| . ox2 ©© 10 0o 00 10 °
11 . . [ 1 1 I = o -
8 ["F i O FoIFy - BRF + 3FooFll] ForFio = *&iFio * 3F'giF1o)”
¥ F2 F
] 2 = £u2 10 v, _ 20
P (myg + 2mpgmyg) - 6x* ( ol )t 20F, (5
4 F' F |
2 +60 2220 - 4opr (21b) -
xm91 * Foo™1 = = ForMeo = 2Mp > (21¢)

' " ' = - ' . - '
xmy*Fo™i T oo™t = For™0 t FFor™o  3(FigMyy * FiiMeoI2myg '

(21d)
(Set 3, limited to F02 and m,, for brevity)

0002 ¥ Foo 02 mo™1 * Mo1™ o)

[xF'(')i + (14 F_)Fos - 2F. Fo, + FLIF ]' =1

F 2x* F
: - e 12f o 2 11, - 2 10 _ 20 ,
; * [ ForFor * For] o0 () - 6Fg () - 120 5= (223)
00 ol
te I = - - ] - |
o2 * Foooz = 21 ~ Foi"g1 ~ Foo"o - (226)

Eqs. (20a) and (20c) are found in Kuo (1966, 1969) while (21b) and (21d) differ

- e e s e
P P i T T

somewhat from that given by Kuo due to the different § used. Observe that Eq. (20a) is
I nonlinear but it contains Foo alone, hence it can be solved together with the boundary
conditions to yield Foo' while all the other equations are linear and contain lower

order functions as coefficients and non-homogeneous terms. Notice also that the

inclusion of the F' term in (11) makes the tangential and the radial velocities coupled

through equations (20d) to (22b).




c. The Boundary Conditions

At the axis we require that each of the variables be zero for the
axisymmetric flow, i.e., at x =0

my = Foi =0 , i=240,1, ...

my; = FIi =0 , 1=0,1, ...

At the rim, x = Xg» We assume the vertical velocity is zero, that the

radial inflow will vary slightly with height while the rotation rate does
not vary in the vertical. Also, we shall take all the radial inflow and
rotation in the first term in the a expansion, and none in the higher ‘
perturbations. Therefore at Xg the solutions éatlsfy
Flo=0 , i=0,1,...,
=0 i=1,2,...,
= 0,1,...,
i=12,...,

= o,l,.-.,

=1,2,...,
i=0,1,...,
i=0,1,...,

while Foo' F.. and mo 3re assigned non-zero values. The condition on the

10
third derivative is needed to complete the requirement of four boundary
conditions for the fourth order equations. Integrating (20a) from 0 to X

applying the boundary conditions given above and solving for Féé (xs) yields

. Fr! (0) - FA2(0)
Froox) = Flool® - Foo
(14F  (x.))

) (25)

(X - 2
This relation shows that Foo(xs) is non-zero If Féé (0) # Féo (0). A similar

procedure applied to Eq. (20b) reveals that
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s () = Fib (0 < 4R, @F} (00 - 3550 GxIFy(x) (2)

(1 + F_(x))

which is also non-zero if the numerator is non-zero.

At the rim the swirl angle 6 can be written in terms of ™ and F°
since Eqs. (12), (14) and the boundary conditions (24) give at the z* = 0 level

-1 , -1
0=~ tan (v/u) = tan (mOIZFo) .
No i - =
te also at the. rim we have mo(xs) moo(xs) and Fo(xs) Foo(xs)'

d. Details of the Numerical Procedure

The non-linear ordinary differential equations described by Eqs. (20),
(21) and (22) with their corresponding boundary conditions (23) and (24)

are solved numerically, in the order listed above, using a shooting

tecﬂnique (Conte and de Boor, 1972). Each equation is rewritten as a
system of first order equations and then discretized using the midpoint
rule (Kreiss and Oliger, 1973). Thus, e.g., each fourth order equation is
reduced to a system of four first order equations that must be solved
iteratively. A fine grid is employed near the axis, e.g;, Ax = IO—A,

but this spacing Is allowed gradually to expand to a much coarser net near
the rim, say Ax = IO-I. As an example, a total cf 575 grid points are used
on the interval x = 0 to 20. Tests using nearly double this number of grid
points yields no significant differences.

Utilizing ; shooting technlique to solve the fourth order differential
equations for the various F's requires that initially a guess be made for
the first and second derivativesat x = 0. Using these guesses the third
derivative at x = 0 Is then computed directly from the equation. The

system of four first crder equat’sns are solved for all x using standard

procedures and then the v ive. for F"j and its first derivative at x = x
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are compared with the desired boundary conditions. |f the differences exceed

5

a specified small value, say 10” , the process is again repeated using new
estimates to replace the values of the first and second derivatives at

x = 0. These new values are obtained using Muller's method (Conte and ' b
E, de Boor, 1972).

We have only two degrees of freedom so the condition on the third

f; derivative at the rim can not be strictly enforced but we except only those

solutions for which the required condition ts naturally approximately

satisfied, i.e., F'!'. =0, i =0,1,..., J =0,1,... The error introduced

i,J
. by this procedure is quite small since, e.g., the calculated value of F!} (xs)
varies from that predicted by Ea. (25) typically cnly in the fourth significant

decimal place.

Our equations actually possess multiple solutions that satisfy all
the above stated boundary conditions, e.g., two separate solutlions for
Foo’ Eq. (20a), are known to exist and more may be possible. Using initial
guesses with Féo(o) > 0 and Fé& (0)< 0 we obtain a solution which contains
all positive values of F&o (one cell vortex) while the second solution,
obtained using initial guesses F$°(0)< 0 and Féé(o) > 0, contains negative
values of F&o near the axis and positive values further away (two cell
vortices). Kuo (1967), examining a vortex in an unstably stratified atmos-
phere, shows similar two cell solutions for the special case when all the
derivatives are zero at the rim. Our two cell solutions remain essentiallx
unchanged near: the axis as the rfm is moved further and further away. This

behavior Is not observed in the laboratory vortex (Ward, 1972 and Church

et al., 1979), so in this study we disregard this solution and utilize only
initial guesses that satisfy F&o(o) >0 and F'! (0) < 0. The exact magnitude | 1

for these choices depends on the strength of the inflow at the rim.

The solution of the m equation Is straight forward and does not change
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significantly with the change of the vertical velocity at the axis and there-
fore it will not be presented here.
h. Discussion of Results

in this study a similarity approach is utilized to obtain the solutjon of
the two-dimensional nonlinear vortex equations for comparison with the results
obtained from laboratory vortex simulators, so that the vertical and radial
variations are uncoupled. For simplicity, the geometry of the vortex simulator
is ignored and only the nature of the flow within the convergence or inflow
region is investigated for a range of swirl angles. Care must be exercised
in interpreting our results however since the similarity transform ignores
the geometry and by limiting this study to within the convergence region we
also ignore the source of the convergence, i.e., the exhaust fan, and thus
there is no guarantee that different rim rotation rates, with the same
specified radial inflow, will experience the same volume flow rate. Fortunately
Davies-Jones (1973) has shown that within the experimental ranges for the
three nondimensional quantities, namely, the radial Reynolds number, the
aspect ratio and the swirl ratio, it is the swirl ratio that most
strongly contrcis the laboratory vortex flow configuration. In our calculations
some small variations of the aspect ratio and radial Reynolds number are inherent
because of the nature of the similarity approach but these changes are thought
to be minimal and should not distort the general conclusions. Also our model
includes the viscous or diffusion terms but does not include the boundary layer
explicitly since the motion predicted at z* = 0 is non-zero and not the no-slip
flow required in boundary layer theory. The zero value for z* should be
interpreted as occurring near the top of the surface boundary layer.

We will vary the boundary conditions at the rim (x = xs) representing

changes in the strength of the radial velocity or inflow (Foo(xs)), the

vertical variation of the radial velocity component (Flo(xs).on(xs), ved)
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and the strength of the rotation or tangential velocity (moo(xs)), and
observe the predicted fiow pattern. Note that the height dependency is
determined by the first and higher order terms in Eq. (11) and is established
by the choice of boundary conditions at.the rim. Results will be presented
normally for two boundary parameters fixed while the third is varied over
some range. The resulting flows may not always be observed since in the
laboratory vortex there may be some natural compensation at the rim in the
vertical variation, for example, as changes occur there in either the
strength of the radial inflow or rotation rate. Nevertheless we can clearly
show the trends produced by individual changes in these boundary parameters.
Our results illustrated in Figs. | through 11 are displayed in terms of

)1/2

the dimensional radial variable r = r* or in (r* scale to better visualize
the predicted flow pattern near the axis. The first 10 figures are for an
intense vortex similar to those produced in modern laboratory vortex
simulators. The outer rim is located at r*(xs) = 1.932 m while the last
figure shows a weaker configuration with maximum radius of 0.642 m. Be-
cause the intensity of the inflow and rotation at the outer rim greatly
effects the location of the maximum tangential velocity in the x coordinate
an appropriate choice for o must be established for each of the two cases

to convert our calculations In x back into r = r* scale. The scaling factor
o is calculated once for each case via the formula Xymax - rj;ax ¢ (zro)-2
by selecting 0.15 m as the appropriate radius for the maximum tangential
velocity, in approximate agreement with laboratory simulations (Church

et al., 1979). Both radii given above correspond to a maximum value for

x of 20, This value is selected as typical from a large number of tests.
Usﬁng numerical results representative of each case the scaling factor for

the more intense flow is determined as r° = 0.215 m while the weaker case uses

o 0.0728 m. The equations for Fo, mo,' ..., themselves are independent

110.
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of ro? é and v but to convert back to the dimensional variables requires some ]
appropriate choices. The radial distance is labeled r* in the figures indicating
that our choice of o has been used to convert from the x coordinate back into

the dimensional r = r* coordinate.

ot

Radial profiles 6f Fé and its components are shown in Fig. 1. These are
computed using Foo(xs) = 250, Flo(xs) = - 0.8 and moo(xs) = 194 and are presented
in a uniform (r"-‘)'/2 scale. Fé and its components should be Interpreted as a
measure of the vertical velocity (Eq. 13). The solid curve labeled Féo’ obtained
from (20a) has its maximum value at the axis, i.e. r* = 0, and by itself is typical ;
of the profile found in a one-cell vortex (Kuo, 1966). When higher order expansion
terms, obtaine& from Eqs. (21a) and (22a) are included in Fé = Fgo + uFél + a2F62 .
with o taken as one, the profile is radically different since Fé =0atr¥x=0 4
and thus represents the initial stage of a two cell vortex. The latter is generally
characterized by negative vertical velocities at and near the axis with non-negative
values further away. For our purposes three terms will be sufficient to approximate
F° or Fé, since e.g., the dottéd curve representing sz is significantly smaller in
magnitude than either F;o or Fbl Iindicating the decreésing importance of higher
order terﬁs in the a expansion. Higher order terms in the (62*%)power series
expansion Eqs. (10) and (11) like Fi» where F, = aF‘o + °2Fll’ are similarly much
smaller than the zeroth-order terms. Note that lO.FiO as plotted in Fig. 1 is
still small In magnitude. The second term in FI’ i.e. FII’ is even smaller. We ]

will neglect the very small contributions of F2 and other higher order terms.

. Included in Fig. 1 is the dashed-dot curve showing the radial profile of F;

when terms generated by vertical diffusion are removed from the calculations. The

resulting differences in Fé are clearly small as seen by comparing the dashed-dot
and solid curves and do not change the two cell nature of the vortex which results

when radial and tangential motions are coupled. Our calculations show that as the

3 b ka5, A AR e i Y
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vortex becomes more intense this small contribution is reduced even further (not i
displayed) while in the convergence region of a weak vortex vertical variations
are more pronounced so that vertical diffusion becomes more impartant, as shown
in Fig. 11. In this weaker vortex configuration, Fig. 11, the ratio of FIOIFoo
at X is an order of magnitude larger than that used to compute the more intense ' 5
vortex described in Figs. 1 through 10.

According to Hall (1972) the vortex core is characterized, above the boundary
layer, by a slight spreading out of the core with height hence a small decrease
in radial and tengential velocities with height and the development of an adverse
pressure gradient.

We tune our model to produce similar behavior by choosing Fl as minutely
negative at the rim, hence negative over the entire radius, giving an increasingly
negative contribution with increasing height to the radial velocity component and
consequently to the tangential velocity. Fig. 2 shows that the value of Fé is
sensitive to changes in-Fl since non-zero FI values allow the tangential velocity
and radial motions to be coupled. If FI is identically zero everywhere then Fo
wiil be identically Foo’ i.e., the radial motion becomes independent of the rota-

tion rate. The magnitude of FI is chosen so that the coupling effects of F‘ and

m produce nearly zero values at the axis for Fé, solid line, when the swirl
angle, 6 = tan-' m°/2F°. Is in the neighborhood of twenty degrees in approximate
agreement with results found in laboratory simulations (Church et. al., 1979,
Church and Snow 1979).

In Fig. 3, radial profiles of Fé are presented for four different rotation
rates at the rim, i.e., with moo(xs) = 170, 194, 2% and 280 while Foo(xs) = 250
and F'o(xs) = = 0.8 are each held fixed. This is equivalent to varying the swirl

angle at the rim from 18.78° to 29.25° (z* = 0) by adjusting the tangential velo-

city. It should be noted that laboratory simulations measure thelir swirl angle
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somewhere between the rotating screen and the updraft core and not at the rim
exactly. For the smaller value of moo(xs) of 170 the F! profile, given by the
dashed curve, is positive throughout the entire radius but already significantly
reduced near the axis as seen when compared with the solid curve labeled Féo
which does‘not include the coupling effect of the tangential flow. As the rota-
tion rate is increased Fé becomes increasingly smaller at the axis and is nearly
zero when moo(xs) = 194 (solid Iiﬁe). Further increases in the rotation rate
produce negative Fé values at the axis typical of the two celled vortex. Note

that the profile away from the axis, say r* > 0.25 m, remains almost uneffected

by variations in the swirl angle. In the laboratory simulator where the volume

flow rate is unchanged in the experiment there would be somewhat more of an

e M

increase in this outer region, of the order of 10%, to compensate for the down-
watf motion at the axis. Thus our results for increasing values of m, at the
boundary have a small decreasing volume flow rate for the same radial inflow
rate. This may be interpreted as having a slightly decreasing aspect ratio and
radial Reynolds number. Consequently the swirl ratio S will increase more than
that predicted due to changes in the swirl angle alone since $ is inversely pro-
portional to the aspect ratio.

In Fig. 4 values of ;]/2

Fo’ which is proportional to the radial velocity,
are given up to a radius of 0.28 m. The two cell flow is very evident in fhe
dashed-dot (moo = 240) and dotted curves (moo = 280) since both have negative

values next to the axis. The solid curve labeled x-l/2

Flo shows the smallness
of the negative first order term when compared with zero order terms.
The development of the downward vertical motion at the axis is clearly seen

to descend from high levels of z, in agreement with laboratory’findings (Church

et al. 1979), since negative vertical motion is possible when small positive

zeroth-order and negative first-order terms are combined provided at some z* > 0




the expression IGz*zFiI > Fl in Eq. (13) is first satisfied. This occurs when

Fé is much subdued but still positive at the axis, e.g., as does occur as shown
in Fig. 3. The combination of zeroth and first order terms would then lead to . i

a reduction with height in the vertical velocity, a stagnation or zero point

and finally negative vertical motion above that level. This type of motion is
clearly seen in the laboratory simulations of the vortex (Church et al., 1979,
Ward 1972).

Profiles of the tangential velocities are shown in Fig. 5 for the same cases
discussed in Figs. 3 and 4. As the swirl angle at z* = 0 is increased in value
for four cases between 18.78 to 29.25°, corresponding to the dashed through
dotted ﬁurves respectively, the tangential velocity maximum moves further from
the aXis, a feature commonly observed in laboratory simulations (Church et al.,
1979). Outside the radius of maximum tangentia) flow the shapes of the profiles
are very similar. This follows since the value of the zeroth order angular
momen tum, m, = Vols remains nearly constant. For example with a value of 194 at
the rim the value of m is 192.8 at r* = 0.2422m which is very close to the radius
of maximum velocity at 0.15m. This means that the vertical velocity is confined
within a region certainly less than twice the radius of the maximum tangential
velocity. The flow behavior very near the axis is in a state of near solid
rotation thus Fo’ Mys oo each are nearly proportional to x as shown in Table 1
for the case moo(xs) = 194, Obviously the slope there will vary as the swirl
angle is changed. Note that as mo(xs) is increased from 170 to 194, dashed and
solid line respectively in Fig. 5, the slpope of the tangential velocity is
slightly reduced near the axis but enhanced as it approaches its maximum value.
Further Increases in the swirl angle continue to steepen the slope just inside

the radius of maximum velocity.

The tangential velocity Is observed to become negative in the region of the
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core where the two cell vortex contains negative vertical velocity and outward

radial velocity and hence gives rise to an advective loss of angular momentum

in the core. In the laboratory simulator the downward motion at the axis in

2 dn.

the two cell vortex appears to descend downward through the baffling near the
top of the vortex generator down to the lower surface. Obviously our model
which is restricted to the convergence region of the vortex cannot duplicate

é this behavior. The configuratic:: given by the dashed-dot and dotted curves in

Fig. 5, representing predicted rotational flow for a two celled vortex, will 4

4 give rise to inertial instability since the gradient of the circulation changes

signs (Rayleigh, 1916 and Synge, 1938). ;
Another type of instability is revealed in Fig. 6 by the radial profiles

of mé, here m& is proportional to the vertical vorticity and the prime denotes

a derivative with respect to x. Even for the smaller boundary value of moo(xs) =
170 (dashed curve) the gradient of m! changes sign revealing that the flow
g configuration is barotropically unstable. The slope of the uncoupled or zeroth ]
order term méo is of the same sign thus the instability portrayed in other curves
arises because of the coupling effect of the radial and vertical flows back on
the tangential motion. Note that the maximum value for m&o occurs at the axis
while in the other curves, representing mé for increasing swirl angles, the
: maxima are achieved progressively further away from the axis and.closer to the 1
tangential velocity maxima. In fact these maxima occur where the gradient of ;

the tangential velocity is very large as seen when comparing Figs. 5 and 6.

e A

These results indicate that azimuthally varying three-dimensional disturbances

precluded from the present axisymmetric model will be created under these unstable

conditions, which will even out the negative vorticity and negative rotation in

the core to make them not observable in laboratory simulation. The possibility

that the barotropic instability of the tangential flow profile may lead to
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generation of suction vortex type disturbance in tornadoes as suggested by
Fujita (1972) has been investigated by Staley and Gall (1979). Snow (1978) has

postulated the other alternative, i.e., an inertial instability.

Table 1. Values of Fo' FI’ ms ml and their components at two locations near

the axis. All F and m values are to be multiplied by IO-S.

x r* Foo For Foz Flo Fo Fpoom
0.0001 0.00k3 196  -146 49 -0.6 1.1 -0.9 13736
0.001  0.01359 1976 -1453  -499  -6.4  15.0 -8.6 109742

X m

0.0001 -165
0.001 -1625

116.
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The radial profile of the scaled velocity magnitude (IVI\_)-l . 107%) at
level z = 0 and its tangential and radial component are represented by the

continuous, the dashed and the dotted curves in Fig. 7 respectively. This

form of presentation is taken since a conversion to actual velocity would

require the knowledge of the viscosity coefficient v. Our model predicts
less than a four-fold increase in the velocity magnitude from the rim to its
maximum value., This appears to agree very well with laboratory simulations
(Church et al., 1979). Also note that the radial component's contribution

to the velocity magnitude is very small inside the radius of maximum tengen-
tial.velocity but dominates near the rim.

For very small swirl angles (not'shown), our model, in agreement with
laboratory findings (Snow et al., 1980) gives weakly swirling flows without
a central core. In this case the tangential component increases with radius
right up to the rim,

Radial profiles proportional to the vertical velocity, the tangential
velocity and the vertical vorticity are shown in Fig. 8 through 10, respective-
ly. Three.different values of the swirl angle ranging from 17.92 to 23.32°
(z* = 0) are used by varying the rédial inflow component while keeping the
rotation rate at the rim constant. As the boundary value of Foois decreased
from 300 (dashed curve) to 225 (dotted curve) while mOst) = 194 and
Flo(xs) = - 0.8 are each held constant, the vertical flow is found to change
from all positive values to the two cell configuration, in agreement with what
happens as the swirl angle Is increased. Correspondingly, the tangential
velocity (Fig. 9) shows a decrease in magnitude with an outward expansion of

the radius of the maximum value in accordance with the law of conservation of

. angular momentum. The curves in Fig. 10 show a similar pattern to that

discussed earlier for the vertical vorticity.
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Our equations are non-linear so the nature of their solutions might vary
somewhat as the magnitudes of the boundary values are varied but we find that
for-a large range of boundary conditions they still behave similarly. A
weaker flow configuration using Foo(xs) = 25 is shown in Fig. 11, but even
in this case it still is possible to have the vertical velocity change from
all positive (dashed line, moo(xs) = 10) to that found in a two-celled vortex
4 (dotted line, moo(xs) = 30) by changing the tangential velocity at the rim.

,} No negative tangential velocities a}e~genérated for this case where the swirl
angle is varied from 11.31 to 30 .96°. Tests using Fo; (xs) = 500 also

i generate the two-celled vortex with the appropriate choices of moo(xs). Note
iq that when our results are converted is«ito actual velocities the choice for the
value of viscosity, used in scaling the equation, does not determine the nature
of the flpw since the same flow characteristics are found over a broad range
of bounda}y Qalues.

5. Conclusion

In this study a model of the convergence region of a laboratory vortex q
is investigated via a similarity approach. The predicted flow is shown to
vary significantly only near the axis as the swirl angle at the outer rim
is changed. This type of response‘appears to be exactly similar to that
observed in the laboratory. Of course, not all the details of the flow
found in the laboratory vortex generator can be reproduced here, but the
nature or trend of changes predicted in this study appears to be generally

valid.
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List of Figures

1. Radial profiles of F& which is proportional to the vertical
velocity, and its components are given. FIO is also displayed.
First subscript denotes the 6z2 expansion while the second indicates
location in o expansion, Boundary values: Foo = 250, m°o = 194

and F,. = -0.8, Dashed-dot curve is Fé when vertical diffusion is ignored.

10
2. Radial profiles of Fé computed using three different boundary

values for Flo» t-e. (solid) Flo = -0.8, (dotted)Flo =-1.1 and
(dashed) Flo = «0.6. Other boundary values same as in Fig. 1.

3. Radial profiles of F; computed for four different swirl angles
obtained by varying the tangential velocity. Boundary values used are

(solid) mo = 194, (dashed) = 170, (dashed-dot) Mo = 240 and

Moo
(dotted) mo = 280. Other boundary values same as in Fig. 1.

*l/2F

L. Same as Fig 3 except showing x o’ which is proportional to

the radial velocity, on a linear scale near the axis.

1/2

5. Same as Fig. 3 except showing X m which is proportional

to the tangential velocity.

6. Same as Fig. 3 except showing m& which is proportional'to the
vertical vorticity.

7. Radial profiles (time 10-2) of (u2+v v-l(solid). vv-l

(dashed) and uv-](dotted). Boundary values same as used in Fig. 1.
8. Radial profiles of Fé for three swirl angles obtained by varying
the radial velocity component. Boundary values: (solid) F@° = 250,

(dashed) Foo = 300 and (dotted) Foo = 225. Other boundary values

same as Fig. 1.
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Fig.
Fig.

Fig.

9. Same as Fig. 8 except showing x-‘/zm

x
10, Same as Fig. 8 except showing m;.

I1l. Radial profiles of F& for three swirl angles. Computed using

boundary values (solid) ™o = 20, (dashed) ™o = 10 and (dotted)

Mo = 30. Otherwise Foo(xs) = 25 and Flo(xs) =-0.3. The dashed-dot

curve is Fé when vertical diffusion is ignored.
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