AD=A113 040 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 9/2
AN INVESTIGATION OF FUNCTIONAL CORRECTNESS ISSUES.(U)
1982 O O DuUNLOP F49620=80~-0001
UNCLASSIFIED CSC-TR=1135 AFOSR=-TR-82-0263 N

and
[

o
FFFEEER

EEEE
5 i

!V‘
’

Ll e
= | IE3
lllll' 25 flis e

NATIONAL BUREAU OF SMND‘ARDS-I%}A

MICROCOPY RESOLUTION TEST CHART _

-

40

A Al1 30

BIAAAH esranss s K i el b e P S

Technical Report TR-1135 January, 1982
- F49 620-80-C€001

An Investigation of
Functional Correctness Issues*

Douglas D. Dunlop

um——

Accession For
WIS GRAAr
0

DTIC TAB
Unannounced 0
Justification - _
By
< AIR FORCE OFFTCE OF SCIENTIFIC RESEARCH (AFSC
 Distribution/ NOTICE OF TRANSMITTAL TO DTIC wrse)
Availability Codes This technicnl report has beon reviewed and s
Avail and/or approved for puhlie relsuse JAWAFR 13312,
ist | Special bvic Distribution is unlimited.

MATTHEW J. KERPER
Chisf, Technical Information Division

i

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1982

*this work was supported in part by the Air Porce Office of
Scientific Research Contract «lllR-F49620-80~C4001 to the Univer-
sity of Maryland.

re s

e R G L o R RIES PR IS - SO EITRUE MO 3o oy = TH Y P ; ey W o

_-r“ “""" —u
- UNCLASSIFIED - .
SECURI THCLASSIFICATION OF THIS PAGE (When Data Entered)
: READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T i!izi'r NUMBER 2. GOVY ACLESSION NO4J 3. RECIPIENT'S CATALOG NUMBER
AFOSR-TR- 82-02868 45 1//2,00]
A. TITLE (and Subtitie) — "'l 5. TYPE OF REPORT & PERIOD COVERED
AN INVESTIGATION OF FUNCTIONAL CORRECTNESS TECHNICAL
ISSUES '
‘6. PERFORMING OG. REPORT NUMBER
- ‘TR=-1135
7. AUTHOR(a) T F 1 IR CONTRACT OR GRANT NUMBER(3)
Douglas D. Dunlop . Bydeete | ¥A9620-80-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS : ?.‘ .. TV PROGRAM ELEMENT,. PROJECYT, TASK
Computer Science Center BT BUS B ARER & WORK UNIT NuuBERS
University of Maryland c. T 61102F; 2304/A2
College Park MD 20742 _
11, CONTROLLING OFFICE NAME AND ADDRESS LM 12. REPORT DATE
Mathematical & Information Sciences Directdrate * |JAN 82
Air Force Office of Scientific Research '~~~ [137 NUMBER OF FAGES
olling AFB DC_ 20332 _ 95 i
14. MONITORING AGENCY NAME & ADDRESS(if different [rom Conisollivig Office) . SECURITY CULASS. (of this report) t
S UNCLASSIFIED
182, DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il ditlerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

- ABSTRACT (Continue on reverse side il necossary end identify by block numver)
Given a program and an abstract functional specification that the program is

intended to satisfy, a fundamental question is whether the program executes in
accordance with (i.e. is correct with respect to) the specification. A simple
functional correctness technique is initially defined which is based on prime
program decomposition of composite programs. This technique is analyzed and
the problenis 6T the need for each intended loop function and the inflexibility
of the prime program decomposition strategy are discussed.~\32f \\FCONTINUED)

DD ':2““” 1473 woimion oF 'Y NOV #3 13 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Dote

UNCLASSIFIED .
BTV CLASSIFICATION OF THIS PAGE(When Dete Entered)

ITEM #20, CONTINUED: notion of a reduction hypothesis is then defined which can
be used in the place of an intended loop function in the verification process.
Furthermore, an efficient proof decomposition straﬁegy for composite programs is
suggested which is based on a sequence of proof transformations,

A heuristic technique is then proposed for synthesi#ing intended functions for
WHILE loops in initialized loop programs. Although the technique seems to be
useful in a wide range of commonly occuring applicafions. it is explained that
the heuristic relies on the loop behaving 1n_%y'reasonable' manner. A model of
'reasonable' loop behavior, a uniformly implinnntedvloop. is defined. It is
shown that, for any uniformly implemented loéb, ‘an” inadequate intended loop func-
tion may be generalized (i.e. made more descripﬂive) in a systematic manner.

JIFIED
SECURITY CLASSIPICATION OF Tt PAGE(Whon Date Entered)

Title of Dissertation: AN INVESTIGATION OF FUNCTIONAL
CORRECTNESS ISSUES

Douglas Dixon Dunlop, Doctor of Philosophy, 1982

Dissertation directed by: Dr. Victor R. Basili
Associate Professor
Department of Computer Science

Given a program and an abstract functional specification

that the program is intended to satisfy, a fundamental question
is whether the program executes in accordance with (i.e. is
correct with respect to) the specification. A simple functional
correctness technique is initially defined which is based on
prime program decomposition of composite programs. This tech-
nigque is analyzed and the problems of the need for each intended
loop function and the inflexibility of the prime program decompo-
sition strategy are discussed. The notion of a reduction
hypothesis is then defined which can be used in the place of an
intended loop function in the verification process. Furthermore,
an efficient proof decomposition strategy for composite programs
is suggested which is based on a sequence of proof transforma-
tions.

A heuristic technique is then proposed for synthesizing
intended functions for WHILE loops in initialized loop programs.
Although the technique seems to be useful in a wide range of com-
monly occurring applications, it is explained that the heuristic
relies on the loop behaving in a "reasonable®™ manner. A model of
"reasonable” 1loop behavior, a uniformly implemented loop, is
defined. It is shown that, for any uniformly implemented loop,
an inadequate intended 1loop function may be generalized (i.e.
made more descriptive) in a systematic manner.

PR

Lo A5

ACKNOWLEDGEMENTS

I would like to express my thanks to my advisor, Dr. Victor
Basili, for the guidance and encouragement he has provided
throughout my course of study at Maryland. Dr. Basili has put in
many long hours making helpful comments on my work and proposing
directions for research which often proved fruitful.

I would like to thank Dr. Harlan Mills for a number of bene-
ficial discussions concerning this research effort. To a large
extent, the work in this dissertation is inspired by Dr. Mills”
research into the nature of loop computation. I would also like
to thank Dr. Richard Hamlet, Dr. Mark Weiser, Dr. John Gannon,
David Barton and larry Morell for their helpful comments and
suggestions on earlier drafts of the material in this disserta-
tion.

Above all, I am grateful for the constant patience, support
and encouragement provided by my wife, Janet Dunlop.

This work was supported in part by the Air Force Office of
Scientific Research Contract AFOSR-F49620-80-C-001 to the Univer-
sity of Maryland.

£ 2T 3 ey P v oo

Table of Contents

l Inu“uction 0 0 0 0 0 O 09 B 00O S T O G OO OO DL OGSO S OSSO OCESSEESNes 1

' 2 A Comparative Analysis of Functional CorrectnesSs .ccceceeee 4
2.1 The Functional Correctness Technique ccccceccscscscss 5

F‘ . 2.2 The mop Invatiant f(xo) = f(X) ® & 00 0O O 085O0 0PSO SOOE 10
2.3 Comparing the Hoare and Mills Loop Proof Rules 16
2.4 Subgoal Induction and Functional Correctnessccee 17
2.5 Initializﬁ mops o @ ® O 0000 DS S OO OO OO OGO H PP OO ES e LS TBSNS 20
2.6 Discuss1°n ® @ 0 50 0000 060 00O OSSOSO OO OO OGPPSO OGO HO OO 0SSO 23
: 3 A New Verification Strategy For Iterative Programs 24
; 3.1 Constructing a Reduction Hypothesiscccccccecnces 28
3.2 Relation to Standard Correctness Techniquesc..e. 37
3.3 Proof Transformationsccececccscoccocscsccsccnesce 40
4Discussi°n ® O 0 5 05 0 00O DT S H OO0 OB OO S P SO OO SO SO e OOOeBOSS ‘2
uristic For Deriving Loop Functions ...cccceccecesccce 44
lThe “chnique ® O 5 9 0 0O "0 90 00O TSSO TN O0L OSSO OO OeNTNS ‘s
2Applicati°ns ® 0 0 0 0 09 O 0 0 50 OB T OO SO T OO ST OO0 OSSP 0SS e NN 50
3 comlete constraints P ® o 0606 00000 OO 6O S S S E OO P00 e eI 56
4 TriCkY‘ Prqram ® & ¢ O & 0 00 0O 00 00 T SO OO OO NS O ee DSOS 60
5
6
7

4 A

BU am m mops ® © 000 & 0 5 00 00 O 00D O SO PO T OO OO PSS eSO OSSO SS 62

Related mrk ® © 5 © 9 OO O O S GO 6P OGO OO O OO OGO OO S OO e SO PO SS 68

Discus31°n'!.0...Q..........I.O...I‘.l......... 70
Analyzing Uniformly Implemented LOOPS cccsscccceccccsssscsne 71
1Pte1imm‘ries ® ® 0 0 0P 06 O 6 OO0 0SB OSSOSO OO0 NPES OO e 73
2 Uniformly mpleunted mops ® © 0 5 9 006 G S OO OO S PO SO O S eV 76
3Applicati°ns l...I....l........I..'...O'l.......0.... eo
4 Simplifying the “Iteration Condition”ccceccceccs 84
5
6
7

P W U
Me o 0o 0o ¢ o 0

[]

Recognizing Uniformly Implemented LOOPS ccccccscccses 87
Rehted mrk P ® 0 6008008 02000000 5O T OSSOSO RN E0 G NS sON NN 89
DiSCUSSion ® 6 0 0 00 0 ¢ 0 0 C 0 O OO0 P OO SO OOE PO E O SO PSOeOSE RO 90
6 Summary and Concluding RemarkS ...c.ccoscccescscocsvseccnsene 92
7Referemes ® © 5 09 0 GO0 00 0 0P OO0 OSSO0 OO N0 S ON SN SE 9O O PSS ES SN EDRES 93

UlUlU'UlUlU‘U‘
e e o o o o o

W

TR PP RPN T e v o S T TREET T P o)

List of Pigures

Figure 2.1 Derive and Verify mles ® 9 & OO 00900000 oo s SO 8
13

Figure 2.2 The sets sl-ss S & 09 5 0 00000 SO S SO P GO OS D e 0es G eSS b
Figure 2.3 Flow Chart Program ...cccescscescscscscasscccves 18

b
o]
-
g.c
4 ?
;,I
r~
3 i
! /]
. i .

-
R LA

1. Introduction

The notion of program correctness is fundamental in software
engineering and is of increasing importance as computers are used
in more critical applications. Before being released for use,
software usually undergoes a validation process, i.e. an act of
reasoning in favor of its correctness. There exist two major
validation approaches. The first is testing, and consists of
executing the program on a number of inputs and then showing that
the results are in agreement with the program specification. The
alternative validation techniqgue is program verification (or a
proof of program correctness). A program is verified by apply-
ing, at some level of formality, logical and mathematical reason-
ing concerning the program and specification in order to certify
their consistency. 1In this dissertation, we consider the verifi-
cation approach to the program validation problem.

Unfortunately, a proof of correctness for any nontrivial
program is a task that may be fraught with many difficulties.
While our research addresses a number of these issues, there are
others which we choose to ignore. For one thing, we assume that
the program specification has been sufficiently formalized ¢to
make a rigorous proof of correctness possible. 1In practice, this
can be a formidable task for programs which are intended to solve
complex problems. Secondly, we will restrict our attention to
procedureless, sequential, structured programs. We do not con-
sider, therefore, the issues involved in proving programs con-
taining global/local variables, GOTOs, parameter passing or con-
currency.

Although our primary interest in studying verification is as
a method of validating programs, research in this field often has
implications for other areas of software engineering. For one
thing, a crucial aspect of proving the correctness of a program
is the act of reading and understanding its behavior. Any tech-
nigue or me ology whic acilitates this act is useful not
only as a verification tool, but also as an aid in comprehending,
documenting, modifying and maintaining programs. Secondly,
verification research can provide insight into what constitutes a
"good" program. Many practices associated with "structured pro-
gramming, " for example, are aimed at producing programs which can
feasibly be proven correct. It is reasonable to expect that
research into program characteristics which influence their veri-
fiability should well have significant implications for the pro-
gram development process.

Our approach to program verification is based largely on the
work in ([Mills 72, Mills 75]. This methodology has ~ome to be
known as functional correctness and centers around rules for
proving a prime program (i.e. basic flow chart structure) correct
with respect to a specification which has been formulated as a
mathematical function. The goal of our research is a thorough
study of a number of key issues dealing with the practical

» e g“r% s r

e

o e T R T T T TR

P e annandte L TR

application of the functional correctness methodology.

A straightforward version of functional correctness based on
prime program decomposition of composite programs is defined in
Chapter 2. This verification strategy is then compared and con-
trasted with other standard verification methodologies. In par-
ticular, the goal of the study is to analyze the theoretical
relationships between functional, inductive assertion and subgoal
induction proofs of correctness. In the analysis, it is obgerved
that the prime program decomposition strategy causes some func-
tional correctness proofs to be somewhat more complex than their
inductive assertion or subgoal induction counterparts.

A primary impediment to applying functional correctness on a
large scale in practice is the requirement that each WHILE loop
in the program be tagged with an adequate intended function.
Such a function describes the intended input/output behavior of
the loop over a suitably general input domain. while supplying
intended functions with program segments is no doubt a good pro-
gramming practice, programmers often fail to supply this documen-~
tation due to the effort and difficulty involved. This is par-
ticularly true of intended loop functions (as opposed, for exam-
ple, to those for initialized loops) since they tend to be rela-
tively complex and difficult to state. Furthermore, most program
maintenance is currently being done on programs with undocumented
intended loop functions. Chapters 3, 4 and 5 deal largely with
the issue Of verifying programs which contain WHILE loops with
missing or inadequate intended functions.

In Chapter 3, a new verification strategy for composite
structured programs is described. Based on functional correct-
ness, the technique is intended to be applied in the circumstance
where there is no intended function supplied for a WHILE loop
contained in the program. The method employs a reduction
hypothesis which dispenses with the need for the intended loop
function. 1Its merit is due to the fact that it may be easier to
invent a reduction hypothesis than to create the intended loop
function. Finally, the methodology uses the idea of a roof
transformation to overcome the above mentioned deficiencies of
prime program decomposition of composite programs.

In Chapter 4, we again consider the problem of a missing
intended loop function but restrict our attention to initialized
WHILE loop programs. The approach taken here is to create an
adequate intended function for the WHILE loop and then to proceed
with a standard functional correctness proof. A heuristic method
is presented for synthesizing these functions. Although the
heuristic seems useful in a wide range of cases, the point |is
made that its successful application relies on the program exhi-
biting a "ceasonable" form of loop behavior.

The notion of a uniformly implemented 1loop is defined in
Chapter 5. Our purpose here is two%ola. First, the definition

e A S i dae o T e Ty sty ey

e 4

c-

P s,j‘my"‘&‘_"_ -

is intended to characterize this idea of "reasonable™ or “"well
structured® loop behavior. Secondly, the definition serves as the
basis of a technique for systematically generalizing (i.e. making
more descriptive) intended functions for uniformly implemented
WHILE loops. The technique can be used to enhance a "skeleton®"
intended 1loop function to the point where it is adequate for a
functional proof of correctness.

In Chapter 6, we conclude with a summary of our research and
offer several suggestions for future work.

O ST

o

e v o e —— e N . : e e——————— NN

2. A Comparative Analysis of Functional Correctness

The relationship between programs and the mathematical func-
tions they compute has long been of interest to computer scien-
tists [McCarthy 63, Strachey 66]. More recently, [Mills 72, 75]
has developed a model of functional correctness, i.e. a technique
for verifying a program correct with respect to an abstract func-
tional specification. This theory has been further developed by
[Basu & Misra 75, Misra 78] and now appears as a viable alterna-
tive to the inductive assertion verification method due to [Floyd
67, Hoare 69).

In this chapter, a tutorial view of the functional correct-
ness theory 1is presented which is based on a set of structured
programming control structures. An implication of this verifica-
tion theory for the derivation of loop invariants is discussed.
The functional verification technique is contrasted and compared
with the inductive assertion and subgoal induction techniques
using a common notation and framework. In this analysis, the
functional verification conditions concerning program loops are
shown to be guite similar to the subgoal induction verification
conditions and a specialization of the commonly used inductive
assertion verification conditions. Finally, the difficulty of
proving initialized loops is examined in light of the functional
and inductive assertion theories.

In order to describe the functional correctness model, we
consider a program P with variables vl, v2, ... , van. These
variables may be of any type and complexity (e.g. reals, struc-
tures, files, etc.) but we assume each vi takes on values from a
set di. The set D = dl x d2 x ... x dn is the data space for P;
an element of D is a data state. A data state can be thought of
as an assignment of values to program variables and is written
<cl,c2,...,cn> where each vi has been assigned the value ci in
di.

The effect of a program can be described by a function f : D
-> D which maps input data states to output data states. If P is
a program, the function computed by P, written [P], is the set of
ordered pairs {(X,Y) | if P begins execution in data state X, P
will terminate in final state Y}. The domain of [P] is thus the
set of data states for which P terminates.

If the specifications for a program P can be formulated as a
data-state-to-data-state function £, the correctness of a program
can be determined by comparing f with [P). Specifically, we say
that P computes £ if and only if £ is a subset of [P]. That is,
if £(X) = Y for some data states X and Y, we require that [P](X)
be defined and be equal to Y. Note that in order for P to com-~
pute f, no explicit requirement is made concerning the behavior
of P on inputs outside the domain of f.

v

Example 2.1 -~ Consider the simple program

P = while a > 0 do
b := b * a;
a :=a-1
od.

The function computed by the program can be written as
[P)={(<a,b>,<0,b*(al)>) | a>=0} U {(<a,b>,<a,b>) | a<o0}.
Thus if a is greater than or equal to zero, the program maps a
and b to 0 and b*(al) respectively, otherwise the program per-
forms the identity mapping. As a notational convenience, we
often use conditional rules and data-state-to-data-state "assign-
ments" (called concurrent assignments) to express functions. In
this notation we have
[P] = (a>=0 -> a'b = O'b* (a!) lTRUE -> alb i a,b).
Finally, if we are given £ = (a>=0 -> a,b := O0,b*(al)) as the
function to be computed, we may say that P computes £, since f is
a subset of [P].

2.1. The Functional Correctness Technique

We will make use of the following notation. The domain of a
function f will be written as D(f). The notation £ o g will be
used to represent the composition of the functions g and £. If g
is a function or binary relation, g**-1 represents the binary
relation which corresponds to the inverse of g. We will use the
shorthand B*H for the WHILE loop program

while B(X) do
s= H(X)

X
o

In this program, X represents the program data state, B is a
total predicate on the data state, and H is a data-state-to-
data-state function which represents the input/output effect of
the loop body.

The functional correctness method relies heavily on a tech~
nique for verifying that a WHILE loop computes a given state-to-
state function. We present this WHILE loop technique as a
theorem and then describe the method for general programs. We
first need the following definition.

Definition 2.1 - The loop B*H is closed for a set of data
states S 1f and only if (iff)

Xes & B(X) -> H(X) € s.
Intuitively, a loop is closed for S if the data state remains in
8 as it executes for any input in S.

Theorem 2.1 - If the loop B*H is closed for the domain of a

function £, then the loop computes f iff, for all X € D(f)
(2.1) the loop terminates when executed in

-5-

N A oA e At S Ly s o, < RESRRRREEEE

¥

the initial state X,
(2.2) B(X) => £(X) = £(H(X)), and
(2.3) "B(X) -> £(X) = X.

Proof -~ First, suppose (2.1), (2.2), and (2.3) hold. Let
X[0] be any element of D(f). By condition (2.1) the loop must
produce some output after a finite number of iterations. Let n
represent this number of iterations, and let X[n] represent the
output of the loop. Furthermore, let X[1], X([2], ... X[n-1] be
the intermediate states generated by the loop, i.e. for all i
satisfying 0 <= i < n, we have B(X[1i]) & X[i+l] = H(X[i]) and
also "B(X[n]). Condition (2.2) shows £(X[0]) = £(X[1l]) =
eee = £(X[n]). Condition (2.3) indicates £(X{n]) = X{[n}. Thus
£(X{0]) = X[n] and the loop computes f.

Secondly, suppose the loop computes f£. This fact would be
contradicted if (2.1) were false. Suppose (2.2) were false, i.e.
there exists an X € D(f) for which B(X) but £(X) ¥ £(H(X})). From
the closure requirement, H(X) € D(f) and the loop produces
f(H(X)) when given the input H(X). But this implies the loop can
distinguish between the cases where H(X) is an input and the case
where H(X) is an interm2diate result from the input X. However,
this is impossible since the state describes the values of all
program variables. Finally, if (2.3) were false, there would
exist an X € D(f) for which the loop produces X as an output, but
where £(X) # X. Thus the loop must not compute f.

An important aspect of Theorem 2.1 is the absence of the
need for an inductive assertion or loop invariant. Under the
conditions of the theorem, a loop can be proven or disproven
directly from its function specification.

Example 2.2 -~ Using the loop P and function £ of Example
2.1, we shall show P computes f. D(f) is the set of all states
satisfying a >= 0. Since a is prevented from turning negative by
the . loop predicate, the loop is closed for D(f) and Theorem 2.1
can be applied. The termination condition (2.1) is valid since a
is decremented in the loop body and has a lower bound of zero.
Since H(<a,b>) = <a-l, b*a>, condition (2.2) is
a>0-> f(<a,b>) = f(<a-1,b*a>)
which is
a>0->«<0,b*(al)> = <0, (b*a)*((a~1)1)>
which can be shown to be valid using the associativity of * and
the definition a! = a*((a-1)!). Condition (2.3) is
a=0-><0,b*(al)> = <a,b>
which is valid using the definition 0! = 1,

The functional correctness procedure is used to verify a
program correct with respect to a function specification. Large
programs must be broken down into subprograms whose intended
functions may be more easily derived or verified. These results
are then used to show the program as a whole computes its
intended function. The exact procedure used to divide the

-6

ke

s e .4..5 -

program into subprograms is not specified in the functional
correctness theory. In the interest of simplicity, the technique
presented in this chapter is based on prime program decomposition
[Linger, Mills & Witt 79]. That is, correctness rules will be
associated with each prime program (or equivalently, with each
statement type) in the source language. The reader should keep
in mind, however, that in certain circumstances, other decomposi-
tion strategies may lead to more efficient proofs. One such cir-
cumstance is illustrated in Section 2.4.

In our presentation of the functional correctness procedure,
we will consider simple Algol-like programs consisting of assign-
ment, IF-THEN-ELSE, WHILE and compound statements. Before the
correctness technique may be applied, the intended function of
each loop in the program must be known. Furthermore, it is
required that each loop be closed for the domain of its intended
function. These intended functions must either be supplied with
the program or some heuristic (see Chapters 4-5) must be employed
by the verifier in order to derive a suitable intended function
for each 1loop. This need for intended loop functions is analo-
gous to the need for sufficiently strong loop invariants in an
inductive assertion proof of correctness.

In order to prove that a structured statement S (i.e. a
WHILE, IF-THEN-ELSE, or compound statement) computes a function
£, it is necessary to first derive the function(s) computed by
the component statement(s), and then to verify that S computes f
using the derived subfunctions. Consequently, the functional
correctness technique will be described by a set of function
derivation rules and a set of function verification rules. These
rules are given in Figure 2.1.

Before considering an example of the use of these rules, we
introduce two conventions that will simplify the proofs of larger
programs. First, we allow an assignment into only a portion of
the . data state in a concurrent assignment. In this case it is
understood that the other data-state components are unmodified.

Example 2.3 - If a program has varijables vl,v2,v3, the
sequence of assignments
vl = 4; v3 = 7
performs the program function
vl,v3 := 4,7
which is shorthand for
vl,v2,v3 := 4,v2,7.

Secondly, if a function description is followed by a list of
of variables surrounded by # characters, then the function is
intended to describe the program”“s effect on these variables
only. Other variables are considered to have been set to an
undefined or unspecified value.

A,

Al SRS o T

Derive Rules - Used to compute [S].
Dl: S = v:=e
1) Return {v:=e}.
S = §1;82

D2

0

1) Derive [S1)
2) Derive ([s2]
3) Return [S2] o {sl].
D3: S = if B then Sl else S2 fi
I) Derive [S1]
2) Derive [S2]
3) Return (B->[S1l] | TRUE->(S2]).
S = while B do S1 od
l) Let £ be the intended function
(either given or derived)
2) Verify that while B do S1 od
computes f
3) Return £.

D4

Verify Rules - Used to prove S computes f.
Vi: S = v:=e
1) Derive [S]
2) Show £(X)=Y => [S](X) = Y.

V2: S = §l1;82
. 1) Derive (S]

2) Show f(X)=Y -> [S](X) = Y.
V3: S = if B then Sl else S2 fi

1) Derive [S]

2) Show £(X)=Y -> [S](X) = Y.
V4: S = while B do S1 od

1) Derive [S1]

2) Apply Theorem 2.1.

FPigure 2.1 Derive and Verify Rules

Example 2.4 - If a program has variables vl,v2,v3 that take

on values from dl,d2,d3, respectively, the function description
£ = (vl > 0 -> v2,v3 := vl+v3,v2) $#v2,v3s
is equivalent to
(Vl > 0 -> Vl,VZ,V3 = ?,V1+V3'v2),

where ? represents an unspecified value. Note that in a sense,
functions like £ are not data-state-to-data-state functions; more
accurately they are general relations. E.g. in the example,
<1,2,3> maps to <2,4,2> as well as <-2,4,2>. BRowever, we adopt
the view that f is a dl x 42 x 43 to 42 x 43 mapping and in this
light, £ is a function. We call {v2,v3} the range set for f,

.-

P mam;'.‘ﬁ .o

i b st e+ T

written RS(f). Functions not using the # notation are assumed to
have the entire set of variables as their range set. Similarly,
if the variables vrl,vr2,..,vrk are the necessary inputs to a
function description £, we say that {vrl,vr2,...,vrk} is the
domain set for £, written DS(f). In Example 2.4, the domain set
for £ 1is {vl,v2,v3]} which happens to be the entire set of vari-
ables, but this need not be the case. Note that some functions
(i.e. constant functions) may have an empty domain set.

Example 2.5 - Consider the following program
Cl) =~- (n>=0 -> g := SUM(i,l,m,i**n)) #sé

1) a = 1; s = 0;
C2) ~- (n>=0 -> s :=g + SUM(i,a,m,i**n)) #s#
2) while a <= m do
3) J :=0; p :=1;
Cc3) -- (n>=j -> p,j := p*ra**(n-j),n)
4) while j < n do
5) J =3 + 15
6) p:=p *a
7) od;
8) S :=8S + p;
9) a::=a+1l
10) od.

In this example, the functionsg on the lines labeled Cl, C2 and C3
are program comments and define the intended functions for the
program, outer WHILE loop and inner WHILE loop resgpectively. The
notation SUM(a,b,c,d) used in these functions stands for the sum-
mation from a=b to ¢ of the expression d. We use the notation
Fn-m as the derived function for lines n through m of the pro-
gram.

Step 1) - Using derive rules D1 and D2 we get

F5-6 = j,p := j+l1l,p*a.

Step 2) - We must verify the inner loop computes its in-
tended function. The closure condition and termination
condition are easily verified. The other conditions
are

j<n ~> <p*a**(n~j),n> = <(p*a)*a**(n-(j+l)),n>
and
j:n -> <p*a**(n_j)'n> = <p'j>
which are true.
Step 3) - Using D1 and D2 we derive F3-7 as follows:
F3-7 = (n>=j -> p,j := p*ta**(n-j),n) o F3-3
= (n>=j -> p,j := pta**(n-j),n) o j,p := 0,1
= (n>=0 -> p,J := a**n,n).
Step 4) - Again with D1 and D2 we derive F3-9:
F3-9 = F8-9 0 (n>=0 => p,j := a**n,n)
= g,a := g+p,a+l o (n>=0 -> p,J := a**n,n)
= (n>‘° -> p,j,s,a = a**n,n,s+a**n,a+1).

Step 5) - Now we are ready to show the outer loop computes
its intended function. Again the closure and termina- :
tion conditions are easily shown. The remaining condi-

o

A e T O AL ST T e s

tions are (where n>=0)
a<sm ~> s4SUM(i,a,m,i**n) = (g+a**n)+SUM(i,a+l,m,i**n)
and
am -> s+SUM(i,a,m,i**n) = g,
both of which are true.
Step 6) - We now derive Fl-10. Applying D2 we get
Fl-10 = (n>=0 => g8 := g+SUM(i,a,m,i**n))#s¢ o fl-1
= (n>'0 -> 8 = 8+SUM(ipa,m, 1**“))‘3# O a,s8 := 1,0
= (n>=0 => g8 := SUM(i,l,m,i**n))¢#sé.
Step 7) - Since the intended program function agrees with
Fl-10, we conclude the program computes its intended
function.

The functional correctness technique was developed by [Mills
72, Mills 75]}. This verification method is compared and con-
trasted with the inductive assertion technique in (Basili &
Noonan 80]. The presentation here 1is based on prime program
decomposition of composite programs and emphasizes the distinc-
tion between function derivation and function verification in the
correctness procedure.

The essential idea behind Theorem 2.1 can be traced ¢to
[(McCarthy 62, McCarthy 63], in which a technique for p:roving two
functions equivalent, "recursion induction," is described.
Theorem 2.1 can be viewed as a specific application of this tech-
nique. In (Manna & Pnueli 70, Manna 71] and more recently
(Morris & Wegbreit 77], loop verification rules similar to that
stated in Theorem 2.1 are suggested. In [Basu & Misra 75], the
authors prove a result which corresponds to Theorem 2.1 for the
case where the loop contains local variables.

The closure requirement of Theorem 2.1 has received consgid-
erable attention. Several classes of loops which can be proved
without the strict closure restriction are discussed in ([Basu &
Misra 76, Misra 78, Misra 79, Basu 80]. In (wWegbreit 77], how-~
ever, the author describes a class of programs for which the
problem of “"generalizing®™ a loop specification in order to
satisfy the closure requirement is NP-complete.

2.2. The Loop Invariant £(X0) = £(X)

An important implication of Theorem 2.1 is that a loop which
computes a function must maintain a particular property of the
data state across iterations. Specifically, after each itera-
tion, the function value of the current data state must be the
same as the function value of the original input., In ¢this sec-
tion we discuss and expand on this characteristic of a loop which
is closed for the domain of a function it computes.

A loop asgertion for the loop B*H is a boolean-valued
expression which yields the value TRUE just prior to each evalua-
tion of the predicate B. In general, a loop assertion A is a
function of the current values of the program variables (which we

-10-

will denote by X), as well as the values of the program variables
on entry to the loop (denoted by X0). To emphasize these depen-

5 dencies we write A(X0,X) to represent the loop assertion A.
Let D be a set of data states. A loo invanant for B*H
over a set D is a boolean valued expression A(X0,X) which satis-
' . fies the following conditions for all X0,X € D
(2.5) A(X0,X) & B(X) -> A(X0,H(X)) & (H(X) € D).

Thus, if A(X0,X) is a loop invariant for B*H over D, then A(X0,X)
is a 1loop assertion under the assumption the loop begins execu-
tion in a data state in D. Purthermore, the validity of this
fact can be demonstrated by an inductive argument based on the
number of loop iterations.

i Loop assertions are of interest because they can be used to
establish conditions which are valid when (and if) the execution
of the loop terminates. Specifically, any assertion which can be

‘ inferred from

(2.6) A(X0,X) & “B(X)
will be valid immediately following the loop.

: It should be clear that for any loop B*H, there may be an
: arbitrary number of valid loop assertions. 1Indeed, the predicate
‘ TRUE is a trivial loop assertion for any WHILE loop. RHowever,
3 ' the stronger (more restrictive) the loop assertion, the more one
e can conclude from condition (2.6). PFor a given state-to-state
' function £, we say that A(X0,X) is an f-adequate loop assertion
) iff A(X0,X) is a loop assertion and A(X0,X) can be used In veri-
e fying that the loop computes the function f. More precisely, if
{ ! f is a function, the condition for a loop assertion A(X0,X) being
. an f-adequate loop assertion is
(2.7) X0 @ D(f) & A(X0,X) & "B(X) -> X=£(X0).
A loop invariant A(X0,X) over some set containing D(f) for which
condition (2.7) holds is an f-adequate loop invariant.

Example 2.6 - Let P denote the program

, while a ¢ {0,1]} &
if a > 0 then
{ a :=a-2
b else a := a + 2 f£i
_830

Consider the following predicates

‘. Al (<a0>,<a>) <-> TRUE

f B A2(<a0>,<a>) <-> ABS(a) <= ABS (al)

r - A3(<a0>,<a>) <=-> ODD(a) = ODD(a0)

F A4(<al>,<a>) <=-> ODD(a) = ODD(a0) & ABS (a) <= ABS (al)

{ ! . A5(<a0>,<a>) <-> ODD(a) = ODD(a0) OR (a=3 & al=2)

! where ABS denotes an absolute value function, and ODD returns 1
N if its argument is odd and 0 otherwise. Each of the 5 predicates
N is a loop assertion. Let D be the set of all possible data

states for P (i.e. D = {<a> | a is an integer}). Let f =
(<a>,<0DD(a)>) | a is an integer}, and consider A3. Since a €
0,1} implies a=ODD(a), we can infer a=0DD(a0) from A3(<a0>,<a>)
& a € {0,1}. Thus A3 is an f-adequate loop assertion. Simi-
larly, A4 and A5 are f-adequate loop assertions, but neither Al
nor A2 is restrictive enough to be f-adequate. Predicates A3 and
A4 are loop invariants over D; however, since AS fails (2.5), it
is not a loop invariant (a=3,a0=2 is a counter example).

Theorem 2.2 - If B*H is closed for D(f) and B*H computes f
then £(X0) = £(X) is an f-adequate loop invariant over D(f), and
furthermore, it is the weakest such loop invariant in the sense
that if A(X0,X) is any f-adequate loop invariant over D(f),
A(X0,X) -> £(X)=£(X0) for all X,X0 € D(f).

Proof - First we show that £(X)=£(X0) is a loop invariant
over D(f). Condition (2.4) is £f(X0)=£(X0). From Theorem 2.1,
for all X € D(£),

B(X) => £(X) = £(HR(X)).
Thus for all X,X0 € D(¥f),

B(X) & £(X0)=£(X) -> £(X0)=£(X)=£(RB(X)) -> £(X0)=£(H(X)).
Adding the closure conditjon B(X) -> H(X) € D(f) yields condition
(2.5). Thus £(X)=£(X0) is a loop invariant over D(f). Again
from Theorem 2.1, for all X € D(f),

“B(X) -> £(X)=X.
Thus for all X0 € D(f),
£(X)=£(X0) & “B(X) -> £(X)=£(X0) & £(X)=X -> £(X0)=X

which shows £(X)=£(X0) is f-adequate. Let A(X0,X) be any f-
adequate loop invariant for B*H over D(f), and let 20,Z be ele-
ments of D(f) such that A(%20,Z). Since B*H computes £ and Z €
D(f), there exists some sequence 2[1},2(2], ... ,Z2[n] {(possibly
with n=1) where 2[1)=%2, ZIn]=£(2), “B(Z[n]), and with B(Z[i]) &
Z[i+l)] = H(z2([il]) for all i satisfying 1 <= { < n. By condition
(2.5) we have A(zO,Zz{1]), A(20,2{2]), ... ,A(20,2[N]); thus
A(Z20,£(2)) and “B(£f(2)). Since 20 € D(f) and A(X0,X) is £~
adequate,

A(20,£(2)) & "B(£(2)) ~> £(20)=£(2)
from condition (2.7). Thus for all 20,2 € D(f),

A(20,2) -> £(20)=£(2).

Example 2.6 (continued) - In this example, A3 is of the form
£(X)=£(X0). A3 is clearly weaker than the other f-adegquate loop
invariant A4. It is worth noting that A3 is not weaker than AS,
but A5 is not a loop invariant, and A3 is not weaker than A2, but
A2 is not f-adequate. This situation is illustrated in PFgure
2.2. The sets labeled 8S1-85 are the sets of ordered pairs
(<a0>,<a>} satisfying Al-A5, respectively, i.e.

SI={ (<a0>,<a>) | AI(<a0>,<a>)}
for I=1,2,3,4 and 5. The diagram is partitioned in half with a ¢
{0,1} on the left and a € {0,1} on the right. Note that S4 (or
the set corresponding to any f-adequate loop invariant for that
matter) is a subset of 83. Purthermore, the set corresponding to
each f-adequate loop assertion is identical where a € {0,1}.

i "‘W% - e e

)
S S, S

gy -

v e e . .

This region of the diagram is precisely the set f.

Consider the problem of using Hoare“s iteration axiom
(2.8) I&B {X:=8(X)} T ~> I {B*H} I & ~B
to prove the loop B*H computes a function f where B*H is closed
for D(f). In our terminology, if B*H is correct with respect to
f, I must be a loop invariant over (at least) the set D(f) (oth-
erwise X=f(X0) for all X0 € D(f) cannot be inferred). However,
using a loop invariant over a proper superset of D(f) is in gen-
eral unnecessary, unless one is trying to show the loop computes
some proper superset of £. If we choose to use a loop invariant
I over exactly D(f), Theorem 2.2 tells us that £(X)=f(X0) is the

ag {o0,1} ae {o0,1}
Sl=>

t

&
L3
b
4

tlljl bithls

. ﬁ;-r:
ss- ||| FFFFEROAHE

S3==

O
R
3

W
D

) ¢

FPigure 2.2 The Sets S1-85

e

- e R T o Rt - e

Py NP E Yy Soer

AT

o

.
———— .

A e L - IS

- [P

weakest invariant that will do the job. In a sense, the weaker
an invariant is, the easier it is to verify that it is indeed a
loop invariant (i.e. that the antecedent to (2.8) is true),
because it says less (is less restrictive, is satisfied by more
data states, etc.) than other 1loop invariants. Along these
lines, one might conclude that if a loop is closed for the domain
of a function £, Theorem 2.2 gives a formula for the "easijest"
loop invariant over D(f) that can be used to verify the loop com-
putes f.

Let us again consider loop invariants and functions as sets
of ordered pairs of data states. Let B*H compute f and let
A(X0,X) be an f-adequate loop invariant. It is clear that in
this case

{(x0,X) | A(X0,X) & “B(X) & (X0 € D(£))}

is precisely f£. That is, £ must be the portion of the set
represented by A(X0,X) obtained by restricting the domain to D(f)
and discarding members whose second component cause B to evaluate
to TRUE. Can the set represented by A(X0,X) be determined from
£f?2 No, since in general, there are many f-~adequate invariants
over D(f) and the validity of some will depend on the details of
B and H (e.g. A4 in Example 2.6). However, Theorem 2.2 gives us
a technique for constructing the only f-adequate invariant over
D(f) that will be valid for any B and H, provided B*H computes £
and is closed for D(f). Specifically, this invariant couples an
element of D(f) with any other element of D(f) which belongs to
the same level set of £. (S is a level set of f iff there exists
a Y such that s={x|f(X)-Y}). Put another way - all f-adequate
loop invariants over D(f) describe what the loop does (i.e. they
can be used to show the loop computes f), and some may also con-
tain information about how the final result is achieved. That
is, one might be able to use an f-adequate loop invariant to make
a statement about the intermediate states generated by the loop
on some inputs. The intermediate states "predicted" by the weak-
est invariant f£(X)=f(X0) is the set of all intermediate states
that could possibly be generated bv any loop B*H that computes
the function. Thus, the invariant £(X)=£f(X0) can be thought of
as occupying a unique position in the spectrum of all possible
loop invariants: it is strong enough to describe the net effect
of the loop on the input set D(f) and yet is sufficiently weak
that it offers no hint about the method used to achieve the
effect.

Example 2.7 - Consider the following program

while a > 0 do
a :=a -131;
c tsc+ Db
od.

This loop computes the function

f = (a>=0 -> a,b,c := 0,b,c+a*b).
From Theorem 2.2, we know that

~14-

.

.. ""0\'.:"'?"5-& .

A(<a0,b0,c0>,<a,b,c>) <«<-> <0,b0,c0+a0*b0>=<0,b,ct+a*b>

is the weakest f-adequate invariant over D(f)={<a,b,c> | a>=0}.
Consider the sample input <4,10,7>. Our loop will produce the
series of states <«4,10,7>, <3,10,17>, <2,10,27>, <«1,b10,37>,
<0,10,47>. Of course, our invariant agrees with these intermedi-
ate states (i.e. A(<4,10,7>,<4,10,7>), A(<4,10,7>,<3,10,17>), ...
» A(<4,10,7>,<0,10,47>)), but it also agrees with <6,10,-13>. We
conclude then, that it is possible for some loop which computes f
to produce an intermediate state <6,10,-13> while mapping
<4,10,7> to <0,10,47>. Furthermore, no loop which computes f
could produce <6,10,-12> as an intermediate state from the input
<4,10,7> since the invariant would be violated.

To emphasize this point, we define an f-adequate invariant
A(X0,X) over D(f) for B*H to be an internal invariant if A(X0,X)
implies that B*H will generate X as an intermediate state when
mapping X0 to £(X0). Intuitively, an internal invariant captures
what the loop does as well as a great deal of how the loop works.
In our example, bsb0 & c=cO0+b* (al0-a) & O<=a<=al is an internal
invariant, but A(<a0,b0,c0>,<a,b,c>) as defined above is not (the
state <6,10,-13> on input <4,10,7> is a counter example). It can
be proven that if £ is any nonempty function other than the iden-
tity function, no 1loop for computing f exists for which
£(X)=£(X0) is an internal invariant[l]. However, if we consider
nondeterministic loops and weaken the definition of an internal
invariant to one where A(X0,X) implies X may be generated by B*H
when mapping X0 to £(X0), such a loop can always be found. This
loop would nondeterministically switch states so as to remain in
the same level set of £. Our example program could be modified
in such a manner as follows:

while a > 0 do
t := "some integer value greater than or equal

to zero";
C :=Cc + b * (a-t):
a = ¢
od

and corresponds to a "blind search”™ implementation of the func-
tion.

In [Basu & Misra 75], the authors emphasize the dicference
between 1loop invariants and loop assertions. The fact that £(X)

R T N Y g~ NP (e

{1] Outline of proof: Let £(Y)¥Y, B*H compute f and suppc<e
the f-adequate invariant f£(X)=f(X0) over D(f) for B*H is an
internal invariant. We must have B(Y). By (2.2) £(Y)=£(H(Y)).
Consider H(Y) as a fresh input. 8Since £(X)=£(X0) is an internal
invariant and £(Y)=f(H(Y)), the loop must eventually produce in-
termediate state Y, which must then produce H(Y). Thus B*H fails
to terminate and does not compute £.

*§

S— -,MM

= £(X0) is an f-adequate loop invarijiant appears in [Basu & Misra
75, Linger, Mills & wWitt 79]. The independence of this loop
invariant from the characteristics ot the loop body is discussed
in [Basu & Misra 75].

2.3. Comparing the Hoare and Mills Loop Proof Rules

An alternative to using Theorem 2.1 in showing a loop com-
putes a function is to apply Hoare’s inductive assertion verifi-
cation technique. That is, one could verify P {B*H} Q where

P <~> X=X0 & X € D(f), and
Q <=> X=£(X0)
by demonstrating the following for some predicate I:
Al: P->1
A2: B&I {X:=H(X)} I
A3= "B & I =-> Qo
Strictly speaking, conditions Al through A3 show partial correct-
ness; to show total correctness, one must also prove
Ad: B*H terminates for any input state satisfying P.

We now wish to compare these verification conditions with
the functional verification conditions. Recalling from Theorem
2.1, if B*H is closed for D(f), the functional verification rules
are:

Fl: X € D(f) -> B*H terminates for the input X

F2: X € D(f) & B(X) -> £(X) = £(HR(X))

F3: X @ D(f) & "B(X) -> £(X) = X.
In the following discussion we adopt the convention that if £ is
a function and X is not in D(f), then £(X)=2 is false for any
formala 2.

Theorem 2.3 - Let B*H be closed for D(f). If £(X)=£(X0) |is
used as the prealcate I in Al-A3, then Al & A2 & A3 & A4 <~> F1 &
F2 & F3. That is, the functional verification conditions Fl-F3
are equivalent to the special case of the inductive assertion
verification conditions Al-A4 which results from using £(X)=£(X0)
as the predicate I. In particular, if I <-> £(X)=£(X0) in the
inductive assertion rules, then

Al <-> TRUBE,
A2 <-> F2 provided X € D(f) & B(X) -> X € D(H),
A3 <-> P3,

Proof - We begin by noting that the termination conditions

A4 and Fl are identical, thus A4 <-> Fl. Secondly Al is

X=X0 & X € D(f) => £(X)=£(X0)
which is clearly true for any £. Combining with our first result
yields Al & A4 <-> P1l. Condition A3 can be rewritten as

"B(X) & £(X)=f(X0) -> X=f(X0)
which is trivially true for any X,X0 ocutside D(f). Thus A3 may
be rewr itten as

Ad’: X,X0 8 D(f) & "B(X) & £(X)=£(X0) => X=£(X0).

Note ¢that A3° ~> F3 by considering the case where X=X0.

P2 4

Furthermore, F3 ~> A3” by considering the case where X0 & D(f)
and £(X)=f(X0). Now we have A3 <-> A3” <-> F3 and adding this to
our result above we get Al & A3 & A4 <-> F1l & F3. We next prove
A2 & A4 <-> Fl & F2. This combined with the above equivalence
yields the desired result Al & A2 & A3 & A4 <-> Fl & F2 & F3.
Note that if there exists an X € D(f) such that B(X) but H(X) is
not defined, then the loop itself will be undefined for X, both
A4 and Fl will be false and A2 & A4 <-> F2 & F1l. We now consider
the other case where for all X € D(f), B(X) -> X € D(H). In this
situation we will show A2 <-> F2; combining with A4 <-> Fl yields
A2 & A4 <-> F2 & F1l. Rule A2 may be rewritten as
B(X) & £(X)=£(X0) {X:=H(X)} £(X)=£(X0)

which again is trivially true if X or X0 is outside D(f); thus A2
is equivalent to

X,X0 € D(f) & B(X) & £(X)=£(X0) {X:=H(X)} £(X)=£(X0).
Since H is defined for any input X € D(f) such that B(X) by
hypothesis, this may be transformed using Hoare’s axiom of
assignment to the implication
A2°: X,X0 e D(f) & B(X) & £(X)=£(X0) -> £(H(X))=£(X0).
As before, we can show A2°->F2 by considering the case where
X=X0, and F2->A2° by considering the case where X0 € D(f) and
£(X)=£(X0). Thus A2 <-> A2” <-> F2 which implies A2 <-> F2.
This completes the proof of the theorem.

The purpose of Theorem 2.3 is to allow us to view the func-
tional verification conditions as verification conditions in an
inductive assertion proof. Not surprisingly, both techniques
have identical termination requirements. If the termination con-
dition is met, F2 amounts to a proof that £(X)=£(X0) is a loop
invariant predicate. Condition F3 amounts to an application of
the "Rule of Consequence," testing that the desired result can be
implied from the predicate £(X)=f(X0) and the negation of the
predicate B.

2.4. sSubgoal Induction and Functional Correctness

Subgoal induction is a verification technigue due to [Morris
& Wegbreit 77]. It is based largely on work appearing in [Manna &
Pnueli 70, Manna 71]. In this section we compare subgoal induc-
tion to the functional correctness approach described above.

We first note that subgoal induction can be viewed as a gen-
eralization of the functional approach presented here in that
subgoal induction can be used to prove a program correct with
respect to a general input-output relation. A consequence of
this generality, however, is that the subgoal induction verifica-
tion conditions are sufficient but not necessary for correctness;
that is, in general, no conclusion can be drawn if the subgoal
induction verification conditions are invalid. Provided the clo-
sure requirement is satisfied, the functional verification cond .-~
tions (as well as the subgoal induction verification conditions
when applied to the same problem) are sufficient and necessary
conditions for correctness. Results in [Misra 77] suggest that

it is not possible to obtain necessary verification conditions
for general input-output relations without considering the
details of the loop body.

In order to more precisely compare the two techniques, we
consider the flow chart program in Figure 2.3 adapted from
[MOorris & Wegbreit 77). In the figure, PLl,P2,P3 and P4 are
points of control in the flow chart, X represents the program
data state, B is a predicate on the data state and K,H and Q are
data-state-to-data-state functions. Note that this flow chart
program amounts to a WHILE loop surrounded by pre and post pro-
cessing. Our goal is to prove the program computes a function £.
Morris & Wegbreit point out that subgoal induction uses an induc-
tion on the P2 to P4 path of the computation; that is, one
selects some relation v, inductively shows it holds for all P2 to
| P4 execution paths, and then uses v to show f is computed by all
. Pl to P4 execution paths. In our application, since f is a func-
tion, it will be required that v itself be a function. Once v
has been selected, the verification conditions are
Sl: X € D(v) & "B(X) => v(X) = Q(X)
S§2: X € D(v) & B(X) =-> v(H(X)) = v(X)
S3: X e D(f) -> £(X) = v(R(X)).

L2222 2 2 2]

P * Pl *
22T

kR RkR

. ——————> * P2 *
l kkhkhkhi

? |
/ N\
NO H*RAERREE e Thkhh kRt

. / \
{ | B(X)? | ====>* P3 #*-->| X :=Q(X) |-->* P4 *
] \ / ARARRRARE ammcccmc—ea- khkkhhihkh
\ /

| Yes

—-] X :=H(X |

Figure 2.3 Flow Chart Program

Note that Sl and S2 test the validity of v; S3 checks that v can
be used to show the program computes f.

The functional verification theory presented here is similar
with the exception that the function Q is not included in the
induction path. We select some function g and show it holds for
all P2 to P3 execution paths (i.e. we show the WHILE loop com-
putes g) and then use g to show f is computed by all Pl to P4
execution paths. Once g has been selected, the verification con-
ditions are

Fl: X € D(g) & "B(X) -> g(X)=X
F2: X € D(g) & B(X) -> g(H(X)) = g(X)
F3: X € D(f) -> £(X) = Q(g(K(X))).

5 Note that both technigues require the invention of an inter-
mediate hypothesis which must be verified in a "subproof." This
hypothesis is then used to show the program computes f. The
function Q in the flow chart program is absorbed into the inter-
mediate hypothesis in the subgoal induction case; it is separate
from the intermediate hypothesis in the functional case. Indeed,
the two intermediate hypotheses are related by
v=0Qo04g.

If Q is a null operation (identity function), the intermedi-
ate hypotheses and verification conditions of the two techniques
are identical. A significant difference between the ¢two tech-
niques, however, can be seen by examining the case where K is a
null operation. If the loop is closed for D(f), subgoal induc-
- tion enjoys an advantage since f can be used as the intermediate

hypothesis. That is, the subgoal induction verification condi-
tions are simply

S1°: X € D(f) & "B(X) => Q(X) = £(X)

§2°: X e D(f) & B(X) ~> £(H(X)) = £(X).

In the functional case, one must still derive an hypothesis

for - the 1loop function g. A heuristic which can be applied here

| is to restrict one’s attention to functions which are subsets of
Q**~1 o f. However, it is worth emphasizing that this rule need
not completely specify g since, in general, Q**-1 o £ is not a
function. Once g has been selected, the verification conditions

- are
{ Fl1°: X € D(g) & "B(X) -> g(X)=X
b F2°: X @ D(g) & B(X) -> g(H(X))=g(X)
F3°: X e D(f) -> £(X) = Q(g(X)).

The difference between the two techniques in this case is
due to the prime program decomposition nature of the functional
correctness algorithm described in Section 2.1. A more efficient

’ proof 1is realized by treating the loop and the function Q as a
. whole. Accordingly, correctness rules for this program form
might be incorporated into the prime program functional correct-

ness method described earlier. The validity of these rules can

be demonstrated in a manner quite sgsimilar to the proof of Theorem

b - W

-19-

2 o4

- vy Q.‘:Q;,-L< -

. . . N e Bk i e i T

2.1.
Example 2.8 - We wish to shov the program

while x ¢ {0,1,2,3} do
if x < 0 then x := x + 4
else x := x - 4 fi
od;

if x> 1 then x = x ~ 2 fi

computes the function f={(<x>,<ODD(x)>)}. The subgoal induction
verification conditions are

x € 0,1,2,31 -> Q(x) = ODD(x), and

x ¢ {0,1,2,3} -> ODD(H(X)) = ODD(x), where

Q(x) = if x > 1 then x-2 else x, and

H(x) = if x < 0 then x+4 else x-4.
Both these conditions are straightforward. Now let us consider
the prime program functional case. Suppose we are given (or may
derive) the intended loop function

g = {(«x0>,<x>) | x € {0,1,2,3} & x mod 4 = x0 mod 4}.

We can verify that the loop computes g by demonstrating Fl1° and
F2°. Condition F3” uses g to complete the proof.

The difficulty with splitting up the program in this example
is that it requires the verifier to "dig out"™ unnecessary details
concerning the effect of the loop. One need not determine expli-
citly the function computed by the loop in order to prove the
program correct. The only important loop effect (as far as_ the
correctness of the program is concerned) is x € {0,1,2,3} and
ODD(x) = ODD(x0). In this example, treating the program as a
whole appears superior since it only tests for the essential
characteristics of the program components.

It is worth observing that, provided the loop is closed for
D(f), an inductive assertion proof of a program of this form
could be accomplished by using the loop invariant £(X) = £(X0).
The verification conditions in this case would be equivalent to
the subgoal induction verification conditions. Note that, in
general (as in our example), £(X) = £(X0) is too weak an invari-
ant to be g-adequate for the intended loop function g above.

2.5. Initialized Loops

The preceding section indicates that it is occasionally
advantageous to consider a program as a whole rather than to con-
sider its prime programs individually. In this section we
attempt to apply the same philosophy to the initialized loop pro-
gram form and use the result as a basis from which to compare the
functional and inductive assertion approaches to this particular
verification problem.

-20-

We will again consider the program in Figure 2.3 with the
understanding that Q is a null operation (identity function). We
want to prove that the program computes a function £, i.e. that f
holds for all Pl to P3 paths. We have seen that prime program
functional correctness involves an induction on the P2 to P3 exe-
cution path using an intermediate hypothesis g. An inductive
assertion proof would involve an induction on the Pl to P2 execu-
tion path using some 1limited 1loop invariant A(X0,X) [Linger,
Mills & Witt 79]. A limited loop invariant differs from those
discussed previously in that it takes into account the initiali-
zation preceding the loop. One of the objectives of this section
is to discuss the relative difficulties of synthesizing the
intermediate hypotheses g and A.

We now reason about whether there might be an efficient way
to verify the program by treating it as a whole (i.e. rather than
treating the initialization and the loop individually). In order
for the program to compute £, it must be that K(X)=K(Y) ->
£(X)=£(Y). Consequently, the relation represented by f o (K**-l)
is a function and is a candidate for the intermediate hypothesis
g. Indeed, the initialized loop program is correct with respect
to £ iff g = f o (K**1) is a function and the WHILE loop (by
itself) is correct wrt g. Unfortunately, the domain of this
function is the image of D(f) through K, and since the purpose of
the initialization is often to provide a specific ‘“starting
point®™ for the 1loop, the 1loop will seldom be closed for the
domain of this function. Thus the problem of finding an
appropriate g can be thought of as one of generalizing £ o (K**-
l)o

Example 2.9 - We want to show the program

s = 0; i := O;

while i < n do
i =1 + 1;
s : =8 + a[i)
od

computes
f = s:sSUM(k,l,n,a(k])#st.

As before, SUM(k,1l,n,afk]) 1is a notation for a{l]j+al[2]+ ...
+a(n]. If K represents the function performed by the initializa-
tion, f o (K**~1) is

(s=0,i=0 -> s:=SUM(k,1,n,a[k)))#sé.
Note that the loop is not closed for the domain of this function.
To verify the program using the functional method, this function
must be generalized to a function such as

q - 8 :=g+SUM(k, i+l,n,atk])éss.

We now consider the relative difficulties of synthesizing a
suitable 1loop function g (for a functional proof) and synthesiz-
ing an adequate limited loop invariant (for an inductive asser-
tion proof). If we have a satisfactory g for a functional proof

of the program, the analysis in Section 2.2 indicates that the
invariant A(X0,X) <=> g(X)=g(X0) over D(g) can be used to show
i the loop computes g; absorbing the initialization X:=K(X) into
! the invariant gives the result that the limited invariant A(X0,X)
<=> g(X)=g(K(X0)) can be used to prove the initialized loop pro-
gram computes g o K = f. We now try to go the other wvay. Sup-
pose we have an appropriate limited loop invariant A(X0,X) for an
inductive assertion proof of the program, can we derive from that
an adequate loop function g? We motivate the result as follows:
we could obtain an equivalent program by modifying the initiali-
zation to (nondeterministically) map X0 to X if A(X0,X) is true.
The modified program (assuming termination) must still compute
the same function; if the initialization maps X0 to anything
other than K(X0), the effect will simply be to alter the number
of iterations executed by the loop. By the same argument that
was used to show that the loop, assuming correctness, must com-
pute £ o (K**-~1), the loop must also compute f o (A(X0,X)**-1).
‘ That is, if A(X0,X) holds for some X0 € D(f) and for some X, the
‘ loop must map X to £(X0). Note that the 1loop is necessarily
closed for the domain of this function; otherwise the invariant
would be violated. The proper conclusion is that the synthesis
of an adequate 1loop function and the synthesis of a suitable
invariant are equivalent problems in the sense that a solution to
one problem implies a solution to the other problem.

Example 2.9 (continued) - An inductive assertion proof of
our program might use the limited invariant s=SuM(k,1l,i,alk]) &
0<=i<=n, Note that this invariant implies the invariant

‘ g(R(X0))=g(X) discussed above (where g and K are as defined pre-
K 4 viously). Using the technique outlined above, we may derive from
this invariant the loop function
g° = (s=SUM(k,1,i,al[k]), O<=i<=n -> g:=SUM(k,1,n,alk)))#sé.
Observe that this is quite different from the original g, but
that g”“ is quite satisfactory for a functional proof of correct-
ness. It may seem puzzling that g“(X0)=g”“(X) is the constant
invariant TRUE over the set D(g”) and yet Theorem 2.2 states that
such an invariant must be g“~adequate. This is not a contradic-
tion, however, since
TRUE, i>=n -> s=SUM(k,1l,n,alk])
! is valid for any state in D(g”). Similarly, a functional proof
that the loop computes g° is trivial with the exception of veri-
R fying that the closure requirement 1is satisfied. This is no
{ coincidence: proving closure is equivalent to demonstrating the
p o validity of the loop invariant.

The translation between 1loop invariants and intermediate
hypotheses in a subgoal induction proof is discussed in [Morris &
Wegbreit 77, King 80]. In Chapter 3, we propose a new verifica-
tion strategy for initialized loop programs which is based on the
above mentioned notion of a nondeterministic loop initjalization.

& e W '"'":i.A .

«

~ ‘I -22-

e o e ——— s o -

ST

P o4

i
1_,___,_ . e e s o - ape
1
i

*
'

)

2.6. Discussion

Our purpose in this chapter has been to explain the func-
tional verification technique in light of other program correct-
ness theories. The functional technique is based on Theorem 2.1
which provides a method for proving/disproving a loop correct
with respect to a functional specification when the loop is
closed for the domain of the function.

In Theorem 2.2, a loop invariant derived from a functional
specification is shown to be the weakest invariant over the
domain of the function which can be used to test the correctness
of the loop. Theorem 2.3 indicates that the functional correct-
ness technique for loops is actually the special case of the
inductive assertion method that results from using this particu-
lar loop invariant as an inductive assertion. The significance
of this observation is that the functional correctness technique
for loops can be viewed either as an alternative verification
procedure to the inductive assertion method or as a heuristic for
deriving loop invariants.

The subgoal induction technigque seems quite similar to the
functional method; the two techniques often produce identical
verification conditions. We have, however, observed an example
where the subgoal induction method appears superior to functional
correctness based on prime program decomposition. 1In the follow-~
ing chapter, the idea of a proof transformation is introduced and
is proposed as a decomposition strategy which overcomes this
deficiency in prime program decomposition.

We have examined the inductive assertion and functional
methods for dealing with initialized loops. We have shown that
the problems of finding a suitable loop invariant and finding an
adequate 1loop function are essentially identical. The result
indicates that for this class of programs, the two methods are
theoretically equivalent; that is, there is no theoretical jus-
tification for selecting one method over the other.

In Chapter 4, we deal with the functional correctness
requirement that each program loop be documented with an
appropriate intended function. 1In order to alleviate this prob-
lem, a heuristic technique is proposed which can be used as an
aid in ascertaining undocumented intended functions for program
loops.

We explained in Section 2.5 that it is possible to obtain a
loop function for a loop preceded by initialization based on the
initialization and the program specification. This function,
however, usually has a restricted domain and must then be gen-
eralized to meet the closure requirement of Theorem 2.1. In
Chapter 5, we discuss a class of loops for which these generali-
Zzations may be obtained in a systematic manner.

=23~

WIS TR=A- P fe AP AT ORI, A o Ty I - %y oo — . 7 v e . — " . i W

-

3. A New Verification Strategy For Iterative Programs

The difficulties associated with the general verification of
computer programs are well known. Chief among these difficulties
is the problem of creating a suitable inductive hypothesis for
programs which use iteration or recursion. A large number of
guidelines or heuristics for the construction of these hypotheses
have appeared in the 1literature. Particularly promising are
results along the lines of Theorem 2.1 [Mills 75, Basu & Misra
75, Wegbreit 77, Morris & Wegbreit 77] which show that for a par-
ticular class of program/specification pairs, an appropriate
inductive hypothesis may be obtained directly from the specifica-
tion. The direct consequence of these results is that for a
verification problem in this class, the program can be
proven/disproven correct with respect to its specification
(assuming termination) by testing several verification conditions
based on the specification and characteristics of the program
components. Unfortunately, this class is rather restricted and,
as a result, many verification problems which arise naturally in
practice are not covered by these results.

In this chapter, a verification strategy is described which
is based on the idea of applying a correctness/incorrectness
preserving transformation to the program under consideration.
The motivation behind the transformation is to produce a verifi-
cation problem such that, in a manner similar to that in the
above mentioned work, an inductive hypothesis can be directly
obtained. Thus we are proposing replacing the problem of syn-
thesizing an inductive hypothesis with one of discovering an ade-
quate correctness/incorrectness preserving transformation. In a
number of examples we have studied, the latter problem appears to
be more tractable.

e 4

In the remainder of this section we discuss a general verif-

ication problem which occurs often in practice and then suggest

the idea of a transformation as a means to solve the problem. A

number of heuristics for discovering an appropriate transforma-

l tion are given in Section 3.1 and are illustrated with examples.
| In Section 3.2, the proposed solution is compared and contrasted
with the inductive assertion and subgoal induction approaches to

: the verification problem. Finally, the application of the tech-
- { nigque to more complex program forms is discussed in Section 3.13.

In our analysis, we will consider a program P of the form

X := R(X);
while B(X) do
= H (XY

where X is the program data state, XK, H and Q represent data-

Y Q_’
' { X 1= Q(X)
¢ state-to-data-state functions and B is a predicate on the data

| -24-
|

o

.

e T

state. PFor the present we assume each of the functions and the
predicate is explicitly known; this requirement regarding the
function Q is relaxed in Section 3.3. We assume that the program
specification is formulated as a function mapping the input data
state to the portion of the output data state which corresponds
to the program variables whose final values are of interest. We
will use a function e which extracts from any data state the data
state portion corresponding to these variables. Thus for this
verification problem, P is correct with respect to its specifica-
tion function f if and only if for any X in D(f), [P](X) is
defined and f(X)=e(([P](X)).

Let TAIL be the portion of P which follows the initializa-
tion X := K(X), i.e. TAIL is the WHILE loop followed by the
assignment X := Q(X). We begin with the following:

Observation 1 - P is correct wrt £ iff TAIL is correct wrt
the input/output relation
g={(x,Y) | + X0 e D(f) » (R(X0)=X & £(X0)=Y)}.

That is, P is correct wrt £ iff on data states X which are
output by K on input X0 € D(f), TAIL produces f(X0). For the
moment, we make the following two assumptions:

FUNCTION: The relation g is a function, i.e.
K(X0)=K(X1) -> £(X0)=f(X1)
for all X0, X1 € D(f), and
CILOSURE: The WHILE loop is closed (see Section 2.1) for
the domain of g, i.e.
K(X0)=X, B(X) -> 4 X1 € D(f)) K(X1l)=H(X)
for all X0 € D(f) [2].

Given these two assumptions, it is easy to state the neces-
sary and sufficient verification conditions for the correctness
of TAIL (assuming termination) wrt g. These are (adapted from
{Mills 75, Basu & Misra 75, Morris & Wegbreit 77])

X € D(g), B(X) -> g(X)=g(H(X))

X € D(g), "B(X) -> g(X)=e(Q(X))
and are called the jteration and boundary conditions, respec-
tively, in [Misra 78]. They are equivalent to

X0 € D(f), K(X0)=X, B(X) -> g(X)=g(H(X))
i X0 e D(f), K(X0)=X, "B(X) -> g(X)=e(Q(X))

.e.

X0 € D(f), B(K(X0)) -> g(K(X0))=g(H(K(X0)))
¢ X0 € D(f), "B(K(X0)) -> g(K(X0))=e(Q(K(X0)))

.e.

[2] Throughout this disgsertation, we frequently use the nota-
t ion
Pl, Pz, eee g PN -> B
for the slightly longer
Pl&Pz&oo. &PN->B.

-25-

>

BT L

X0,X1 € D(f), B(K(X0)), K(Xl)=H(K(X0)) -> g(K(X0))=g(K(X1))
_ X0 e D(f) "B (K(X0)) -> g(K(X0))=e(Q(K(X0)))
loe.

ITERATION: :

X0,X1 € D(f), B(K(X0)), K(X1)=H(R(X0)) -> £(X0)=f(X1l)
BOUNDARY :

X0 € D(f) + "B (K(X0)) => £(X0)=e(Q(K(X0))).
We conclude as follows:

Observation 2 - Suppose FUNCTION and CLOSURE hold. P 1is
correct wrt f (assuming termination) iff ITERATION and BOUNDARY
hold.

Example 3.1 - Consider the following' program

a := a/2;
while a ¢ {0,1} do

a :=a-2

od;
a := (if a=0 then 1 else 0)
{a=EVEN(20/2)].

In this program, the data state consists of the single integer
variable a and will be represented by <a>. The function EVEN (a)
appearing in the program postcondition returns 1 if its argument
is even and 0 otherwise. The specification function f for this
program is

f(<a0>)=a <-> a0>=0 & a=EVEN (a0/2)
which implies

<al0> € D(f) <-> al>=0,
This program relates to the general program form above as follows

K(<a0>)=<a> <=-> a=al/2

B (<a>) <> a g {0,1}

H(<a0>)=<a> <-> a=al0-2

Q(<al0>)=<a> <=-> (a0=0 & a=l) OR (a0¥0 & a=0)

e(<a>)=a,
Note that assumptions FUNCTION and CLOSURE hold. If the program
terminates for all inputs in D(f), it is correct wrt its specifi-
cation iff conditions ITERATION and BOUNDARY hold. These can be
wr itten
a0>=0, al>=0, a0/2 ¢ {0,1}, al/2=a0/2 - 2

-> EVEN (a0/2)=EVEN (al/2)

and

a0>=0, a0/2 e {0,1} -> EVEN(a0/2)= (if a0/2=0 then 1 else 0)
respectively.

At this point we stop to consider the assumptions we have
made. Suppose assumption FUNCTION is false, but CIOSURE holds.
Thus we have X0, X1 € D(f) satisfying

RK(X0)=K(X1) & £(X0)¥£(X1l).

Now if B(K(X0)), then K(X2)=H(K(X0)) for some X2 @ D(f) by CILO-
SURE. If ITERATION was valid, we would have £f(X0)=f£(X2) as well

i el Sins S A

as f(Xl)=f(X2). Since this contradicts our hypothesis, ITERATION
does not hold. On the other hand, suppose "B(K(X0)). If BOUN-
DARY held, we would have £(X0)=e(Q(K(X0))) as well as
f(Xl)=e(Q(K(X1))). The contradiction leads us to conclude that
if FUNCTION is false, but CLOSURE holds, (at least) one of ITERA-
TION and BOUNDARY is false. Since FUNCTION being false implies P
is not correct wrt £ (i.e. [P](X0)=(P]1(X1l), but E(X0)¥£(X1)),
this leads us to the following:

Observation 3 - Suppose CLOSURE holds. P is correct wrt f
(assuming termination) iff ITERATION and BOUNDARY hold.

Unfortunately, it is much more difficult to deal with the
reliance on assumption CIOSURE. We can, however, gain insight
into the problem by studying CIOSURE and its relation to condi-
tion ITERATION. Imagine P executing on some input in D(f) and
consider the sequence of intermediate data states on which the
predicate B is evaluated. CIOSURE requires that each of these
intermediate states be "reachable"™ through the function K for
some input element of D(f). It is this reachability that enables
condition ITERATION to test whether this sequence of states stays
on the right “track,"” or more specifically, that the inverse
images of these states through K remain in the same level set of
f.

Most often in practice, however, the purpose of the initial-
ization K 1is to “"constrain” the data state, thereby providing
some specific "starting point” for the loop execution. In this
case, the intermediate data states will not be reachable through
K and, as a result, condition ITERATION may well hold for the
simple reason that it is vacuously true, i.e. the term
K(X1)=H (K(X0)) will be false for all X1. Rather than abandoning
this approach to the verification of P, however, the solution
suggested here is to "correct" the problem and proceed.

. Consider substituting for K a suitable replacement initiali-
zation K-. By "suitable"™ here, we mean that the output of K”
must be sufficiently unconstrained so that CLOSURE holds for K°,
and furthermore, that the substitution preserves the termination
and correctness/incorrectness properties of the program P. The
following definition formalizes this idea.

Definition 3.1 - Let P° be the program P with the initiali-
zation K replaced by K°. K” is a reduction hypothesis iff CILO-
SURE holds for K* and each of

TERMINATES: For inputs in D(f), P terminates -> P” terminates,
and

PRESERVES: P is correct wrt f£f iff P” is correct wrt f
is satisfied.

The significance of the definition is that once a reduction

hypothesis K”“ has been located, we can prove/disprove the
correctness of the original program by proving its termination

-27=-

and verifying ITERATION and BOUNDARY with K“ substituted for K.

The proposed solution of finding a reduction hypothesis is
analogous to finding an adequate loop invariant for an inductive
assertion proof [Hoare 69), or finding an appropriate loop func-
tion for a functional [Mills 75] or subgoal induction [Morris &
Wegbreit 77) proof. We justify proposing an alternative to these
standard techniques for the following r~asons:

a) a reduction hypothesis has a uniy: intuition behind
it; in a number of cases, this leads rather natu-
rally to a solution,

b) the class of reduction hypotheses bears an interesting
relationship to the class of adequate loop invariants
for P,

c) unlike the technique of inductive agsertions, it is
possible to disprove an incorrect program without
considering the program beyond the loop, i.e. by dis-
proving ITERATION,

d) in the case there is no initialization (i.e. K is the
identity function) and the loop is closed for D(f)

(or, more generally, any time CLOSURE holds for K), a
very efficient proof results since K itself is a re-
duction hypothesis, and

e) the reduction hypothesis solution provides continuity
between the cases where CLOSURE does and does not
hold; an understanding of "why" CLOSURE does not
hold, for example, can provide insight into how to
create K° from K.

3.1. Constructing a Reduction Hypothesis

In this section we will consider several heuristics for
creating a reduction hypothesis for P and will illustrate their
use on example programs. We begin with some preliminary remarks.

- In the discussion in the preceding section, we assumed that
the program pieces corresponding to K, H and Q were determinis-~
tic, that is, we assumed their semantics (i.e. their input/output
behavior) could be represented by data-state-to-data-state func-
tions. The above results, however, extend in the natural way ¢to
the case where subprograms in P are nondeterministic provided one
switches to a slightly more awkward relational notation for
representing these subprograms. In particular, we will be
interested in the case where the initialization is nondeterminis-
tic since it turns out that this kind of initialization is often
a reasonable choice for a reduction hypothesis. If this new ini- 1
tialization is represented by a data-state-to-data-state relation ’
K”, ITERATION and BOUNDARY translate to

ITERATION” :

X0,X1 €@ D(f), K°(X0,X), B(X), K°(XL,H(X)) -> £(X0)=£(X1)
BOUNDARY “ ¢

X0 e D(f), K°(X0,X), "B(X) -> £(X0)=e(Q(X)),
where K°(X0,X) is a notation we will use which stands for (X0,X)

-28-

V4

I S

g

"“.""bfbv' .

LA Wt e o et

e K”.

Now suppose this relation K” satisfies CIOSURE, i.e.
K“(X0,X) & B(X) -> 4 X1 € D(f) ¥+ K“(X1,H(X))
for all X0 @ D(f). The program P° derived from P by replacing
the initialization K with K, i.e. by replacing
X := K(X)
with

X := "any Y satisfying K°(X,V) ",
is correct wrt £ (assuming termination) iff ITERATION” and BOUN-
DARY“ hold. If K° has been chosen so0 as to be a reduction
hyrothesis, the original P is correct wrt £ iff P terminates for
inputs in D(f) and ITERATION® and BOUNDARY“ hold.

As an aid in expressing nondeterministic program segments,
we will use a notation defined in [Dijkstra 76]. Specifically,
an execution of the program

if B1(X) -> Pl

T B2(X) -> P2

| Bn(X) -> Pn

fi
calls for the execution of any single program Pi provided guard
Bi(X) holds.

We now consider two opposing alternatives to constructing
K. Each 1is based on a different philosophy for insuring that
PRESERVES is satisfied. The first is a program-oriented approach
and is characterized by selecting K° so that the programs P and
P° are equivalent, i.e. so that P and P”° exhibit identical
input/output behavior. Such a K° trivially guarantees PRESERVES
is satisfied. The other approach is a gpecification-oriented

approach and is characterized by selecting K’ as a superset of K

in such a way that executions of P° which use the extended aspect
of the initialization are guaranteed to be correct, i.e. execute
in accordance with the program specification. Such a K” satisfies
PRESERVES since the correctness of P” implies the correctness of
P (since K” is a superset of K) and the correctness of P implies
the correctness of P’ (the additional execution paths in P° are
known to be correct). Thus each approach chooses a different
technique aimed at meeting PRESERVES. 1If, in addition, CILOSURE
holds for this new initialization and TERMINATES is satisfied,
then K° is a reduction hypothesis.

We will begin by considering several program-oriented
heuristics and will make use of the following definition.

Definition 3.2 - Let G be a data-state-to~-data-state rela-
tion "and 1let P° be the program P with initialization K replaced
by G. G is an alternative initialization to K iff P and P° have
identical input/output behavior for inputs in both D(f) and D(G).

~29-

S e

Thus if G is an alternative initialization to K, then, for a
restricted set of inputs, G can be used in place of K without
affecting the externally observable behavior of P. In what fol-
lows, we will make use of the following properties which are
derived trivially from this definition:

- K is an alternative initialization to itself,
- the unijon of any number of alternative initializations
is an alteinative initialization, and
- any subset of an alternative initialization is an
alternative initialization.
Our interest in alternative initializations is due to the follow-
ing theorem.

Theorem 3.1 - Any alternative initjalization G whose domain
includes D(f) and which satisfies CLOSURE is a reduction
hypothesis.

Proof - Let G meet the conditions stated in the theorem and
let P” stand for the program P with initialization G substituted
for K. From the definition of an alternative initialization, P
and P° have identical input/output behavior over D(f). Thus TER-
MINATES and PRESERVES are triv.ally satisfied and G is a reduc-
tion hypothesis.

The implication of Theorem 3.1 is that a reduction
hypothesis may be created by discovering a suitable alternative
initialization. This is the basis for all program-oriented
approaches to synthesizing a reduction hypothesis. The following

theorem suggests three techniques for constructing alternative
initializations.

Theorem 3.2 (Program-Or iented Heuristics) - Let K1, K2 and
K3 be any functions satisfying
LONGCUT: Kl (X)=Y =-> B(Y) & H(Y)=K(X)
SHORTCUT: K2(X)=Y =-> B(KR(X)) & Y=H(K(X))
- NOCUT: K3(X)=Y -> B(R(X)) & B(Y) & H(Y)=H(K(X))
for all X € D(f). Then each of K1, K2 and K3 is an alternative
initialization.

Proof - We will make repeated use of the WHILE loop property
B(X) -> [TAIL](X)=[TAIL] (H(X)).
Let X € D(f) and X € D(Kl). Then
[TAIL] (K1 (X))=[TAIL] (H(K1l(X)))=[TAIL] (K(X))=[P] (X),
hence K1 is an alternative initialization. Let X € D(f) and X €
D(K2). Then
[TAIL] (K2 (X))= [TAIL] (H(K(X)))=[TAIL] (K(X))=[P] (X),
hence K2 is an alternative initialization. Finally, let X € D(f)
and X € D(K3). Then
[TAIL) (K3 (X))= [TAIL] (K (K3 (X)))=[TAIL] (H (K(X)))
= [TAIL] (K(X))=[P]) (X),
hence K3 is also an alternative initialization.

-30-

P e R S P o iy - GPrpense W VA

>

LR R
e

-

DI P~ (I T T

The labels on the conditions in Theorem 3.2 are motivated by
the effect replacing K with the alternative initializations has
on the number of iterations of the WHILE 1loop. Kl causes the
loop to execute 1 additional iteration, K2 saves the loop an
iteration, and K3 has no effect on the number of iterations. The
significance of the theorem is that any combination of K, K1, K2
and K3 whose domain includes D(f) and which satisfies CIOSURE is
a reduction hypothesis.

We now define a specification-oriented heuristic for creat-
ing a reduction hypothesis.

Theorem 3.3 (Specification-Oriented Heuristic) - Let G be
any alternative initialization to K whose domain includes D(f)
and let K4 be any function satisfying
VERYSHORTCUT: K4 (X)=Y -> "B(Y) & e(Q(Y))=£(X).
Let K° be the union of G and K4 and suppose K” satisfies CLOSURE.
Then K* is a reduction hypothesis.

Proof - Let K° be as stated in the theorem and let P stand
for the program P with initialization K” substituted for K. Let
X € D(f) and suppose P terminates for input X. If P executes on
X and the aspect of the initialization K* from G is used, P” must
also terminate since G is an alternative initialization to K; 1if
the aspect of the initialization K° from K4 is used, P° must ter-
minate since the ocutput of K4 causes B to evaluate to false.
Hence in any case, P° terminates on the input X and TERMINATES
holds. The remainder of the proof consists of showing that
PRESERVES is satisfied. Suppose P is correct wrt f£f. Let X €
D(f). If P’ executes on X and the aspect of the initialization
K” from G is used, then P’ is also correct on the input X since G
is an alternative initialization to K; if the aspect of the ini-
tialization K° from K4 is used, then P° must produce

e([TAIL] (K4 (X)))=e(Q(K4 (X)))=£(X),
hence P’ is again correct on the input X. Thus in any case, the
program P° is correct wrt £f. To show the converse, suppose P is
correct wrt £f. We must show that this implies P is correct wrt
f. Let X € D(f). Then X € D(G). By the correctness of P* and
the fact that K° includes G, the program P°” derived from P by
replacing the initialization K with G produces f£(X) for the input
X. Since G is an alternative initialization to K, P and P“°
exhibit identical input/output behavior for X, hence P produces
f(X) for the input X and thus P is correct wrt £. This completes
the proof of the theorem.

As in Theorem 3.2, the label on the condition in Theorem 3.3
is used to suggest the effect the initialization K4 has on the
execution of the program. The output of a function satisfying
VERYSHORTCUT causes the predicate 3 to evaluate to false, and
consequently, the WHILE loop in P will execute 2zero times. We
repeat that the functions K1, K2 and K3 represent program-
oriented heuristics since they are designed specifically ¢to
preserve the effect of the program P (possibly over a restr icted

-31-

domain) . Function K4, on the other hand, represents a
specification-oriented heuristic since its purpose is to insure
program behavior which is in agreement with the program specifi-
cation. Now that these heuristics have been defined, we will
illustrate their use with a number of examples.

Example 3.2 - This example illustrates a circumstance in
which assumption CLOSURE "almost"™ holds but "not quite.” In this
situation it may be clear how to "expand"” the initialization in
order to satisfy CLOSURE in such a way that preserves the effect
of the program. The program

{a>=0}

a := a*2;
while a>0
a
b

1] oo
L i

a :
{a=a0*2 + bo}

does not satisfy CLOSURE since only even values of a are output
from the initijialization K and the WHILE loop is not closed for
this set. This problem could be "fixed" by supplementing K with
another initialization, selected nondeterministically, which pro-
duced odd values of a. The combined effect would be an initiali-
zation which was capable of producing all (nonegative) values of
a and would consequently satisfy CIOSURE. Based on this reason-
ing, we could supplement K with the initialization

a := a*2 + 1,
but an inspection of the loop-body text indicates that we mst
compensate in this case by subtracting 1 from b if the effect of
the program is to be preserved. This is actually an application
of heuristic LONGCUT of Theorem 3.2; specifically, the initiali-
zation

Kl (<a0,b0>)=<a,b> <=> amal*2+1 & b=b0-1l.

satisfies LONGCUT and is thus (by Theorem 3.2) an alternative
initialization. In the above notation for nondeterminacy, the
combined initialization may be written

if TRUE -> a := a*2

T TRUE -> a := a*2 + 1; b := b=l

fi.
and the relation K” which represents this initialization is
K“(<a0,b0>,<a,b>) <=> ((a=al0*2 & b=b0) OR (a=a0*2+1 & b=b0-1l)).
Since K” is the union of two alternative Initializations (K and
Kl), K itself is an alternative initialization, and thus, apply-
ing Theorem 3.1, it is a reduction hypothesis. Hence the program
can be verified correct with respect to its specification (assum-
ing terminati>n) by showing that ITERATION” and BOUNDARY” hold.
Cond it ion ATERATION® has the following two aspects, which
correspond to the cases where a is even and odd, respectively:

a0>=0, al>=(0, a=a0*2, bxb0, a>0, al*2+1sa-l, bl-l=b+l
«> a0*2+b0=al*2+bl

P24

-

N

v, ¢

- -

and
a0d>=0, al>=0, a=a0*2+1l, b=b0-1, a>0, al*2=3-1, bl=hb+l
=> a0*2+b0=al*2+bl .

These can be simplified (by eliminating a0, b0, al and bl)
to

a>0 -> a+b= (a-2)+ (b+2)
and

a0 -> (a=1l)+(b+l)=(a-1)+(b+1l),
both of which hold. Conditioun BOUNDARY” is

al>=0, a=a0*2, b=b0, a<=0 -> a0*2+b0=b
which simplifies to

a=° - a+bb'
and thus also holds.

Example 3.3 - We noted above that the purpose of 1loop ini-
tialization is often to set the data state to some specific
"starting point” for the execution of the loop. Once the loop
begins execution, the data state leaves this starting point and
takes on more general values. With this in mind, we note that the
program P is equivalent to the program

X := H(R(X)) ;
while B(X) do
X := H(X)
od.

X = Q(X)

e g9

o)

on executions of P which require at least one 1loop iteration.
Since the initialization in this new program includes an execu-
tion of the loop body, the hcope is that the output of the new
initialization will be general enough to satisfy CIOSURE. This
observation is the motivation behind heuristic SHORICUT in
Theorem 3.2 and can be applied as follows: convert (if necessary)
the verification problem to one over a domain where the loop will
execute at least once and try the initialization H o K for the
reduction hypothesis K“. As an illustration, consider the pro-
gram

pa := 0;

while s # NULL do
pa := pa + head(s);
s := tail(s)

od;
if pa <= 0 then pa := 0 else pa := 1 fi
Tpa=PAVG (50)]

which determines whether the arithmetic average of the integers
appearing in the sequence s is positive or negative. The func-
tion head(s) for a nonempty sequence s returns the .ead element
in 8, tail(s) returns s with head(s) removed, and NULL denotes
the sequence c¢ontaining 0 elements. The function PAVG(30)
appearing in the postcondition has the value 1 if the average of
the elements of 80 is positive and 0 otherwise. CILOSURE is not

-33-

>

N S ey s g T e

satisfied for this program since pa takes on values other than 0
as the loop iterates. Suppose we can convince ourselves that the
program executes correctly when the input s is the empty sequence
and the loop is bypassed. The remainder of the proof then con-
ists verifying the program assuming the precondition
TS#WLL} Accordingly, we will now use the program specification
function
f(<pad,s0>)=pa <~> sO#NULL & pa=PAVG(s0).

The heuristic suggested above is to try the initialization

K2 (<pal,s0>,<pa,s>) <-> sO¥NULL & pa=head(s0) & s=tail(s0)
as a reduction hypothesis. This function satisfies SHORTCUT and
is thus an alternative initialization. Its domain includes D(f)
(i.e. {<pa,s> | sANULL}) and since it satisfies CLOSURE, it is a
reduction hypothesis. To apply this result in a demonstration of
the correctness of the program, we must show ITERATION” and BOUN-
DARY“ hold (using K2 for K°). Condition ITERATION® is

sO0#NULL, Sl#NULL, pa=head(s0), s=tail(s0), sgNULL,

pathead(s)=head(sl), tail(s)=tail(sl) =-> PAVG(s0)=PAVG(sl)
which simplifies to

SANULL -> PAVG(<pa> | |s)=PAVG(<pa+head(s)>||tail(s)).
where <x> is the sequence containing the single element x and ||
denotes concatenation of sequences. Condition BOUNDARY’ is

s0#NULL, pa=head(s0), s=tail(s0), s=NULL

-> PAVG (s0)=POSITIVE (pa)

where POSITIVE (pa) is a function which has the value 1 if pa is
positive and 0 otherwise. This condition simplifies to

sO=<pa> =-> PAVG(s0)=POSITIVE (pa).

Example 3.4 ~ We now illustrate an application of the
specification-oriented heuristic VERYSHORTCUT of Theorem 3.3.
Since any output Y of a function K4 satisfying VERYSHORTCUT must
satisfy "B(Y), this approach is most appropriately used when CLO-
SURE holds for all loop iterations except the last, i.e. the only
lack of values in the range of K is where B is FALSE. The idea
is to add to the initialization the production of these values in
such a way that assures the correct execution of the program.
The following program serves to illustrate this kind of tech-
nique. It searches a linked list for an element containing a key
field with the value 17:

found := FALSE;
while P # NIL & “found do
if p®.key=17 then
found := TRUE
else p := p~.link fi
od

{found=INCHAIN (p0,17)}

The program notations p”“.key and p".link are the key and 1link
fields, respectively, of the node pointed to by p. A link field
of NIL is used to mark the end of the 1list. The function
INCHAIN(pO0,17) appearing in the postcondition is a predicate
which holds iff the chain pointed to by p0 contains a node with a

-34-

<0l & AF A AT T R 7 AP 1 M N WP T T T T T e ~ -

T

e 4

e et -

key field of 17. Note that since there is no program text follow-
ing the loop, Q is the identity function. CLOSURE is not satis-
fied for this program since the variable found may take on the
value TRUE on the last loop iteration. The initialization is
extended by alternatively assigning the value TRUE to found, but
only in the case where INCHAIN(p,17) holds. Specifically, we
propose to supplement the given initialization with the function
K4 (<found0,p0>)=<found,p> <-> INCHAIN(p0,17) & p=p0 & found
to yield the new initialization
if TRUE -> found := FALSE
—I INCHAIN(p,17) =-> found := TRUE
f L]
Note that K4 satisfies VERYSHORTCUT, i.e. on executions of the
program which follow the second path, the loop body is bypassed
and the program necessarily behaves in accordance with its
specification. The combined initialization is represented by the
input/output relation
K*(<found0,p0>,<found,p>) <->
("found OR found=INCHAIN(p0,17)) & p=p0.
Since arbitrary values of found and p may emerge from this ini-
tialization, CLOSURE is satisfied. By Theorem 3.3 (using the
original initialization K for G), K° is a reduction hypothesis.
We now use K”° to state the necessary and sufficient conditions
(assuming termination) for the correctness of the program.
Corresponding to the two paths through the loop body of this pro-
gram, there are two ITERATION” conditions
(- found OR found=INCHAIN(p0,17)), p=p0, P¥NIL, “found,
p* .key-l?, ("TRUE OR TRUE=INCHAIN(pl,17)), r=pl
=> INCHAIN(pO0,17)=INCHAIN(pPl,17)
and
(“found OR found=INCHAIN(pO0,17)), p=p0, P¥NIL, “found,
p".key#17, ("FALSE OR FALSE=INCHAIN(pl,17)), P".link=pl
=> INCHAIN(p0,17)=INCHRAIN(Pl,17),
which simplify to
~found, p¥NIL, p”.key=17, INCHAIN(p,17)
o => INCHAIN(p,17)=INCHAIN(pP,17)
a
“found, py¥NIL, p” .key¥1l7
-> INCHAIN(pP,17)=INCHAIN(P" .1link,17),
respectively. Condition BOUNDARY” is
("found OR found=INCHAIN(p0,17)), p=p0, (p=NIL OR found)
-> found=INCHAIN(p0,17),
which simplifies to
(found & INCHAIN(p,17)) OR ("found & p=NIL)
T=> found=INCHAIN(p,17).

Example 3.5 - This example illustrates a circumstance where
several of tﬁe above heuristics are applied in order to create a
reduction hypothesis. The following program sums the elements of
a sequence:

N

{s#AnULL}

sum := Q;

while s#NULL do
sum := sum + head(s):
s := tail(s)

od;
{sum=suM(s0)}.

The notation SUM(s0) appearing in the postcondition stands for
the summation of the elements of s0. We begin our reasoning as
follows. CLOSURE is not satisfied for this program because sum
is constrained to the value 0 by an assignment statement. What
would be the effect on the program of removing this assignment?
After the first loop iteration, sum would have the value
sum0+head(s0), rather than head(s0). We could compensate for
this discrepancy by subtracting sum0 from head(s0) before the
loop begins execution. Thus we choose to replace "sum:=0" with
"head(s) :=head(s) -sum." This is an application of heuristic NOCUT
of Theorem 3.2. Indeed, the function corresponding to this new
initialization,
K3 (<sum0,s0>)=<sum, 8>) <=> sSO0¥NULL & S#NULL & sum=sum0 &
head(s) =head (s0)~-sum0 & tail(s)=tail(s0),
satisfies NOCUT and is thus an alternative initialization. We
note that CLOSURE is satisfied for this initialization on all but
the final loop iteration (i.e. K3 cannot produce an output which
satisfies s=NULL). As in Example 3.4, the solution under these
circumstances is to supplement the initialization with a function
satisfying VERYSHORTCUT; in this example such a function would be
K4 (<sum0,s80>)=<sum, 8>) <-> sum=SUM(s0) & s=NULL.
Note that the output of K4 causes B to evaluate to FALSE and
forces the program to be correct wrt its specification. The com-
plete initialization is then
if sy¥ENULL -> head(s) := head(s) - sum
“T TRUE -> sum := SUM(S); s := NULL
fi.
Let K~ represent this initialization (i.e. let K” be the union of
K3 and K4). By Theorem 3.3 (using K3 for G), K” is a reduction
hypothesis. Corresponding to whether K3 or K4 is used in the
term K”°(X1,H(X)), condition ITERATION® has the following two
aspects:
s0¥NULL, sum=sum0, head(s)=head(s0)-sum0, tail(s)=tail(s0),
spNULL, sl¥NULL, tail(s)#NULL, sum+head(s)=suml,
head(tail(s))=head(sl)-suml, tail(tail(s))s=tail(sl)
-> SUM(s0)=SUM(sl)
and
s0¥NULL, sum=sum0, head(s)=head(s0)-sum0, tail(s)=tail(s0),
sy¥NULL, sum+head(s)=SUM(sl), tail(s)=NULL
-> SUM(80)=SUM(sl)
which simplify to
spANULL, tail(s)¢NULL ->
sum+head (s)=SUM(tail(s))=
sum+head (s) +head(tail(s))+SUM(tail(tail(s)))

and

tail(s)=NULL -> sum+head(s)+SUM(tail(s))=sum+head(s).
Condition BOUNDARY” is
sum=SUM(s0), ssNULL -> SUM(s0)=sum.

3.2. Relation to Standard Correctness Techniques

In this section, we discuss the relationship between the
proposed verification strategy and the subgoal induction [Morris
& Wegbreit 77) (see also [Manna & Pnueli 70, Manna 71]), and
inductive assertion [Hoare 69] correctness techniques. We will
define these methods in the framework of the verification problem
described above, i.e. in each case we wish to prove/disprove the
program P correct wrt its specification function f£.

All three techniques call for creating and verifying an
hypothesis concerning some aspect of the behavior of P and then
applying the hypothesis to prove/disprove the correctness of the
program. In the proposed technigque, this hypothesis is a reduc-
tion hypothesis; in subgoal induction, we will refer to the
hypothesis as a tail function; in the inductive assertion tech-
nique, the hypothesis is an adequate inductive assertion.

A tail function g in a subgoal induction proof is a general
description of the input/output behavior of program TAIL.
Specifically, g has the same functionality as the specification f
and must satisfy each of

SIl: X € D(g), B(X) =-> H(X) € D(g)

SI2: X € D(g), B(X) -> g(X)=g(H(X))

SI3: X € D(g), "B(X) -> g(X)=e(Q(X))

SI4: X € D(g) -> TAIL terminates with input X

SIS: X € D(f) -> K(X) € D(g).
The first four of these conditions establish that TAIL is correct
wrt g, SIS5 assures that D(g) 1is sufficient for testing the
correctness of the program P. When such a function g has been
found, the program P is correct wrt f iff

8I6: X € D(f) -> g(K(X))=f(X).

In the inductive assertion technique, an adequate inductive
assertion is a sufficiently strong invariant relation between
initial data states and data states occurring at the loop predi-
cate B. For our purposes, an adequate inductive assertion for
the program P is defined as a binary relation A over the data
state of P which satisfies

IAl: X € D(f) -> A(X,K(X))

IA2: X € D(f), A(X,Y), B(Y) -> A(X,H(Y))

IA3: X € D(f), A(X,Y) -> TAIL terminates with input Y

IAd: X € D(f), A(X,Y), "B(Y), A(X,Z), "B(2)

=> e(Q(Y))=e(Q(2)).

If we view X and Y as representing the initial and current data
states, IAl and IA2 prove that A(X,Y) is a "loop invariant," IA3
is the necessary termination condition based on A, and IA4 tests
whether A is sufficiently strong to verify the correctness of the
program. When such a relation A has been found, the program P is

-37-

P2 4

s
f

cbrtect wrt £ 1£f
IAS: X € D(f), A(X,Y), "B(Y) -> £(X)=e(Q(Y)).

The results of this section are contained in the following
two theorems. They define a relationship between the three forms
of program hypotheses and give a technique for transforming tail
functions and adequate inductive assertions into reduction
hypotheses.

Theorem 3.4 - Let g be a tail function for a subgoal induc-
tion proof of P, and let K” be a relation defined by

K”(X0,X) <=> g(K(X0))=g(X).
Then K° is a reduction hypothesis.

Proof - We must prove that K° satisfies CLOSURE and that
TERMINATES and PRESERVES hold where P° is P with initialization
K° substituted for K. To see that K” satisfies CLOSURE, let

X0 € D(f) & K°(X0,X) & B(X)
1.e0

X0 @ D(f) & g(R(X0))=g(X) & B(X).
By SI1 and S12, g(X)=g(H(X)): hence g(K(X0))=g(H(X)) and

X0 € D(f) & K°(X0,H(X)),
thus CLOSURE holds for K°. TERMINATES must be satisfied since the
range of K° contains only elements of D(g) and S14 is satisfied.
Finally, to show that PRESERVES holds, we will prove that P and
P° compute the same function (in the variables of interest) over
the domain D(f). Let X0 € D(f). On input X0, P produces a
result Y satisfying

K(X0)=X & Y=e({TAIL] (X))
for some state X. On input X0, P° produces a result Y* satisfy-
ing

K“(X0,X”) & Y“=e([TAIL]} (X"))
for some state X°. These may be rewritten

RK(X0)=X & Y=g(X)
and

.g(R(X0))=g(X") & Y =g(X”)
using the definition of K* and the fact that SI1-SI4 imply TAIL
computes g. These imply

Y=g (K(X0))=Y",
hence P and P° compute the same function over D(f).

Thus a tail function g together with program initialization
K can be used to construct a reduction hypothesis. The (perhaps)
surprising result in the following theorem is that an adequate
inductive assertion (by itself) is a reduction hypothesis, {.e.
the class of reduction hypotheses for P contains the class of
adequate inductive assertions for P.

Theorem 3.5 - If A is an adequate inductive assertion for P,
then A Is a reduction hypothesis for P. ,

Proof - We must show A satisfies CLOSURE and that TERMINATES
and PRESERVES hold where P” is P with initialization A

- 38~

R T, L g oS s

TN . R MNPV I ORGP Pven

P 4

“t‘i’.*ﬂ. “ o, F

substituted for K. To see that A satisfies CLOSURE, let

X0 € D(f) & A(X0,X}) &« B(X).
By IA2, A(X0,H(X)), thus CLOSURE holds for A. TERMINATES follows
directly from 1IA3. Finally, to show that PRESERVES holds, we
will show that P and P° compute the same function (in the vari-
ables of interest) over the domain D(f). Let X0 @ D(f). On
input X0, P will produce Y satisfying

K(X0)=X & Y=e([TAIL] (X))
for some state X. By IAl, A(X0,X). By IA3 the WHILE 1loop ter-
minates on input X giving some result T where “B(T). Repeated
application of IA2 and the loop property

B(2) -> [TAIL] (2)=([TAIL] (H(Z))
gives A(X0,T) and [TAIL] (X)=[TAIL](T)=Q(T). Thus on input X0, P
produces Y satisfying

(3.1) A(X0,T) & “B(T) & Y=e(Q(T))

for some T. P” on the other hand, with input X0 will produces Y’
satisfying

A(X0,X’) & Y’ =e([TAIL](X"))
for some state X“. Again by IA3, the WHILE 1loop terminates on
input X° giving some result T° where “B(T”). Repeated applica-
tion of IA2 and the above 1loop property gives A(X0,T°) and
[{TAIL] (X*) = [TAIL] (T°)=Q(T”"). Thus P° produces Y” satisfying

(3.2) A(X0,T") & "B(T’) & Y’ '=e(Q(T"))

for some T°. In light of IA4, (3.1) and (3.2) imply ¥Y=Y”“, thus P
and P° compute the same function over D(f).

Example 3.6 - To illustrate these ideas, we consider again
the program discussed in Example 3.2:

{a>=0}

a := a*2;

while a>0 do
a := a-1;
b := b+l
od;

a :=Db

{a=a0*2 + bO}.

The following are possible tail functions for a subgoal induction
proof of the program

gl(<a0,b0>)=a <=> a0>=0 & a=a0+b0

g2(<a0,b0>)=a <-> a=MAX(a0,0)+b0.

Several adequate inductive assertions are
Al(<a0,b0>,<a,b>) <=> b=b0+2*al-a & a>=0
A2(<a0,b0>,<a,b>) <=> b=b0+2*al-a & a>=0 & al>=0
A3(<a0,b0>,<a,b>) <=> b=b0+2%*al-a & al0>=a>=0
A4 (<al0,b0>,<a,b>) <=> b=b0+2*MAX(a0,0)-MAX(a,0).

By Theorem 3.4,

Kl (<a0,b0>,<a,b>) <=> gl (K(<al0,b0>))=gl(<a,b>)

and
K2 (<a0,b0>,<a,b>) <=> g2(K(<a0,b0>))=g2(<a,b>),

i.e.

Kl (<a0,b0>,<a,b>) <=> 2%al>=0 & a>=0 & 2*a0+bO=a+b

=39~

R e e L Ky =z _ gt D Co L p S N

and
K2 (<a0,b0>,<a,b>) <-> MAX(2*a0,0)+b0=MAX(a,0)+b

are reduction hypotheses. Theorem 3.5 states that each of Al-Ad
is also a reduction hypothesis. Thus any of these can be used in
place of K° in the proof in Example 3.2. We remark that the
relation K° used in that example is not an inductive assertion,
hence the class of adequate inductive assertions is a proper sub-
set of the class of reduction hypotheses.

3.3. Proof Transformations

Applying the verification technique proposed above based on
ITERATION® and BOUNDARY” requires ascertaining the input/output
behavior of the loop initialization, loop body and the program
text following the loop. 1In many cases, this ascertaining pro-
cess may be difficult (e.qg. if these program segments contain
additional WHILE loops). In view of this problem, we now con-
sider the situation which occurs when the input/output behavior
of the program text following the WHILE loop is not explicitly
known. The verification problem under consideration, then, will
be of the form

{x0 e D(£) & x=x0}
X := K(X);
while B(X) do

X := H(X)

od;

T
{e(X)=£(x0)}

where K, B and H are as before and T represents some unspecified
block of program text. Again our intention is to prove/disprove
the program correct wrt its specification function f£.

Suppose we have a reduction hypothesis K* for P and can show
condition ITERATION” holds. Wwhat sense does BOUNDARY“ make and
how can we proceed? In this situation, condition BOUNDARY”
corresponds to a new but simpler correctness problem. Specifi-
cally, we must prove

{x0 e D(f) & K“(X0,X) & "B(X)}

T

{e(x)=£(x0)}.
This problem is simpler than the original due to the fact that
the 1loop has been eliminated from the program. Thus we have used
a reduction hypothesis and condition ITERATION’ to transform the
correctness question for the original program P to a correctness
question for a substantially simpler program. If the program T
contains further looping structures, the process may be repeated.

Example 3.7 - The following program operates on sequences a,
X, Y and 2z of natural numbers. The function head(s) of a
nonempty sequence s is the leftmost element of s, and tail(s) is
s with head(s) removed. The infix operator || denotes

-fQ=

TR g L W YA ¥ 3 - g e~ T - P Y

concatenation of sequences and NULL denotes the sequence with 0
elements. The predicate odd(a) is true iff a is odd.

while a ¥ NULL do

1f odd(head(a)) then y := v || <head(a)>
else z := z <head(a)> fi;
a := tail(a)
od;
while y ¥ NULL do
x : x || <head(y)>; y := tail(y)
od;
while z # NULL do
x := x || <head(z)>; z := tail(z)
od
{x=F (x0,y0,20,a0)}

The function F ap earxn in the postcondition is defined as
F(x,y,2,a) = x obpS(a) || z || EVENS(a)
where ODDS(a) is the sequence containing the odd elements of a in
the order they appear in a (EVENS(a) is similar). 1In this exam-
ple, T corresponds to the last two WHILE loops and since there is
no initialization, K is the identity function. Since CLOSURE
holds for this function, K itself is a reduction hypothesis.
Corresponding to the two paths through the first loop body, there M
are the two ITERATION’ conditions, namely
a#NULL, odd(head(a))
-> F(X,Y,2,a)=F (x,y| | <head(a)>,a, tail(a))
aFNULL, “odd(head(a))
-> F(X,Y,z,a)=F (x,y,2| | <head(a)>,tail(a)).
Once these have been proven, the verification problem then
transforms to

4

{a=NULL}
while y # NULL do
x := x || <head(y)>; y := tail(y)
od;
| while z ¥ NULL do
‘ x := x || <head(z)>; z := tail(z)
od
{x=F (x0,y0,20,a0)}.

‘ Here T corresponds to the last loop and again K is the identity
B function, CLOSURE holds and hence K itself is a reduction
hypothesis. The proof of this program thus consists of showing
ITERATION", {i.e.

asNULL, y¥NULL -> F(X,y,Z2,a8)=F (x| | <head(y)>,tail(y),z,a)
and then verifying

Ay o
X

-41-

Pt 4

{a=NULL & y=NULL}
while z ¥ NULL do
X := x || <head(z)>; 2z := tail(z)

od
{x=F (x0,y0,20,a0)}.

Again using the identity function as a reduction hypothesis, this
remaining verification problem can be proved by showing ITERA-
TION” and BOUNDARY”, i.e.
a=NULL, y=NULL, 2¥NULL ->
iy F(x,y,2,a)=F (x| | <head(z)>,y, tail(z),a)
a

a=NULL, y=NULL, 2=NULL ~-> x=F(X,y,2,a).

We remark that none of the program-oriented reduction
hypothesis techniques defined in Theorem 3.2 assume any knowledge
of the characteristics of T. Thus these techniques can be usged
for creating a reduction hypothesis in the circumstance where the
input/output behavior of this subprogram is not known. The
specification-oriented heuristic of Theorem 3.3, however, cannot
be employed without this knowledge.

In Section 2.4, it was explained that the ease with which a
composite program is verified depends largely on the strategy
used to decompose the program and prove its correctness based on
analysis of its components. Wwhile it is difficult to define an
"optimal®™ decomposition strategy, we offer our view that the
notion of a sequence of proof transformations presented in this
section seems to represent a quite effective decomposition tech-
nique in practice. The proof proceeds in a "top down" fashion,
decomposing the original verification problem into new, simpler
problems. By way of contrast, the functional approach based on
prime program decomposition is a more "bottom up" technique; each
loop is analyzed and verified individually, without consideration
of how the loop fits into the program as a whole. As a result, a
functional proof based on prime program decomposition of the pro-
gram is Example 3.7 would have required knowing the intended
function of each of the three WHILE loops. This information is
unnecessary when the program is verified by the sequence of proof
transformations.

3.4. Discussion

From a practical point of view, it is difficult to carefully
assess the relative merits of the proposed program-verification
methodology. Preferences by people involved in verifying pro-
grams are often based on which methodology appears to be more
"natural” or "intuitive®™ in a given application. Furthermore,
answers to questions such as these no doubt are largely influ-
enced by the way a person was trained in the field of software
eng ineering.

2 4

“‘Nr’ww“ -

Despite this caveat, we offer our view that in a number of
cagses, it seems "easier" to create a reduction hypothesis than it
does to create an adequate inductive assertion or tail function
for a proof by the standard techniques discussed in Section 3.2.
Indeed, it is difficult to argue the reverse case in light of the
results of that section, which state that any adequate inductive
agsertion is a reduction hypothesis, and that any tail function
can be simply transformed to one. On the other hand, our feeling
is that the verification conditions which result from the use of
a reduction hypothesis seem somewhat more complicated than their
counterparts in either of these standard techniques. This is
largely due to the necessity of having three distinct data states
appearing in condition ITERATION” and two distinct data states
appearing in condition BOUNDARY”. Both of these verification
conditions, however, are usually easily simplified in practice.

In light of these comments, an interesting direction for
future research is the translation of heuristics such as those
defined in Theorems 3.2 and 3.3 into the framework of standard
correctness techniques. For example, what, if any, is the impact
of these correctness/incorrectness preserving transformations on
the synthesis of an inductive assertion or tail function for the
program under consideration? Some results along this 1line are
presented in Chapter 4. 1In that chapter, heuristic SHORTCUT is
applied to the problem of synthesizing tail functions for ini-
tialized loop programs and meets with a fair degree of success.

The solution of any complex problem is often best decomposed
into solutions of appropriate simpler problems. This is an
important principle on which our verification strategy is based.
A search for a reduction hypothesis is really a search for a
suitable simpler problem to substitute for the original. As dis-
cussed in Section 3.3, proving condition ITERATION® for this
simpler problem decomposes the solution of the new problem into
the solution of a still simpler problem and so on.

4. A Heuristic For Deriving Loop Functions

In this chapter, we will consider programs of the following
form:

<INITIALIZATION STATEMENTS>

while <LOOP PREDICATE> do

~ <ILOOP BODY STATEMENTS>
od.

These programs tend to occur frequently in programming in order
to accomplish some specific task, e.g. sort a table, traverse a
data structure, calculate some arithmetic function, etc. More
precisely, the intended purpose of such a program is often to
compute, in some particular output variable(s), a specific func-
tion of the program inputs. In this chapter, we address the
problem of analyzing a program of the above form in order to
prove its correctness relative to this intended function.

One common strategy taken to solve this problem is to heu-~
ristically synthesize a sufficiently strong inductive assertion
(i.e. loop invariant [Hoare 69]) for proving the correctness of
the program. A large number of techniques to aid in the discovery
of these assertions have appeared in the literature (see, for
example, [Wegbreit 74, Katz & Manna 76]). It is our view, how-
ever, that these techniques seem to be more ™"machine oriented"
than "people oriented."™ That is, they seem geared toward use in

2 an assertion generator for an automatic program verification sys-
tem. Furthermore, a sizable portion of the complexity of these
techniques is due to their general-purpose nature. The methodol-
ogy proposed here is intended to be used by programmers in the
process of reading (i.e. understanding, documenting, verifying,
etc.) programs and is tailored to the commonly occurring verifi-
cation problem discussed above.

An alternative to the inductive assertion approach which is
‘ addressed in this chapter is to invent an hypothesis concerning
' the intended function (i.e. general input/output behavior) of
the WYWHILE 1loop. Once this has been done, the loop can be
_ proven/disproven correct with respect to the hypothesis using the
! functional technique described in Chapter 2 [Mills 72, Mills 75,
‘ Basu & Misra 75, Morris & Wegbreit 77, wWegbreit 77, Misra 78].
If the hypothesis is shown to be valiad, the
correctness/incorrectness of the program in question follows
immediately. It has been shown (Basu & Misra 76, Misra 78, Misra
79, Basu 80] that this loop hypothesis can be generated in a
deterministic manner (i.e. one that is guaranteed to succeed) for
two restricted classes of programs. The approach suggested here
is similar to this method in that the same type of loop behavior
§ seems to be exploited in order to obtain the hypothesis. Our
i approach is not deterministic in general, but as a resul*, is
intended to be more widely applicable and easier to use than

those previously proposed in the literature.

-lf-

iidn it

o ——— e egan

One view of the problem of discovering the general
input/output behavior of the WHILE loop under consideration might
be to study it and make a guess about what it does. One might go
about doing this by "executing” the loop by hand on several sam-
ple inputs and then guessing some general expression for the
input/output behavior of the loop based on these results. Deci-
sions that need to be made when using such a technique include
how many sample inputs to use, how should these inputs be
selected, and how should the general expression be inferred.
Another consideration is that hand execution can be a difficult
and an error prone task. 1Indeed, it seems that the loops for
which hand execution can be carried out in a straightforward
manner are the ones that are least in need of verification or
some other type of formal analysis.

Our methodology is similar to this technique in that we
attempt to infer the general behavior of the loop from several
sample loop behaviors. In contrast to this technique, however,
the sample behaviors are not obtained from hand execution, rather
they are obtained from the specification for the initialized loop
program. In many of the cases we have studied, the general
behavior of the loop in question is quite easy to gquess from
these samples. This is not to say that the loop computes a "sim-
ple” function of its inputs or that the loop necessarily operates
in a "simple"” manner. Much more accurately, the ease with which
the general behavior can be inferred from the samples is due to a
*simple" connection between a change in the input value of an
initialized variable and the corresponding change caused in the
result produced by the loop. We will expand on this idea in what
follows.

4.1. The Technique

In order to describe the proposed technigue, we represent
the verification problem discussed above as follows:

{x e D(£)}

X := K(X);

while B(X) do
X := H(X)

od
{v=E(x0)}.

In this notation, X represents the data state of the program. K
and H are data-state-to-data-state functions corresponding to the
effects of the initialization and loop body respectively. B is a
predicate over the data state. The program is specified to pro-
dgce in the variable v of X a function £ of the input data state
X0.

If D is the set of all possible program data states and T is

the set of values that the variable v may assume, the specifica-
tion function f has the functionality £ : D -> T, In order to

e i

24

Sl Gt SN TR A A

verify a program of this form, we choose to find a function g : D
-> T which describes the input/output characteristics of the
WHILE 1loop over a suitably general input domain. Specifically,
this input domain must be large enough to contain all the inter-
mediate data states generated as the loop iterates. If this is
the case, the loop is said to be closed (see Section 2.1) for the
domain of g.

We briefly consider two alternative approaches to synthesiz-
ing this 1loop function ¢g. The alternatives correspond to the
"top down" and "bottom up" approaches to creating inductive
assertions discussed in ([Katz & Manna 73, Ellozy 8l]. In the
"top down" alternative, the hypothesis g answers the gquestion
"what would the general behavior of the loop have to be in order
for the program to be correct?" If such an hypothesis can be
found and verified, the correctness of the program is esta-
blished. 1If the program is incorrect, no such valid hypothesis
exists. In the "bottom up" alternative, the hypothesis g answers
the question "what is the general behavior of the loop?" In this
case, a valid hypothesis always exists. Once it has been found
and verified, the program is correct if and only if the initiali-
zation followed by g is equivalent to the function €.

The advantage of a "top down" approach is that it is usually
easier to apply in practice because the verifier has more infor-
mation to work with when synthesizing the hypothesis. The disad-
vantage of such an approach is that it may not be as well-suited
to disproving the correctness of programs. This is because to
disprove a program, the verifier must employ an argument which
shows that there does not exist a valid hypothesis. The method
described in this chapter is based on the "top down" approach.
We will return to a discussion of this advantage and disadvantage
later.

We begin by assuming the program in question is correct with
respect to its specification. We then consider several properties
of the function g which result from this assumption. First, the
correctness of the program implies

(4.1) X0 e D(f) -> £(X0)=g(K(X0)).
That is, for inputs satisfying the program precondition, the ini-
tialization followed by the 1loop yields the desired result.
Secondly, since the loop computes g,
B(X0) -> g(X0)=g(H(X0))
holds by the "iteration condition” [Misra 78] of the standard
technique for showing the loop computes g. This implies
B(K(X0)) -> g(K(X0))=g(H(K(X0))).
Combining with (4.1) yields
(4.2) X0 € D(f), B(K(X0)) -> £(XO0)=g(H(K(X0))).
At this point we choose to introduce an additional universally
quantified state variable X into each of (4.1l) and (4.2), result-
ing in the equivalent conditions
(4.1°) X0 @ D(f), X=K(X0) ~> g(X)=£(X0)
and

=

¥

.
gy . 3 -

i

1

- a— s e p——
DI Ry g R " o | T

(4.2°) X0 € D(f), B(K(X0)), X=H(K(X0)) -> g(X)=£(X0).
We summarize by saying that if the program is correct with
regpect to its specification, conditions (4.1°) and (4.2°) hold.

Suppose now that the specification (f), and the input/output
dehavior of the initialization (K), loop predicate (B) and loop
body (H) are known. Given this, (4.1°) and (4.2°) can be used to
s0i.x for the loop hypothesis g on a certain set of inputs assum-
ing the correctness of the program. Indeed, (4.1°) and (4.2°)
can be thought of as defining portions of the unknown loop func-
tion g we are seeking. SpecI%ically, each of (4.1°) and (4.2°)
can be viewed as defining a function g with a restricted domain.
In this light, for example, (4.1°) defines the function (i.e. set
of ordered pairs)

g={(X,2) | + X0 @ D(f) ¥ (X=K(X0) & Z=£(X0))}.
We call (4.1°) and (4.2°) constraint functions since they serve
as constraints (i.e. requirements) on the general loop function.
More precisely put, the constraint functions are subsets of the
general loop function. The hope is that if these subsets are
representative of the whole, the general 1loop function may be
inferred through analysis of the constraint functions.

In what follows we describe a four step process for con-
structing a general loop function g from these constraint func-
tions. We suggest that the reader not be taken aback by what may
appear to be considerable complexity in the description of our
technique. We intentionally have attempted to describe the pro-
cedure in a careful, precise manner. Furthermore, the technique
is based on a few simple ideas and, once those ideas have been
learned, we feel it can be applied with a considerable amount of
success.

Example 4.1 - As we describe these steps, we will illustrate
their™ application on the following trivial program to compute
multiplication:

{v>=0}

z = Q;

while v ¥ 0 do
zZ :=2Z + F?
v = v -1
od

We now proceed with a description of these steps.

Step 1 : RECORD - The first step consists of recording the
constraint functions (copied from (4.1°) and (4.2°))
gl- X0 @ D(f), X=K(X0) -> g(X)=£(X0)
an
C2: X0 e D(f), B(K(X0)), X=H(K(X0)) -> g(X)=£(X0).
As a notational convenience, we dispense with the data-state
notation and use program variables (possibly subscripted by 0 to

o - 37 = " NI e j

B ahdiidiias o

e T TR T TS T -

24

LR . Y

denote their initial values) in these function definitions. The
terms X0 € D(f) and £(X0) come from the pre~ and post-condition
for the initialized loop respectively. The term X=K(X0) is based
on the input/output behavior of the initialization, and the terms
B(K(X0)) and X=H(K(X0)) together describe the input/output
behavior of the initijalization followed by exactly one loop
iteration. We illustrate these ideas with the multiplication
program in Example 4.1. The constraint functions for this pro-
gram are as follows:
Cl: v0>=0, v=v0Q, 2=0 -> g(2,v,k)=v0*k
C2: V0>0, V'VO*-]., z-k -> g(z'v'k).vo*ko

We make the following comments concerning these function defini-
tions. First, 1in the interest of simplicity, we do not RECORD
the "effect” of the initialization or loop body on the constant k
(i.e. we dispense with k=k0 and the need for a symbol k0).
Secondly, g is defined as a function of each program variable
which occurs in the loop predicate or loop body. That is, g is a
function of the variables on which the behavior of the loop
directly depends. Furthermore, note that in C2, the term v0>0
captures both X0 € D(f) (i.e. v0>=0) and B(K(X)) (i.e. v0¥0). As
a final remark, in a constraint function we will use the phrase
domain requirement to refer to the collection of terms ¢to the
left of the "->" gsymbol and function expression to refer to the
exp::ssion which defines the value of g (e.g. vO*k in both Cl and
c2 ove) .

Step 2 : SIMPLIFY - All variables which appear in the func-
tion efinition but not in the argument list for g must eventu-
ally be eliminated from the definition. On occasion, it is pos-
sible to solve for the value of such a variable in the domain
requirement and substitute the equivalent expression for it
throughout the definition. To illustrate, in the definition Cl
above, v0 is & candidate for elimination. We know its value as a
function of v (i.e. vO=v), hence we can SIMPLIFY this definition
to

Cl: v>=0, z=0 «> g(z,v,k)sv*k,
Note that the term vs=v(0 has disappeared since with the substitu-
tion it is equivalent to TRUE. In a similar manner, the second
constraint function can be SIMPLIFIED to (using v0=v+l)
C2: wv>=0, z=k => g{(z,v,K)=(v+l)*k,
Although applying this simplifying heuristic is most often a
straightforward process, care mist be taken to insure that the
domain of the constraint function 1is not mistakenly extended.
For example, if 4 and d0 are integer variables, the definition
4a0>0, 4=40*2 -> g(d)=d0*8
does not SIMPLIFY to
a>0 -> g(d)=a*4
since the first function defines a value of g only for positive,
even values of d while the second definition defines a value of g
for all positive d. The first function does SIMPLIFY to
d>0, BVEN(d) ~-> g(d)=A4*4
where EVEN(d) is a predicate which is TRUE iff 4 is even.

24

Step 3 : REWRITE - Variables which appear in the argument
list for g but not in the function expression of its definition
are candidates to be introduced into the function expression.
Each of these variables will be bound to a term in the domain
requirement of the definition. The purpose of this step is to
rewrite the function expression of C2 (based on the properties of
the operation(s) involved) in order to introduce these terms into
the function expression. To illustrate, consider the above SIM-
PLIFIED C2 definition. The varjiable z is a candidate to be
introduced into the function expression (v+l)*k. It is bound to
the term k in the domain requirement. Thus we need to introduce
an additional term k into this function expression. One way to
do this is to translate the expression to v*k+k. Based on this,
we REWRITE C2 as

C2: v>=(Q, 2=k => g(z,v,Kk)svtk+k.

Step 4 : SUBSTITUTE - In steps 2 and 3, the constraint func-
tions are massaged into equivalent definitions in order to facil-
itate step 4. The purpose of this step is to attempt to infer a
general 1loop function from these constraints. We motivate the
process as follows. Suppose we are searching for a particular
relationship between several quantities, say E, m and ¢. Furth-
ermore, suppose that through some form of analysis we have deter-
mined that when m has the value 17, the relationship E=17* (c**2)
holds. A reasonable guess, then, for a general relationship
between E, m and ¢ would be Esm*(c**2). This would be particu-~-
larly true if we had reason to suspect that there was a rela-
tively simple connection between the guantities m and E. We
arrived at the general relationship by substituting the quantity
m for 17 in the relationship which is known to hold when m has
the value 17. Viewed in this light, the purpose of the con-
straint function C2 is to obtain a relationship which holds for a
specific value of m (e.g. 17). The step REWRITE exposes the term
17 in this relationship. Finally, SUBSTITUTE substitutes m for
17 in the relationship and proposes the result as a general rela-
tionship between E, m and ¢. In terms of the multiplication pro-
gram being considered, the SUBSTITUTE step calls for replacing
one of the terms Kk in the above rewritten function expression
with the term z. The two possible substitutions lead to the fol-
lowing general functions:

v>=0 =-> g(z,v,K)svik+z
and

v>=0 -> g(z,v,k)=viz+k,
Both of these (necessarily) are generalizations (i.e. supersets)
of C2, however, only the first is also a generalization of Cl.
Hence this function is hypothesized as a description of the gen-
eral behavior of the above WHILE loop.

We have applied the above 4 steps to obtain an hypothesis
for the behavior of the loop in question. Since this description
is sufficiently general (specifically, since the loop 1is closed
for the domain of the function), we can prove/disprove the
correctness of the hypothesis using standard verification

-49-

techniques ([Mills 75, Misra 78). Specifically, the hypothesis is
valid if and only if each of

- the loop terminates for all v>=0,

- y=0 -> z=z + v*k, and
t - 2 + v*k is a loop constant (i.e. vO*kO=z + v*k is a
- loop invariant)
hold. We remark that the loop hypothesis is selected in such a
way that if it holds (i.e. the loop does compute this general
function), the initialized 1loop is necessarily correct with
respect to f£.

We emphasize that there are usually an infinite number of
generalizations of the constraint functions Cl and C2, and that,
L depending on how REWRITE and SUBSTITUTE are applied, the tech-
: nique is capable of generating any one of these generalizations.
For example, REWRITE and SUBSTITUTE applied to the multiplication
example could have produced

C2: vwv>=0, z=k -> g(z,v,k)=

vkk + 3%k + k*k*(v-7)/(4*K) + k*k*k/(k*k)

- k*k*k* (v=7) /(4*k*Kk) -~ k*k*k*3/(k*k)

and
v >a() => g(z,v'k)’
vtk + 3%z 4+ z*z* (v=7)/(4*Kk) + z*z*z/(Kk*Kk)

- 2hzhzZR (y=T) /(4%Kk*Kk) = z*z*2*3/(k*k)
respectively, where "/" denotes an integer division (with trunca-
tion) infix operator which yields 0 when its denominator is 0.
This last function is also a generalization of Cl and C2.

> It has been our experience, however, that many initialized
' loops occur in which there exists some relatively simple connec-
tion between different input values of the variables constrained
; by initialization and the corresponding result produced by the
.‘ WHILE loop. Most often in practice, these variables are bound to
values in the domain requirement of C2 which suggest an applica-
tion of REWRITE that uncovers this relationship and leads to a
correct hypothesis concerning the general loop behavior. 1In the
_ following section we illustrate a number of example applications

{ of this technique.

4.2. Applications

Example 4.2 - The following program computes integer
exponentiation. This example serves to illustrate the use of the
technique when the loop body contains several paths:

{a>=0}

weml;

while 4 ¥ 0 do ‘
P if odd(d) then w := w * c fi;
' C :=c*c; d := 4/2

od
{w=eO ~ ao}.

e R e ua

o TR TR

~

The infix operator appearing in the postcondition represents
integer exponentiation. The first constraint function is easily
RECORDED :

d0>=0, c=c0, d=d0, w=l -> g(w,c,d)=c0"d0
and SIMPLIFIES to

Cl: d>=0, w=l -> g(w,c,d)=c"d.
Since there exist two paths through the loop body, we will obtain
two second constraint functions. The first of these deals with
the path which updates the value of w and is executed when the
input value of 4 is odd. The function is

d0>0, odd(d0), w=c0, c=c0*c0, d=d40/2 -> g(w,c,d)=c0°d0
which SIMPLIFIES to

C2a: d>=0, casw*w -> g(w,c,d)=w" (d*2+1).
The function corresponding to the other loop-body path is

do>0, “odd(d0), w=l, c=c0*c0, d=d0/2 -> g(w,c,d)=c0”d0
and SIMPLIFIES to
. d>=0, w=l, SQUARE(c) =-> g(w,c,d)=SQRT(c)” (d*2)
i.e.

C2b: d>=0, w=l, SQUARE(¢c) =-> g(w,c,d)=c"d
where SQUARE(X) is a predicate which is TRUE iff x is a perfect
square and SQRT(x) is the sgquare root of the perfect square x.
The term SQUARE(X) is necessary in the domain requirement since
the unSIMPLIFIED function is only defined for values of ¢ which
are perfect squares. Note that C2b is a subset of C1 and hence
is of no additional help in characterizing the general loop func-
tion. The heuristic suggested in REWRITE is to rewrite the func-
tion expression w"(d*2+1l) of C2a in terms of w, w*w (so as to
introduce ¢) and d. The peculiar nature of the exponent in this
expression leads one to the equivalent formula w*((w*w)“d).
Applying SUBSTITUTE in C2a yields

a>=0 -> g(w,c,d)=w*(c"d).
This function is in agreement with (i.e. is a superset of) Cl and
thus is a reasonable hypothesis for the general loop function.

In this example, the portion of ¢C2 corresponding to the
loop-body path which bypasses the updating of the initialized
data is a subset of Cl. Based on this, one might conclude that
such loop-body paths should be ignored when constructing C2. Con-
sidering all loop-body paths, however, does increase the 1likeli-
hood that an incorrect program could be disproved (at the time
the general loop function is being constructed) by observing an
inconsistency between constraint functions Cl and C2. For
instance, in the example, if the assignment to ¢ had been written
"c:=c*2", the above analysis would have detected an inconsistency
in the constraints on the general loop function. Such an incon-
sistency implies that the hypothesis being sought for the general
behavior of the loop does not exist, and hence, that the program
is not correct with respect to its specification.

In the previous section, the reader may recall that awkward-
ness in disproving programs was offered as a disadvantage of a
"top down" approach to synthesizing g. However, it has been our
experience that, as in the above instance, an error in the

program being considered often manifests itself as an incon-
sistency between Cl and C2. Such an inconsistency is usually
*easy" to detect and hence the program is "easy" to disprove.
While it is difficult to give a precise characterization of when
this will occur, intuitively, it will be the case provided that
the "error"™ (e.g. c*2 for c*c) can be "executed"” on the first
iteration of the loop.

Example 4.3 - The following program counts the number of
nodes a nonempty binary tree using a set variable s. It
differs from the previous example in that more than one variable
is initialized. The tree variable t is the input tree whose
nodes are to be counted. We use the notation 1left(t) and
right(t) for the left and right subtrees of t respectively. The
greg‘ii.ca)te empty(t) is TRUE iff t is the empty tree (i.e. contains

noaes) .

{~empty (t)}
n := 0; s := {t};
while s # {} do
select and remove some element e from s;
n :=n+ 1;
if "empty(left(e)) then s U {left (e)i £i;
j._g_"empty(right(e)) then s U {right(e)} fi

=9
-]
od
{n=NODES (t) }

The notation NODES(t) appearing in the postcondition stands for
the number of nodes in binary tree t. The first constraint func-
tion is
Cl: “empty(t), n=0, s={.} ~> g(n,s)=NODES(t).
Rather than considering each of the four possible paths through
the 1loop body individually, we abstract the combined effect of
the two IF statements as the assignment
s := s U SONS(e),
where SONS(x) is the set of 0, 1 or 2 nonempty subtrees of x.
Applying this, the second constraint function is
C2: “empty(t), n=1, s=SONS(t) -> g(n,s)=NODES(t).
We choose to REWRITE the function expression for C2 using the
recursive definition that NODES(x) for a nonempty tree x is 1
Plus the NODES value of each of the 0, 1 or 2 nonempty subtrees
of x. Specifically, this would be
1+SUM(x,SONS(t) ,NODES (x))
where SUM(A,B,C) stands for the summation of C over all A € B.
Applying SUBSTITUTE in the obvious way yields
“empty(t) -> g(n,s)=n+8UM(x,s,NODES(x))
which is in agreement with Cl and is thus a reasonable guess for
the general loop function g.

T™wo remarks are in order concerning this example. The first
deals with the condition “empty(t) appearing in the domain
requirement of the obtained function. The reader may wonder, 1if
t is not referenced in the loop (it is not in the argument list

~52-

r wm-n’np-‘ﬁ. (SRR ;

for g), how can the loop behavior depend on empty(t)? The answer
is that it obviously cannot; the above function is simply
equivalent to

g(n,s)=n+SUM(x, s,NODES(x)).
For the remainder of the examples of this section, we assume that
these unnecessary conditions are removed from the domain require-
ment of the constraint function as part of the SUBSTITUTE step.

As a second point, in Example 4.3 we encounter the case
where the obtained function ia, strictly speaking, too general,
in that its domain includes ™unusual® inputs for which the
behavior of the 1loop does not agree with the function. Por
instance, in the example, the loop computes the function

g(n,s)=n+SUM(x, s,NODES (X))

only under the provision that the set s does not contain the
empty tree. This is normally not a serious problem in practice.
One proceeds as before, i.e. attempts to push through a proof of
correctness using the inferred function. If the proof is suc-
cessful, the program has been verified; otherwise, the charac-
teristics of the input data which cause the verification
condition(s) to fail (e.g. s contains an empty tree) suggest an
appropriate restriction of the input domain (e.g. s contains only
nonempty trees) and the program can then be verified using this
new, restricted function.

xample 4.4 [Gries 79]) - Ackermann”’s function A(m,n) can be
definea as follows for all natural numbers m and n:

A(O,n) = n+l
A{m+l1l,0) = A(m,1)
A(m"'l’n"'l) = A(m'A (m"’l,n)) .

The following program computes Ackermann‘s function using a
sequence variable s of natural numbers. The notation s8(l) is the
rightmost element of 8 and s(2) is the second rightmost, etc.
The sequence 8(..3) is s with s(2) and 8(l) removed. We will use
< and > to construct sequences, i.e. a sequence s consisting of n
elements will be written <s(n), ... ,8(2),s8(l)>.

{m>=0,n>=0}
8 := <m,n>;
while size(s) ¥ 1 do

1f 8(2) = 0 then s8:»8(..3)]|l<s(1l)+1>
elseif s8(1)=0 tﬁen s--s(..3) <g(2)-1,1>
{s=<A(m,n)>}

For this program, the first constraint function is

Cl: m>=0, n>=0, s=<m,n> => g(s)=<A(m,n)>.
The second constraint functions corresponding to the 3 paths
through the loop body are

C2a: m=0, n>=0, g=<n+l> => g(s)=<A(m,n)>

-53-

.

N e e e T i R - T o oA Y. GNP TCPI TR OGRIN ¥ T AT D L VT e g raer

e 1 e S g < -
SRS e e .- - e ot e

C2b: m>0, n =0, s=<m-1,1> -> g(s)=<A(m,n)>
C2¢c: m>0, n >0, s=<m-1l,m,n-1> => g(s)=<A(m,n)>.
REWNRITING these 3 based on the above definition of A yields

m=0, n>=0, s=<n+l> -> g(s8)=<n+l>

m>0, n =0, s=<m-l,1> -> g(s8)=<A(m-1,1)>

m>0, n >0, s=<m-l,m,n-1> -> g(s)=<A(m-1l,A(m,n-1))>.
SUBSTITUTING here yields

s=<g(1l)> -> g(s)=<s(1l)>

s=<s(2),s8(1)> ~> g(s)=<A(s(2),s(1))>

s=<s(3),s(2),s8(1)> -> g(s)=<A(s(3),A(8(2),s8(1l)))>.

Note that the second of these functions implies Cl. The 3 seenm
to suggest the general loop behavior (where n>1)
g(<s(n),s(n-1), ... ,s8(1l)>) =
<A(S(n) ,A(S(n-l), e o0 A(S(Z),S(l)) s e e))>o

We remark that in the €first 3 examples, the heuristic
| resulted in a loop function which was sufficiently general (i.e.
f the loop was closed for the domain of the inferred function).
Example 4.4 illustrates that this does not always occur. The
loop function heuristic is helpful in the example in that it sug-
gests a behavior of the loop for general sequences of length 1, 2
and 3. Based on these results, verifier is left to infer a
behavior for a sequence of arbitrary length.

Example 4.5 - Let v be a one dimensional array of length n>0
which™ contains natural numbers. The following program finds the
, max imum element in the array:

o m = 0; i := 1;

while i <= n do
o T 1if m < v[i] then m := v[i] fi;
S i=1i4+1

£i
{m=BIGGEST (v) }

The notation BIGGEST (v) appearing in the postcondition stands for
: the largest element of v. The following constraint functions are
‘ obtained
| Cl: m=0, i=1 -> g(m,i,v,n)=BIGGEST (v)
C2: m=v{l], i=2 -> g(m,i,v,n)=BIGGEST (V).
o Noticing the appearance of v[l] and 2 in C2, we REWRITE
N BIGGEST (v) in C2 as MAX(v[l] ,BIGGEST(v{2..n])), where MAX returns
1 the largest of its two arguments, and v{2..n] is a notation for
the subarray of v within the indicated bounds. The generaliza-
tion which suggests itself,
P agrees with Cl.

' f le 4.6 - If p is a pointer to a node in a binary tree,
Y let pos'rip) De the sequence of pointers which point to the nodes
I : in a postorder traversal of the binary tree pointed to by p. The
¥ following program constructs POST(p) in a sequence variable vs
) using a stack variable stk. We use the notation 1l(p) and r(p)
5

-54-

-
-8

o -~ 0 IS N SETRTICTR TR T R Y e B
e GG % 3 » T TR T WY . ’ T ’

B T

I

D e I A

for the pointers to the 1left and right subtrees of the tree

pointed to by p. If p has the value NIL, POST(p) is the empty
sequence. The variable rt points to the root of the input tree

to be traversed.

p :=rt; stk := EMPTY; vs = <>;
while ~(p=NIL & stk=EMPTY) do

if p¥NIL then
stk <= p /* push p onto stk */ ;
p := 1(p)
else
p <= stk /* pop stk */ ;
vs = vs || <p>;

p :=r(p) fi
od
{ve™= POST(rt)}.

Up until now, we have attempted to infer a general loop function
from two constraint functions. Of course, there is nothing spe-
cial about the number two. In this example, the “"connection"
between the initialized variables and the function values is not
clear from the first two constraint functions and it proves help-
ful to obtain a third constraint function. Functions Cl1 and C2
correspond to 0 and 1 loop-body executions, respectively. The
third constraint function C3 will correspond to 2 loop-body exe-
cutions. We will use the notation (el, ... ,en) for a stack con-
taining the elements el, ... ,en from top to bottom. The con-
straint functions for this program are

Cl: p=rt, stk=EMPTY, vs=<> =>
g(p,stk,vs)=POST (rt)

C2: rt#NIL, p=l(rt), stk=(rt), va=<> ->
g{p,stk, vs) =POST (rt)

C3a: rtANIL, 1l(rt)#NIL, p=1(l(rt)), stk=(l(rt),rct), ves=<> ->
g(p, stk, vs) =POST (rt)

C3b: rtANIL, l(rt)=NIL, p=r(rt), stk=EMPTY, vss<rt> ->
g(p,stk,vs)=POST (rt).

Note that there are two third constraint functions. C3a and C3b

correspond to executions of the first and second loop-body paths

(on the second iteration), respectively. There is only 1 second

constraint function since only the first loop-body path can be

executed on the first iteration. Using the recursive definition

of POST, we REWRITE C2, C3a and C3b as follows:

CZ‘: rt’NIL' Pl(rt) ’ Stk-(tt) ’ vsm<> ~>
g(p,stk,vs)=POST (1(rt)) ||<rt>|]| POST(r(rt))

C3a“: rtyNIL, 1(rt)¥NIL, p=1(1l(rt)), stk=(l(rt),rt), vs=<> =>
g(p,stk,vs)=POST(1(1l(rt))) <l(rt)>|] POST(r(l(rct)))

<ct>|| POST(r(rt))

C3b”: rtsNIL, l(rt)s=NIL, p=r(rt), stksEMPTY, vssu<rt> =>
g(p,stk,vs)=<rt> || POST (r(rt)).

Applying SUBSTITUTE to each of C2°, C3a” and C3b” suggests

stk=(el), ves<> => g(p,stk,vs)=POST (p) || <el>| |POST (r(el))
stk= (el ,e2), vs=<> -> g(p,stk,vs)=POST(p) || <el>||POST(r(el))
<e2> | |POST (r(e2))

o~

stk=EMPTY -> g(p,stk,vs)=vs| | POST (p)

respectively. The first 2 of these functions imply the following
behavior for an arbitrary stack where vs has the value <>:
stk=(el, ..., en), vs=<> -> g(p,stk,vs) =

POST(p) || (<el>]|| POS'r(el) 1]...||<en>|| POST (en))
and in combination with the last function, the general behavior
stk=(el, ..., en) -> g(p,stk,vs) =
vs || POST(p) || (<e1>|| poST(el) ||...||<en>|| POST(en))

is suggested.

In this section we have illustrated the use of our technique
on a number of example programs. The reader has seen that the
success of the method hinges largely on the way REWRITE is per-
formed. What guidelines can be used in deciding how to apply
this step? The general rule given above is to identify the vari-
ables that need to be introduced into the expression and then to
rewr ite the expression using the terms to which these variables
are bound. For instance in Example 4.3, NODES(t) was rewritten
using the terms 1 and SONS(t). Beyond this rule, however, the
reader may have noticed an additional similarity in the way
REWRITE was applied in these examples. If £ is the function or
operation the initialized loop program is intended to compute,
each REWRITE step involved decomposing an application of f in
some way. In Example 4.1, for instance, a multiplication opera-
tion was decomposed into an addition and multiplication opera-
tion; in Example 4.3, a NODES operation was decomposed into a
summation and a number of NODES operations; in Example 4.5, a
BIGGEST operation was decomposed into a MAX and a BIGGEST opera-
tion. 1In Section 4.5 we will characterize this idea of decompos-
ing the intended operation of the initialized loop program and
discuss several implications of the characterization for the pro-
posed technique.

In Example 4.6, we saw that the technique generalizes to the
use of three (and indeed an arbitrary number of) constraint func-
tions. We have seen that each of these functions defines a sub-
set' of the general 1loop function g being sought. If the con-
straint functions themselves are sufficiently general, it may be
that the first several of these functions, taken collectively,
constitute a complete description of g. We consider this situa-
tion in the following section.

4.3. Complete Constraints

The technique described above for obtaining a general loop
function is “"nondeterministic"™ in that the constraint functions
do not precisely identify the desired function; rather they serve
as a formal basis from which intelligent guesses can be made con-
cerning the general behavior of the loop. Our belief is that it
is often easy for a human being to £ill in the remaining "pieces"
of the loop function "picture® once this basis has been esta-
blished.

Ko qu'iﬂ

BT

There exist, however, circumstances when the constraints do
constitute a complete description of an adequate loop function.
Specifically, this description may be complete through the use of
one, two or more of the constraint functions. The significance
of these situations is that no guessing or "filling in the pic-
ture" is necessary; the program can be proven/disproven correct
using the constraints as the general loop function. In this sec-
tion we give a formal characterization of this circumstance.

Definition 4.1 - For some N > 0, an initialized loop is N-
closed with respect to its specification £ iff the union of the
constraint functions C1,C2, ... ,CN is a function g such that the
loop is closed for the domain of g. 1In this case, the con-
straints C1,C2, ... CN are complete.

Thus if a loop is N-closed for some N>0, the union of the
first N constraint functions constitutes an adequate loop func-
tion for the loop under consideration. Intuitively, the value N
is a measure of how quickly (in terms of the number of loop
iterations) the variables constrained by initialization take on
"general" values.

Example 4.7 - The following program

{b>=0}

a:=a+ 1;

while b > 0 do
a :=a+ ;
b:=b -1

xd
{a=al0 + b0 + 1}

is 1-closed since the first constraint function is
Cl: bO0>=0, a=a0+l, b=b0 -> g(a,b)=al0+bl0+1
which SIMPLIFIES to
b>=0 -> g(a,b)=a+b
and "the loop is closed for the domain of this function. Thus Cl
by itself defines an adequate loop function.

Initialized loops which are l-closed seem to occur rarely in
practice. Somevwhat more frequently, an initialized loop will be
2-closed. For these programs, the loop function synthesis tech-

nique described above (using 2 constraint functions) is deter-
ministic.

Example 4.8a - Consider the program

w

SR T o

. -

sum := 0;

while seq ¥ EMPTY do
~ sum := sum + head(seq):
seq := tail(seq)

od
{sum=SIGMA (seq0)}.

The notation SIGMA(seq0) appearing in the postcondition stands
for the sum of the elements in the sequence seq0. The program is
2-closed since the second constraint function is
C2: seqO#EMPTY, sum=head(seq0), seq=tail(seq0) ->
g(sum, seq) =SIGMA (seq0)
which SIMPLIFIES to
g (sum, seq) =sum+SIGMA (seq) .
The loop is trivially closed for the domain of this function.

Example 4.8b - As a second illustration of a 2-closed ini-
tialized 1loop, the following program tests whether a particular
key appears in an ordered binary tree.

success := FALSE;
while tree # NULL & “success do

Tif name (tree) = key then success := TRUE
elseif name(tree) < key then tree := right(tree)
else tree := left(tree) fi
od

{success = IN(key, tree0)}

The notation IN(key,treel) is a predicate which is true iff key
occurs in ordered binary tree tree0. This program is also 2-
closed. Note that the first constraint function
Cl: success=FALSE, tree=tree(->
g(success, tree, key) =IN(key, tree0)
SIMPLIFIES to
success=FALSE -> g(success, tree, key)=IN(key, tree).
If we consider the first path through the loop body, the second
constraint function is
C2: success=TRUE, tree0y¥NIL, treestree(, key=name{tree) ->
g(success, tree, key) =IN(key, tree0)
which SIMPLIFIES to
success=TRUE, treeyNIL, key=name(tree) ->
g(success, tree, key) =IN(key, tree) .
Although the domain of the union of these two functions is some-
what restricted, i.e.
<success, tree, key>
(("success) OR (treeyNIL & key=name(tree)))},
the loop is nevertheless closed for this domain and hence the
initialized loop is 2-closed.

Example 4.8c - Consider the sequence of initialized 1loops
P1,P2,P3 ... defined as follows for each I>0:

et 2 N e A o oy o0 O

X 3= x * I;

while x > 0 do
X 1= x - 1;
y =y + k

od
{y=y0 + x0*I*k}.

E For any I>0, the first I constraint functions for program PI are
Cl: x0>=0, x=x0*I, y=y0 => g(z,Y,K)=y0+x0*I *k
C2: x0>=1, x=x0*I1-1, y=yO0+k -> g(2,y,k)=y0+x0*] *k

CI: x0>=I-1,x=x0*I~-(I-1),y=y0+k*(I-1) => g(x,y,k)=y0+x0*]*k,
These SIMPLIFY to

x>=0, MI(x) -> g{xX,¥,K) =y+x*k

x>=0, MI(x+l) => g(x,¥,K)=y+x*k

x>=0, MI(x+(I-1)) => g(z,y,k)=y+x*k
where MI is a predicate which is TRUE iff its argument is a mul-
tiple of I. Since the union of these is the function

x>=0 -> g(x,y,Kk)=y+x*k,
and the loop is closed for the domain of this function, we con-
clude that for each I>0, program PI is I-clos- .

For many initialized loopg which seem to occur in practice,
o however, there does not exist an N such that they are N-closed
with respect to their specifications. This means that no finite
number of constraint functions will pinpoint the appropriate gen-
eralization exactly; i.e. when applying the above technique in
these situations, some amount of inferring or guessing will
always be necessary. A case in point is the integer multiplica-
tion program from Example 4.1. The constraint functions
Cl,C2,C3, ... define the general 1loop behavior for z=0, z=k,
z=2*k, ... etc. The program cannot be N-closed for any N since
with input vaN+1l, the last value of z will be (N+l)*k which is
not in the domain of any of these constraint functions.

As a final comment concerning N-closed initialized loops, it
may be instructive to consider the following intuitive view of
these programs. All 1l-closed and 2-closed initialized 1loops
share the characteristic that they are "forgetful," i.e. they
soon lose track of how "long" they have been executing and lack
the necessary data to recover this information. This is due to
o the fact that intermediate data states which occur after an arbi-
l trary number of iterations are indistinguishable from data states
which occur after zero (or one) loop iterations. To illustrate,
congider the 2-closed initialized loop of Example 4.8a which sums
the elements contained in a sequence. After some arbitrary
number of iterations in an execution of this program, suppose we

it S

-
L LT e P

-850

s

4
-

P o

. v e
.

stop it and inspect the values of the program variables sum and
seq. Based on these values, what can we tell about the history
of the execution? The answer is not too much; about all we can
say is that if sum is not zero then we know we have previously
executed at least 1 loop iteration, but the exact number of these
iterations may be 1, 10 or 10000.

By way of contrast, again consider the integer mltiplica-
tion program of BExample 4.1, an initialized loop we know not to
be N-closed for any N. Suppose we stop the program after an
arbitrary number of iterations in its execution. Based on the
values of the program variables z, v and k, what can we tell
about the history of the execution? This information tells us a
great deal; for example, we know the loop has iterated exactly
z/k times and we can reconstruct each previous value of the vari-
able z.

Initialized loops which have the information available to
reconstruct their past have the potential to behave in a "tricky"
manner. By "tricky" here, we mean performing in such a way that
depends unexpectedly on the history of the execution of the loop
(i.e. on the effect achieved by previous loop iterations). The
result of this loop behavior would be a loop function which was
"inconsigstent™ across all values of the 1loop inputs and which
could only be inferred from the constraint functions with consid-
erable difficulty. We consider this phenomenon more carefully in
the following section; for now we emphasize that it is precisely
the potential to behave in this unpleasant manner that is lacking
in 1-closed and 2-closed initialized loops and which allows their
general behavior to be described completely by the first one or
two constraint functions.

4.4. “Tricky” Programs

The above heuristic suggests inferring g from two subsets of
that function, Cl1 and C2. Constraint function C2 is of particu-
lar - importance since REWRITE and SUBSTITUTE are applied to this
function and it, consequently, serves to guide the generalization
process. C2 is based on the program specification £, the ini-
tialization and the input/output behavior of the loop body on its
first execution. In any problem of inferring data concerning
some population based on samples from that population, the accu-
racy of the results depends largely on how representative the
samples are of the population as a whole. The degree to which
the samp.a2 defined in C2 is is representative of the unknown gen-
eral function we are seeking depends entirely on how representa-
tive the input/output behavior of the loop body on the first loop
iteration 1is of the input/output béhavior of the loop body on an
arbitrary subsequent loop iteration.

To give the reader the general idea of what we have in mind,
consider the program to count the nodes in a binary tree in Exam-
ple 4.3. If the loop body did something peculiar when, for

example, the set s contained two nodes with the same parent node,
or wvhen n had the value 15, the behavior of the loop body on its
first execution would not be representative of its general
behavior. By "peculiar®™ here, we mean something that would not
have been anticipated based solely on input/output observations
of its initial execution. An application of our heuristic on
programs of this nature would almost certainly fail since
(apparently) vital information would be missing from Cl1 and C2.

Example 4.9 - Consider applying the technique to the follow-
ing program which is an alternative implementation of the integer
multiplication program presented in Example 4.1:

{v>=0}

z := 0;

while v ¥ 0 do
if 2=0 then 2
elseif z=k then =z
else z
v := v - 1)

e oo o0
| B ']
N N *x
[

&N
h »
~ 4§

.‘ {zag%*k} .

The constraint functions Cl and C2 are identical to those for the
program in Example 4.1 and we have no reason to infer a different
function g. Yet this function is not only an incorrect
hypothesis, it does not even come close to describing the general
behavior of the loop. The difficulty is that the behavior of the
loop body on its first execution is in no way typical of its gen-
eral behavior. This is due to the high dependence of the loop-
body behavior cn the input value of the initialized variable z.

2.4

i ’ We make the following remarks concerning programs of this
natuze. Fizst, our experience indicates that they occur very
rarely in practice. Secondly, because they tend to be quite dif-
4 ~ ficult to analyze and understand, we consider them "tricky® or

pootrly structured programs. Thirdly, the question of whether the
*. (input/output) behavior of the loop body on the first iteratijon
' is representative of its behavior on an arbitrary subsequent
1 iteration is really a question of whether its behavior when the
. ‘ initialized variables have their initial values is representative
T of its behavior when the initialized variables have "arbitrary"

!

values. Put still another way, the question is whether the loop
body behaves in a "uniform” manner across the spectrum of possi-
ble values of the initialized data.

b ; In practice, a consequence of a loop body exhibiting this
. uniform behavior is that there exists a simply expressed connec-
. tion between different input values of the initialized data and
' the corresponding result produced by the WHILE loop. It is the
: existence of such a connection which motivates the SUBSTITUTE
step above and which is thus a necessary precondition for a suc-

cessful application of the technique. This explains its failure

EARr 4 A h‘

S,

-fl=

TR R TR e

il coniliin t.mn_;.‘. NPT R PSR A Juc -

f-!‘

in dealing with programs such as that in Example 4.9. We make no
further mention of these "tricky®" programs, and in the following
section discuss an informal categorization of "reasonable" pro-
grams and consider its implications for our 1loop function syn-
thesis technique.

4.5. BU and TD Loops

In this section, we discuss general characteristics of many
commonly occurring iterative programs. These characteristics are
used to suggest two categories of these programs. This categori-
zation is of interest since the above heuristic for synthesizing
loop functions is particularly useful when applied to initjalized
loops in one of these categories.

In solving any particular problem, it often makes sense to
consider certain instances of the problem as being "easier"” or
*harder" to solve than other instances. For example, with the
problem of sorting a table, the ease with which the sort can be
performed may depend on the size of the table, i.e. an instance
of the problem for a table containing N elements might be harder
to solve than an instance of the problem for a table containing
N-1 elements. Similarly, if the problem is multiplying natural
numbers, a*b might be easier to solve than (a+l)*b. This notion
of "easier"” and "harder” instances of a problem is particularly
apparent for problems with natural recursive solutions. These
solutions solve complex instances in terms of less complex
instances and hence support the idea of one problem instance
being easier to solve than another.

For the purpose of this discussion, we divide the data modi-
fied by the initialized loop under consideration into two sec-
tions: the accumulating data and the control data. The accumu-
lating data 1Is the specified output variable(s) of the loop. The
remaining modified data is the control data and often serves to
*quide® the execution of the 1loop and determine the point at
which the loop should terminate. Both the accumulating data and
the control data are typically (but not always) constrained by
initialization in front of the loop.

Example 4.10a - In the program

{n>=0}
zZ :t=1; t = 0;
while t # n do
t =t + I?
z =2 * ¢t '
od
z=nl}

the variable z is the specified ocutput of the loop and is hence
the accumulating data. The other modified variable, t, is used
to control the termination of the loop and is the control data.

-§2~

P2 4

& g “"; - N

In many cases, the control data can be viewed as represent-
ing an instance (or perhaps several instances) of the problem
being solved. As the loop executes and the control data changes,
the control data represents different instances of this problem.
To illustrate, we can think of the control data t in the previous
example as a variable describing a particular instance of the
factorial problem. As the loop executes, the variable t takes on
the values 0, 1, ..., n, and these values can be thought to
correspond to the problems 0!, 11!, ... nl.

Bagsed on these informal observations, we characterize a BU
(from the Bottom Upward) loop as one where the control data prob-
lem instances are generated in order of increasing complexity,
beginning with a simple instance and ending with the input prob-
lem instance to be solved. In the execution of a BU loop, the
control data can be viewed as representing the "work"™ that has
been accomplished "so far." We consider the factorial program
above to be a BU loop. At any point in time, the "work" so far
accomplished is t{ and t moves from 0 (a simple factorial
instance) to n (the input factorial instance).

Conversely, we characterize a TD (from the Top Downward)
loop as one where the control data problem instances are gen-
erated in order of decreasing complexity, beginning with the
input problem instance and ending with a simple problem instance.
In the execution of a T loop, the control data can be viewed as
representing the "work" that remains to be done.

Example 4.10b - We consider the following alternative imple-
mentation of factorial to be a T loop:

{n>=0}
z = 1;
while t

Z =

I8
o NN
| %O
=218 s
-

{z=nT}.

As before z and t are the accumtlating and control data respec-
tively. The variable t moves from n (the input factorial
instance) and ends with 0 (a simple factorial instance). After
any iteration, the product n*(n-l)* ... *(t+l) has been accum-~-
lated, leaving t! as the "work" that remains to be done.

Example 4.11 - As an additional illustration, consider the

follc;wing three initialized loops which compute integer exponen-
tiation:

-63-

R MO S

i - i o — o SRR T

- P B2PE A PR - ¢ T A g W e - .. R ‘
A: {y>=0} B: {y>=0} c: {y>=0}
we=l; t:=0; ws=l; te:=y; 1=1; c:=x; t:=y;
while thy do while t#0 do while t#0 do
W o= whx; W o= whx; 1f odd(t) then
t = t+l t = t-1 w = wic fi;
{ o_g} { o_g} c:=Cc*C; tist
w=X'y wsX'y
{w=x"y}

As before, the symbol " is used as an infix exponentiation opera-
tor. We consider program A to be a BU loop. The control data t
moves from 0 to y and corresponds to the problem instances x"0,
eees X7Y. On the other hand, B is T since the control data t
moves from y to 0 and corresponds to the problem instances x"y,
.ees X*0. Program C (similar to that in Example 4.2) is slightly
! more difficult to analyze. The control data is the pair <c,t>.
The pair is initialized to <x,y> and ends with the value <«“,0>,
where ¢ is some complex function of x and y. It seems reason-
able to consider <c,t> as representing the problem c”“t. Hence we
conclude C is also T». This conclusion also makes sense in light
of the fact that C 1is really an optimized version of B which
saves iterations by exploiting the binary decomposition of y.

The characterization of BU and TD loops described here is,
of course, an informal one and depends largely on one”“s interpre-
tation of the meaning or purpose of the control data. We classi-
fied the above programs by using what we considered to be the

" 4 most "natural®™ or intuitive interpretation; other interpretations

are always possible. Occasionally, two different interpretations

} of the control data seem equally valid and hence the program may

; be considered as either BU or T, depending on one”s point of

‘ view. Por example, consider the following program which adds up
the elements in a subarray between indices pl and p2:

sum = 0; i := pl;
while t <= p2 do

: sum := sum + af[il;
{ i =i +1

od
{sum=AsSuM(alpl..p2))}.

‘
cm—— .

The notation ASUM(a({pl..p2]) appearing in the postcondition
stands for the summation of the elements in the indicated subar-
ray. The question which arises in attempting to classify this
program is as follows: as the control data i moves through the
values pl, pl+l, ..., p2, is it most appropriate to think of it
as representing the problem instance which has been solved (i.e.
ASuM(alpl..i]))) or as . representing the problem instance which
remains to be solved (i.e. ASUM(ali..p2])). Both views seem
equally intuitive, that is, the program seems to be as much BU as
it is TD.

i NS T

«

r

-64-

o’

r o ‘.:M,-',.:.‘ ..

As a final example, we refer back to the program in Example
4.3 which counts the nodes in a binary tree. It is clear n and
the set variable 8 are the accumulating and control data respec-
tively. Initially, s contains the tree whose nodes are to be
counted; when the program terminates s is empty. In between, s
contains various subtrees of the original tree. It seems natural
to view the set as containing progressively simpler and simpler
instances of the NODES problem since the trees in 8 consist of
fewer and fewer nodes as the loop executes. Thus we classify the
program as a TD loop.

We have seen that the problem-solving method taken by a BU
loop is one of approaching the general problem instance from some
simple problem instance. Of course, this problem-solving method
is reasonable only when there exists some technique whereby one
is guaranteed to "run into" the general problem instance. Our
view is that in many cases, such a convergence technique either
does not exist or requires so much support that the BU approach
is not practical. This appears to be particularly true for pro-
grams dealing with sophisticated data types (i.e. something other
than integers) and for programs requiring a high degree of effi-
ciency in their number of iterations.

To help see this point of view, again consider the NODES
program of Example 4.3. Previously we argued that this was a T™
program. What would a BU program which computed the same func-
tion look like? The following program skeleton suggests itself:

n :=0; tl := "an empty tree";

while tl1 # t do
"add a node to tl to make it look more like t";
n :=n+1

od
{n=NODES (t) } .

Here, the tree variable tl is the control data and it represents
the problem NODES(tl). The difficulty with this attempt at a
program solution is the implementation of the modification of tl.
Such a modification requires close inspection (i.e. a traversal)
of t in order to move tl toward t. 1In light of this, it seems
more reasonable to count the nodes of t while it is being
inspected and to dispense altogether with the variable tl.

As an illustration of another circumstance where the BU
approach seems unreasonable, the reader is encouraged to imagine
a BU implementation of integer exponentiation which operates as
efficiently as the exponentiation program C from Example 4.1l1.
Again, a program skeleton suggests itself:

- 65-

.y

b, oy

e cetm—

r s‘“,*«i’ o

{y>=0}
wa=1l; ¢ = ?; s= 0;
while <c,d> ¥ <x,y> do
c := 8qrt(c);
if ? then
d t2=d * 2+ 1l; w :mw *¢
ed =4 * 2 fi

81H

=,

{w-x v}.

Here, we are attempting to move the control data <c,d> toward
<xX,y> as fast as we moved it away from <x,y> in TD program C. As
with the BU NODES program, the problem here is how to complete
the program so as to achieve the desired effect. Our conclusion
concerning this program is that supplying an appropriate initial
value for ¢ and determining the proper loop-body path to be exe-
cuted requires such complexity that this approach is not a feasi-
ble alternative to program C.

In this section we have suggested two informal categories of
initialized loop programs. We offered the opinion that the
approach taken in a BU program solution has rather limited appli-
cability and that TD programs tend to occur more frequently in
practice. wWe feel that this characterization is useful as a
study of opposing problem-solving philosophies but our main
source of motivation is to investigate the kinds of commonly
occurring programs on which the loop function synthesis technique
described above works well.

Consider applying this technique to a general TD program.
In the second constraint function, the control data is bound to a
value which represents a slightly less complex instance of the
general problem being solved by the initialized loop. In prac-
tice, the a arance of thxs value m the constraint function
su ests tEe roB']'.em decom s:.t:.on e_%LoItea By the pro~
grammet in order to achieve e program Applying this
decomposition in REWRITE 1leads quite natutally to the desired
general loop function. _

Example 4.12 - Consider the TD factorial program from Exam-
ple 4.10b.” The second constraint function is

C2: n>0, z=n, t=n-1l -> g(z,t)=nl
The control data t being bound to n-1 suggests REWNRITTING n! as
n*(n-1)!. This leads to the correct general loop function. On
the other hand, consider the second constraint function for the
BU factorial program from Example 4.10a:

C2: n>0, z=1, t=1 -> g(z,t,n)=nl
How can the expression n! be rewritten in terms of 1, 1 and n?
To obtain the correct general function, the expression would have
to be rewritten as (1*nl) /(1!) which seems much 1less intuitive
than that required for the TD version. As another point of com-
parison, consider the second constraint function for the ™™
exponentiation program B from Example 4.l1:

-66-

C2: y>0, w=x, t=y-1l => g(w,t,x)=x"y
and the second constraint function for the BU exponentiation pro-
gram A from the same example:

C2: y>0, w=x, t=1 -> g(w,t,x,y)=x"y.
In both cases, the proper loop function may be obtained by using
the REWRITE rule x"y = x*(x" (y-1)); however, this particular rule
seems more strongly suggested in the constraint functjor for the
TD program.

We remark that the same general phenomenon occurs with T
programs in the event the control data has been SIMPLIFIED out of
the domain requirement for C2. 1In this case, the fact that the
control data represents a slightly less complex instance of the
general problem being solved manifests itself in the function
expression for the SIMPLIFIED C2 being a slightly more complex
instance of the problem being solved. For example, the con-
straint function C2 above for the TD exponentiation program B of
Example 4.11 can be SIMPLIFIED to

t>=0, w=x -> g(w,t,x)=x"(t+l).
Before, the appearance of y-1 in the domain requirement suggested
rewr itting x"y as x*(x"(y-l)). Here, the appearance of t+l in
the function expression suggests rewritting x"(t+l) as x*(x"t)
(see also Examples 4.1 and 4.2).

Suppose f is the operation or function the initialized 1loop
program is intended to compute. 1In Section 4.2 we observed that
each REWRITE in the examples of that section involved “decompos-
ing®™ an application of f. This decomposition corresponds to
rewr itting that problem instance in terms of a slightly less com-
Plex problem instance (or instances). 1In general, of course,
there are many ways this decomposition can be performed. 1In the
examples of that section, however, as with all TD programs, the
nature of the control data serves to guide this decomposition and
thus tends to make the REWRITE step quite straightforward in
practice.

* The reader may have noticed that the general loop functions
for the BU factorial and exponentiation programs contain more
program variables and operations on those variables than their TD
counterparts. For instance, the general loop functions for the
BU and T factorial programs are

O<=t<=n => g(z,t,n)=z*(nl/tl)
and

O<=t -> g(z,t)=2z*t]
respectively. This fact, by itself, helps explain why the 1loop
function synthesis technique seems wore difficult to apply on BU
programs. It would be a mistake, however, to assume that the BU
programs are more "complex" or are more difficult to analyze or
prove. We consider TD loops to be somewhat more susceptible to
the form of induction employed in functional loop verification.
More precisely, the inductive hypothesis required in this type of
proof (i.e. a general statement concerning the loop input/output
behavior) seems to be more easily stated for TD programs than for

-67-

.E‘}d
£l

BU programs. On the other hand, BU programs seem somewhat more
susceptible t© an inductive assertion proof. The inductive
hypothesis required in this type of proof (i.e. a sufficiently
strong loop invariant) involves fewer program variables and
ocperations on those variables than the same type of hypothesis
for the corresponding T loop. As an example the BU and T fac-
torial programs have adequate loop invar -.ts O<=t & z=t! and
O<wt<=n & z=nl/t! respectively.

In [Manna & Waldinger 70}, the authors describe a program
synthesis technique and point out that their method produces
either of the above factorial programs depending upon which type
induction rule the synthesizer is given to employ.

4.6. Related Work

In (Basu & Misra 76, Misra 78, Misra 79]), the authors
describe two classes of "naturally provable® programs for which
generalized loop specifications can be obtained in a determinis-~
tic manner. The technique proposed in this chapter sacrifices
determinism in favor of wide applicability and ease of use. It
handles in a fairly straightforward manner typical programs in
these two program classes (e.g. Examples 4.1-4.3) as well as a
number of programs which do not fit in either of the classes
(e.g. Exmles ‘.4-‘.6).

Due to the close relationship between 1loop functions and
loop invariants (as discussed, for example, in Chapter 2), any
technique for synthesizing loop invariants can be viewed as a
technique for synthesizing general 1loop functions (and vice
versa). In this light, our method bears an interesting resem-
blance to a loop invarjiant synthesis technique described in [Weg-
breit 74, Katz & Manna 76]). In this technique stronger and
stronger “approximations"™ to an adequate loop invariant are made
by pushing the previous approximation back through the loop once,
twice, etc.

By way of illustration, consider the exponentiation program
of Example 4.2. The loop exit condition can be used to obtain an
initial loop invariant approximation

d=0 -> w=c0°40.

This approximation can be strengthened by pushing it back through
the loop to vyield

(d=0 -> w=c0°d0) & (d=1 -> w*c=c0°d0).

In the analysis presented in Exanple 4.2, we obtained a value for
the generalized function specification for each of two different
values of the initialized variable w (i.e. 1 and SQRT(c)); here
we have cbtained a "value" for the loop invariant we are seeking
for each of two different values of the variable which controls
the termination of the loop 4. Applying the analysis in [Morris
& Wegbreit 77), these loop invariant "values®™ can be translated
to constraint functions as follows:

d=0 -> g(w,c,d)=w,

FO—

I i A Y PR ——— ~ y

W PR TS e

d-l -> g(w'c'd).w*c.
Of course, the function expression w*c in the second constraint
can be rewritten w*(c"l); SUBSTITUTING as usual suggests the gen-

- 7 eral loop function
2R g(w,c,d)=w*(c"d).

L & If we then add the program precondition as a domain restriction
; on this function, the result is the same general loop function

discovered in Example 4.2.

We summarize the relationship between these two techniques
as follows. As the initialized loop in question operates on some
particular input, let X[0], X[l1], .. ,X[N] be the sequence of
states on which the loop predicate is evaluated (i.e. the loop
body executes N-1 times). Of course, in- X[0], the initialized
variables have their initial values, and in X[N), the loop predi~
cate evaluates to FALSE. The method proposed in this chapter

_ suggests inferring the unknown loop function g from X{[0), X[1],
TN g(X[0]) and g(X[1]). The 1loop invariant technique described
. above, when viewed as a loop function technique, suggests infer-
ring g from X[N], X([N-1], g(X(N]) and g(X[N-1]). Speak ing
roughly then, one technique uses the first several executions of
the loop, the other uses the last several executions. One
ignores the information that the loop must compute the identity
function on inputs where the loop predicate is FALSE, the other
o ignores the information that the loop must compute like the ini-
} tialized loop when initialized variables have their initial
i values.

: : Earlier we discussed "top down" and "bottom up" approaches
Rl to synthesizing g and indicated that our technique fit in the
’ ! "top down" category. The technique based on the 1last several
iterations is a "bottom up" approach. It is difficult to care-
fully state the relative merits of these two opposing techniques.
In our view, however, there are a number of circumstances under
which the technique based on the first several loop executions
seems more "natural”™ and easily applied. These examples include .
the NODES program, the program to compute Ackermann’s function f
and the T factorial program discussed above. The reason is that
i a critical aspect of the general loop function is the function
; computed by the initialized loop program (e.g. exponentiation in :
: the above illustration). In the technique based on the first '
N several jiterations, this function appears explicitly in the con-
straint functions. 1In the other technique, this information must
by somehow be inferred from the corresponding constraint functions
: (e.g. by looking for a pattern in these functions, etc.). This
'P difficulty is inherent in any "bottom up" approach to synthesiz-

ing g.

In Chapter 3, we presented several guidelines for the syn-
thesis of reduction hypotheses. Heuristic SHORTCUT of Theorem
3.2 in that chapter is based on the observation that the programs

A: Pl; B: Pl; P2;
while Bl do while Bl do
Y
) - 69~

A e

e e e NN T N T T AP ST " e T . TR AR TR TR T R

N1 S D S Y11 P R S ~ - e

P2 P2

od od
are equivalent on inputs which require at least onc 1loop {tera-
tion on program A. This is the underlying WTILE loop property
that is used to obtain constraint function C2 in the 1loop func-
tion derivation technique described in this cunapter. Specifi-
cally, C2 for the program A is exactly constraint function Cl for
the program B.

4.7. Discussion

In this chapter we have proposed a technique for deriving
functions which describe the general behavior »f a loop which is
preceded by initjialization. These functions c..n be used in a
functional [Mills 75] or subgoal induction [Morris & Wegbreit 77]
proof of correctness of the initialized loop program. It is not
our intention to imply that verification should occur after the
programming process has been completed. There are, however, a
large number of existing programs which must be read, understood,
modified and verified by "maintenance™" personnel. We offer the
heuristic as a tool which is intended to facilitate these tasks.

It has been argued [Misra 78] that the notion of closure of
a loop with respect to an input domain is fundamental in analyz-~
ing the loop. 1In Section 4.3, this idea is applied ¢to initial-
ized 1loop programs. The result is that a loop function g for a
loop which is N-closed (for some N>0) can be synthesized in a
deterministic manner by considering the first N constraint func-
tions. Hence this categorization can be viewed as one measure of
the "degree of difficulty" involved in verifying initialized loop
programs.

An interesting direction for future research is the develop-
ment of a precise characterization of programs which are not
"tricky” (as discussed in Section 4.4). Some results along ¢this
line are described in Chapter 5 (see also [Basu 80]).

In Section 4.5 we discussed on an informal level the oppos-
ing BU and TD problem-solving strategies and their corresponding
initialized loop realizations. We argued that the TD approach
appeared to be more widely applicable and that, in practice, TD
programs seem to occur more frequently. We explained the success
of the proposed loop function creation technique on these pro-
grams in terms of an easily applied RENRITE step. These results
are offered to help support our view that the technigque may be
enployed successfully in a wide range of applications.

-70-

- ————

. e

e e e 7 e e T g o ey ey AT PP IR ¢ Y Bl S R s 18 R Vo

o

5. Analyzing Uniformly Implemented Loops

Consider the problem of proving/disproving a WHILE loop
correct with respect to some functional specification £, i.e. £
requires the output variable(s) to be some function of the inputs
to the loop. If the loop precondition is weak enough so that the
domain of f contains the intermediate states which appear after
each 1loop iteration (i.e. if the loop precondition is a loop
invariant), the loop is said to be closed for the domain of f.
In Chapter 2 (Theorem 2.1) we saw that if the loop is closed for
the domain of its specification, there are two easily constructed
verification conditions based solely on the specification, loop
predicate and loop body which are necessary and sufficient condi-
tions for the correctness of the loop (assuming termination) with
respect to its specification [Mills 75, Misra 78). If the loop
is not closed for the domain of the specification function, a
generalized specification (i.e. one that implies the original
specification) which satisfies the closure rejuirement must be
discovered before these verification conditions can be con-
structed (this problem is analogous to that of discovering an
adequate loop invariant for an inductive assertion proof (Hoare
69] of the program).

We remark that the restricted specification often occurs in
the process of analyzing an initialized WHILE loop, i.e. one that
consists of a WHILE loop preceded by some initialization code.
This initialization typically takes the form of assignments of
constant values to some of the variables manipulated by the locp.
Examples include setting a counter to zero, a search flag -to
FALSE, a queue variable to some particular configuration, etc.
It 1is clear that the initialized loop is correct with respect to
some specification if and only if the WHILE loop by itself is
correct with respect to a slightly modified specification. This
specification has the same postcondition as the original specifi-
cation and a precondition which is the original precondition
together with the condition that the initialized variables have
their initialized values. Since the inijitialized variables will
typically assume other values as the loop iterates, the loop most
likely will not be closed for the domain of this specification
and a generalization of it will be necessary in order to verify
the correctness of the program.

Example S.1 -~ The following program multiplies natural
numbers using repeated addition:

{v>=0,k>=0}
t= 03

while v > 0 do
zZ 1= 2 + F;-
v =y =1
od

{z=vO*k} .

-71-

[dd

L A S e AN NI, T ST T AT Y 1 W

TP 30, A Yoty W

The term v0 appearing in the postcondition refers to the initial
value of v. The program is correct if and only if

{z=0,v>=0,k>=0}

while v > 0 do
zZ := z + k;
Vv :s v =1

od
{z=v0*k}

is correct. Since this loop precondition r:quires z to have the
value 0 and z assumes other values as the loop executes, the loop
is not closed for this precondition. Thus, before this program
can be verified using the above mentioned technique, this specif-
ication must be generalized to something like

{v>=0,k>=0}
while v > 0 do
2 1= 2z + T(_

v =y =1
od
{z=20 + vO*k}

where z0 refers to the initial value of the variable z.

The approach to this problem suggested here 1is one of
observing how particular changes in the value of some input vari-
able (e.g. z in the example) affect the result produced by the
loop body of the loop under consideration. Clearly in general, a
change in the value of an input variable may cause an arbitrary
(and seemingly unrelated) change in the loop-body result. In
many commonly occurring cases, however, the result produced by
the loop body is "uniform" across the entire spectrum of possible
values for the input variable. It is this property that will be
exploited in order to obtain a generalized specification for the
loop being analyzed. The generalizations considered here have
the ' property that the loop is correct with respect to the gen-
eralization if and only if the loop is correct with respect ¢to
the original specification. Thus if the loop is closed for the
domain of the generalization, the program can be proven/disproven
by testing its correctness relative to the generalization.

It is natural to expect that the ease with which a general-
ized specification may be obtained for a 1loop would depend
largely on the nature of the loop. Results in [Wegbreit 77], for
example, show that the problem of generalizing the loop specifi-
cation for any program in a particular class of programs is NP-
complete. On the other hand, work presented here and elsewhere
[Basu & Misra 76, Misra 79, Basu 80], indicates that there do
exist categories of 1loops for which generalized specifications
can be obtained in a direct, routine manner. We feel that the
notion of "uniform" loop-body behavior discussed in this chapter
is valuable not only as a tool by which such generalizations may

-72-

.

.o N - AL =T ’
S ———— A Y x.«—-u-—v:;‘n'~ rmane -

be obtained, but also as an attempt at a characterization of

loops which are susceptible to routine analysis, and hence in
this sense, easy to verify and comprehend.

The following section defines the necessary notation and
terminology and then introduces the idea of a generalized loop
specification. Section 5.2 defines a uniformly implemented loop
and states several implications of this definition for the prob-
lem of generalizing a specification for such a loop. These
results are applied on several example programs in Section 5.3.
In Section 5.4, a simplified procedure is suggested for
proving/disproving a uniformly implemented 1loop correct with
respect to the obtained generalization. Finally, several guide-

lines for recognizing uniformly implemented loops are presented
in Section 5.5.

5.1. Preliminaries

We will consider a verification problem of the form

{<z,y> e D(H)}
while B(<z,y>) do
T z,y = h°(2,¥),h""(z,y)

od
{<z7y> = £(<z0,y0>)}.

In this problem, f is a data-state-to-data-state function. The
data state consists of two variables, z and y. The terms z0 and
y0 refer to the initial values of z and y respectively. The
effect of the loop body is partitioned into two functions h” and
h“” which describe the new values of z and y respectively.

The loop will be referred to as P. As before, the data-
state-to-data-state function computed by the loop (which, presum-
ably, is not explicitly known) will be denoted [P]. Thus D(([P])
is the set of states for which P terminates. As a shorthand
notation we will use X for the state <z,y>, and H for the data-
state-to-data-state function computed by the loop body, i.e.

H(X) = H(<z,y>) = <h“(z,y),h""(2z,¥)>.

Suppose the loop is not closed for D(f) in that this set
contains only a restricted collection of values (maybe only one)
of z and that other intermediate values of z occur as the loop
iterates. The variable z will be called the key variable. Our
goal here is to discover some more general spec cation £~ which
includes each of these intermediate values of the key variable in
its domain. This generalization process (in one form or another)
is necessary for a proof of correctness of the program under con-
s ideration.

pDefinition 5.1 - P is correct wrt a function £ i£ff for all X

in (%), [(P](X) s defined and [PI(X)=£(X).

-73-

Y

SR .

Definition 5.2 - A superset f° of £ is a valid generaliza-

tion of £ iff if P is correct wrt f, then P is correct wrt f£°.

Note that the collection of supersets of f is partially
ordered by "is a valid generalization of.” The following defini-
tion supplies the notation we will use to describe generaliza-
tions of the specification function E£.

Definition 5.3 - If S is a set of ordered pairs of data
states, f is the extension of f defined by S iff £° is a func-
tion and £° is the union of f and S.

Definition 5.4 - If g is the extension of f defined by
(.1 {GX 7B},
then g is the base generalization of £.

Thus, if g is the base generalization of £, then
g(X1)=X2 <-> (f(X1)=X2 OR ("B(X1l) & X1=X2)).

Throughout this chapter, we will continue to wuse the function
symtol g for the base generalization of £. We remark that g
exists provided the union of £ and (5.1) is a function, i.e. pro-
vided

X e D(f)y &8 "B(X) -> £(X)=X
holds. If this condition is not satisfied, P is not correct wrt
£. Hence, 1if P is correct wrt £, the base generalization of £
exists.

Theorem 5.1 - If g is the base generalization of f, then g
is a valid generalization of f.

Proof - Suppose P is correct wrt £. We must show P is
correct wrt g. Let X e D{(g). If X € D(f), the loop handles the
input correctly by hypothesis. If X is not in D(f), we must have
“B(X) and g(X)=X. Thus the program and g map X to itself and
thus are in agreement. Consequently P is correct wrt g, and g is
a valid generalization of f.

The theorem utilizes the fact that the loop must necessarily
compute the identity function over inputs where the loop predi-
cate is false. Combining this information with the program
specification f results in a valid generalization of f.

Definition 5.5 - A valid generalization f£° of f is adequate
if the loop Is closed for D(f”).

The important characteristic of an adequate valid generali-
zation f° is that it can be used to prove/disprove the correct-
ness of P wrt the original specification f. Since the loop is
closed for D(f”), P can be proven/disproven correct wrt £° using
standard techniques (Mills 72, Mills 75, Basu & Misra 75, Morris
& Wegbreit 77, Wegbreit 77, Misra 78]. Specifically, P is
correct wrt £° iff each of

(5.2) the loop terminates for all X € D(f”)

——

3
]
3

4

(5.3) X € D(f°) & "B(X) => £°(X)=¥

(5.4) X € D(f°) & B(X) => £°(X)=£°(H (X))
hold. If P is correct wrt £°, then P is necessarily correct wrt
any subset of £°, including f. If P is not correct wrt £°, then
by the definition of a valid generalization, P must not be

correct wrt f.

Example 5.2 - The following program tests whether a particu-~
lar key appears in an ordered binary tree.

{success=FALSE}

while tree ¥ NULL & “success do
l_'f name(tree) = key then success := TRUE
elseif name(tree) < key then tree := right(tree)
else tree := left(tree) fi

o
{success = IN(tree0, key)}

The function IN(tree0,key) appearing in the postcondition is a
predicate which means "the ordered binary tree tree0 contains a
node with name field key." The boolean variable success is
chosen as the key variable since it is constrained to the value
FALSE in the input specification. Thus success plays the role of
z and the pair of variables <tree,key> correspond to y in the
program schema discussed above. The specification function £ is
f(<FALSE, tree, key>) = <IN(tree, key), tree”, key”>
where tree” and key” are the final values of the variables tree
and key computed by the loop, respectively. That is, since the
final values of these variables are not of interest in this exam-
ple, we specify these final values so as to be automatically
correct. Using Theorem 5.1, a valid generalization of this
specification is

g(<success, tree,key>) = if “success then
<IN(tree, key), tree”, key“>

else if tree=NULL OR success then
<success, tree, key>,

which is equivalent to
g (<success, tree, key>)=<success OR IN(tree, key), tree”, key >.

In this example, the domain of the base generalization g of
f includes each value of the key variable, (i.e. FALSE and TRUE)
and is thus adequate. Consequently, this generalization can be
used to prove/disprove the correctness of the program.

In most cases, however, the heuristic suggested in Theorem
5.1 1is 1insufficient to generate an adequate generalization.
Indeed, the base generalization is an adequate generalization
only in the case when the sole reason for the closure condition
not holding is the existence of potential final values of the key
variable (e.g. TRUE in the example) which are absent from D(f).
In order to obtain a generalization that includes general values
of the key variable, an important characteristic of the loop body
which seems to be present in many commonly occurring loops will

-75-

24

be exploited.

5.2. Uniformly Implemented Loops

Definition 5.6 - Let P be a 1loop of the form described
above. Let C be a set, let Z be the set of values the key vari-
able z may assume, and let Y be the set of vaiues the remaining
variable(s) y may assume. Let

$: Cx 2 ->12
be an infix binary operator. The loop P is uniformly implemented
wrt $° iff each of
(5.5) B(<z,y>) =-> h® (¢ $° z,y) =c $° h” (z,y)
(5.6) B(<z,y>) -> h"“(c $° z,y) = h*“(z,y)
(5.7) B(<z,y>) => B(<c $° z,y>)
hold for allc € C, 2 € 2 and all y € Y.

Conditions (5.5) and (5.6) of this definition state that a
modification to the key variable by the operation $° causes a
slight but orderly change in the result produced by the loop
body. The change 1is slight because the only difference in the
result produced by the loop body occurs in the key variable.
This difference is orderly because it corresponds precisely to
the same $° operation that served to modify the input value of
the key variable. Condition (5.7) specifies that such a modifi-
cation does not cause the loop predicate B to change from true to
false.

As a shorthand notation we define the infix operator $ as
c$X =c$<z,y = < $° z,y.
In this notation (5.5)-(5.7) are equivalent to
(5.8) B(X) => ¢ $ H(X) = H(c $ X)
and
(5.9) B(X) -> B(c § X).

Example 5.3 - Consider again the program from Example 5.1
which multiplies natural numbers using repeated addition:

{z-O,v>=0,k>’0}
while v>0 do
zZ := 2 + Kk:
v sy -1

od
{z=vO*k]} .

Let z be the key variable. The pair <v,k> corresponds to the
variable y occurring in the above schema. The loop is uniformly
implemented wrt +, where C and 2 are both the set of natural
numbers. Note that adding some constant to the input value of 2z
has the effect of adding the same constant to the value of z out-
put by the 1loop body. Now consider the following alternative
implementation of multiplication:

P AVED N ~r T w0 Y P

= "™ .

Fya

e 4

P)

{z=0,v>=0,k>=0}
while v»0 do

if k=0 & z=0 then z :=v -1
elself k=0 & z¢0 then z := z - 1
elself z<k then z := z + Kk
elself z=k then z := 2z * 2 * ¢
else z :=z -k fi;
Visv -1
od

{z=vO*Kk]} .

Again, let z be the key variable. This loop is not uniformly
implemented wrt +. Intuitively, this is dque to the high degree
of dependence of the loop-body behavior on the value of the key
variable. The result of this dependence is that adding some con-
stant to the value of z causes an unorderly change in the value
of z output by the loop baody.

The reader may wonder if the second mltiplication program
above might be uniformly implemented wrt some operation other
than +. We remark that any loop is uniformly implemented wrt §~
: Cx %2 ~> 2 defined by

cs$’ z =232
for all ¢ € C and z € Z. For the purpose of our research, we
rule out such trivial operations, i.e. we require that for some z
€ Z, there exists some ¢ € C such that

c$° z ¥ z.

With this assumption, there does not exist an operation wrt which
the second of the above loops is uniformly implemented (or more
briefly, the loop is not uniformly implemented). To see this,
suppose the loop were uniformly implemented wrt $° : C x 2 ~-> Z.
Let c0 and z0 be some fixed elements of C and 2, respectively,
which satisfy

cO0 $° z0 # 20.

Since (5.5) must hold for allc €C, z€ Z and all y € Y, we
choose 2z=20, c=c0 and k=c0 $° z0. Applying (5.5) gives

v>0 -> h*°(c0 $° 20,<v,c0 $° z0>)=c0 $° h”*(z20,<v,c0 $° z0>)
for all v. We consider 3 exhaustive cases based on the values of
¢0 and 20. First, suppose c0 $° z0 = 0. Then we must have
(since 20 ¥ 0)

vw0 => v=1l=c0 $° (z20-1).
Since this must hold for all v and the value c¢c0 $° (z0-1) is
fixed by the original selection of c0 and 20, this is a contrad-
iction. Next, suppose c0 $* z0 ¥ 0 and z0 < c0 $° z0. Then

v>0 => (c0 §° 2z0)*2*v=c0 $° (20+(cO $“ z0))
for all v. Again, since the expression to the right of the
equality sign is fixed and (c0 $° 20)*2*v varies with different
values of v (c0 $° z0 is nonzero), this is a contradiction. The
third case, where c0 $° 20 ¥ 0 and z0 > c0 $° 20, leads to a
similar contradiction, and thus (5.5) does not hold. We conclude
that the second multiplication program above is not uniformly
implemented. That is, there does not exist a nontrivial modifi-
cation that can be applied to the variable z which always results

-77=

YT NET AT W

in a slight and orderly change in the result produced by the loop
baody.

The results presented here are based on the following lemma
concerning uniformly implemented loops. The lemma describes the
output of a uniformly implemented loop P for some modified input
c $ X (i.e. [Pl(c $ X)) in terms of the output of the loop for
the input X (i.e. [P](X)) and the ocutput of the loop for the
input ¢ § [P1(X) (i.e. [Pl(c $ [P](X))).

Lemma 5.1 ~ Let P be uniformly implemented wrt $°. Then
(5.10) X € D([P]) => [Pl(c $ X)=[P](c § [P](X)).

Proof - We use induction on the number of iterations of P on

X. For the base case of 0 iterations, [P](X)=X, and the lemma
holds. Suppose it holds for all input data states X requiring
n-l1 iterations where n > 0. Let X1 require n iterations. Since
n> 0, B(X1) holds. By (5.9), B(c $ Xl). Note that H(X1)
requires n-1 iterations on P; thus by the inductive hypothesis

(Pl(c $ H(X1)) = [Pl(c $ [P](H(X1))).
Due to the uniform implementation this is

[Pl1(H(c $ X1)) = (P](c$ [(PI(H(X1))).
Using the loop property B(X) =-> [P](X)=[P](H(X)) on both sides we
get

[Pl(c $ X1) = [P}l(c $ [P](X1)).
Thus the inductive step holds and the lemma is proved.

The general idea behind our use of the lemma is as follows.
Suppose the value [P](X) is known for some particular X. I.e.
suppose we know what the loop produces for the input X. 1In addi-
tion, suppose that, given the result [P](X), the guantity [P]l(c $
[P} (X)) is also known. With this information, we can then use
ILemma 5.1 to "solve" for the (possibly unknown) value [P](c § X).
This additional information concerning the input/output behavior
of the 1loop can be used as an aid in constructing a valid gen-
eralization of the specification £.

How can we find the value [(P](X) and then the value [P](c $
[P]1(X)) for some X? The key 1lies in assuming the loop P is
correct wrt £. If P is not correct wrt £, _a_n_¥ generalization of
f obtained by the technique will be a valid generalization by
definition. Under this assumption, [P](X) is known for X € D(f),
i.e. X e D(f) -> [P](X)=f(X), and hence Lemma 5.1 implies

(5.11) X € D(f) -> [Pl(c $ X)=[P](c $ £(X)).

Consider now the base generalization g of f defined in the
previous section. Recall that g is simply £ augmented with the
identity function over the domain where the loop predicate B is
false. Assuming as before that P is correct wrt £, P is then
correct wrt g by Theorem S5.1; hence X € D(g) => [P](X)=g(X).
Thus (5.11) implies

(5.12) X @ D(f) & c § £(X) € D(g) ~-> [P](c $ X)=g(c § £(X)).
Thus we can “solve" for the behavior of the loop on the input ¢ §

-78-

_

» o o~

> & *’“"“"‘N& -

[S

X, assuming X € D(f), c $ £(X) € D(g) and P ir correct wrt f.
This suggests that if £° is the extension of f defined by

(5.13) {(c $ X,g(c$ £(X))) | X e D(f) «a c$ £(X) € D(g)},

then £° is a valid generalization of f£f. Before giving a formal
proof of this result, however, we first consider the question of
the existence of such an extension of £f. Specifically, it could
be that for some ¢ and X satisfying X € D(f) and ¢ $§ £(X) € D(9g),
that ¢ § X € D(f) and f(c $ X) ¥ g(c $ £(X)). This would imply
that the extension of f defined by (5.13) does not exist. The
following theorem states that this implies P is not correct wrt
£.

Theorem 5.2 - Let P be uniformly implemented wrt $°. Let g
be the base generalization of £. If P is correct wrt f, then
there exists a function £° which is the extension of f defined by
(5.13), i.e.

{(cs$ X,9(c$ £(X))) | XeD(f) s c$ £(X) € D(g)}.

Proof ~ Let f° be the function computed by the loop, i.e.
{pr]. Since P is correct wrt £, P is correct wrt g, and £° is a
superset of both f and g. By the lemma

£°(c$ X) = £°(c $ £°(X))
for all X € D(f). Since £°(X)=f(X) for X € D(f) and £°(X)=g(X)
for X e D(9g),

XeD(f) s c$ £(X) € D(g) -> £°(c $ X)=g(c $ £(X))

holds. Thus (5.13) is a subset of £°. Since £ is a subset of
£°, the union of f and (5.13) is a subset of £°. Hence this
union is a function and is thus the extension of f defined by
(5.13).

The following theorem is the central result presented here.
The theorem formalizes the use of lemma 5.1 in the manner sug-~
gested above, i.e. that the extension of f described in the pre-
vious theorem is a valid generalization of the original specifi-
cation.

" Theorem 5.3 - Let P be uniformly implemented wrt $°. Let g
be the base generalization of £. If £° is the extension of £
defined by (5.13), i.e.

{(c$ X,g(c$ £(X))) | XeDf) s c$ £(X) e D(},
then £° is a valid generalization of f.

Proof - Suppose P is correct wrt ¢£. We must show P is
correct wrt f£°, Let X € D(£”). If X € D(f), the loop handles
the input correctly by hypothesis. If X is not in D(f), we must
have X = c $ X1 where X1 € D(f) and ¢ § £(X1) € D(g). By Lemma
5.1, [P](X) = [P](c $ [P](X1);. Since P is correct wrt £ this is
[P](X) = [P]J(c $§ £(X1)). By Theorem 5.1, P is correct wrt g.
Using this, the equality can be written as [P](X) = g(c $ £(X1)).
By the definition of £” this implies [P](X) = £°(X). Thus P and
f° are in agreement on the input X and consequently are in agree-
ment on any input in D(£f"). Hence P is correct wrt £° and thus
£° is a valid generalization of f.

-79-

-
3.

R R L R T T e e

po

AR e o -

v "W PR S

-~

oy

The significance of Theorem 5.3 is that it provides a guide-
line for generalizing the specification of a uniformly imple-
mented loop. If the loop is closed for the domain of the result-
ing specification, the generalization can then be used ¢to
piove/disprove the program correct wrt the original specifica-
t jon.

5.3.. Applications

In this section we illustrate the use of Theorem 5.3 with a
number of example programs which fall into either of two
subclasses of uniformly implemented loops. The subclasses
correspond to the two possible circumstances which can occur when
c $ £(X) of set definition (5.13) belongs to the set D(g): the
first, because “B(c $ £(X)), and, the second, because ¢ § £(X) €
D(f). In each of these situations, the set definition (5.13)
takes on a particularly simple form.

Definition 5.7 - A uniformly implemented loop satisfying
“B(X) ~> “B(c $ X)
is a Type A loop.

Observe that this condition along with (5.9) indicates that
a Type A uniformly implemented loop satisfies
B(X) <~> B(c $§ X),
i.e. the value of the loop predicate B is independent of a change
to the data state by the operator $.

The intuition behind a Type A uniformly implemented loop is
as follows. whenever an execution of a Type A loop terminates
(i.e. "B(X) holds) and the resulting data state is modified by
the operator $, the result is a new data state which, when viewed
as a loop input, corresponds to zero iterations of the loop (i.e.
the predicate B is still false despite the modification). This
property is reflected in the following corollary.

* Corollary 5.3-1 - Let P be a Type A loop. If £° is the ex-
tension of f se?inea by

(5.14) {(c$ X,c$ £(X)) | xeD(D},
then £° is a valid generalization of f.

Proof - The proof consists of showing that (5.13) and (5.14)
are equivalent for a Type A loop which is correct wrt £. By
Theorem 5.3, the corollary then holds. Let P be a Type A loop
which is correct wrt £. A consegquence of the correctness proper-
ty is that “B(f(X)) for all X @ D(f). Since P is a Type A loop,
this implies "“B(c $ £(X)). Thus ¢ $ £(X) @ D(g) and g(c §
£(X))=c § £(X). Consequently (5.13) and (S5.14) are equivalent.

Of course, once a generalization £ has been ocbtained via
Corollary 5.3-1, there is no reason why that result cannot be fed
back into the corollary to obtain a (possibly) further generali-
zation £°° (using £° for £, £°° for £°). This notion suggests

Rty
&

i
|

AR .
e e A

the following general case of Corollary 5.3-1.

Corollary 5.3-2 - Let P be a Type A loop. If f£f° is the ex-
tension of f ge'finea' by
{(c1$(c28 ... (cn$X) ...),cl$(c2§ ... (CNSE(X)) ...))
X € D(f) & n>=04,
then £° is a valid generalization of f.

' Example 5.4 - Consider the following program to compute ex-
ponentiation.

{w=1,e>0,d>=0}

while d > 0 do

— 1If odd(ds—then wi=w*e fi;
e :t= ete; d:=d/2

{w-er’“ ao}

The infix operator * appearing in the postcondition represents
integer exponentiation. In this example, w plays the role of the
key variable z, and the pair <e,d> corresponds to the variable y.
We now consider wrt what operation the loop might be uniformly
implemented. For any operation $°, (5.7) holds (because w does
not appear in the loop predicate) as does (5.6) (because the
values produced in e and d are independent of w). Furthermore,
(5.5) must hold for inputs which bypass the updating of w. Thus
the uniformity conditions reduce to
d> 0&0dd{(d) => (c$° w) *e =c $° (w*e)
Due to its associativity, it is clear the loop is uniformly im-
Plemented wrt *, where the sets C and 2 are the set of integers.
Since the key variable does not appear in the loop predicate, it
is necessarily a Type A loop. The specification function here is
£(<l,e,d>) = <e ~ 4,e”,d°>
where e>0, d>=0 and e” and d° are the final values computed by
the loop for the variables e and 4. Applying Corollary 5.3-1, the
function £’ defined by
£° (<c*l,e,d>) = <c*(e ~ d),e‘pd‘>
where e>0 and d>=0 is a valid generalization of f£. Since this
holds for all ¢, the definition of £” can be rewritten as
£°(<w,e,d>) = <w*(e * q),e”,d">,
where w is an arbitrary integer, e>0 and d>=0. The generaliza-~
tion £° is adequate and can thus be used to test the correctness
of the program wrt the original specification. Applying (5.2),
(5.3) and (5.4) from above, these necessary and sufficient verif-
ication conditions are
- the loop terminates for all e>0, d>=0,
- d=0 => wey*(e ~ 4d), and
-wt(e © 4) is a loop constant (i.e. €0 " A0 = w*(e " Q)
is a loop invariant),
respectively. In Section 5.4, we will discuss a simplification
of the 1last of these verification conditions which applies for
uniformly implemented loops.

LI AT B e e ¢ e i Ay " > T - e, A

T

Lo Example 5.5 [Misra 79]) - The following program constructs
' the preorher traversal of a binary tree with root node r. The
! program uses a stack variable st and records the traversal in a
S sequence variable seq.
] !
|

{seg=NULL, st=(r) /*stack st contains only the root node r*/}
while st # EMPTY do

‘: P <= st; /*pop the top off the stack*/

: seq := seq fopname(p) : /*concatenate name of p onto seq*/
; if right(p) ¥ NIL then st <= right(p) fi; /*push onto st*/
, if left(p) # NIL then st <= left(p) f£fi

od
{seq=PREORDER (r) }

The function PREORDER(r) appearing in the postcondition is the
sequence consisting of the preorder traversal of the binary tree
E with root node r. Let seq be the key variable. Similar reason-
3 ’ ing to that employed in the previous example indicates here that
the loop is uniformly implemented wrt ||, where the sets C and 2

are the set of all sequences. It is a Type A loop. The specifi-
cation function is

: f(<NULL, (r)>) = <PREORDER(r),st”>.
' * Again, the “ notation is used to represent the final values of
|
|
i

¢

:griaigles' that are of no interest. Applying Corollary S5.3-1 we
ta

£(<seq, (r)>) = <seq||PREORDER (r),st”’>
as a valid generalization of £f. 1In this case, f£” is not adequate
since it does not specify a behavior of the loop for arbitrary
values of the stack st. We will return to this example after
considering another subclass of uniformly implemented loops.

Definition 5.8 - A uniformly implemented loop satisfying
T B(X) > c$ X eD(f)
is a Type B loop.

The intuition behind a Type B uniformly implemented loop is
ag ‘follows. whenever an execution of a Type B loop terminates
(i.e. “B(X) holds) and the resulting data state is modified by
the operator $, the result is a new data state which is a "valid"
starting point for a new execution of the loop (i.e. this new

~ state is in D(f)). This property is reflected in the following
corollary.

Corollary 5.3~3 - Let P be a Type B loop. If £° is the ex-
tension of £ ie‘fineﬂ' by

‘ (5.15) {(c $ X, £(c §$ £(X))) | x e D(DO},
: then £° is a valid generalization of f.

Proof - The proof consists of showing that (5.13) and (5.15)
are equivalent for a Type B loop which is correct wrt f£. By
) Theorem 5.3, the corollary then holds. Let P be a Type B 1loop
- which is correct wrt £. A consequence of the correctness proper-
ty is that "B(f(X)) for all X @ D(f). Since P is a Type B 1loop,

-82-

S e AT T Ty T R s e s T e

this implies ¢ § f£(X) € D(f). Thus c § £(X) € D(g) and g(c $

£(X))=f(c § £(X)). Consequently (5.13) and (5.15) are
equivalent.

As before, a general case of this corollary can be stated
which corresponds to an arbitrary number of its applications.

. Corollary 5.3-4 - Let P be a Type B loop. If £° is the ex-
tension of f defined by
{(cl$(c2$(...$(cn$X)...)),f(clsf(czsf(...$£(cn$£(X))...)))i|

X e Dif) & =0},
then £° is a valid generalization of f.

Example 5.5 (continued) - We now consider the problem of
further generalizing the derived specification in the previous
example. The variable for which the loop is not closed, st, will
now be the key variable. Consider an operation ¢ $° st that has
! the effect of adding an element ¢ to the stack st. Before being

more precise about this operation, we consider how the loop body
works, and how its output depends on the value of the key vari-
able st.

vl

We observe that the loop-body behavior relies heavily on the
characteristics of the node on the top of the stack. Consequent-
ly, a modification ¢ $° st to st which pushed a new node ¢ onto
the top of st would not cavse a slight and orderly change in the

; result produced by the loop body and the uniformity conditions

. ‘ (5.5)=-(5.7) would not hold. However, because the loop-body
L oY behavior seems to be independent of what lies underneath the top
‘ of the stack, we suspect the loop is uniformly implemented wrt
L ADDUNDER, where C is the set of binary tree nodes, Z is the set
i of stacks of binary tree nodes, and ¢ ADDUNDER st is the stack
o that results from adding ¢ to the bottom of st. Conditions
’ (5.5)~(5.7) for this operation indicate that, indeed, this is the

case.

i " Let f be the generalization £f° from the previous example.
' In keeping with the convention described above, since st is now
t the key variable, we will reverse the order in which the two
variables appear in the data state, i.e. we will write <st,seq>
. instead of <seq,st>.

b ‘ The program is a Type B uniformly implemented loop since
) st=EMPTY -> <c ADDUNDER st,seq> & D(f)
where ¢ is a node of a binary tree, and specifically

oo (5.16) st=EMPTY -> f(<c ADDUNDER st, seq>)
i =<st*, seq| |PREORDER (c) >.

' ' Applying Corollary 5.3-4, if (r,en, ... ,cl) 1is an arbitrary
r‘:, stack (with r on top, ¢l on the bottom, n>=0)

- £°(<(r,en, ... ,cl),seq>) =

‘?3 : £°(cl$(c28(... $(cnS<(r),seq>) ...))) =
5 | f(cl$f(c2$f(... $f(cnSf(<(r),)) oo))) =
X t £(clS$£(c28f(... $Sf(cn$<st”,seq| |[PREORDER(L)>) ...))).
L]

-83-

o o Ty YOR T T A e i gt

4

it

¢
!

4
ke
&
¥
?
11
H

|

=2

A VW gy

Recall that st” refers to the final value of st computed by the
loop. The loop predicate indicates this will always be the value
EMPTY. Hence (5.16) can be applied to this expression from in-
side cut giving
£(c1$£(c28£(...$<3t”, seq| | PREORDER (r) | |PREORDER (CN)>...)))

= [N] =
<st”, seq| | PREORDER (r) | |PREORDER(cn) [| ... | |PREORDER(cl)>.
Note that £° now defines a loop behavior for all sequences seq
and nonempty stacks st. The base generalization of £° supple~
ments £° with a behavior for the empty stack st and is thus an
adequate generalization.

Examgle 5.6 [Gries 79] - The following program computes
Ackermann’s function using a sequence variable s of natural
numbers. The notation s(l) is the rightmost element of s and
s(2) is the second rightmost, etc. The sequence s(..3) is s with

s(2) and s(l) removed.

{s=<m,n> ,m>=0,n>=0}
while size(s) # 1 do
- if

8(2)=0 then s:=s(..3)]|<s(1)+1>
elseif s(1)=0 then s:=s(..3)||<s(2)-1,1>

:ése s:=s8(..3)||<8(2)-1,8(2),s8(1)~-1> £i
{s-?i(n,n)>}

The function A(m,n) appearing in the postcondition in Ackermann‘’s
function. The specification function is
£(<s(2),s8(1)>)=<A(s(2),8(1))>.
Let 8 be the key variable. As the loop-body behavior is indepen-
dent of the leftmost portion of s, the loop is uniformly imple-
mented wrt |, where C is the set of natural numbers, Z is the set
of nonempty sequences of natural numbers, and c|s = <c>||s. The
program is also a Type B loop. By Corollary 5.3-4 (where n>l),
£°(<s(n),s(n-1), ... ,8(1)>) =
£°(s(n)$(s(n=-1)8$(... $(8(3)8<8(2),8(1)>) ...))) =
£(s(n)SE(s(n-1)S$E(... SE(8(3)$£(<8(2),8(1)>)) 0.))
£(s(n)S£(8(n=-1)S$f(... $£(8(3)$<A(8(2),8(1)>) ...)))
£(s(n)$£(s(n=-1)SE€(... $£(<s8(3),A(8(2),8(1))>) ...))
£(s(n)S$E(8(n-1)$€(... $<A(s(3),A(8(2),8(1)))> ...))
<A(s(n) ,A(s(n-1), ... ,A(8(3),A(8(2),8(1))) ...))>
is a valid generalization of £. As in the previous example, the
base generalization of this function is adequate.

5.4. Simplifying the “Iteration Condition’

~ 'The view of WHILE loop verification presented here is one of
a two step process, the first step being the discovery of an ade-
guate valid generalization r° of the loop. specification £, the
second being the proof of 3 basic conditions (i.e. (5.2)-(5.4))
based on this generalization. We have seen that the unifora na-
ture of a loop implementation may be used in the first step as an

-84~

e pra . S e ey R @ vt Y e W T N o - p BT

. B
i
T AT e e R TN e T =P Y A I R e . S

aid in discovering an appropriate generalization. In this sec-
tion, we will exploit the same loop characteristic to substan-
tially simplify one of the conditions which must be proven in the
second step of this process.

The verification condition of interest is (5.4) above, i.e.
X € D(f°) & B(X) -> £°(X)=£°(H(X)),

and is labeled the iteration condition in [Misra 78]. This con-
dition assures that as the loop executes, the intermediate values
of X remain in the same level set of £, i.e. the value of £ is
constant across the loop iterations. Previously we argued that
if P is uniformly implemented wrt $°, a change in the key vari-
able by $° causes a slight but orderly change in the result pro-
duced by H. Roughly speaking then, the behavior of H is largely
independent of the key variable. If £ is chosen so as to be
equally independent of the key variable, and the above condition
holds for X=<z,y> where y is arbitrary but the key variable z has
a specific simple value, we might expect the condition to hold
for all X. Such an expectation would be based on the belief that
the truth or falsity of this condition would also be largely in-
dependent of the key variable.

We formally characterize this circumstance in the following
definition.

Definition 5.9 - Let P be a loop of the form described
above. A generalization f° of f is represented by f iff
(5.17) X e D(f) & B(X) -> £ (X)=£7(H(X))
->
(5.18) X € D(f”) & B(X) -> £°(X)=£°(H(X)).

Thus if £° is represented by £, condition (5.17) can be used
in place of the iteration condition (5.18) in proving the loop is
correct wrt £° (and hence wrt £f). The significance of this si-
tuation 1is that the iteration condition can be tested with the
key variable constrained by initialization (as prescribed in
D(£)). In practice, the result is one of having to prove a sub-
stantially simpler verification condition.

The following theorems state that the use of OCorollaries
5.3-2 and 5.3-4 lead to generalizations which are represented by
the original specification.

Theorem 5.4 - Let P be a Type A loop. Suppose f° is the
valid generalization of £f defined in Corollary 5.3-2 and suppose
£f° is adequate. Then f“ is represented by f£.

~ Proof - Suppose (5.17) holds and select some arbitrary X°
from D(f’) satisfying B(X”). Thus there exists cl, ..., cn € C,
n>=0 and X € D(f) such that
X°= cl$(c28(...$(cn' $ X Yeoodte
By the definition of a Type A loop, we must have B(X). Applying
the definition of £” yields

B LT NP RN

£°(X°)=cl$(c28(...8(cnSf (X)...))
which is
acl$ (c28 (.. .S(cNS$E°(H(X)) ..o))
by (5.17) since B(X) holds. Since H(X) € D(f”) (since f£f° is ade-
quate), there exijists di, ..., dm € C, m>=0, and X1 € D(f) such

that
H(X) =d1$(d28(...$(dm$ X1)...)}.
Furthermore,
£2(H(X))=d1l$ (A28 (.o .S (AMSE(XL)).c0)) e
Hence, continuing from above
£°(X%)= clS(...8(cn$(ALlS (e . S(AMSE(XL))eau)))eee)
which is
af*(cl$(...S(cnS(A18(...8(AmM$ X1 D..e)))ees))
from the definition of £°. Thus
£°(X°)=f” (clS(...8{cnSH(X)).c.))
which is
=f“(H(cl$(...$(cn$ X)...)))
from the uniformity condition (5.8). Hence
£°(X")=£°(H (X))
and the theorem is proved.

Theorem 5.5 - Let P be a Type B loop. Suppose f° is the
valid generalization of f defined in Corollary 5.3-4 and suppose
£’ is adequate. Then f£° is represented by £.

Proof -~ Suppose (5.17) holds and select some arbitrary X~°
from D(f’) satisfying B(X“). Thus there existscl, ..., cn € C,
n>=0 and X € D(f) such that

X‘= cl$(c2$(...$(cn $ X Yeood)e
We make the assumption that B(X). Otherwise, by the definition
of a Type B loop, the termcn $ X can be replaced by another X €
D(f). Since B(X®), thi. nrocess can be continued until X“ is
written in the form above, with X € D(f) and B(X). Applying the
definition of £” yields

£ (X)=f(clSE(c2$Ef(...$E(cnSEf (X))...)))

which is

o of (cl$E(c2$f(...$E(cnSE"(H(X)))...)))
by (5.17) since B(X) holds. Since H(X) € D(f”") (since f° is ade-
quate), there exists dl1, ..., dm e C, m>=0, and X1 € D(f) such

that
H(X) =d18 (A28 (...$ (dmS$XL) ...})
Furthermore,
£°(H(X))=£(ALSEF(A2SF(...$E£(AMSE(XL))..e)))
Hence, continuing from above
£°(X")=f(ClSE (... SL(onSE(ALSE(...SE(AMSE(XL))eee))) o))
vh ich is
af’ (cl$(...8(cn$(dlS(...$(AmSX1)...))).0))
from the definition of £°. Thus
£°(X°)=f° (cl$(es.8S(CNSH(X))...))
vwhich is
sf°(H(cl$(...8(cn$ X)V...))
from the uniformity condition (5.8)
£°(X°)=£°(H(X"))

)
. Hence

-86~

P24

Bt gy e m i e n

and the theorem is proved.

Example 5.7 - Consider the exponentiation program of Example
5.4. The generalization obtained from Corollary 5.3-2 is
f‘(w'e,d>)’<w*(eﬁd)’e"d‘>' .

where e>0, d>=0. Since f£f” is represented by £, the iteration
condition corresponding to (5.17)

e>0 &§ 0 & odd(d) -> e"d = e*((e%*e) " (d/2)) &

e>0 & d>0 & “odd(d) ~-> e"d = 1*((e%*e) " (d/2))
can be used in place of that corresponding to (5.18)

e>0 & A0 & odd(d) -> wr(e"d) = (wte)* ((e*e)”(d/2)) &

e>0 & @0 & "odd(d) ~> w*(e"d) = w*((e*e)" (d/2)).
The benefits of this simplification are more striking for more
complex types of key variables. To illustrate, consider the pro-
gram to compute Ackermann”’s function in Example 5.6. Applying
Corollary 5.3-4 to the base generalization g of £ yields the gen-
eralization defined by

n>l -> £°(<s(n),s(n=1),...,s(l)>) =

rd <A(s(n) ,A(s(n=1),...,A(s8(3),A(8(2),8(l))).c.))>
a

£°(<s(l)>)=<s(1)>.
Since £ is represented by g, the iteration condition
8(2)=0 -> <A(8(2),s(l))>=<g(l)+1> &

s(2)#0 & s(1)=0 -> <A(s(2),s(1))>=<A(s(2)~-1,1)> &

s(2)#0 & s(1)#0 -> <A(s(2),s(1))>=<A(s(2)-1,A(s(2),s8(1)-1))>
can be used in place of
n>l & s(2)=0 ->

<A(s(n) ,A(s(n~-1),...,A(s8(3),A(8(2),8(1)))...))>=
<A(s(n),A(s(n-1l),...,A(8(3),8(L)+1)...))> &
nl & 8(2)#0 & s(1)=0 ->

<A(s(n) ,A(s(n-1),...,A(8(3),A(s(2),8(1)))...))>=

<A(s(n) ,A(s{n-1),...,A(8(3),A(s{2)-1,1))...))> &
nl & 8(2)#0 & s(1)#0 ->

<A(s(n) ,A(s(n-1),...,A(s(3),A(s(2),8(1)))...))>=

<A(s(n) ,A(s(n-1),...,A(s(3),A(s8(2)-1,A(8(2),s8(l)-1)))...))>.

5.5. Recognizing Uniformly Implemented Loops

Although the problem of recognizing uniformly implemented
loops 1is in general an unsolvable problem, the following guide-
lines seem useful in a large number of situations.

Recognizing uniformly implemented loops can be viewed as a
search for an operation wrt which the loop is uniformly imple-
mented. 1In practice, condition (5.5) is the most demanding con-
straint on this operation. An effective strategy, therefore, is
to use (5.5) as a guideline to suggest candidate operations.
Cond it ions (5.6) and (5.7) must be proven to show the loop is un-
iformly implemented wrt some particular candidate.

Often the modification to the key variable 2z in the loop
body is performed by a statement of the form
z := 2z § ely)

i

for some dyadic operation # and function e. In this case, condi-
tion (5.5) suggests the loop may be uniformly implemented wrt #
or some directly related operation. For example, if # is associ-
ative, condition (5.5) holds for #. If # satisfies
(a#b) #c=(ac #b
(e.g. subtraction), and an inverse #° of # exists satisfying
atb=c<->b# c=a
:g.g. addition if # is subtraction), condition (5.5) holds for

Another commonly occurring case is when the future values of

the key variable z are independent of y, i.e.
h*(z,yl) = h“(z,y2)

for all z, yl and y2. This situation arises most frequently when
z is some data structure which varies dynamically as the loop
iterates. Typically, there exists some particular aspect or por-
tion of the data structure (e.g. the top of a stack, the end of a
sequence, the leaf nodes in a tree) which guides its modifica-
tion. A useful heuristic which can be employed in this cir-
cumstance is to consider only operations which maintain (i.e.
keep invariant) ¢this particular aspect of the data structure.
Selecting such an operation $° guarantees that the "change"™ ex-
perienced by the data structure in the loop body will be indepen-
dent of any modification $§° and thus insures condition (5.5)
holds.

In any case, recognizing uniformly implemented 1loops and
determining the operation wrt which they are uniformly implement-
ed is often facilitated if the intended effect of the 1loop body
(as regards the key variable) is documented in the program source
text. Such documentation abstracts what the loop body does from
the method employed to achieve this result and thus makes
analysis of the loop as a whole easier.

To illustrate, consider the following program to compute the
max imum value in a subarray al[i..n] of natural numbers:

{m=0}

while i <= n do
If m < ali] then m := a[i] fi;
I :=41i+1
od

{m=MAX MM (a, i0,n) } .

If the effect on m in the loop body were documented as

m := MAX(m,a[{i]),
its updating would be of the formm :=m # al[i] and the heuristic
discussed above could be employed to help determine that the loop
is uniformly implemented wrt # = MAX.

AD-AL13 040 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 972
AN INVESTIGATION OF FUNCTIONAL CORRECTNESS ISSUES.(U)
1982 D D DUNLOP F“9620-60-C-0001
UNCLASSIF!ED €SC-TR=1135 AFOSR~TR=82-0263 NL

END
onit
e
i 4 82
oriq

o
"TFFERE
EEEE
) o

er
r
re
e
- N
[0 o] “o

=
.
I
O

125 Jlut e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A J

5.6. Related Work

The first work on generalizing functional specifications for
loops appears in [Basu & Misra 76]. These results are refined in
(Misra 78] and are studied in considerable detail in [Misra 79].
The major contribution of this research seems to be the identifi-
cation of two loop classes or schemas which are "naturally prov-
able." The first class is called the accumulating loop schema
and can be viewed as a (commonly occurring) special case of the
Type A loops discussed above. Specifically, a program in the ac-
cumulating loop schema with associative binary operation $° in
the sense of [Basu & Misra 76] is necessarily uniformly imple-
t:gnted wrt $° and meets the criterion for a Type A loop presented

owve.

The second of these classes is called the structured data
schema. A loop in this class is uniformly implemented wrt an
operator which adds an element to the data structure being pro-
cessed in such a way that it is not the "next" element to be re-
moved from the structure (e.g. recall the use of ADDUNDER in the
tree traversal example). A loop in this class necessarily meets
the criterion for a Type B loop presented above. The program to
compute Ackermann“s function does not fit in the structured data
schema. We remark that the analysis presented in this chapter
relies on the loop body computing a function, i.e. it relies on
the loop body being deterministic. Consequently, the above com-
ments do not apply to the non-deterministic structured data loops
analyzed in [Misra 79]. '

In [Misra 79] the author states that the important common
feature between these program classes is that " ... they act upon
data in a “uniform” manner; changes in the input data lead ¢to
certain predictable changes in the result obtained.” The work
described in this chapter can be viewed as an attempt to charac-
terize this commonality and to generalize the work in [Misra 79)
based on this characterization.

More recently, [Basu 80] considers the problem of generaliz-
ing loop specifications and uses the idea of a loop being "uni-
form over a linear data domain.” One difference between this
work and our notion of a uniformly implemented loop is that Basu
considers only programs in the accumulating loop schema (in the
sense of (Basu & Misra 76] without the closure requirement).
More importantly, Basu“s idea of uniform behavior is based on the
behavior of the loop as a whole and seems to be largely indepen-
dent of the loop body. Our approach relies solely on the charac-
teristics of the loop body.

Misra points out in [Misra 78, Misra 79] that the iteration
condition for his structured data schema can be simplified in a
manner similar to that presented here; our results show that the
same simplification can be applied to his accumlating loop sche-
ma. Again, an appropriate view of the research described in this

-89~

I et I S i >

Reni it

.« "wr’t‘*A IR

. s
——— o ——e e -

chapter is one of generalizing this earlier work by investigating
the theory which underlies these phenomenon.

5.7. Discussion

It is felt that a critical aspect of reading, understanding
and verifying program 1loops is generalizing the behavior of a
loop. over a resgtricted set of inputs to that over a more general
set of inputs. The view of this generalization process presented
in this chapter is one of ascertaining how charges in values of
particular input variables affect the subsequent computation of
the loop. This process is facilitated if these changes
corregspond to particularly simple modifications in the result
produced by the loop body.

Of course, the simplest possible modifications in the result
produced by the loop body would be no modifications at all, i.e.
the output of the loop body (and hence the 1loop) is completely
independent of changes in these input variables. This situation,
however, occurs rarely in practice since it implies that the in-
put values of these variables serve no purpose in view of the in-
tended effect of the loop. It is felt that the definition of a
uniformly implemented loop presented above is the "next best® al-
ternative, and yet a large number of commonly occurring loops
seem to possess this property. The definition states that in
terms of the execution of the loop body, prescribed changes in
the input value of the key variable affect only the final value
of the key variable; all other final values are independent of
the change. Just as importantly, the modification caused in the
final value of the key variable is necessarily the same as the
change in its corresponding input value. This property is analo-
gous to that possessed by a function of 1 variable with unit
slope in analytic dJgeometry: increasing the input argument by
some constant causes the function value to be increased by exact-
ly the same quantity. Tal.en together, these factors account for
the pleasing symmetry between $ and H in condition (5.8).

Viewed as a verification technigue for uniformly implemented
loops, the procedure described above can be thought of as
transforming the problem of discovering the general loop specifi-
cation into the problem of discovering the cperation with respect
to which the loop is uniformly implemented. Clearly, this is of
no benefit if the latter is no easier to solve than the former.
In many cases, however, it seems that simple syntactic checks are
sufficient for identifying this operation. For example, in the
tree traversal program, the fact that the loop body does not test
the stack for emptiness [Basu & Misra 76] is a sufficient condi-
tion for the loop being uniformly implemented with respect ¢o
ADDUNDER .

It is felt that the notion of uniformly implemented loops

may have an application in the program development process.
Specifically, when designing an initialized loop to compute some

~90-

RN N

-~ W" ~ S e

~

,, , .
e S

e e+ —r——————e

function, the programmer should attempt to construct the loop in
such a way that it is uniformly implemsnted with respect to esomes
easily stated operation. Our work indicates that these loops are
susceptible to a rather routine form of anmalysis. Purthermore,
implementing a loop in a uniform fashion requires mintaining a
certain amount of independence between program variables (or
perhaps portions of program variables in the case of structures)
and a simple dependence between the input/ocutput values computed
by the 1loop body. Such programs are desirable since the ease
with which a loop can be understood depends largely on the com-
plexity of the interactions and interconnections among program
variables. We remark that the question of whether a given pro-
gram is "well structured®” has been viewed largely as a syntactic
issue (e.g. use of a restricted set of control structures) ; we
offer the definition of a uniformly implemented loop as an at-
tempt at a characterization of a semantically well structured
program.

6. Summary and Concluding Remarks

The purpose of this resgsarch has been an investigation of a
number of issues involved with the application of the functional
correctness methodology. In Chapter 2, we defined a functional
correctness technigue and addressed the issue of the strategy em-
ployed in decomposing composite programs in the proof process.

Chapters 3-5 dealt largely with the issue of verifying pro-
grams containing loops with undocumented or inadequate intended
functions. In Chapter 3, the idea of a reduction hypothesis was
introduced. The use of a reduction hypothesis in a proof of
correctness eliminates the need for the intended 1loop function.
As an alternative approach, a heuristic procedure for construct-
ing intended loop functions was described in Chapter 4. Pinally,
in Chapter 5, a class of loops was described for which inadequate
intended loop functions can be extended or generalized in a sys-
tematic manner.

The most promising directions for future research seem to
stem from the results presented in Chapter 5. Wwhile each uni-
formly implemented loop we have studied does exhibit a “"reason-
able® form of behavior, there do exist "reasonable® initialized
loop programs which do not satisfy our definition. This situa-
tion invariably occurs when initialized data is used in an in-
direct manner (e.g. as an array index or pointer). A characteri-
zation of uniform loop behavior with respect to indirect data
wou 1d se;ve as a useful complement to the results deacribed in
Chapter 5.

A second direction for future research is the development of
a program design/implementation methodology based on the uniform-
ly implemented loop. At the point of designing an initialized
loop program, the methodology would suggest the programmer first
formulate an appropriate operation, and then proceed to detail
the loop in a way which insured that it was uniformly implemented
with respect to that operation. We argued previously that uni-
formly implemented loops are “"well structured” programs; such a
me thodology might be a valuable contribution to what has come ¢to
be known as "structured programming."

R

P}

1. References

[Basili & Noonan 80]
Basili, V. R. and Noonan, R. E. A Comparison of the Ax-
i.omatic and PFunctional Models of Structured Programming,
IEEE Transactions on Software Engineering, Vol. SE~6, Sept.
Pp. 454-464.
]

[Basu 80]
Basu, S. A Note on Synthesis of Inductive Assertions, IEERE
Transactions on Software Engineering, Vol. SE-6, Jan. 1380,
pp. 32-3%. — —

[Basu & Misra 75] :
Basu, S. and Misra, J. Proving Loop Programs, IEEE Transac-
tion; on SOﬂ:war; Engineering, Vol. SE-1, l'hrcﬁ 1975, pp.

(Basu & Misra 76]
Basu, S. K. and Misra, J. Some Classes of Naturally Prov-
able Programs, Proc. 2nd International Conf. on Software
Engg., San Francisco, Oct. 1976, pp. 400-408.

[Dijkstra 76)

Dijkstra, E. W. A Discipline of Programming, Prentice-Hall,
1976.

[Bllozy 81)
Ellozy, H. The Determination of Loop Invariants for Pro-
grams with Arrays, IEEE Transactions on Software Engineer-
ing, Vvol. SE-7, March 1981, PP. 197-206,

[Floyd 67)
Floyd, R. W. Assigning Meanings to Programs, Proceedings of

[{Gries 79)
Gries, D. 1Is Sometime Ever Better Than Alway?, Transactions

%anoggming Languages and Systems, Vol. 1, Oct. 1979, PP-

[Hoare 69)
Hoare, C. A. R. An Axjomatic Basis for Computer Program~
ming, CACM, Vol. 12, Oct. 1969, pp. 576-583.

(Katz & Manna 73]
Kig, si and Manna, g.d A Beuti:tic Apgroachig e ogram 1:0-
o cation Proc. rd Int. Joint Conf. Art ca; Intell.
Stanford, CA 1573, pp. 500-512. '

[Katz & Manna 76]

Katz, 8. and Manna, 2. Logical Analysis of Programs, CACN,
VOI. 19' Aptil 1976' Pp. 1‘3‘206.

-93-

R R e e e ey R R W

oo

v N

(King 80] _
King, J. Program Correctness: On Inductive Assertion
Methods, IEEE Transactions on Software Engineering, Vol.
38—6' Sept. I;Bo, ppo 13;1’90

(Linger, Mills & witt 79]
Linger, R. C., Mills, H. and Witt, B. I. Structured Pro-
- gramming Theory and Practice, Addison-Wesley, o

[McCarthy 62]
McCarthy, J. Towards a Mathematical Science of Computation.
In: Popplewell, C.M. (ed.): Proc. IFIP Congress 62, North-
Holland, Amsterdam, 1963, pp. 21-28.

[McCarthy 63]
McCarthy, J. A Basis for a Mathematical Theory of Computa-
tion. 1In: Brafford, P., and Hirschberg, D. (eds.): Computer
Bolland,

Programming and Formal Systems Amsterdam North
1963 pp. 3390, - ’ '

(Manna 71]
Manna, Z. Mathematical Theory of Partial Correctness, J.
Computer System Sci., Vol. 5, June 1971, pp. 239-253.

[Manna & Pnueli 70)
Manna, Z. and Pnueli, A. Pormalization of Properties of
Functional Programs, JACM, Vol. 17, July 1970, pp. 555-569.

[Manna & Waldinger 70]
Manna, Z. and Waldinger, R. Towards Automatic Program Syn-
thesis, Stanford Artificial Intelligence Project, Memo AIM-
127, July 1970.

[Mills 72}
Mills, H. D. Mathematical Foundations for Structured Pro-
gramming, IBM Federal Systems Division, FSC 72-6012, 1972.

[Mills 75)
Mills, H. D. The New Math of Computer Programming, CACM,
Vol. 18, Jan. 1975, pp. 43-48.

[Misra 77]
Misra, J. Prospects and Limitations of Automatic Assertion
Generation for Loop Programs, SIAM J. Comput., Vol. 6, Dec.
1977, pp. 718-729.

rd

(Misra 78}
Misra, J. Some Aspects of the Verification of Loop Computa-~
tions, IEEE Transactions on Software Engineering, Vol. SE-4,
Nov. 19,5' ppo 1’!‘1'8.

(Misra 79]
Misra, J. Systematic Verification of Simple loops, Univer-

-94-

[t S0 U e Y T S o atac e 8 =5 . st £ AR T wtg B ove "

sity of Texas Technical Report TR-97, March 1979.

[Morris & Wegbreit 77]
Morris, J. H. and Wegbreit, B. Subgoal 1Induction, CACM,
Vol. 20, April 1977, pp. 209-222.

[Strachey 64)
. Strachey, C. Towards a Formal Semantics. In: Steel, T. B.,
Jr. (ed.): Formal Language Description I.anguaggc for Com-

Eutu’: P:oirmIng, Proc. IFIP Working ContE. , Amsterdam,
or - '} 66' ppo 198"220.

[Wegbreit 74]
Wegbreit, B. The Synthesis of Loop Predicates, CACM, Vol.
17, Feb. 1974, pp. 102-112.

[{Wegbreit 77)
Wegbreit, B. Complexity of Synthesizing Inductive Asser-
tions, JACM, Vol. 24, July 1977, pp. 504-512.

-95-

