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I. Problem Description

Problems of so-called decentralized observation, coordination and

hypothesis detection are of increasing current interest, and rather little

Here, we discuss a simulation

concrete information is available on them.

study of one of the simplest of such problems, in order to provide some

insight into the phenomena that might be expected in more general cases,

.and to provide a guide to analysis. We present these results, limited

though they are, because of the importance of the class of problems, and

" the paucity of available information and intuition.

We deal with a decentralized detection problem involving two

observers, denoted X , Y, and a coordinator. There are two possible

hypotheses Hy and H, , with. T =P {H = Hl} given. Each observer

takes an observation at time 1 and may, if it wishes, take an observation

at time 2. Let ﬂi(X),_"i(Y) denote the conditional probability of

X, Y, respectively, given 1 observations. The observers do not

communicate with each other, and at the end of their'observation periods',

B

each transmits its “i to the coodinator who then computes the system

posterior probability W, and decides on either H0 or H,

1f H0 is chosen when H1 is true, there is a cost ag, - 1f

. Hy 1is chosen when Hy is true, there is - a0 We view H,

as being more important than HO , and set 201 7 20 If at least

one observer takes a second observation and H1 is true, then there is an

added delay cost < Then the problem is just a decentralized version ‘

of the standard 'disorder' problem. The cost of delay under H, forces




each observer to somehow take the other into account (in deciding whether

et SO 0 oAb s e e e

to take a second observation). There is no second guessing in the setup,

since there is no implicit communication among X, Y . This is deliberate,

since even the behavior of the described structure is not understood. Define

i
i g(m) = min[aOIn , alo(l-n)] . Then the sample cost is
¥

Cost(m) = g(m) + o7 I{at least one observer takes a second observation}.

The object here is to gain some insight into the way in which each

observer accounts for the existence of the other; e.g., how the decision

regions differ from those in the one person case, the parametric dependence

4 and sensitivity of the regions, to check conjectures concerning qualitative

behavior, bounds provided by one-person cases, and to check for 'unusual'

behavior such as the asymmetries in the decision regions such as exhibited

in [1] even when the observers had the same distributions.

II. Background Calculations

Sufficient statistics. Let Xl, Xz, Yl’ Y2 denote the four

i

possible obsetrvations, and Xl, Y the first i of X, Y, respectively.

We suppose that {Xl; xl, Yl, YZ} are independent, under H0 and H1 .

Then

" X) = Pt HOPH /P

If X takes i observations and Y takes j observations, then

Red = e | X)) = PtV pRea ) part ) -



not depend on j , were identical for X and Y , and we choose an expon-

Poxt | HPOY | )P, /R (K, Y)

peu, [xpe (Y)roxyp(rd) /g

1 R . . .
L P xhpe Y PaxhP(Y) /e ()
k=0

" 00T N/ Ty
ST M/, + - ) (- )/ AT 1

Thus it is enough for X, Y to transmit their conditional proba-

bilities at the end of their observation period.

§
The choice of P(X;|H), P(Y;|H) .  In the simulations, these did f

ential form. Let AO > 0, Al > 0. Then (density) p(xj|Hk) = Akexp - Akxj .

Since up to 4 observations can be taken, the evaluation of the cost functions

can require complicated numerical integrations in general. With the expon-

ential distribution, algebraic expressions can be obtained for these

integrals, and the computations are considerably simplified. Some particular

aspects of the results do seem to depend on the exponential assumption, but

mostvof our observations and remarks probably hold much more generally.

A property of the exponential distribution. Wé have

T 7 2 g - o e

no}\lexp - J\lxl) ‘
2) 1'l(x) - 'uoxl(exp - )‘lxl) + (1-1r0)>\0exp - onl) .

= nokl/[nokl + (l-ﬂo)Aoexp - Xl()\0 - Ai)].
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Let A, > Ag - Then

(3) ", € [o, “0)\1/[“0)\1 + (1-"0)10] z activg region )
IE A >,
(4) “1(?() € [T /[T + (=T AT, 1] = active region

The active region depends on “0 and the Xl ,» and is never the entire

segment [0,1}. In general, some ranges for the posterior probability .will
be relatively unlikely under one hypothesis but not under another, so we

do not believe that the exponential distribution is too specialized.

Sufficient statistics for Decision (the exponential assumption is

not needed here.) Based on Xl(respectively Yl),x(respectively Y)

decides whether to take another observation. We show that it is sufficient for X

to use wl(x) rather than the observation X1 (and similarly for Y's decision).

" Let dx, dY denote the decision rules; i.e., these are sets

Di’ DY such that (e.g.) X stops if X1 € Dx . We want (with hopefully obvious
notation)
min E. cost(D,,D,)
o, ,b, o XY
X Y
(sS) = min E min E cost (D,,D.)
b, 0 o, 'o,M X'y

= min E“ min {E" X cost (X goes,DY),
0 0,"1

E“O’x1 cost (X stops.DY)}- 2
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Note that (again with hopefully obvious notation, and using (1) to write g(w)

in terms of the relevant ni)

Ewo xl cost (X stops, DY) =

(6)
51,0 X, [g(lrl(X) T ()Y € DY) + (S5 + g(M(X),T,())I(Y £ DY)] .

But
Pr ’xl(Xz,Yl,Yz) =Pr oYYy

0 0'™

Thus, (6) is a function of ﬂo- and nl(X) only. Similarly for the
E"0 xl cost (X goes, DY) . Thus, Dx and DY depend on HI(X), HI(Y)

’

and not on X.,, Y

1’ 4 directly, and we write the decision regions as D1r (X) and

i
Dwi(y) .

We note that the same assertion holds in the N-step problem,

where each player can stop and communicate to the coordinator at any time _

T < N, and the cost for continuing to observe is 'co[time that the last

player communicates]. The proof uses a simple'dynamic programming like'

backward induction, and is omitted.

The calculation of the decision regions D, . The above cal- ' .
1 .

culations imply that the optimal decision regions can be calculated by

fixing D, (Y)" In the 2-step exponential distribution case, the optimum
1

. U - U
Tule takes the following form: there are Tk.ﬁ Ty » T# < Ty such that
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such that the second X- observation is taken if 'T§_§ “I(X),ﬁ TQ ,

and similarly for Y . This has not yet been proved in general, but
we specialize the rules to this class.
In our simulations, the observations of X, Y had the same dis-

tribution, under either HO or H1 . By the comments in the last sub-

U
section, there is an f(-) such that given TY = (Tt, TY)’ the corres-
ponding optimum TX satisfies Tx = f(TY) . By symmetry, TY = f(TX).
Thus (* denotes optimum)
8 Y = E(E(T)
(8 Ty = £(£(Ty))

In the calculations (and in Figures 1, 2), we simply calculated

Tx given TY by checking the sign of
(9) E"o’"l(x) (cost if X stops, given TY) -

Ey ’"1(X) {cost if X goes, giveh Ty)

111. The Threshold Tables.

Before presenting and discussing the numerical results, we make two

rémarks. First, the thresholds depend on "0; the "i(X)," (Y) are not

sufficient statistics for decision in the usual sense. This is obvious

from (1). But the 7,-dependence is often very small (see Table 1). Such

0

a "O-dependence does not occur in the analogous standard one person case.

still provides additional information on the

Even with WI(X) knowﬁ,v m

0

——— i

P SR

e 1
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distribution of the m and of I{Y goes} .
Secondly, the lower thresholds were quite small in our examples, and

the upper thresholds (say T;B were not particularly sensitive to variations

in T# between 0 and the optimum T; . So, in most simulations, we simply

fixed. T$ at a small value - in that range, calculated f(T$5 = (T;,T§5,

then optimized over Tg . Refer to Tables 1 to 4. We call (A, = a,A;, = b)

the (a,b) case.

e




.31

.26

.23

.22

.18

TABLE 1.
U

X<y
AO =1, Al = 3;(1,3) case.

Optimum Upper Thresholds TU =T

(*)active region = {0,.25], always continue

TABLE 2.
(3,1) Case

(**), active region = [.5,1], always stop.
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"o
CO 25 .5 .73
.06 .3 .27 .27
.08 .25 .22 .22
.1 .18 .18 .18
TABLE 3. -
(1,2) Case
T ,
0
. . .7
< 25 5 5
.06 .56 .3 .3
.08 .55 .24
TABLE 4.
(2,1) Case

Comments on the tables. In all cises, the optimum thresholds

for X, Y were the same. There were no asymmetries as in {[1]; this is,

-in fact, one of the phenomena which we were looking for. The <"

dependence indicated in the tallesis as expected. The "0- dependence
is obvious, but for most of the "0- range, the dependence is slight.
The "0- dependence can be partly explained by noting that (say, from

X's point of view) * provides information on m (Y) and on the ul-

0

timate T . Loosely speaking, a smaller "0 implies that ™ will be

smaller, for fixed ﬂl(X). This “o-effect does not occur in the

e s ¢ Ohcm i AR - x5 4
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standard one person problem.

Owing to the fact that the 'active' region is a proper subset
of {0,1], it is possible (see Tables 1,2) that the optimum decision is
to always stop (or to continue) for all attainable values of the WI(X)

{or “I(Y)), for the given T (This ‘*active region' effect might be

0"
exaggerated for our case, but in general, it simply reflects the fact

;hat certain "1(X)-sets are relatively unlikely to occur, given a "0.)

" In the analogoﬁs one-person problem the threshold for the (1,3)
case is greater than the threshold for the (3,1) case. There is'less
risk'in continuing in the former case, since there is a greater smoothing
of the decision error cost. See Figs.3-5 and further comments below.

(Of course, in the one-person case the thresholds are “0 -thresholds.)

In the two-person case the situation is reversed,in the cases studied. Sce
the tables. We have not yet found a completely satisfactory explanation,

but it might be partially explained by the fact that the same value of nl(X)

in the (3,1) and (1,3) cases implies a smaller X, in the (3,1) case.

1

Similarly, the same observation Xl' implies a larger “1(X) in the (3,1)

case. The reversal cited above would not occur if the thresholds for X

were written in terms of x1 (and similarly for Y). These rcmarks point
out that the use of onec-person formulations in order to gain insight for
the two-persén case must be done with great care. Similar, though not
so extreme, observations hold in the (2,1), (1,2) cases. Sec Tables 3,4.

An additional reason for the 'reversal' is the fact that the active regions

in the two cases start at opposite ends of the [0,1] interval.

D PR NN R P
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u
Let the onerperson case thresholds be (TL, T) . Then
X s < L L _.L U u_ v
for A, > AO’ the simulations yielded T'> Ty =T, , T 2T, =Ty .

The reverse occured when AO > Al’ but the observation suggests that

useful information might be obtainable from one-person case results in

special cases.

IV. The Threshold Curves - Figures 1,2.

By the arguﬁent associated with (5), the optimum thresholds can

U

be obtained by fixing TL, T$ , optimizing over TL TX , and then over the

Y X’
first pair by seeking the fixed points of (8). As noted above, the lower
thresholds were small, and varying them in the interval near zero in which
they normally ranged made little difference on the obtained values of the

upper thresholds - so to get the plotted curves we set T# to some value

. U
within its normal range and varied only TY . Except for Fig. la, only

the corresponding optimum Tg are plotted. The Tg were calculated by
checking the sign of the difference between the arguments of the inmer minimum
on the right side of (5). The flattening of the right part of the curve

in Fig. 1 1is due to the Qalue of tﬁe active region. In Fig. la, for

example, the threshold value 1/2 could be replaced by any value > 1/2,

since [0,1/2] is the active region. In Fig.l, the'important' hypothesis

H1 is the more difficult to detect.

By (8), only the points (1), (2), (3), in Fig. la could be optimal
pairs. In fact, only (1),(3) can be optimum, and (2) is a saddle. Point

(1) is optimum. In all cases tested, the optimal pairs were on the diagonal.

~ v e L R A e e e e st Vn-q»:—wpn.-—n-A

il e e B W s
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. U .
This will always be the case if Tg ‘never decreases as TY increases.

Since the 'continuation' cost must be paid if either observer continues,
the 'monotonic' property probably holds fairly gemerally. In Fig. 1 note

. . sl s " J .
the relative insensitivity of the optimal Tg to T; {especially as

compared with the Fig. é case). This is connected with the lower threshold

in the first case. As < increases this sensitivity increases, and it

decreases as ﬂO increases (loosely spcaking, as “0 increases, X

. . . . . Y
'increasingly ignores' Y). 1In Fig. 1, compare the optimal TX with

. U :
the optimal Tx when Y does not take a second observation (this is

the vertical intercept). It is virtually equal to the optimal threshold;
each observer essentially ignores the others possible second observation.
Thus useful simplifying rules might be found in special casecs.

Now, refer to Fig. 2. In Figs. 2a,2b, the optimal thresholds are

U

X is relatively insensitive to modest variations

unique. The optimum T

in Tg . The sensitivity appears to be greater in Fig. 2c, which also

illustrates how complicated the situation can get. However, the obser-
vations in the next section below suggest that even here the cost is

. . ek coes . U . .
relatively insensitive to modest variations in T TU about their optimal,

X'y
or to variations within the interval where the curves in Fig. 2c stay near

the diagonal.

'1L."‘_'.4..

" "
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V. The Decision Cost Curves - Figure 3.

Legend for Fig. 3. Curve (0) denotes g(m) = min [301"’310(1'")]’
curves (i), i = 1,2,3, indicate the average decision costs for the one-person
case where either 1,2, or 3 observations can be taken. Then the abscissa is

m Curve (S) denotes the decision cost part (not the <o part) of the

0°
second argument of the inner min. on the right side of (5) (under stop), and

Curve (G) denotes the decision cost part of the first argument (under con-

tinue). I.e., the curves denote the average decision costs for both decisions
from X's point of view. Tg, T# (i.e., DY) were fixed near their optimum
values. For these S,G curves the abscissa is nl(X), and L is fixed.

In all cases Curve (2) < Curve (S) < Curve (1), Curve (3) < Curve (G)
< Curve (2). This is intuitively reasonable, and can be proved to hold in
general. Since Curve (S) is the deéisioﬁ cost conditioned on (Xl,no), it is
averaged over Y's one or two observations. Similarly Curve (G) is the cost,

averaged over Y's one or two observations and an additional X-observation.

As "0 increases Curve (G) * Curve (2) and Curve (S) * Curve (1)

(also a general result), since as WO increases the information (the
additional information that Y provides the coordinator, from X's point
of view) in Y's possible future observations decreases. These observations

might provide some help in simplifying solving for the thresholds in more

complicated cases.

Vi. Total Cost Curves - Figs. 4,5.

Figures 4,5 plot expression 9 with T#,Ts fixed near their optimum

values.

e 1. WOV NERPREEN
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Legend. Curve (T) = our 2 person case, with abscissa = nl(x), and T&,Tg

fixed near their optimum and ™ fixed. For i = 1,2, Curve (i) = average

cost for no observations minus average cost given i additional observations.
Here nl(x) is irrelevant and the abscissa is Ty Curve (S) is as Curve (T), i
but with T$ = Tg = 0 (Y  never continues). Curve (R) is as Curve (5), but
X takes 2 additional observations if it elects to continug. The curves are:

Y5, 44 11308 L
e

typical of the runs taken. The zero crossings are the optimal X-thresholds,

A0 sk

for the given Y-thresholds. In Fig. 4, the T,S,R,1 curves have similar

structure, the senéitivity at optimum being slightly less for the T curve. H

ey

Now refer to Fig. 5 for the (3,1) case. Here, the T-curve is

much less sensitive to “l(X). The nature of the curve implies that {

modest variations in the thresholds will affect the total average cost
only slightly. This appears to be the case, for situations such as in
Fig. 2c, when there are multiple crossings of the diagonal. In such
cases, it apbeared that the total average systems cost did not vary too
much as the thresholds varied on the interval between the local minima.

Of course, thesc remarks are merely suggested by curves such as those in ;

Fig. 5. and are not mathematically proved assertions. Nevertheless, they

i and -

do suggest that calculating good thresholds might not be too hard even in

cases which lead to curves such as that of Fig. 2c.

i o e e,
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