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I. Probl'em Description

Problems of so-called decentralized observation, coordination and

hypothesis detection are of increasing current interest, and rather little

concrete information is available on them. Here, we discuss a simulation

study of one of the simplest of such problems, in order to provide some

insight into the phenomena that might be expected in more general cases,

and to provide a guide to analysis. We present these results, limited

though they are, because of the importance of the class of problems, and

the paucity of available information and intuition.

We deal with a decentralized detection problem involving two

observers, denoted X , Y, and a coordinator. There are two possible

hypotheses H0 and H1 , with. iT0 = ph = II given. Each observer

takes an observation at time 1 and may, if it wishes, take an observation

at time 2. Let wi(X), 7Ti(Y) denote the conditional probability of

X, Y, respectively, given i observations. The observers do not

communicate with each other, and at the end of their'observation periods',

each transmits its ff. to the coodinator who then computes the system
1

posterior probability 7t, and decides on either H or H1

If H is chosen when H is true, there is a cost a0 1  If

H1  is chosen when H is true, there is al0 We view H1

as being more important than H0 , and set a01 , al0 . If at least

one observer takes a second observation and H1 is true, then there is an

added delay cost c0  . Then the problem is just a decentralized version

of the standard 'disorder' problem. The cost of delay under H1 forces
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each observer to somehow take the other into account (in deciding whether

to take a second observation). There is no second guessing in the setup,

since there is no implicit communication among X, Y . This is deliberate,

since even the behavior of the described structure is not understood. Define

g(7r) = min[a0 1I , a.10 l- (R) ]  Then the sample cost is

Cost(w) =g() + c0 T I{at least one observer takes a second observation}.

The object here is to gain some insight into the way- in which each

observer accounts for the existence of the other; e.g., how the decision

regions differ from those in the one person case, the parametric dependence

and sensitivity of the regions, to check conjectures concerning qualitative

behavior, bounds provided by one-person cases, and to check for 'unusual'

behavior such as the asymmetries in the decision regions such as exhibited

in [i even when the observers had the same distributions.

II. Background Calculations

Sufficient statistics. Let X1, X2, YI, Y2 denote the four

i i
possible observations, and X , Y the first i of X, Y, respectively.

We suppose that {X ," XI' Y1 0 Y2
} are independent, under H0 and H1

Then

(i(X) = p(XI H 1)P(H()/px

If X takes i observations and Y takes j observations, then

(1) = P(Hll Xi1Yj) = p(X'Y j H)P(HI)/P yyj) =
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= P(Xi H1)P(Yj i H1)P(H1 )/P(X',yj)

1P(Hk IX 1)PHkIYJ)P(Xi) )P(Yj)/Pk)

k=O

7(X)l t(V)/ 1T

iC (X)1CY)IM/ 0 + Cl- iC M l-Tr CY))/ l- 0)

Thus it is enough for X, Y to transmit their conditional proba-

bilities at the end of their observation period.

The choice of P(XjHk), P(YjlHk) In the simulations, these did

not depend on j , were identical for X and Y , and we choose an expon-

ential form. Let X0 > 0, X1 > 0. Then (density) p(XjtHk) A kexp - XkXJ

Since up to 4 observations can be taken, the evaluation of the cost functions

can require complicated numerical integrations in general. With the expon-

ential distribution, algebraic expressions can be obtained for these

integrals, and the computations are considerably simplified. Some particular

aspects of the results do seem to depend on the exponential assumption, but

most of our observations and remarks probably hold much more generally.

A property of the exponential distribution. We have

(2) 7r M 710 X 1exp - X I X 1)(2) 'n(X) = -Olep.XX C_0X PX

1 '1TX 1~exp - ?1X1) + (l-rr)X 0@xp - 1))

= r0X1l/[f 0Al + (l-n0)X0exp - X1(X0 - ) ) .
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Let X I>X0 Then

(3) 1l(X) E [0, X OIT0X + (1-7 0)XO] active region

,If X0 > X,

(4) 71(X) E [71 0X/[nOX1 + (1-10)X0], 1]E active region

The active region depends on 'r0 and the X1 , and is never the entire

segment [0,1]. In general, some ranges for the posterior probability.will

be relatively unlikely under one hypothesis but not under another, so we

do not believe that the exponential distribution is too specialized.

Sufficient statistics for Decision (the exponential assumption is

not needed here.) based on X1(respectively Y1) ,X(respectively Y)

decides whether to take another observation. We show that it is sufficient for X

to use i(X) rather than the observation X1 (and similarly for Y's decision).

Let dX, d¥ denote the decision rules; i.e., these are sets

DX, D¥ such that (e.g.) X stops if X I D . We want (with hopefully obvious

notation)

min Eo cost(Dx,DY)
D X , D Y

(5) = min min E R X cost (DxDy)

Smin E,O min {E7 OF 1 cost (X goes,Dy),

E oX 1 cost (X stopsDy)j.



• -5-

Note that (again with hopefully obvious notation, and using (1) to write g(r)

in terms of the relevant i)

E Xl cost (X stops, Dy) =
0,

xl[glX), ))IY Dy) (c (Tr(X),T 2(Y))I(Y Dy

But

P oX1 (X2,Y1,Y2) = PNOI(XM)(X2 ,YlY 2)

Thus, (6) is a function of w0 . and ifI(X) only. Similarly for the

E7 X1 cost (X goes, Dy Thus, Dx and Dy depend on ffl(X), RI(Y)

and not on X' Y1 directly, and we write the deci'sion regions as D i(X) and

We note that the same assertion holds in the N-step problem,

where each player can stop and communicate to the coordinator at any time

I < N, and the cost for continuing to observe is c0 [time that the last

player communicates]. The .proof uses a simple'dynamic programming like'

backward induction, and is omitted.

The calculation of the decision regions D 7 The above cal-

culations imply that the optimal decision regions can be calculated by

fixing DW(y) . In the 2-step exponential distribution case, the optimum

L U L U
rule takes the following form: there are TX < T , TY < Ty such that
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such that the second X- observation is taken if TX _ fl TX ,

and similarly for Y This has not yet been proved in general, but

we specialize the rules to this class.

In our simulations, the observations of X, Y had the same dis-

tribution, under either H0 or H1 . By the comments in the last sub-

section, there is an f(.) such that given Ty = CT L, T), the corres-

ponding optimum Tx satisfies TX = f(Ty) . By symmetry, Ty = f(Tx).

Thus (* denotes optimum)

(8) Tx f(f(Tx)) .

In the calculations (and in Figures 1, 2), we simply calculated

Tx given Ty by checking the sign of

(9) E OrI (X ) (cost if X stops, given T -

E O,(X) (cost if X goes, given Ty)

I1. The Threshold Tables.

Before presenting and discussing the numerical results, we make two

remarks. First, the thresholds depend on n0; the Ri(X),7l1(Y) are not

sufficient statistics for decision in the usual sense. This is obvious

from (1). But the 7r -dependence is often very small (see Table 1). Such

a I0-dependex=e does not occur in the analogous standard one person case.

Even with W (X) known, R still provides additional information on the0[
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distribution of the w and of I{Y goes}

Secondly, the lower thresholds were quite small in our examples, and

the upper thresholds (say T.) were not particularly sensitive to variations

L L
in between 0 and the optimum TX. So, in most simulations, we simply

fixed. T at a small value - in that range, calculated f(T,1  =(T ,T,

then optimized over T . Refer to Tables 1 to 4. We call (X 0  a,X1  b)

the (ab) case.

I
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o .1 .25 .3 5 .7 .9
- - .- 6

.06 38 .36

.08 .31 .3

1 * 26 .26 .24

.12 * .23

.14 * .22 .18 .18

16 * .18 14

TABLE 1.

U U
Optimum Upper Thresholds Tx = Ty

0 = 1, = 3;(1,3) case.

(*)active region = [0,.25], always continue

0.7
N .25 .4 .5 .75

.01 .75

.02 .83 .79 **

.08 .79 .75 .72 **

.1 _ _ _ _ *

TABLE 2.

(3,1) Case

(**), active region = [.5,1], always stop.
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.25 .5 .73

.06 .3 .27 .27

.08 .25 .22 .22

.1 .18 .18

TABLE 3.

(1,2) Case

:IT

.25 .5 .75

.06 .56 .3 .3

.08 .55 .24

TABLE 4.

(2,1) Case

Comments on the tables. In all ca ses, the optimum thresholds

for X, Y were the same. There were no asymmetries as in [1]; this is,

.in fact, one of the phenomena which we were looking for. The co-

dependence indicated in the tablesis as expected. The T0 dependence

is obvious, but for most of the nT0- range, the dependence is slight.

The 7F0- dependence can be partly explained by noting that (say, from

X's point of view) 0 provides information on RI(Y) and on the ul-

timate r . Loosely speaking, a smaller n 0  implies that IT will be

smaller, for fixed R1 (X). This t 0-effect does not occur in the-i0
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standard one-person problem.

Owing to the fact that the 'active' region is a proper subset

of [0,1], it is possible (see Tables 1,2) that the optimum decision is

to always stop (or to continue) for all attainable values of the f (X)

(or 711(Y)), for the given f . (This 'active region' effect might be

exaggerated for our case, but in general, it simply reflects the fact

that certain 1 (X)-s.ets are relatively unlikely to occur, given a 71 )

In the analogous one-person problem the threshold for the (1,3)

case is greater than the threshold for the (3,1) case. There is'less

risk'in continuing in the former case, since there is a greater smoothing

of the decision error cost. See Figs.3-5 and further comments below.

* (Of course, in the one-person case the thresholds are n -thresholds.)
0

In the two-person case the situation is reversed,in the cases studied. See

the tables. We have not yet found a completely satisfactory explanation,

but it might be partially explained by the fact that the same value of r(X)

in the (3,1) and (1,3) cases implies a smaller X1 in the (3,1) case.

Similarly, the same observation Xl implies a larger RTI(X) in the (3,1)

case. The reversal cited above would not occur if the thresholds for X

were written in terms of X1 (and similarly for Y). These remarks point

out that the use of one-person formulations in order to gain insight for

the two-person case must be done with great care. Similar, though not

so extreme, observations hold in the (2,1), (1,2) cases. See Tables 3,4.

An additional reason for the 'reversal' is the fact that the active regions

in the two cases start at opposite ends of the [0,1] interval.
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Let the one-person case thresholds be (TL , T ) Then
L L L To  1

for X 1 > XO ,% the simulations yielded TL > TL TL , I Tx = Ty

The reverse occured when X0 > X1. but the observation suggests that

useful information might be obtainable from one-person case results in

special cases.

IV. The Threshold Curves - Figures 1,2.

By the argument associated with (5), the optimum thresholds can

L L U
be obtained by fixing T, Ty , optimizing over TX, Tx ,and then over the

first pair by seeking the fixed points of (8).. As noted above, the lower

thresholds were small, and varying them in the interval near zero in which

they normally ranged made little difference on the obtained values of the

Lupper thresholds - so to get the plotted curves we set Ty to some value

within its normal range and varied only Ty . Except for Fig. la, only
0 U

the corresponding optimum Tx are plotted. The Tx were calculated by

checking the sign of the difference between the arguments of the inner minimum

on the right side of (5). The flattening of the right part of the curve

in Fig. 1 is due to the value of the active region. In Fig. la, for

example, the threshold value 1/2 could be replaced by any value > 1/2,

since (0,1/2] is the active region. In Fig.l, the'important' hypothesis

H1I is the more difficult to detect.

By (8), only the points (1), (2), (3), in Fig. la could be optimal

pairs. In fact, only (1),(3) can be optimum, and (2) is a saddle. Point

(1)' is optimum. In all cases tested, the optimal pairs were on the diagonal.
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U U
This will always be the case if TX never decreases as T increases.

5ince the 'continuatiqn' cost must be paid if either observer continues,

the 'monotonic' property probably holds fairly generally. In Fig. 1 note

U e c
the relative insensitivity of the optimal TX to Ty (especially as

compared with the Fig. 2 case). This is connected with the lower threshold

in the first case. As c0  increases this sensitivity increases, and it

decreases as T0 increases (loosely speaking, as increases, X

U
'increasingly ignores' Y). In Fig. 1, compare the optimal Ti with

U
the optimal TX when Y does not take a second observation (this is

the vertical intercept). It is virtually equal to the optimal threshold;
each observer essentially ignores the others possible second observation.

Thus useful simplifying rules might be found in special cases.

Now, refer to Fig. 2. In Figs. 2a,2b, the optimal thresholds are

unique. The optimum T is relatively insensitive to modest variations

in The sensitivity appears to be greater in Fig. 2c, which also

illustrates how complicated the situation can get. However, the obser-

vations in the next section below suggest that even here the cost is

U U
relatively insensitive to modest variations in TX, Ty about their optimal,

or to variations within the interval where the curves in Fig. 2c stay near

the diagonal.

>*1-..*



-13-

V. The Decision Cost Curves - Figure 3.

Legend for Fig. 3. Curve (0) denotes g(7r) = min [a lr,aO(1-)],

curves (i), i = 1,2,3, indicate the average decision costs for the one-person

case where either 1,2, or 3 observations can be taken. Then the abscissa is

T0 ' Curve (S) denotes the decision cost part (not the co part) of the

second argument of the inner min. on the right side of (5) (under stop), and

Curve (G) denotes the decision cost part of the first argument (under con-

tinue). I.e., the curves denote the average decision costs for both decisions4

U Lfrom X's point of view. T., TL (i.e., D ) were fixed near their optimum

values. For these S,G curves the abscissa is n (X), and w0  is fixed.

In all cases Curve (2) < Curve (S) < Curve (1), Curve (3) < Curve (G)

< Curve (2). This is intuitively reasonable, and can be proved to hold in

general. Since Curve (S) is the decision cost conditioned on (X1 , 0), it is

averaged over Y's one or two observations. Similarly Curve (G) is the cost,

averaged over Y's one or two observations and an additional X-observation.

As 70  increases Curve (G) t Curve (2) and Curve (S) + Curve (1)

(also a general result), since as iT0  increases the information (the

additional information that Y provides the coordinator, from X's point

of view) in Y's possible future observations decreases. These observations

might provide some help in simplifying solving for the thresholds in more

complicated cases.

VI. Total Cost Curves - Figs. 4,5.

Figures 4,5 plot expression 9 with TyTy fixed near their optimum

values.

K ... * ~ - ~**_ .. -- A.- .
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L U
Legend. Curve (T) = our 2 person case, with abscissa = i(X), and TyTy

fixed near their optimum and T0  fixed. For i = 1,2, Curve (i) = average

cost for no observations minus average cost given i additional observations.

Here w (X) is irrelevant and the abscissa is n0 . Curve (S) is as Curve (T),

L U
but with Ty = T = 0 (Y never continues). Curve (R) is as Curve (S), but

X takes 2 additional observations if it elects to continue. The curves are,

typical of the runs taken. The zero crossings are the optimal X-thresholds,

for the given Y-thresholds. In Fig. 4, the T,S,R,1 curves have similar

structure, the sensitivity at optimum being slightly less for the T curve.

Now refer to Fig. 5 for the (3,1) case. Here, the T-curve is

much less sensitive to 1T(X). The nature of. the curve implies that

modest variations in the thresholds will. affect the total average cost

only slightly. This appears to be the case, for situations such as in

Fig. 2c, when there are multiple crossings of the diagonal. In such

cases, it appeared that the total average systems cost did not vary too

much as the thresholds varied on the interval between the local minima.

Of course, these remarks are merely suggested by curves such as those in

Fig. 5. and are not mathematically proved assertions. Nevertheless, they

do suggest that calculating good thresholds might not be too hard even in

cases which lead to curves such as that of Fig. 2c.
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