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Global ianexiLterioe -I* Smootn Electric I!:Juction Fields

in Nonlinear Dielectrics1

ABS'RAC T

Coupled nonlinear wave equations are derived f'or the evolution of

the componentsi of the electric induction field D in a class of rigid

nonlinear dielectrics goverrnei by the nonlinear constitutive relation

E = %(D)D , where I. is the electric field and X>0 is a scalar-valued

vector function. Fonr the spec'al cast- of an infinite one-dimensional dielec-

t-ic roc), embedded in a perfect conductor, it is shown that, under

ro.latively mild conditions on . solutions of the corresponding initial-

boundary value problt:m for the electric induction field can not exist

globally in time ixr the L_ sense if it is asstmed that the electric field
C

in the rod is perpendicular to the axis of the rod and varies as the

coordinate along that axis. It is also shown that, when the initial

electromagnetic field in the rod has compact support, Riemann Invariant

arguments may be applied to show that the space-time gradient of the non-

zero component of the electric induction field must blow-up in finite time.

.Some growth estimates for solutions, which are vaild on the maximal time-

interval of existence are also derived; these are v':;lid in the simple but

physically important case where k(D) 1 + X 0iD jIV. We also discuss re-

lations with recent work on the phenomena of self-focusing and self-trapping

for high intensity laser beams in a dielectric medium.
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1. Evolution Equations for a Class of Nonlinear Dielectrics

Theories of material dielectric behavior are based upon a set of field

equations (Maxwell's equations) and a set of constitutive relations which hold

among the electromagnetic field vectors. In a Lorentz reference frame (x',t),

i = 1, 2, 3, where the (x ) represent rectangular Cartesian coordinates, and t

is the tine parameter, the local forms of Maxwell's equations are given by

-t + curl E = 0, div P = L1,

curl H 0, div D = 0,

provided that the density of free current, the magnetization, and the density of

free charge all vanish. In (1.1), B £, and H are, respectively, the magnetic

flux density, electric field, and magnetic intensity while D -E E + P(E),

E 0 > 0 a physical constant and P the polarization vector, is the eectric

induction field; the relations (1.1) hold in some bounded open domain Q c R3 which

is filled with a rigid, nonconducting, dielectric substance. The precise nature

of the 'Iielectric medim in 0 is determ7ined by specifying a set of constitutive

equations relating E, D, H, and B; indeed, without the specification of additiona]

reations anng the electromagnetic field vectors, the set of equations (1.1)

represent-s an indeterminate system.

lhcre is, in existence, a wide variety of constitutive hypotheses which

:ave been associated with Theories cf nonconducting, 'igid, dielectric media; the

t;.L--plest of these is that associated with the dielectric r*sponse of a vacuum in

wnt.ch there hold the classical ionstitutive relations.

DZE 0 , 0<
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where the fundamental physical constants E0' PO satisfy E0 P0 = c-, bitg

the speed of light in a vacuum. In 1873 Maxwell [lJ pro osed as d set of con-

stitutive laws for a linear, rigid, stationary non-condacting dielectric tlie

relations

1- = c E, B H

where F, i are constant second-orJer tensors which are proportional to the

identity tensor if the rrterial is isotropic. A set of constitutive r2lations,

which are still linear, but which take into account certain memory effect in the

dielectric, were proposed by IMaxmell in 1877 and subsequentl'y used by Hopkinscn

[21 in connection with his stadies on the residual charge of thc Leyden jar;

tne Maxell-flopkinson dielectric is governed by the set of constitutive relations

D (x,t) = E E (x,t) + ft (t-T)E(x,t)dt

(1.2)

where c > 0, 11 > 0 and (t), t >- 0 is a continuous monotonically decreasing

function of t, 0 _< t <. Noting that the Maxwell-Hopkinson constitutive

relations do not account for the observed absorption and dispersion of electro-

. ugnetiL waves in materia non-conductor':, Toupin and Riv!Ln [31 generalized te

constitutive relations (.2) ancl introduced -the concepts , of lolohedral isotrvpic

and herriheinil dieLectric response; while the n:esponse Lncorprated into both

of these theories is linear, they are more sophisticated than ( .2) in the sense,

that nigetic memory effects and coupling of electric jnd magnetic effects is

built into the constitutive theory. The qualitative uchavio the electric

induction field in a rigid non-conducting dielectric exhibiting holohedral

isotropic rmsponse has been studieJ by this author in a series of recent papers

,I .- I. l

I. t
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In this paper we will be -.onc,.rned wit!, mir t:Ia-Lxndary vJlue kr.bhnn

associated with the evolution of the components of the electric induction field

D in a relatively simple class of r.teri.as exhibiting nonlinear dielectric

response. A rather general theor-y of nonlinear dielectric behavior which allows

for both electric and magnetic memry effects, but still effects an a priori

separation of electric and nrgnetic response, was proposed by Volterra [7] in

1912 in the borm of the constitutive relations

D(x,t) = C f, (x,t)+ V(E(x,t)), xC

(1.3) -C
t(x't) = 1 • (X,t) + B 0 H(X't))'

The constitutive relations (1.3) reduce to those considered in [21, [3] under

special assumptions relative to the functionals D, B, i.e., if B = 0, D is

linear and isotropic, and c = EI, P = pl, then (1.3) is easily seen to reduce

to (1.2) ; the particular class of nonlinear dielectrics to be considered in this

exposition results by specializing (1.3) to the situation where jjl, 1 > 0,

0, and electric field memry effects are negligible, i.e.,

D(x,t) D (E(x,t)), x E Q

(]4-a)
B(x't) H(x,t), x 4E i2

v,..e shall furthe- assume that del %jtO so thaUt in a (Euclidean)

TA(ighbohood of F = 0, the relations (1.Ua) rLy be -i,-:rted so as to yield the

constitutive equations

R. 4b)

'Vi



As the vector function E is still oumple,.ely arbicrury, tl: , constitutive theory

defined by (l.4b) is still far too general to provide a tractable system of

evolution equations for the electromagnetic field in 2; we will, therefore,

confine our attention to that special case of (l.4b) for which there exists a

scalar-valued vector function X(L) such that E() = X(L)r,VL with real

components Ci" Thus, the final form of the constitutive relations which defin-

the nonlinear dielectric response to be considered here is given by

(x,t) = (D(x,t))D(x,7), x 6 Q

(1.S)
(15,t) )p- B(x,t), x E S2 (v > 0)

For now we will simply assume that 0 -< A(L) < -, VF, with X(L) > 0,

$ 0; further assumptions on the constitutive function X will be imposed below.

Remarks .It seems worthwhile to note, in passing, that electromagnetic constitutive

relations of the form (1.5) or,to be sonmwhat more accurate, the inverted relations

Dxt) :E (E (x, t))E(x, t) , x c

(1.6)

B~x~t) (x,t) , x E ( > 0

h.ave appeared in the recent literature; t.g., Rivlin [f] considers (1.6) and

irkiicatec thr: in an iotroyic material conforming to t., constitutive hypothesis

the dilel2iric "constant" F must be an even funtin j&,ng ni4ude )f E, i e

E = E(E " ). Townes, et. al. [ILI considered the problem of a high intensity

Laser beam propagating through a dielectric medium; thcy assume that the high

intensity of the beam affects the dielectric "constant" C in such a way that

the effective E in the medium is given by EE 0 +E:, jE:! whc u E >0

E? >0 ; they then go on to demonstrate that the presence of the nonlinearity



may give rise to an electromagnetic beam which produces its own wave guide

and thus propagates without spreading (the so-called phenomena of self-

trapping of the beam). Strauss [16] and Whitham [17] both consider a polar-

ized wave with frequency ,) propagating in the direction e (parallel to

the x3-axis in our cartesian coordinate system) in a dielectric. They assume

that the high intensity of the electromagnetic field in the beam, given by

ikx,
E = u(xl,x ),xe e e

again produces changes in the dielectric constant E so that E = + E- IEI

Using a paraxial approximation, i.e., lu )3 < <1k ul I , k =,oJ/o / c

these authors ([16], [17]) then claim that u(xlx,.,,x) satisfies a nonlinear

Schr6dinger equation of the form

2 ._u E2  uu=

2ik - - u ku _-I1 u

Using this last equation (and setting x, =t) these authors show Lhat under

an appropriate set of assumptions the intensity juf of the beam blows up at

a finite value of t and thus claims to have a rigorous demonstration of the

phenomena of self-focusing of an electromagnetic beam. We will indicate,

following the statement and proof' of our first Lemma below, why we feel that the

reductions of thc pertinent evolution equations for the electromagnetic

field in the beam, to the nonlinear Schr;)dinger equatirin (given above) for the

intensity u(xl,x, x3 ) , are in error and ignore, in effect, the basic non-

linear character of the dielectri2 medium in which the beam is propagating.
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3
Lemma 1. Let (1 R be either a bounded or unbounded domain and assume thit

i is filled with a rigid, nonlinear, nonconducting dielectric substance which

conforms to the constitutive hypothesis (1.5). Then, in 2, the components

D (x,t), of the electric induction field, satisfy the coupled system of non-

linear wave equations

32.

a "'- (grad A(D) • D), i :,2,.(1.7) z -w- V((D)D) ax
3t 1

Proof. We begin with the identity

A A = grad(div A) - curl curl A

which is valid for any sufficiently siooth vector field on Q; applied to the

electric field E (.,t) the identity yields

(1.8) V E. (div E) - (cur1 (,UriE)i; i = 1,2,3.

In view of Maxwell's equations (1.1), and the second constitutive relation in

(LS), we have

aB

curl curl E curl (Z)
ar

:- j cmir (----)

7Tt

y (](.1b))

I = V, .E2' 1

1 at

3E. aD aD I

V I? E--(A (D)
ax~ )~' 'xk it-
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JE.
where A* ( n) , cni the standard Suifmrhtior, ecnventiol! S b ij, .-
Thus (1.9) becomes

(1.10) 2 _ ak(Ai(T k ) ()) (A (L,) -

However, by virtue of oux, hpc)thesis that E. (D) A(D) . we ,'e.sily fi.i thll

A.. (!}) :X(p:)d 6.. + -T.D.
A. CD) + ]

and therefore

?

(.)- -- (I(D) 5 + ]_. I )

where we sum on each repeated index; ex-panding (1.11) and using the rix'l .

$x. ,w oL-tain the -t-ited result(.),. ,

(.W

(12:) + \
t k

..)x 3xk  ()( ) i - --,x. '-

Herz-.ks W, now return to the dJscussiorn of- Ihe wors o" Strauss [It)], and

Whitham I 1,] which we began prior to the statemert of the Lemeii above.

7f we take the constituitive equatiors (!) in the inverted form i.o) and

substitate into (1.9) we obviously obtain

- (E (E)E.) = 17E. - /!6xi(div F)
bt. - * -

However, in a nonlinear dielectric media it is not generally true that div E =0

tiuz the t ern>/,X (div E) can not be discarded in the above evolution

. I



equation for the electric field. In particular, if D =E(E)E- (EO + E E )

then div [(E +E2 11E 2E)] =0 and not div E=0 . In [l5] however (page Ys49'

the author has tacitly assumed that div E =0 even though he proceeds to

employ a nonlinear constitutive relation between P and E (and, thus, between

D and E) while in [161 the author begins with the standard Electromagnetic

wave equation,

L2c bt

ikx. iwt
assumes the form E =u(xl,X,x )e -e e for the wave, so as to reduce the

last equation to an equation for u(xl,x),x., of the form

ik Au ( 2 _Ew' )~bk -A u+(k-
bx3  c2

and then assumes that the high intensity of the (laser) beam modifies the

dielectric character of the beam so that E +Ec ~jEjl' this form for E is

then substituted into the last equation for u(x,,Xx ) so as to give
r3

(modulo an approximation) the "appropriate" nonlinear Schrodinger equation for

u - The problem with all of this is that at that point at which the beam

has modified the character of the dielectric medium in which it is propagating,

so that

E-E + E2 lEn

it is no longer true that div L =0 and the standard equation L-- l (EE) =7E
ikx, c bt

ia no longer valid, i.e., the assumed form for E , E=ue e wte must be

substituted into the more general equation

-(E(E)E =7 E 6/x,(div E)

I



with E(E) E o+Er, E, Under these conditions the Schr6iing, r equation

derived in []5], [16i for the intensity u(xl,X,,x',) will clearly not r,-2ult

an- does not seem to follow from any reasonable set of approxitarttions; a
i -iwt

rigoroz; demonstratin 2f s,;lf-focusing for the beam described by E =ue e e

would therefore seem to be .n oren problem.

We now assume that CC ii sufficiently smooth to admit of applications

of the divergencr- th:orem and we denote by v(x) the exterior unit normal to

C at a point xE i i ; we also denote by t(x) a generic vector in the

tangent plane to 6,0 at xEC2 The evolution equations (1.7) are to hold

in some cylinler a[O,T, T>O , in R and we now associate with this system

a set of initial and boundary data. In Cj we req'aire that

D.
(1.i3) Di(x,O) = fi(x), (x,) = gi(x), x E

! i=1,2 ,3

Standard results from electromagnetic theory [9,§13] also dictate that if

R3
is a bounded domain in 3 then

" (xt) •t(x)] 0, (x,r) c %S x K, 7)

2- the -lt r reatins (l.dj), I F(x)A dferiotcs ti'e ump of th.- scalar-valued

fnxctio;i F across KI at x c 3 wh\le uix) d.no-Le; the &-:..s-iy of surface

,.irge it the point x e P; these boundar/ coridition'.- can be written In an

P..,rt ive fonri as folIo's 1 we let I (x ,t) denote the ,.,c induction

tieli at points (x,t) e R IQ × [O,T) then (1.114a), (1.1 4b) are clearly

equivalent to

I
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(i.15a) D(xt) - '/(X) - r- (x't) v(x) = (X), (x,!) C &i x i T)

(l. 7 Vb) X((xt))D(x't) • t(x) f: (x,t) • t(x), (x,t) f ai x [01,T)

wer (x,t) , (x,t) e 1'!'. \ O,.), Ic the el>tr'ic i,:ld associsiled Witl

(x,t). IIn particult, c
, ': " Q is filled w-tY a merfect

' , t. (A].ubodrl ' ui :A A: e: ( ') , ( .I ~ ), ('f. b) thrlu,,( t )

]1 6d) N(x't) •V(x) a W x, (X, t) , 0

i n t his ii," pur we w i :*-, to L. side r tL . a u a a- -u c s ,) he genera l

;n :'i . .I~ .~y V lu . 'U ) eM Q .") ( .13), U] . .') w .] h c v 's o d to

the at'sunptfion that the geometrv of is an infinite one-difmensional (no-

linear dielectric rod); we ,ait to investigate whether a smooth electric field,

which is perpendicular to the axiz of the rcd, and depends only on variations of

the coordinate along that :xis, can exist globally, i.e., for t ( [0,-). We assume.

therefore, that the rod occupies the cor.figuration depicted in Figure 1, below.

The probiem of consiacriug n finite rod 7i,'es rise, as a consequence of the

-to --pei tTthps of (1.16). to th*, imposition of a priori smoothness

,ssuimpt ios on D(:.:, t) at the l nar bcun'aries of the r,d. We comment on this

situation at the end of H.
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(1.1"'0 DNx, 0)~~ -',(X (x,t) (X-) j c(x~ (X, t) U "I" '[)

(1.15b) X (D(x,t )) D(x, t) t W) E (V, t t (X) * I) i x [ U~

where L(X,t) , Cx'T) t Pik i x ) i.- ',h- Cel-*triC, ficid ci -';();sooiieI ")i'

(x ). In p .rt iculcir, if a' P- "ri d i s fille'd wit!- a~ 1pelfel. f

ormituctor, (in1 which j ) I;) J)t 1 K) i ) r Itu(1c o

(1.16a) (X,i) V(X) (X), (X,t) E &h [01'

(1. 16t, X (D(x,t0)) N~ (, t- W 0 , (x, t e aW r F0 T).

In~ This ptier we wi-h to cjonsLli- tWTxupat Jcar sub D r, 1h1' ftri

_t~ l-Lc<unddtry vdllu( P)ne (1 .7 0 ( .1 A), lGa ,b) wicic rt-11I to

ihe assuimpt ion that the geomnet r of 1 is an inf ini te onc-d imeos iona I (Onm-

l inear die ltc tric rod) ; we want to inves tigate whether a smoot h e lec tr ic f ielId,

which is perpendicular to [he axis of tile rod, and depends only on variations of

the coord Inate a long t hat ix is, can exi st g I +aIIy, i -e ., f or t ( [0, -) . Wc assume."

therefore, that the rod occuipies, the configuration depicted in Figure 1, below.

ilhe pc:-)'eAn of considering ai finite rod gives rise, as a consequence of the

i,, propr: arc speciali zat ions of (1.16) to the impos t ion ("- a priori smoot hne-

as'-uip! imas on D(x, t) at thle planar huundaries of 0--v i . Wt. commentL O'l lh

situation .it the end of 93.
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Spccifica5lly, we take for Q the tinite cylinde-:

(1.17) 12 {(XlX 2$X3) I x. real, $ = 1,2,3, -. <

(x2x3) = C1(corSt.)}

with grenerators patrallel -o thc. x axis- arid we assume thujt for so! snall > )

n f{(xi 1x?,.2 )  -X. x, <

2  2 2
_< x x2 + x3

For 12 we then take the (Infin-Lte) c:rcuctr cylinder
2 2 2

(1.19) 1 :2 5x -X < x ] < -,2 3+ X > C > 01

and assume that the annular region sl/. between the dieectric rod and the

circular cylinder is filled with a perfect conductor; in l the dielectric media

is assumed to be governed by the constitutive hypothesis (1.5). We want to

examine the possibility of there existing in the rod a smooth electric field

which is perpendicular to the x x plane and hence, orthogonal to the axis of

the diel. ectric; specifically, we are interesLed in smooth electric fields of the

form

(1.19) E(x,t) = (,,E x ,t, ), ), - A-

Of course, in 12/S1 we must have E 9. in order to proceed with the reduction

of the evolution equations (1.7), which corresponds to the situation at hand,

we wil need some additionnl assumptions relative to tht :onstltutive function

" I)ecIfIcally, th'. hypotheses on X whi,h wil I hoLd Ih r,,ugho, it the rest of

this section are

ti



1(X\1) X C1 (R; [C, )), A( ) > 0, V 0

O~.3) < ~ '() + \(
, V< € ' V

where X( ) =((0, , 0)), E R By (W1) and the definition of A it is

imediate that CI [0

We now proceeJ with the reduction of the nonlinear evolution equations

(1.7). In view of (i,51), (1.19), in Q

(0,E2 0)) 2()(D1 , U2 ,L3 )

from which it follows that, in D,1=1 D 3 0 and E2 (xlt) =X(D)D2 (xlx 2,X3,t).
3D2

However, div D = : s
.2 = 0 so thit, for each t 2- 0, D2 can depend, at most, on

x1 ,x3 . As E2  depends only on x1

3E2 = _a

((,T 2 ,cr 2 (x),x 3 t))

3

33

Bv hypothesis (W3) it then follows that 2= u arnd, thus, in Q(W)

x3

(l.110j D(x,t) = (0, D 2 (Xlt), 0)

in view of (1.20), not only is div D = 0 automatically satisfied in Q, but,

(1) At this point hypothesis (@3) could be weakened to the assumption that
0 ow(,A(r))' # 0 a.e. on 1 and (1.20) would still obtain.
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as is easily verified, so are the nonlinear evolution equations (1.1) i;r

1,3, i.e.,

(grad A(D) D) -- (D xt)) D (Xlt))ax Ox x
1 2

=0, i= 1,2,3

while (D.)tt = V2 (A(D)D.) E b for i = 1,3. For i 2 we then obtain, for

< I <  ' and 0' t <T,

(1.22D 2  .,

(1.21) t) V [)(D (Xl t )) D (x ,t)]
at2 1 2 1 2'

2 2 ,

In view of our assumption that the rod is infinite in extent, the boundary

conditions (1.16) do not come into play here. In fact to simplify the analysis

we will now assume that the initial data D (XlO) and -- (x ,), - , x ,

have compact support on . Then, in view of the fact that hypothesis (X3)

implies the strict hyperbolicity of (P.1), 2 (X ,t) will also have compact

22sapport on RI, say supp D2 c (-6, ), for some 6,, 0 C -o, for as long as

a ;mc oh 'oeution of the initial-value problem for (1.21) exists.

;, r s'et x, E x . E - .EX, for th- ,h's c. 2;t .. Ion i lescri i

dovC, the iriL4ia1-bounaar-y valie, Lrub en ijssocicittd j. ' 11' otIpled system cf

.onlinea.0 evolution equations (1.7) reduces to the foilcowing n,nlinear, one-

J .'nensinal. , initial value prob.. -In tic, V i,: .x,

-- x ', < t T, such that

2 2
-- - f W(u)u (x't) f- X ... o x ,r)

jt2  ax

(1.22) u(x,0) u 0W , ut(x,O) z V0 (X), x
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where b > 0, ) satisfie, the hypotheses (1) (.3), and u 0(A), v (X)

I
have compact support on R. Any smooth solution of (1.22) will also have

compact support on and, as indicated above, we will take the support of

u to be in the interval (-6,6) where 0 < 6 < o.
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2. Global Nonexistence Df Electric Induction fjs

In t hii:. ,;-rtion w,-- will Jesjonctrale th it Under th i , . ,r : l yht r. ,i

on the constitutive function A(O)

(WL) For all C e R and some a > 2

OL PA (P) 'dp

smooth global solutions of (1.22), i.e., solutions of (1.2:') jtn (-w,) X [O,r),

for all T > 0, will not, in general, exist; in fact,we will show that ,nder

relatively mild assuirti s on The initia] (Iatathe '- (--,a) 1o(a of u(x,t)

must be bounded from below by a real-valued nonnegative function of t wh .....

becomes infinite , t - t < -. Some growth esimates for, solutions of the

initial-bound-ra-. ,.- problem (I.24), which are valid on the nmxiffil time-

interval of existenc, will also be derived. In §3, we show that under stronger

assumptions :n Air), than that represented by (X4), it is possible to

demonstrate via a Riemann Invariant argument that smooth solutions of (1.22)

cannot exist globally due to finitL-tirne breakdown of the space time gradient

(u (x,t), u (x,t)).× t

Lelore proceeding wdth the arvly.;is, let us nole thit I1 w.;t* R1 "

"e R , and () : 4(p)d p then [X ") X'() and h.r ,xlhe eV

(X'4) is equivalent to

(174) For all c R and some ct > 2 aX() E E

b;c prool of the global nonexistence results rcferrd t ;,e nfe now proceeus

via a series of lemnds, the first of whicl is juirt (in entrry' coniservation theorem

for th so lutions of (1.214). Thus, let , - ., he :miy constant such that

,. Wh ti . thV , hypothesis is atisfied by )(r) (c,nst . in t', of our results apply

to the Iy[ear wave ECiiLIon. .e., sce the fo.itnot.o following Theorem 11I.
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6 > 6 where, by assumption, supp u(x,t) .- (-5,6)1 trien we have

IArgra 2. If we def ine the total (-ne-rgy E(t) Of thu /tn ~.2 by

(2.1) E(t) = ( U (y,t)dy) dx " f J(,t) '.pd)x,
2.9 t _- 0

then for as long as smroth solu.tion-s Of (1.24) exist,

(v~dy)K~x + u(x) .

(2.2) EUt) f f .v_'yd)J (fG PX(P)dP) -IX

Pr'Oof . In view of the definitons~ ot (C VC),

(2.3) E~t) H fT (flX U (y,t)dy) 2dx + f-6- (u(x,t)) dx

'11 eref ore,

(2.4) Et) =i'4 (fx U t (y,t)d]y) Lf-u t(yt)dy) d

+ f 6 Z(u(X,t)) U t(x ,t) dx
-C0

6 ( fxu t d Y.>' ~)) dx
)'

+ f E'(u(X,t)) u-1(x,t) dx

+ f E'(u(x,t)) Ut (x,t) d

where we have used (1.22) and the compact support of u(x,t) on R ~.

2 ( ( ' d (1( ' ) '
ay

-lint (4K(UV't),)

T~~(U(X,t)'Kx



a 1(0) 0 by virtue of (Xl) and the definition of '. 1( reforo

(2.5) E(t) f [(u(xt)) f (yt)]dx

- C -p(u(xt)) u(x,t) dx 4 F'(u(x,t)) u4,(x,t) dx 0
I

as c(;) = E'(<) E R , by definition, ,,(0) 0, and supp u (-6,S5),

6 < S. Equation (2.2) then follow,' by Integration over tO,t), the definition

of E(t), and the initial conditions. Q.E.D.

Our next ie-L m is concernedt with establishing a certd' lnit lreinl al

inequality for a real-valued nonnegative functional defined on solutions u(x,r)

of the initial-boundary value problem (1.22); namely, we have

Lefwm 3. Let u(x,t), (x,t) E (-) x [0,T) be a smooth solution of (1.24)

and define

(2.6) Fi(t) PeL6( JX u(yt)dy) 2 dx + (t+t

where [{, t -> 0. If A(C.) satisties (Xl) - (Ai4), then for 0 s t < TP
0

?.7).r- ,' ( t)F 2  _ ' ?2y+ 1) F (W + 2 E(0))

w h *r - - - > ) ( w i tr ' ", o n s t a ntr' w h i c h ir . c n :' . ., .o n s t i~ t .

a- m .- ption (X4)) and E(O), the iriti, enecgy, is y ivcn Ly te right-hand side

of (2.2).

,.vx.Bf. By 'irat dilf, rntiti.on we hive

_ _ _ _ _ _ _ _ _ _ _
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(0.q) r''(t) 2ip f~ (fX y yt~y (1x~u (V,I)1v) Ix + (+

'And

(2.9) E"(t) =j 2uL (fx tY-dy dx

+ 2pi 6 (Jx u(yt)dy) (JX xu (y,t)dy) dx +2.

Again, in view of (1 '24) the definition of () t R, and e

compact support of u, we have

(21)6't iiI, (f XwOUt(y,t)dy) 2 dx

+ 46 (fx. u(y,t)dy) iM(x,t)), x 2+

" 211f, W Ut (y,t)dy)' d

+ f6 . -- f{x u (y ,t ) dy ( x , t)dx

2 2f6 Wu~x,t) 'pMuxj))dx + 213

" 2-p f, W " ut y't)(y) 2 dx

-2P IVU(x,t) E (U(x,t))dx + 213

Fv adding, ind subtracting 2 Lt f6 E (u(x,t)) dy on the rijjht-hand -;:(e of' the

last LinL f (2.10) we obtin

.11) '() 2P~f (f\ u (t)dy)'--x - 2a~ f~ 6 E'(xjt)) dx
-t

+ 2f!0 (ci(u(x,t)) - U(x,t)T 0 (u(\t)) (IN + 2$

2i (f;< ut(y,t)dv)2 (x- ~ (~~)

whem, we have used the hypothesis (W'4 in the foi-i &iv'en by (X4). RuwAever, in
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v'W of tht.' e,~ to~c Et1, .. (.v i' <, P,

.Ln- (2.11) rmay be replaced b.y

C.12) F"'(t) - 2pi f (f' u y, )'

'j. f f
-2at LEW) - +J n(y,tdy)>ijXj 4

,here we have used the eT-Cl gy conservatior i i o4f' aevri . F.ire:1iV, wcewat

the laL;*t inequality in (2,12) in the for-M

12.13) F"(t) _f (2+00 Eli f6 (fXL" (y.)My2 ]x + I

-l a [ 2E(C)]

Cobi ni4-n (2.5) (2. 13) mu~ ~ we !)-, db _n

(2.I'4) FF" -~ I Z-+)F '2

'4

(+a~ [1o '(l, j' )V) IX Ft +t)]

- F~ + -E())

r 6?ct F1+ (v x
L~'-oo ~ uy,~ y . ',

+ L t +
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(2+(x) [ ( u(yt)dx')' d× + (c t

x [f f (fx u , ( ,.y . .+ 'x )

tt(tS (S (f Y):J (.Y" t, ,)d) !x

+ 6(t +

- a F( + 2E())).

By virtue of the Cauchy-Schwarz inequality the { ecpres ion ir. the last

inequality in (2.14) is nonnegatie for a'l t, 0 < < -1, and,tll'efore,

(2.15) F" - 2 - ctF( + 2E(0)), 0 - t < Tp

The required result, i.e., (2.7) now follows directly from (2.15) if we set

y = W0-2)/4.

Q. E.D.

Global nonexistence Df solutions to tl-e initial-boundary value problem

(1.22) cai- now easily bc shoMT- to 1e a Qonseque-r,ce Tf ,h iifftrential inequality

(2.7) ur'L2r various assurmptions on the ini.tial energy E() and the initial

lata <,x' ,,(x). 'oTc, p~f th-e V sin ir- roduce th, notaticnI

ri f(y(') "))

2.1 E< )T'u) 'S_( u(,,,d ' d)

':r ir st series of results (Theorems I -rnd 1I) corcern situation in which

e(0) <0 ; while these results may be of some interest for their own sake they

are not relevant to the example it whirh,parzlleling the assumptions in

Tcwnes. et. al., [li, Strauss (i')], "-na .. r16 we have

( A = + 00 0
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(we must have U(O) ,0 t or any -;uch A) ;result, concring the ot titI

of singularities in the gra-Jient (Ux I U ) fL)r chi s i t -i' c , ,in i:!

not genuinely nonlinear, tare presented in -13 ais -in app! i,':i! ion (,f~ re c,,t

work of Klainerinan anid Majid~i 1 21 1.

(2.17) g1 ( ) fiy~p _yS'

then~ 0K(~. > arid t <" u:r.

112 3(t)

.'-r k ~: Az a consercue-nc f. of t.2 .L) 9 i) t ,c f act tlldt ((t) irend.s 1-o +

as t '~j~~ta t t_, e ., that tlhe Tmxic'al interval of

estence of u~x,t) 4; fiit; tmv en, hcwtavEr' e
Mlx

an] thus, Withojut st o)Pgfer as:~~t o l x X' 'Iw cayn.v t .:onclule thu"t

nje':st iw.~nd §±r-,> 2-1,111i.c-ae r <m us* un na

evolut-ion eqteatioris)'

j~f(Theoricn 1). i-,n vie-, of (217,(0) s 0. Thu -, ;i v- s,t 7i

.7 1 i; Ineci,-al 1 ' Y 1m J les4 ts

(2.) F 't F, t) - (-y+l ) F (t 0, 0 t !5 t-
3' o 0 MiAX

- i(J i (y,t)dy) e dx. Nit (2 .1c i rusy nto be e juivalent to2 .2 0 )0 ( t is I
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-I(t4c- su yCes (1 2

(2.21) (t) -Y 1 (r)) Y-(O)t + FY (0), 0 < - t
3 )0 0

or, , y > V., F,1(t) > )

(2.22) F (t) > -K -,]\Y (,(t) 6 t t r

Clearly, ]ijn G(t) + where

wT

Also, '- supp u C (- 5,5) and - 6

(2.23) L6 (fx u(y,t)dy)2 x (fx I('Y,t)dy)? 2Ix

- -x

_(u-(y,t)dy) dx
-6 -

2 'x 2(ft' (x+6)dx) (f (J _ u(y,t)dv)2 dx)
-6 -

(F.F( u'(vt) iv) CIX,

(2 /26 , (v,,t)dy = 4 t) dy
- ,- - y

and therefore,

(2.24) 0u(t);' LI - . . .
-.( , , ) a 2 0k j . . -, t . ,. d x .

6) 46

The growth estimate (2.18), valid for 0 L t , W i k . , 41w
max d2o (

fc!.ows directly from (2.22), (2.24), the d|etnitjion of F) t), the fact that

a -.-
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U(x,t) 10, -~< x < -ci, and the observatiOll Lhait(27) .3tsd rhi

(2.18) also hold as we let 6 -~ 6. Therefore, if supp u '-(-6,,,) then for

0o. t < t 2ut) . k(',;6)G(t) with C, (t) given by (2.22). .F. 1.
max (5

'7icre azx's sev(-er'dl othver 1:!e tit osnwhrh i' ir i.> 'c'oreci-

that expressed by Dieorer I, follows; we w.JI (7xam Ti:rl : t CIIS! -uc cit cru

stances below which corrt-spon] -ituations in which we have, ThnjEitive1.%!

T(U 0 ,V 0 ) andi J(ur,v U ) < 3, iith E(O) < 0 in both cases. Suppuse, first*f

all, that ECO) <0 jitbhvq (X) H 0, -W x <6; in this (case wf- Ta,; chooDst

Luch that 2E(0) + O 0 and therefore (2.7) reduces to (2.10) Witi PF'

replaccd by

F'(t %,t) ~ fL(f' x (y,t ovY dx + rttY
0~~ It-C I+

Therefore, F~t: a, 0  satisfi-es, for 0 t !5 t

(2.25) t(t5) au -, '

UU

Ol0

-Fr-n*
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and that

(u )(2.28) t (o = to =

Choosing t = t 0  in (2.25) we have, therefore,

(2.29) IifL (fx u(yt)dy)2 cx + o(t+to 2

0 ~ 00

1

L ]

I(u

for O<<t . In view of ((.2'1)6 (2.20) e then have the eswth estimae (lit

0 0

:mom

,5 - , 1)

/n-1u0  bU(.1a) wih i pac ofCI 5." The; ,tima', (2) ", tab:v ... 's

* i nonexistence of soliutions to the iriltia -!rnunddry va w , ?,', ker, inudrtt [

hypothees~r (UI) - (i4), for the case where the! 1nitil] d ta qatPR.fv

0oX : , - x ' X and f_= (f t( ),4,) clx < O.
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Having eximned trk t:c e where E(L, e- 0 'iti. ('iuv1 '3 Id L~ u

wi th 'T(u 0 ,v 0  0, V~ 0 xE.: 0, -< xK <. we now want to Icx.k it ;he sitJ io' wheve

E(D) < 0, i.e.,

(2.31) u X 1fI( " Ot)1)2Idxfo < -op "I <t T J ~y~v'

and J(u,,v 0e < 0. In this cast, we Puy again choose so.'ch that

2E(O) + 0, 1 o that F(t; ap~t1  satisfies (2.25), with - ,for
0 6U

C : t !t .We note that we now have

(2I2 (L 0~ l ) + t 0
?a ? 0 t0 - Jj(U 0,v 0)1

where

(2.33) - f _f k y)dyY' dx - f 0 ~~d)(X>C

-,,d thus we must choosce t~ 0 twhre

0 > i 1,70,0VC

i : r'il_'Ativeiy Sin-)1e r Lltteli to Show thaCI tl (t ) ihieVeS a mninimum it

t I~r~ Vr 4 v~~t ,

w-:I ~i~t( then we li, v,. th-N- eFst 4

~j~IX u(y't)qY)cd< + 1 (t +

Ou +~~i +~t Y .> '
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f r 2 L t t x  and the cormanion csttmte

(2. 37) 1 Itu(1) + 0(t+F0
K 2 _

I (u 0 )

(- t)Y

for 0 ! t !9 tmax _5 and glola[ nonexistence of solutions to the initial-

boundary value piohlen (1.22) follows as in the previous cises. We my ,ummrrari-C

Ithe two results corresponding to the situation where E(O) < 0 as

Theovem I!. Let u(x,t) be a solution of (1.22) and assume that the con titutive

function X(p) = A((O p,0)) sar~isfies Mk) - (X4). Then

1) If vO (x) - 0 -w<x < 6 and L.f.0  pt(P)dp) dx < 0,

then u(xt) satisfies, for 0 t the gwth estinate (2.30)

where 6 is given by (2.27) with 5 in place of 6.

(ii) If the initial data (u Cx), v Cx)) satisfy (2.31) and
[6(v 0(x()

f(X uo(y)dv) cf V0 (Y)dy) dx < 0,

tnen u(xr' 5atisfies, For ; t S t S t "he r'mwth estirrmate (G..7),
max '

where ,,, is given by (2.23), t by (2.35), (2.ib): mc t( O )  r

is given by (2.32). In both cases i) and (1i) ,!)ve the repec;.ive

e .timate3 (2.30), (2.37) imply that solutions of (I1.21.) cannot exist globally,

. . or t E E[0,)

We now want to consider situations in which

e(O) ,0 (i.e., + >0 >0

0 0

', ,+ ,x >o x.,o ;
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Theorem III. Let X(c) satisisj (XI) - (X3) and define Jgu) , (u, v a

in Theorem I. If e (0) >0 with ;(uo, v ) >0 and

(Uo,V o)(uo) > >e o)(3

then no smooth solution of (1.9-4) can exist for all te [0,=).

Proof. Assume that a smooth solution does exist on [0,.) . Then (Pi.7)

holds Vt and we rewrite it as (set P =0)

(2.38) FF"- (y +)F' 2 >- 2v'?(2-y+lF

where v =? (0) >0

As F'(O) =;(uo,Vo ) >0 we have

(F'Y)1(0) =-y F-Y+l)(0)F' (0) <0

By continuity (F")'(t) <0 for t sufficiently small. If(F-Y)'(t) I0 for

as long as smooth solutions exist then St =t such that

F-*Y'(t)<O , t<t but (F-Y)'(t ) -0

We will show that this can not happen. Since F(t) >0 , t c (O,t ] may rewrite

as

(:c :I ( Y" < -V_' -' (y + 1)F-  te 10'
Un~~ ~ ~ 0,O~ t !'t t[~

On (O, t*) , (F-Y)'(t)<u Multiply (.19) thru by '(F-)'(t) , te[O,t*]

to .L jfl

tF-Y)"(F-Y) 1 >hy U (:y + 1)F-(Yl (F-,

or or . iu (x),

3 Thils condition is easily seen to requirtcr (,k(,)dp)dx be

sti[firent.ly negative; thus neirer this rVsLIt, , r any of our other results

cf a in.1,r nature, od,)ply t.y th li wa wave equation obtained by taking)*(. ) = -on t
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dt dt

We now integrate this last estimate over [O,t] , te [O,t*J so as to obtain

(?.40) [ (F-y),(t)]j2 _ 4 22 2F-(2.y+l) (t) >jV

where

2 ./ 12 y F (2 y + I) ( o) [ F - 1( O F 2 ( O - 2 ]

0

2

by our hypothesis on the initial data (v =2(0)) We now, factor the left-

hand side of (2.hO) and write it as

(?. 4,') f(F-Y)'(t) -2yvP'-T Y+!)(t) l l "2 x

(F - Y ) '(t) + yvf F-(-Y+I) (t)] I / '° ] > 4>0

Since (FY)'(t) <0 , te [0,t*I the first factor in (2.40) is negative for

te [O,t*] and thus Vt r [O,t*J the second factor is also negative. Thus

42h3 (F-Y) (t * ) < -2y)[ F-(2-y+.) (t,*) I1 / 2

Hence ,t* such that (FY)I(t*) =0 and thus (F-'Y'(t) <0 for as long as or:ooth

c,,utios exist,which implies the estimate

* .)~) ' (t) '> ./+ yv' + -  ( ti "

This last estimate is valid Vt- as long as smooth solutions exist. Therefore

! , . , )~ +) F 0 k-I g t h e s e ( P . o+ l ) fy

As --y F .i)F' <0 taking the square root on both sides of { .')yields

", ') l-y -(.Y+I) F'I _> O v + 4 F :!)/'
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or

(2 .7) - -(Y+l)F' <- V +.,xv F-( -Y+!))1/

But this clearly implies that

(2.1 F'(t)> (4y ?F(t) +A( M 0 -F (  (t))

for as long as smooth solutions exist. Hence

2 F(t) dG

(2.29) JF(O(v2G+ yG?(Y+l))i/? t

0

which implies a finite time of existence for any smooth solution since the

integral on the left hand side of (2.49) is convergent VF

Our last result is a growth estimate for smooth solutions of (1.24) which

is valid on 1 0, m ) the estimate shows that under certain conditions on

the data, llu, must grow quadraticalLy in time.

L (0, L)

Theorem II. Let u(x,t) be a solution of (1.2') with *(C) satisfying (Xl)-

(N-. Then if g(O)>O , ;( v)>0 with U (x)v (x)dx>/-To (J uo(X)dx)

we mrust have on O<t<tmax

- u + L VeT7,1'u-7t+ ' (0) t
'-)

L (O, L) 0 
0

irnof. W, begin with (2.3[), i.e.

FF" - (y+l)F12 >2\I-(2y+l)F , O<t<t
- max(

wh ,:' . = ;O(o) > 0

1y cur hypotheses: F(O) >0 , hence Tl>O s.t.

F(t; >0 , te f 0, ]
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We multiply the differential inequality (p.38) through ry

-y(F-)'(t)(F'(y+2) (t))"' , t E (0,T1]

and integrate over [O,t] , t<, so as to obtain

(?s)[ '(t)I - v4y'-v F- Y+l)(t) >[(F-Y)I(O)]2I-4vF(Y+i) (0) >0

by virtue of the definition of F(t) and the hypothesis relative to the initial

data. Factoring both sides of (14) we have

(2.52) F(F'V)'(t) -2yv F'(Y+I/)(t)][(F ')'(t) +2yv F-(Y+l/2)(t)]

> [(F V ) '(0) - 2yv F " (Y+ I ) (0)]1[ (F - *Y) ' (0) + y F - (Y+I! " ) (0)]

and thus as

(F-Y)'(t) =- y F( IF'(t) <0 , t e [0,ri]

• (F"V ) '(t) <-2Yv F-(Y+l/2)(t) ,t C [0,P,

:hence, by continuity we can not have F(nr =0 , for any 1>0 Thus F(t) >0

O<t<t and (2.53) holds for all t , 0<t<tmax

From (2.5) we obtain directly the ei"timate

12 54) F(t) >(vt+Fl/2(0))2

_ )(tF'(f', O<t<t
max

and the quadratic growth estimate now follows from the dt,.inition of F(t)

and the estimate

2~l > _L " ' I~V
u42O ( Ju(y,t)dy)'dx

24pj 6 2j 0
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3. Riemann Invariants and Finite-Time Breakdown of the Electric Induction Field.

In this section we otfer a brief demonstration of the fact that unde a
* RI

slightly different set of assumptions on A ( E), R , other than thoe. repre-

sented by (Al) - (X4), it is possible in certain situations to apply th,- Riemann

invariant argument of Lax [13] so as to conclude that finite-time breakdown of

u + 1 4(u) u must occur, where u(x,t) is a solution of the initial-

boundary value problem (1.22); the requisite assumptions on ?i( ), however,

cannot be realized in the case where A*(r) = A* + * 2 > 0' 0. In
0 2  0 2n

this latter situation it is possible, however, to apply some recent results of

Klainerman and Majda [211 as we will indicate below.

in [13] Lax considers the nonlinear, initial-Woundar'y valliv- problem on

Ytt(x,t) = K 2(yx)Yxx(xt),

(3.1) y(xO) Y0 (X), Yt(xO) = 0; 0 < x L

y(0,t) y(L,t) = 0, t > 0

This problem may be extended to a pure-initial value problem on R x [0, -) by

eytending y 0 (), y(",t) as odd functions to (-L,L) and then periodically, to

ell of RI
, with period 2L. By setting U r Yx V = yt the rnsulting extende

1Rititial-v-1u?1 prblem on R1? is thien eat-ily seen to be, c.;(uivaient to d pl.rle

initi2a-value prullem for a coupled qu Asiline r svsem.x ,i R 0 " ,

V ),t (K2 (1j) 0 1 x

'U(x'0) x) the extension

(x(,0) ( \ ) of to a

The eigenvad < ane oigenvectors a,,soci-ted w-.h the system (3.2)

axe, respec+ively,



-ir,1 thus the syvs-em is y- boi if -or.] -ilv 'K V(4) > R- c .

ov5~~Ln k&~' ,~Ze i-n a ~~ ii ':.

V, + j(j~

(3.!~4

3 1(reKj) ai+ -V~Ypct LVCIV

alxng the right and lef -handj chrcezi~ efinied Lv tie or~iiilry

dx I< (M) Lin ( . ) one tIcn sw in the tnlrw+yIatt

Penrt-r1n Envarjo--nt-s

R(IJ,V) V + <(o) dc

~ )S(UV) V fu - o g( d

sit-'sfy R' = 0' , i.e., that, they accoinstant aionr, the -respective char.-tctci-

~st Le curv'c. It 1 shown in [,13]1 that %-j t)i a suiltable ch'iiv' of II H ( , A)

f ~rt:Z = xip(A)R saitisf ies Z' -F (ex,,(-fI )).S,JZ' whem e'

so *.hat Z, Drid hence R , nm.us+ Iveakdown (blow-up) in fi nite t ime i Ia C >

:h hat (x()6IaC; ths -Iast cU uition, con tYr,.e D',h(- lurid!, tulis,; Olit

Is e ;i consceqauice of Ith, cissumi -son thajt J >3 .1.T'

a > i , V !); E R . 'rie-im hrc.~kdowin f R hni:dic iit-~n

:)rJ~dwn or at least one of the secunld-a rder IdesL-&iv V , St tfvcx

so ;ition y(z,t) to the nonliniejr, itijIl-booun ,Lry valu- r.T-IAle .) as

R x=RI U x+ R v x

=K(IJ)U + V
x x

K(y)7, fy~
X XX xt
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Suppose that we flow A-''ns i r tU( i) ro 1, ], I

and recall that as a consequence of the fact that supp ti(x,L) -

x u (V,t)dIy : (u(x,t)), : '(u)u (x,t), for x where

E* E RI . If we set

(0.6) v(x,t) f xD u,(v,t)dy t L o

then, clearly, vx(x,t) ut(x,t) and vt(x,t) X u t(y,t)dy , '(U)Ux,t).

Also, u(x,0) u0 (x), v(x,O) : 0 ut(y,O)dy = fx  v0 (y)dy. Therefore,

the initia!-boundary value problem (1.22) for u(x,t) is easily so en to be

equivalent to the following initial-boundary value problem for the pairl

(u(x,t), v(x,t)):

u t -x =v×<x

(3.7) I ( 0 t 0v t -1 ' (u)ux  0t;

u(x,O) = u x, X, v~xO V(V)dy, -W < x <

u(Ot) = u(Lt) 0 O, t t 0

-he systun (3.7) is clearly of Lhe sajTme form -is tha:i considocioJ by Lax 1i, i.e..

(3.2), if w-" assume that (x) 0 C, -' < x .
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Thus in standard atrix form our system (.) is

(i ') + u ) ( %L x V tA2
(3.3)

I( ux S) - (1 C~X )
- U < X < CO

v(x, C)

in comparing (3.8) with (3.2) we clearly have the correspondence
2 1 , 1

K (;) = - ''( ), E , and thus (3.8) {s a hyperbolic svitem if and only if

=g : '(O) + \,r) > 0, V> , '

which is precisely hypothesis (M3). The -idemann Invariant :- . with t:,-

system (3.8) are, clearly, given by the expressions

.(,(u,v) = v + f_ U_7p5_p

(3.9)

( s(uv) = v Jo j "' ipt%')r,
1/7

and they :;atisfy t- 6 C along -]:e respective cL acted:;tics .ivcL

±<: / FT7 where E 3- /u - x ,aY,-- +d.-4 ,:'-

-- -- j ."

t~ic result-- in [13 ], wh i h we have (c,.,:c r te i - f2 .- i iei

(hlow-up) o§-

:P v + 1 'i(~

(3.10)

:u + .. _. f-p'(u~u
U +
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will occur if, V R ER (this is actually needed only I suf ic f#itiv,

na I I , If L Ihe L i I d;I ta i S mI I I, aS we indicatv be ,w) ,

for some C > . Usinc the re i ,o': .etween (.and....

condition is equivalent to the requ _ieE:me _it X(r),V R - ,:i-i', f r ,un.

c->

(XS) "() + 2X'(;)I -sA'(c,) *(

It also follows from the work of Lax [13] tha

Max Max Un(. ) ")

As '(4) :<'(C) + X(<] and p"(%) X") + 2V',,),V. E , we clearly

must require that X(C) satisfy

(As) 0 < X(0) < C < X'(U) < , "() <

;tl x~ j7 :.ipie rttott

0 X 0
.ziat the a pr-iori estimate l (X't -. (.t ' 'xO p ( ) L-

r: (- ,,x O,t max]. by virLue of the definitions J.9) similar a priori

e mates hcld for u(x,t), v(xt),
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and thus !u(x,t)l and 'v.,,r will b," .mo l, ' , ,

if sup'u(x,O)j is suffi.'ient ly all. It then fullows t ,-r ,5) ijted
x

only hold for some E 0 ann a I ; R which are ;uftii,,intly I. II
* * * * *

in magnitude. Now, it () A0 + A, I A, > t, che-n

(05) becomes

L 0
(31)2 2 V 2 0

which is certainly satisfied for Il A. A > 0, if t 0 is choser,

• * 2
sufficiently small. In this case ,P() = + so that .( =

2X # 0 and the system (3.8) is genui elv nonlinear. Hnwuver. if

, * * *2 *
A(A) = A0 + X2 ' > 0 , - 0 then (,5) becomes

• 2 *
(3.12) 6x 2 ,,2 + 2

which cannot be satisfied for any V > 0 even as ! . The essential

problem here is the lack of genuine nornlinearity vis a vis 4,(:) which in

* * 3 *
this case is p(r,) = X 0. + V2" (so that "(,) 62 which vanishes at

0). In order to obtain finite-tit breakdown of smooth solutions to

initial-value problems for the quasilinc:,r system (3. 7) on , when the

data u(x,O), v(x,0) has c-cmact slpport in R and ,(,') \ (',)

* * 3 *
X0C + C 0 .C., x n>;Nv appeal to' a * 'c 't r-k.-;1t of S.

0~' 2 ' 0 0,

Klainerman and A. Majda [21:. State, in term,, of the i- Ltia-value problem

for the diagonal system associate,! wi : ,-C ai,11ani 'rvu ]anU3 i.e.,

d t A :A(7 I
x
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where 4,4 are given by (3.9), the rel.eviIt result in [1] ]sav6 iIt .ifv

CI solution of (3.13) with C inital data L0 (x) = t(x,0), 60(x) =.3(x,0),

having compact support in RI, must develop singularities in the first

derivatives x, 6x in finite time provided .'() is not constant on any

open interval; Lhis last condition is, of course, equivalent LO having

# 0 on every open interval - which is certainly true for the cubic

P( ) of our example. It is worth noting that as with the work of Lax [ILI,

the work of Klainerman and Majda [21] was done with the nonlinear wave equation

in (3.1) in mind and, as in [13], the development of singularities in the

first derivatives 4t , . leads to tne prediction that solutions of thex

initial-value problem for (3.1) with C2 initial data having compact support

in R1 must develop singularities in the second derivatives yxx Y xt

However, as is the case with the work In [13], the results in [211 now pre-

dict that solutions of the initial-value problem (1.22), with C initial-data

having compact support in R , must develop singularities in the first deriva-

tives u , U
x t

Remarks. In closing we offer a few comments concerning the problem of proving

global nonexistence of smooth electric induction fields of the form (1.20) in

a finite rod occupying the configuration 0 -- xI 1: L. The relevant one-

dimensional equation is still (1.2t) but now we must take account of the iupii-

cations of the boundary conditions (1.16), assuming as before, that the rod is

embedded in a perfect conductor. At tw planar boundary at x1  0,

v- (-I,0,0), t (0,1,0) and thus by (l.16a) with x I = 0, f(x 2 ,x 3) = C I

(3.14) D(,,O • , =0 = [(0,D2 (X1 -,,) (l'0,0)1 Xl= 0

t>O ft>O

-. "MN
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,o t'iat ,(x, t) , the --krfac- ch-ir;c. ty at 1 = 0 .. rih

t 0. An analogous result hclds at x, = L where = (,0,0'). In order
j

to satisfy the boundary condition (I.16o) along the planar- fac-_ a x.= 0,

for t > 0, we require that

(3.15) >,(D(x,t))D(x,t) t =0
0

It 0

(O,1(D (Kt It)D 2(x 1,t0,0) (01,0)I1 =0
'tOO

X(D 2 (xl t))D2 (% ,t) Xl=0

t-0

= 0,

from which it follows that D2 (0,t) 0 0, > 0. In an analogous manner we

have D 2(L,t) = 0. in place of the initial-value pxoblem (1.22) for

u(D,t) D (xlt) we then have the initial-boundary value problem

2 u  2

= .. . . (u ) (x, t) KT)
;t 2  9x 2 . ..

S'O,t) = u(L,t, 0, t

.(x,0) = U0 (X), ut1xO) = yrAX), v Q ×

mnd, in addition, becduse of th, ebeidiig of L;te rod in .,,rfcct condi~tor.

suop u o [O,L]. The principal difficulty that aises in rv:,g tc apply che

analysis of both this and the previous sect iL tIC eliO i C (3.i, CC the ure

init ia value problem that resu ILs by making the :As'i, * '.' of il th, 1inl i.1I

data, first to [-L,L and thet, to all of RI w: h per iod ?L, rev' I ,'es

around dealing with the integral (7,0 11' ,In t ;MAlyS1S of the
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infinite rod, is equal to -- '(u)u (x,t). II, as is customary i r tr, ,g t -
P x

prove breakdown of smooth solutions, we assume that u(',t! is of class

2, 1 -paa n~rC for all t > 0, on R then integration across the planar Jndrv,

xI = 0 forces upon the analysis the a priori assumption that :t O _uv

u(O,t) = 0, t > 0, but also u (O,t) = u (O,t) = 0, t > 0; ic un-

likely that any classical solution of (3.16) could exist und,.er scu, -'um-

(4)
stances. We hope to address the problem of global nonexzsteiice of smooth

solutions to the initial-boundary value problem (3.16) in a future paper.

(4)The author is Indebted to Prof. Morton Gurtin for this observation.
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