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ABSTKACT

Coupled nonlinear wave equzations are derived for the evolution of ;
the component: of the electric induction field E in a ~lass of rigid
nonlirnear dielectrics governeld by the nonlinear constitutive relation
£ = k(g)g , where [ is the electric field and A>0 1is a scalar-valued
vector function. Fur the special case of an infinite one-dimensional dielec-
t~iz rod, embedded in a verfect conductor, it is shown that, under
relatively mild conditioneg on A , sclutions of the corresponding initial-
boundary value problim for the electric induction field can not exist ]
globally in time ir the L_. sense if it is assumed that the electric field i

&

in the rod is perpendicular to the axis of the rod and varies as the

coordinate along that axis. It is also shown that, when the initial
elentromagnetic field in the rod has compact support, Riemann Invariant

arguments may be applied to show that the space-time gradient of the non-

zero component of the electric induction field must blow-up in finite time.
Some growth estimates for solutions, which are vaiid on the maximal time-
interval of existence are also derived; these are v:lid in the simple but
physically important case where A(D) = Al + AOHQHQ. We also discuss re-
letions with recent work on the phenomena of self-focusing and self-trapping

for high intensity laser beams in a dielectric medium.
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1. Evolution Equations for a Class of Nonlinear Dielectrics

Theories of material dielectric Lehavior are based upon a set of field
equations (Maxwell's equations) and a set of constitutive relations which hold
among the electromagnetic field vectors. In a lorentz reference frame (xi,t),
i=1, 2, 3, where the (xi) represent rectangular Cartesian coordinates, and t

is the time parameter, the local forms of Maxwell's equations are given by

3B
—5% *curl E =0, div P =u,
(1.1) an
curl H - —51 =0, divD=0,

provided that the density of free current, the magnetization, and the density of
free charge all vanish. In (1.1), B, E, and § are, respectively, the magnetic

~

flux density, electric field, and magnetic intensity while o = ¢, E + P(E),
€y > 1 a physical constant and P the polarization vector, is the e.ectric
induction field; the relations (1.1) hold in some bounded open domain Q ¢ R® which
is filied with a rigid, nonconducting, dielectric substance. The precise nature
of the dielectric mediuwn in Q is determined by specifying a set of constitutive
equations relating E, D, H, and B; indeed, without the specification of additional
relations wnong the electromagnetic field vectors, the set of equations (1.1)
represents an indeterminate system.

There is, in existence, a wide variety of constitutive hypotheses which
rdave been associated with *heories cf nonconducting, rigid, dielectric media; the
simplest of these is that associated with the dielectric response of a vacuum in

which thepre hold the classical constitutive relations

D= ¢, E, U= ua] B,




where the fundamental physical constants €9> Mg satisfy € ¥ 7 C < being

the speed of light in a vacuum. In 1873 Maxwell [1] proposed as a set of con-
stitutive laws for a linear, rigid, stationary non-conducting dielectric the
relations

L ¢ E B=u-H

where €, W are constant second-order tensors which are proportional to the
identity tensor if the material is 1i1sotropic. A set of constitutive rzlations,
which are still linear, but which take into account certain memory effects in the
dielectric, were proposed by Maxwell in 1877 and subsequently used by Hopkinscn
{21 In connection with his studies on the residual charge of the Leyden jar,

the Maxwell-lopvinson dielectric is governed by the set of constitutive relaticns

(xe:

€ E (x,t) + [¥ ¢(t-D)E(x,t)dt

- 0O

lw)
~
£
+
~
H

1.2

oot
"
=

B

where e > 0, u >0 and ¢(t), £ =2 0 is a continuous monotonically decreasing

function of t, 0 < t < o, Noting that the Maxwell-Hopkinson constitutive

relations do not account for the observed absorption and dispersion of electro-

magretic waves in material non-conductor:, Toupin and Rivlin [3] generalized tle
constitutive relations (1.2) arng introduced the concepts of lolohedral isotrupic

and hemihearul dielectric response; while the response incorpcrated into both

of these theories is linear, they are more sophisticated than (1.2) in the sense

that mugnetic memory effects and coupling of electric and magnetic effects is

biiilt into the constitutive theory. The qualitative behavior oo the electric

induction field in a rigid non-conducting dielectric exhibiting holohedral "

isotropic response has been studied by this author in a series of recent papers




In this paper we will Le concerned with initial-boundary value problans
associated with the evolution of the components of the electric inductiorn field
D in a relatively simple class ¢f materiials exhibiting nonlinear dielectric
response. A rather general theory of nonlinear dielectric behavior which allows
for both electric and magnetic memory effects, but still effects an a priori
separation of electric and magrnetic response, was proposed by Volterra [7] in
1912 in the form of the constitutive relations

+

E (0 4 D (B,

-0

€

lw]
~~
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r—+
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o

£

(1.3) +
(x,t) + B (H(x,t)), xe

=00

hivel
~
143
t
1}
4=

T

The constitutive relations (1.3) reduce to those considered in [2], [3] under
special assumptions relative to the functionals P, B, i.e., if B =0, D is
linear and isotropic, and ¢ = €I, W = ul, then (1.3) is easily seen to reduce
to (1.2) ; the particular class of nonlinear dielectrics to be considered in this
exposition results by specializing (1.3) to the situation where y = ul, u > 0,

B = 0, and electric field memory effects are negligible, i.e.,

Rx,t) = DER,t)), g e
(1.43)
R(x,t) = pdlx,t), xef
3D,
We shall further assume that det 5§~] # 0, so that in a (Euclidean)
il =g ,
neighborhood of E = 0, the relations (1.4a) may be inveorted so as to yield the

~onstitutive equations

1
™
~—
e}
=
WX
,—,.
=3
N
N
™

L(ﬁ’t
(1.4b)

H(x,t) = u B(g,t)), xeQ




As the vector function [ is still campleiely arbitrary, th constitutive theory

defined by (1.4b) is still far too gensral to provide a tractable system of
evolution equations for the electromagnetic field in Q3 we will, therefore,
confine our attention to that special case of (1l.4b) for which there exists a
scalar-valued vector function A(f) such that E(E) = A(E)5,V 4 with real
components Ei' Thus, the final form of the constitutive relations which defire

the nonlinezr dielectric response to be considered here is given by

{wp]
~
™
rt
~
"

MD(g,t))Dlx,m), x e

(1.5)

H(x,t) = u-l B(x,t), x e 2 (x> 0)

For now we will simply assume that 0 s A(§) < =, y§, with A(g) > G,
vf # 0; further assumptions on the constitutive function A will be imposed below-
Remarks .It seems worthwhiie to note, in passing, that electromagnetic constitutive

relations of the form (1.5) or,to be somewhat more accurate, the inverted relations

e}
WX

(x,t) =€ (E(x,t)YE(x,t), xeQ
(1.6) J
(x,t), x € & (u>0)

{gp]
™

ol
”~~
X
+
1}
=
[3a9

have appeared in the recent literature, e.g., Kivlin [&] considers (1.6) and
indicater that in an isotlropic material cenforming to ti.is ~onstitutive hypothesis
*he diszlectric "constant" € must be an even function ol thw magnitude of E, i.e.,
€= €L - ). Townes, et. al. {1L] eccnsidered the problem of a high intensity
Laser beam propagating through a dielectric mediuvm; they acsume that the high
intensity of the beam affects the dielectric "constant" ¢ in such a way that

tne effective € 1in the medium is given by €=€0+e? ||§| whet ¢ €°>O s

e,,/ >0 ; they then go on to demonstrate that the presence of the nonlinearity




may give rise to an electromagnetic beam which produces its own wave guide
and thus propagates without spreading (the so-called phenomena of self-
trapping of the beam). Strauss [16] and Whitham [17] both consider a polar-

ized wave with frequency w propasgating in the direction e (parallel to

~

the x_-axis in our cartesian coordinate system) in a dielectric. They assume

3
that the high intensity of the electromagnetic field ir the beam, given by

ikx .
2 -iat
€

E=u(x,,x ,x Je ~e

~ 1

again produces changes in the dielectric constant € so that €=€_+€, hoy

Using a paraxial approximetion, i.e., [ux X I < <|k u . k:=uu/€o / c,
33

these authors ([16], [17)) then claim that u(xl,xﬁ,x?) satisfies a nonlinear

Al

Schriodinger equation of the form

2 2 € 5
oix & . b,‘f - 2 —k—alul u=0
dX., . z €
3 oxl 0X., o)

Using this last equation (and setting xq==t) these authors show iLhat under

an appropriate set of assumptions the intensity Iuly of the beam blows up at
a finite value of t and thus claims to have a rigorous demonstration of the
phenomena of self-focusing of an electromagnetic beam. We will indicate,
following the statement and proof of our first Lemma below, why we feel that the
reductions of the pertinent evoluticn equations for the electromagnetic
field in the beam, to the nonlinear Schrildinger equaticon (given above) for the
intensity u(xl,xe,x3), are in error and ignore, iun eifect, the basic non-

linear character of the dielectri: medium in which the beam is propagating.




Lemma 1. Let & ¢ R3 be either & bounded or unbounded domain and assume that
2w 1is filled with a rigid, nonlinear, nonconducting dielectric substance which
conforms to the constitutive hypothesis (1.5). Then, in &, the components

Di(gg,t), of the electric induction field, satisfy the coupled system of non-

linear wave equations

2

3%y,
(1.7 bt = O - s (grad MD) - D), i o= 1,0,1
ate * X3 -

Proof. We begin with the identity

A A = grad(div A) - curl curl A
which ig valid for any sufficiently smooth vector field on 3 applied to the
electric fleld §(-,t) the identity yields

(1.8) voE, = O
1 Z)x,.L

-

(div E) - (curl <,ur]§)i; i=1,2,3.

In view of Maxwell's equations (1.1), and the second constitutive relation in

(L5S), we have

B
- curl (§t_>

L1

curl curlk

ol
- |y cur. (*a—t)

2

<l l
5T (el 1)

= -y
2
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g -.u .. 3

a9
81?2

50 that (1.2) has the equivalent fcrm
(1.9 ' wo- ol @ivE), i=1,2,3
. P 5‘)-(-.' R ) - L]
1

iy (1.Lb),




where A"j(g) z 5-5—‘— > and the standard summation convention lus been omployed.,
Thus (1.9) becomes
o, o ) an
1 = . ny ™ - . ) )
(1.10) y Iy (Ai,Q(k) o ) T (Ajk (I IX.

3 X K X3 : 5.
i

However, by virtue of our hypothesis that E. (D) = A(D) b., we easily find that

o aA !
ALW () = A 4§ . + Eﬁj—- 111 ]
] 1
|
and therefore i
i
2 . !
' ’n, . 3D !
i 3 { !
(1.11) U3 = 2o (M) 8., + =2 D]z )
342 :)).k 12 aLQ 1 Bxk
3
5 3x 3 |
=== (TAD) &, + 7= D.1 ===
OX:-L ]}‘ 31'1}\ h :}Xj

where we sum on each repeated index; expanding (1.11) and using the Muiwcll

30,
relation div D = ?{l = 0, we obtain the ctated result (1.7), i.c.,
"3
375 i -
100 o 3 3 o\ . d D !
(1.10) U=z = o (ML) == ) + o (== D.) = o~ (2= D)
31;2 axk X 3’<k 3Xk i Bxi axj 3 ;

., ) ‘ ;
3° ] 3 3

—
J%, X N §
Tk 1 )

Remarks . ) . . -
——==— VWe now return to the discussion of ‘he work o° 3trauss {16], and

Whitham | 1% which we began prior to the statemert of the Lemma above.

If we take the constitutive equations (1.9) in the invertad form (1.0) and

substitute into (1.9) we obviously obtain
il

2 - o
bta (E(E)Ei) vE c/oxi(dw E)

However, in a nonlinear dielectric media it is not generally true that div E=0

=d thas the term 2/px,(div E) can not be discarded in the above evolution




i O SO PO, SO 3 o e I G [EOP ST

equation for the electric field. In particular, if L=€(E)E = (€_+G,[jE )t
then div [(€0+€2||E|12§)] =0 and not divE=0 . In [15] however (page H49°
the author has tacitly assumed that div E==O even though he proceeds to
employ a nonlinear constitutive relation between f and E (and, thus, between
D and g) while in {16] the author begins with the standard Electromagnetic

wave equation,

2
- Q~é (€ E) =v° E
c ot - -
ikx., Siwt
assumes the form E==u(x1,xq,x?)e “e"*"“¢  for the wave, so as to reduce the

last equation to an equation for u(xl,x),x;\ of the form

Y

o] c
pik & -au+ (k- Eu=0
oX, .

and then assumes that the high intensity of the (laser) beam modifies the
dielectric character of the beam so that €==eo-+e? H§H€ this form for ¢ is
then substituted into the last equation for u(xl,x?,x3) s0 as to give

(modulo an approximation) the "appropriate” nonlinear Schrodinger equation for
u . The problem with all of this is that at that point at which the beam

has modified the character of the dielectric medium in which it is propagating,

so that
€=€,+¢, [E]

e
it is no longer true that div E=0 and the standard equation —%— Q—Q(GE)==v‘E

ke S0 dt
i5 no longer valid, i.e., the assumed form for E , E=ue e v e must be

~

tad

substituted into the more general equation

2
" §2(€(§)§2 =\72Ei - c/a;xi (aiv E)




with €(E)} ;eo-+€9jE‘ . Under these conditions the Schroiinger equation

derived in (15), {151 for the intensity u(xl,xj,x]) will clearly not result

and ioes not seem to follow from any reasonable set of approxinmations; a
rigorous demonstration of self-focusing for the beam described by E = ue
would therefore seem to hbc an cren problem.

We now assume that (0 is sufficiently smooth to admit of applications
of the divergence th-orem and we denote by v(x) the exterior unit normal to
A0 a% a point X€ Al ; we also denote by t(x) a generic vector in the
tangent plane to 0 at x€c¢O . The evolution equations (1.7) are to held
in some cylinier ax'0,T), T>C , in RL and we now associate with this system

a set of initial and boundary data. In (§ we require that

3

(1.1) D (%,0) = £.(x), wrt (x,0) = £, (), | x e @

.i:l,?,S

<]

~

Standard results from electromagnetic theory [9,§13] also dictate that if o

is a bounded domain in R3 then

o(x), (x,t) e oft x [0,T)

(1.1lsa) [D(x,t) » vix)]
PRy THlx,t) « tlx)] = 0, (x,0) ¢ 3 x 19,7)

Tq the st oF prelatisne (1,14), |F(g)1 derotes the “ung of the scalar-valued

tunction F across 3 ot x ¢ 30 while o0{g) denotes the density of surface

-~

~harge It the point x e 3Q; these boundary conditions can be written in an
s1toamative form as follows: 19 we let L (x,t) denote the icctric induction

ftield at points (x,t) e Ra/Q x [0,T) then (1.1l4a), (1.14b) are clearly

equivalent to




(1.1%)  D(x,t) - w(x) = D (x,t) = wv(x) = alxy, (x,0) ¢ o % 0,7)

CLIE)  ME™R(E, 1) = 1(x) = E (x,t) * tlx), (x.1) e 3t x [O,T)

wrere Bo(x,t), (x,t) e R/ x 0,1), ic the eler tric Ticld associated with

= (X,t). Inparticular, It 2 0 Q¢ BT, and /@ is filled with a perfect

= &
cotrductor (inwhich o= 70 = w) b (ouiba), (1L10b) reduce 1o

(h1sa)  D(x,t) + w(x) = o(x), (x,t) e & > [0,T)
(1.17h, AR, D Gt e () = 0 {gaty e M x [0,

In this peper we wizh to cunsider that pariicular subcise of the general
it las=toundary value moblem (1,70 (1,15, (1.dva,b) which eorpesponds to
the avsumption that the geometry of & is an infinite one-dimensional (non-
linear dielectric red); we want Lo investipate whether a smooth electric field,
which is perpendicular to the axis of the red, and depends only on variations of
the coordinate along that axis, can exist plobally, i{.e., for t ¢[0,»). We assume,
therefore, that the rod occupfes the configuration depicted in Figure 1, below.
The prooiem of consideriug n finite rod gives rise, as a consequence of the
aepropriate specializatiors of (1.16). to the impositinn of a priori smeoothness

rssumptions on D(x,t) at the plinar bcundaries of *he rad. We comment on this

situation at the end of 5§13,




W’? ' — R |

(1.15%a1)  D(x,t) « v(x) - Qh(g,t) Sovlx) = oo(g, (x,t) € svexiu)D)

(1.150)  A(DO,tDD0K,t) + £(x) = L (6,00 * £(x), (x,10 € 2 x [U,7)

* 2 . . . . . . .-
where I (x,t), {(x,T) ¢ R/ x (2,7, 1o the elertrie ficid associate! with

& ~

D (x,t). In purticular, if 2 ¢ Q¢ B, und §/% is filled with a perfect
. . b K ) .
conductor (in which [ =L = 9) tha (1.15%0), (1.15h) reduce 1o

L.ulea) D(x,1) - w(x)

~

1)

o(x), (x,t) € o x [0,
(1.16L)  AMDx,tN D (x,t) « 1(x) = 0, (x,t) € 3 x [0,7).

In this paper we wish to consider that particular subcasze of the genengl
init lil-Loundary value proplem (1,70, (3.13), (1.164,b) which corres;onds to

the assumption that the gecmetry of & is an infinite one-dimeasional (non-

linear dielectric rod); we want to investigate whether a smooth electric field,
which is perpendicular to the axis of the rod, and depends only on variations of
the coordinate along that axis, can exist globally, i.e., for t ¢{0,»). We assume,
therefore, that the rod occupies the configuration depicted in Figure 1, below.

ihe peo-lem of considering a finite rod gives rise, as a coasequence of the
ipropr:are specializations of (1.16). to the imposition ¢f a priori smoothnes .
assumptions on D(g.t) at the planar buundaries of the 10'.  We comment o ths

situation ut the end of §3.
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Specifically, we take for Q the tinite cylinder

IS
V4

-

T

(1.17) Q= {(xl,x2,x3) | x; real, i =1,2,3, -
6(x2x3) = Cy(const.)}
with generators parallel +o the X7 axiz and we assume that for scre small o >0

2n {(xl,x?,xg) | -~ <« X, < w}

2

ot ¢ 2 < < W 3 s .
c xl,“?,xg | X , x2 + x3

For @ we then take the (infinite) circular cylinder

2 VAN
+ Xy = §°. & > e > 0}

Y

! N: N . - <
(1.18) Q {(Al,kQ,x3) | <X < x

D )

and assume thét the annular region ﬁ/d between the dielectric rod and the
circular cylinder is filled with a perfect conductor; in & the dieclectric media
is assumed to be governed by the constitutive hypothesis (1.5). We want to
examine the possibility of there existing in the rod a smooth electric field
which is perpendicular to the x]X3 plane and hence, orthogonal to the axis of

the dieilectric; specifically, we are interested in smooth electric fields of the

form

{1019) E(X’,t.) = (\'),[':,‘(Xl,f).o), —o . xl Y

0f course, ia £/ we must have E = 0. In order to proceed with the reduction
of the evolution equations {1.7), which correspends to the situation at hand,
1

we wiil need some additional assumptions relative to the constitutive function

V. epecifically, the hypotheses on A which will hold threughont the rest of

this section are

PRI




(A1) A e cHRL ro,@)), AR > 0, v £ 0
(A2) o) | <w, Vi oeRY

(A3) 0<g (L) + \NZ) <w, Vie R

where X"c) = A0, z, O)), ¢ € Rl. By (A1) and the definition of A it is

immediate that A € C (R1 [0,)).
We now nrroceed with the reduction of the nonlinear evolution equations

(1.7). 1In view of (1,5,), (1.19), in @

1

<

(0,5,0) = AI(D 1, ,0,)

from which it follows that, in @, D1 = D3 = 0 and E2(x1,t) = A(Q)Dz(xl,xz,XS,t).

aD
2
However, div D = 577': 0 so that, for each t 2 0, D, can depend, at most, on
Xy 5¥5 As E2 depends only on %y
oE
2 _ 9
5 g (MDD, (g 5%,1)
3 3
= 5-)-‘1-— (A(O,)Q,C)D (%, 3%5,t) )
3
~ ) b
e (X0, 0x 25,09, Gy x5 ,0))
33,~ s % \
= (A'(D?m2 +R(0)) = 0.
3 <
h . : oD )
Bv hypothesis (A3) it then fcollows that P 0 and, thus, in @
(1.7 Bt = (0, D,y(x,t), 0)

In view of (1.70), not only is div D = 0 automatically satisfied in Q, but,

D At this point hypothesis (}»3) could be weakened to the assumption that
*
(LA(t))' #0 a.e. on R] and (1.20) would still obtain.




as is easily verified, so are the nonlinear evolution aquations {(1./} for
1=1,3, i.e.,

o,

9 J g = ) ]
e (grad A(D) - D) ey (&d A(D, G 1)) 02<x1,t>)

while (D), = VAA@D) =0 for =13, For =2 we then obtaln, for

-~ ¢ ¥ <o, and 0=t < T,

1
32D2 D %
PR = ) {
(1.21) M Bt2 (xlt) % [A(Dz(xl,t.) D2‘X1’t)]
32 b
= A, Gy, ED, Gy 0
8xl * +

In view of our assumption that the rod is intinite in extent, the boundary
conditions (1.16) do not come into play here. In fact to simplify the analysis
we will now assume that the initial data D2(x1’0) and ggn(xl,ﬂ), pdR IR ST
have compact support on Ql. Then, in view of the fact that hypothesis (A3)
implies the strict hyperbolicity of (1.:21), Dz(xl,t) will also have compact

sJupport on Rl, say supp D, ¢ (=§,8), for some &, 0 < O < for as long as

2

a emcoth solution of the injtial-value problem for (1.21) exists.

we oW get x, = x. D, F . Then, for the physicdl siteation leseriid
above ; the ialtial-bounaary value problem associated wi'h e coupled system of
vonlinear evolution equations (1.7) reduces to the follawing nonlinear, one-
dinensional, initial value probla on the  x  axis: Jind u o= alx,t),
-w < x <o )=t < T, such that

[4

? 2 .

I u ) W i
H—y (Alw), (x,t) € (~»,») x {0,

it ax >

(1.22) ulx,0) = uo(x), ut(x‘o) = VO(X)’ oy e
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*
where u > 0, X satisfies the hvpotheses (31) - (A3), and uo(x), vo(x)
have compact support on Rl. Any smooth solution of (1.22) will also have
compact support on Rl and, as indicated above, we will take the support of

u to be in the interval (-§,8) where 0 < § < =,




[y

2. Global Monexistence of Dlectric Induction Frelds

In thin section we will demongtrate that under the addicicnal hypothesic

on the constitutive function X(c) = A((“,C,O)),(z)

(M) For all ¢ e Rl ard some o > 2
o f% PA(p) dp 2 g'z'):(z),

smocth global solutions of (1.22), Z.e., solutions of (1.27) on (-=,») x {0,T1),
for all T > 0, will not, in general, exist; 1in fact,we will show that «nder
relatively mild assumi.ti s on the Initiei data,the L?Gw,d) norm of  ulx,t)
must be bounded from below by a real-valued nonnegative function of ¢ which
becomes infinite u:z t = t_ < o, Some growth escimates for solutions of the
initial-bound-am .z, problem (1.24), which are valid on the naximal time-
interval of existeace, will also be derived. 1In §3, we show that under stronger
assumptions on 3(@), than that represeuced by (A4), it is possible to
demonstrate via a Riemann Invariant argument that smooth soiutions of (1.22)

cannot exist globally due to finitc-time breakdown of the space time gradient

(u (x,t), u (x,t)).
X t

betore proceeding with the anclysis, let us note that it we et
I o .
wiZ) = LAY, C € Rl, an? (7)) = fg p(pdde then A7) 2 ') and hypothesic

(A4) 1is equivalent to

(3%) rfor all ¢ e Rl and some « > 2 wi(r) =z £'{r). ?

- -

e prool of the giobal nonexistenne results reterrcd to aborse now proceeas

via a series of lemmas, the first of which is just an enerygy conservation thecrem .

{or the solurions of (1.24). Thus, let J, 0<T <« be any coustant such that

TTtTT T ¥
Whiie this hypothesis is satisfied by »(c) = const. acne ol our results apply
to the livear wave equation, {.¢., sce the footnote following Theorem I1L.
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5§ > § where, by assumption, supp u(x,t) - (-§,8)1 thea we have
lemma 2. If we define the total crergy E(t) of the wyutem (1.22) by
y ¥ 2 ry ( t .5':
2.0 B =2 PR y,napiaxs [0t ) ok orap) dx

then for as long as smooth solutions of (1.24) exist,

u 3 ‘/ ” T UO(X) %
(2.2) EG) =5 [7f7, v (vdy)ax + [o s pA(p)dp) 4x

4

Proof . In view of the definitions of (g), IZ(Z),

(2.3 Et) = 5[0 (¥ u ly, 0y ax + [0 E (e, ax F
Therefore,
(2.4) E(t) = jg'cfx u, (y,t)dy) ( fx u,, (y,t)dy) dx

. 'u_m -0 -tyﬂ Y - 1t Y y

e 1 TG ) u et dx

aé
= yluly,t))dy) dx

= fi ( ffugjt(y,t)dy) (ffoc

+ f6 L' (ulx,t)) ut(x,t) dx

5 .
= [ﬂo(ff(nut(y,t)dy) Ylulx, ),  dx

+ IS ' (ulx,t)) uf(x,t) dx

where we have used (1.22) and the compact support of u{x,t) on Rl, i.e.,
b 8? X
| 5-7- pluly,t)dy = pluly,t).y |~
y

1"

Plulx,t)),x

- lim Wiyt | 0D
p-«)- on p
Wil

plulx,t)) .2

't

inn e Bt o+ e A s (| NN o B 0 1) A o
Gy e e >
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as y(0) = 3 by virtue of (Al) and the definition of . Therefor«

2.5 E) =[5 2 gttt [ uly, 0 x

- fs Yulx,t)) uf(x,t) dx + fd I'ulx,t)) u, (x,1) dx = 0

as w(7) = n'(¢), Y¢ € Rl, by definition, (0) = 0, and supp u - (~§,35),

§ < §. Equation (2.2) cthen follows by integration over |[0,t), the definition

of E(t), and the initial conditions. Q.E.D.

Our next lemma is concerned with establishing a certain ‘lifferential
inequality for a real-valued nonnegative functional defined on solutions u(x,tT)

of the initial-boundary value problem (1.22); namely, we have

Lemma 3. let u(x,t), (x,t) e(-w,») % [0,T) be a smooth solution of (1.2u)

and define

(2.6) P = ufS C[C uty,an? ax + sler )

vhere §, t 2 0. If Az) satisties (A1) - (AW), then for C st <T

.2 ,
2.7) Yo (v+LDE 2 =2(2y+41) F (B + 2E(D))
=2 . . . . . | . .
where v = == >0 (it o e constart whicon wrices i “l- constitutive
4

assurption (A4)) and E(0), the initicl energy, is given by the right-hand side

of (2.7).

ool By irect difi prntistion we have

(D




(2.8) F'(t) = ?u f_i (ft‘wu(y,ﬂdy) (f)_(wut(y,t)‘ly) dx b pCuer
and
(2.9)  Free) = o2u [0 (% Ju,ay? ax

+ 2y f_i (f’_(wu(y,t)dy) (f)_(mutt(y,t)dy) dx + 28.

Again, in view of (1.2'41), the definition of Y(Z), < R] , and the

compact support of u, we have

(2.10) () 2u j;l (fffmut(y,‘c)dy)2 dx

+ 2,@%(.{}_(m uly,t)dy) v (u(x,t)),x dx + 78

= 2u f_i ([fm ut(y,t)dy)‘ dx

+ fows-i—, {(ffm uly,t)dy)plulx,t))}dx
- 2f% ulx,t) plulx,t))dx + 28

=2 f8 YL uvaoay)? dx

- 2ff ulx,t) E (ulx,t))dx ¢ 28

By adding and subtracting 2« IC I (u(x,t)) dx on the right-hand side of the

last line in (2.10) we obtain

A(y.t)dy)":dx - 2a fiZ ulx,t)) dx

an o o = 8T

5 )
+ 2% (azulx, 1)) - ulx,0) I (uls, 1)) dx + 08

2 2u f_i(f)_(w ut(y,t)dy)2 dx - 2(1]_6_2 (u(x,t))

where we have used the hypothecis (A4) in the form given by (M4). However, in




P

view of the detinitions of E(tD, Il.e. (Uutu, anedl T2, ¢ ¢ R, *he lnegaca,

in (2.11) may be replaced by

{2.12) ™M(t) 2 2u [Z (f:_\’w ut(},’,t)dy)’/ dx
NPT CORNIES 3 F 0 TR RS RS P
= (2+a)u L;f (j"_‘)L w,(;'.t)dy)z dx
- 2a EC3) o+ 28

I of Lanma 2. Flodilv, we rewrlite

St

where we have used the erergy censervatlon ros

)
“

the last inequality In (2.12) in the form
’ 1 ol o) ] g X () 32 2 . :
2.13) PU(E) 2 (24a) [u [° (f7  u Gy t)ay)T dx + 3
> - C
-a [f + 2E(D)]
Combining (2.8), (7.13) and {2.8) we now cbt.in
(2.2W) FF" - (==)F

z (2+a) [-uf° (jxw (v, 1) dy) ax 4 Bl to)2]

2

£ L% .
® [uf“ Gf o, wafvas)y v mon 1

— ot

- (?2%a) {pj’° (]fw uly, Yoy (7 0w cei)dy) dx




= (2+a) :([u[i)Cffu, U(y,t)dy); e+ 3(or v

x [“f_i (I)_(w ‘Jt(y,t),iy)2 Ix + B] )

- (u[ﬁ)([fa 20 t)d) (ffu) uT(y,f)dy) A

- o TR + 2ECU)).

By virtue of the Cauchy-Schwarz inequality the { } expresiion in the last

inequality in (2.14) is nonnegative for all t, 3 s t <1, and,therefore,

L
(2.15)  FF" - &;3) P2y L ar(B + 2E(0)), O €t < T

The required result, i.e., (2.7) now follows directly from (2.15) if we set
Y = {(a=2)/4.
Q.L.D.
Global nonexistence of solutions to the initial-boundary value problem
(1.22) cain now easily be shown to be a conseguence 27 the iifferential inequality
(2.7) urd.r various assumptions on the initial energy E(0) and the initial

data (k0 JO(X). Te slmplifv the Heoussion v Introduce the notaticn
- !

: . 5 PSS
(.15 TCi) = ef° (0w fvdes) ax

C
(2.185)  Jlug,vy) = wl® uy{yday S SISO R

ar first series of results (Theorems T and 11) corcerp si*uations in which
elo) <0 ; while these results may be of some interest for their own sake they
are not relevant to the example in which, paralleling the ussumptions in

Tewnes, et. al., [14], Strauss {151, and “Lithve (1€ we have

*
A

JUEEE S S ¥
(C)=n *A.C 5 A 20 A, 26




*
(we must have E{0) » 0 for any such 1); results concerning the develodmen:
of sipgularities in the gradient (ux,uL) for chis sitauatior, {n wosch s
not genuinely nonlinear, are presented 1n 53 as an application «f Lome recent

work of Klainerman and Majda |211].

5 A(\’i) P it oo | P ’ . , * .
function X(c) = A((0,2,0)) satisiies (W1) - (AW. I Troe s i

3 uo(x) R
(217 [T wedde) dw s - S [T vty

then dwx = w(uyd) > 0 and t <« muer ih

ey jlutof s, z kG, =

Lo, 8)

where  LU,t_ ) denotes the muximal interval of existerce of u(x,3)  and

Lim 3(t) = 1 o,

Femark: As a conseguence of 12.18), ind the fact that G(t) tends vo + @

as t =+t it follows that ot < £, i.e., that the maximal interval of
o AN oo
evistence of u(x,t) i35 finite; it miy heppen, however. that o S te
o B

and thus, without strounger asoumstions on A{Z), we canwt conclude that

Wi,y or oy derdvativer il -l dn 0 OpThate prnoat b+t o (See
2311 10, [12 for o oclovant dlscasiaon o7 the re’st iy betwesn glotal
aneslist ace and Jinlte-tipe Liog-ap theorams for cowt oo o nonlinear

2yolution equations),

Moof (Theorem 1), In view of (2.17), Z{0) s 0, Thur, if we set B = 0 in

(.7) thls dneguality redaces ©o

i\
—

<t

max

N g i N
(2.1 Fa(t) fo (t) - (y+1) FO (t) 20, 0

ARG ufg. ([xm u(y,t)dy)Z dx. But (2.7% Ig oasily scen te be equivalent to
[ —r -

(0 (- "Yyn L
\.-20) x.o J (t} < C, IR :

max




WO SUCCessive
(2.21) FO—Y(t) <

or, 18 Yy > 0,

(2.22) r(t) 2

1t
©

t":

r
F

< |+

Also, ac supp u C

Clearly, lim G(t) =

QL

—————
Interations of (2,700 yield
Co Tyl T =Y :
=Y Ty (m }O(U)t + P (0), 01t 3 o
F (t) >n
.
p Ve =
: Y o =05(t),0st st
max

(0) T,

n T

b - _1_ Y ¢ ™
Y

0

(-8.8) and o ~ §

u(y,t)dy)2 dx = f& (f%_n(y,t)dy)/ dx

-6

Xy — X )
< )T kN () uT{y,t)dy) dx
-4 -8
GRS SR SRS K
< (f\ (x+8) "dn) ¢ (f (fk u {y,t)dy) dx)j
-5 T3
R 2
o Wy o vt axe
B
— 3/ = . -2 i
(2&) 2 . v,",é }\w Vv, t)dy = 48 L (v.t) dy
—'5 -'\(‘:
and therefore,
‘ L 3 . <
(2.24) ”u(t)w27 - 7%5 [O (ffm udv.rrav) dx.
L7(=8,63 46
. ]
The growth 2stimate (2.18), vaiid for 0 <t = t ax? with k= —-=5,  now
e 4us”

fcllows directly from (2.22), (2.24), the detinition of F”(t). the fact that




1

0, == < x < =0, and the observation that (2.17), (2.23) uad, rhus,

"

u(x,t)

(2.18) also hold as we let 8§ ~ §. Therefore, if supp u - (-6,%) then for
2

2
Lo (==, 8)
There are several other cituations in which *he cyn banie concioe ion. s

0.t <t fa(e)h 2 k(u3;8)6(t) with G(t) given by (2.22). DUFLD,
max
that expressed by Theoremn I, follows; wWe will examine two =uch sers of circun-
stances below which corvesponl *o situations in which we have, recpectively,
J(uo,vo) = 0 and J(ug,vo) < 2, with E(0) < 0 in both cases. Suppuse, first of
all, that E(0) < 0 with vq(x) =0, —»oyx<d; in this case we mav choose B = B,
such that 2E(0) + BO = 0 and therefore (2.7) reduces to (2.19) with Fo(t>
replaced by

. . _ L, . 2 ] 2
Pt Bysty) = ujg({-w uly,tay) ™ dx + 8, (r4ty)

Therefore, F(t: Bo,to) satisfies, for 0 <t <t

max >
FY(05 8411, 1%
‘7 ¥ . \ = H{¢
(2.25) r(t, Bo,tc/ > F'(O;Bn,to) z H{t),
1 —— - +
* ‘Y<F\C;B(\‘,t0/
0 that  1lim H(t) = + @  yhere
>t (1)
w0
. FUGsB. .t
o 1 TOY G
{(2,06) t (1) = 2 e
0 LA Y
o Y F \L,BC,MO,
s Ty + 8 t ?
- £<“~E_m 20
Y 2By,
We note that, in view of cur hynothesis,
'E- UO(X) _
(2.27) By = =2[" (fq"  wlpde) ax >0, § -8
"+ ic not difficult to sivw that the minim.n vaiwe of t, i) is achieved at
- . T(uo)

ta 2 Y 2
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and that

(2.28) t (t.) = ¢" -

Choosing tO = EO in (2.235) we have, therefore,

)2

(2.29) ufy XL uly,0an? ax + 8, (64,

<] =

. T 2\Y
1 - - i -t

rw(to)

I(uq)

Py
1 - f

v l(uo)

<+

for Ost<t . In view of (Z.z4), (2.29) we then have the growth estimate (let

max
45-;43)
( T(u.)
Y. 1 2 _ Mol 2
(2.3%) = o] e, N R
GRS ¢ P
T00)
U
2 - — — =
p' i
ARt
I
I
e
I(uo)
for 0 st st < —ex— , Where £ i glven by (7 .07) Lith 5 ropidced b
3 s 5 b
ndax )0 G

< and l(uO) by (2.16a), with & 1in place of &. The estimare (2.30) establishes
¥ oval nonexistence of solutions to the initial-boundary vaiu: protiem, vuder the

hynotheses (A1) - (24), for the case where the initinl dara satisfv

uO(x)

vo(x) 0, =« < x <8 and ffm (f pf(p)du) dx < Q.

G




Having examined the .uses where E(Ly < J witn i v - i and Buu) < U

0, ~w<x<d . we now want to lock at ihe situation where

with J(uo,vo) = 0, vo(x\

E(0) < 0, i.e.,

(2.31) ]_ém(IBO(X)W(p)dD) dx < - %f_‘:(f)_(w vo(y)dy)? dx

and J(uO’VO) < 0. In this case we may again choose § = ED such that

2E(D) + BO = 0, co that T(t; B ,t.) satisfies (2.25), with BO - BO, for

0y
C<t<t . Wenote that we now have
max
1(u.) + 8.t ¢
2.2) IR J S

where

J; ped o} § U”(X) ™
(2.33) By = - w0 vo{yIay)® ax - 2[ ¢/, p A(p)do) dx > G

x

and thus we must choose tU pd EO whare

- 1
(2.3%) > —=— |T(uy,v )
0 23-0 0o

Troieoa relatively simple metter to show that  t (t)) achieves a minimum at
, w

- ST T T T T ;
) teom T2 (TG vl 0 LT v B )
J /Q M ~ ! - .
~0
we: denote ‘.;m(fn) z Ed then we lhove the estimato i
1
(2.3 S uy,ta Yaw + B (+ + T)° |
(/.3 o uly,Ddy) dx + 8 "
G + BE DY 1)
> 0 070 Y 5 9
S - L ripYY
L=t 1 RN




for D St st and the companion estimate
max
. 1 2 = (2
2.37 — T . + +
( ) > [ || 2 BO(’L t)
(2 (=0,
X I(uo) )
2 ———— |
A—— R
(1 -1 t) Y
for 0 < t<t < T and glebal nonexistence of solutions to the initi:l-
max ©

boundary value problem (1.22) foliows as in the previous casec. We may summariie

the two results corresponding to the situation where E(0) <0 as

Theorem IT. Let u(x.t) be a solution of (1.22) and assure that the constitutive

)

function A(p)

A((0,0,0)) sarisfies (A1) - (A4). Then

u, (%)

0, ~w<x <& and f_‘sw(foo pf(p)dp) dx < 0,

il

(1) If VO(X)

I(u,)
. . e 0 .
1 ulx, i s <t < W i)
then u(x,t) satisfies, for 3 <t < ¢t < S ——BB—-, the growth estimate (2

where 8, 1s given by (2.27) with & in place of .
(ii1) If the initial data (uo(x), vo(x)) satisfy (2.31) and

S uay) (Y v (yddy) dx < O,
- 00 0 - 0

-0

rnen  uw(x,t! satisfies, for 0 <t st <t
max ®

, the growth estimate (2.47),

by (2.35), (2.16b), ae T = t (T} where

- . . . PR g
where F, 18 glven by (2.23}), t © 0

C
t {r.) is given by (2.37). In Loth cases (i) and (ii) .bove the respeciive
estimates (2.30), (2.37) imply that solutions of (1.24) cannot exist globally,

., Tor t e [0,),

We now want to consider situations in which

/ - 3 * X ? * 3 \
e(0) »0 (i.e., X(Q) =r_+X,&" , X >0, X,>0 .




Theorem III. Let {(C) satisfy (A1) - (A2) and define S, glu, vo" 4
in Theorem I. If ¢ (0)>0 with 3(uo, vo)>o and
L) u ,v ) .
$ ool e i)
Jiug
then no smooth solution of (1.24) can exist for all te[0,x).

Proof. Assume that a cmooth solution does exist on [O,o) . Then (2.7)

holds ¥t and we rewrite it as {set B =0)

(2.28) FF" - ('y+l)F'22- ?v'?(ay+1)F

N
where Vv =2g(0)>0

As F'(0) =§(uo,vo) >0 we have
_/
(FY)'(0)=-y F \Yﬂ)(o)F'(o) <0

By continuity (F Y)'(t)<0 for t sufficiently small, If(F Y)'(t)&0 for

*
as long as smooth solutions exist then dt =t such that
-yt * _nY ¥
FY (£)<0, t<t but (FY)'(t ) =0

*
We will show that this can not happen. Since F(t1>0 , tel0,t ] may rewrite

.8) as

"(Y+l)

CLm Ny 2 x
(27" <oy v (2y +1)F : telO,t !

on (0,t*) ., (FY)'(t)<u . Multiply (©.39) thru by “(F Y)'(t) , tel0,t*)
to vifain

Al

FNETY) 2y oy + DE (VD (7Y

or
3)

‘.\K p ftll)(}\)

*
This condition is easily seen to require thar pi(p)dp)dx be
euffiriently uegative; thus neither this result, or 4ny of ocur other results
of a similar pature, apply to the liaear wave equatfon ohbtained by taking

2y (1) = const.




A

“d

.; o 2y Df 3 y S}
== [(F) ') >ay (- (2941 F Q‘Y“)F'} =y VS == F Lyl

dt dt

We now integrate this last estimate over [0,t] , t¢[0,t*] so as to obtain
- 2 2 2 ~(Cw+L]

(s0)  LEN () -1 T OV () >a

where

(2.41) ¥, =v2F @YD) ) 157 1(0)5'2(0) - 1v°] >0

>
by our hypothesis on the initial data (v =2&(0)) . We now, factor the left-

hand side of (2.40) and write it as
(EN () +anl F OV ()75 g 50

Since (F'Y)'(t)so , tel0,t*] the first factor in (2..40) is negative for

tel[0,t*¥] and thus V¥t e [0,t*] the second factor is also negative. Thus

(k3 (P V) (1) <oyl T V) gy )22

At

- * -y, .
Hence ,z'(tA6 such that (F Y)'(t ) =0 &nd thus (¥ Y"'\t) <0 for as long as smooth

sulutions exist,which implies the estimate

L . - il oD - ;L
Gk LFETOYY) T > vy Y F (2y+1)
- o]

This last estimate is valid vt -as long as smooth sclutions exist. Therefore

. - o 2o a2 )
(o5 [y ¥ (YH)F‘]'Z %, +iy’y F Pytd) 4
~(y+l)_, (.L5) i
As -y K F' <Q ,taking the square root on both sides of {'.L%) yields

o ey FOYR s a2 2 e (yen) 1




3

- 3 o (w4 o
Cory -y F &+ F (-v+1))1/
But this clearly implies that
. . ) -2 2 (y+1) 1/
(2.48)  F'(t) > (4y"F(t) +¥ Y F (t))
for as long as smocth soluvions exist. Hence

F(t)
>t

(2.“9,‘ J'" dGQ ) 3
2 = 2
F(0) (4G +%_y ¢2(v+1y 1/

which implies a finite time of existence for any smooth sclution since the
integral on the left hand side of (2.49) is convergent YF
Cur last result is a growth estimate for smooth solutions of (1.24) which
is valid on ".o’tma.x ) , the estimate shows that under certain conditions on
the data, ‘ull” must grow quadratically in time.
L (o,L)
*
Theorem IIT. Let u(x,t) be a solution of (1.7:) with A(¢) satisfying (A1) -

(A'r. Then if €(0)>0, glu,v ) >0 with j“ﬁo(x)vo(x)dx> NI (J‘su;(x)dx)l/"

we must nave on O§t<tmax

(250 cape’y Ia)” > Hu ) +03/2 \/eioi\/']u;)'t +2€(0Vt"
L (0,L)

irocf. Wo begin with (2.%5), i.c.
~ p
PR (y+l)FL>2VC’(QY+1)F , O<t<t
ey - max

‘S

where o .:’«‘3(\_))>0

ty cur hypotneses: F(0) >0 , hence 3N>0 s.t.

F(t: >0 , te[ 0,71]




We multiply the differential inequality (Z.38) through ty

-Y(F‘Y)'(t)(F‘(V+2)(t))" » te [0,7]

and integrate over [0,t] , t<7 so as to obtain

(2.51)  [EN WP -3 FO D s 1 (0)12 -4y T Y (0) 50

by virtue of the definition of F(t) and the hypothesis relative to the initial

data. Factoring both sides of {(14) we have

(2.52)  LEN) 2w FY 1Y) () voyy 5OV

>[(FY)'(0)-2yv D 010 EY)  (0) + 240 p(r11/2)

and thus as
(FY () =- y FYPr sy <o, te lo,m)
(2.53) (FY)'(t) <-2yv F"(Yﬂ/?)(t) , t e 0,n]

nence, by continulty we can not have F(n) =0 , for any 7N>0

) 2.5 1
¢<t<t . end (2.53) holds for all t , OSt<t ..

From (2.52) we obtain directly the ectimate

/- )
Y27, o<t<t

12 .5k) F(t) > (vt +F
- max

A

t)]

0)]

Thus i-"(t) >0,

and the quadratic growth estimate now follows from the deiinition of F(t)

and the estimate

2 A8 x »
Il > -l 1T uly,t)dy) ax

17 (-= ,8)

4“6 0 -0
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3. Riemann Tnvariants and Finite-Time Breakdown of the Electric Irnduction Field.

In this section we otfer a brief demonstration of the fict that under a
*
slightly different set of assumptions on X (f),f € Rl, other than thos< repre-
sented by (A1) - (X4), it is possible in certain situations to apply th:: Riemann
invariant argument of Lax [13] so as to conclude that finite-time breakdown of
u, + 1 v' (u) u must occur, where u(x,t) is a solution of the initial-
u
boundary value problem (1.22); the requisite assumptions on »*(z), however,
2

cannot be realized in the case where A*(;) = AS + A;g . Ag > 0, l; > 0. In

this latter situation it is possible, however, to apply some recent results of

Klainerman and Majda [21] as we will indicate below.

In [13] iax considers the nonlinear initicl-boundary value problem on

ORI Ky )y, (6,1,
(3.1 y(x,0) = yo(x), yt(x,O) =0; 0sx<L

y(0,t) = y(L,t) = 0, t >0

. c s 1
Tris problem may be extended tc a pure-initial value problem on R™ x [0, =) by
extending y0(°), y(+,t) as odd functions to (-L,L) and then periodically, to

all of Rl, with period 2L. By setting U = Yy V=y, the resulting extended

. e 1. . .
i1irial-velue problem on R- 1s then easily seen to be cquivalent to a pure

1
L

initial wvalue protlem for a coupled quasilinear system on RT x [0,2), t.o.,

U 0 -1 8]
< + ( 2 ) ( ) = U
v/t K () 0 v/ x

/ U(x,0) ) (;(’)(x) ) ;0 the extension
( 7(x,0) 0 of y, to Rl

The eigenvaluer and eigervectors associited with the system (3.2)

are, respectively,
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P’

S I8!

S5Y gl

o

vV© o+
(3.4)
Ve -

3

at

where

along the

dx

Piemarin [nvariants

oquations ()

R(U,LV)

(1.5)
S,V

catisfy R~

s

It 15

istic curves

zo that I, 3nd hence

stem iz hyperboli

iggonalized in

- K(U) %;— and

right and left-hand

exp(AIR =~ sarisfies 7= —[(nxp(—H))SRJZ; where SR =
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+ KUY  and

)

c if ard only 0 V(L) > H,vE o RO Also, th

. (o8 : . [ . N — M M ~pe -
a fmiliar wiy a2 oau to vield the systen

XHU” = 0
onut = 0
a ~
Sz §¥»+ K 5 Jenote, respectively, Iitfrprenti

characteristice defined by the ordinay Jiflcrent’

Haing (3.5 one then chows In the standard way thot the
g Yy

n

v o+ fg X(g) dg
)

V- [ K@) ar

shown in [13] that with a suitable choice of H = H(RA), tin

M<//u

AU

Ry, nust breakdown (blow-up) in finite time if JIC > O

= (U

)

iun

N, i.e., that they are constant alons the respective character-
) s Y 7,

soch that !(cxp(-H)6K| > C; this dast condition, un the other hund, turns ot

15 be a4 concequence of the assumption that e > 0 cach that

for/otl = € > U,V e R]. finite-time breckdown € ¢ R} then [mpolles {inite-time
oreakdown for at least one of the second-order decivatives v ot ot

scuation  yiv,t) 1o

n

RU Ux + R

et

(
\

the nonlinear initisl-bounlary value pratlen (2.1) as

v Jx

K+ v
X b

K(vy)yxx f yxt
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Suppose that we now reconsider the ini—ial valuc preblem (102

and recall that as a consequence of the fact that supp u(x,t) « (-¢,z) 1
X
wl oy

- 0O

1’(y,t)d' = lp(u(x,t)),x = w‘(u)ux(x,t), for ~x < x « ~ where

1 B
v(g) = z\*(c), VréeR . If we set i

1}

(2.8) vix,t) f)fw u, (y,tidy, t 20

. X 1 h
then, clearly, vx(x,t) = ut(x,t) and vt(x,t) = f - utt(y,t)dy = "—Iw'(u)uxkx,t).

Also, u(x,0) = uo(x), vix,0) = ffm ut(y,O)dy ffw vo(y)dy. Therefore,

the initial-boundary value problen (1.22) for u(x,t) is easily seen to be
equivalent to the following initial-boundary value problem for the pair

(ulx,t), vix,t)):

th -v. =0 -m <y < ®™
(3.7 X
- 2! = :
Ve v ¥ (u)ux 0 tz0

u(x,0) = ug(x), vix,0) = f)_(w vo(y)dy, ~e < X < ®

u0,t) = u(lL,t) = 0, t 2 0

The system (3.7) is clearly of the same form as that considered by Lax [13], i.e..

(3.2), if we assume that er(x) T, =% < x <>,




Thus in standard matrix form our system (3./) is

u 0 -1 u ‘-%'< x<ow
+ A
<v ),t (- ilzw’(u) O) ( v) \X ' t oz
u(x,O)) So<x)
= y = ® L X < ®
<'v(x,0) < it )

In comparing {3.8) with (3.2) we clearly have the correspondence

(5.8)

7
K (2} = % p'(g), ¢ € Rl, and thus (3.8) s a hyperbolic systen if and only if

w

W) =AM + Mo >0, Vr.r

)
%

which is precisely hypothesis (A3). The Eiemann Invariants 3sconiated with the

system (3.8) are, clearly, given by the expressions

ata,w) = v+ =2 2 Ao

*/—_H
(3.9)
stu,v) = v - /‘__l. ﬁ)l U p)an
"

arct *hey satisfy a” = 3" = 0 along “he respective chacacteristics wiven iy

) . o S i
e - ¥ 3 R 3 fgt J
- 7T L. ot ] : AN = - i
o~ tv/y_}u/ where S oy T/ 3% and -y + S ot
&ke Vau ) ! 2 St

; the resulte in [13]1,which we have describel ahov. i o=t e Leakdown

(blow-up) or

—_———

1 v
no= v+ -—— v Pl
X X r‘u X

(3.10)

= Ut + :/_'—-_‘ /_d;—‘—(.u-)—ux
]




. ! )
will occur 1f, V7 €R (this is actually needed only 77 sufficlentiy,

small, H the Inftial data is small, as we indicate below),

aq

< =\l 2! e N
]5 (2= @) = 4 )
N ' 2! '/Wy

¢
-

1 by
= —— s W) | 2 e

2T

for some € > C. Using the relationship Letween A(7) and ¢(7) rriy 1a s

el . . . . & 1 . .
condition 1s equivalent to the requirerent that A(Z),yv ZeR, satickyy tor Lone

e > 0,
* & ST
(A%) X" g) + 2X' ()| = evgh' () + A(g),

It alsc follows from the work of lax 131 that

4 f}; i} . YU (1))

t ,
rmax ug(x) " (G

max-

As ¢'(r) = TA'(D) + i(C) and p"(g) = Ci"f;) + 2?'(;),»‘@ € Rl, we clearly

ot
TUST require that M(g) satisiy

oo o s
(AB3} 0 <A(0) <o, € <ANW <@ XD < o
g
/- AN i
Lioowhick fase frﬁy - F:fﬁﬁﬁzi, ;QLL_ . Now, it g simple matter to saow i
H 4 X «U J A'(',‘) i
that the a priori estimate 7 {(x,t), + 's{v.t T I L N B L AP X S SNAD IR TR P P
X X
on (-w,x) x Ko'tmax]' By virtue of the definitions .3.3) similar a priori i

e

rt

imates held for u(x,t), v(x,t),
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e Fi 3 mr e Ak

1 ' o
and thus lu(x,t)' and viw, by will be small o ey r

if sgp!u(x.O)l is sufficientiy small. 1t then follows that (/5) rieed

only hold for some ¢ > 0 ana all 7 ¢« Rl which are sufficicatly swall

ok * * * *
in magnitude. Now, if 2X(3) = * 4+ 2 o, a4 > 0, & >, © + 0, then
0 1 0 1
(A5) becomes
* v TTx
N AT
(3.11) 28, 2 1o XO
which is certainly satisfied fer lc: ~ A, A >0, if ¢« - 0 is chosen
* *
sufficiently small. In this case %{r) = ot Alcz so that ."(C) =

*
ZAl # 0 and the system (3.8) is geuuinely nonlinear. However, if

*( ) K + f 2 t 0 5 0 t (A5

(7 = \ L > s > ) 5 g

A% 0 2@ . 0 A2 then (A5) becomes
* % 2 *

(3.12) 6x. 1zl = e/3n i+

2 2 0

which cannot be satisfied for any ¢ > (0 even as IQ! » 0. The essential
problem here is the lack of genuine aorlinearitv vis a vis ¢(4) which in
. * * 3 ) * .
this case is ¢(7) = AOL + )2; (so that 1"(1) = 6, which vanishes at
“~
/, = 0). In order to obtain finite-time breakdown of smooth solutions to

initfal-value problems for the quasilingar svstem (3.7) on R], when the

1 X
data u(x,0), v(x,0) has ~cmpact suppore in R, and ¢(3) = i () =
*> * 3 * * : .

\OC + \QC s A 0> 0, kz > 0, we may appeal to a 1ocoat result of S,

Klainerman and A. Majda [21i. Statea in terms of the in-tial-value problem

for the diagonal system associated with e Rivvann Trvaridnns, l.e.,

)t' - _r)-'l_ - L'_ a.:l. = (‘
ot u AX
(113 —
34 ' 34
A' = == 4 /@L. 285 - 0
at uo o




where 21,4 are given by (3.4), the relevant result in {71] says rhit anv

¢! solution of (3.13) with C' inital data 1, (x) = (x,0), ,(x) = 3 (x,0),
having compact support in Rl, must develop singularities in the first
derivatives nx, 5x in finite time provided ¢'(7) 1is not constant on any
open interval; this last condition is, of course, equivalent to having

¥"'(g) # 0 on every open interval - which is certainly true for the cubic

$(g) of our example. It is worth ncting that as with the work of Lax [131,
the work of Klainerman and Majda [21] was done with the nonlinear wave equation
in (3.1) in mind and, as in [13], the development of singularities in the

first derivatives nx, Ax leads to the pradiction that scolutions of the
initial-value problem for (3.1) with C2 initial data having compact support
in Rl must develop singularities in the second derivatives yxx, yxt'
However, as is the case with the work in [13], the results in [211] now pre-
dict that solutions of the initial-value problem (1.22), with C1 initial-data

having compact support in Rl, must develop singularities in the first deriva-

tives u , u_.
X t

Remarks. 1In closing we offer a few commeuts concerning the problem of proving
2lobal nonexistence of smooth electric induction fields of the form (1.20) in

4 finite rod occupying the configuration 0 = X L. The relevant one-
dimensional equation is still (i.2!) but now we must take account of the impli-
cations of tha boundary conditicons (1.16), assuming as before, that the rod is

embedded in a perfect conductor. At tie plunar boundary at x, = G,

v = (-1,0,0), t = (0,1,0) and thus by (1.16a) with x =0, f(xz,x3) = Cl

1
14 . = : Y. (. =
(3.14) D(x,t) * v x,=0 [(0,D,(x,,¢),0} + {~1,0,0)] x,<C v
t>0 ,t>0
pra——
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s0 that f(x,t), the zurfac: charge density at xl = 0 wuoi vacish or
t > 0. An analogous result hclds at x, = L where v = (1,0,0}. In order
to satisfy the boundary condition (1.16p) aloang the planar face ar %, = 0,
for t » 0, we require that
(3.15) X(D(x,t))D(x,t) + t
X LAY Ax. =0
|1
"'t 0
0,5 (x,,t)D 1,0
= (0,0(p,(x ,0)D, (x,.),0) <o,1,o>%xl=o
t>0
X )0
= R,k 0, (O |
1
t>0

= 0’

from which it follows that DZ(O,t) =0, t > 0. In an enalogous manner we
have DQ(L,C) = 0. 1In place of the initial-value problem (1.22) for

u(x,t) - D _{x,,t) we then have the initial-boundary value problem

271
2 2
( N . '
u 3.% . 38 5 (uA(), Got) ¢ < 16Ty
st 3x
(3.17)
uv0,t) = u(L,t} = 0, t -0
\ll(x,O) B uﬁ(x)’ u (x,0) = volﬁ(;r ¢ ¥ 1.

and, in addition, because of the embedding of tie rod in o porfece conductor,
supp u © fO,L]. The principal difficulty that arises iu irviag tc¢ appiv che
analysis of both this and the previous sectiun to eltiur (3.19) or the nure
‘nitial value problem that results by makiug the usu:l onzensivnas of the foltial

) 1 S
data, first to [-L,L] and theun to all of R withk period L, revolves

x . . .
around dealing with the integral f . ur'(v,t)!y Shich, 10 the analysis or the
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P . ) N : . . .
infinite rod, 1is equal to ; ¥ (u;ux(x,t). It, as is customary in trying ic
F

prove breakdown of smooth solutions, we assume that u{(-,t! is of class

2 1 . .

€¢°, for all t >0, on R then integration across the planar - andaryv ar
Xy = 0 forces upon the analysis the a priori assumption that net on:v
u(0,t) = 0, t >0, but also ux(O,t) = uxx(O,t) =0, t >0 is un-
likely that any classical solution of (3.16) could exist under suc: circum-

4 .
stances.( ) We hope to address the problem of global nonexistence of smooth

solutions to the initial-boundary value problem (3.16) in 1 future paper.

[P

PR

(A)The author is indebted to Prof. Morton Gurtin for this observation. .
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