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I SUMMARY

The research performed under the contract during the period I May

through 31 October 1981 can be divided into three main topics, coupling

of surface waves in laterally inhomogeneous source regions to

*Iteleseismic propagation paths, using regional waveforms to determine the
source parameters of moderate-size earthquakes and the application of

the Kirchoff-Helmholtz integral to seismic problems.

In Section II, the Representation Theorem (RT) is used to

numerically evaluate the effectiveness of two commonly used algorithms

for modeling Rayleigh wave propagation across lateral inhomogenities.

Of the two, the conservation of lateral energy flux approximation most

closely matches the maximum peak-to-peak amplitudes as seen through an

LP-LRSM instrument. Another interesting result is that in using the RT

to model seismic events, the short-periods are dominated by the

displacement forcing functions and the long periods are controlled by

the stress forcing functions. This is in agreement with other

investigators in that they found that body waves were controlled by the

displacement forcing functions and surface waves by the stress forcing

functions.

In Section III, a procedure for the systematic determination of

source parameters from regional body waves is presented. A least

squares inversion based on a cross-correlation of the data and

synthetics is used to determine the fault mechanisms of a profile of the

P.., synthetics and five earthquakes. The synthetics are for a western

U.S. model which seems to be more than adequate for most continental

regions. Three of the earthquakes are in the western U.S. Two other

regions
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earthquakes, one in Baffin Bay in the Arctic and the other in Turkey

have been included to demonstrate that the Green's functions are not

unique to the U.S. Both dip-slip and strike-slip events are determined.

It is shown that the inversion parameters are fairly insensitive to

small changes in crustal thickness, Pn velocity and mean crustal

velocity. The inversion precedure only requires a small data set and is

particularly ideal for strike-slip earthquakes.

A numerical method for evaluating the Kirchoff-Helmholtz integral

with application to seismic problems is presented in Section IV. The

method is applied to the calculation of reflections from mountains

topography and the modeling of spall associated with nuclear events.

For the latter, the calculations produce travel-time and amplitude

anomalies consistent with observations from underground nuclear blasts.
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EVALUATION OF MIXED PATH RAYLEIGH WAVE TECHNIQUES USING THE

REPRESENATION THEOREM I. VERTICAL POINT-FORCE SOURCES.

by

Peter Glover and David G. Harkrider

INTRODUCTION.

In our semi-annual report for May 1981 we presented some

preliminary results comparing a Representation Theorem approximation

with two previously used analytical techniques for calculating Rayleigh

waves generated by explosions in mixed-path media., The Representation

Theorem method that we presented was approximate in that we used a whole

space formulation for the forcing functions and coupled them to

halfspace Green's functions. Thus the interactions of the P-waves

generated by the explosion with the free surface within the source

region and the contact between the paths were ignored. The

discrepancies that we found between the Approximate Representation

Theorem (ART) results and the two analytic methods, referred to as the

Conservation of Lateral Energy Flux (CLEF) and Unit Transmission

Coefficient (UTC) methods respectively, together with the large

differences in amplitude between the CLEF and UTC results, indicated

that we need to make the comparison of the two methods using the exact

Representation Theorem (RT) results. To do this we require forcing

functions for an explosion in a half-space which we propose to model

using the finite-element code SWIS (Frazier and Petersen, 1974).

However, based on our earlier work, we can currently compare the three
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methods for a vertical point-force source. This paper makes this

comparison. For the case where the source medium is Yucca Flat tuff and

the propagation medium is CIT109 and including a vertical component LP

LRSM instrument, we find that the CLEF method most closely matches the

maximum peak-to-peak amplitude of the signal generated by the RT method.

However, the phase distortion inherent in the CLEF method reduces the

period associated with the maximum amplitude.

REPRESENTATION THEOREM VALIDATIONS.

The theoretical developement of the Representation Theorem method

for calculating fundamental mode Rayleigh waves from complex sources has

been developed in a series of papers and presentations (e.g. Harkrider

et al., 1979; Apsel et al., 1980; Harkrider, 1981; and Glover and

Harkrider, 1981a, b). Basically the method consists of surrounding the

source by a closed surface ISES over which the stresses and

displacements generated by the interaction of the source with the source

region medium can be monitored. These quantities, which we refer to as

forcing functions, are then convolved with the appropriate Green's

functions for the exterior, or propagation medium. Details of this

proceedure and corresponding equations can be found in the references.

As we have previously pointed out, the RT method permits the convenient

extension of detailed calculations of complex source/structure

interactions to distances at which meaningful estimates of M. can be

made.

Harkrider (1981) presented some preliminary results in which we

.
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compared the surface wave generated by a buried vertical point-force in

a homogenous halfspace evaluated using the RT method with that

calculated from the analytic formulation of Harkrider (1964, 1970). The

results in both cases were somewhat "saw-toothed" due to problems

associated with picking the origin time of the synthetic time series.

We have since improved our numerical techniques for evaluating the

Green's functions and eliminated this problem. Before we evaluate the

mixed path techniques, we will show these new results in order to

establish the accuracy of the RT method.

Figure 1 shows the geometry for the homogenous halfspace run. ISES

is a cylinder of revolution with height and radius 2.1km. There are 11

nodes per side with a spacing of 0.2km (the corner node's contribution

is evaluated twice). The source is placed at 0.4km depth. The forcing

functions are then evaluated at each node using the finite element code

SWIS (Frazier and Petersen, 1974). Figure 2 shows the contribution to

the final solution for the sum of the nodes on the bottom and the side

of I SES, identified by forcing function component, whereas Figure 3

shows the corresponding sums for all the nodes. The total RT result is

also shown in Figure 3 together with the analytic (Direct) result. All

time series are sampled at 5 samples/sec and a cosine taper has been

applied over the entire spectrum. The amplitude of the RT result is 91%

of the Direct result, and the contributions from the stresses and

displacements are approximately equal. However, when the results are

convolved with a vertical component LP LRSM seismometer response

(Figures 4 and 5) the final RT solution is dominated by the contribution

from the stresses, specifically the normal stress on the bottom and the
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tangential stress on the side in the approximate ratio 2:1.

The material properties of the homogenous halfspace run (Figure 1)

are almost identical to those of the upper 14km of the layered model

CIT109 (Table 1). Therefore we can use the forcing functions from the

former with the Green's functions from the latter without introducing

any appreciable error. Figures 6 and 7 show the corresponding results,

again for a LP LRSM instrument, sampled at 5 samples/sec, but at 1200 km

epicentral distance and without any tapering. In this case the

peak-to-peak amplitude of the RT result is 97% of the amplitude of the

direct result and the associated period of 13.6 sec is identical in both

cases. For the dispersed signal, the final result is clearly dominated

by the contribution from the vertical component of stress acting on the

bottom and side of the cannister.

ANALYTIC APPROXIMATIONS.

The first of the analytic approximations that we compare using the

RT method is the CLEF method applied by Bache et al. (1978) in an

analysis of NTS events recorded at Tuscon, Arizona and Albuquerque, New

Mexico. In Harkrider's notation, the frequency domain vertical

component response to a point force in the mixed media may be written as

F J(j fCw AD "21 (2)

The second method is that used by AleAander et al. (1976) in an

A ___ ____ ____
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analysis of a sequence of earthquakes at Oroville, California recorded

at the SRO station at Albuquerque. The vertical component for this

approximation is given by

--12 L% HotI
where the subscript s and r denote properties of the source and

propagation median respectively. These expressions can be evaluated

using slight modifications of computer codes used to calculate the

Direct results shown in Figures 5 and 7 with little appreciable increase

in cost.

MIXED PATH CALCULATIONS.

With a minor modification of the finite element mesh, we can

examine the Rayleigh waves from a point-force in a medium that differs

from that of the receiver. Figure 8 shows the geometry for the runs

that we made where the receiver was in the same homogenous propagation

medium as in Figure 1. The source region medium was a cylinder with a

height and radius of 1.8km with material properties of either Yucca Flat

tuff or Climax Stock granite (Table 1). By keeping the position of ISES

fixed, we were able to monitor the first 6 sec of energy transmitted

across the impedance boundary.

Figure 9 shows the results for the two source media typical of NTS.

For the Climax Stock case the rigidity ratio is approximately 0.6 and
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the waveforms given by the three methods are similar. However the

difference in amplitudes is significant. For the Yucca Flat case, where

the rigidity ratio is approximately 0.1, the waveforms from the three

methods are quite dissimilar and the amplitude variation is large. Both

analytic results broaden the signal width compared to the RT result,

indicating some phase distortion. When the traces are convolved with

the response of a LP LRSM instrument (Figure 10), the differences

between results of the three computational methods are noticeably

reduced. For Climax Stock, the amplitudes given by the CLEF and UTC

method are identical, though still somewhat larger than the RT result.

For Yucca Flat , the amplitude disparities between the three methods are

considerably less. The CLEF result shows some differences with respect

to the RT result at the higher frequencies, but not so great as the UTC

result which is dominated by high frequency energy.

We also convolved the Climax Stock forcing functions with the

CIT109 Green's functions for a vertical component LP LRSM intsrument at

1200km. Figure 11 shows the RT method result together with the analytic

results. The peak-to-peak amplitudes of the RT and CLEF results closely

agree. The associated periods are 15 sec and 12 sec respectively. The

UTC method gives amplitudes a factor of 3 too large at periods around 6

sec and these distort the signal. The amplitude of the 13 sec period is

approximately equal to that given by the other methods.

It is interesting to note that the peak-to-peak amplitude of the

mixed path result computed using the RT method is 4.OxlO- 2 l cm compared

to 3.6x10- 21 cm for the pure CIT109 result. The source in both

instances had a strength of 1 dyne.

A.
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DISCUSSION.

There are two main conclusions that can be drawn from these

results. These are:

i) In order to compute the RT result it is only necessary to

perform the convolutions using the vertical component of stress on

when the result is to be put through a LP LRSM instrument in order to

compute an Ms. This should effect a considerable saving in

computational effort when evaluating both forcing and Green's functions.

ii) that for the type of mixed paths considered here, and when seen

through a LP LRSM instrument, the CLEF method gives results comparable

to the RT method.

In light of these results, we are undertaking a similar analysis

using a finite element simulation of an explosion source in a half space

to generate forcing functions.
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Figure Captions

Figure 1. Run geometry for a vertical point force(s) in a

homogeneous half-space. X's denote nodes on SES at

which forcing functions are calculated.

Figure 2. Contributions from sum of modes on bottom and side of

E identified by forcing function component, for
SES,

problem shown in Figure 1. Amplitudes are ground

displacement in cm x 10-15 due to force of I dyne.

Figure 3. Total contributions, R. T. and Direct solutions.

Units as in Figure 2.

Figure 4. Results as in Figure 2, but convolved with LPZ LRSM

response, plotted on common scale.

Figure 5. Results of Figure 3 after convolution with LPZ LRSM

instrument response.

Figure 6. Contributions from bottom and side of ISES for vertical

point force of 1 dyne in model CIT109, convolved with

LPZ LRSM instrument of 1200 km distance. Units are cm

x 10-15.

Figure 7. Total contribution, RT and Direct solutions for model

CIT1O9.

Figure 8. Geometry for mixed-path runs shown in Figures 9 and 10.

For Figure 11, receiver R was placed at A - 1200 km.

!L
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Figure 9. Comparison of the mixed-path results for 2 NTS source

media, scale factors shown separately.

Figure 10. Results of Figure 9 convolved with LPZ LRSM response.

Figure 11. Mixed-path results for model CIT09, LPZ LRSM

instrument included.
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ABSTRACT

Waveform modeling of teleseismic long-period body wave phases of

shallow earthquakes has proven quite effective in determining source

parameters for events larger than magnitude six. Unfortunately, these

teleseismic phases become too weak for the smaller events and regional

data mudt be used which are generally much more complicated. This is

because the crust-mantle system is acting like a leaky waveguide and a

large number of rays are required to model the observations. In this

report we review a procedure for the systematic determination of source

parameters from the regional body waves. A least-squares inversion

technique which is based on a cross-correlation of the data and a

synthetic is used. The synthetics are a linear combination of the three

fundamental faults. A set of profiles of the synthetics is presented.

Although the synthetics are generated for a model developed for the

western U.S., this model seems to be adequate for most continental

regions. The inversion is parameterized in terms of fault strike, dip

and rake; these parameters are relatively insensitive to small changes

in crustal structure. Several examples are presented.

Ak



27

INTRODUCTION

A considerable amount of effort has been expended to determine the

source parameters of moderate size earthquakes, although it can be

besieged with difficulties. Ideally, a large amount of information can

be derived from modeling the long-period body waves (see Helmberger,

1974; Langston and Helmberger, 1975). Unfortunately, if the earthquake

is too small to be well recorded teleseismically, which is the case for

many events in the magnitude range between 5 and 6, the fault plane

orientation must be constrained by local short-period data and the

seismic moment usually can not be determined unambiguously. The

World-Wide Standard Seismograph Network (WSSN) supplemented by other

long-period stations and arrays provides sufficiently dense coverage in

that most moderate size earthquakes occurring in continental regions

will produce some on-scale records of the long-period body waves at

regional distances. In the regional distance range (1 -120) the wave

guide properties of the crust produce complicated body wave signals;

however, in most cases the long-period waveform is quite distinctive and

sufficiently insensitive to crustal structure details to allow the

separation of the source and structural information.

In this paper we review a procedure for extracting the source

parameters of moderate size earthquakes from long-period regional

phases. The technique involves an iterative inversion process which

minimizes the difference between a synthetic seismogram and the

oboervation. The synthetics are constructed using Green's functions

computed for a single, very simple structure. These Green's functions

appear to be an adequate model for most continental regions, thus

allowing a quick and approximate determination of the fault parameters.

k|
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The inversion is parameterized in terms of strike dip and rake. The

number of inversion parameters has been minimized so that inadequacies

in the Green's functions are not over emphasised. Obviously, the

structural model is more appropiate for certain region than others, so

the inversion parameters chosen are those which are most robust. The

main advantage of this technique is that it only requires a small data

set. The general usefulness of this technique is illustrated by

inverting regional data from earthquakes occurring in the United States,

northern Canada and southern Europe.

THE GREEN'S FUNCTIONS

The techniques for constructing the Green's functions are discussed

in detail elsewhere (Helmberger and Engen, 1980; Wallace et al., 1981).

What is discussed here is some simplifying approximations and their

applicability. The waveform of interest is that part of a regional

seismogram which arrives before the S-wave. This waveform is referred

to as Pe. It is simplest to discuss Pv in terms of rays which are in

a waveguide. The first part of Pn is dominated by P-waves (Pn) and,

moving back into the record, the waveform contains progessively more SV

(PL) contributions. The SV energy corresponds to rays which are

reflected within in the crust and undergo subsequent mode changes at the

free surface and the Moho. The interference of all the rays gives rise

to the waveform; parameters such as crustal thickness or velocity

contrast between the crust and Moho control the waveform dispersion.

Figure 1 shows some typical P waveforms.

The Green's functions are constructed by summing generalized rays

for a point shear dislocation. As an example, consider the following
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equation for the vertical displacement in cylindrical coordinates:

w(r,z,0,t) - 0 (t) Wi(t) At  t

i-l

where D(t) is the far field time history, o the source region density

and MO  is the seismic moment. The summation process adds the

contributions of the three fundamental faults; the Wi are the Green's

functions for vertical strike-slip, vertical dip-slip and 450 dip-slip

step dislocations respectively. The A1 are coefficients determined by

source orientation and are given by:

A1 (0,A,8) - sin 2e cos X sin 6 + 1/2 cos 20 sin A sinZ8

A2 (0,X,8) - cos 0 cos X cos 8 - sin 0 sin A cos 28 (2)

A3 (0,X,8) - (1/2) sin A sin 26

where 6 is the receiver azimuth from the end of the fault plane, X is

the rake angle and 6 is the dip angle. The total displacement is then

the sum of the displacements from each ray. The number of rays which

are used is determined by the structure and the pass band of the

observation. In our previous work we have shown that a single layer,

corresponding to the crust, over a halfspace mantle is a sufficient

structural model for regional long-period records to allow the

extraction of source parameters of moderate size earthquakes.

As an example, Figure 2 shows a comparison of the synthetics and

the records of the 1966 Truckee, California earthquake (which will be

discussed in more detail). The synthetics were constructed from Green's

functions computed for the crustal model in Table 1 and the fault

orientation was determined by the inversion of the regional data. In

this case the source time function and moment were determined by other
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methods so that the synthetic amplitudes can be viewed as predictions.

The numbers on the traces are maximum peak to peak amplitudes. The only

noticeable difference between the data and the synthetics is the high

frequency content which could be caused by several things; (1) the

effects of attenuation within the crust have not been added to the

synthetics, and (2) the very sharp boundaries in our model are efficient

in trapping short-period energy. Overall, the fit of the synthetics to

the data justifies the use of the simple model, and the high frequency

, Icontent of the synthetics does not effect our ability to determine the

source parameters.

The only expensive or complicated part of this modeling process is

the actual generation of the Green's functions. For this reason,

Figures 3 and 4, which give profiles of the vertical and radial

responses for the three fundamental faults are presented. Most

earthquakes which produce an on-scale P at long-period WWSSN stations

have similar time functions (which is simply a reflection of the event

size). In Figures 3 and 4 a trapezoid with a 1 second rise, 1 second

top and 1 second fall is used for the far-field time history. The

displacements have also been convolved with a 15-100 instrument.

Because of the differences in high frequency content between the data

and synthetics the displacement responses have been filtered. The

filter has an impulse response of a triangle which has a 2 second rise

and fall. When comparing these displacements with data, the

observations should be similarly filtered. Once the response of the

three fundamental faults Is known any seismogram can be constructed by a

linear combination of them.

The displacements in figure 3 and 4 were computed for a source
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depth of 8 im. Varying the source depth between 5 and 15 km has only a

small effect on the waveform. This is easily understood by considering

that to first order, a change in source depth only affects the travel

time of the first segment of any ray. Figure 5 shows a comparison of

the synthetics at 1000km for three different source depths. After

doubling the source depth (from 8 to 16 km) the essential character of

the waveform is still preserved and the source information is

retrivable. In contrast, a similar change in crustal thickness would

affect the travel time of each leg of a given ray, hence significantly

changing the waveform dispersion (Wallace and Helmberger, 1980). The

insensitivity of the displacements to source depth allows the responses

in figures 3 and 4 to be used, at least in a qualitative fashion, to

determine the source parameters of most crustal earthquakes.

The only other major question of applicability of the presented

displacements is the structure used in their calculation. Experience

indicates that the simplistic model is justified. The model in Table I

is an average developed for the western U.S. although it appears to be

sufficient for most continental regions in the world. The waveform

dispersion is dependent on crustal thickness and the contrast between

the upper mantle P-velocity and the mean crustal P-velocity, so

obviously in regions with anomalous crustal structure such as the

Tibetan Plateau the responses in figures 3 and 4 would be inadequate.

Also, the use of the halfspace to approximate the upper mantle must

break down at some point; at some distance a significant amount of

energy will be present in the form of diving rays which have turned in

the mantle. For most continental regions this distance appears to be

about 120. If diving rays are present the ratio of the Pn to PL
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amplitude should differ from the synthetics (Wallace and Helmberger,

1981). Also, the predicted amplitude should begin to diverge from the

observed due to attenuation in the upper mantle. Figure 6 shows a

profile of the Truckee records; the amplitudes have been corrected for

the azimuthal radiation pattern and the polarit '- have been adjusted to

show a smooth dispersion pattern. To the right is a profile of

displacements for a strike-slip earthquake (such a profile can be

constructed from figure 3). Note that there does not appear to a

systematic break down in waveform shape or amplitude over the distance

range to 40 to 120. Also note that stations BOZ and TUC are nearly

nodal and thus their amplitudes are not particularly reliable.

INVERSION TECHNIQUE

The ability to determine the source parameters of an earthquake by

comparing an observed with a predicted waveform depends on the

assessment of the quality of fit. In a previous paper (Wallace et al.,

1981) we presented a least-squares waveform inversion technique which

makes use of an error function determined by the cross-correlation of a

long-period seismogram and a synthetic;
e = 1 -fi

f fg (3)

(ff2 ) 1 g22) 1 2

where f is the observed record, g is the synthetic and the integral is a

zero lag cross-correlation. The limits of integration are the time

length of the window in which the waveforms are correlated. The

denominator serves to normalize both the data and the synthetics. This

normalization process makes the error function insensitive to the

absolute amplitudes. To minimize the error, which corresponds to
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maximizing the correlation, we allow f and g to optimally align

themselves with regard to waveform. f and g are aligned a priori in

time by matching first breaks and ignoring absolute travel time. The

error function can be rewritten by considering that the synthetic

seismogram can be constructed with the three fundamental faults. In

this case there is a summation of cross-correlations between the

observed and each of the fundamental faults. For a given range, the

crots-correlations are constant and errors can be minimized by varying

the Ai's in equation 2. In other words, once the cross-correlations are

computed the source orientation is determined iteratively and only the

constants have to be recalculated. For a detailed discussion of the

inversion technique see Wallace et al. (1981).

Once the source orientation is fixed, the moment of an earthquake

can be determined by comparing the amplitude of the synthetics and

observations. Adopting the units of Helmberger and Malone (1975), and

expressing the range in km, time in seconds, density in gm/cm 3, velocity

in km/sec, the moment in dyne-cm and displacement in cm yields:

1020 data amplitudeMo - 4wp x (synthetic amplitude

A moment can be determined by comparing the maximum peak to peak

amplitude for any time window used for the correlation. It has been

found that a moment should be determined for a few peaks at a given

station. The ratio of the moment at each station to the mean is a

measure of the amplitude stability. In general, the moments determined

from U are in very good agreement with those determined

teleseismically, using an assumption of t* - I sec.
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EXAMPLES

We have inverted the Pn waveform from five earthquakes to

demonstrate the utility of the technique. Three of the earthquakes are

in the western U.S. Two other earthquakes, one in Baffin Bay in the

Artic and the other in Turkey, have been included to demonstrate that

the Green's functions are not unique to the U.S. Both dip-slip and

strike-slip mechanisms are represented in the suite of examples.

Truckee, California (9/12/67)

The Truckee earthquake was a strike-slip event at 10 km depth which

produced excellent regional records but very few teleseismic body wave

records as typical of moderate size strike-slip events. The Truckee

earthquake (mb-5 .7 ) has been studied by numerous authors (Ryall et al.,

1968; Tsai and Aki, 1970; Burdick, 1977) making it a good test case.

Tsai and Aki (1970), from first motion studies and modeling of the

surface waves, determined this event to be pure strike-slip on a fault

plane striking N440E and dipping 80°SE. The surface wave moment was

determined to be 0.83 x 1025 dyne-ca. Figure 2 shows the location of

the epicenter, recording stations and filtered data for Truckee. Also

shown are the synthetics determined from the inversion results. Note

that BOZ and TUC are very nearly nodal. The inversion yields a

mechanism which is very similar to Tsai and Aki's (1970); a strike of

W430 E, a dip of 760 SE and a rake of -110. The only significant

difference is the slight dip-slip component in our solution, which is

also acceptable on the basis of the first motion data. The moment

determined from the Pht waveforms is 0.87 x 1025 dyne-cm, which is in
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excellent agreement with Tsai and Aki (1970).

El Golfo, Mexico (8/7/66)

The El Golfo earthquake (mb=6.3, Ms=6.3) is a strike-slip event

which occurred near the mouth of the Colorado River at the northern end

of the Gulf of California. Ebel et al. (1978) determined the fault

* plane to be striking E1400S, dipping 850 to the southwest and with a

rake of 1830, and determined the depth of the event to be 10 km. Using

* teleseitsic long-period P-waves they determined a moment of 5.0 x 1025

* dyne-cu.

El Golfo is about the maximum size event which can be used in the

inversion technique. The P records are barely on scale at the

stations used. Figure 7 shows the location of the epicenter, recording

stations and the waveforms. In this case the time function is a

triangle with a two second rise and fall; the long-period impluse is a

reflection of the event size. The long-period time function allows us

to dispense with using a filter. In figure 7, shown below the observed

waveforms are the synthetics for the inversion solution; a strike of

E1370S, a dip of 810 and a rake of 1750. The inversion solution is in

good agreement with Ebel et al. (1978). The moment determined from the

P is 4.6 x 1025 dyne-cm.

Oroville, California (8/7/75)

The Oroville earthquake (M-5.6) was a normal faulting event and is

interesting because the surface wave (Hart et al., 1977) and body wave

(Langston and Butler, 1976) analysis yield substantially different

moments. Langston and Butler (1976) determined the strike to be 1800,

with a dip of 650 and a rake of -700. Their moment determination is 5.7

x I024 dyne-ca. Hart et al. (1977) suggests that the surface waves are
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consistent with the body wave mechanism but the moment is a factor of 3

larger (1.9 x 1025 dyne-cm). Figure 8 shows the location of the event,

the stations used in the inversion analysis and the filtered data and

synthetics. The inversion solution has shifted the mechanism to a

strike of 2040, dipping 660 and a rake of -850. This new solution only

violates a few first motions, but the aftershock trend tends to support

the 1800 strike. The moment determined from P is 6.9 x 1024 dyne-cm.

Baffin Bay, Canada (9/4/63)

The Baffin Bay earthquake (M-5.9) is a normal event associated with

a continental margin area. The travel path to each of the stations used

in the inversion includes portions of crustal and oceanic regions which

makes an ideal event to test the applicability of the Green's functions.

Liu and Kanamori (1980) modeled the body waves and determined a fault

plane solution with a strike of 980, dip of 660N and a rake of -1030.

The location of the event and the filtered data and synthetics are shown

in Figure 9. The inversion solution has a mechanism striking 740,

dipping 660 and has a rake of -100°. Again the only parameter which is

appreciably different from the teleseismic analysis is the strike. In

any case the inversion soluticn is acceptable, and the difference of 200

in strike can be considered the resolution for dip-slip events.

Turkey (6/13/65)

The Turkish event (M-5.1) is a shallow normal event which occurred

in southwest Turkey in a region of north-south extension. McKenzie

(1972) used first motion data to determine a pure normal mechanism with

a strike of 1010, dipping 700 to the south, although it is not well

constrained. There were three WWSSN stations at regional distances

which could be used in the inversion process. Figure 10 shows the
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location of the event and the recording stations. The filtered data and

the fit of the synthetics are also shown. The inversion solution

(strike - 1310, dip - 680, rake - -880) is consistent with the first

motion data, although it differs in strike from McKenzie's solution.

Again the three station solution is quite acceptable, considering the

quality of the first motion data.

DISCUSSION

Determining the fault-plane orientation of moderate size

earthquakes is often a frustrating experience due to the paucity of high

quality data. Earthquakes in the magnitude range of 5 to 6 are quite

important and often are the only "measurable" expression of the present

tectonic environment. All the available data must be used to extract

the source parameters of these moderate size events, and the modeling of

waveforms can provide a valuable constraint in this process. Every

situation will probably be unique and it is difficult to predict which

data set will be the most definitive. Nevertheless, it appears

worthwhile to consider the Pn inversion seperately and its

resolvability dependence on source orientation.

The inverison process we discussed only requires a small data set.

With ideal azimuthal separation, a data set comprised of just 3 stations

(vertical and radial component) can yield good solutions (it is possible

to construct a case where the inversion is unstable, but in practice

this has never happened). In almost all cases 4 recording stations are

sufficient. P should be polarized in the vertical and radial planes.

Rotation of the horizontal components for a number of events indicates
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that there is very little energy on the tangential component implying

little contamination from such effects as multipathing. Therefore, it

is usually sufficient to take the largest of the horizontal components

to be the radial waveform in the inversion. The resolving ability of

the inversion (or conversely the error) depends on the type of

earthquake. The experience gained by considering the examples presented

in the last section indicates that the mechanisms of strike-slip

earthquakes can be determined quite well with relatively few stations.

The strike is usually determined to within 50 of that determined by

other methods. The rake is the least resolvable parameter for

strike-slip events and can vary up to 150 from that determined by first

motion studies. The mechanisms of dip-slip earthquakes are more

difficult to determine. Although the dip and rake are usually

determined in good agreement with other studies, the strike may vary up

to 200. This feature is illustrated by considering a 450 dipping normal

fault. In this case, most regional stations lie within the

compressional region of the focal sphere and any given azimuth will

produce remarkably similar waveforms. Fortunately, dip-slip events have

rather strong teleseismic P-waves but again the waveforms are all the

same with little dependence on azitmth. In this case the stations lie

in the center of the focal sphere and are all dilatational. As an

example consider Figure 11, which displays the focal sphere and the

teleseismic waveforms for the Oroville earthquake. Note that the

P-waveforms are all similar and the synthetics (Langston and Butler,

1976) do not add much insight into determining the strike of the fault.

Figure 12 shows the filtered regional data and synthetics computed from

the teleseismic fault parameter determinations. A comparison of figure

) .. " e- °
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12 and 8 will show that the regional data inversion solution improves

the fit of the synthetics, in particular PAS. This suggests that a

logical approach would be to invert some teleseismic data and the

regional data simultaneously. Since the inversion technique relies on

the cross-correlation of data and a synthetic the joint inversion is

quite tractable.

The higher resolution of the strike-slip events is actually

fortuitous. Moderate size strike-slip earthquakes rarely produce usable

teleseismic P-waves due to their inefficiency in radiating energy

straight down. On the other hand, strike-slip events produce very good

regional waveforms. This allows the inclusion of a larger data set in

the inversion and hence, the resolution problem is at least partially

resolved.

It is reasonable to consider what effect the structual model has on

the inversion results. As a test of the insensitivity of the fault

orientation to small changes in crustal parameters the El Golfo

earthquake was reinverted with a different structure. The crustal

thickness was reduced to 24 km, the source depth was moved to 12 km and

the Pn velocity reduced to 7.8 km/sec. Although the quality of the fit

decreases significantly the mechanism returned by the inversion is

similar; strike is 1380, dip is 820 and a rake of 1810. The moment

increases to 6.9 x 1025 dyne-cm.

CONCLUSIONS

It is possible to extract the source parameters of moderate size

earthquakes from the long-period regional body waves. The procedure

requires the comparison of the observed waveform with a synthetic; the



40

synthetics can be generated by a linear combination of the waveforms of

the three fundamental faults shown in figures 3 and 4. Although these

synthetics are for a single model the inversion parameters (fault

strike, dip and rake) are fairly insensitive to small changes in crustal

thickness, Pn velocity and mean crustal velocity. This allows this

single set of Green's functions to be used for most continental

earthquakes. The inversion procedure only requires a small data set,

and is particularly ideal for strike-slip earthquakes.
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TABLE 1 - CRUSTAL !4)DEL

Pvel(km/s) S vel(km/s) Density (gm/cc) Layer Thickness (km)

6.2 3.5 2.7 32

8.2 4.5 3.4

MEN;

-r, _ _ _ _ _ _ _ _ _ _ _
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Figure 1: The horizontal component of motion for four moderate size
earthquakes. The magnitude and distance to the recording station is
given for each. Clockwise from the upper left; (1) Sept. 12, 1966,
Truckee, California, a strike-slip event, (2) June 13, 1965, southwest
Turkey, a normal event, (3) Aug. 7, 1975, Oroville, California, a
normal event, and (4) Dec. 10, 1967, off the coast near Cape Mendocino,
California, a strike-slip event.

Figure 2: The vertical Pn waveforms of the 1966 Truckee earthquake.
The star denotes the epicenter. The data is the top trace at each
station and the trace below is the synthetic fit. The strike-slip
mechanism has two nodal planes which project through TUC and BOZ. To
the right of eih trace is the observed or predicted amplitude (on the
basis of .8 x 10 dyne-cm) in 10- cm.

Figure 3: Theoretical displacement profiles for the vertical component.
The Green's fuctions were computed from the model presented in Table I
and have been convolved with a source time function represented by a
trapezoid (tll,t2-1,t3-1), a triangular filter (2 second rise and
fall), and a WWSSN long-period instrument.

Figure 4: Displacement profiles for the radial component. The Green's
functions are computed every 100 km. They have been convolved with the
time function, instrument and filter discribed in figure 3.

Figure 5: Pne waveforms at 1000 km for three different source depths.

Figure 6: The Truckee waveforms have been corrected for horizontal
radiation pattern and plotted as a function of distance. The maximum
amplitude is shown to the right of each trace. Note that BOZ and TUC
are very close to nodes.

Figure 7: Data and synthetics from the El Golfo earthquake. The map
gives the location of the event (star) and the recording stations.
Along each trace is the ratio of the station moment and the average
moment.

Figure 8: Filtered data and synthetics from the Oroville earthquake.
At all the stations except GOL both the vertical (the first trace pair)
and radial components are shown.

Figure 9: Location of the Baffin Bay earthquake (star) and the
recording stations. The filtered data and synthetics from both the
vertical and radial components are shown.

Figure 10: Location of the Turkey event (star) and the recording
stations. The filtered data and synthetics for both the vertical and
radial components are shown.

Figure 11: The teleseismic waveforms from the Oroville earthquake.
Note the similarity of 2 he wavefoms at all azimuths. Shown on each
trace is the moment (x 10"2 dyne-cm) determined at that station. Note
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the factor of 3 scatter (figure from Langston and Butler, 1976).

Figure 12: Filtered P, from the Oroville earthquake. The synthetics
were computed with the telesetsmic fault plane solution.
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ABSTRACT

A numerical method for evaluating the Kirchhoff-Helmholtz integral

is described. The Kirchhoff response is calculated by discretizing the

surface, specifying simple point sources on each element of the surface,

and summing the contribution from the elements. The results of the

method are compared to those of an asymptotic, first motion

approximation of the analytical solution of SH waves impinging on a

rigid sphere. The agreement between the results of the two methods is

excellent for source and receiver distances which are large compared to

the radius of the sphere. The method is applied to the calculations of

reflections from mountain topography and a planar surface with an

aperture. The phase shifts of pulses are consistent with optics; the

amplitudes are not. The method does predict frequency dependence of the

scattered amplitudes. Calculations are presented to model spall which

produce travel-time and amplitude anomalies consistent with observations

from nuclear blasts.
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Introduction

Many wave propagation phenomena cannot be adequately modeled by

existing solutions to plane-layered media. Yet the increasing use of

broad-band seismic data to determine source dislocations, Q, and

velocity structure requires a knowledge of effects of material

irregularities in the medium on seismic wave propagation. Certainly,

documented amplitude and dT/d& anomalies of teleseismic arrivals at

large arrays (Glover and Alexander, 1969; Walck and Minster, 1980)

which vary as a function of azimuth suggest the existence of non-flat

boundaries at depth.

Numerical schemes which handle material irregularities are in

abundance. Finite difference and finite element codes have been used

successfully (Boore, 1971; Smith, 1975) and can be applied to a variety

of materials; however, the expense of calculating the response at

distances which are large compared to the wavelength of interest is

prohibitive. Rayleigh-FFT techniques have been exploited for these

problems (Aki and Larner, 1970). Similiarly, implementation of these

methods for analysis of three dimensional scattering is also costly.

Geometric ray methods are useful for predicting scattering of signals

which have wavelengths that are short compared to the site of the

heterogeneity (Hong and Helmberger, 1978). But, existing ray methods do

not predict frequency-dependent amplitudes of scattered pulses and do

not handle diffracted arrivals.
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Discussion of techniques

The method presented in this paper is an integral equation approach

and is based on the evaluation of the scalar integral equation variously

called the Kirchhoff, Helmholtz, or Huygen's integral. This equation is

a formulation of the wave equation in terms of a linear surface integral

over the boundary of a continuous volume. That is, the scalar wave

equation is

1 a2u (r,t) - V2 u(r,t) - D(rt) (1)c t 2

Here u(rt) is the field at a point r resulting from a source potential

and c is the wave speed. Following the formalism discussed by

Mow and Pao (1971), we consider the motion of a homogeneous body V with

a smooth boundary aV with outward pointing normal A. Then if £ c V and

t C (0,-)

u(rt) f ( , r , t-t )(r ot)dt dV0

+ I cG(r,r t)2(r _0) - u(r,o) (rt._ -. t) dV
I -o at -o -0 at I

4 J J G(r,r t-t )V u(r ,t) - u(r ,t)V G(r,r t 2

av 0 --o -0 -0 0 Ot-to) (2

R(r~ )dt0dS0

Here G(L,10ot-to) Is the fundamental singular solution of the scalar

wave equation

1 " a 2  2 -- 3
1 at V 2 

0 -o( - 0rr

c .2_ . ... ..... 0.



62

Let us define f(r,t) as the sum of the first two integrals in equation

(2). Then f(rt) can be interpreted as the whole-space solution of the

problem with sources O(Lo,to) and initial values jt (ro,O) and u(x0 ,O).

Hence u(i,t) is a sum of the direct pulse and a reflected pulse from the

surface which is described by the third integral in equation (2).

If r i V, then the left-hand side of equation (2) is zero. If r c

DV then

.~u~ ~f mP G(r,-r ,t-t)V~ t u(r ,t)V G(r,r ,t-t
0 1C
•(ro) dt0 dS0 + f(r,t) (4)

Here P denotes the principal value of the integral. A detailed

derivation of equation (4) can be found in Cole (1980). This result

requires that G has a specific asymptotic behavior at its singularity.

The function G used in the Kirchhoff formulation here meets this

requirement; Specifically

G(r,r ,t-t) 6(t ) T (5)4ir I r-ro c

Substitution of this function into equation (2) gives a familiar optics

formula (Born and Wolf, 1964)

u_t + r~ iaa( ~~ 3 ~ dS (6)"f L1 1 [4-]n "] [u]1--L]112

+ f (r,t)
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where r - Ir-r01, the distance from receiver to surface, n Vu. n and

fn- VJr-r1. The square brackets denote the values of the functions

on 3V at the time t - lr-l 0 /c.

The integrals (2), (4), and (6) are formally exact and are a

mathematical representation of Huygen's principle; that is, a

disturbance at a receiver point is a superposition of secondary waves

proceeding from a surface existing between that point and the source.

Diffraction phenomena arise from the mutual interference of these

secondary disturbances. However, one needs the value of the potential

and its normal derivative on the surface to calculate u(rst). Equation

(4) may be solved for u(r,t) or VJ.n on the surface subject to some

constraints imposed by boundary conditions (e.g. continuity of 11(r,t)

or V u.n across the boundary). This approach is taken by Hitzner (1967)

who sets Vu- n equal to zero and solves for u(r,t). However this

approach may be costly for high frequency scattering.

Alternatively one may estimate the values on the surface by

invoking an approximation. This approach is used in this paper.

Assuming a point source, the boundary values on the surface are taken to

be

u(r.,t) ((t )/r)(1 +R) (7)

_ - (8) h1
an 3n s t Z ro (en

Here ro is the distance from the source to the surface, R Is the
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approximate plane-wave flat interface reflection coefficient, and f(t)

and f'(t) are the source time function and its derivative, respectively.

The reflection coefficient will depend on incidence angle. This

approximation is variously called the Kirchhoff, physical optics, or the

tangent plane hypothesis and is widely used by workers in

electromagnetic scattering investigations (Davies,1954). It assumes

that the incident pulse is sufficiently high frequency so that locally

the amplitude decay is described by both geometric ray theory and

plane-wave reflection coefficients. Therefore every point on the

surface reflects the incident pulse as though there were an infinite

plane tangent to the surface at that point. The values of the potential

and its normal derivative at a point is independent of the boundary

values at other points. Hence the effects of multiple scattering and

diffractions along the surface are neglected.

Upon substituting the values (7) and (8) for u and n one obtains

for the reflected potential

1 F 1  01 ar I (t r
u (rt) f R an 2 ° r fn t -1 - d S

rrrr c o
av 0

+ r - + 1 r r f dSo  (9)

av

This equatici is similar to those derived by A.W.Trorey (1970,

1977), F.J. Hilterman (1970, 1975), and Berryhill (1977). These

authors have derived convolutional forms of the Kirchhoff integral which

make computation rapid. Hilterman has verified his results with small

scale experimental modeling of a point source in air impinging on rigid

- . -" 4.
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anticlines, synclines, and normal faults. The agreement between his

numerical calculations and experiments is, in general, excellent.

However, these analytical forms of the solution place severe

restrictions on either the source-receiver geometry or the surface

geometry.

The method presented in this paper differs from Trorey and

Hilterman in that the source and receiver are allowed to be at separate

locations, the surface geometry is arbitrary, and the integral is

approximated by the following expression

1 f ( r0  r r'2ur(r,t) J 2.!R ~-i _- E )Q (1) + ff t - ~Q' k(0

where

Q(1) 1 ro 1 ar
. -2 ?n + r2 a'n

and

(2)1 Bro rQ; rr can r-

An important part of the procedure is the discretization of the surface.

The rough surface is specified by a function z(xiyi) where (xi,yi) is a

location on a horizontal grid of regularly spaced points separated by a

distance Ax and Ay (see Fig. 1). From this Information, one can

readily calculate IX and y. Then the following formulae are used to

calculate ASk, h, and In:

AS - +(az)Z .(dz+ s Ax+y (11)
ay!
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3z

Nr (x-x)!- + (Y9-Y- - (z+-z))
" iax a - (12)a n r +( .L ) 2 +. z 2

an ( o (x-x +'Qz o2
ax a_ (13)

Here x., y' and zs are the station coordinates and xo, Y0 , and zo  are

the source coordinates. These values are calculated for a finite

surface. However the Kirchhoff integral is formally stated for a closed

surface. This problem is circumvented by integrating over a closed

surface consisting of the part of the surface one is interested in (S)

and a portion of a sphere of large radius (SO) (see Fig. 2). One then

argues that the contributions from the sphere arrive at the receiver at

times later than those of interest and neglects them.

For the time function f(t) we have chosen a ramp function. This

choice circumvents the problems of numerically simulating a delta

function. So, on each element we add the sum of a ramp function

multiplied by QI) and a step function multiplied by q(2) appropriately

in time. That is, each element is illuminated and contributes to the

total response at a time T - (r+ro)/c. This two-way travel time is

calculated and the responses from all the elements are summed

cumulatively in order of increasing T as displayed in Fig. 3.

For problems presented in this paper, the numerical ramp response

is convolved with the analytical third derivative of a modified Haskell

explosion source function , specifically

Y(t) To [ - e-kt(l + kt + (kt)2 /2 D(kt)3)] (14)

___
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Here To is the source strength, k scales inversely as the source

strength and B is the overshoot constant. This convolution is

mathematically equivalent to the first derivative of the reflected

potential caused by a source described by (14). From trial and error,

we have determined that such a convolution eliminates the spikiness

Introduced by simple differencing and, therefore, is the preferred

method for differentiation in the calculations presented in this paper.

We have carried out experiments to determine the grid size required

to produce a smooth seismogram, As an example we show, in figure 4, the

variation of the waveform and maximum amplitude of a seismogram as a

function of grid size for a sample reflection problem. The reflecting

flat surface is specified for seismograms A, B, and C by grid areas of a

wavelength of 4 km. Hence for seismograms A, B, and C the number of

grids per wavelength is 11.4, 8 and 4 respectively. Seismogram C shows

that the coarse discrimination of the surface has introduced high

frequency noise which degenerates the waveform and the maximum

amplitude. For each problem we calculate, the grid size is selected by

trial and error. The grid is made progressively finer until the

solution is unvarying as shown in figure 4.

Applications

The development of any numerical procedure necessitates a

comparison with known exact solutions. To see that the integral is

being calculated correctly, the results of this code are compared with

an analytical formula developed by Hilterman (1975). For the source and

the receiver together above an arbitrary rigid surface, Hilterman

reduces the Kirchhoff integral to the following form:

I! .. ... ... .
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u(-r*t) 2ic (f dnd] (15)

Here * denotes convolution. N is the increase of solid angle with a

vertex at the source-receiver point subtended by the surface as a

function of time (Hilterman, 1975). We choose to calculate the response

to a point source in a fluid overlying a rigid hemisphere imbedded in a

infinite rigid plane. (see Fig. 5 for the geometry) For such a

geometry we have determined d2 to be

d.2 i ~ 2 dR2 . 2o o1(6
d--1 2 a 2)1 H(t - Y for T t (1 )

To t f ort 'r t (17)

where To = 2(1]& -a)/c, the minimum two-way travel time, and TI = 2(I312

+ a2)1/2/c. H(t) is the assumed source time function and is the unit

step function. Using these results, we calculate the following two

terms 0 and analytically and numerically to check on the accuracy of

the integral approximation.

a ,~) 2_ dn

A T1Fc U t T (18)

t
1_ fdHdn

3 2wc J dird-r (19)

0
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The comparison is shown in Figure 5. In this calculation, the

source-receiver point is 20 km above the center of the hemisphere with a

radius of 5 km. The velocity of the medium is 6 km/sec. The agreement

is good for To + 15 seconds. The results differ because the integral is

calculated numerically over a finite surface. The conclusion from this

experiment is that the numerical evaluation of the integral is adequate.

We further test the code by comparing the Kirchhoff solutions with

analytical high frequency solutions which satisfy the given boundary

conditions. Again we choose to calculate the potentials caused by a

point source impinging on a rigid sphere; however we allow the source

and receiver to separate. The Kirchhoff results are-compared j those

from a first motion approximation of an aymptotic form of a solution

obtained by Gilbert and Helmberger (1972). They solve the problem of

the reflection of an SH pulse from a fixed and rigid sphere. Figure 6

illustrates the geometry and parameters used in this problem. The

displacement as a function of spherical polar coordinates (r,6) obeys

the following equation.

jsV2u(r., t)-82u(ret) - -f(t)6(r-r9 )8(e-0+)a r2 ir s in O (20)

Here M is the rigidity of the medium, p is the density, and c is the

wavespeed (c - p). The Gilbert and Helmberger asymptotic solution for

the reflected pulse is

C
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r, f(s) are the Laplace transform of u(re,t) and f(t). The variables

y and * and the path of integration are defined in Gilbert and

HeImberger (1972). After performing the first motion approximation we

obtain for the reflected pulse

Ur " 'I" [siero(rcosp+Rrocospo) f (22)

and for the direct pulse

ud 1 f(t - Rc)/R' (23)

where R' is the distance between the source and the receiVer.

If the source and receiver are together, it can be shown that

solution (22) and a far-field first motion approximation to the

Kirchhoff solution are equivalent. First let us define a geometric

spreading factor S such that equation (22) may be rewritten as

4riju-- f (t - (R0 + R)/C) (4

Now we examine the Kirchhoff solution when the source and receiver are

together. Following an approach developed by Nilterman the first term

in equation (15) is discarded as a near-field term.

4wIJ u (rt) - (25)r(-r~) 2i7rc fat dt)

Then a first motion approximation is made.

dn dO I
a- = H(t - ( (26)

t0T

II 0



71

Then

41u ur(r.t) = - f(t-o) (27)

t=T0

From equation (16) we find that

4ri r~)a f't-rT
r 2(Re + a)R - 0 (28)

If we now take the limiting value of S as R + R. and 8 + 0 in equation

(22), the result is

2(R a (29)

2R0+ a)R0

Hence, the two far-field high frequency solutions are formally

equivalent when the source and receiver are together. A similar result

is obtained by Hilterman (1975) for a rigid planar surface.

The Kirchhoff solutions are also calculated when the source and

receiver are separated and the maximum amplitudes of the synthetics are

compared with those amplitudes predicted by equation (22). The time

history of the input source for this problem is described by the third

derivative of equation (14) with the overshoot constant B - 2 and k -

10. The medium has a shear wave velocity of 5 km/sec; thus the

wavelength of the input source is approximately 4 km. The gridlength

used in these calculations is .1 km, making the number of grids per

wavelength equal to 40. The total grid area needed to describe the

surface of the sphere is 400 km The gridlength was selected to give

LI|I I !!.. : . ... . .. " -
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an extremely fine sampling of the surface so that we may investigate the

effects of a wide range of pulse widths as input time histories. Six

ramp responses for this problem required 595.8 seconds of CPU time on a

PRIME750. Table I shows the parameters used in ti. numerical

experiments and the numerical and theoretical amplitudes. The results

compare favorably; the accuracy of the Kirchhoff solutions is better

than or equal to 1 Z.

The above two experiments indicate that the Kirchhoff code

correctly predicts reflections from curved surfaces with large

reflection coefficients and far-field receivers. Similiar efforts have

been carried out by workers in the field of electromagnetic scattering.

Jiracek (1972) computes the amplitudes of electromagnetic waves caused

by an incident transverse electric plane wave impinging on a perfectly

conducting two-dimensional sinusoidal surface. He compares results

obtained from a Iayleigh-FFT method, an integral equation solver, and

the Kirchhoff method. The most obvious failure of the Kirchhoff

technique to predict correct amplitudes occurs when the incident angle

is past critical angle. This result is not surprising in light of

assumptions made in estimating the boundary values on the surface.

However, for angles less than critical, the Kirchhoff code is adequate

and inexpensive for problems involving three-dimensional rough surfaces.

We can gain further insight into the usefulness of this formalism

by comparison of the Kirchhoff solutions with optical solutions to

problems of geophysical interest. First, the technique is applied to

the calculation of reflections from a mountain with a buried source. In

the second application, reflections from a plane where the reflection



73

coefficient varies as a function of position on the surface are

computed. In both calculations, particular attention will be paid to

those propagation paths where classical ray theory fails.

The first application of the code is the calculation of the

reflected potentials from an isotropic source underneath an idealized

mountain (see Fig. 7). The topography o f the mountain is calculated

from this formula where 2 is the height of the surface.

- - cos V((x2 Y2)i (30)

Here C, the maximum height, is 5 km, and W, the width, is 33.33 km. The

acoustic reflection coefficient is -1 everywhere on the surface. The

topography is specified on 150 x 150 km grid with each element of the

grid being .5 km long.

Since the angle between the normal of the surface and the incident

source ray is calculated by the code, it is simple to plot the path of

the reflected rays. These rays are traced for two depths below the

baseline of the free surface. In the first plot, Figure 7, we can see

the rays from a source at 10 km which reflect off the free surface and

travel to a depth of 50 ka. This figure shows the position of the ray

caustic, focii, and the shadow zone caused by the convex shape of the

mountain. These features will influence the waveforms considerably.

In Figure 8 the rays are traced to a depth of 1000 km. The

Kirchhoff responses are calculated at this depth at the marked positions

which vary from 0 kilometers to 750 kilometers horizontally. Upon

closer inspection of Figure 9, one can see slight asymmetries in the
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location of the rays with respect to the position at 0 kilometers.

These asymmetries are caused by the discretization of 1e surface of the

mountain. The error in the value of the compvted normal derivatives

introduces 10 km of uncertainty into the locati.on of the rays at this

depth.

The calculated reflected responses are saown in Figure 9. These

pulses are convolutions of the ramp response with the Haskell function

with the parameter B-0 and k-25. Hence the number of grids per

wavelength is 10. As the horizontal distance of the receiver changes,

we see systematic waveform variations which can be interpreted in terms

of rays interacting with caustics. In the ranges of 0, 50, 100, and 150

kilometers tiit synthetics have complicated pulse shapes caused by the

interference of three families of rays. The first arrival is a simple

pulse with a w phase-shift which is a consequence of the reflection off

the free surface. The second pulse is a reflected ray with a path which

is tangent to the caustic formed by the mountain. This path results in

a w + v/2 phase-shift of the pulse. The third arrival reflects off the

mountain and travels through the geometric focus caused by the mountain;

thus the phase shift of this arrival is w + w . The maximum amplitude

of these four distances is controlled by the interference of these rays.

Clearly the high amplitude and the simple pulse of the first synthetic

at 0 kilometers is a result of the constructive interference of the

first two rays. Past 150 kilometers, the latter two arrivals arrive

closely in time and their interference controls the amplitude and

frequency content of the second pulse on the record. From Figure 8 , it

is clear that a ray interpretation of pulses on records past 400
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kilometers is no longer valid. Ray theory predicts only one reflected

pulse because the mountain creates a shadow zone; yet one sees two

distinct pulses predicted by the Kirchhoff method. The second

phase-shifted pulse decreases in amplitude and frequency content. As

the horizontal distance of the receivers increases, the amplitude of the

first reflection becomes the maximum amplitude of the record. If one

calculates the maximum amplitudes of reflections off a plane for the

same source- receiver geometry, one can see 'that the two sets of

amplitudes merge. This behavior is shown in Figure 10 where the

amplitudes as a function of horizontal distance for the two geometries

have been calculated. The solid line shows the decay of amplitudes

calculated for a planar surface. The triangles are amplitudes

calculated for a mountain with a height of 2 kilometers and a width of

10 kilometers. The two sets of values coincide past 800 kilometers.

The Kirchhoff results for this experiment are gratifying because

one does not expect infinite amplitudes or abrupt shadow zones predicted

by optics in real physical systems. This experiment also demonstrates

that this technique produces the requisite phase shifts in an extremely

simple manner unlike existing ray tracing techniques which must track

the behavior of a ray tube along the propagation path.

The second application of the code is the calculation of

reflections off an acoustic planar free surface where the reflection

coefficients are allowed to vary as a function of position on the

surface. These calculations demonstrate the flexibility of the code and

again emphasize the differences between the Kirchhoff solution and

optics. (The wavespeed of the medium is 6km/sec for all the following
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calculations).

Initially one assumes that the reflection coefficient is zero for

elements of the plane within a circular aperture of radius R and is -1

for elements outside this aperture. The source Is directly underneath

the center of the hole. From ray theory one expects that no reflected

energy will arrive at a receiver directly underneath the source. Yet

one calculates non-zero amplitudes for both long and short period WWSSN

seismograms from the Kirchhoff code. These seismograms are displayed in

Figure 11 as a function of the radius of the aperture for a receiver

1000 kilometers below the surface. Only the reflected pP phase has been

calculated and convolved with WWSSN instruments.

This pulse is systematically delayed as the radius of the hole

increases from I to 5 kilometers. There is no change in the waveforms.

Only the amplitudes of both sets of seismograms decrease. However the

amplitude of the seismograms for an aperture with a five kilometer

radius is more than half the magnitude of the amplitude of a pP phase

reflected from a free surface without a hole. Clearly, then, ray theory

is not a good approximation to the solution to this problem.

In addition, ray theory fails to predict any dependence of the

reflected amplitudes on frequency. Intuitively one expects, for an

aperture problem, that the higher frequencies of a broad-band signal

will be reduced relative to the lower frequencies after reflection.

This hypothesis Is tested by calculating the reflected responses from

sources of differing frequency content. In the following calculations

the parameter B of the modified Haskell source representation equals

zero; however k varies from 5 to 25. An increase in k broadens the

L.
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bandwidth of the incident signal (von Seggern and Blandford, 1972). One

computes two responses for a given source pulse. The first response is

a reflection off the plane with a hole and the second is a reflection

off the plane without a hole. The amplitude of the latter response has

no frequency dependence; hence if the reflection from a hole has no

frequency dependence, one predicts that the ratio of the amplitudes of

the two reflections will be constant as a function of the parameter K.

However, if there is a frequency dependence, the ratios should vary

systematically.

From numerical experiments one confirms the frequency dependence of

the reflected amplitudes. This result is shown in Figure 12.

Specifically, the amplitudes of the reflections from the aperture are

always smaller than the amplitudes of planar reflections. Also the

ratio of the two responses decreases when B decreases if the receiver is

located at position 2. This behavior is displayed for apertures with

three radii, 2, 3, and 4 kmi.

However, this behavior does not occur if the receiver is located at

position 1, 1000 an directly below the source. The ratios are

approximately constant as B decreases. This observation suggests that,

here, the reflected amplitudes from the aperture do not depend on the

bandwidth of the signal. Although this result is not intuitive, it is

typical of analytical solutions to Fraunhofer diffraction from apertures

in an opaque screen (Born and Wolf, 1964). For example, the solution of

the intensity of light transmitted through a rectangular aperture has

the functional form of

sin(Awx) . sin(Bwy)
Awx BWy

- U -.-m.--- -
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where A and B are geometric constants and x and y are the rectangular

coordinates of the position of the receiver. The limit of the above

function as x and y approach zero is I and is independent of the value

of u.

Such experiments, which vary the reflection coefficients on the

free surface, may be applicable to the analysis of the effects of

spallation generated by nuclear blasts on teleseismic P-wave

reflections. Spall is the physical separation of near surface layers

during the explosion. Material above the bomb is either ejected or

returns to produce an impact signal on near-field instruments. This

non-linear and non-elastic behavior of the material surrounding the

source may result in amplitude and travel time anomalies of reflected sP

and pP phases.

The model used to simulate spall is one where the reflection

coefficient is a cosine taper; that is

R "-os( <-R
R(2 x(32)

R - R (33)

Here x is distance from the source epicenter on the free surface. One

chooses this behavior of the reflection coefficient to simulate material

reflecting more energy as the distance from the source increases. The

model introduces complications into the short period waveforms but only

broadens the long period waveforms. This effect and the source-receiver

geometry is illustrated in Figure 13. The geometry is the same as used

in the aperture calculations. Unlike the first model, this model causes

the amplitudes of both the long and short period reflections to decay
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quite rapidly. The amplitude decay is greater for the short period

reflections than for the long period reflections. Hence the long period

energy is insensitive to the perturbation of the reflection coefficients

relative to the short period energy.

The source-receiver geometry is changed for this particular model

to test the hypothesis that asymmetries of spalling with respect to the

source location can introduce observable azimuthal variations of

amplitudes and waveforms of teleseismic records of nuclear blasts. Such

variations have been documented for teleseismic recordings of Nevada

Test Site blasts (Helmberger and Hadley, 1981). In addition,

photographs of collapse craters from NTS blasts suggest that processes

like spalling and subsidence occur along pre-existing planes of weakness

which are not symmetrical with respect to the emplacement hole (Springer

and Kinnaman, 1971). Figure 14 shows the results for stations at three

azimuths. The source is placed 2 kilometers to the right of the center

of the spall aperture and 1 kilometer below the free surface. The

receivers are all at horizontal distance which corresponds to a take-off

angle of 200 for the direct P wave. One sees azimuthal variations of

waveform and amplitudes for both long and short period reflections. The

amplitude variations are not large but the waveform changes are dramatic

for short period records.

This model is crude and consequently does not demonstrate that

spalling affects teleseismic reflections. However, Shumway and

Blandford (1980) report observing a systematic delay in arrival times of

pP phases from explosions. The simple aperture experiment provides an

explanation for that delay. In addition the Kirchhoff technique allows
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one to specifiy more realistic dynamical information on the free surface

and calculate more realistic models in a straightforward manner.

Conclusions

A numerical procedure has been presented for the evaluation of the

Kirchhoff- Helmholtz integral assuming the tangent plane hypothesis.

The method is a high frequency one and produces results which compare

veil with existing asymptotic first motion solutiovs. The technique has

been applied to two problems and compared to classical ray theory

results. First, the reflections off an idealized mountain are

calculated and have phase-shifts consistent with those predicted by

optics; however, the amplitudes at triplications are finite unlike the

classical ray result. In addition diffracted pulses are produced in the

shadow zones. The second application is the calculation of reflections

where the reflection coefficients vary as a function of position. For a

hole in the free surface, the Kirchhoff method produces reflections

where ray theory predicts no reflections. The method also produces

amplitudes which are frequency dependent. The results are applied and

extended to model the effects of spallation on teleseismic reflections.

Travel time delays and amplitude anomalies are predicted. These

anomalies are consistent with observations although the observations are

not modeled.

In conclusion, the method has a broad range of applications, The

method is inexpensive to run for -modeling two and three dimensional

rough surfaces. Although the method is appropriate for narrow angles of

reflections and acoustic reflections, its range of applicability can be

extended by introducing new time functions on the boundary. The code
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can also be coupled with existing propagational techniques such as

ray-tracing, Cagniard-de Hoop methods, or full wave theory. This

coupling will enable one to handle more complicated and relevant

seismological problems.

I/
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FIGURE CAPTIONS

1. The discretization of the surface over which the Kirchhoff

integral is calculated.

2. The closed surface of integration which is composed of S. the

surface over which one carries out the numerical

integration, and So , the remainder which does not

contribute to the signal in the time window of interest.

3. The summation of the response from each element to obtain the

total response.

4. This figure shows the change of response as the element size

in creases. The model used here is a free surface with a

hole. The source and receiver are directly below this hole.

The response is convolved with a modified Haskell source and

a short period WWSSN instrument to produce the above

seismograms.

5. The geometry of the point source problem is shown at the top

of figure. Here a is the radius of the hemisphere. r is

the vector from the source-receiver point to an arbitrary

position on the surface. R is the vector extending from the

center of the hemisphere to the source-receiver point.

Below are the two parts of the solution OA and +B. The

dotted lines are the values computed by the numerical

integration. The solid lines are the values computed by the

analytical Hilterman solution.

L.
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6. Geometry of the spherical problem.

7. The rays which reflect off a mountain described by the

equation (30). The source is 10 km below the baseline

indicated by the dashed line. Also shown are the caustics

formed by such a mountain and the geometric focus.

8. The rays which reflect off the mountain are traced to a depth

of 1000 km.

9. The responses convolved with a modified Haskell source for

receivers all at a depth of 1000 km and at horizontal

distances which vary from 0 to 750 km away from the center

position.

10. The maximum amplitude of the waveforms calculated for two

free surfaces is shown as a function of horizontal distance

away from the center. The receivers are at a depth of 1000

km. The solid line is the value of the maximum amplitude of

reflections off a plane from a source 10 km below the free

surface. The triangles are values for a free surface with a

mountain of height 2 km and width 10 km for the same

source-receiver geometry.

11. Long (dashed lines) and short (solid lines) period WSSN

seismograms calculated for the geometry shown at the top of

the figure. Here the radius of the hole varies from I to 5

ka.

12. Ratio of maximum amplitude of reflection from a surface with

and without a hole. The open circles are ratios measured at

a receiver directly underneath the source and the center of
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the aperture. The triangles are ratios measured at a

receiver 68 km away from the center position. Both

receivers are 1000 km be low the free surface. The radius

of the hole R is 2,3, and 4 km. The ratios are plotted for

these radii as a function of k. (a measure of the

4 bandwidth)

13. Long and short period seismograms for a cosine tapered

reflection coefficient.

14. Long and short period seismograms from receivers located at

positions A , B, and C.
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Parameters used in calculation of
Response from a Sphere with radius
a= IOkm

reflected reflected
R Ro i amplitude amplitude
km km (0) (Kirchhoff) (theoretical)
90.6 90.6 6.3 .024040 .02467

92.2 92.2 12.5 .02320 .02383

94.9 94.9 18.4 .02202 .02257

42.3 95.2 18.9 .04567 .04667

17.5 105.2 31.0 .07967 .08218

55.9 55.9 26.5 .08914 .09163

128.1 128.1 38.6 .01228 .012667

62.5 62.5 36.8 .0725 .074607

.L.-
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Source -
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r R
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Rodiust R

xsR: Refi. Coef f. =:QK=2k
x >R: Ref 1. Coeff. =-1 1000 km Source

Ve. =6 km/sec
*Receiver

WWSSN SYNTHETICS

L. FRMax. Amp
R (km)L:0.402xl102

5 ~S0.231 x 101

3~L - L0.4164x10 2

S=0.2418x 10-1

2-- 
L= 0.472 x 1-

2S /S0. 270 x10-1

--- L=0.573 x 1-

1 ~Sc0.329 x 10-1

0 sec L z0. 703 x10-2

N ~S 0.399 X IT-I

-V 1
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WWSSN SYNTHETICS

Max. Amp
5 km L =O. 193 x10-2

5 S = S0. 437 x10-2

4 - ~L=0.255xl10 2

4 S= S 0. 575x 1 -

3 L- ---. L0. 349 xI10 2

S=0.I00 x t0-

2 L =- L0.471 x10-2
SO0.193x10'l

L = 0.606 x10-2

S=0.328x 10'

0 .sec L =0.703 x10-2

S: 0.399 x o-I
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V 2R /ZZ'ZZ
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100 km, 'Source

WWSSN SYNTHETICS

A = 0. 255 x 10-2-
S =0. 128 x10-1

B L-. =L0.298 x10-2

S =0.161 x10-1

Isec -
C L L= 0.227x 102

S =0. 920 x 1- 2

F;9 1


