
AD-A13 042 STANFORD UNIV CA DIEpT OF COPUTER SCIENCE P/S 9/2
MAXIMAL OBCTS AND THE SEMANTICS OF UNIVERSAL RELATION DYAAS--ETC(U)
OCT I 0 MAIER, J D UL.LMAN APOSR-80O-1

WCLASSIFIED STAN-CS-81-.78 T AOS*-TR-42-2 7t N l

/Lm+

111111.25 ,,, 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1953A

October 1981 Report. No. STANI-S1-7M

XlOSR-TR- 8 2 -0 2 7 2

hMaximal Objects and the Semantics
of Universal Relation Databases

1-4

1 pt by

David Maier

Jeffrey D. Ullman

Department of Computer Science

Stanford University
Stanford, CA 94305

DTICS ELECTE

APR 6 19&

Approved for publio release

'.i : ' .. j d i s t r i b u t i o n lml t "

82 04 06 098

- ~4U _ _ _ _ _ _ _ _ _ _ _ _

SECURITY CLASSIFICATMION OF THIS PAGE (Wh~en fl)etralFntrred)

REPORT DOCUMENTA.TION PAGE READ 1N -RLFrlo.Ns
TI;F()NI. COMPI)I ING FORMIREPORT NUMBER 8 2 l GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

LJD,~t-3 L %
4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MAXIMAL OBJECTS AND THE SEMANTICS OF UNIVERSAL Interim

RELATION DATABASES Inter i P TNB

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

David Maier
Jeffrey D. Ullman AFOSR-80-0212

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Stanford University * 61102F

Dept. of Computer Science 2304/A2

Stanford, CA 94305 2304/A2

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSR/NM
Oct. 1981

Boiling AFB, Bldg. #410
1 NUMBEROFPAGES

10
IV.WONITVWIN*PGW tY NAME & ADDRESS(i/ different from Controlling Office) IS. SECURITY C.ASS. (of ths report)

unclassified

IS.. DECL ASSIFIC ATION;ODOWN OR ADIN G
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)
IF

approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. ii different from Report)

p.
t

18. SUPPLEMENTARY NOTES ,

19. KEY WORDS (Continue on reverse side if necessary and Identify by block numbe-)

. ABSTRACT (Continue on reverse side if necessarr and Identiy by block number)

The universal relation concept is intended to provide the database user with a

simplified model in which he can compose queries without regard to the underlyin

structure of the relations in the database. Frequently, the lossless join

criterion provides the query interpreter with the clue needed to interpret the

query as the user intended. However, some examples exist where interpretation b,

the lossless join rule runs contrary to our intutition. To handle some of these

cases, we propose a concept called maximal objects, which modifies the

universal relation concept in exactly those situations where it appears to go

DD I F.JN 1473 EOTiON OF I NOV 65 IS OSOLETE

StCURITY CLASh T16N 0 PAGE (*'hen Date Entered)

**-*'-.S .a. ",- . - . .---.,-.- "-4 .

S c~URrTY CLASIFI & T,4I IAGE(Ih.n Data Entered)

iwry-when the underlying relational structure has "cycles". We offer examples of
low the maximal object concept provides intuitively correct interpretations. We
also consider how one might construct maximal objects mechanically from purely
yntactic structural information-the relation schemes and functional dependencies-

*bout the database.

DTIV TAB 0]

unanno'mfe3
Justification

Distributi1on/

Availability Codes

AVail and/or
st Special

SWURT C~I41-'IVFT1 AEWe Date En tered)

r Maximal Objects and the Semantics of Universal Relation Databases

David Maier, SUNY at Stony Brookt
Jeffrey D. Ullman, Stanford Universityt

Abstract

The universal relation concept is intended to provide th e database user with a simplified model in which he
can compose queries without regard to the underlying structure of the relations in the database. Frequently,
the lossless join criterion provides the query interpreter with the clue necded to interpret the query as the
user intended. However, some examples exist where interpretation by the lossless-join rule runs contrary to
our intuition. To handle some of these cases, we propose a concept called maximal objects, which modifies
the universal relation concept in exactly those situations where it appears to go awry-when the underlying
relational structure has "cycles." We offer examples of how the maximal object concept provides intuitively
correct interpretations. We also consider how one might construct maximal objects mechanically from purely
syntactic structural information-the relation schemes and functional dependencies-about the database.

I. Introduction

We assume the reader is familiar with basic concepts in relational database theory, such as functional and
multivalued dependencies, and the operators of relational algebra particularly projection and (natural) join.
[Ull or [Mall contains the needed background.

We also expect the reader is familiar with the notion of a join dependency (JD), which is expressed
>< (Ri, R 2 , ... , I,,) where each Ri, 1 < i _ n, is a set of attributes, and is satisfied by a relation r over
R = U'J=tRi if and only if the join of the projections of r onto the Ri's is r itself. Formally:

r =><t'- 7Rjr1)

A useful notation for JD's was introduced in [FMU]. For >< (R1 , R 2 ,..., R,) we construct a hypergraph
(graph in which "edges" are arbitrary sets of nodes rather than doubletons only) as follows. For each
attribute appearing in one or more or the Ri's the hypergraph has a node. For each Ri, the hypergraph has
an edge consisting of all the members of Ri.

Also studied in [FMUJ and [BFMYJ was a subclass of the JD's-those that have "acyclic" hypoergraphs.
The term "acyclic" was given many equiv;lent definitions in these two papers; here we shall introduce only
one. We Graham-reduce a hypergraph by applying the following rules in any order (the process is Church-
Rosser, so order doesn't really matter).
i) Eliminate a node that appears in only one edge.
ii) Eliminate an edge that is a subset of another edge.
Then a hypergraph (and its JD) is aeyclic if and only when it reduces to nothing by Graham-reduction.

It is the goal of this paper to contribute to the utility of the "universal relation" view of data.
nt.restingly, a nimbcr of papers have rec-ntly been written to argue that the uz-.-era:l rc!atian v:cw is

:insupportable for one or anther reason (KI, BG, API. It is not our intent to argue the details of the matters.
We shall advance only one argument in its favor: it works; it may not be perfect for everything, but it does
certain things well enough to be valued by its users.

In particular, a universal relation system, called System/Q has been operating successfully at Bell
Laboratories for some time JA]. It has enabled a number or nontechnical people to use relational database
systems with little effort, while just as we would expect, the "experts" must spend considerable effort
preparing the system to work on each database. The System/Q approach to query interpretation is to
provide a "rel file," which is a list of the sets or relations to join in response to a query, in order of preference.
that is, given a query that mentions a set of attributes X, the system goes down the rel file until it finds
a set of relation schemes whose union includes X, and it then takes the join of these relations and answers
the query as if it were about this join. Further, [9] has recently developed a universal relation system

t Supported in pArL by NSF grat IST-79-18264.
Supported in psrt, by Air Force grant AOSR 80-0212 in accordance with NSF agrccreninL 1ST-80-21358.I.L

that constructs joins in response to queries automatically, based nit the theory or functional dependencies
and lossless joins. In ract, this strategy of query interpretation bears considerable similarity to the method
we propose, but it does not make use of multivalued or join dependencies, or "declared maximal objects,"
ingredients we consider essential to exploit the power of the universal relation concept. Interestingly, people
at Bell have contemplated doing automatic generation of rel files by a method related to that of Sagiv [S].

We begin with the hypothesis of Fagin, Mendezon and Ullinan (FMU], that "real world" universal
relations can be described by one join dependency and a collection of functional dependencies. They argue
that if the universal relation over a set of attributes A,, A2 , ... , A, has meaning at all, then we can define
it by

u < aa 2 > P ... A P

where each Pi is a predicate taking some set of the ai's as arguments (some or these aj's may be null).
It Pi involves aj,, a,, ... , ai,, then the set of attributes Ri = {A,, Ai 2, ... , A,) is said to be an

object; the term "object" corresponds closely to the same term of Sciore [Sc] and is borrowed from there. In
essence, objects are sets of attributes among which there is a significant connection. It is proven in [FMUJ
that u can be constructed in this way if and only if u satisfies the JD >(R, R2, ... , Rk).
Example 1: Suppose our universal relation scheme consists of the attributes

BNK (bank)
ACC (account)
L (loan)
C (customer)
AMT (loan amount)
BAL (account balance)
ADR (customer address)

We assume the functional dependencies

ACC -. BNK BAL
L -. BNK AMT
C -, AI)R

We also assume that the universal relation is defined, in terms of the current "real world facts" as

{ <bnk, ace, I, c, amt, bal, adr> I ACCAT(bnk, ace) A LAT(bnk, 1)
A OWN(acc, c) A HOLD(l, c) A HAS(acc, bal) A FOR(l, amnt) A LIVES(c, adr))}

where the predicates are defined as

ACCAT(x, y) = account y is at bank z
LAT(x, y) = loan v is at bank z

OWN(x, y) = customer y owns account z
HOLD(x, y) = customer y holds loan z

IIAS(x, y) = account z has balance y
FOR(x, y) = loan z is for amount y

LIVES(x, y) = customer z lives at address y

Each of these predicates uses knowledge about the present state of the real world to constrain the set of
tuples currently appearing in the universal relation. The functional dependencies are facts that we assume
are reflected in the predicates. For example, since C--, ADR holds, we do not expect IAVES(z, VI) and
LIV[ES(z, y2) to be true simultaneously if Vi P/. llowever, it is possible that Lite attributes of an FD ae
contained in no object, in which case the FD is still "true" but its effect is not so easily visible. As should
be obvious, the implementation we have in mind for a universal relation

Uf {< a . a. > ^iA P A ... A Pk}

is a database consisting of relations rt, r2 , .. ,?T, where ri is a relation on scheme Ri, and Ri is the object
for Pi. (Perhaps some or the relations ri, r 2 , ... , rh are not explicitly storedA, but they all can he derived by
projection frorm stored relations.) We have a tuple ti in ri exactly when V (ti) is true, so the interpretation

2

-

L
ADR

Fig. 1. Hypergrap for the banking example

of each relation should be clear. lit the futre, we shall identify the relations with the predicates, and talk
about relation ACCAT(ACC, BNK), and so on. 0
Definition: If X C AA 2 .. .A,, the connection among the attributes in X, denoted [XJ, is defined by

iX] = 7rx(u)

That is, [X] is the projection of the universal relation onto the attributes in X.0
Figure 1 shows the hypergraph representation of the seven objects of our example. In this case, each

hypercdge consists of two attributes. This hypergraph has a cycle, which implies that at least one of the
attributes is semantically overloaded; it stands for two diflerent things. While ve cannot say for sure which
attribute is overloaded, since the database is most likely designed from the bank's point of view, we shall
consider C overloaded, representing customers in their roles as depositors and borrowers. We shall see in the
next section how this overloading causes queries to give an intuitively wrong answer.

1U. Queries on the Universal Relation

We shall consider the common form of query on the universal relation that can be expressed by relational
operators select, project, and (natural) join. These will be expressed in a QUlEL-like notation [SWKH, UI,
but without range-statements, since all tuple variables must range over the universal relation. The format
of queries we use is

retrieve <attribut e list>
where <condition>

The <attribute list> has the form (ti.Al,t2.A2 , ... ,tm.Am), where the ti's are (not necessarily distinct)
tuple variables and the A,'s are (not necessarily distinct) attributes. The <condition> is built from operands
that are constants or atoms of the form t.A, for tuple variable t and attribute A, using arithmetic comparison
(=, >, >,...) and Boolean connectives.

The meaning of the query is defined by the following steps:
Algorithm I:
1. Take the cros product of the universal relation with itself p times, it there are p distinct tuple variables.

That is,

V j X u X ... X u (p times)

Each copy of u is said to correspond to one particular tuple variable; the correspondetce is arbitrary.
2. Replace each occurrence of u by the join rl C4 r2 1> ... , rk of the relations for all the predicates

PI, P2 , ... , P. The result of the substitution is expression El. The justification for this substitution is
that given a universal relation t exists, and assuming as in [FMU] that the JD C> (RI, ... , RA;) holds,
then the result of the join is u. In practice, the r,'a may not be projections of us exactly; there may be
"dangling tuples" that do not contribute to the join rl >4 ... D>4 rp. We shall discuss tle significance of
this discrepancy shortly.

3

Mkm a

3. Apply the selection operator for the <condition> in the where-clause to E2. Every atom t.A or the
<condition> refers to a unique component of E2, the component for attribute A in the copy of the
universal relation corrcponding to t. Let. the result be E3.

4. Apply the projection operator for the list of components mentioned in the <attribute list> to ,3. The
result is an algebraic expression E4.

5. Optimize the expression under "weak equivalence," that is, find a minimal cxpression 10 that is
equivalent to E4 under the assumption that the r.'s are the projections of one univrsal relation. For
expressions of the type we have constructed, assuming reasonable selection conditions, such a minimum
always exists ([ASU], [KI]) and can be found efficiently.
Intuitively, the last step throws away terms from the join if they are not necessary to connect one

or more attributes in the query. In fact, when (and only when) the hypergraph of the JD defining the
universal relation's structure is acyclic, the expression Es really does invariably find the minimal lossless join
connecting the attributes of the query [MU]. The fact that. the expression E5 involves as few joins as possible
has the desirable effect, among others, of ensuring that dangling tuples can contribute to the answer as long
as they join successfully with tuples in those of the ri's that are actually involved in the join.

Example 2: Consider the query on the universal relation of Fig. 1:
retrie,,e(t.C) NO)
where t.C = 'Jones'

This query asks us to print Jones' address. If we follow Algorithm 1 we find, naturally enough, that the
expression E5 involves "joining" only one relation LIVES, selecting for C = 'Jones', and projecting the result
onto ADR. Notice how the question whether the tuple or tuples with C = 'Jones' in LIVES are dangling or
not never comes up. Even if Jones does not appear in the hold or has relations, or for some other reason,
the join of all the relations includes no tuple with C = 'Jones', our response to Q, has been the intuitively
correct one. Unfortunately, when the hypergraph defining the structure of the universal relation is cyclic, as
Fig. I is, Algorithm 1 can give intuitively wrong answers to queries, primarily, it appears, because dangling
tuples are not always treated properly, but also because the minimal connection among the attributes of the
query will not necessarily be embodied in the join of the expression Es of Algorithm 1.

Examplc 3: Consider, for the same database:

retrieve(t.BNK) (Q)
where t.C = 'Jones'

If we apply Algorithm 1, we find that the answer to query Q3 is the set of banks where Jones has both a
loan and an account. If we take for granted that the meaning of Q3 is the set of banks at which Jones has
eithcr a loan or an account, and are not willing to incorporate dummy information about a loan when Jones
opens an account at National, to make Q3 come out correctly, then we conclude that Algorithm I does not
handle Q3 properly. The problem seems to be that if Jones has only a loan at National, the tuples that
connect Jones and National are dangling.

Example 4: The following query is similar to Q3:

retrieve(t.ACC) (Q3)
where t.L = 4-326.

Query Q3, like query Qg, jumps across the diamond of Fig. 1. Despite this similarity, the intended meaning
of Q3 is not likely to be "Print the accounts that are either at the same batik as loan 4-326 or are owned
by the customer who also holds loan 4-326." In fact, it isn't clear that Q3 has any natural meaning. This
example points'up the fact that multiple paths connecting attributes can be a source of ambiguity for systems
trying to deal with universal relations.

M11. Maximal Objects

Evidently, we need some black magic. This magic must cause Q2 and Q3 to produce the correct answers,
and it must be sufficiently powerful to distinguish between them, since they appear to be syntactically the
same query. The magic might come from a wave or the semantic wand, such is the semantics of Codd [Col,
where we worry about how attributes represent "entities" and "relationships," which are concepts rooted in

4

- --

F I,

Fig. 2. Maximal objects in banking example.

what real world the database represents. We would prefer not to rely on semantic notions; rather, we would
like purely syntactic ideas, because while computers tend to be incapable of dealing with semantics directly,
they grind away at syntactic calculations quite amiably and with a deal of erficiency as well.

The extra syntactic notion we propose supplying, in addition to the FD's and objects, is a collection
of sets of objects. Each set of objects is called a maximal object. Intuitively, the maximal objects are
the largest sets of objects in which we are willing to navigate. For practical reasons, every object must be
in at least one maximal object. We associate zero or more maximal objects with each tuple variable of a
query-those maximal objects that contain all the attributes mentioned by the query in connection with
that tuple variable.

Example 5: Figure 2 shows the two maximal objects we select for Fig. 1. The arrows represent FD's, but
we ignore them for the moment; we shall use them when we explain how maximal objects might be formed.
There are two maximal objects,

(C-ADR, C-ACC, ACC-BAL, ACC-BNK I and
{ C-ADR, C-L, L-AMT, L-BNK }

which we call the upper and lower maximal objects, respectively.
Query Q2 has one tuple variable t, and its associated attributes are C and BNK. Both attributes are

each contained in both maximal objects. We are willing to "navigate" within either maximal object. We
take the meaning of Q2 to be the union of the answers we get by evaluating the query over each maximal
object.

When we evaluate with respect to the upper mnamal object, we get the banks at which the customer
has an account. That is, the optimization step in Algorithm I leaves us with the join of the ACCAT and
OWN relations only. If Jones has an account at National, then we shall be told that fact when we apply
Algorithm I to the upper maximal object, even if we have recorded in the database no address for Jones,
no balance for any of his accounts, there is no loan by National to Jones, or any other problem ari.ms that
would technically cause Jones and National not to be related in the universal relation. The reader must
judge for himself whether this is a reaonable response by a universal relation system, but we believe that to
be the case.

When we evaluate Q2 in the lower maximal object, we get the banks at which the customer has loans.
Thus the interpretation of Q2 is the set of batnks at which the customer has either an account or loan, am
we intuitively feel it should be.

Now consider query Q3, which relates accounts and loans. These two attributes occur together in no
maximal object. Thus an empty set of accounts should be produced by the system, or better, an error
message saying the query cannot be processed or is ambiguous. We can still ask for the accounts held by
the holder of 4-326:

retrieve(t.ACC) (Q4)
where t.C=.C and .L=4-326

In this query, the attributes connected with t lie in the tipper maximal object and those connected with a
lie in the lower maximal object. Q4 gives the intuitively correct result. A similar query would give us all ite

5

S.

accounts at the bank making loan 4-326. One anomaly we face concerns trivial queries like:

retrieve(t.C) (Q5)
where t.C-t.C

That is, print all the customers. If we work in the upper maximal object, for example, Algorithm 1 tells us to
answer the query by taking so.ne relation whose scheme includes C and project it onto C. The result of Step
(5) in Algorithm I is ambiguous; since the optimizer assumes weak equivalence or expressions is sufficient,
i.e., the equivalence of expressions depends only on their values when the relations to whic they apply are
the projection of a universal relation. If that were the case, we would indeed get the same result whether
we projected OWN or LIVES onto C.

In practice, dangling tuples may make the results of projections from OWN and LIVES onto C different.
The maximal object concept we propose does not deal with this problem, and the solution probably lies in
a modification of Algorithm 1 to take the union of all relations capable of producing a projection that
the expression minimizes calls for. In that case, the response to Q5 would be all customers mentioned in
any of OWN, 11O1ID, and LIVES. Let us now formalize our notion of maximal objects. At the outset, the
reader should he aware that m-iximal objects are not part of a "data model." Rather, they are parameters
that influence a particular algorithm for query interpretation. Whether or not they produce the intuitively
"correct" interpretation of queries in all situations is for the reader to judge. We can only give examples,
such as Q2 and Q3, where the method seems to handle hard cases properly, and we shall give some intuition
that supports our method, to be described later, for selecting maximal objects.
Definition: Let m = {Rl, R2 ... , Rk) be a maximal object, Let U,. = R, U R.2 U ". U R1, let r, r2 ,..., r
be the database relations for the objects R 1, R 2,... ,Rk, and let U. rl . r> 2 > - .. rk. If X is a set
of attributes, the connection in m among the attributes of X, denoted [X, m], is 7rx(u,) if X C U,,, and 0
otherwise.

If m {MI, m2,..., mnq) is the set of maximal objects for the database, the connection among the
* attributes in X in the database is given by

[X] = [X, MII U [X, m21 U ... U [X, -M]

This definition says to interpret queries as if we had a universal relation u given by:

U Ur, U Ur, U ... U Urn,

where each urn, has its tuples padded with nulls to be over the universal scheme.
This change in the interpretation of the database indicates we should modify Algorithm 1, in order to

limit the range of navigation for tuple variables to maximal objects. We no longer construct a copy of the
universal relation for each tuple variable. Instead, we find, for each tuple variabe t, the (possibly empty)
collection Mi or maximal objects that each include all the attributes associated with t in the query. For
each m in Mt, we construct the relation u.. as in the definition above. We then let t range over all tuples
in the union of all the u.'s such that m is in Mt. We formalize this construction in the next algorithm.
Algorithm 2: Given query Q mentioning tuple variables tl,t 2 ,...,tk, and given maximal objects (sets of
objects) mi, Im, ... I mq, we convert Q to an algebraic expression as follows.

1. For each ti, let Xi = (B I ti.B appears in Q }. Let Mi be set of maximal objects Mi such that Xi g U-,
where U, is the union of objects in Mi.

2. For each maximal object mi, let J1 be the algebraic expression for the natural join of all the relations
omi objects in mi.

3. For each tuple variable ti, construct the algebraic expression Ki to be the union of expressions J4 over
all j such that mi is in Mi.

4. Let E2 =Ki X K2 X...X K.
5. Construct E3 by applying selection to E2; construct E4 from E3 by applying projection, and construct

Es from E4 by optimization, exactly as in Steps 3, 4, and 5 of Algorithm 1.

IV. Automatic Construction of Maximal Objects

We shall demonstrate a method by which tle maximal objects of Fig. 2 might be obtained. In general,
there is probably no substitute for the designer looking at the database and selecting the maximal objects

6

on the basis of what makes sense to him. Nevertheless, we can provide an algorithm, actually a variety
of algorithms, for constructing maximal objects. The algorithms are based on the principle of Aho, Bcri
and Ullman IARUJ that a join of relations "makes sense" if and only the join is lossless. While the sets of
Imaximal objects so obtained may not give the intuitively correct answers to queries in all cases, they work
in many cases, and are a starting point for the database designer.

Thc principle bchind all the algorithms is that we start with a single object and "grow" it into a maximal
object. We add objects to the maximal object being constructed so long as the join of the relations on the
objects included s lossless. That is, we add a new object to the set under construction only if its relation joins
losslessly with those for the objects already in the set.' The difTerence among the algorithms for maximal
objects lies in the strength of the rule used to deduce a lossless join. We assume procedure LOSSLESS(R, S)
that'looks at global information, such as FD's and the set of all objects, and returns true if and only if the
join of the relations on objects R and S is lossless. We construct maximal objects as follows in Algorithm 3.

It should be noted that the step of that algorithm which finds a new object to add to the maximal object
MO being formed is in a sense nondeterministic, in that we allow any eligible object to be chosen. In many
cases, the predicate lossless will be monotone, in the sense that when S C T, we have LOSSIESS(R,S)
implies LOSSIESS(R,T). Then, a candidate for inclusion in MO remains a candidate even if another
candidate is chosen (selection is a "Church-Rosser" system), and the result of the algorithm is unique.
Algorithm 3:

MAXOBJ := 0;
for each object do

begin
MO:= {R};
S := R;
repeat

find an object T not in MO such that LOSSLESS(T, S);
MO := MO U {T;
S := U T

until no such T is found;
MAXOBJ : = MAXOBJ U { MO };

end;
remove any set of objects from MAXOBJ that is a proper subset of another set;

We consider three versions of LOSSLESS:
1. LOSSLESS(R, S) = rue if and only if (R n S)-.R or (R r S)--*S (the "FD's only" rule).
2. LOSSLESS(R, S) = true if and only if (R n S)-.-,(R - S) I (S - R) (the "MVD" rule).
3. LOSSLESS(R, S) = true if and only if either

a) (R n S)--R or (R n S)-S, or
b) (R n S)--.(I? - S) I (S - R) and not both of (I? - S)-+(R n S) and (S - R)-(R n S) are true.
This rule is essentially the MVD rule, but prohibits navigation through "connection traps" [Col, such
as from loan to bank to account in Fig. 2.
Rule 3 is more stringent than Rule 2, although more liberal than Rule 1. There is a seeming paradox

with Rule 3. Not knowing about a vaid FD can allow it to create larger maximal objects than if we recognized
the dependency. The motivation for Rule 3 is that in the absence of explicit directions to the contrary, we
conjecture that a user does not want to navigate through a connection trap. 'T'hat is, in Fig. 2, if the user had
in mind a connection between loans and accounts, it would more likely be through customer than through
bank. We shall let the reader make up his own mind whether that conjecture is true. Even if Rule 3 is the
method adopted for constructing maximal objects, the user can always force a link to go through BNK by
a two-tuple-variable query similar to Q4.

Example 4: The maximal objects of Fig. 2 are constructed using the FD's-only rule. We obtain the upper
maximal object by starting with object ACC-C. We can add ACC-BAL because of the F) ACC-,BAL. We
add C-ADR because of the VD C-.AI)Lt. BNK-ACC is added because of the FD ACC-.lBNK. The final
maximal object includes attributes {ACC, C, BAL, AI)R, BNK).

7.

40K

Continuing the analysis of Fig. 2, the lower maximal object is created front C-L in a fashion quite
analogous to the way the upper one was created. Starting with any object other than C-ACC or C-L yields
a subset or the two maximal objects already constructed, so they arc the only maximal objects produced.

Either of the other two rules ror LOSSLESS yields the same maximal objects as in Fig. 2.
The FD rule is easily seen to be monotone, while Lite other two rules are not, in general. However, the

MVD rule is monotone in the important special case where all the MVD's follow from the given JD and
FD's. Since all the given dependencies are full, it follows from the "chase" inference nethod of [MMS] that
whenever we infer an embedded MVD X--+Y I Z, there is some full MVD X-Y' I Z, where Y C Y' and
Z C Z', from which the embedded MVD follows.

In that case, rule (2) says LOSSLESS(R, S) is true if and only if R n S miultidetermines a set of attributes
that includes R - S but no attribute of S - R. In fact, since we start with a single JD, the test can be made
in polynomial time [MSY].

There is another important fact about the MVD rule, which is brought out in the following theorem.
This result says that when the JD defining the universal relation structure is acyclic, there is only one
maximal object, and therefore Algorithms I and 2 treat queries the same way.

Theorem 1: If the given JD has an acyclic hypergraph [FMU] then every connected component of the
hypergraph is a maximal object by the MVD rule.

Proof: We prove the result, by induction on the number of edges in the hypergraph. The basis, one edge, is
triviI. Each nontrivial connected component contains an edge (object) E with an attribute not present in
any other edge and whose intersection with the union of the other edges is contained in one of those edges
JBFMYI. If we remove E, the component remains acyclic, as can be prove(d easily using the Graham reduction
test of [BFMY]. By induction on the number of edges, we claim there is an edge R in the component of E,
with E removed, such that Algorithm 3, started with R, produces a maximal object with at, least all the
edges other than E in the component. Let the set of attributes in this maximal object be S. The given JD
implies (s n E)--(E - S) I(S - E) [FMU]. Thus, E will be adjoined to S in Algorithm 3 to form a larger
maximal object. a

V. Further Considerations and Conclusions

We have given three methods for constructing sets of maximal objects. Only experience in a variety of
applications will show which method constructs maximal objects that give the best answers. Of course, a
database designer is always free to include other maximal objects to make queries produce intuitively correct
answers. For example, if the designer determined that the connection between loans and accounts for query
Q3 is always through customer, the maximal object { C-ACC, C-L } could be added. This maximal object
would let Q3 connect L and ACC through C.

Another way in which user-delined maximal objects can help is if there are embedded MVD's that do
not follow from the given JD and FD's. For example, suppose that loanis could be made by consortiums of
banks, so the FD L--BNK no longer held. Then any of the three methods proposed for constructing maximal
objects could find three: { C-ADR, C-ACC, ACC-BAL, ACC-lBNK }, { L-BNK, l-AMT }, and (L-AMT, C-L,
C-ADR). That is, the lower maximal object gets split in two.

Now, the response of Algorithm 2 to Q2 is to print only the banks at which Joncs has an account, since
only the upper maximal object includes all tire attributes of t. We might feel that that answer is wrong,
because Jones is still linked to all the banks to which he is related by being co-holder of a loan of which
the bank is co-grantor. If one believes that to be the a.se, then one is really asserting tire embedded MVD
L--"BNK I C, that is, all banks granting a loan relate to all customers holding the loan.

lmnstLMad or declaring this encaedded MVD, whic:h leads to difficulties when we try to interpret queries
by inferring lossless joins (see IMMS], e.g.) we would simply declare the lower maximal object, even though
it doesn't follow from any of the construction rules we have proposed. This approach effectively substitutes
maximal object declarations for certain collections of embedded MVD's, although it is not clear to what
extent it enables us to ignore embedded MVD's entirely (except those that follow from the given JD or
FD's), but the method appears promising.

The purpose of the universal relation mser view for query evaluation, and tile use of maximal objects
therewith, is to remove the requirement of explicit knowledge of the database structure from the user.
However, the sophisticated user could use knowledge of maximal objects to his advantage. One possibility

is to allow operands in the <condition>--clause of a query of the trivial form t.A, in order to require that
tuple-variable t navigate only in maximal objects containing A. For example, a variant of query Q2 is

retrieve(t.liNK) (Q)
where t.C '.Jones' and t.ACC

Query Q, would be evaluated by letting t range only over the upper maximal object in Fig. 2. The query
would produce just those banks where Jones has an account.

An alternative way to pass some navigation control to the user is by using aliases for some of the
attributes to indicate in which maximal object the attribute is considered to lie. For example, we could have
DEl' (depositor) as an alias for C indicaLting the upper maximal object, and BOR (borrower) as an alias for
C indicating the lower maximal object. With these aliases, the query

retrieve(t.BNK) (Q7)
where t.DEP='Jones'

has the same meaning as query Q6 above.
To conclude, we note as a consequence of Theorem 1, if the given JD has a connected, acyclic hypergraph,

then the maximal object concept has no effect when the MVD rule is used. This should be the case, as a
connected, acyclic. hypergraph implies unique connections in the hypergraph among attributes. Thus, the
universal relation idea by itself appears adequate whent no ambiguity regarding navigation paths is present.

It is only when cycles occur, as in Fig. 2, that the need for maximal objects surfaces. We cannot be
certain that maximal objects are more likely to give intuitively correct answers than the pure universal
relation interpretation of queries (Algorithm 1). However, in Section IV we discussed an algorithm that finds
maximal objects that naturally reflect the longest paths over which we can navigate through a particular
object while maintaining a lossless join of the relations over which we travel. This origin for maximal objects
lends a certain plausibility to their use.

Bibliography

[A] Aho, A. V., private communication, June, 1981.

[ABU] Aho, A. V., C. Beer|, and J. D. Ullnan, "The theory of joins in relational databaes," ACM Trans-
actions on Database Systems 4:3, pp. 297-314, Sept., 1979.

(ASU] Aho, A. V., Y. Sagiv, and J. D. Ullman, "Efficient optimization of a class of relational expressions,"
ACM Transactions on Database Systems 4:4, pp. 435-454, Dec., 1979.

[API Atenzi, P. and D. S. Parker, "Properties of acyclic database schemes: an analysis," Proc. XP/2
Con., Penn State, June, 1981.

[BFMY] "On the desirable properties of acyclic database schemes," manuscript in preparation.

[BG] Bernstein, P. A. and N. Goodman, "What does Boyce-Codd normal form do?," Proc. International
Confercnce oi Very Large Data Bases, pp. 245-259, 1980.

[Co] Codd, E. F., "Extending the database relational model to capture more meaning," ACM Transac-
tions on Database Systems 4:4, pp. 397-434, Dec., 1979.

[FMU] Fagin, R., A. 0. Mendelzon, and J. D. Ullman, "A simplified universal relation assumption and its
properties," RJ2900, IBM, San Jose, Calif., 1980.

[lILY] Iloneyman, P., R. E. Ladner, and M. Yannakakis, "Testing the universal instance assumption,"

Information Processing Letters 10:1, pp. 14-19, 1980.

[Ke] Kent, W., "Consquences of assuming a universal relation, IBM Tech. Rept., Dec., 1979.

[KI] Klug, A., "Inequality tableaux," to appear in JACM.

[Mal) Maier, D., The Theory of Relational Databases, Coinputer Science Press, 1982.

[Ma2] Maier, D., "Discarding the universal instance assumption," Proc. XP/I Cont., Stony Brook, N. Y.,
June, 1980.

•9

.- . .. I 1

[MMS] Maier, D., A. 0. Me adelzon, and Y. Sagiv, "Testi,,g implications of data depeidencies," ACM

Transactions on Database Systems 4:4, pp. 455 -469, Dec., 1979.

(MSYJ Maier, D., Y. Sagiv, and M. Yannakakis, "On the complexity of testing implications of functional
and join dependencies," to appear in JACM.

IMU) Maier, D. and J. D. Ullnan, "Connections in acyclic hypergraphs," STAN-CS-758, Dept. or c. S.,

Stanford Univ., Stanford, Calif., 1981.

is] Sagiv, Y., "Can we use the universal instance assumption without using nulls?," ACM SICMOD
international Symposium on Management of Data, pp. 108-120, 1981..

[Sd Sciorc, E., "Null values, updates, and normalization in relational databases," Ph. D. thesis, Princeton
Univ., Princeton, N. J., 1980.

[SWKII] Stonebraker, M., E. Wong, P. Kreps, and G. Held, "The design and implementation or INGRES,"
ACM Transactions on Database Systems 1:3, pp.'189-222, Sept., 1976.

(UIJ Ullman, J. D., Principles of Database Systems, Computer Science Press, 1980.

10

