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Cubic Spline Approximation Techniques
for

Parameter Estimation in Distributed Systems

H. T. Banks, J. M. Crowley, and K. Kunisch

ABSTRACT

Approximation schemes employing cubic splines in the context
of a linear semigroup framework are developed for both parabolic and
and hyperbolic second order partial differential equation parameter
estimation problems. Convergence results are established for problems
with linear and nonlinear systems and a summary of numerical experiments

with the techniques proposed is given.
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1. Introduction.
In many problems of practical importance one is confronted

with the task of estimating unknown parameters in mathematical models

from certain observations of the underlying physical, biological, ctc.
phenomenon being modeled. This paper is devoted to the study of spline
approximation techniques for the identification or estimation of constant
parameters in partial differential equations. The results presented

here are actually the outcome of investigations partly reported in [9]

in which a theoretical convergence framework was developed and applied

to treat ''modal" approximation schemes for identification and control.
Here we use the theoretical framework of [9] to treat spline based
techniques that were developed and tested simultaneously with the 'modal"
methods of [9].

Two specific classes of problems are investigated below. In
section 2 we treat an identification problem for a class of parabolic
equations, whereas results for hyperbolic equations are given in section
4. Sections 3 and 5 are devoted to discussions of the implementation
of the approximation schemes along with numerical examples involving
parabolic and hyperbolic equations respectively. In both cases
interesting technical questions arise. If the parabolic equations
arc studied as a system in the usual L2 state spaces, then fit-to-
data criteria involving only integral terms can be treated with relative
case, whereas fit-to-data criteria that employ point spatial evaluations
(which are often used in practice) present some essential difficulties.

In the case of hyperbolic equations, the semigroup-theoretic approach




that is taken in this paper leads to a state space with inner product

depending on one of the unknown parameters of the equation. For this

reason it is desirable (in other problems this is essential - see the

discussions regarding certain unknown function space parameters in

f4] and [9]) to develop parameter dependent convergence results in the
context of a parameter dependent state space framework.

In our presentation below a number of numerical examples are
given to illustrate the theoretical convergence results. For a survey
of the potential uses of our semigroup-theory based parameter estimation
techniques to problems in a number of specific areas of applications
(e.g., reservoir and seismic engineering, large space structures,
transport models in physiology and population biology, elasticity and
others) the interested reader is referred to [4] and a monograph that
the authors currently have in preparation.

We defer until section 6 below a number of comments on other
work related to the ideas presented here.

The notation used throughout this paper is rather standard and

follows closely that explained in [9]. For norms of elements in Banach

spaces we use |<|,whereas || * || is used for operator norms. We shall

occasionally use a subscript such as to distinguish a norm in the

.lB

space B from other norms. The standard practice of denoting the usual

norm in Lp(O,l), p=2,%, by -Ip will be followed.




2. A class of parabolic partial differential equations.

As a first example for the techniques that were mentioned in the

introduction we consider the heat equation

q
(2.1) u, = (D DY) + qu + £ag,t,x,u), for t> 0, x€ [0,1],

with boundary and initial conditions,

(BC) u(t,0) u(t,1) = 0, for t > 0,

(IC) u(0,x)

qio(x), for x € {0,1],

where u = u(t,x) € R and D = %%-. We assume that (2.1)-(BC)-(IC)
models a phenomenon for which we wish to "identify" or estimate the
parameter vector q = (ql,...,q4) € Qc R4 from known measurements
v = {f(ti)};=l with ?(ti) € R™ taken at times t; in the fixed interval
{0,T] of observation. These observations ?(ti) correspond to values
C(ti,q)ﬁ(ti,q) in the mathematical model where C(ti,q) is a real
m % ¢ matrix which is continuous in q for each t, and

£(t;,aq) = col(u(ti,xl;Q),---:U(ti,XQ;Q))-
Subsequently we shall give conditions on f that guarantee the existence
of a solution u of {2.1)-(BC)-(IC), which will also be denoted by
u(+,*;q) whenever we wish to emphasize dependence on q. Since the
problem of determining a vector parameter q € Q such that
}(ti) = C(ti,a)g(ti,a) for all i would most often lead to an unreasonable
and mathematically ill posed problem, we formulate the problem of finding

an estimate q as an optimization problem in the following way:

r
(ID) Minimize J(a,u(*,*;a),y) = I w. [¥(t)) - ccti,q)E(ti.q)iz
L

1




over q € Q< R4 subject to u(*,*;q) satisfying

(2.1)-(BC)-(IC) on [0,T] x [0,1]

In the above formulation of the cost functional the weights
>0 . .. m
Wy can be used if needed to compensate for a priori known extreme

behavior of the solution, as for example, exponential growth or decay.
(For simplicity, we take w, o= 1 in all our discussions and examples in this paper.)
The cost functional that 1s chosen here is but one of the several that

are of practical relevance. The one that we chose for our presentation,
however, exhibits many interesting technical difficulties (due to the
use of point evaluations); in fact, our final convergence result, when
used with this functional, requires restrictions on f (dependence on
t, x is allowed, but no dependence on u is permitted). For the case

of cost functionals involving distributed measurements as,for example,

r l

J{q,u,y) = Y I ]u(ti,x;q) - y(ti,x)lzdx, our approximation results are
i=1’0

valid for equations containing quite general nonlinearities f (see

(o).
Before we formulate the identification problem in the Hilbert
0 1
space X = H° with inner product <§0,W:>= f k(x)p (x)y(x)dx and asso-
0
ciated norm {+|, we summarize the hypotheses that will be needed through-
out this section. We denote by H' the usual Sobolev spaces over (0,1)

0 which will

as discussed in [ 1]. The function F: Q x [0,») X H0 -~ H
be used below is defined to be the composition map F‘qg,t,v) = f(q,t,*,v(+)).
Further, for a given parameter sct Q, we let Q4 = {q,: q = (ql,...,q4) € Q}.

Our hypotheses are listed for easy reference as follows:
(HQ) Q 1is a compact subset of R4 and there exist positive

numbers q% and qg such that q € Q ¢ R4 implies




(HP) The functions p and k satisfy p € C°[0,1], k € C[0,1],

with k(x) > 0 and p(x) > 0 for all x € [0,1].

l

i (HF) The nonlinear function F satisfies

!

; {i) for each continuous function u:[0,T] - X and each

q € Q, the map t -+ F(q,t,u(t)) is measureable,
(ii) for each constant M > 0 there exists a function

k1 = kl(M) in LZ(O,T) such that for any q € Q we

have
|F(q,t,u;) - F(q,t,u))| < k (t)]u;-u,|

for all u; U € X with \ui‘.i M,

2

(iii) there exists a function k in LZ(O,T) such that

2
IF(q,t,v)] < k() ([v] + 1},

: for all ve X, q€Q,

0 5 U g

(iv) for each (t,v) € {0,T] x X the map q » F(q,t,V)

is continuous.

In [ 9] we have detailed conditions on the perturbation f
that guarantee (HF). For our parabolic systems, statement of the con-
ditions of (HF) in terms of f are rather obvious except in the case
of (HF)(ii) which requires a global Lipschitz criterion for f with

. respect to u due to the fact that we are using the L2 norm in the

local statement of (HF)(ii) for F. We note that as a consequence of

(HP) the spaces X and HO have equivalent norms.




We shall consider the semilinear equation

dul®) . A(qiu(t) + F(q,t,u(t)) for t> o0,
(2.2) dt
U(O) = UO(Q) = q4¢ »

q
where A(q)W=T1 D(PDY) + q¢. with dom A(q) = {y € HZ:W(O) =y(1) = 0}.

Under (HQ) it is well known that A(q) 1is the infinitesimal geucrator

of a linear Co—semigroup T(t;q) for each q € Q. We point out that

we have used the letter u in two different wavs: In (2.1) u = u(t,x) €R,

whereas in (2.2 n(t} or wu(t;q), if dependence on q is emphasized, is
an element of X. This should not create any ambiguities, since the
notion of solutions of (2.1)-(BC)-(IC) or (2.2) will be fixed throughout

the paper to be that of mild solutions. We recall that t - u(t;q) is

called a mild solution of (2.2) on [0,T] if it satisfies

t
(2.3) u(t;q) = T(t;q)uy(q) + f T(t-s;q)F(q,s,u(s;q))ds,
for t € [0,T]. Under hypothesis (HF) one can easily demonstrate

existence of a unique solution to (2.3)e.g. see [ 9] The relationship

hetween mild and strong solutions of (2.2) and classical solutions of
(2.1)-(BC)-(IC) has been the focus of many investigations and we only refer
to [15] as onc possible reference. We are now prepared to formulate the

abstract identification problem associated with cquation (2.2):

(IDA) Minimize J(q,u(+;q),y) over q € Q R4 subject to

u(s;q) satisfying (2.3) on {o,1].

An mnavoidable difficulty with parabolic problems now becomes
. _ 0 .
appavent. We consider (2.2) as an equation in 1f  and a cost functional
J which involves point evaluation, an operation that is not well-defined
N
"

on Ho. Moreover, it will shortly become evident that q =+ q* implies

N N :
u (t;q ) » u(t;q*)", where uN(t;q) is an approximation to wu(t;q) in




B el

X, is an analytical statement of central importance in our approach to
the parameter identification problem. Convergence of uN(t;qN) to
u(t;q*) in X, however, clearly does not imply the desired convergence
of the cost functionals J(qN,uN(';qN),;) to J(q*,u(';q*),}). As a
quick remedy to these difficulties, one might be tempted (this is not
our remedy) to set up (2.1)-(BC)-(IC) in a state space with a stronger
topology. This would involve a more complicated inner product, of
course, and consequently lead to a more complex structure for the matrix
representations of the approximating finite dimensional problems, a
feature that is highly undesirable from the numericual point of view.

With regard to the point evaluations used in J, we note that
as a consequence of the 'smoothing effect' of parabolic systems, under
(HF) one can use the theory of monotone operators to argue that
u(t;q) € dom (WI - A(q))l/z < Hl, for some @ > 0. “thus point evaluation
can be justified; this is discussed in more detail in [9]. For a
solution to the second of the above-mentioned difficulties see Theorem
2.1 below.

We now explain a Galerkin approach employing cubic spline
subspaces to solve (IDA) iteratively. Given a value of N and a vector
qQ, we seek an approximate solution to (2.2) in XN = span{Bg,...,Bg}
of the form

N N N N N N N
(2.4) u (t;q) =.§0 ws (t)B, =E0 wy (t50)8;
where {B?} is the set of cibic spline b;sis functions appropriately

modified to be in dom A(q). More precisely, let aN - {xi}?=0 with

x, = % , for 1 =20,...,N, and let 5?, j=-1,...,N+1, denote the
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standard C2(0,1) basis elements for the cubic B-spline subspaces i

of dimension N+3 with respect to the grid aN (see p. 208-209 of {17]).

Then B? is given by

[ BN:E’;,for 2<j<N2,

j
3 N _ <N =N N _aN
‘ By = By - 4B", B - By 4BN+1,
] N _ N NN N
i 1‘0'4B’BN-1'N 4By -

Note then that X\ = sse™y = (o € s3@aNy:000) = 0(1) = 0,

where SS(AN)

1]

{¢EIC2(O,1): ¢ is a cubic polynomial on each interval [xi’xi*ll}'

The approximate solutions to (2.2) are determined from requiring

that for all z € XN, we have

sia i o

M), Cag @, + (Fa e,
<uN(O),z>=<q4¢,z>

or, equivalently,

IRCACENEDE ! 0<w @A@BY, B >« ra,tu' )8 D,
< NOENADIERCNE A

This, in turn can be written in matrix form as

(2.5)

u
Il MZO

NeN

W) = V) + RVt uN ), ‘l
(2.6) N N N |
QW (0) = R'(a0) , !
where -
N _ N N 1
N _ N N j
(K 5= By AfBS ),
®%, = v, 8] ),

"
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N

and wN = col(wN N,...,wN).

0’ 1
Alternatively, (2.6) can be viewed as the result of projecting
the original problem (2.2) onto the finite dimensional subspaces XN.

In terms of projections, we can write the Galerkin equations in the

form
Hey = AN ey +PFeg,t,uN ()] for t > 0,
(2.7) N N
W (0) = [P'(q,0)],
where PN: X+ XN denotes the canonical orthogonal projection along
1
(XN) , AN(q) stands for the matrix representation of AV - PNA(Q)PN

and {[+] denotes the coordinate vector for an element in XN

-1.N

thus, AN = @I and [PY] = (@ 7'RV@) for ¢ € X,

Since AN(q) is a bounded operator, it clearly

N
N .
generates a semigroup TN(t;q) = eA (@)t . Moreover u (t;q)} will

satisfy (2.5)(equivalently, (2.6)) on [0,T] if and only if it satisfies

t
(2.8) Wesq) = TP @) f ™ (t-53q)PMF (g, 5, (s39) ) ds.
0

Standard Picard iteration arguments yield that unique solutions uN(~;q)
of (2.8) exist under hypothescs (HF).
In light of the above discussions, we therefore formulate the
approximate identification problems as:
(10A") Minimize J(q,u"(+;Q),y) = ‘§1!§(ti) - cee 8N 0l
i=

subject to uN(°;q) satisfying (2.8) on [0,T], where

N _ N . N )
£7(t,,a) = col(u(t,,%;3q),...,u"(t;,%p5a)).

Using the continuous dependence with respect to q of C(tfg) and
uN(ti;q) for each i =1,...,r, one can easily argue continuity of

q -~ J(q,uN(';q),;) and consequently, by (HQ), there exists for each

Gt XN
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N a solution ﬁN of (IDAN). By compactness of Q we can extract a
convergent subsequence, again denoted by ﬁN, with iN +q € Q. In the
remainder of this section we shall concentrate on proving that for any

arbitrary sequence {qN} c Q,

(2.9) limIqN - q*| = 0 implies 1im|uN(t;qN) - u(t;q*)|, =0
N0 Nooo
or (in the event one employs J for the fit-to-data),
. N . .. N, . N i .
(2.10) lim{q - q*| = 0 implies 1lim|u (t;q ) - u(t;q )lx =0
N-»o N-oo

for each t € (0,T]. We remark that for the problems considered in this
paper we have uN(t;qN) € H3 and u(t;q*) € H1 so that the norms in
(2.9) and (2.10) can be employed without loss of meaning.

Once (2.9) (respectively (2.10)) is verified it follows immediately

that a is a solution of (IDA) (respectively of (IDA) with J replaced

by J) and that 1§m J( iN,uN(~;aN),y) = J(q,u(*;q),y) (respectively,

. w, =N N N, N - -0 N N, -N, *
Lin 3(35uN(38),) = J@u(50),y)).  Indeed J@ U3,y <

J(q,uN(-;q),y) for all q € Q and all N. Under (2.9) we have that
lim]uN(t;aN) - u(t;q)|, =0 and lim]uN(t;q) - u(t;q)|, for each t € [0,T]
N-o0 Noco
and q € Q. Consequently, taking limits in the above inequality we obtain
J(a,u(-;a),y) < J(q,u(-;9y) for each q € Q, so that a is a minimizer
of q ~ J(q,u(*;q),y)

Since u(t;q) and uN(t;q) are solutions of (2.3) and (2.8)

respectively, (2.10) will follow easily by the Gronwall lemma and Lcbesgue's
bounded convergence theorem, once we have shown
(Hi) IITN(t;q)!i S_Mewt , with M and w independent of N and q,

(Hii) PN + I strongly in X, and

(Hiii) TN(t;qN) + T(t;q*) strongly in X and uniformly in t € [0,T],

for any convergent sequence qN + q*.

For details in a more
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general setting, we refer to [9]. Due to the special choice of
AV = P¥APY e find that (Hi) trivially holds: indeed ||T(t;q)| < €

with w = max q, - Then, since <<ANW,¢:> = <:kPNw, pr>> < wlwlz it
q€eQ -

immediately follows that (Hi) holds. The usefulness of this classical
argument in the context of general approximation schemes for dissipative
operators was apparently first noted in [ 7 ].The strong convergence of
PN to I 1is established with the aid of three lemmas. The first is

a statement of the standard cubic spline-interpolation error bounds, the
second a statement of the useful Schmidt inequality and finally in the
third lemma we will establish (Hii) on a dense subset of X. That (Hii)

obtains then follows from the uniform boundedness of the sequence of

projections {PN}

Lemma 2.1. [20p.54).1f z € H4, and INz denotes the cubic spline inter-

polant of 2z in Ss(AN), then
lz - I 2,2 < C N ,D 2,2 ,
[D(z - I z)[2 < C N [D z|2
]D (z -1 z)|2 < C N ‘n 2]2 ,
where the C, are constants independent of =z and N.
Lemma 2.2. [20,p.7]. 1If p, 1is a polynomial of degree n = 1,2,3 on
{a,b], then

®Iop_ ) 1%x < k_(b-a)"2 [°p_ ()%

, pn X < n -a f P, x)“dx ,
a

with kn a constant.
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Lemma 2.3. If z€ H(l)n H', then

N S -4y 4
[Pz - z] < CN |Dz|2,
|D(PN2 - 2)| < CIN-S(D4zl2 ,

P 4
IDZ(PN: - 2)| < CN 2[0 z[2 ,

-~

where the Ci are constants.

N . .
Proof. Let z ¢ Hé n H4 and denote by ™z and Ioz the interpolating

3, N N . .
cubic B-splipe for z 1in S°(A>) and Sg(A ) respectively. Using the

N S I
boundary conditions we have | PNz-z| :'|Igz-zl = |I"z-2] f_/f'CON D z|2 ,

! where k = max{k(x)|0 <x <1}. This implies the first estimate with

3 1/2 »
E C. = EEELJ£L§) , the extremes being taken over x € [0,1]. To verify
0 O\min k(x)

i the second estimate we make use of Lemmas 2.1 and 2.2:

06N - ) <K ez - o), < KoM - ol '/lf'lo(l’;z - 21,

|

! < ¥ Eks N\PNZ - Igzl2 + /??ID(INZ - Z)]z

YRk N(IpN, - 2fy + |z - Igzlz) iloa: - 21,

I A

A

/5 -3y 4 = =314
2Kk N7OC[D72], + k CN"?[p%z ], .
This establishes the convergence of the first derivative of the projected

elements. The final estimate can be argucd in a similar manner.

Having thus established (Hii) we next turn to (Hiii). It is

convenient to use the following version of the Trotter-Kato theorem.

Proposition 2.1 (14]. Let (8,]+]) and (8",]+] ), N = 1,2,..., be

Banach spaces and let ﬂN: B-+BN be bounded linear operators. Assume .
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further that T(t) and TN(t) are linear Cy - semigroups on B and
BN with infinitesimal generators A and AN respectively. If

i) im |72, = |2| for all z €8,

N-Ow

~

11) there exist constants M,5 independent of N such that
IITN(t)QIN < Mt |, for t > 0,
ii1) there exists a set D < B such that D c dom(f), P = B and

(AO - A)p = B for some AO > 0 and for which for all 2z € 0 we have

higllNﬂNz

then limeN(t)nNz
N-aco

N
m Kz[N = 0,

nNT(t)sz =0 for all z€ B, uniformly in t

on compact subsets of [0,o).

Proposition 2.2. Let {qN} < Q be an arbitrary sequence satisfying qN" q* as

N »® . Then the semigroups TN(t;qN) and T(t;q*) generated by AN(JQ)
and A(q*) respectively, satisfy
N N
lim |T (t;q )z - T(t;q*)z} = 0
Lim [T (t;q7) q*)z]

for each z € X, uniformly on compact subsets of [0,°).

Proof. Let us first recall some elementary facts concerning spectral
properties of the self adjoint operator A(q) (c.f. [10,p. 291-295] or
[15]). The spectrum of A(q) consists of a countable number of real
eigenvalues {xj(q)}?=l’ each of multiplicity 1, which can be ordered
so that - < ., < Xj(q) < Aj_l(q) < ,.. < and which are uniformly
bounded above as q varies in Q. The eigenfunctions {Wj}?gl of
A(q*) form a complete orthogonal set in X. To apply Proposition 2.1
we take B = X, BN = X, N the identity operator for each N and

X = Aq®), KN = AN(qN). (The observant reader will notice that we could
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equally well take B = X, gN - XN, N pN

with A = A(q*) and

AN . PNA(qN), which in this case would be defined on XN.) Of course,

i) of Proposition 2.1 is satisfied trivially while the stability hypothesis
1i) is the same as (Hi) which has already been established. To vevify

the consistency hypothesis iii) we need to choose the set D . We define
Diézfpan{wl,...,WN}, Clearly DU < dom A(q*) and,by completeness of the
eigenfunctions, D = B. We will show (A- A(q*) =D for any XA in the
resolvent set of A(q*). Trivially (A-A)D < D holds. To show that

(A - A)D > D take an arbitrary V¥ € D. Without loss of generality let

. . 1 -
¥ be an eigenfunction, say LY of A(q*). Then (X-A(qﬂXXTX; ¥ =¥,

and therefore U c (X - A(qQ*I0. It remains to show that AN(qN)z + A(q%):z

for any z € D. We first note that the smoothness assumed in (HP) can be

used to easily argue that any ?i (and hence any :z € D) is in H4. Thus
1

0"

For fixed z € D, let zN denote PNz. Then

for any z € D we have z € H' nH

1AMz - Agnyz] = [PMAEYHPNz - Awe*)z]
2 < IPMA@Y - a@EN e 1PMaEnEt - ol < et - DAzl
< TA@Y - A@ + @ -l oY - DAEDz]

For the secondg term we have the estimate

q3 (Dp) (x)
@G -l <, 8%y | T | @ - ! |
sup Q1P (x)

Y x € 10,1] T(T(T" LGB agle’ - 2| . B

|
g o~
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By Lemma 2.3 we thercefore find that IA(q*)(zN -l converges to zero

. -2 . .
like O(N ") as N> = . Strong convergence of PN g implies that the third
term in (2.}1) converges to zero. Finally, we have

y 1
2zN) + qg zh, which converges to

1 : ¢
A" = =~ opo2N + pp
qF
T} (DpDz + pDzz) + qiz, by Lemma 2.3 and the fact that qN + q*. This

concludes the proof.

We have thus outlined arguments to establish (2.10).

Proposition 2.3. If (HQ), (HP) and (HF) hold, then for each convergent

sequence qN > q* it follows that 1lim IuN(t;qN) - u(t;q*)] = 0 for
N

Y

each t € [0,T].

We further desire convergence in C(0,1) to obtain the needed

pointwise (in the spatial variable) convergence to use with functionals

1
. ~1 1 . ; .
of type J. Define HO = (H0,<< s >), where <<‘D ,V1>=[O Do(x)D¥ (x)p(x)dx;
then ﬁé is a Hilbert space and the associated norm is equivalent to the
1
H'  norm given by kol21= IIDw(x)]zdx. Further we denote by e the
0

0
HO

sct XN endowed with the ﬁl

0
by Aﬁ(q) = PNA(q). Due to the finite dimensionality of N the operator

topology. Let Aﬁ(q): iN a4 iN be given

Ag(q) is a bounded linear operator which generates a semigroup T:(t;q)
on iN. To calculate its exponential bound, we consider for v € iN
the following estimate. Letting <:',->5 denote the inner product in

HO, then we find
N N
| <<v. AR(q)V>= <pbv,DP A(q)V>2
N 91 N
<pDv, DP” (4~ D(pDv)) + DP q2v>2

a,<pov,0v,2, - q,<opov) 2N L o(pov) ),

n

1]

et s syt




o = TRETRETRATE T AT e W 0 T T TR

e FaR T

DR e B Thi R

MAcan At s e 2ol

B 2~

-18-

q2<<v,v> - ql<k% D(pbv), PN -]1; D(pl)v?ﬁ

q2<<v,v7> - ql<% pN[)(pDv), pN % D(pDV)>x < q2<<v,v> ,

since q, > 0. Consequently (see [11,p.85,90]) we have

q,t
N 2
ITo(tsa)z] < e lzf_
R N N

N

for all =z € X'. This last estimate implies (in light of the weighting

of the H. norm by p)

1
0
Q,t Ny
(2.12) ITN(t;q)PNZI 1 S Me 2 lP‘z!H1
Ho 0
for ai: 7 Ha, where M2 = max {p(x)]x € [0,1)} /min{p(x)]x € [0,1]}.

We next verify that |PVz] , is uniformly bounded in
H

0 ,
N
N for z€ Hé a2, I fact |z ;= lDPNzlz < }D(PNz-lNz)]z + D22}, o
N HO 3,.N
IUZIZ , where 17z 1is the intcrpolating cubic spline in §7(A). An

application of the Schmidt inequality (Lemma 2.2) implies that

N . 1N NS NI
|p ;1H1‘: 2 VE; NI T z-zl2 + C)N D :]2 + IDzl2 ,
"0
with Cl a constant. Here we have also used a well known (see [20,p.53])
spline interpolation result to estimate }D(IN:-z)l7 . Finally for
z € dom A(q) = Hé n H2 we obtain (again refer to [20, p. 531)
C
(2.13) 1PN2] | < 2 0%, + Iz ], ,
“-I\ 2 2
0

where EZ iv a constant independent of N, We summarize the above

discussion, in particular (2.12) and (2.13), in

Lemma 2.4. If (HQ) and (HP) hold and z € Hé N H2, then for each T > 0
the set {TN(t;q)PNz!t € [0,T], N=1,...} is a bounded subset of Hé.




—— e .

The final convergence result of this section is concerned with convergence

in the o~ NOTM as indicated in (2.9). Our results require severe

restrictions on the function F in (2.2).

Theorem 2.1 a) Let (HQ) and (HP) hold and let qN + q* in Q. Then

éig ITN(t;qN)pN:-T(t;q*)zl°° = 0 for each t > 0 and each z € Hé n Hz.

b) Suppose that the map F of (2.2) does not depend on u, i.e. F = F(q,t).

Suppose further that t - F(q,t) from [0,T] to Hé n H2 is measurable

for each q € Q and that q -+ F(q,t) is continuous from Q to H2 for

each t € [0,T] and finally for some k3 € L2(0,T) we have |F(q,t)| +
|0%F(q,t)| < k (t), for all q€Q, t € [0,T). Then q\ > q* implies
uN(t;qN) + u(t;q*) in C(0,1) for each t € [0,T] and each uo(q) =

1 2
Q@ € HO n H" .

é n H2 . Integrating by parts and
. N N, N . 1 2
using the fact that T(t;q*)z and T (t;q )P z are in H0 N H® we

Proof. To verify a) let z,y € H

find

!<TN(t;ﬂN)PNz - T(t;q*)Z.y> !
Ho
1™ t5aMPN2 - T(t30%)2), y),l

KTV (tsaHPYz - T(tsqn 2,09,

Proposition 2.2 and Lemma 2.4 together with the last estimate and the

1
0

weakly to T(t;q*)z in Hé, uniformly in t € [0,T]. Since Hé is

N
fact that dom A(q) 1is dense in H. imply that TN(t;qN)P z converges

compactly embedded in C(0,1) by the Sobolev embedding theorem [1 ,p.144]

it follows that TN(t;qN)&Nz+ T(t;q*)z in C(0,1); since T > 0 was

ulainiinie
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arbitrary, this holds for all t > 0.

Turning next to b) of the theorem, we note first that (HF)

is satisfied under the present conditions on F. For each N we have
t
N
2.1) W (65qYN = ™ esaY) PNy f T (t-530 )P F(q",5)ds.
0

Since ITN(t;q)PNzl 1 < K(|Dzzl2 + |Dz|2) for a constant K independent of
HO
N=1,2,..., q € Q, and t € [0,T] by (2.12) and (2.13),the integral in

(2.14) clearly exists as a Bochner integral in C(0,1). Moreover, for

each t we get TN(t;qN)PNuo(qN) > T(t;q*)uo(q*) and TN(t—s;qN)PNF(qN,s) -+
T(t-s;q*)F(q*,s) for almost every s € [0.t], where the convergence

is in the C(0,1) norm. Since the functions s ~ TN(t—s;qN)PNF(qN,s)

from [0,t] to Hl

0

we may use Lebesgue's bounded convergence theorem when taking the

1]

limit as N> in (2.14) to find that u (t;q") > u(t;q*) in C(0,1)

t
with u(t;q*) = T(t;q*)uy(q*) +f T(t-s;q*)F(q*,s)ds.
0

Remark 2.1. In our discussion here we have considered only problems
with Dirichlet boundary conditions. Our ideas are easily extended to
treat Neumann or mixed boundary conditions as well. We sketch briefly
some of the minor changes required in the above presentation. First

one certainly must use different basis elements (recall how the B? were
constructed from the standard hasis elements ﬁ?) S0 as to ensure

XN < dom A(q). This in turn requires that one cstablish an analogue

of Lemma 2.3 for the associated natural projections PN (through use of

appropriately defined interpolating splines - we remind the reader that

TR e B RBWS , tom

are bounded by the integrable function Kk3(.)( Tén k(x))-l/z,
xe[0,
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there are numerous types of interpolating cubic splines - see [20,Chapter
4],[21]). Finally, minor details in some of the above arguments must
be modified. For example, in the proof of Proposition 2.2, the eigenvalues
have multiplicity < 2 (see Example 4.2 of [9]), not necessarily equal 1.
Some of the integration by parts arguments (e.g. in establishing the

bound for Ag(q) in Proposition 2.3) also require modification.

Remark 2.2. If a pure "convection' type term qgu, also appears in

the right side of (2.1), then one can use the theory of discrete spectral
operators (see Example 4.4 of [9]) to establish Proposition 2.3 for this
case in much the same manner as argued above. The analogue of Theorem

2.1 appears to be much more difficult to obtain however.
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3. Implementation and numerical examples: parabolic equations.

In this section we discuss questions related to the implementation
of the ideas developed in section 2 and present some numerical results.
A1l of the results given below were obtained using the fit-to-data

criterion J involving spatial point evaluations. While we were able

to establish above the stronger convergence results (in C(0,1)) only in the
case of linear equations, the reader will see from the results

presented below that the methods also perform quite well when one

uses the point evaluation criterion J with nonlinear parabolic equations.

The algorithm for carrying out the identification of the
unknown parameter involves two major tasks. The first task is:
given N and uN(-;q), find a aN which minimizes Jﬁqu,§). This
task was carried out by the standard Levenberg-Marquardt algorithm
(available in the IMSL library, routine ZXSSQ) and we shall therefore
not discuss this part of the implementation. (For a discussion of the
Levenberg-Marquardt as well as related algorithms, see [ 3].)

The Levenberg-Marquardt algorithm requires that JN(q) z J(q,uN,§)
be evaluated for fixed N at a sequence of iterates qj. Thus we need
the approximations uN(';qj) and computing these is the second task.

By (2.4) the values of uN(-;qj) are obtained by solving (2.6) which

is rather easily done since the matrices QN and KN appearing there
are seven-banded and symmetric, and hence they can be stocred as three
subdiagonals and the diagonal.

Numerical experiments were carried out for the general example

Up = QU * qyu + q4f(u), for 0 < x<1, and t > 0,
u(0,x) = qu(x), for 0 < x <1,
u(t,0) = u(t,1) =0, fort >0,

PN e e 2 = SR
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so that k and p of the previous section are chosen identically 1. In

2, 4,1 and thus denoting by AT and Ag the matrices

this case A = qln

with elements

N ) N N
(ap; ;= <oy, DB D)
I N _ N N
4 A ;= By Bj72 ’

L f we have QN = Ai and KN = -qlA? + qu; . In our implementation, the
} <

matrices AT,A? were calculated analytically and stored exactly.

’ The initial values and the nonlinear term require numcrical

1 :

3 quadrature. To compute (RN‘#)i = <W,B‘;‘I >2 = )( ‘P(x)B?(x)dx, a composite
0

two-point Gauss-Legendre rule was employed to evaluate the integral.

The same quadrature rule was applied to

1 N .
(RNF)i = <F(q,t,uN(t;q)), BI; >2 = JO f(q,t,x, ) wy;(t;q)B?(x))B?(x)dx.
j=0

The integration of the system of ordinary differential equations

(2.6) was carried out by an IMSL routine (DGEAR) employing Gear's variable

order, variable step method. For the parabolic equations, the stiffly
stable backward difference methods of the routine were used. In most
parabolic examples, the equations (2.6) are moderately stiff and while
a standard Runge-Kutta scheme can be used effectivelv, it is more
efficient to use Gear's stiffly stable method (in our computations with this
method, local error tolerances were set at 10—5).

Finally we discuss the "inversion'" of QN, which is needed not
only in the integration of (2.6), (in which one actually solves for
QNwN(t) even though wN is used in the nonlinearity), but also in the

case where f = 0 to get uN(t;q) from QNwN(t). The computation of
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y = (QN)-lz was carried out by first using the Cholesky algorithm to
decompose QN = LNLE , wherc LN is lower triangular (this was done only
once for a given N and the corresponding LN was stored) and then
backsolving the equations LNx =z, L;y = x, which involve only triangular
matrices. We remark that the banded structure of QN is preserved in
Ly

To demonstrate the feasibility of the spline approximation
schemes for identification problems, we generated solutions to equations
with parameters fixed at given values (called 'true'" values below) and

then attempted to identify these parameters from the ''data" consisting

of values of the generated solutions.(In some cases random noise was added

to the solution values, but tests revealed that this did not affect

the efficiency of the schemes.) The generated numerical solutions

(with the fixed parameter values) which were uscd for the data ¥ in

the fit-to-data criterion J were computed by an independent finite
difference method when closed form solutions {c.g. in the case of nunlinear
examples) were not readily available.

In the examples below, the observations concisted of the
generated solution values ﬁ(ti,xj) at three spatial points (xj = 0.25,
0.5,0.75) sampled at ten times (ti = 0.2, 0.4,...,2.0). The matrices
C(ti,q) in the fit-to-data criterion . are taken to be the 3 X 3 identity
matrix.

The first numerical example is of special imnortance: the modal
approximation schemes investigated earlier in [ 9] failed to perform
satisfactorily when we attempted to estimate two of the parameters
(ql’qz) simultaneously. The cause of this 'numerical unidentifiability"

can be seen to be a fecature of the modal approximation itself and, as

'
IR A PRI P PO may £ o




-25-

we shall see below, does not arise with use of our spline approximations.
Indeed, in our numerical investigations we were unable to find an example
in our class of parabolic systems for which the spline schemes failed

in attempts to estimate multiple parameters.

Example 3.1. We consider the linear initial-boundary value problem

YT Gt T DM

u(0,x) = v (x)
u(t,0) = u(t,l) =0
where @©(x) = 2x for 0 < x< 0.5 and ®{(x) = 2(1-x) for 0.5 x<%1,

-0 denotes the start-up value

(see [ 9,Ex. 6.4]). Here and below qN
for the Levenberg-Marquardt optimization routine, for the N-th approximate
identification problem (IDAN). Table 1 depicts the results obtained

when q,,49, are sought and 93 = 1 1is assumed to be known.

TABLE 1
-N -N
N 9 92
1020 8195
6 .1000 .8004
true value .1 .8
g0 .25 .25

As we indicated above, use of the modal approximations of [ 9] did not
produce good results when simultaneously estimating q, and a, in
this example. The computational findings as summarized in Table 2 reveal

that no such difficulty is associated with estimation of several para-

B BN ey BRI Tmp e g
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meters when one uses the cubic spline approximations described in section

>
& .

TABLE 2
-N -N -N
N 9 92 43
4 .4886 2.7856 5.1011
5 .4905 1.7779 5.3249
6 .5153 2.0594 5.1827
10 .5033 1.9884 5.0949
true value .5 2.0 5.0
g0 .25 1.0 1.0

Example 3.2 Next we consider the nonlinear I-BV problem

~ 3
Ye T Gp¥kx T M
u(0,x) = q;0(x),
u(t,0) = u(t,1) = 0,

where ¢ 1is chosen as in Example 3.1. The numerical results that

were found are given in Table 3.

TABLE 3
-N -N -N
N 9 a3 9
4 .4978 5.2979 1.2354
8 .4989 5.1215 1.1055
16 .4992 5.0651 1.0653
true value .5 5.0 1.0

0 1 1.0 0
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Example 3.3. As our final parabolic example, we consider one with a

different nonlinear equation from that of the previous example.

Ue = qluxx * U T+u °

u(0,x) qsw(X),

u(t,0) u(t,1) = 0,

where @ is chosen as in the previous examples. The numerical findings

are recorded in Table 4.

TABLE 4
N % a %
4 .5309 5.2963 1.0781
8 .5126 5.1208 1.0316
16 .5067 5.0648 1.0170
true value .5 5.0 1.0
0 1 1.0 0

REETT




-28-

4. A class of hyperbolic partial differential equations.
In this section we consider identification problems for the
one dimensional nonlinear hyperbolic equation

2
(4.1) U = q,D%u + qyu. + qgu ¢+ f(q6,t,x,u,ut), for t > 0, x € [0,1],

with boundary and initial conditions,

(BC) u(t,0) u(t,1) = 0, for t >0

(1C) u(0,x} = q,@x),

ut(O,x) = qSW(x), for x € [0,1].

We could allow equally well for multiple unknown parameters in the

initial conditions, as for example u(0,x) =.§1 q2¢g(x).
1=

Following the procedure of section 2, we rewrite (4.1)-(BC)-(IC)

as an abstract evolution equation in an appropriate Hilbert space.

Standard results imply that D°> in HC = L,(0,1;R) with dom (%) =

1 2 . .. . . 2 2
Hy N H” is a selfadjoint operator satisfying <<}D z,£i>2 Z_|z|2
for every 1z ¢ dom(Dz). We again assume that (HQ) holds, except now
modified in that Q c R®. With (HQ) holding we define V(q,) = (Hé,<§.5>v(q y)

1
where we endow Hé with the topology defined by the inner product
1
<:w,£)v(q1) = Jo qlDw(x)Dz(x)dx = <:§10W,Dz:>2

Clearly V(q)) is a Hilbert space. Define X(a) = V(qy) X H0 with the

usual product topology generated by <(w1,w2).(zl,22>= <W1.Zl> v(ql)"’<"2ﬂ>2
Once again, <.,-> and |.| (or<-,.>q and j.]q whenever dependence on

the vector q must be emphasized) denote the inner product and associated norm i
X throughout this section. We may now rewrite (4.1) in X (taking

v = ut) as




(4.3)
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(3(t)) = A(q)(:€§§)+ F(q,t,u(t),v(t)), for t > 0,

(Vi) =(3¢%) -
1

where (@,¥) € X, dom A(q) = Hé n H® x HO , A(Q) =

(4.2)

0 1
2
a;P™*a; 4

and F is the operator given by F(q,t,u(t),v(t)) = 0 .
f(q,t,,u(t,-),v(t,-))

As in section 3 we consider the identification problem
(IDA) Minimize J(q,u(.;q),;) over q ¢ Qc R(i subject to u(-;q)
satisfving for t € [0,T]

. t
:E:;:g = T(t;q) 3%8; + jo T(t-s;q)F(q,s,u(s;q),v(s;q))ds.

Here T(t;q) denotes the semigroup in X(q) generated by A(q)
(see [ 9]). We shall assume that (HF) with u replaced by (u,v)
holds throughout this section; this suffices to ensure existence of
a unique solution of (4.3) on [0,T]. Again, conditions on f(q6,t,x,u,ut)
that imply (HF) can be found in [ 9]. Since the first component u(t)
of the solution vector (u{t),v(t)) lies in Hé, point evaluations of
u(t) clearly pose no difficulties in this example. Moreover, a para-
meter dependent convergence result in the norm of the state space
analogous to (2.10) will, in this case, be sufficient to prove that
solutions ﬁN of the approximating identification problems and the associated
fit-to-data term JN(QN) converge, respectively, to a solution q of the
original problem (IDA) and its associated term J(q).

An interesting aspect of this example is that now the norm
of the state space depends on the parameter vector q. The desirability

for allowing for such generality results from the fact that the
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operator A(q) will be dissipative in this weighted inner product. In
fact, with (HQ) obtaining, one can easily establish the existence of

a constant « independent of q € Q such that

(4.4) <:k(q)z,€:>q §_w|ZI§

for all z € X (See [9] . One can also rescale the state variable
to avoid the state space dependence on q, but this does not lead to
any simplification in the computational scheme obtained.)

We now define the state approximation scheme. As in the
previous example, define SgoﬁN) = span {BS,...,B: }. For the
approximating subspaces we take XN = Sg(AN) X Sg(AN) c H(I) n H2 x H(l) =
dom (A(q)). In terms of basis elements, XN(q) = span {BT,...,B§N+2} ,

where
N T .
N (Bi—l’o) » 1 <1< N+l
i N T
(0.8, _x-2)

Los]
|

,N+2_<_ i_<_ 2N+2

We again seek an approximation to the state of the form

2N+2
e, Vet =T wimel,
i=1

by using a Galerkin approach. Proceeding as before we arrive at a
semidiscrete approximation to (4.2) by a system of 2N+2 ordinary

differential equations:

RNOREE ORI RN ORAO)
W0y = R¥((a 00000
where wN(t) = col (w?(t),...,ng+2(t)). and
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@, (e, e?:zl
CONIER EC AR YT

®Yy, = v,

we again find it more convenient to write this in terms of the

1

orthogonal projections PN(q):X(q) + XN(q), and defining AN(q) = PN(Q)A(Q)PN(Q).
we obtain

WMo = AW+ PR, e ) VR )

(4.5)

W) = PN @i,

where AN(q) is the matrix representation of AN(q) and [+] denotes
the coordinate vector of an element in XN. Note here that as a con-
sequence of the parameter dependent norm the projections also depend
on q.

As before we solve (IDA) iteratively by solving the sequence

of approximating problems (IDAN) with (2.8) replaced by (4.5). Using

considerations similar to those of section 2 it is easily seen that

solutions aN of the approximating problems exist and that any limit
q of a convergent subsequence of aN is a solution of (IDA), provided

that for any arbitrary sequence qN in Q we have

N . . N.. N, N.. N
4.6) 1 Sog*| = . . . Lq* . =
(4.6) lim g -q*| = 0 1@?11es lim | (t;07),v (t567)) - (u(tiq*),v(tiq*))], = 0,

for each t € [0,T]. Employing the mild forms of equations (4.2) and
(4.5) satisfied by (u(t;q*),v(t;q*)) and (uN(t;qN),vN(t;qN)) respectively,

one can show as bcfore that (4.6) holds provided that conditions (Hi)-(Hiii)

explained in section 2 can be verified. Since (Hi) will be discussed

| together with (Hiii), we immediately turn to (Hii). In the calculations
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below we will freely use the fact that under (HQ) all the X(q) norms

are equivalent as q varies in Q.

To show that PN -+ I strongly in X, we will need to
modify the previous spline approximation Lemma 2.3 to obtain V(ql) norm
estimates. First we state a spline interpolation estimate in the V(ql)

norm; (see Lemma 2.1, of which this is simply a restatement of the last

two inequalities).

Lemma 4.1 Let INz be the cubic spline interpolant (from SSQAN)) to

2 € H'. Then
N 1/2,. . -3.4
N 1/2. -2, 4
[D(1"z - z)lv(ql)qu CN ) zl2 .

Next we establish a V(ql) norm Schmidt inequality for splines.
3 ,\N 1/2
Lemma 4.2 Let s € S°(A"). Then ISIV(q y < /1'{; N q, |s|2 ,
1
1/2 _
and IDS‘V(q1)~i Vf; qu IDSIZ = /f; leIV(ql)
3 AN
Proof. Take s € S°(A"). Then

1 N X, N X
f IDs(x)|%dx = § f Yopseoflax < T kN f YIs (x) ] %dx
0 =1 /x, . i=1 X; 1

3

where we have used Lemma 2.2. This yields the first inequality. Since

1
= kN J s (x) | %dx,
0

Ds is a polynomial of degree 2 on [xi-l’xi]’ a similar argument provides the

second estimate.

Finally we have the desired projection estimates in the V(ql)

norm.
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Lemma 4.3. Let PT:H > SgQXN) be the orthogonal projection in the

1
0
V(ql)norm. Then for =z € H4 ] Hé we have

N 1/2. -3;.4
|Pyz - 2, ) < ql/ C,N ID 2|, , and
N
|D(P.z - z)] 1/2 -21 .4
1 v@a,) < a (2.7122c1 + CN ) zl2 .

Proof. The first estimate follows directly from

1/2

N
<
Z|V(ql) 29

-3,.4
12 - Z‘V(ql) C,N ID z]z ,

e <t -

since the interpolate INz in SS(AN) is the same as that in Ss(AN)
whenever z € H4 n Hé - see Lemma 4.1. To obtain the second estimate,
we first write

N N N N
]D(Plz - Z)|V(q1) iID(Plz -1 z)lv(ql) + |D(1I"z - ﬂIV(ql)

The desired estimate on the second term follows directly from
the second estimate in Lemma 4.1. To estimate the first term, we use
the Schmidt inequality (from Lemma 4.2) along with Lemma 4.1 to obtain
N N N N
D(P z - 1 < vkKoN[PYz - 1 .
[DCPy Dy < FNPE - Telyg)

N

N
< «i N[!P - -1
— 2 [‘ lz Z(V(ql) + (Z Z‘V(ql)]

N ~-2n 1724
< 2/AN|Tz - zlv(ql) < MizN Cjay" “Ip zf, .

Proposition 4.1. Assuming (HQ), the projections PN converge strongly

to I in X.

~ 4 1 4 1 N, - . N N, _ N N
Proof. Let 2z = (21’22) €EH n HO xH' N HO. Then Pz = (zl,zz) -(Plzl,Pzzz),
where PT is the projection of the first coordinate into Sg(AN) in

Lo e P

1- s




Proof. The bound |[T(t;q)]|! j'ewt is, of course, a consequence of
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the V(ql) norm and Pg is the projection of the second coordinate into

SS(AN) in the HO norm. Then

iy * P22 - 2l

N 2N
[Pz - 2| = fPlz1 -z V(ql) D )

172, -3 .4 2 -4y 04 2
< (a)" CN [D Z1l2) + (CN 7D z,[ )7 .

This estimate together with the boundedness of pN imply that
PNz + 2z for any 2z € X. 3

Finally we discuss the parameter dependent convergence of

the linear semigroups.

Theorem 4.1, Let (HQ) hold. Then the semigroups T(t;y) and
TN(t;q) generated by A(q) and AN(q) satisfy exponential bounds
Hr(e;) |l < ¢t and IITN(t;q)H < e’ for some real w independent
of N and q. Moreover for any sequence {qN} converging to q* in
Q we have |TN(t;qN)z - T(t;q*)z| > 0 uniformly on [0,T] for each

z € X.

(4.4). As in section 2, AN(q) clearly generates a semigroup TN(t;q)

whose exponential bound is seen directly from

<A@z,zy <A@z N> i@zl vzl

Here we used the fact that PN(q):X(q) - XN(q) is the orthogonal projec-
tion.

We now turn to Proposition 2.1 to establish the convergence

result of this thcorem. Let B = X(q*), BN= XN(qN) and ; = A(q*), ZN = AN(qN).

Then ii) of Proposition 2.1 holds for the family ~f semigroups TN(t;qN).
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Letting ﬂN:X(q*) -+ X(qN) be the canonical isomorphism between X(q*)

and X’qN), it follows immediately that lﬂNz| +> |z| from the hypothesis

that qN +q* and thus i) of Proposition 2.1 is also satisfied.

{ To define D, we note that 5J. x) = (ﬁ/j“)sin (3"x) and
q;J.(x) =/2Z sin (j1x), j = 1,2,..., frrm complete orthonamal sets for

' l V(1) and H0 respectively. Let Y?(x) = (%,O)T, for j = 1,...,N, and

1 T L
o yrj] = (0,¢j_N), for j = N+1,...,2N. Then N‘:JI{{Y];}J?E } forms a complete

| j
k ; orthonormal set for X(§), where q = (1,0,...,0), and a complete
' orthogonal set for X(q) for q arbitrary. We take oN . span{YN,...,Y !;N}

i and D =N°G‘?q. For this choice of D it clearly follows that D < dom A(q*)
| and 7 = B. Also, from the definition of A(q) it is easily argued

that for X >0 sufficiently larce (AI -A(q*))D =D, so that

(A1 - A{q*))P is dense in B.
Finally, to establish the convergence part of the consistency

hypothesis iii) in Proposition 2.1 (suppressing the notation WN

for the canonical isomorphism), we see that for each z = (:1,22)6 P,

once again (see(2.11))

1AM@Yz - az] = [PNEHA@HPN @Dz Ala*)z]

(4.7) .
< JAGY - A@NPYEYz) + (A Y@z - ) ¢ eV -DaEY 2]

These three terms will now be estimated separately. First we write

explicitly the second term as

0 1
N N N, N
Al@) (P (q )z - 2) = qIDz*qg a3 (P7(q)z-2)
N
_ 22‘22
) 2, N . N N
aip(z) - 2)) * a3(zy-z)) + a5(zp-2,)
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Thus
N

@) VM2 - 212 = |2
saypi) - 205 ¢ @) - ol lagliz) - 2 0, + faghle] - 2,002

: 2. N ; N
Using the fact that /af ]D (z] - 21)12 = {D(z1 Zl){V(q;) , we see that

this last estimate together with Lemma 2.3 and Lemma 4.3 imply that
A@) PNz - 2] 20 as N,

For the last term in (4.7) we have convergence from PN(qN] + 1
strongly on X. Finally convergence of the first term on the right in

(4.7) can be seen from
0

AY) - AP M)z = |, N 2N N N . N N
(A(Q™) (@))P {q )z (ql_q.{)D Zl,,,(qs_qg)zl_,,[qz_qié)zz s

and the fact that Dzzf »> Dzzl, zT -+ Z2ys and zf -+ z, in HO and qN -+ q*.

Thus Proposition 2.1 is applicable to establish the desired

convergence in the theorem.

2 2, N N N
2” Zz‘ch;) s lagptizy - 2)) +ag(zy - zp) * a3z, - 2y)

12
2
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5. Implementation and Examples: the Hyperbolic Case.

This section is devoted to a discussion of the computer
implementation of the theory developed in the previous section and to
the documentation of some of our numerical findings. As in the parabolic
case, the optimization part of the algorithm was carried out using the
IMSL implementation of the Levenberg-Marquardt algorithm. For given
values of N and ¢ the state approximations must be obtained by
solving (4.5). Again the matrices involved in this equation have a
structure which permits efficient solution of the system of the

approximating ordinary differential equations. The required matrices

for AN(q) = (QN)‘IKN are given by
N q 0 N 0 Ky
Q = s K = ’
N N N
0 % %2 K3

N _ N _ N N N N N
where (Q)); ;= (KD 4 = <Bi’Bj>V(q1)’ @); 5 = <38, 7,
N B 2N, N N N _ N .
(KZ)i,j = <{qlD Bi+qSBi’Bj:>2 , and K3 = qSQ2 . Equivalently,

if we let (.-‘\‘;;)i’f@B?, DB??Zand (Ar;)i‘f <B?,B‘;l >2 , these matrices

become N
q,A 0
N 11
Q =
0 A
and 0 q AT
N
K" =

N N N
(it Azt ah,

The matrices AN and A, arc exactly those which were used in the
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parabolic case and hence they were computed analytically and stored.
The "inversion'" of QN in computing (QN)-IKNW is carried out as

follows: We have

q-l(AN)-l 0 0 a AN
1 1 1
N,-1.N
Q) "k = 0 Yyl ANeg AN AN
2 “aph sty 9%
0 I

N.-1,N
-ay (A)) “Apragl gyl

Given w col(wl,wz) where wl,w2 are vectors of length N+1, we

compute e col(ﬁl,ﬁz) = (QN)-IKNW by first computing y = ATw1 .

F Then, since Ag is stored as its Cholesky factor LN’ where
N_, . T N,-1,N . _ T. _
A2 = NLN’ we compute (AZ) Alw1 by solving LNz =y, LNr =z,

for r. Finally we have w = col(wz,—q1r+q3w1+q2w2).
The projection of the initial data and the nonlinear term

again require numerical quadrature. Recali that the first coordinate

of the projection map is projection with respect to the V(ql) inner
product. Given the initial data u(0,x) = qdp(x), v(0,x) = qSW(x),
we compute

q N, -1 N
QH 1 £ (@ 0 ARG V(a,)
q¥/ N,-1 N
5 () 0L V.B] D,

Ny-1, 2N
Y RGPS

N,-1 N
ag (A .8 D,

where <gp,DzB§l >2 and <1JJ,Briq )2 are computed via a composite
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s AN are carried out

Gauss-Legendre rule and the "inversions" of A \
'S

N
1
through the Cholesky decomposition. The projection of the nonlinear
term is computed in the same manner. We point out here that for this
class of hyperbolic equations the projection operator PN(q):X(q) > XN(q)
actually does not depend on ¢, as can be seen from the above cal-
culations.

The approximating ordinary differential equations were again
solved using the IMSL package DGEAR, but for the hyperbolic examples
the Adams multistep option of that package was chosen.
"Data'" were generated as in the parabolic case above (using an
independent finite difference scheme to generate solutions corresponding
to "true' parameter values). Except where otherwise noted, the obscr-
vations used in the following examples consisted of the solution values
G(tyxj) at three spatial point; (xj = .25,.5,.75) sampled at ten times

(t, = .2,.4,...,2.0),

Example 5.1. The first example for hyperbolic equations involves the
linear initial-boundary value problem

u + q.u

tt - YUxx 2 t’
u(t,0) = u(t,1) = 0,

2x(1-x),

u(0,x)

ut(O,x) =0 .

The numerical results can be found in Table 5, where the same notation

as in section 3 is used.
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! TABLE 5
S S
4 1.9967  -.9984
true value 2.0 -1.0
0 1.4 .4

! Example 5.2. As another linear example we consider

’ u

{ tt = qluxx * q3
u(t,0) = u(t,l) =0 ,

u o,

,! u(0,x) = 2x(1-x),

i ut(O,x) =0,

As in the previous cxample, the approximations are very accurate even for

low values of N; see Table 6.

TABLE 6
-N -N
N 9 3
4 2.0130 -.8684
8 2.0004 -.9987
true value 2.0 -1.0
g0 1.4 0

Example 5.3. Consider the nonlinear hyperbolic equation
Uee T dplxx T Y T Y 0

u(t,0) u(t,l) = 0,

U(O,X) = 2X(1-X),

ut(O,x) = 0,

Our numerical results are given in Table 7. Note that the estimates

are very good at N=8, while numerical error in implementing the scheme

(e.g. inverting large matrices) is apparent at N=16.




-

Lttt athl A

e ——
-41-
TABLE 7
-N -N
N 4 6
4 1.9894 2.0538
8 1.9992 .9410
16 1.9979 1.0833
true value 2.0 1.0
qN’O 1.0 .5
Lxample 5.4.  lere we consider the nonlinear problem

The observations

Ut = G¥%x ~ Y% P % TR0

u(t,0)

u(0,x)

ut(O,x) =

u(t,1) =0

2x(1-x),

0.

for the results detailed in Table 8 consisted of

3 spatial points and 10 time samples, as in the previous examples.

This example was

at the 3 spatial

also run using only two time samples (t

= .2,.4)

points and rapid convergence of the estimated paramecters

to the true values was also observed in this case.

TABLE 8

-N -N

N 4 9%
4 2.0084  3.0866
8 2.0003  3.0125

true value
N,0
q

2.0 3.0

1.0 1.0

Lxample 5.5. A third type of nonlincarity was used in the example

u

u(t,0)

u(0,x) =

ut(O,x) =

tt - QUx F QU * 9 SN U

U(t,l) = 03
2x(1-x),

0.

& 4
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The reader will find the results in Table 9.

TABLE 9

-N -N -N

N 4 92 6
4 1.9549 -.9994 2.5559
8 2.0023 -.9992 3.0351
16 1.9984 -.9998 2.9969
true value 2.0 -1.0 3.0
qN’O 1.0 0 1.0

Example 5.6. As a final example we present in Table 10 the results for

_ 1
Upe = A¥x ¥ 934 * Y9 T

u(t,0) = u(t,1) =0
u(0,x) = 2x(1-x)
ut(O,x) = 0.
TABLE 10
-N -N -N
N 4 43 de |
1 1.9653 .6509 2.9892 %
8 2.0053 1.0516 2.9988 P
16 1.9999
true value 2.0
R 1.0

=Y T T S
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¢. Concluding Remarks.

In this paper we have shown that spline approximations
may be profitably used to develop schemes for estimation of unknown
parameters in initial-boundary value problems for second order partial
differential equations. The practical utility of our ideas is supported
by our computational experience with a large number of examples, a
summary of which is also given in this paper. The use of spline functions
in the context of parameter identification problems is not new; see, for
instance, references found in the survey articles [2], [12],{16],[18].

[t is, however, our belief that ours is the first presentation of a
complete theoretical treatment (i.e. convergence proofs for the parameters,
optimal states and optimal fit-to-data values) for spline-based methods

for a large class of equations along with reports on a careful numerical
testing of the methods on examples.

The fundamental ideas - involving use of a semigroup theoretic
framework for the approximation of identification and control problems
governed by partial differential equations - which are the basis of the
convergence results of the present paper were first announced in [8].

A complete presentation of details of the approximation framework was
later given in [9]. In fact the present paperis a companion paper to

[9] detailing our work on spline approximations that was performed
simultaneously with our efforts on modal approximations; a report on

the latter is contained in [9] as an application of the general framework

devcloped there.




i
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The essential step in our considerations above and in {9] in
approximation of the abstract differcntial equation is the approximation
of the infinitesimal generator A by PNAPN. The importance of this
classical approximation of an unbounded operator by a sequence of bounded
operators to problems in system theory using semigroup methods (in par-
ticular the Trotter-Kato theorem - Prop. 2.1 above) was first, we believe,
pointed out in [7], where the PNAPN scheme was used with spline
approximations for functional differential equations.

In this paper we chose two specific classes of examples to
illustrate use of our spline approximation ideas. Particular boundary
conditions and fit-to-data criteria were selected. However, given the
general results of [9] and the technical developments discussed above,
it should be obvious that many rather easy but important generalizations
are possible. We mention a few of these which we have already investigated
in applying our ideas to a number of specific problems. First, methods
for problems with mixed boundary conditions involving unknown parameters
can be readily obtained - see [5] for a partial discussion of some of
our results in this direction. Furthermore, we have previously discussed
elsewhere [4] how one might use our ideas to develop techniques for
estimation of unknown variable coefficients in partial differential
equations. Indeed we have already successfully used spline methods
along the lines developed above to estimate spatially varying
transport coefficients in insect dispersal models from field data (in
collaboration with P. Kareiva). (These efforts are detailed in

separate manuscripts currently in preparation.) In related efforts




a rather different approach (not involving linear semigroup approxination
results) is taken in [6] where spline methods for estimation of time
varving coefficients are developed.

The framework of [9] and the present paper can also bc used
to treat higher order equations such as those arising in the study of
large space structures and other elastic bodies (see [4],[5]). In
particular we have in this spirit developed methods employing cubic
and quintic spline approximations for equations such as those arising
in both the Luler-Bernoulli and Timoshenko theories for beams. The
ideas and some of our numerical findings are reported in [5].

In a modification of the theory presented here (not a PNAPN
type scheme) but using essentially the same semigroup approximation
framework, we have developed methods that permit one to use lower order
splines (e.g., piecewise linear splines for second order equations) in
place of the cubic splines employed in this paper. A preliminary
discussion of theoretical and computational results for second order
cquations can be found in [13]l A complete discussion of these ideas
for second and higher order equations along with numerical results
will be published in a manuscript currently in preparation.

A1l of the specific results in this paper and those mentioned
above to appear eclsewhere entail spline approximations for problems
involving one dimensional spatial domains (x € Rl). However, we have
investigated extensions of our ideas to treat problems in higher
dimensional domains (x € Rn) and, not surprisingly, there appears to be

little difficulty in making the neceded extensions of the theory (e.g.,
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see some of the estimates for approximation using product basis elements
in Chapter 6 of [20]). We are currently considering the computational
feasibility of the spline methods for such problems, but expect once
again to find that they perform well.

Finally we note that the results in this paper and the
framework of [9] concern development of schemes that involve semi-

discretization in that one approximates the original partial differential

3 equation by a sequence of ordinary differential equations. One can also
# ' develop a theoretical framework to combine spline approximations in

the spatial coordinates with time discretizations resulting in
approximation by a sequence of difference equations. In particular

E the theory developed in [19] involving full discretization methods for

| functional differential equations can be used to develop analogous

techniques for partial differential equations. We are currently pursuing

investigations of these ideas.
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