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Maximal Objects and the Semantics of Universal Relation Datubases

David Maier, SUNY at Stony Brookt
JefIrey D. Ullman, Stanford University}

" Abstract

The universal relation concept is intended to provide the database user with a simplified medcl in which he
can compose queries without regard to the underlying structure of the relations in the database. Frequently,
the lossless join criterion provides the query interpreter with the clue necded to interpret Lhe query as the
user intended. However, some examples exist where interpretation by the lossless-join rule runs contrary to
our intuition. To handle some of these cascs, we propose a concept called maximal objects, which modifies
the universal relation concept in exactly those situations wherc it appears to go awry—when the underlying
relational structure has “cycles.” We offer examples of how the maximal object concept provides intuitively
correct interpretations. We also consider how one might construct maximal objects mechanically from purely
syntactic structural information—the relation schemes and functional dependencies—about the database.

1. Introduction

We assume the reader is familiar with basic concepts in relational database theory, such as functional and
multivalucd dependencies, and the operators of relational algebra, particularly projection and (natural) join.
[U1] or Mal] contains the nceded background.

We also expect the reader is familiar with the notion of a join dependency (JD), which is expressed
&4 (Ry, Ra, ..., R,) where each R;,1 < ¢ < n, is a sct of attributes, and is satisfied by a relation r over
R = U7?_R; if and only if the join of the projections of 7 onto the R;'s is r itsclf. Formally:

r =D, 7R,(r)

A uscful notation for JD's was introduced in [FMU]. For b (Ry, R, ..., R,) we construct a hypergraph
(graph in which “edges” arc arbitrary scts of nodes rather than doubletons only) as follows. For each
attribute appearing in one or more of the R;'s the hypergraph has a node. For each R;, the hypergraph has
an edge consisting of all the members of R;.

Also studied in [FMU] and [BFMY] was a subclass of the JD’s—those that have “acyclic” hypocrgraphs.
The term “acyclic” was given many equivalent definitions in these two papers; here we shall introduce only
one. We Graham-reduce a hypergraph by applying the following rules in any order (the process is Church-
Rosser, so order doesn’t really matter).

i} Eliminate a node that appears in only onc edge.
i) Eliminate an edge that is a subsct of another edge.
Then a hypergraph (and its JD) is acyclic if and only when it reduces to nothing by Graham-reduction.

It is the goal of this paper Lo contribute to the utility of the “universal relation” view of data.
Interestingly, a numbcr of papers have reccatly been written to argue that the unlrersal rclatisn view is
unsupportable for one or anther reason [KI, BG, AP]. It is not our intent to argue the details of the matters.
We shall advance only one argument in its favor: it works; it may not be perfect for everything, but it does
certain things well cnough to be valued by its users. ‘

In parlicular, a universal relation system, called Systein/Q has been operating successfully at Bell
Laboratorics for some time [A]. It has cnabled a number of nontechnical people o usc relational database
systems with little cffort, while just as we would expcct, the “experts” must spend considerable cffort
preparing the system to work on cach database. The System/Q approach to query interpretation is to
provide a “rel file,” which is a list of the scts of relations to join in response to a query, in order of preference.
that is, given a query that mentions a sct of attributes X, the system goces down the rel file until it finds
a set of rclation schemes whose union includes X, and it then takes the join of these relations and answers
the query as if it were about this join. Further, [S] has recently developed a universal relation system
t Supported in part by NSF grant 1§T-79-18264.
$ Supported in past by Air Force gmm. t AFOSR 80-0212 in accordance with NSI" agreement 1ST-80 -21358.
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that constructs joins in response to queries automatically, based on the theory of functional dependencies
and lossless joins. In lact, this strategy of query interpretation bears considerable similarity to the method
we propose, but it does not make use of multivalued or join dependencies, or “declared maximal objects,”
ingredicnts we consider esscntial to exploit the power of the universal relation concept. Interestingly, people
at Bell have contemplated doing automatic generation of rel files by a method related to that of Sagiv [S].
We begin with the hypothesis of Fagin, Mendelzon and Ullman [FMU], that “real world” universal
relations can be described by one join dependency and a collection of functional dependencies. They argue
that if the universal relation over a set of attributes A;, Ag, ..., A, has meaning at all, then we can define
it by :
U= {< a1G3...0n > |P| AP A ... /\Pg},

where each P; is a predicate taking some set of the a;’s as arguments (some of these a;'s may be null).

It P; involves aj,, aj,, ..., aj,, then the set of attributes R; = {A;,, Aj,, ..., A, } is said to be an
objcct; the term “object™ corresponds closely to the same term of Sciore [Sc] and is borrowed from there. In
- essence, objects are scts of attribules among which there is a significant connection. It is proven in {FMU]
that « can be constructed in this way if and ouly if u satisfies the JD D<I(Ry, Ra, ..., R).

Example 1: Suppose our universal relation scheme consists of the attributes

BNK (bank)
ACC  (account)
L (loan)

C (customer)

AMT  (loan amount)
BAL  (account balance)
ADR  (customer address)

We assume the lfunctional dependencies

ACC — DNK BAL
L —  BNK AMT
C — ADR

We also assume that the universal rclation is defined, in terms of the current “real world facts” as
{ <bnk, acc, |, ¢, amt, bal, adr> | ACCAT(bnk, acc) A LAT(bnk, 1)
A OWN(ace, ¢) A HOLD(], ¢) A HAS(ace, bal) A FOR(), amt) A LIVES(c, adr) }
where the predicates are defined as

ACCAT(x, y)
LAT(x, y)

account y is at bank z
loan y is at bank z

OWN(x,y) = customer y owns account z

HOLD(x,y) = customer y holds loan z
HAS(x,y) = account z has balance y
FOR(x,y) = loan z is for amount y

LIVES(x,y}) - = customer z lives at address y

Each of these predicates uscs knowledge about the present state of the real world to constrain the set of
tuples currently appearing in the universal relation. The functional dependencics are facts that we assume
are rcflected in the predicates. For example, since C— ADR holds, we do not expeet LIVES(z, y) and
LIVES(z, y2) to be true simultancously if y, 7 ya. However, it is possible that the attributes of an FD are
contained in no object, in which case the FD is still “true” but its cffcet is not so casily visible. As should
be obvious, the implementation we have in mind for a universal relation

u={< a,ag...a,..> |P|, /\Pg/\"-/\P‘,}

is a database consisting of rclations 7y, ra, ...,r, where r; is a rclation on scheme R;, and R; is the object
for P;. (I"erhaps some of the relations ry, 2, ..., rx are not explicitly stored, but they all can be derived by
projection from stored relations.) We have-a tuple t; in r¢ exaclly when Pi(t;) is true, so the interpretation
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.‘ Fig. 1. Hypergraph for the banking cxample
'

o of cach relation should be clear. In the future, we shall identify the relations with the predicates, and talk
i about relation ACCAT(ACC, BNK), and so on. {j
Definition: If X C A,A;---A,, the connection among the attributes in X, denoted [X], is defined by

b’ 1X] = nx(u)
|
%

That is, [X] is the projection of the universal relation onto the attributes in X .[]

Figure 1 shows the hypergraph representation of the scven objects of our example. In this case, each
hypercdge consists of two attributes. This hypergraph has a cycle, which implies that at least one of the
attributes is semantically overloaded; it stands f{or two different things. While we cannot say for sure which
attribute is overloaded, since the database is most Jikely designed from the bank’s point of view, we shall
consider C overloaded, representing custoiners in their roles as depositors and borrowers. We shall see in the
next section how this overloading causes queries to give an intuitively wrong answer.

II. Queries on the Universal Relation

We shall consider the common form of query on the universal relation that can be expressed by relational
operators sclect, projcct, and (natural) join. These will be expressed in a QUEL-like notation [SWKH, Ul],
but without ri’;nge-statcmcnt.s, since all tuple variables must range over the universal relation. The format
of queries we use is

retrieve <attribute list>
where <coundition>

The <attribute list> has the form (t).A;,t2.Ag, -..,tm.Am), where the t;’s are (not necessarily distinet)
tuple variables and the A;’s arc (not neccssarily distinct) attributes. The <condition>> is built from operands
that are constants or atoms of the form ¢.A, for tuple variable t and attribute A, using arithmctic comparison
{=, >, 2,...) and Boolcan connectives.
The meaning of the query is defined by the following steps:
Algorithm 1:
1. Take the cross product of the universal relation with itsclf p times, if there are p distinct tuple variables,
That is,

E;=uXuX---Xu(p‘timea)

Each copy of u is snid to correspond to one particular tuple variable; the corresponder.ce is arbitrary.

2. Replace each occurrence of u by the join ri D ry D ... Dd 7, of the relations for all the predicates
Py, P3, ..., Py. The result of the substitution is cxpression E3. The justification for this substitution is
that given a universal relation u exists, and assuming as in [FMU] that the JD b (R,, ..., Ry) holds,
then the result of the join is u. In practice, the r;’s may not be projcctions of u exactly; there may be
“dangling tuplcs” that do not contribute to the join ry <. .. a7y, We shall discuss Lhe significance of
this discrepancy shortly.
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3. Apply the sclection operator for the <condition> in the where-clause to Ea. Every atoin t.A of the
< condition> refers to a unique component of 53, the component {or attribute A in the copy of the
universal relation correponding to t. Let, the result be Ej.

4. Apply the projection opcrator for the list of components mentioned in the <attribute list> to E3. The
result is an algebraic expression Fy. .

5. Optimize the cxpression under “weak cquivalence,” that is, ind a minimal cxpression F5 that is
equivalent to 4 under the assumption that the r;'s are the projecctions of onc universal rclation. For
expressions of the Lype we have constructed, assuming reasonable selcction conditions, such 2 minimum
always exists ([ASU], [K1]) and can be found eflicieatly.

Intuitively, the last step throws away lerms from the join if they are not nccessary to connect one
or morc attributes in the query. In fact, when (and only when) the hypergraph of the JD decfining the
universal relation’s structure is acyclic, the expression Ej really does invariably find the minimal lossless join
connccting the attributes of the query [MU]. The fact that. the expression Ej involves as few joins as possible
has the desirable effect, among others, of ensuring that dangling tuples can contribute to the auswer as long
as they join successfully with tuples in those of the r;’s that arc actually involved in the join.

Example 2: Consider the query on the universal relation of Fig. 1:

retrieve(t.C) : (@)
where t.C = ‘Jones’ i

This query asks us to print Jouncs’ address. If we follow Algorithm 1 we find, naturally enough, that the
expression Ey involves “joining” only one relation LIVES, selecting for C = ‘Jones’, and projecting the result
onto ADR. Notice how the question whether the tuple or tuples with C = ‘Jones’ in LIVES are dangling or
not never comes up. Even if Jones does not appear in the hold or has relations, or for some other rcason,
the join of all the relations includes no tuple with C = ‘Jones’, our response to @) has been the intuitively
correct one. Unfortunately, when the hypergraph defining the structure of the universal relation is cyclic, as
Fig. 1 is, Algorithm 1 can give intuitively wrong answers Lo queries, primarily, it appears, because dangling
tuples arc not always treated properly, but also because the minimal connection among the attributes of the
query will not necessarily be embodied in the join of the expression Ey of Algorithim 1.

Exarmple 3: Consider, for the same database:

retrieve(t.BNK) (Q2)
where t.C = ‘Jones’ .

If we apply Algorithm 1, we find that the answer to query @3 is the set of banks where Jones has both a
loan and an account. If we take for granted that the meaning of @3 is the set of banks at which Jones has
cithcr a loan or an account, and are not willing to incorporate dummy information about a loan when Jones
opens an account at National, to make @; come oul correctly, then we conclude that Algorithm 1 does not
handlc @3 properly. The problem seems to be that if Jones has only a loan at National, the tuples that
connect Jones and National are dangling.

Example 4: The following query is similar to @;:

retrieve(t.ACC) . : (@)
where t.L = 4-326.

Query @3, like query @4, jumps across the diamond of Fig. 1. Despite this similarity, the intended meaning
of @3 is not likely to be “Print the accounts that arc cither at the same bauk as loan 4-326 or arc owned
by the customer who also holds loan 4-326." In fact, it isn’t clear that Q3 has any natural meaning. This
example points'up the fact that multiple paths connceting attributes can be a source of amnbiguity for systems
trying to dcal with universal relations.

HI. Maximal Objects

Evidently, we nced some black magic. This magic must cause @2 and @3 to produce the corrcct answers,
‘and it must be sufliciently powerful to distinguish between them, since they appear to be syntactically the
same query. The magic might come from a wave of the scmantic wand, such as the semantics of Codd [Co},
where we worry about how attributes represent “entities” and “relationships,” which arc concepls rooted in

4
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Fig. 2. Maximal objects in banking example.

what rcal world the database represents. We would prefer not to rely on semantic notions; rathzr, we would
like purely syntactic ideas, because while computers tend to be incapable of dealing with semantics directly,
they grind away at syntactic calculations quite amiably and with a deal of efficieucy as well.

The extra syntactic notion we propose supplying, in addition to the FD’s and objects, is a collection
of scts of objects. Each set of objects is called a maximal object. Intuitively, the maximal objects are
the largest sets of objects in which we arc willing to navigate. For practical rcasons, every object must be
in at least one maximal object. We associate zero or more maximal objects with cach tuple variable of a
query-—those maximal objects that contain all the attributes mentioned by the query in connection with
that tuple variable.

Example 5: Figure 2 shows the two maximal objects we select for Fig. 1. The arrows represent FD's, but
we ignore them for the rmoment; we shall use them when we explain how maximal objccts might be formed.
There arc two maximal objects,

{ C-ADR, C-ACC, ACC-BAL, ACC-BNK } and
{ C-ADR, C-L, L-AMT, L-BNK }

which we call the upper and lower maximal objects, respectively. ]

Query @ has onc tuple variable ¢, and its associated attributes are C and BNK. Both attributes are
each contained in both maximal objects. We are willing to “navigate” within either tnaximal object. We
take the meaning of Q3 to be the union of the answers we get by evaluating the query over cach maximal
object.

When we evaluate with respect to the upper maximal object, we get the banks at which the customer
has an account. That is, the optimization step in Algorithm 1 leaves us with the join of the ACCAT and
OWN relations only. [ Jones has an account at National, then we shall be told that fact when we apply
Algorithm 1 to the upper maximal object, even if we have recorded in the database no address for Jones,
no balance for any of his accounts, there is no loan by National to Jones, or any other problem ariscs that
would technically cause Jones and National not to be related in the universal relation. The reader must

" judge for himself whether this is a rcaonable response by a universal relation system, but we believe that to

be the case. )

When we evaluate Q2 in the lower maximal object, we get the banks at which the customer has loans.
Thus the interpretation of @3 is the sct of banks at which the customer has either an account or loan, as
we intuitively feel it should be.

Now consider query @3, which rclatcs accounts and loans. These two attributes occur together in no
maximal object. Thus an emnpty set of accounts should be produced by the system, or better, an ceror
message saying the query cannot be processed or is ammbiguous. We can still ask for the accounts held by
the holder of 4-326:

retrieve(t.ACC) (Q4)
where t.C=4.C and 3.L.=4-326

In this query, the attributes connected with ¢ lic in the upper maximal object and those connccted with o
lie in the lower maximal object. @y gives the intuitively corrcet result. A similar query would give us all the
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accounts at the bank m:.lking loan 4-326. Onc anomaly we [ace concerns trivial queries like:

retrieve(t.C) (@s)
where t.C=t.C :

That is, print all the customers. If we work in the upper maximal object, for example, Algorithm 1 tclls us to
answer the query by taking so.ne relation whosc scheme includes C and project it onto C. The result of Step
(5) in Algorithm 1 is ambiguous; since the optimizer assumes weak cquivalence of cxpressions is sufficient,
i.c., the equivalence of expressions depends only on their values when the relations to which they apply are
the projcction of a universal rclation. If that were the case, we would indeed get the same result whether
we projected OWN or LIVES onto C. .

In practice, dangling tuples may make the results of projections from OWN and LIVES onto C different.
The maximal objcct concept we propose does not deal with this problem, and the solution probably lies in
a modification of Algorithm 1 to take the union of all relations capable of producing a projection that
the cxpression minimizes calls for. In that case, the response to @5 would be all customers mentioned in
any of OWN, IIOLD, and LIVES. Let us now formalizc our notion of maximal objects. At the outset, the
reader should be aware that maximal objects are not part of a “data modcl.” Rather, they arc paramcters
that influence a particular algorithm for query interpretation. Whether or not they produce the intuitively
“correct” interpretation of queries in all situations is for the rcader to judge. We can only give examples,
such as @ and @3, where the method seems Lo handle hard cases properly, and we shall give somc intuition
that supports our method, to be described later, for selecting maximal objects.
Definition: Let m = { Ry, Rz, ..., Ri } be a maximal object, Let Uy = Ry U Ry U --- U Ry, let ry,rg, ... 1
be the database relations for the objects Ry, R;,..., Rk, and let upy =7, DA ra D --- D7y Il X is a set
of attributes, the connection in m among the atiributes of X, denoted [X,m], is nx(um) if X C Uy and @
otherwise.

It M = {m,, my,..., mg} is the sct of maximal objccts for the database, the connection among the

-attributes in X in the databasc is given by

[X] = [X,ml] u [X,m2] Uu...u [X,mq]
This definition says to interpret querics as if we had a universal relation u given by:
u = Um, Uum’ u... Uum',

where each u,,, has its tuples padded with nulls to be over the universal scheme.

This change in the interpretation of the database indicates we should modily Algorithm 1, in order to
limit the range of navigation for tuple variables to maximal objects. We no longer construct a copy of the
universal rclation for each tuple variable. Instead, we find, for each tuple variabie t, the (possibly empty)
collection My of maximal objects that each include all the attributes associated with t in the query. For
cach m in My, we construct the relation u,, as in the definition above. We then let ¢ range over all tuples
in the union of all the u,,'s such that m is in M. We formalize this construction in the next algorithm.
Algorithm 2: Given query @ mentioning tuple variables ¢y,t3,...,tx, and given maximal objects (sets of
objects) my, mq, ..., my, we convert @ to an algebraic expression as follows.

1. Forcacht;, let X; = {B|¢t;.B appearsin @ }. Let M; be sct of maximal objects M; such that X; C Uj,

where U; is the union of objects in M.

2. TFor cach maximal object m;, let J; be the algebraic expression for the natural join of all the relations

on objccts in m;.

3. For each tuple variable t;, construct the algcbraic expression K to be the union of cxprms\ons Jy over'
all 5 such that m; is in M;.

Let B = Ky X K2 X - X Ky.

Construct Fj by applying selection to Ej; construct E, from Ej by applying projection, and construct
Ej5 from E, by optimization, exactly us in Steps 3, 4, and 5 of Algorithm 1. [J

el

~IV. Automatic Construction of Maximal Objects

We shall demonsteate a method by which the maximal objecta of Fig. 2 might be obtained. In general,
there is probably no substitute for the designer looking at the database and sclecting the maximal objects
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on the basis of what makes sense to him. Nevertheless, we can provide an algorithm, actually a variety
of algorithms, for constructing maximal objects. The algorithins are based on the principle of Aho, Beeri
and Ullman [ABU] that a join of relations “makes sense” if and only the join is lossless. While the sets of
maximal objects so obtained may not give the intuitively correct answers to querics in all cases, they work
in many cascs, and are a starting point for the database designer. .

The principle behind all the algorithms is that we start with a single object and “grow” it into a maximal
object. We add objects to the maximal object being constructed so long as the join of the relations on the
objects included s lossless. That is, we add a new object to the set under construction only if its relation joins
losslessly with those for the objects already in the set.” The difference among the algorithms for maximal
objects lics in the strength of the rule used to deduce a lossless join. We assume procedure LOSSLESS(R, S)
that looks at global information, such as FD’s and the sct of all objects, and returns true if and only if the
join of the relations on objects i and S is lossless. We construct maximal objects as follows in Algorithm 3.

It should be notcd that the step of that algorithm which finds a ncw object to add to the maximal object
MO being formed is in a scnse nondeterministic, in that we allow any eligible object to be chosen. In many
cascs, the predicate lossless will be monotone, in the scnse that when § & T, we have LOSSLESS(R, S)
implics LOSSLESS(R, 7). Then, a candidate for inclusion in MO remains a candidale even if another
candidale is chosen (sclection is a “Church-Rosser” system), and the result of the algorithm is unique.
Algorithm 3: .

MAXOBJ := 0;
for cach object do
begin
MO := {R};
S :=R;
repeat
find an object T not in MO such that LOSSLESS(T, S);
MO :=MOU{T};
S=8uT
until no such T is found;
MAXOBJ : = MAXOBJ U {MO };
end;
remove any sct of objects from MAXOBJ that is a proper subsct of another set;

We consider three versions of LOSSLESS:

LOSSLESS(R, 8) == trueif and only if (RN §)—R or (R §)—S (the “FD’s only” rule).
LLOSSLESS(R, S) = true if and only if (R N §)——(R — S} | (S — R) (the “MVD” rule).

3. LOSSLESS(R,S) = trueif and only il cither

a) (RNS)»Ror(RNS)-S,or

b) (RN S)—~(R—S)|(S — R)and not both of (R — §5)—=(RN S)and (§ - R)—(RN S) are true.

This rule is esscntially the MV D rule, but prohibits navigation through “connection traps” [Col, such

as from loan to bank to account in Fig. 2.

Rule 3 is more stringent than Rule 2, although more liberal than Rule 1. There is a seeming paradox
with Rule 3. Not knowing about a vaid FD can allow it to create larger maximnal objects than if we recognized
the dependency. The motivation for Rule 3 is that in the abscnce of explicit directions to the contrary, we
conjecture that a user does not want to navigate through a conncction trap. That is, in Fig. 2, if the user had
in mind a conncction between loans and accounts, it would more likely be through customer than through
bank. We shall let the reader make up his own mind whether that conjecture is true. Even if Rule 3 is the
method adopted for constructing maximal objects, the user can always force a link to go through BNK by
a two-tuple-variable query similar to Q4.

B e

Example 4: The maximal objects of Fig. 2 are constructed using the FD’s-only rule. We obtain the upper

maximal object by starting with object ACC-C. We can add ACC-BAL because of the 'D ACC—DBAL. We

add C-ADR because of the FD C—ADR. BNK-ACC is added becanse of the 'D ACC—BNK. The final
maximal object includes attributes { ACC, C, BAL, ADR, BNK }..




Contlinuing the analysis of Fig. 2, the lower maximal object is created from C-L in a fashion quite
analogous to Lhe way Lthe upper one was created. Starting with any object other than C-ACC or C-L yiclds
a subsct of the two maximal objects alrcady constructed, so they are the only maximal objects produced.

Either of the other two rules for LOSSLESS yiclds the same maximal objects as in Fig. 2. ||

The FD rule is casily scen to be monotone, while the other two rules are not, in general. lowever, the
MVD rule is monotone in the important special case where all the MVD’s follow from the given JD and -
FD’s. Since all the given dependencies are full, it follows from the “chase” inference method of [MMS] that
whenever we infer an embedded MVD X —Y | Z, there is some full MVD X—Y'| Z/, where Y C ¥’ and
Z C 2', from which the embedded MVD [ollows.

In that casc, rule (2) says LOSSLESS(R, S) is true if and only if R N S multidctermines a set of attributes
that includes £ — S but no altribute of § — . In fact, since we start with a single JD, the test can be made
in polynomial time [MSY].

There is another important fact about the MVD rule, which is brought out in the following theorem.
This result says that when the JD defining the universal relation structure is acyclic, there is only one
maximal object, and therefore Algorithms 1 and 2 treat querics the same way.

Theorem 1: If the given JD has an acyclic hypergraph [FMU] then every connected component of the
hypergraph is a maximal object by the MVD rule.

Proof : We prove the result by induction on the number of cdges in the hypergraph. The basis, one edge, is
trivizl. Each nontrivial connecled component contains an edge (object) F with an attribute not present in
any other edge and whose interscction with the union of the other cdges is contained in onc of those edges
[BFMY]. If we remove E, the component remains acyclic, as can be proved easily using the Graham reduction
test of [BFMY]. By induction on the number of edges, we claim there is an edge R in the component of I,
with E removed, such that Algorithm 3, started with R, produces a maximal object with at least all the
cdges other than E in the component. Let the set of attributes in this maximal object be §. The given JD
implies (§ N E)——+(E — 5) | (S — E) [FMU]. Thus, E will be adjoined to S in Algorithm 3 to form a larger
maximal object.

V. Further Considerations and Conclusions

We have given three mcthods for constructing sets of maximal objects. Only experience in a variety of
applications will show which mcthod constructs maximal objects that give the best answers. Of course, a
database designer is always {ree (o include other maximal objects to make queries produce intuitively correct
answers. For example, if the designer determined that the connection between loans and accounts for query
@3 is always through customer, the maximal object { C-ACC, C-L} could be added. This maximal object
would let @3 conncet L and ACC through C.

Another way in which user-delined maximal objects can help is if there are embedded MVD’s that do
not follow fromn the given JD and FD's. For cxample, supposc that loans could be made by consortiums of
banks, so the D L—BNK no longer held. Then any of the three methods proposed for constructing maximal
objects could find three: { C-ADR, C-ACC, ACC-BAL, ACC-BNK }, {L-BNK, L.-AMT }, and {L-AMT, C-L,
C-ADR}. That is, the lower maximal object gets split in two.

Now, the response of Algorithm 2 to @2 is to print only the banks at which Joncs has an accouat, since
only the upper maximal object includes all the attributes of t. We might fcel that that answer is wrong,
because Jones is still linked to all the banks to which he is related by being co-holder of a loan of which
the bank is co-grantor. If onc believes that to be the case, then one is really asserting the embedded MVD
L—BNK | C, that is, all banks granting a loan relate to all customers holding the loan.

Instead of declaring this embedded MVD, which leads to diflicultics when we try Lo interpret querics
by inferring lossless joins (sec [MMS], c.g.) we would simply declare the lower maximal object, even though
it doesn’t follow fromn any of the construction rules we have proposed. This approach effectively substitutes
maximal object declarations for certain collections of embedded MVD’s, although it is not clear to what
extent it enables us to ignore embedded MVD’s entirely (except those that follow from the given JD or
FD’s), but the method appenrs promising,

The purpose of the universal relation user view for query cvaluation, and the use of maximal objects
thercwith, is to remove the requirement of explicit knowledge of the database structure from the user.
However, the sophisticated vser could use knowledge of maximal objects to his advantage. Onc possibility
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is to allow operands in the <condition>-—~clause of a query of the trivial formn t.A, in order to requite that
tuple-variable ¢ navigate only in maximal objects containing A. For example, a variant of query Q; is

retrieve(t.INK) . (Qs)
where t.C="Jones’ and t.ACC

Query @y would be evaluated by letting t range only over the upper maximal object in Fig. 2. The query
would produce just those banks where Jones has an account.

An alternative way to pass some navigation control to the user is by using aliases for some of the
attributes to indicate in which maximal object the attribute is considered to lic. FFor example, we could have
DEP (depositor) as an alias for C indicating the upper maximal object, and BOR (borrower) as an alias for
C indicating the lower maximal object. With these aliases, the query

retrieve(t.BNK) (@7)
where t. DEP=="Jones’

has the same meaning as query @g above.

To conclude, we note as a consequence of Theoremn 1, if the given JD has a connected, acyclic hypergraph,
then the maximal object concept has no effect when the MVD rule is used. This should be the case, as a
connected, acyclic hypergraph implies unique connections in the hypergraph among attributes. Thus, the
universal relation idea by itsell appears adequate when no ambiguity regarding navigation paths is present.

It is only when cyceles occur, as in Fig. 2, that the need for maximal objects surfaces. We cannot be
certain that maximal objects are more likely to give intuitively correct answers than the pure universal
relution interpretation of queries (Algorithm 1). However, in Section 1V we discussed an algorithm that finds
maximal objects that naturally reflect the longest paths over which we can navigate through a particular
object while maintaining a lossless join of the relations over which we travel. This origin for maxiinal objects
lends a certain plausibility to their use.
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