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I. INTRODUCTION 

For several years hypervelocity, normal impact problems have been 
solved at the Ballistic Research Laboratory by two-dimensional, 
cylindrically symmetric, Eulerian, hydrodynamic computer codes with 
strength o~tions •1 The penetration of ·a target by a continuous shaped­
charge jet is an example of the type of problem suited for these codes 
and this is the problem that is addressed in this report. Since more 
and more impact problems of interest are asymmetric in nature (such as 
oblique impacts) and computers have become larger in memory capacity and· 
faster in operation, three-dimensional, Eulerian, hydrodynamic computer 
codes with elastic-plastic features have been pressed into service over 
the past few years. Compared to two-dimensional codes, these three­
dimensional codes, for comparable computational grids, require more 
computational cells and, therefore, longer running times. 

If the cost of running a three-dimensional code is prohibitive, or, 
if a three-dimensional code is not available, a two-dimensional (plane 
strain) simulation of a three-dimensional impact problem is utilized. 
The validity of these two-dimensional computations ><as examined for 
normal impacts insofar as shock wave propagation, penetration history, 
crater size, and spallation were affected.3 In this study, the validity 
of plane strain computations of a continuous shaped-charge jet obliquely 
impacting a target is examined. · 

The problem to be studied is the penetration and perforation of.a 
12.7-mm steel plate by a continuous, copper, shaped-charge jet at an 
obliquity of 77.5°. The jet is simulated by an 8-mm-diameter, semi­
infinite, copper rod having a uniform velocity of 8.1 km/s prior to 
impact. 

Three-dimensional, Eulerian codes are normally written in the 
Cartesian (x, y, z) coordinate mode. Because of the small diameter of. 
the shaped-charge rod in re1ation to the other dimensions in the problem, 
the circular cross section of the rod is approximated by a square cross 
section of equal area. A pictorial view of a shaped-charge bar 
impacting a target at an angle is shown in Figure 1. When the code is 
utilized in the two-dimensional (plane strain) mode, the problem appears 
in a slab geometry as shown in Figure 1. 

lJohn T. Ha:tTison. "The History of the UtiZiaation of Eulerian Hydrodynamic 
Computer Codes at the Ballistic Research Laboratory." Transactions of the 
Twenty-Fifth Conference of Army Mathematics. ARO Report 80-1• Jun 1979. 

2v. Kucher and J. Harrison, "Shaped-Cha2'ge Jet Penetration of Discontinuous 
Media." Ballistic Research Laboratory Report No. 1995. Jul 1977. 
(AD IIA043845) 

3v. Kucher. "One. Two. and Three-Dimensional Impact Computations." 
·Ballistic Research Laboratory Report ARBRL-TR-02099. Aug 1979. 

(AD IIA0606,11) 
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II. COMP\ITER CODE 

The TRIDORF code4 was used to generate data for the two and three­
dimensional treatments of the obliquity impact problem. TRIDORF is a 
three-dimensional, multimaterial, continuous, Eulerian, hydrodydamic code 
with an elastic-plastic strength option. Also as an option, the code 
employs tracer particles which play a passive role in the computations 
and are valuable in providing a "Lagrangian look" to the plotted output 
of the penetrator-target deformation. Tillotson's form5 of the equation 
of state is incorporated into the code. The TRIDORF code was run on the 
CDC 7600 at the Ballistic Research Laboratory/ARRADCOM. 

III. THREE-DIMENSIONAL IMPACT 

The TRIDORF code was used to solve the following problem: The 
penetration and perforation of an infinite steel plate, 12. 7-mm thick, 
impacted upon by a semi-infinite, copper bar at 8.1 km/s and at an 
obliquity of 77.5°. The cross section of the bar was a 7.0898-mm square, 
approximating the cross-sectional area of a 8-mm-diameter rod. 

The coordinate system used in the TRIDORF code is shown in Figure 2. 
From the geometry of the problem, the z-coordinate plane was selected 
as the plane of symmetry. The penetrator-target configuration in this 
plane is shown in Figure 3. Table I gives the grid coordinates and cell 
dimensions: dx, dy, and dz. The indices of the cells are I, J, and K in 
the x, y, and z directions, respectively. 

The overall size of the grid was 120 mm by 310 mm by 50 mm with a 
corresponding grid size of 36 by 52 by 17 computational cells in the x, 
y, and z-directions, respectively. The non-uniform grid that was used 
resulted in a rectangular prism as a computational cell. 

The z-coordinate plane, the plane of symmetry, was given the reflective 
boundary condition option. All the other planes bounding the computational. 
grid were given transmittive boundary conditions in order to simulate an 
infinite target plate and to permit the flow of material out of the 
computational region. Since the bar's initial motion was in the positive 
y-direction, the boundary condition for that part of the y-coordinate 
plane near the bar was specified to feed bar material into the grid as 
a simulation of a semi-infinite bar. 

The cells, occupying the initial volume of the copper penetrator, 
were given the following initial conditions: 

4W, E. Johnson, 11TRIDORF - A Two-Material Version of the TRIOIL Code 
bJith Strength, 11 Computer Code Consultants, CCC-976, Sep 1976. 

5 
'J. H. Tillotson, 11MetalZia Equations of State for Hyperveloaity Impaat, 11 

Gulf General Atomia, GA-3216, Jul 1962. 
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Table I. Urid Coordinates and Cell Dimensions 

I ~ dx 'mml J l::..l!!!!l.. dl !mml ! ~ dz !mml 
I 8.19555 8.19555 I 127.71 127.71 1 1.77245 1.7i24S 
2 6. 32190 14.51745 2 2.94 130.65 2 1. 77245 3. 54490 
3 5.49730 20.01475 3 2.35 133.00 3 I. 77245 5.31735 
4 4.78020 24.79495 4 2.15 135.15 4 I. 77245 7.08980 
s 4.15670 28.95165 s 2.15 137.30 s 1. 77245 8.86225 
6 3.61450 32.56615 6 2.15 139.45 6 I. 77245 10.63470 
7 3.14310 35.70925 7 2.15 141.60 7 1. 77245 12.40715 
8 2.73310 38.44235 8 2.15 143.75 8 1. 79710 14.20425 
9 2.37660 40.81895 9 2.15 145.90 9 2.06660 16.27085 

10 2.06660 42.88555 10 2.15 148.05 10 2.37660 18.64745 
11 1.79710 44.68265 11 2.25 150.30 11 2.73310 21.38055 
12 1. 77245 46.45510 12 2.30 152.60 12 3.14310 24.52365 
13 1.77245 48.22755 13 2.40 155.00 13 3.61450 28.13815 
14 1.77245 so.ooooo 14 2.50 157.50 14 4.15670 32.29485 
15 1. 77245 51.77245 15 2.60 160.10 IS 4.78020 37.07505 
16 1. 77245 53.54490 16 2. 70 162.80 16 5.49730 42.57235 
17 1. 77245 55.31735 17 2.80 165.60 17 7.42765 50.00000 
18 1.77245 57.08980 18 2.90 I68. so 
19 1.77245 58.86225 19 2.90 111.40 
20 I. 77245 60.63470 20 2.90 174.30 
21 1.77245 62.40715 21 2.90 177.20 
22 I.7724S 64.I7960 22 2.90 180.10 
23 1.77245 65.95205 23 2.90 183.00 
24 1. 77245 67.72450 24 2.90 185.90 
25 1.77245 69.49695 25 2.90 188.80 
26 1.79710 71.29405 26 2.90 19I.70 
27 2.06660 73.36065 27 2.90 194.60 
28 2.37660 75.73725 28 2.90 197. so 
29 2.73310 78.47035 29 2.90 200.40 
30 3.14310 81.61345 30 2.90 203.30 
31 3.61450 85.22795 31 2.90 206.20 
32 4.15670 89.38465 32 2.90 209.10 
33 4. 78020 94.16485 33 2.90 212.00 
l4 5.49730 99.66215 l4 2.90 214.90 
35 . 6.36190 105.98405 35 2.90 217.80 
36 14.01595 120.00000 36 2.90 220.70 

37 2.90 223.60 
38 2.90 226.30 
39 2.90 229.40 
40 2.90 232.30 
41 2.90 235.20 
42 2.90 238.10 
43 2.90 241.00 
44 2.90 243.90 
45 2.90 246.80 
46 3.00 249.80 
47 4.00 253.80 
48 s.oo 258.80 
49 6.00 264.80 
so 7.00 271.80 
51 8.00 279.80 
52 30.20 310.00 
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1. Density = 8,9 Mg/m3 
2. Pressure = 0,0 Mbar 
3. x-component of velocity = o.o km/s. 
4. y-component of velocity = 8.1 km/s. 
5, z-component of velocity = 0,0 km/s. 
6. Specific internal energy = 0,0 J/g. 

Similar initial conditions were given to the cells occupying the 
initial volume of the target except that the density was that of the 
steel target material, 7,86 Mg/m 3 , and they-component of the velocity 
was zero. 

IV. TWO-DIMENSIONAL IMPACTS 

The TRIDORF code, in the two-dimensional mode, was used to solve the 
following problems: The penetration and perforation of a steel plate, 
12.7-mm thick, impacted upon by a copper plate at 8,1 km/s at an obliquity 
of 77,5°. Two thicknesses were considered for the copper plate: 3 mm and 
5 mm. 

The two-dimensional grid was similar to the grid that ~<as used in 
the z-coordinate plane in the three-dimensional impact problem except 
that extra columns of cells were added along the length of the penetrators 
so that the penetrators would be 4 cells ~de. This is the minimum number 
of cells for obtaining reasonable results. The width of each of these 
four cells in the three-dimensional problems was 1.77245 mm. The width 
of each of these four cells in the two-dimensional impact problems was 
0. 75 mm and 1. 25 mm for the 3-mm and 5-mm-~<ide penetrators, respectively. 
Since the minimum cell dimension plays a role in controlling the time 
increment for each cycle of computations, it was expected that the 3-mm 
impact problem would require more computational cycles than the three­
dimensional problem and the two-dimensional, 5-mm-plate impact problem 
to reach the same time in the penetration process. Also the latter 
problem would require more computational cycles than the three-dimensional 
impact problem to reach this same time. 

All the boundaries of the computational grid were given transmittive 
boundary conditions so that the infinite target plate could be simulated 
and the flow.of material would be permitted out of the grid rather than 
reflected back. Since the penetrator plate's initial motion was in the 

positive y-direction, material was fed into this plate at the bottom 
boundary to simulate a semi-infinite plate. 

The initial conditions in each cell of the grid were the same as 
those described for the three-dimensional impact problem except that, of 
course, the z-component of velocity was not included. 

v. Kucher. "PreUminary Computer Computations for Stender Rod Impaot 
ProbZema." BaUiatio Research Laboratory Report No. 1957, Feb 1977. 
(AD #A036995) 
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V. DISCUSSION 

In discussing the three impact problems, three identification codes 
will be used: 

l. 30-7 for the three-dimensional problem of ·a bar 
impacting on a target·plate. 

2. 20-3 for the two-dimensional problem of a 3-mm plate 
impacting on a target plate. 

3. 20-5 for the two-dimensional problem of a 5-mm plate 
impacting on 

• 
a target plate . 

For comparison of the 30-7 results with the 20-3 and 20-5 results, 
the 30-7 results will be presented from the z-coordinate plane (the plane 
of symmetry). 

The deformarion of the penetrator-target configuration can be 
pictured by using tracer particles. Hundreds of these particles 1;ere 
positioned along the free surfaces of the penetrator and target. TI1ese 
positions were line-plotted in order to outline the penetrator and target 
materials. If two tracer particles which were initially relatively close 
to one another are, at a later time, separated by a relatively large 
distance, these particles will be connected graphically by a line which 
may seem to be plotted incorrectly. However, the end points of the line 
have been determined correctly. 

In order to follow the positions of material which is internal to a 
penetrator or a target, tracer particles were positioned initially inside 
the free surfaces of the penet'rator and target and symbol plotted to 
identify penetrator material and target material. Triangles were used 
to mark penetrator material, a.nd squares., target material. 

Figl!re 4 shows the tracer particle plots at the time of initial 
contact between the target and penetrator for 30-7, 20-3, and 20-5. At 
5 ~s (Figure 5) the back of the targets have a bulge, which indicates 
that the shock wave that was created due to the i~pact of the penetrator 
on the target has been reflected from the back surface of the target 
plate. The amplitude of the pulge is least for 3D-7 and the greatest 
for 2D-5. Tile lip on front side of the target away from the penetrator 
is smallest for 3D-7. These observations also hold true for later times 
(Figures 6 through 9), Notice the appearance of the long lines that 
connect tracer particles that were initially relatively close together. 

Normal impact computations3 also determined that the thinner 
penetrator plate more closely approximated the size of the bulge on the 
back surface of the target when compared to the cylindrically symmetric 
case of a rod impacting on a target, 

11 
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Problem 30-7 was also TWJ by Wallace Johnson; Computer Code 
Consultants, Inc. under Contract No. DAAKll-77-0058, Department of the 
Army. Figures 10 and 11 show, at 1 ~s intervals of time, the material 
density plots from 1 ~s to 20 ~s in the plane of symmetry. The target 
material is coded blue; the penetrator material, red. These figures 
indicate that after 10 ~s. the density of the bulging material on the 
back of the target is of low density. Also the material being ejected 
from the front side of the target and from the penetrator appears to be 
of low density. These observations were not as vivid in the tracer 
particle plots (Figures 5 through 9). 

In Figure 12, which was also supplied by Wallace Johnson, the time of 
penetration is fixed at 10 ~s at which time penetrator-target density 
plots are shown in planes that are parallel to the plane of symmetry. 
These plots are useful for constructing the crater size at this particular 
time. Again the target material is shown in blue; the penetrator material, 
in red. The red penetrator clearly appears in planes z = 0. 9 and 2. 7 rnm. 
In plane z = 4.4 rnm, the solid,penetrator material does not appear 

. because the half-thickness of the bar was 3.5449 mm. At plane z = 4.4 
rnrn through plane z = 9.7 rnrn, some of the red penetrator material is 
evident, thus indicating penetrator flow in the third dimension, z. 
At plane z = 15.2 rnrn, very little disturbance of the target material is 
evident. 

Figure 13 is a density plot similar to Figure 12 except that the 
time of penetration is fixed at 20 ~s. The penetrator (red) has already 
perforated the target (blue). The hole in the target is clearly displayed 
in this series of pictures at various z-planes. 

Further insight into the comparison of the three-dimensional 
problem with the two-dimensional problems is gained by analysis of the 
pressure fields. In 30-7, the pressure field is plotted in the plane of 
symmetry. Upon examining Figures 14 through 17, it is evident that the 
peak pressure is the highest in 20-5 and the lowest in 30-7. This 
indicates that the four sides of the bar relieve the impact pressure more 
quickly than the two sides of the penetrator plates of 20-3 and 20"5. 
This accounts for the largest bulge of the back of the target occuring 
for 20-5. · 

Normal impact computation.s3 indicated that a thicker penetrator 
plate perforated a target sooner than a thinner penetrator plate; 
however, a penetrator bar or rod perforated the target the fastest. 
These results hold true for this oblique impact study as observed 
on the bulge on the back face of the target along the center line of 
the penetrators in Figure 8 at 20 ~s. 

Figure 5 shows that neither of the slab impacts approximate the 
size of the lip being formed on the upper front face of the target or 
the direction of the ricocheting penetrator material. Of the two slab 
impacts, the 20-5 case more closely approximates the 30-7 direction of 
the ricocheting penetrator material. · 

12 



At 24 ~s {Figure 9) the widths of the holes in the targets for 30-7 
and 20-5 are about the same; the hole for 20-3 is smaller. This conforms 
with the results from normal impact computations3 which showed that, by 
selecting the proper thickness for a penetrator slab, the hole or crater 
size computed by a three-dimensional code could be closely approximated. 

VI. CONCLUSIONS 

Two-dimensional impact codes serve as a useful tool for approximating 
certain phenomema associated with oblique shaped-charge jet impact. These 
phenomena include penetration history, hole or crater size, pressure field 
history, and bulge size on the back face of a target. By adjusting the 
thickness of the penetrator slab, certain phenomena can be closely 
approximated; however, there does not seem to be one thickness that can 
closely approximate a!l of the phenomena that are observed from three­
dimensional computations simulating the impact of a shaped-charge jet. 

13 
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Figure 11 . Material Density Plots in the Plane 
of Symmetry at 1-ps Intervals 

25 

15 pS 

20 lJ$ 



. This page Left Intentionally Blank 

• 



z=0.9 ITil1 

z=9.7 mm 

z=2.7 mm z=4.4 mm z=6.2 mm 

z=11 . 5 mm z=13.3 mm z=15.2 mm 

Figure 12. Material Density Plots in 
Various Z-Planes at 10 ~s 
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Figure 13. Material Density Plots in 
Various Z-Planes at 20 ~s 
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