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Cubic Spline Approximation Techniques

for

Parameter Estimation in Distributed Systems

H. T. Banks, J. NI. Crowley, and K. Kunisch

ABSTRACT

Approximation schemes employing cubic splines in the context

of a linear semigroup framework are developed for both parabolic and

and hyperbolic second order partial differential equation parameter

estimation problems. Convergence results are established for problems

with linear and nonlinear systems and a summary of numerical experiments

with the techniques proposed is given.



1. Introduction.

In many problems of practical importance one is confronted

with the task of estimating unknown parameters in mathcmatical models

from certain observations of the underlying physical, biological, etc.

phenomenon being modeled, This paper is devoted to the study of spline

approximation techniques for the identification or estimation of constant

parameters in partial differential equations. The results presented

here are actually the outcome of investigations partly reported in [9]

in which a theoretical convergence framework was developed and applied

to treat "modal" approximation schemes for identification and control.

Here we use the theoretical framework of [9] to treat spline based

techniques that were developed and tested simultaneously with the "modal"

methods of [9].

Two specific classes of problems are investigated below. In

section 2 we treat an identification problem for a class of parabolic

equations, whereas results for hyperbolic equations are given in section

4. Sections 3 and 5 are devoted to discussions of the implementation

of the approximation schemes along with numerical examples involving

parabolic and hyperbolic equations respectively. In both cases

interesting technical questions arise. If the parabolic equations

are studied as a system in the usual L2state spaces, then fit-to-

data criteria involving only integral terms can be treated with relative

ease, whereas fit-to-data criteria that employ point spatial evaluations

(which are often used in practice) present some essential difficulties.

In the case of hyperbolic equations, the semigroup-theoretic approach
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that is taken in this paper leads to a state space with inner product

depending on one of the unknown parameters of the equation. For this

reason it is desirable (in other problems this is essential - see the

discussions regarding certain unknown function space parameters in

[4] and [9]) to develop parameter dependent convergence results in the

context of a parameter dependent state space framework.

In our presentation below a number of numerical examples are

given to illustrate the theoretical convergence results. For a survey

of the potential uses of our semigroup-theory based parameter estimation

techniques to problems in a number of specific areas of applications

(e.g., reservoir and seismic engineering, large space structures,

transport models in physiology and population biology, elasticity and

others) the interested reader is referred to f 4] and a monograph that

the authors currently have in preparation.

We defer until section 6 below a number of comments on other

work related to the ideas presented here.

The notation used throughout this paper is rather standard and

follows closely that explained in [9]. For norms of elements in Banach

spaces we use j.1,whereas 11-1 is used for operator norms. We shall

occasionally use a subscript such as II to distinguish a norm in the

space B from other norms. The standard practice of denoting the usual

norm in L p(0,1), 1)=2,-, by 1-1 will be followed.
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2. A class of parabolic partial differential equations.

As a first example for the techniques that were mentioned in the

introduction we consider the heat equation

q,

(2.1) ut = (T)D(p I)u) + q2u + f(q3,t,x,u), for t > 0, xE [0,1],

with boundary and initial conditions,

(BC) u(t,0) = u(t,l) = 0, for t > 0,

(IC) u(0,x) = q4P(x), for x E [0,1],

where u = u(t,x) E R and D = - . We assume that (2.1)-(BC)-(IC)

models a phenomenon for which we wish to "identify" or estimate the

parameter vector q = (ql,.... q4) E Q a R
4  from known measurements

,= {;t)r hnth E m nera

with 9(ti)E Rm  taken at times t. in the fixed interval

[0,T] of observation. These observations y(ti) correspond to values

C(ti,q)(t.,q) in the mathematical model where C(ti,q) is a real

m xZ matrix which is continuous in q for each ti, and

(ti,q) = col(u(ti,xl1;q), ... u(ti,x ;q)).

Subsequently we shall give conditions on f that guarantee the existence

of a solution u of (2.1)-(BC)-(IC), which will also be denoted by

u(.,-;q) whenever we wish to emphasize dependence on q. Since the

problem of determining a vector parameter E Q such that

Y(ti) = C(ti,q)4(ti,q) for all i would most often lead to an unreasonable

and mathematically ill posed problem, we formulate the problem of finding

an estimate q as an optimization problem in the following way:
r2

(ID) Minimize J(q,u(.,.;q),y) = w - C(t2,ql (ti,q) 2
i=l
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over q E Q c R4  subject to u(e,;q) satisfying

(2.l)-(BC)-(IC) on [O,T] x [0,1]

In the above formulation of the cost functional the weights
w. > 0 can be used if needed to compensate for a priori known extreme

1

behavior of the solution, as for example, exponential growth or decay.

(For simplicity, we take w. = 1 in all our discussions and examples in this paper.)1
The cost functional that is chosen here is but one of the several that

are of practical relevance. The one that we chose for our presentation,

however, exhibits many interesting technical difficulties (due to the

use of point evaluations); in fact, our final convergence result, when

used with this functional, requires restrictions on f (dependence on

t, x is allowed, but no dependence on u is permitted). For the case

of cost functionals involving distributed measurements as,for example,

r I'
J(q,u,y) =i Xj u(t.,x;q) - y(tivx)12 dx, our approximation results are

valid for equations containing quite general nonlinearities f (see

[ 91).

Before we formulate the identification problem in the Hilbert

space X = 1I0 with inner product <P,>= fk(x) ,(x)(x)dx and asso-

ciated norm .*, we summarize the hypotheses that will be needed through-

out this section. We denote by H the usual Sobolev spaces over (0,1)

as discussed in 1]. The function F: Q x [0,-) x H0 - H0 which will

be used below is defined to be the composition map V'q,t,v) = f(q,t,*,v(,)).

Further, for a given parameter set Q, we let Q4 = {q4 : q = (ql, .. ,q4) E Q
} "

Our hypotheses are listed for easy reference as follows:

(HQ) Q is a compact subset of R4 and there exist positive

L U 4
numbers q, and such that q E Q c implies
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L <U

(HP) The functions p and k satisfy p E C3 [0,I], k E C[0,1],

with k(x) > 0 and p(x) > 0 for all x E [0,1].

(HF) The nonlinear function F satisfies

* (i) for each continuous function u:[0,T] - X and each

q E Q, the map t - F(q,t,u(t)) is measureable,

(ii) for each constant M > 0 there exists a function

k1 = k1(M) in L2(0,T) such that for any q E Q we

have

F(q,t,u) I F(q,t,u 2)1 < k 1(t)1l u 21

for all uUU 2 E X with lu.I < M

(iii) there exists a function k2  in L2(0,T) such that

F(q,t,v) < k2 (t){Ivl + 1},

for all v E X, q E Q,

(iv) for each (t,v) E [0,T] x X the map q F(q,t,v)

is continuous.

In [ 9] we have detailed conditions on the perturbation f

that guarantee (HF). For our parabolic systems, statement of the con-

ditions of (HF) in terms of f are rather obvious except in the case

of (HF)(ii) which requires a global Lipschitz criterion for f with

respect to u due to the fact that we are using the L2 norm in the

local statement of (HF)(ii) for F. We note that as a consequence of

(HP) the spaces X and H0 have equivalent norms.
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We shall consider the semilinear equation

duct)
(2.2) dt = A(q)u(t) + F(q,t,u(t)) for t > 0,

u(O) = u0 (q) =

where A(q)' =TD(pDl)) + q2WP, with doma (q) = {P E H2:(0) = p(1) = 01.

Under (HQ) it is well known that A(q) is the infinitesimal geitrator

of a linear C 0-semigroup T(t;q) for each q E Q. We point out that

we have used the letter u in two different ways: In (2.1) u = u(t,x)ER,

whereas in (2.2) u(t) or u(t;q), if dependence on q is emphasized, is

an element of X. This should not create any ambiguities, since the

notion of solutions of (2.1)-(BC)-(IC) or (2.2) will be fixed throughout

the paper to be that of mild solutions. We recall that t -- u(t;q) is

called a mild solution of (2.2) on [0,T] if it satisfies

(2.3) u(t;q) = T(t;q)u0 (q) + T(t-s;q)F(q,s,u(s;q))ds,

for t E [0,T']. Under hypothesis (HF) one can easily demonstrate

existence of a unique solution to ( 2 . 3 Xe.g. see [9] The relationship

between mild and strong solutions of (2.2) and classical solutions of

(2.1)-(BC)-(lC) has been the focus of many investigations and we only refer

to [151 as one possible reference. We are now prepared to formulate the

abstract identification problem associated with equation (2.2):

A, R4

(IDA) Minimize J(q,u(.;q),y) over q E Q c R subject to

u(.;q) satisfying (2.3) on [0,T].

An vunivoidable difficulty with parabolic problems now becomes

apparent. We consider (2.2) as an equation in IH and a cost functional

J which involves point evaluation, an operation that is not well-defined

on H0 . Moreover, it will shortlybecome evident that ,,qN _ q, implies

N N NuN(t;q N) - u(t;q* ), where u (t;q) is an approximation to u(t;q) in
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X, is an analytical statement of central importance in our approach to

the parameter identification problem. Convergence of u N(t;q N) to

u(t;q*) in X, however, clearly does not imply the desired convergence

of the cost functionals J(q N,u N(-;q N),y) to J(q*,u(';q*),y). As a

quick remedy to these difficulties, one might be tempted (this is not

our remedy) to set up (2.l)-(BC)-(IC) in a state space with a stronger

topology. This would involve a more complicated inner product, of

course, and consequently lead to a more complex structure for the matrix

representations of the approximating finite dimensional problems, a

feature that is highly undesirable from the numerical point of view.

With regard to the point evaluations used in J, we note that

as a consequence of the "smoothing effect" of parabolic systems, under

(HF) one can use the theory of monotone operators to argue that

u(t;q) E dom (wI - A(q)) 11 2 c H1 , for some w > 0. Thus point evaluation

can be justified; this is discussed in more detail in [ 91. For a

solution to the second of the above-mentioned difficulties see Theorem

2.1 below.

We now explain a Galerkin approach employing cubic spline

subspaces to solve (IDA) iteratively. Given a value of N and a vector

q, we seek an approximate solution to (2.2) in XN = span{B N... B N}

of the form
NN N N N

(2.4) uN (t~q) I wN(t)BN I N NtqB
N j=0 i i j=0 o

where {.Bi} is the set of cubic spline basis functions appropriately

modified to be in dom A(q). More precisely, let AN = N with
• i=0

x, = . for i = 0,.. .,N, and let B. j = -1,...,N+I, denote the

-EJ ° -- ,



standard C 2(0,1) basis elements for the cubic B-spline subspaces

of dimension N+3 with respect to the grid AN (see p. 208-209 of [17]).

Then B . is given by

BN. = i N
, for 2 < j < N-2J J

N -N -N N -N iN
0 0 -1 ' BN N 4 N+I

N -N -N N -N -N
1 0 1 N-I N N-1

Note then that XN = s3(AN) { S3(AN):O(O) (1) =0},
0

where S3(A N) = (O€C2 0,1): P is a cubic polynomial on each interval [xi,xi 1 ]1.

The approximate solutions to (2.2) are determined from requiring

that for all z E X N , we have

(2.5) < 5N WtIZ> =<A (q)U N (t)z> + <F(q,t 'uN(t)),Z>,
2.)<uN (0), z = <Y4 z ,

or, equivalently,
N N B

Oo < N t N BN> = 7 , N, N > . Nt) BN >

4, (tJ 1 L. \wj (t) A q) B. B. <F (qn
NjwOBN N BN > Nq4P, BNE<wj{O)Bj,B. =<

This, in turn can be written in matrix form as

Q (t) = KNwN(t) + RN(F(q,t,uN(t))),
(2.6)

Q Nw N(0) = R N(q4f),

where

(Q N <0', B N>

(KN)i, j = <Bi, AqB>
i iN N,

(R N 8)N

' 0. -- J
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N N N Nand wN =Col(w0, W i l .... ,wN).

Alternatively, (2.6) can be viewed as the result of projecting

the original problem (2.2) onto the finite dimensional subspaces XN.

In terms of projections, we can write the Galerkin equations in the

form
w (t) = A N(q)w N(t) +[P NF(q,t,u N(t))], for t > 0,

( 2.7)NN
7 wN (0) = [P N(q4,P)],

iN
where pN: X X N denotes the canonical orthogonal projection along

(X ) , A N(q) stands for the matrix representation of AN = P NA(q)pN i XN

N
and [-] denotes the coordinate vector for an element in X

N N -1N N N -1N
Thus, A = (Q ) K and [P 4] (QN- R ( ) for P E X.

Since A N(q) is a bounded operator, it clearly

N A N (q)t N
generates a semigroup T (t;q) z . Moreover u (t;q) will

satisfy (2.5)(equivalently, (2.6)) on [0,T] if and only if it satisfies

Nu N N N

(2.8) u N(t;q) = TN(t;q)PNu0(q) +  T (t-sq)PF(q,s,u (s;q))ds.

N
Standard Picard iteration arguments yield that unique solutions u (-;q)

of (2.8) exist under hypotheses (HF).

In light of the above discussions, we therefore formulate the

approximate identification problems as:

N N r - N 2
(IDA ) Minimize J(q,u (";q),y) =  (y(ti )  fi(ti) ipq)

N i=l

subject to uN (;q) satisfying (2.8) on [0,T], where
N N N x;)N(ti~q) = col(u N(ti txlI;q), .... u N(ti, xZ;q )

Using the continuous dependence with respect to q of C(t,q) and

u N(ti;q) for each i = l,...,r, one can easily argue continuity of

N Aq - J(q,u (.;q),y) and consequently, by (HQ), there exists for each

I
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-N N
N a solution q of (IDA ). By compactness of Q we can extract a

convergent subsequence, again denoted by q , with qN -* E Q. In the

remainder of this section we shall concentrate on proving that for any

arbitrary sequence {qN} c Q,

(2.9) limlq N - q*j = 0 implies limlu N(t;q N ) - u(t;q*)I, , 0
N

or (in the event one employs J for the fit-to-data),

(2.10) limiqN - q*j = 0 implies limluN (t;qN) - u(t;q*)IX 0
N,-N-)

for each t E (0,T]. We remark that for the problems considered in this

paper we have u N(t;q N ) E H3 and u(t;q*) E H1 so that the norms in

(2.9) and (2.10) can be employed without loss of meaning.

Once (2.9) (respectively (2.10)) is verified it follows immediately

that q is a solution of (IDA) (respectively of (IDA) with J replaced

-N N -NA
by J) and that lim J(qN, u (-;q ),y) = J(q,u(.;q),y) (respectively,N

lir J(N uN(;q N),y) = j(qu(- ;q),y)). Indeed J(qN, uN(;qN),y) <
N

J(q,u (.;q),y) for all q E Q and all N. Under (2.9) we have that

limluN (t;qN) u(t;q)l, = 0 and limluN(t;q) - u(t;q)jl for each t E [0,T]
N.c N-),w

and q £ Q. Consequently, taking limits in the above inequality we obtain

.J(q,u(-;q),y) < J(q,u(';q),y) for each q E Q, so that q is a minimizer

of q - J(q,u(. ;q),y)

Since u(t;q) and u N(t;q) are solutions of (2.3) and (2.8)

respectively, (2.10) will follow easily by the Gronwall lemma and Lebesgue's

bounded convergence theorem, once we have shown

(Hi) JITN(t;q)i < Me t
, with M and w independent of N and q,

(Hii) PN -* I strongly in X, and

(Hili) T N(t;q N) N T(t;q*) strongly in X and uniformly in t E [0,T],

for any convergent sequence qN q*.

For details in a more
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general setting, we refer to [9 1. Due to the special choice of

AN = pNApN we find that (Hi) trivially holds: indeed J[T(t;q)[[ < ewt

with w = max q2 . Then, since <AN p >= <APNY PN >< wl'p 2 i
qEQ

immediately follows that (Hi) holds. The usefulness of this classical

argument in the context of general approximation schemes for dissipative

operators was apparently first noted in [ 7].The strong convergence of

PN to I is established with the aid of three lemmas. The first is

a statement of the standard cubic spline-interpolation error bounds, the

second a statement of the useful Schmidt inequality and finally in the

third lemma we will establish (Hii) on a dense subset of X. That (Hii)

obtains then follows from the uniform boundedness of the sequence of

projections PN

4 NLemma 2.1. [2%p.54].Tf z E H , and I z denotes the cubic spline inter-

polant of z in S3 (AN), then

Iz- <Nz12 < CON- 4 ID4zj2

ID(z - 1Nz)1 2 C CN-3ID4z12

I ) 2 (z - TNz) 12  C2N-
2In 4z12

where the C. are constants independent of z and N.

Lemma 2.2. [20,p. 7]. If pn is a polynomial of degree n = 1,2,3 on

[a,b], then

abDp(x)]2dx n fa Pn
with k a constant.n
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1 4Lemma 2.3. If z E H n H then
0

SPN - 2 CN 41D4 zI2

ID(P z -Z) < C1N-2D4zI,ff /iD2(~z -z)I < C2N-2IDqzI 2 ,

where the C. are constants.

1 H4NN

Proof. Let z E H0 n H and denote by I Nz and I z the interpolating

cubic B-spline for z in S (A ) and S0 (A ) respectively. Using the

boundary conditions we have P N z-z I < IINz-z I = JIN z l < V1C N_4 ID4z 12

where k max{k(x)10 <x < I}. This implies the first estimate with

max k(x)'\/2C0  in k(x) , the extremes being taken over x E [0,l]. To verify

the second estimate we make use of Lemmas 2.1 and 2.2:

IDpz- Z t € I(pNz - z2< kD(pNz _ INz)2+ ' -D(ioz_ z)lI
ID(P z - z)IX <~ A7D(N ID N /k

ID(P- z)1 0) N1 12  + kf( 0z ) 2

< /I NpNz - 1 N 2  +/f- D(INz _ z)2
- 3 0 2 2~

< 2/k*ik N(p-z- + z - 1Nz2) + / D(IID- z)4 2

2k/ 3 N o3
0IP

4z 2 +/ 1 nDz 2

This establishes the convergence of the first derivative of the projected

elements. The final estimate can be argued in a similar manner.

Having thus established (Hit) we next turn to (THiii). It is

convenient to use the following version of the Trotter-Kato theorem.

Proposition 2.1 1141. Let (B,1.1) and (80,H . lN), N = 1,2,..., be

Banach spaces and let lTN: 8 _-8N be bounded linear operators. Assume
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further that T(t) and TN (t) are linear C0  semigroups on 6 and

N -N8 with infinitesimal generators A and A respectively. If

S IN 2N1N = Iz' for all z E 8,
N
-
bw
°

ii) there exist constants M,W independent of N such that

IIfN(t) qN t , for t > 0,

iii) there exists a set D c 8 such that V c dom(A), f = 8 and

( Tiv = for some X0 > 0 and for which for all z E D we have

W-Az - 0,

then limrTN (t)FN z - N T(t)zlN = 0 for all z E B , uniformly in t
N

on compact subsets of [0,o).

Proposition 2.2. Let {qN} c Q be an arbitrary sequence satisfying q N q* as

N . Then the semigroups TN (t;qN) and T(t;q*) generated by AN(q)

and A(q*) respectively, satisfy

lim ITN(t;qN)z - T(t;q*)zl = 0

for each z E X, uniformly on compact subsets of [0,-).

Proof. Let us first recall some elementary facts concerning spectral

properties of the self adjoint operator A(q) (c.f. [10,p. 291-295] or

[15]). The spectrum of A(q) consists of a countable number of real

eigenvalues {X i(q)}j= , each of multiplicity 1, which can be ordered3 il'
so that - < ... < Xj(q) < Xj.l(q) < ... < - and which are uniformly

bounded above as q varies in Q. The eigenfunctions f' ' I of 

A(q*) form a complete orthogonal set in X. To apply Proposition 2.1

we take B = X, BN = X, 7N the identity operator for each N and

= A(q*), XN = AN(qN). (The observant reader will notice that we could
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equally well take 6 = X, BN = X *N = PN with A A(q*) and

AN = pNA(qN), which in this case would be defined on XN.) Of course,

i) of Proposition 2.1 is satisfied trivially while the stability hypothesis

ii) is the same as (Hi) which has already been established. To verify

the consistency hypothesis iii) we need to choose the set D . We define

D=Uspan{ ,1 ... PN } . Clearly V c dom A(q*) and,by completeness of the, N=1

eigenfunctions, B = . We will show ( X- A(q* D = ) for any X in the

resolvent set of A(q*). Trivially (X-A)D c:P holds. To show that

(A - A)P m P take an arbitrary S' E D. Without loss of generality let

T be an eigenfunction, say T'. of A(q*). Then (1-A(q*))( I

and therefore D c ( - A(q*W. It remains to show that AN(qN)z - A(q*)z

for any z E D. We first note that the smoothness assumed in (HP) can be

used to easily argue that any T i (and hence any z E D) is in H4 . Thus1

for any z E D we have z E H4 n H I
0

For fixed z E D, let zN  denote PNz. Then

JAN(qN)z - A(q*)zl = IPNA(qN)pNz - A(q*)zl

(2.11) < [PN(A(qN) - A(q*))zN, + IpNA(q*)(zN - z), + f(pN _ I)A(q*)zl

< (A(qN) - A(q*))zNI + IA(q*)(zN - z)I + j(pN - I)A(q*)zI

For the second term we have the estiwate

jA(q*) (zN -z!<_Eo3 q*(Dp)(x) Dz-
- x E ] k(x)

+ sup (x) "2 N z) + qzN
xE (0,1] k(x) ID -
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By Lemma 2.3 we therefore find that IA(q*)(zN . z)l converges to zero

like O(N -2 ) as N ' Strong convergence of P N I implies that the third

term in (2.11) converges to zero. Finally, we have

A(q N)z" = q1 (DpDzN + pD2 z N) + qN z ' which converges to
q2 N
T (DpDz + p Dz) + q~z, by Lemma 2.3 and the fact that q q*. This

concludes the proof.

We have thus outlined arguments to establish (2.10).

Proposition 2.3. If (HQ), (HP) and (HF) hold, then for each convergent

sequence q N q* it follows that lim juN(t;qN) - u(t;q*)l = 0 for
X

each t E [O,T].

We further desire convergence in C(0,l) to obtain the needed

pointwise (in the spatial variable) convergence to use with functionals

of type J. Define (H .>> , w D(P(x) DY(x)p(x)dx;

then H0 is a Hilbert space and the associated norm is equivalent to the

H1  norm given by itp2 = ]Dp(x) 2dx. Further we denote by RN the
H 0 0N

set XN endowed with the topology. Let AR(q): N be given

by AN(q) = pNA(q). Due to the finite dimensionality of RN the operator

A (q) is a bounded linear operator which generates a semigroup TR(t;q)

on XN . To calculate its exponential bound, we consider for v E iN

the following estimate. Letting <'">2 denote the inner product in

H0  then we find

v, A N(q)v >= <ppv,DP NA(q)v>Nv AR

= <pDv, DpN(T D(pDv)) + DpNq2 v> 2

= q2 <pDvDv>2 - ql<D(pDv) 'p N 1 D(p 2v)
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= q 2 v,vV> ql<k( D(pDv) pN D(pl)v,)

since q1 > 0. Consequently (see [Il,p.85,90]) we have

N N qtIT R (tqz N < e . N

N
for all z E XN . This last estimate implies (in light of the weighting

of the H0 norm by p)
0

(2.12) ITN (t;q)PNz I < H0 
e q 2  i pN  1

0 H0

for a .. ,.; where M = max {p(x)lx E 10,1]} /min{p(x)lx E [0,1]}.

We next verify that IP NI 1 is uniformly bounded in

for z 1e n 12. In fact I HPN21  IDPNZI2 11(Pz ) N 1D(I N2  2

N 0 3 N
IDz 2 P where I z is the interpolating cubic spline in S3(AN1. An

application of the Schmidt inequality (Lemma 2.2) implies that

IPNl N.-< 2 vA N INz-z I + C1 N-11D 2) +IDz,

0
with C a constant. Here we have also used a well known (see 120,p.S 3])

spline interpolation result to estimate o(INz-z)! 2 . Finally for

z E dom A(q) H I n i12 we obtain (again refer to [20 , p. 531
0

cp z 2 1 z 1zI
(2.13) I N D '2I, N 2 2

where C 2 i; i constant independent of N, We summarize the above

discussion, in particular (2.12) and (2.13), in

Le na 2.4. If (HQ) and (HP) hold and z E H0  H2, then for each T > 0

N N0
the set {T (t;q)P zlt E [0,T], N=I .... } is a bounded subset of H0 .
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The final convergence result of this section is concerned with convergence

in the I" .- norm as indicated in (2.9). Our results require severe

restrictions on the function F in (2.2).

Theorem 2.1 a) Let (HQ) and (HP) hold and let qN - q* in Q. Then

lim ITN (t;qN)pT(t;q*)zl. = 0 for each t > 0 and each z E H 0 n H

A b) Suppose that the map F of (2.2) does not depend on u, i.e. F = F(q,t).

1 2
Suppose further that t - F(q,t) from [0,T] to H n H is measurable

for each q E Q and that q - F(q,t) is continuous from Q to H2  for

each t E [0,T] and finally for some k E L2 (0,T) we have IF(q,t)j +

2 N
ID F(q,t)I < k3 (t), for all q E Q, t E [O,T]. Then q + q* implies

u N (t;q N) N u(t;q*) in C(0,1) for each t E [0,T] and each u0 (q) =

1NH2

1 2o

Proof. To verify a) let z,y E H0 n H . Integrating by parts and

using the fact that T(t;q*)7 and T N(t;qN )P Nz are in H0 1l H
2  we

0

find

I<TN(t;qN)pNz - T(t;q*)z,y> 11
H0

= ](D(TN(t;qN)pNz - T(t;q*)z), Dy 21

- <TN(t;qN)pNz - T(t;q*)z,D 2y>21.

Proposition 2.2 and Lemma 2.4 together with the last estimate and the
1 Nml ta T NqNp coers

fact that dom A(q) is dense in H0  imply that T (t;q )Pz converges
0

weakly to T(t;q*)z in H0, uniformly in t E [0,T]. Since H0  is

compactly embedded in C(0,1) by the Sobolev embedding theorem [1 ,p.14 4]

it follows that T N(t;qN)pNz- T(t;q*)z in C(0,l); since T > 0 was
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arbitrary, this holds for all t > 0.

Turning next to b) of the theorem, we note first that (11F)

is satisfied under the present conditions on F. For each N we have

(2.14) u N(t;q N ) = T N(t;q N)PNu 0 (q N ) + T N(t-s;qN)pN F(q N,s)ds.

0

N=1,2,..., q E Q, and t E [0,T] by (2.12) and (2.13),the integral in

(2.14) clearly exists as a Bochner integral in C(0,1). Moreover, for

each t we get T N(t;qN )P Nu0 (q N) - T(t;q*)u 0 (q*) and T N(t-s;q N)PN F(q ,s)

T(t-s;q*)F(q*,s) for almost every s E [Ot], where the convergence
is in the C(0,1) norm. Since the functions s - TN (t-s;qNN NF(qNs)

from [0,t] to H0 are bounded by the integrable 
4unction Kk3 (.)( min k(x))

X E[0 , 11
we 'nay use Lebesguels bounded convergence theorem when taking the

limit as N + in (2.14) to find that u N(t;q N ) N u(t;q*) in C(0,1)

with u(t;q*) = T(t;q*)uo(q*) + f T(t-s;q*)F(q*,s)ds.

Remark 2.1. In our discussion here we have considered only problems

with Dirichlet boundary conditions. Our ideas are easily extended to

treat Neumann or mixed boundary conditions as well. We sketch briefly

some of the minor changes required in the above presentation. First

one certainly must use different basis elements (recall how the BN were
I

constructed from the standard basis elements B.) so as to ensure3

XN c dom A(q). This in turn requires that one establish an analogue

of Lemma 2.3 for the associated natural projections PN (through use of

appropriately defined interpolating splines - we remind the reader that



-21-

there are numerous types of interpolating cubic splines - see [20,Chapter

41,[21]). Finally, minor details in some of the above arguments must

be modified. For example, in the proof of Proposition 2.2, the eigenvalues

have multiplicity < 2 (see Example 4.2 of [9 ]), not necessarily equal 1.

Some of the integration by parts arguments (e.g. in establishing the

bound for A R(q) in Proposition 2.3) also require modification.

Remark 2.2. If a pure "convection" type term q~ux also appears in

the right side of (2.1), then one can use the theory of discrete spectral

operators (see Example 4.4 of [9 ]) to establish Proposition 2.3 for this

case in much the same manner as argued above. The analogue of Theorem

2.1 appears to be much more difficult to obtain however.
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3. Implementation and numerical examples: parabolic equations.

In this section we discuss questions related to the implementation

of the ideas developed in section 2 and present some numerical results.

All of the results given below were obtained using the fit-to-data

criterion J involving spatial point evaluations. While we were able

to establish above the stronger convergence results (in C(O,1)) only in the

case of linear equations, the reader will see from the results

presented below that the methods also perform quite well when one

uses the point evaluation criterion J with nonlinear parabolic equations.

The algorithm for carrying out the identification of the

unknown parameter involves two major tasks. The first task is:

N -NNgiven N and u (.;q), find a q which minimizes JIqu , y). This

task was carried out by the standard Levenberg-Marquardt algorithm

(available in the IMSL library, routine ZXSSQ) and we shall therefore

not discuss this part of the implementation. (For a discussion of the

Levenberg-Marquardt as well as related algorithms, see [ 3].)

The Levenberg-Marquardt algorithm requires that JN (q) J(q,uN ,)

be evaluated for fixed N at a sequence of iterates qJ. Thus we need

the approximations uN(*;q j) and computing these is the second task.

By (2.4) the values of uN (.;qi) are obtained by solving (2.6) which

is rather easily done since the matrices QN and KN  appearing there

are seven-banded and symmetric, and hence they can be stored as three

subdiagonals and the diagonal.

Numerical experiments were carried out for the general example

ut = qIu xx q2u + q4f(u), for 0 < x < 1, and t > 0,

u(O,x) = q39(x), for 0 < x < 1,

u(t,O) = u(t,l) = 0, for t > 0,
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so that k and p of the previous section are chosen identically 1. In
and thusddenotingabyiNeN

this case A = q + q, and thus denoting by AA the matrices

with elements

(A = <DB , DB >2

(A = BN, B N
,. j 2 '

haeQ N N AN AN

we have = A K = K qI+ q2 2 . In our implementation, the

matrices AN,AN were calculated analytically and stored exactly.
1 2

The initial values and the nonlinear term require numerical

quadrature. To compute (R J). = < iPBN>2  (x)B (x)dx, a composite

two-point Gauss-Legendre rule was employed to evaluate the integral.

The same quadrature rule was applied to

N N = l N N N J(RF). = =F(qtu (t;q)), B f(q,t,x, 0 w.(t;q)B (x))B (x)dx.
' i2 0j=O 3

The integration of the system of ordinary differential equations

(2.6) was carried out by an IMSL routine (DGEAR) employing Gear's variable

order, variable step method. For the parabolic equations, the stiffly

stable backward difference methods of the routine were used. In most

parabolic examples, the equations (2.6) are moderately stiff and while

a standard Runge-Kutta scheme can be used effectively, it is more

efficient to use Gear's stiffl, stable mcthod (in our computations with this

method, local error tolerances were set at 10-).

N
Finally we discuss the "inversion" of Q , which is needed not

only in the integration of (2.6), (in which one actually solves for

Q Nw N(t) even though wN  is used in the nonlinearity), but also in the

case where f = 0 to get u N(t;q) from QN w N(t). The computation of
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y (QN)-z was carried out by first using the Cholesky algorithm to

N = Tdecompose Q = LN L , wherc LN  is lower triangular (this was done only

once for a given N and the corresponding LN wa- stored) and then

tTbacksolving the equations LNx = z, L y=x, which involve only triangular
N 'N

Nmatrices. We remark that the banded structure of Q is preserved in

LN •

To demonstrate the feasibility of the spline approximation

schemes for identification problems, we 'generated solutions to equations

with parameters fixed at given values (called "true" values below) and

then attempted to identify these parameters from the "data" consisting

of values of the generated solutions.(In some cases random noise was added

to the solution values, but tests revealed that this did not affect

the efficiency of the schemes.) The generated numerical solutions

(with the fixed parameter values) which were used for the data S in

the fit-to-data criterion J were computed by an independent finite

difference method when closed form solutions (e.g. in the case of ntnlinear

examples) were not readily available.

In the examples below, the observations consisted of the

generated solution values Z(ti,xj) at three spatial points (x. = 0.25,13 3

0.5,0.75) sampled at ten times (ti = 0.2, 0.4,..., 2.0). The matrices

C(ti,q) in the fit-to-data criterion J are taken to be the 3 x 3 identity

matrix.

The first numerical example is of special imnortance: the modal

approximation schemes investigated earlier in [ 9 ] failed to perform

satisfactorily when we attempted to estimate two of the parameters

(ql 9 q2 ) simultaneously. The cause of this "numerical unidentifiability"

can be seen to be a feature of the modal approximation itself and, as
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we shall see below, does not arise with use of our spline approximations.

Indeed, in our numerical investigations we were unable to find an example

in our class of parabolic systems for which the spline schemes failed

in attempts to estimate multiple parameters.

Example 3.1. We consider the linear initial-boundary value problem

ut = qluxx + q2u

u(0,x) = W(x)

u(t,O) = u(tl) = 0

where 'p(x) = 2x for 0 < x < 0.5 and (Px) = 2(l-x) for 0.5 < x < 1,

(see [9,Ex. 6.4]). Here and below qN,O denotes the start-up value

for the Levenberg-Marquardt optimization routine, for the N-th approximate

identification problem (IDA N). Table 1 depicts the results obtained

when ql,q 2 are sought and q3 = 1 is assumed to be known.

TABLE 1

-N -NN ql q 2

4 .1020 .8195

6 .1000 .8004

true value .1 .8

q N, .25 .25

As we indicated above, use of the modal approximations of [ 91 did not

produce good results when simultaneously estimating ql and q2 in

this example, The computational findings as summarized in Table 2 reveal

that no such difficulty is associated with estimation of several para-
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meters when one uses the cubic spline approximations described in section

2.

TABLE 2

-N -N -N
N ql q2 q3

4 .4886 2.7856 5.1011

5 .4905 1.7779 5.3249

6 .5153 2.0594 5.1827

10 .5033 1.9884 5.0949

true value .5 2.0 5.0
N,0
q .25 1.0 1.0

Example 3.2 Next we consider the nonlinear I-BV problem

3
ut = qluxx - q4u

u(0,x) = q3(x)

u(t,0) = u(t,l) = 0,

where p is chosen as in Example 3.1. The numerical results that

were found are given in Table 3.

TABLE 3

-N -N -N
N l q 3 q 4

4 .4978 5.2979 1.2354

8 .4989 5.1215 1.1055

16 .4992 5.0651 1.0653

true value .5 5.0 1.0

qNO .1 1.0 0

•4
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Example 3.3. As our final parabolic example, we consider one with a

different nonlinear equation from that of the previous example.

1=qxx q4 1+u '

u(o,x) = q 3(x),

u(t,o) = u(tl) = 0 ,

where P is chosen as in the previous examples. The numerical findings

are recorded in Table 4.

TABLE 4

-N -N -N
N q, q3 q4

4 .5309 5.2963 1.0781

8 .5126 5.1208 1.0316

16 .5067 5.0648 1.0170

true value .5 5.0 1.0

qNO .1 1.0 0

II
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4. A class of hyperbolic partial differential equations.

In this section we consider identification problems for the

one dimensional nonlinear hyperbolic equation

(4.1) = qlD 2u + q u + q3u + f ,u for t > 0, x E [0,1],utt q2ut q u  f(q6,t xu~t)

with boundary and initial conditions,

(BC) u(t,O) = u(t,l) 0, for t > 0

(IC) u(O,x) = q

u(O,x) = qJ(x), for x E [0,1].

We could allow equally well for multiple unknown parameters in the

initial conditions, as for example u(0,x) = q i P (x).
i=l4

Following the procedure of section 2, we rewrite (4.1)-(BC)-(IC)

as an abstract evolution equation in an appropriate Hilbert space.
Standard results imply that D2  in H0 = L2(O,1;R) with dom (D2

H0 n H is a selfadjoint operator satisfying <-D 2z, z> 2  j_ 12
0 'z 2

for every z E dom(D 2 ). We again assume that (HQ) holds, except now

modified in that Q c R6 . With (HQ) holding we define V(q) (H1o<jV(ql)
1

where we endow H with the topology defined by the inner product

<w'z)V(q) {f qlDw(x)Dz(x)dx <q1 Dw,Dz> 2

Clearly V(ql) is a Hilbert space. Define X(q) = V(qI) x H
0  with the

usual product topology generated by <(wlw2),(ZlZ2)=<WlZl V(ql) *'(2,z2

Once again, <.,.> and 1.l (or <,.>q and .q whenever dependence on

the vector q must be emphasized) denote the inner product and associated norm i

X throughout this section. We may now rewrite (4.1) in X (taking

v ut) as

4 . . . . ... . .. f i ... . ,. ...... .. .. . I iI - " I I i Il I III IlI I I
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= A(q)(U(t))+ F(q,t,u(t),v(t)), for t > 0,

(4.2)

(u(0)) q4 (P)/

11

where (.P,) E X, dom A(q) = H0 n H x H0 , A(q) ( +q3  q2

and F is the operator given by F(q,t,u(t),v(t)) = (0)

As in section 3 we consider the identification problem

6
(IDA) Minimize J(q,u(.;q),y) over q E Q C R subject to u(.;q)

satis y ing for t E [0,T]

(4.3) (t;q - T(t~q) (0)) + ftT(t-s ;q)F (q,s,u(s ;q) ,v(s ;q))ds.

Here T(t;q) denotes the semigroup in X(q) generated by A(q)

(see [9]). We shall assume that (HF) with u replaced by (u,v)

holds throughout this section; this suffices to ensure existence of

a unique solution of (4.3) on [0,T]. Again, conditions on f(q6,t,xuut)

that imply (HF) can be found in [ 9]. Since the first component u(t)

of the solution vector (u(t),v(t)) lies in H0 , point evaluations of

u(t) clearly pose no difficulties in this example. Moreover, a para-

meter dependent convergence result in the norm of the state space

analogous to (2.10) will, in this case, be sufficient to prove that

solutions cj of the approximating identification problems and the associated

N -N
fit-to-data term J (q ) converge, respectively, to a solution q of the

original problem (IDA) and its associated term J(q).

An interesting aspect of this example is that now the norm

of the state space depends on the parameter vector q. The desirability

for allowing for such generality results from the fact that the
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operator A(q) will be dissipative in this weighted inner product. In

fact, with (HQ) obtaining, one can easily establish the existence of

a constant w independent of q E Q such that

(4.4) <A (q) z,Z>q < WIZI 2

for all z E X (See [9 ] . One can also rescale the state variable

to avoid the state space dependence on q, but this does not lead to

any simplification in the computational scheme obtained.)

We now define the state approximation scheme. As in the

3 N Nprevious example, define S0 (AN) = span {B0 .. BN }. For the
approximating subspaces we take XN = S (AN ) × S (AN  H I1 2 H 1

N N Ndom (A(q)). In terms of basis elements, X (q) = span {0 1.,2N+21

where

(B J,O) , I <i < N+lN = j i-l
i N

eagi is N-2) , N+2< i < 2N+2

We again seek an approximation to the state of the form

N T 2N+2 N

i=l

by using a Galerkin approach. Proceeding as before we arrive at a

semidiscrete approximation to (4.2) by a system of 2N+2 ordinary

differential equations:

Q N (t) = KN w N(t) + RN F(q,t,u N(t),v N(t))

QNw N(0) = R N((q 4e,qh* )T),

where w N(t) = col (w1 (t) .. . 2N+2(t)), and
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(Q Ny E < N ;

(KN)i~ = <&N, A(q) 6Nq

(R' 
= <6N I>q

we again find it more convenient to write this in terms of the

orthogonal projections PN (q):X(q) - xN (q), and defining AN(q) = pN(q)A(q)PN(q),

we obtain

w' (t) = A N(q)w N(t) + [P NF(q,t,u N(t),v N(t))]
(45) N (0) = [pN(q4(P,qs )T],

where A N(q) is the matrix representation of A N(q) and [*] denotes

the coordinate vector of an element in X N . Note here that as a con-

sequence of the parameter dependent norm the projections also depend

on q.

As before we solve (IDA) iteratively by solving the sequence

of approximating problems (IDA N) with (2.8) replaced by (4.5). Using

considerations similar to those of section 2 it is easily seen that

-N
solutions q of the approximating problems exist and that any limit

qof a convergent subsequence of N is a solution of (IDA), provided

N
that for any arbitrary sequence q in Q we have

(4.6) lim JqN_ q*J = 0 implies lim 1(u N(t;q N),v N(t;q)) (u(t;q*),v(t;q*))j X = 0,

for each t E [0,T]. Employing the mild forms of equations (4.2) and

(4.5) satisfied by (u(t;q*),v(t;q*)) and (u N(t;q N),v N(t;q N)) respectively,

one can show as before that (4.6) holds provided that conditions (Hi)-(Hiii)

explained in section 2 can be verified. Since (i) will be discussed

together with (Hiii), we immediately turn to (Hii). In the calculations
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below we will freely use the fact that under (HQ) all the X(q) norms

are equivalent as q varies in Q.

To show that PN_. I strongly in X, we will need to

modify the previous spline approximation Lemma 2.3 to obtain V(ql) normt1
estimates. First we state a spline interpolation estimate in the V(ql)

norm; (see Lemma 2.1, of which this is simply a restatement of the last

two inequalities).

Lemma 4.1 Let IN z be the cubic spline interpolant (from S3(AN)) to

z E H . Then

z - zI V(q) q 1  21  
3jD 4 z[

N<ql/2lcNI 2fD '
ID (INz_ Z)JV q< 1/2^ C -21 D4Z

-V(q) 1 2 2

Next we establish a V(ql) norm Schmidt inequality for splines.
3 N-1/21 si

Lemma 4.2 Let s E S3 (AN). Then < VSlN1q

II(q)- 3 Nq1'
2I

and [Ds[2 < 1Z22 NlsJvql
and lDsiV(ql) £ € 2 1/ s12 2 V(q)

Proof. Take s E S3 (AN). Then

IDs(x) 2dx =  l IDs(x) 2dx <  2 s(x) I2dx
0 i=l i 1  i=l x

k 3N 2 Is(x) 12dx,

0
where we have used Lemma 2.2. This yields the first inequality. Sincr

Ds is a polynomial of degree 2 on [x ilX,], a similar argument provides the

second estimate.

Finally we have the desired projection estimates in the V(ql)

norm.
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Lemma 4.3. Let P 1:H0 -" S 0(A 
N ) be the orthogonal projection in the

V(q,)norm. Then for z E H 4N n lo we have

IPz- zK , < ql/2 C N-3 D4z 2 ' and

ND(P - ZIv(q )< 1/2 CAC + C2 D4z,
_ 1  (2 2 1 2 2"

Proof. The first estimate follows directly from

IPN- < 1IN z < ql/2 N- D z1"
lz _ ZlV(qz) - V(q) 1 1I

N 3-N 3N
since the interpolate I z in S 0(AN) is the same as that in S (AN )

41_

whenever z E H4 N H see Lemma 4.1. To obtain the second estimate,
0

we first write

I(Nz - I N -N ,nN~
D(pz Z)IV(ql) <1D(P 1z - I z)IV(ql) + ID(Iz - IV(ql)

The desired estimate on the second term follows directly from

the second estimate in Lemma 4.1. To estimate the first term, we use

the Schmidt inequality (from Lemma 4.2) along with Lemma 4.1 to obtain

ID(P Nz 1N <YFNIi

< ~ ~ q v'-NI N~ P'z - NZI.

2 v N[IPlz - ZIV(ql) + 1z - INz v(ql ) ]

< 2 N I I z - z < 2-N-2 C ql/ 21D4z1 2

Proposition 4.1. Assuming (HQ), the projections PN converge strongly

to I in X.

4 1 i4 N1 Te PNz N NZZ)  NP NlP
Proof. Let z = (zl,z 2 ) E H

4 n H0 X I H0 .  P N NN

where N is the projection of the first coordinate into S (AN) in1hr P0
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the V norm and PN is the projection of the second coord-..ate into

(q 1)  an 2S0(A ) in the H0 norm. Then

N IN l2 +PN - 2
Ip z - zI = 1 - lV(q 1 ) 2 2 - 212< 1/2 -3N[D~~jJ

(ql CN 3 ID4 zlI 2 )2 + (CoN 4ID4z2 ) 2

This estimate together with the boundedness of PN imply that

PNz - z for anv z E X.

Finally we discuss the parameter dependent convergence of

the linear semigroups.

Theorem 4.1. Let (HO) hold, Then the semigroups T(t;q) and

TN (t;q) generated by A(q) and AN(q) satisfy exponential bounds
< t T~ad N ewt

J[T(t;q)I < ew and IT (t;q)II < e for some real w independent

N-of N and q. Moreover for any sequence {q I converging to q* in

Q we have IT N(t;q N)z - T(t;q*)z i - 0 uni-Formly on [0,T] for each

z E X.

Proof. The bound JIT(t;q)I < et is, of course, a consequence of

(4.4). As in section 2, A N(q) clearly generates a semigroup T N(t;q)

whose exponential bound is seen directly from

NN N N 4. 1
,'A (q)z,z> < A(q)P (q)z, PN(q)!,> wP N(q): < WI_

q q q - q

Here we used the fact that P N(q):X(q) - X N(q) is the orthogonal projec-

tion.

We now turn to Proposition 2.1 to establish the convergence

result of this theorem. Let 8 z X(q*), BN= XN(qN) and A = A(q*), A N =_ AN(qN).

Then ii) of Proposition 2.1 holds for the family if semigroups TN(t;qN).
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Letting lN:X(q*) -* X(q N) be the canonical isomorphism between X(q*)

and X(qN), it follows immediately that I zl -+ IzI from the hypothesis

that qN -q* and thus i) of Proposition 2.1 is also satisfied.

To define D, we note that 4.(x) = (r/j7T)sin (jux) and

4). (x) = / sin (jrTx), j = 1,2 .... fr, rm complete orthoncrmal sets for
3~l an 0  

N - T
V() and HO respectively. Let y(x) = (C,0) , for j = 1,..., N, and
N . T 00 j 2Nlyj (0,-D-N'" for j = N+l .. 2N. Then Nforms a complete

I N NYl j j=l

orthonormal set for X(4), where q = (1,0,..., 0), and a complete

orthogonal set for X(q) for q arbitrary. We take pN = spanfyN yNI . . 2N

and V = UIN . For this choice of D it clearly follows that V c dom A(q*)
N=l

and VF = B. Also, from the definition of A(q) it is easily argued

that for X >0 sufficiently larae (XI - A (q*))V = D , so that

(Al - A(q*))V is dense in 8.

Finally, to establish the convergence part of the consistency

hypothesis iii) in Proposition 2.1 (suppressing the notation nN

for the canonical isomorphism), we see that for each z = (zlZ 2)E V

once again (see(2.11))

IAN (q N)z - A(q*)zI = IPN(qN)A(qN)pN(qN)z- A(q*)z l

(4.7) < I(A(qN) - A(q*))pN(qN)zj + IA(q*)(pN(qN)z Z), + (pN(q N)-I)Aq*)zl.

These three terms will now be estimated separately. First we write

explicitly the second term as

A(q*)(P (qN)z - z) (qD2+q* q) (pN(qN)z-z)

N N
q*D2C -z 1) N q(zN_-z1 ) + q(z 2 -z 2 ))

1 311 -
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Thus N 2 s*D2N n .N . N z2)1 2

!A(q*)(PN(qN)z - z)12- ZN_ 12 q zD2(z " - q(z 2 2

<qfD(z - z2) + {q*ID 2(zN - Z +)2 Iq3flzN1- Z 1 2 + q*i z z 2t2}

Using the fact that j7 ID2 (zN _ z )I = 0(2N _ z 'we see that
1 1 1 2 1 1 V(q) , e

this last estimate together with Lemma 2.3 and Lemma 4.3 imply that

A (q *) (P N (q N )z - z) 0 as N - . N (

For the last term in (4.7) we have convergence from PN(qN) - I

strongly on X. Finally convergence of the first term on the right in

(4.7) can be seen from
/ 0

(A(qN) A*)NqNz= N. 2M N N.N N .N
,A(q*))P (q (qN-q*)D zj+(q3-q3)z N+(q2 -q2)z 2 )

t f h )N D2Zl ,N Z n .10 .

and the fact that 2z , z and z2  z in H and q - q.

Thus Proposition 2.1 is applicable to establish the desired

convergence in the theorem.

Al4
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5. Implementation and Examples: the Hyperbolic Case.

This section is devoted to a discussion of the computer

implementation of the theory developed in the previous section and to

the documentation of some of our numerical findings. As in the parabolic

case, the optimizatio, part of the algorithm was carried out using the

IMSL implementation of the Levenberg-Marquardt algorithm. For given

values of N and q the state approximations must be obtained by

solving (4.5). Again the matrices involved in this equation have a

structure which permits efficient solution of the system of the

approximating ordinary differential equations. The required matrices

for A N(q) = (QN)-lKN are given by

Q N = QI o KN = (K1

N N N N N
(KN)ij <qD Bi+q 3 B ,B> 2  and K3 = q 3 Q2  Equivalently,

if we let( = BN , DBN 2and ( )i j= <BN,Bj >, these matrices

become
QN ( qlA1

Q N

and N 1
N=

0 Nandd

The matrices and A are exactly those which were used in the
1 2
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parabolic case and hence they were computed analytically and stored.

The "inversion" of QN in computing (QN)-1KNw is carried out as

follows: We have

q 1( N- qlA1,

K 0 (AN ) -q 1 A N+q3 AN q2 A2

-q (AN)- AI

Given w col(w 1,w2 ) where wI,w2  are vectors of length N+I, we

N -i N N
compute w = col(wlw 2) = (Q ) K w by first computing y = Awl

Then, since A N is stored as its Cholesky factor LN, where

N T N-1iN Th
A2 = LN  , we compute (A2  A by solving LNZ = y, L Nr = z

for r. Finally we have w = col(w 2,-qlr+q3 wl +q2w2).

The projection of the initial data and the nonlinear term

again require numerical quadrature. Recall that the first coordinate

of the projection map is projection with respect to the V(ql) inner

product. Given the initial data u(O,x) = qO(x), v(O,x) = (x)

we compute

/ N -11 q< ,N \q2 0 2

-(A N )l ,
q AN 9-I ,

where D D2 B N > 2  and <,P ' BN  are computed via a composite

. . . it>
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N N
Gauss-Legendre rule and the "inversions" of AN A are carried out

through the Cholesky decomposition. The projection of the nonlinear

term is computed in the same manner. We point out here that for this

class of hyperbolic equations the projection operator PN(q):X(q) - X N(q)

actually does not depend on q, as can be seen from the above cal-

culations.

The approximating ordinary differential equations were again

solved using the IMSL package DGEAR, but for the hyperbolic examples

the Adams multistep option of that package was chosen.

"Data" were generated as in the parabolic case above (using an

independent finite difference scheme to generate solutions corresponding

to "true" parameter values). Except where otherwise noted, the obser-

vations used in the following examples consisted of the solution values

u(ti,xj) at three spatial points (xj = .25,.5,.75) sampled at ten times

(t.i = .2, .4,....,2.0).

Example 5.1. The first example for hyperbolic equations involves the

linear initial-boundary value problem

utt 1 qlxx '2 qt,

u(t,O) = u(t,l) = 0 ,

u(0,x) = 2x(l-x),

ut (O,x) = 0

The numerical results can be found in Table 5, where the same notation

as in section 3 is used.



-40-

TABLE 5

-N -NN ql 1 q2

4 1.9967 -.9984

true valu(, 2.0 -1.0

N ,0
q ' 1.4 .4

Example 5.2. As another linear example we consider

tt : qlUx + q 3 u

u(t,O) = u(t,l) = 0

u(O,x) = 2x(1-x),

Ut (0,x) - 0

As in the previous example, the approximations are very accurate even for

low values of N; see Table 6.

TABLE 6

-N -N

N ql q3

4 2.0130 -.8684

8 2.0004 -.9987

true value 2.0 -1.0

NO
qN' 1.4 0

Example 5.3. Consider the nonlinear hyperbolic equation
3

utt : qluxx - ut - q6u

u(t,0) = u(tl) = 0,

u(0,x) = 2x(l-x),

ut(0,x) = 0.

Our numerical results are given in Table 7. Note that the estimates

are very good at N=8, while numerical error in implementing the scheme

(e.g. inverting large matrices) is apparent at N=16.
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TABLE 7

-N -N
N q q6

4 1.9894 2.0538

8 1.9992 .9410

16 1.9979 1.0833

true value 2.0 1.0

N,O
q 1.0 .5

Uxam'le 5.4. Here we consider the nonlinear problem
uu qu ut + q6 ]-u

tt I qlxx 6 +

u(t,0) = u(t,1) = 0

u(O,x) = 2x(1-x),

ut (Ox) = 0.

The observations for the results detailed in Table 8 consisted of

5 spatial points and 10 time samples, as in the previous examples.

This example was also run using only two time samples (t = .2,.4)

at the 3 spatial points and rapid convergence of the estimated parameters

to the true values was also observed in this case.

TABLE 8

-N -N

N ql q6

4 2.0084 3.0866

8 2.0003 3.0125

true value 2.0 3.0

q N, 1.0 1.0

Example 5.5. A third type of nonlinearity was used in the example

utt = qlUxx + q 2 ut + q6 sin u

u(t,O) = u(tl) = 0,

u(O,x) = 2x(l-x),

ut (Ox) = 0.
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The reader will find the results in Table 9.

TABLE 9

-N -N -N

N q1 q2 q6

4 1.9549 -.9994 2.5559

8 2.0023 -.9992 3o0351

16 1.9984 -.9998 2.9969

true value 2.0 -1.0 3.0

q NO 1.0 0 1.0

Example 5.6. As a final example we present in Table 10 the results for

1
utt = qluxx + q3u + 16 Iii

u(t,O) = u(t,l) = 0

u(O,x) = 2x(l-x)

ut(O,x) = 0.

TABLE 10

-N -N -N
N ql q3  q6

1 1.9653 .6509 2.9892

8 2.0053 1.0516 2.9988

16 1.9999 .9971 3.0013

true value 2.0 1.0 3.0

qNO 1.0 0 1.0
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6. Concluding Remarks.

In this paper we have shown that spline approximations

max' be profitably used to develop schemes for estimation of unknown

parameters in initial-boundary value problems for second order partial

differential equations. The practical utility of our ideas is supported

by our computational experience with a large number of examples, a

summary of which is also given in this paper. The use of spline functions

in the context of parameter identification problems is not new; see, for

instance, references found in the survey articles [2], [121,[161,[181.

It is, however, our belief that ours is the first presentatioh of a

complete theoretical treatment (i.e. convergence proofs for the parameters,

optimal states and optimal fit-to-data values) for spline-based methods

for a large class of equations along with reports on a careful numerical

testing of the methods on examples.

The fundamental ideas - involving use of a semigroup theoretic

framework for the approximation of identification and control problems

governed by partial differential equations - which are the basis of the

convergence results of the present paper were first announced in [8).

A complete presentation of details of the approximation framework was

later given in [9]. In fact the present paperis a companion paper to

[9] detailing our work on spline approxinmtions that was performed

simultaneously with our efforts on modal approximations; a report on

the latter is contained in [9] as an application of the general framework

developed there.

.
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The essential step in our considerations above and in [9] in

approximation of thc abstract differential equation is the approximation

of the infinitesimal generator A by P NAP N. The importance of this

classical approximation of an unbounded operator by a sequence of bounded

operators to problems in system theory using semigroup methods (in par-

ticular the Trotter-Kato theorem - Prop. 2.1 above) was first, we believe,

pointed out in [7], where the P NAP Nscheme was used with spline

approximations for functional differential equations.

In this paper we chose two specific classes of examples to

illustrate use of our spline approximation ideas. Particular boundary

conditions and fit-to-data critaria were selected. However, given the

general results of [9] and the technical developments discussed above,

it should be obvious that many rather easy but important generalizations

are possible. We mention a few of these which we have already investigated

in applying our ideas to a numberof specific problems. First, methods

for problems with mixed boundary conditions involving unknown parameters

can be readily obtained - see [5] for a partial discussion of some of

our results in this direction. Furthermore, we have previously discussed

elsewhere [4] how one might use our ideas to develop techniques for

estimation of unknown variable coefficients in partial differential

equations. Indeed we have already successfully used spline methods

along the lines developed above to estimate spatially varying

transport coefficients in insect dispersal models from field data (in

collaboration with P. Kareiva). (These efforts are detailed in

separate manuscripts currently in preparation.) In related efforts
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a rather different approach (not involving linear semigroup approxiiation

results) is taken in [6] where spline methods for estimation of time

varying coefficients are developed.

The framework of [9] and the present paper can also be used

to treat higher order equations such as those arising in the study of

large space structures and other elastic bodies (see [4],[5]). In

particular we have in this spirit developed methods employing cubic

and quintic spline approximations &or equations such as those arising

in both the Euler-Bernoulli and Timoshenko theories for beams. The

ideas and some of our numerical findings are reported in [5].

In a modification of the theory presented here (not a PNAPN

type scheme) but using essentially the same semigroup approximation

framework, we have developed methods that permit one to use lower order

splines (e.g., piecewise linear splines for second order equations) in

place of the cubic splines employed in this paper. A preliminary

discussion of theoretical and computational results for second order

equations can be found in [13]. A complete discussion of these ideas

for second and higher order equations along with numerical results

will be published in a manuscript currently in preparation.

All of the specific results in this paper and those mentioned

above to appear elsewhere entail spline approximations for problems

involving one dimensional spatial domains (x E R ). However, we have

investigated extensions of our ideas to treat problems in higher

dimensional domains (x E Rn) and, not surprisingly, there appears to be

little difficulty in making the needed extensions of the theory (e.g.,
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see some of the estimates for approximation using product basis elements

in Chapter 6 of [20]). We are currently considering the computational

feasibility of the spline methods for such problems, but expect once

again to find that they perform well.

Finally we note that the results in this paper and the

framework of [9] concern development of schemes that involve semi-

discretization in that one approximates the original partial differential

equation by a sequence of ordinary differential equations. One can also

develop a theoretical framework to combine spline approximations in

the spatial coordinates with time discretizations resulting in

approximation by a sequence of difference equations. In particular

the theory developed in [19] involving full discretization methods for

functional differential equations can be used to develop analogous

techniques for partial differential equations. We are currently pursuing

investigations of these ideas.

- -
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