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NOTATION
. A Free-surface amplitude at a point (x,y,0) per unit amplitude of i
oscillation in the kth mode
' ‘Kk Reflected wave amplitude per unit incident wave amplitude
D Free-surface amplitude per unit incident wave amplitude at a
point on the incident side of the wave due to incident and
reflected waves
ZéL) Free-surface amplitude per unit incident wave amplitude at a
4 point on the lee side of the wave due to transmitted wave
K(I) Free-surface amplitude at a point on the incident side per unit
incident wave amplitude due to incident, reflected and motion-
{ generated waves
Kéu) Free-surface amplitude per unit incident wave amplitude at a
point (x,y,0) due to combined sway, heave, and roll motion
A Added mass in the kth mode due to motion in the 2th mode
4 b Half-beam of a cross section at the calm waterline

Damping (due to wave making) coefficient in the kth mode due to
motion in the Lth mode

Restoring coefficient (spring constant) in the kth mode due to
motion in the 2th mode

Wave-excited force or moment in the kth mode

Gravitational acceleration
Imaginary unit

Wave number

Two-dimencional unit normal vector

Unit normal vector on the body surface pointing into the body

Right~-handed Cartesian coordinate system (see Figure 1)

Forward velocity of ship




r(x,y,t) Free-surface elevation

;A Incident wave amplitude
A Wave length
U Wave heading angle; u = 0 for following wave
— E
Ek Complex amplitude of displacement of body due to oscillation
in the kth mode 1
ER(x,y,z,t) Vertical displacement of a point (x,y,z) on a body relative to
the point on the free surface on the same vertical line
(see Equation (6))
Ev(x.y,z,t) Vertical displacement of a point (x,y,z) on a body due to motion
p Density of water
d(x,y,2,t) Velocity potential function which represents the total fluid
disturbance due to wave and body motion
¢D(x,y,z) Complex velocity potential for diffracted wave
¢I(x,y,z) Complex velocity potential for incident wave
¢k(x,y,z) Complex velocity potential for forced oscillation in the kth mode
¢L(y,z,x) Two-dimensional complex velocity potential
¢s(x,y,z) Velocity potential for disturbance generated by the steady

forward motion of a ship
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COMPUTATION OF RELATIVE MOTION
OF SHIPS TO WAVES

Choung M. Lee
David Taylor Naval Ship

RED Center

Bethesda, Maryland, U.S.A.

Abstract

An analytical mathod is developed for pre-
dicting the vertical motion of a point on a
ship relative to the motlon of the free sur-~
face. The prediction method presented here
takes into account the effect of the deforma-
tion of the incident waves on the relative
motion. The causes of the deformation consid-
ered are the waves generated dby diffraction and
the waves generated by the motion of the ship.
The method is based on the two-dimensional
approximation of the flow around the cross
sections of ships. The results reveal that the
deformation of incident waves is so significant
that it should be accounted for in the pre-
diction of the relative motlon of ships.

1. lntroduction

The vertical motion of a point on a ship
hull with respect to the undulating free sur-
face is important information In the -seakesping
investigation of ships. This motion Is often
called ""Relative Motion.'' The relative motlion
has a direct effect on the inception of deck
wetness, slamming of the ship bottom, and
rudder and propeller emergence.

in general, the relative motion is computed
under the assumption that the incident wave
system is undisturbed. However, the incident
waves can be significantly disturbed in the
vicinity of a ship due to the diffraction by
the ship surface and the waves generated by the
motion of the ship. Hence, one can easily
surmise that the cause of the poor correlation
between the predicted and the measured 12,
relative motion is the assumption of the un-
disturbed incident waves near a ship.

In this paper a mathod to account for the
free-surface disturbance In the computation of
relative motion is described. The method, as
an initial sttempt, is limited to & two-dimen-
sional approximation within the context of
strip theory. This spproach is teken because
firstly, the results can be readily Incorpa-

rated into the existing muutlgml scheme of
and secondly,

ship motion based on strip theory
an evalustion of the two-dimensional approxi-

more compiex three~dimensional approach. The
strip approach of obtaining the free-surface
disturbances near a ship hull was encouraged
by the success achieved by strip theory in

the computation of the absolute mntion of ships
in waves.

The two-dimensional potentials are obtained
by using the method of distribution of pylsat-
ing sources on the boundary of the cross
section of the body. The source distribution
is extended on the waterline inside the body t»
remove the irregular behaviors of the poten-
tials at certain discrete frequencies. Various
cross checkings of the numerical convergence
are made to ensure the validity of the computed
results,

The computed results of a pontoon having a
uniform cross sectlon identical to the midship
of a mariner hull form are presented. The
contribution from the various sources generat-
ing local waves near the pontoon are shown in
the figures. The results indicste clearly that
the free surface motion at the sides of a ship
should be conslidered If a reliable prediction
of the relative vertical motion is desired.
The present study will be incorporated in a
strip fashion into an existing ship-motion
computer program, and the validity of the pre-
sently developed method will be investigated.

1. Analysis

The coordinate system to be used in the
analysis is a right-handed Cartesian coordinate
system which moves on the calm-water surface in
the mean course of the ship with the ship speed
The origin Is located directly above the center
of gravity of the thip at its mean position;
the x-axis is direc.ed toward the bow; and the
z-axls is directed vertically upward; see
Figure ).
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We assume that the water Is Incompressible
and its motion irrotational such that a velo-
city potential can be defined in the fluid
region. Vs also assume that the water is in-
finltely deep and that no current exists.

If we denote the velocity potential which
represents the disturbance of the fluid by
¢(x,y,z,t), then it can be decomposed In the
following form for a ship moving with a
constant velocity U in a regular plane wave
systoem,

*x,y.2,t) = -Ux ¢ ¢ (x,v,2)

ju.t

+ fefo,(x,y,2)e " ] (1

Here, un.ls the wave-ancounter frequency, fe
means the real part of what follows, ¢, is the
steady potential, and ¢, is the oscillatory
complex amplitude of the osclllatory potentlal
which can be further decomposed into

6
ot e OE LR (2)

where ¢7 is the incldent-wave potential; ¢p
the dlf’racud--v- potential; ¢x the forced-
oscillation potential in the kth mode of
motion; and the complex smplitude of the
displacement of the body dus to osclllation {n
the kth mode. The incident-wave potential ¢,
can be gliven explicitly by

9, .
oglniy,2) = j_;b e~ Jk(xcosu + ysinu) + k2 (3)
where
w = wave frequency in radlans per sec
g = gravitational acceleration
Cp = wave ampl itude

K = wl/g = 28/\ = wave number for deep
water

A = wave length

u = wave heading angle; u = 0 Ig following
waves

JeoT

The free-surface elevation G(x,y,t) can be
obtained from Berncul ii's equetion In terms of
the velocity potentiat by

gi{x,y,t) = - 1; (;z - u%)'('l'!ovt) + o(.’)

*
t
- %‘ ‘.'-‘xlylo) L4 ..u(.l7|°). . ]

*when the spetie) varisbles x, v, 2 and n
{(normal) are used as a subscript, It meons o
partial derivative with the respective wari-
sble. Also, 8 complex function Is
mitipiied by oJ¥%t only the feal part of
the product should be reslized.

w Juw t jo_t

Sl et e et 0]
where
C(xy) = % 0y, (%:7,0) (ka)

g0 = L ue, (v, 0 - Jug) ()

The vertical displacement of a point (x,y,z)
on a ship, denoted by £_(x,t), is given by

£, t) =24 () - xE (1) ¢ ¥E(D)  (5)

where x = (x,y,z), and £;, &, and E, are,
respectively, the heave, rol‘ and pitch dis-
placement from the mesn position of the body.
The relative motion of a point with respect to
the free surface motion at the same horizontal
coordinates (x,y) is defined by

Eplx,t) = € (x,8) - o(x,y,t) (6)

The vertical position of the point on the
hull from the calm water surface at zero speed
is not, of course, necessarily the same as that
at a non-zero forward speed due to the sinkage
and trim of the ship. In a strict sense, an
inclusion of the sinkage and trim effect in the
determination of the relative motion means that
the second-order effects contributed by the
terws such as 0(d¢e,). 0(e3), and 0(¢]) should
also be Included in the analysis. HNowever, an
investigation of the second-order effects will
not be pursued In the present study. The
snalysis will be kept within the first order
of the incident wave amplitude and of the
slendarness psrameter of the body.

Determination of Steady Free Surface

The free-surface deformation caused by a
steady translation of a ship in calm water at
constant speed U is obtained from the line-
arized Bernoulli's equation as

g (x,y) = -:- ¢, (x.v,0) n
The boundary-value problem for 0. is as
follows:
RO R X (8
x
= 9
%n ls. 3 ls.

where S, denotes the hull surface belaw the
calm-water surfece, and n = (n, ,n,,n.) is the
unit norme! vector on S. polnt‘ng into the body;

0 (xy,o®) = 0 (1)
ond
fim u -1/2 “
o ‘s {O(r Yfor»y -0 an
of1) ftor x < 0

where | remameen
r . .l.yt

.
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To obtain the solution of the foregoing
boundary-value problem, the thin-ship assump-
tion will be used. If we represent the hull
geometry by

y = +f(x,2), (12)
then the unit normal vector on the ship hull

surface pointing into the body can be deter-
mined by

- (fl'*' 'fz)

ony = +f (13)

[ =]

AU
Substitution of Equation (13) into Equation
(9) vields

flodgy (x.2f,2) ;os, ¢ fe,, =t (14)

We assume that the ship in consideration is
thin such that f = 0(c) where € is a small
parameter representing the beam to length ratio
of the ship. Then, from Equotlon (14), dis-
carding the terms of 0(ec?), we find that

0“(1.:0.1) = Fuf (15)

The solution of ¢ is well known from
thin-ship theory (sec e.g., Wehausen and
Laitone5) and is given by

f (E (4]
¢ (x,y,2) = / dEdg
/(x-c)’w’olz-c)’

ff bty cose oo

s(0)

where S(°) denotes the longitudinal center-
plane of the ship, and

ix-E) ey %o (ze7)?

2n ®
. "509,/ aef Rt
0 0
. cos|k$x-§]§os0|cosﬂk! 3in0)
kcos‘d -~ g/u

n
+ 6% dfsec?s ¢
[}

a,(*‘ﬁnY.Z’C) -

‘%(xtc)nc ]

£

slnl (x-£)secd)

. cos(‘% ysineuc'e) an
where§~ means the principsl-value integral.

Thus, from Equations (7) and (16}, we get

) = £ 0, (.00
/‘ (x-€)f,(E,7) o
o 2"9 [(x-£)2ey?ec?) '
v? -
- Tng 6 (2-Eov, L) f, dEdL (16)

N
If we substitute the expression for

x{x=£,y,C) from Equation (17) into Equation
8), we get

g, (x,y) = 1f[f (€, ;)ded; desece

-
°f sin[k{x-§)cosf] cos{ky sind)ke*5dk

() k ~ l-’g! sec?9

gsec?o
;&’,j:/f d!;dE[ dosec?e eG!

s(l)
-coslﬁ,(x-i)secel cos(‘% Y sin’esec’e) (19)

Within the first-order approximetion, the
wave profile along the side of the hull can be
obtained by

c,(x.o) - Re[- -,fj f ardE/ d0sech
f dkk-ksecz f/ dedy

0 s(0)

2n 2 '
f dosec’s eXo®e %2 ] (20)
0

M\ere Iw &, 2 =g+ i(x-€)cos®, and
1, o“

ty(x,0) = Re l- %;ff fedtdt
s(®)

n -
. { j desec(:[ eu ' dx
0 [}

F3] . © kZ'
* k'_/‘ sec 0d0 u_s___—- Resecd dk}
0 0




EA] .
- nlu’!/[fgdﬁi([ dbsec’® ek.sec'&l } (21)
0

which amounts to the wave profile along the
longitudinal centerplane.

Determination of Unsteady Free Surface

The free-surface deformation caused by the
incident waves, diffracted waves, and motion-
generated waves is obtained from Equations (&b)
and (2). The unknown functions are ¢p, & and
'Ek. tn the following sections we describe pro-
cedures for obtaining these unknown quantities.

Diffraction Potential. From the kinematic
. boundary condition on the hull surface, we
obtain from Equation (3)

[ - -¢
On S, In lS.

=K(injcosu + jnasinu - n,).ll (22)
Se
If we assume that the ship is slender such

that n <<n,, n,, then, discarding n; in
Equation (52). we obtaln

oDnl = K(jn,sinu = n,)¢
Se

I

("
= jug,(jn,sinu - n,)

. o IK(xscosu + y sinu) + Kz, (23)
where (xy,Yp,2Zg) indicates a point on the hull
surface Sy.

From Equation (23) we can infer that

oplxy.2) = oy, z;x)e I Rxcosu (24)

. where x affects ¢ as a parameter rather then
an independent variable. By applying the
Laplacian operator to the right-hand side of
Equation (24), we obtain

- K2e0c?ud =
1' 0,y * 9, - Kicos’ug = 0 (25)
'; .

An appropriate linearized free-surface
condition for the velocity potential ¢ly,z:x)
is

3\ -jKx
(Jue - Ug;) oly,0;x) e JKRCOSY
@ - jKxcosu
s + 90, e =0 (26)
" " or using the relation W, = w - KUcosk, we have

¢,(y.05x) - K¢ = 0 (2n

The kinematic body-boundary condition for ¢ is

¢ = jwg,(jN,sinp = N;)
“IC.(x A ’

. e‘jKYgSiﬂu + Kz, (28)

where N = (N;,N3) is the two-dimensional unit
vector on C,(x) which is the immersed contour
of a cross section at x. ],’he far field condi-
tion as |y|+= is given as

’ejKIYISi"u for u # »
¢ ~
llyl

In fact, we find that the boundary-value
problem for ¢ is confined in the y-z plane;
hence, If we find an appropriate Green's
function, G, which satisfies Equations (25),
(27) and (29), we can obtain the solution in
the form of

(29)

forp =7

oly.z:x) -f UG y,2)dl (30)

Colx)

where the unknown function Q should be found
from the remaining boundary condition (28).
The appropriate Green's function was given by
Ursell b and the solution for ¢ was obtained
by Choo’ and Troesch.

The approximation of ¢p by Equation (24),
where the variable x is suppressed as a para-
meter, has led to the free surface condition !
(27) and the far-field condition (29). As one
can readily observe, the forward-speed effect
is nonexistent in the foregoing probiem. The
foregoing simplification can be criticized for
the lack of consistency in the perturbation
scheme. However, the analysis will be pursued
on this basis with the assumption that the
forward speed has no significant effect on the
wave diffraction, Furthermore, under the
assumption that the wave lengths of interest
are greater than the order of ship beam, the
Helmholz equation given by (25) will be re-
placed by the Laplace Equation, i.e.,

Oyy +e,,=0 31

which is exact for pu = n/2, i.e., beam waves.
A further digression from the original problem
will be made with a heuristic argument, based
on the success of strip theory, that the near-
field solution derived with the radiation
condition

UL (oy % Jke) = 0 (32)

Yy to

*
Is acceptable.

———  —
Although the diffraction potentlal is not
explicitly solved in the usual ship motion
theory based on the strip assumption, & sim-
ilar radiation condition is invoked in apply-
ing the Haskind relation In the two dimen-
sional sense.
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Thus, the modified boundary-value problem
now is reduced to ar almost identical problem
of forced oscl)lation of two-dimensional
cylinders in a free surface in the combined
modes of heave and sway. It should be noted
that the diffraction potential is & function
of the wave frequency w. This is a noticeable
difference from the strip solution used in the
ship motion computation® in which the diffrac-
tion potential is treated as a function of
wave-encounter frequency Wg. In Appendix I,
the process of solving the diffraction
potential satisfying the two-dimenslional
Laplace Equation (31) with the boundary condi-
tions (27), (28) and (32) 1s described. The
description is given in a general form for
any prescribed function replacing the right-
hand side of Equation (28).

Motion and Radistion Potentisl. The mation
of the ship Is obtained by solving two sets of
linearized coupied equations of motion, which,
according to the coordinate system glven In
Figure 1, for k,2 = 1, 3, Sand k,t = 2, &, 6,
are

; (Mg * A5y * Beoke * Cugby ™ ':‘, (33

Here,
M(mass of ship) for kel <3
Ixx(mass moment of inertia) for
ket > &
Hki -
0 for kil except for W, = M.,

= - 2,M where z, is the
vertical coordinste of the
center of gravity;

Ay is the added mass coefflicient in the kth
mode due to the motion in the Lth mode; By
the corresponding damping ce?fflclcnt; Cu the
restoring coefficient; and Fk.) the wave
excited force or moment.

The coefficients In the equations of motion

are obtained by siender-body strip theory.
The expressions are given as follows:

Ace = e I‘J%[*/(‘)(O,".(v.x;x)

SN . zuuzch)oi dl] (34)
™ |- ﬂfd ™ 8
By = Im; w, ' Sun - 20M,6,
L (x)
. zun’c“)o; at] (35)

for k,L» 1,2, ... ,6.

where Re. and Im; are the real and imaginary
parts, r‘spectlv ly, of & complex function,
the ‘I,Q-'_,ln ry part of which is preceded by

J w1 Ldu is the integral r the length
In the positive x direction and )dl the
integral over the submerged cont Fof the
cross section located at x; ¢, is the two~
dimensional approximation of h; and le is
the Kronecker delta,

The restoring coefficients C ., are given by
Cis = pg¥, Ca\ » ~0g¥, Cy, = 09&"- Cys = €5,
= pgM,, Cy, = og¥(Ixx™ -h). and Css = pg¥
NyyM - al) where ¥ is the displaced volume,
A, the weterplane area, M, the moment of the
waterplane area about the y-axis, Ixx and lyy,
respectively, the mass moment of inertia about
the x- and y-axis, and OB the vertical distance
from the center of buoyancy to the calm water-
line. The weve excited forces are given by

F{" - ofdx[ [’Jw"k* Uﬂ {0;(‘/'1;’()
L C(x) ¢

u ' v !
+ Tu .8, " Jug ¢,6ks}§i]o1 di  (36)

for k= 1,2, ... ,6, where N, = yN3 - zN;,
Ny = =xN, and Ng » xN,.

From the foregoing equations it is obvious
that if the motion potentials ol"(y.z;x) are
known, we can solve the equations of mation
and find the six~degrees of freedom motion £, .
The first three of £, are the linear displace-
ments from the mean position of the ship in the
x, vy, and 2 directions, respectively, and the
remaining three are the angular displacements
sbout the x, vy, and z axes, respectively. In
numerical order of k these are called surge,
sway, heave, roll, pltch and yaw motion.
Utilizing the derivation shown in Appendix I,
we can show that

6 \
0,x,v.2) = 0 ¢ aply.zix) + 30 o (v,2;0E,
kel
IR PR R AR AT NI NN
AN U\ '
- n“{:)o,t,o(nf,:)o,t‘ 37

Substitution of Equation (37) into Equation
(4b) yields

G 0ew) = - 22 0 (xy,0) ¢ 0
4] ? J“ U L]
% JCH AR AR R TR ARV ARY &'
. 0 (€ - X)) (38)
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1it. Numerical Checks

For the purpose of illustrating computa-
tions, a pontoon having uniform cross sections
of the midship of & Mariner Class ship is
chosen. The length of the pontoon Is arbi-
trarily taken as five times the beam. The
cross section is close to & rectangle except
for the rounded bilges. The -immersed dimen-
sion of the cross section Is 23.06 m beam and
9.07 m draft. The offsets used to describe
the section are given in Table 1 and the
section view Is given in Figure 2.

Table 1 — Otfests of Right-Melf of Midship Section

of Mariner Ciaes Ship
v z
{m) {m)
0. -9.008
4.383 -9.008
0.706 -9.08
10.300 -8.458
10.958 -7.000
11.480 .62
1.534 -4.19
1.8 [}

Figure 2 ~ Right-Halt Croee Section View of
Midship of Mariner Cless Ship

As described in Appendix I, the velocity
potentials are obtained by using the method of
source distribution on the immersed contour of
the cross section of the body. As shown by
Equation (1-7), an approximetion s made by
assuming a constant source strength on each
line segment which makes up the contour. The
line segments are made by connecting the adja-
cent two points on the contour by a stralght
Iine. The points chosen are as shown In
Figure 2. 1t can be expected that numerical
accuracy wil) increase as the number of points
chosen on the contour Increases; however, a
compromise should be made to winimize computer
costs. A total of elght boundary points are
taken on the right half of the Immarsed contour
of a cross section as shawn by the black dots
in Figure 2. The boundery points thus chesen
provided the desired accuracy end ylelded a
satisfactory numerica) convergence.

It is well known that the method of Green's
function to solve for the velocity potential
associated with an oscillating body in a free
surface suffers from the existence of indef-
infte solutions at certain frequencies.
Descriptions of the existence of the indef-
inite solutions and their removal are given in
Appendix I1. To remove the indefinite solu-
tions, the source distribution is extended on
the Vine z = 0 inside the body, and a rigid
wall condition, ¢! = 0, Is imposed on that
1lne, which will Be referred to as '‘top deck'
hereafter. According to Frank!0 the "irregular
frequencies' for a rectangle of beam 8 and
draft T are obtained by

Kb = wb/g = "%" coth(mn¥/8), m= 1, 2,3, ...

where b = % For the section considered here,
8/T = 2,54, and therefore we get K,b = 1,86,
and K.b = 3.19. In Figure 3, the singular
boh.v'or of the amplitude of the free surface
motion due to besm regular waves at y = |.05b
(the wave incident side) at the first irregular
frequency Is shown. The amplitude of the wave
is normalized by the Incident-wave amplitude,
i.e., |54/, where ¢, is obtained by Equation
(38). The solid line is obtained by taking two
line segments on the top deck between y = 0 and
y = b, and Y=0andy = -b, and imposing the
condition ¢; = 0. In Table 2, a comparison of
the free-surface amplitudes is presented for
various top-deck conditions. The values for
the rigid-wall conditions imposed on up to six
line segments on the top deck are given to-
gether with that obtained by imposing the

¢ = 0 condition on the two line segments on
the top decl.t. Also shown are the values ob-
tained by ¢, = 4 on the two line segments on
the top deck at Kb = 0.3, 1.0 and 2.0. The
latter values are shown to check Ohmatsu's 4
statement!! that any arbitrary values for ¢z 1
on the top deck, provided an appropriate 4
symmetric or anti-symmetric condition is main-

tained, can be chosen to remove the irregular

frequencies. It appears thet the method holds

in higher frequencies only in the present case.

it looks obvious from Equation (II-6) that,

uniess ¢; = O or ¢' = 0 is imposed on the top

deck, there Is no guarantee that the trivial

solution for ¢' in the interior domain wil) be

obtained. One would assume that more segments

on the top deck should yield better results;

however, the values obtained nesr Kb = 1.0 for

& and 6 segments on the top deck shaw that the

sssumption Is not necessarily true. Why more

than two segments on the top deck show an

Irregular behavior In the vicinity of Kb « 1.0

is not yet clear. Based on this investigation,

the two segments on the top deck, together with

the other segmants on the body contour, ere

chosen for the ensuing computations.
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Teble 2 — Free-Surface Amplitudes st y = 1.08b
for Verious Top-Deck Conditions
$,=0 ¢=0 | &4
- Ko No Top 2808 4 [ ] 2 Sep. 2 Seg.
0.3 0.932 0932 0.932 0.933 0.926 0.042
[X] 1.483 1428 1.309 1.360 1.510
) 0.9 1528 1470 138 1.308 1.508
10 122 1108 0.680 0.706 1267 0.0
11 1.3 1 2.582 3.03¢ 1.32¢
12 1.9 o717 2387 2427 1638
16 2.1Q 1.962 2.010 2.009 2.003
1.65 2.156 1.986 1.980 1.988 1.988
170 217 1977 197 1.964 1.989 i
175 2228 1970 1.963 1.944 1.982 :
100 238 1962 197 | e 1975 i
. 188 3.308 1.985 192 1.909 1.908 1*
- 1.80 1.231 1.948 1.909 1.804 1.961 ‘
2 196 1.74 1.94 1.807 1.880 1.954
3 20 1843 1.9%5 1807 1.808 1.947 1.9%7
{ ’ 25 1.988 1.877 1.883 1.830 1.003
Teble 3 — Comparieon of Wave Excited Forces
Gbteined by Eq. (38) and Eq. (39}
I g1 I#g)ia iFg A
Kb 38 39 38 (& ] 138) (k]
0 0.152 0.153% oemn 08178 0.0062 0.0082
ad 05 0.5861 0.5080 0.5116 0.5161 0.0502 0.0500
09 0.5718 0.5761 0.3429 0.3449 0.0670 0.0868
_ ) 14 0.4696 0.4776 0.2177 0.2101 0.0830 0.0832
Lo~ 20 0.3780 0.3903 0.1009 0.1104 0.0842 0.065¢
34— — \ — Several cross checks of the numerical re-
L ] sults were made to ensure the accuracy of the
I computations., One was a correlation of the
3o+ 1 wave-excited forces computed by two independent
f | ) o Wh Top Dech | methods; one by a direct computation using the
. . " === Without Top Dect expression given by Equation (36) and the other
b 28} I, b by an indirect method using the damping coef-
| /7 ficients. The latter method is given by
3 5 J/ 1 Newman12 as
A <« 22t _ o wm” E
- . o ] [riN /e, = g7, 100t (39)
[ ‘ 18+ o7 J
L / J for two-dimensional bodies for u = 90 degrees.
/ The comparison of the two independent results
: 1af ] . given in Table 3 shows a good agresment which
P ,’ graduslly deterlorates up to sbout 3 percent
P H T difference at Kb = 2, In any case a 3 percent
1 . v R TEERT S 20 Y difference Is well within the numerical errors
. : } : : ’ ’ - resulting from the segmentation of the boundary
| f ! - Kb contour of a cross section. The Tnator A
\ : Figure 3 — Removsl of Singuler Behevior et in Table 3 equals to 20gbc, for |F3¢"|and |F§° |
‘ { Irreguler Frequency and 2pgbty, for |F{*).
b .
T The hydrodynamic coefficients resulting
B from the coupling between the sway and roll
LI wodes are Ay, Ayy, Bgy, and By,. From
.o Green's theorem we have
[
!




/ (00, - 98008 = 0 (40)
H

where S is the surface bounding the fluid
domain which consists of the body surface S,
the free surface Sp, and a vertical cylinder
surface Sy of a large radius R with a bottom
closure Sp. Since 0 - Ko on s

¢, = 0 on S, and 0. - 0(”/‘) on Sp, m can
show that

[/ e [f o

N ' which means that

A:. - Ahl .ﬂ‘ '2. - .02

these coefficients are shown In Table &,
Although the percent difference between the
two values at the higher frequencies appears
large, the error is within the bound which is
associated with the number of segments chosen
in the present case.

{ from Equations (34) and (35). The velues of

Table 4 — Comparison of Coupled Sway.
|A,,mi,.)mmm°ml¢n
o o | R | Rq | T | Va

03 0.1272 0.1246 0.0334 0.0318
. 1.0 0.0503 0.0614 0.0008 0.0058
| 20 0.0068 0.0005 0.0087 0.0002

The expression for & pulsating source of
unit strength below a free surface is gliven by
! Equation (1-5). The principal-value integral
in this equation can be converted to an expo-
nential integral In the form

| f u(nc)“,km ) o

a-k
{ - ul-e'“’se,(-las) t m"“s];
13
the plus sign for y=n > O and the minus sign
for yen < 0
; where
P S = (y-n) + i(z24g)

..-t
E,(S) -/ T ¢
S
had n.n
eyeins sy h%’)nj-. arg ) < =,
nel

o

4 Y = 0.57721566 . . . = Euler’'s constant.

For the evaluation of E (S), one can use the

above equation; however, when (S| is large,

the infinite series makes the computation in- .
efficient. Thus, one can use various rational

and polynomial approximations for a large argu-

ment.13 In this work the Laguerre quadrature

method introduced by Todd ¥ §s used. (

To obtain the free surface elevation
7,{x,y) the velocity potentials should be
eva!uated at 2 = 0, which in turn means that
the Green's function given by Equation (I-5)
should be evaluated at z = 0. Then, for the
sources at the top deck, the principal-vaiue
integral becomes

f' gosk(y-n) - isink(y-n)
ok
()

= cosaX CaX) + sinaX I % + st(ax)l

- tls:mx CXax) - cosaX {—;— + s:(ax)}|

where X = y-n, and Si and Ci are the sine and
cosine integrals, respectively, which are given
by

Sl(x).l:/.'— _1_)_—-—’“2“”
) 2 {2n+1) (2n41)1

n_2n
c[(x) -:/ EL‘(-Y# |I‘|l0£§;—‘(-)z—";—'
x ne]

Since these two functions approach zero in an
oscililatory manner as x~  the series computa-
tlon for large x is expected to require a
large number of terms before converging to the
desired accuracy (error less than 10°7). The
rational approximation of Hastings!5 (see,
e.g., p. 233 of Reference 13) was employed to
obtain the sine and cosine integrals, and the
results were found to be Identlcal to those of
the Laguerre method of Todd.

The amplitude of the radiating waves at
y = 100b generated by the sway and heave motion
of unit amplitude are given in Table 5. The
values gliven under the hesding “iInfinity" are
obtained in terms of the damping, B“. by

y (LD L /00, 123

which can be obtained from the principle of
energy conservation and are exact at y = =,
It appears that the radiating wave generated
by swey motion ylelds better accuracy than
that generated by heave motion.
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Teble § — Comparison of Radiating Weve
Amplitudes Dus to Motion at
y =~ Wb

e )
X Yodd ® Yodd | o
03 0.2 0. 039 0.391
1.0 1M 1.100 0.613 [ X - ]
20 1.99 1.590 0.380 0.430

1¥. Results and Discussion

The sample camputation is performed for the
condition of zero speed, l.e., U = 0, Thus,
there is no contribution from the steady
translation to the free-surface elevation
which is given by Equation (19).

To obtain the relative motion, the absolute
vertical motion of the dody should be known.
In Figures & through 6, the motion amplitudes
per unit Incident-wave amplitude are shown
versus the nondimensionsl frequencies w?b/g
= 27b/A for u = 90, 135 and 180 degrees. Due
to the symmetry of the bods, there Is no
motion at u = ¥ (head waves) for sway and
roll. To facilitate the understanding of the
measure of the vertical displacement at the
beam end which is contributed by roll, the
roll amplitude is multiplied by the half beam
b in Figure 6.

1.2

'

04

Various Weve Headings

181

Mgwe § — Hoave Amplitudes ot Zeve Spead for
Various Wave Headings

16F 1

1Lie

Rgwe § — Roll Amplitudes st Zero Speed for
Verious Wave Headings

Since the pontoon is symmetric fore and
aft, the equations of motion given by Equation
(33) (neglecting the surge motion and its
coupling effects) can be reduced to the
following form:

M+ A,,)E, + I,,é, + ans- Fse’

e+ A")E, + ‘uéz + (A, - "‘o)Es + ‘né~
+ Caky = F1®) @

(Ayy - "'0)2: + ’né: L UV ‘u)Eu + 'nuéu

+C ., = F®

The coefficients appearing in Equation (M)
are obtained from Equations (34) and (35) in
terms of the two-dimensiona)l velocity poten-
tial ¢'(y,z;x). The z-coordinate of the
center of gravity, z,, was approximated as
that of the center of buoyancy. The radius of
gyration for roll was assumed to be 0.6b such
that 1= n(0.6p)*.

It 1s well known that a prediction of roll
motion based on linear damping obtained by a
velocity potential at zero speed would yietld
an over-predicted peak rol! at its resonant
frequency. An iterative scheme to obtain a
convergence of roll motion using the equivalent
linear damping of the viscous damping could
have been tried in order to suppress the pesk
rotl; however, to avoid the amblguity resulting
from the approximation of the viscous damping,
it was decided not to employ this schems.

The strip method employed for the computa-
tion of motion doss not take into account the
eand effects of the pontoon. Thus, the length-
wise integrals in evalusting the A‘. and lu
become simple Integrals such as

E WO O RPN SRR A J0T S Ay a ek e



[m dn =yl

or

2 - ’
_L/u“x dx uuL ne

where a o is thw sectional quantity of Ay or
Bk&. Similarly, for the wave excited forces
Fi le), the contribution from the lengthwise
integral becomes

L Kt
f 7 eJRrcosy 4 o Z_M) (42a)

N K cosu
2
or
[ KL
L (_
7, Jkncosu o, . ; 2 sin{SFcosu
x k? cos?y
2 e
L cos!% cosllﬂ " (42b)
K cosu J forud 7

=0 foru-%

For the arbitrary pontoon geometry chosen
in the present sample calculation, the pitch
and yaw motions for u 4 n/2 do not bear much
significance because they are functions of the
length of the body which is arbitrarily chosen
) in the present case. Thus, the results to be
| illustrated will be limited to beam waves,
i.e., u=n/2, only. However, the motion
. amplitudes in Figures & to 6 for u ¥ n/2 are

{ presented to shaw that for a body which is

) symmetric fore and aft as well as port and

f starboard, beam waves could produce larger

' relative motion than the other wave headings.

i It is of interest to note in Figure 5 that the

K heave amplitude is less than the Incident wave

4 amplitude at all wave lengths for both u = 135

and 180 degrees. This fact seems to reflect
poi the behavior of the function given by Equation
N (k2b) which is the lengthwise contribution of

the hesve exciting force. One can readily see

that the function sin x/x where x = cosy KL/2
N has the meximum value of unity at x = 0 and
oo monotonically decreases as x increases. Thus,
. as gither the absolute value of cosu or K
'.f‘ increases, the wave excited heave force de-

creases. The sway motion contributes to the
relative motion through its wavemeking which
changes the free-surface elevation at the ship
i sides.

-

R S ey ey

The local waves generated by the sway,
heave, and roll motion are presented in Figure
7 as Ry, Ky, and K, respectively, where the
bar indicates that the quantities are non- "
dimensionallized by Incident wave amplitude. The 1

beamwise location of these free-surface ampli- E
tudes Is 1.050 from the origin. As can be ¢
observed in the figure the maximum locs! weve
amplitudes occur at the sams frequencies at
which the respective motion amplltude becomss
maximum. The trend of the curves shown in
Figure 7 Is found to be almost Independent of
the beamwise locations, although the magni-
tudes can chenge significantly. For the body
chosen in the present case, the sway motion
appears to be a better wavemsker than the
heave motion per unit amplitude of the inci-
dent wave from the beam directions for higher
frequencles, 1.e., Kb > 0.8,
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Figure 7 — Maximum Free-Surface Elevation at
¥ = 1+ 1.08b Due to Motion in Swey

(Ky), Heave (Ay) and Mokt (A

Combination of these motion-genersted waves
will be & harmonically oscillating free sur-
face. The emplitude of this free-surface os-
clilation at y = 21,050 is shown in Figure 8
as Ay which is a nondimensional quantity
normalized by the incldent wave amplitude.

The free surface deformstion due to the inci-
dent and diffracted waves should be added to
the motion-generated free-surface disturbance
to obtain the actuat free-surface elevation at
the sides of a ship. The diffracted waves are
the reflected and the transmitted waves. At
the incident side of the body, the free syr-
face deformation is caused by the combinstion
of the Incident and reflacted waves. The
smplitude of the combined waves of incidence
and reflection at the lncldu?! side at

y ® 1.05b Is Indicated by A,(T) in Figure 8.
The transmitted wave smplitude at the I’o

side st y = -1.050 Is indicoted by R,{L}. The
bar sign indicates » nondimensionslization by
the incident wave amplitude. As one can ob-
serve from Figure 8, the free surface oscil-
lates near the body at the inclident side with
twice the ampiituds of the incldent wave for
X > 0.6, 1.e., the Incident wave length less
than about 10b. On the other hand, at the Vee
side the free surface fluctuates with less than
about 40 parcent of the incldent weve ampli-
tudes for ® > 0.6.
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Figure § — Maximum Free-Surface Elovation at
y= ¢ 1~¢ém ond

By the principle of the conservation of
energy the following relation should hold

R

V-. y.-.
where I'(') and Iu") are, respectively, the
amplitude ratios of the reflected and trans-
mitted waves to the Incident weves. A check
was made at |y| = 100b to conflm the fore-
going relation. it was found that the rela-
tion holds trus even at distances as short as
100b. However, when the distridution of the
source is extended onto the waterline inside
of the body, the square sum of the foregoing
equation becomes slightly less than unity.
This is construed as sn indication that the
added top deck mey introduce & slightly
greater numerical error than the cnt ,Ithout
the top deck. It Is uncertain if Ay't can be
greater than 2 even at values of y as smell as
1.05b. Although no firm proof lt ’noﬂlm‘.
it appesrs that the values of Ry'l’ exceeding
2 are due to numsrical errors resulting from
the segment spproximetion.

The omplitudes of the fres surfece motlion
generated by the body motion and the Incident
and diffiacted waves are shown in Figure 9 at
the incident and the lee sides of the body.
The prominent hump end hellow trend of the
amplitude curves indicates the sensitivity of
the fres surface movement with respect to the
incident wave frequency. The drastic chenge
from the behevior of indlvidual wave amp!itudes
showm in Figure B Implies thet the phase dif-
ferences betweon the motion-generated weves
ond the diffracted waves con vary from 0
degree to 2100 degrees.

11
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Figure § — Meximum Free-Surfece Elevetion st
v = + 1480 Due to the Combined
EfMects of Motion and Oirection for
Beem Waves

To show the behavior of the amplitudes of
the waves as a function of y, the motion-
generated wave and the reflected wave at
D = 0.8 are chosen and are presented in Figuie
10. The values shown are those normelized by -
ty- The solid curve Is for the motion-gener-
ated wave, and the dotted one Is for the re-
flected wave. A larger scale for y/b is taken
near the hull to exsmine the behavior more
closely. Ffor Kb = 0.8 the wave length (A) is
7.85b. One con cbserve at about y = 12b &~ 1.5}
that the outgoing-wave amplitudes become iden-
tical to the far-field values. The local waves
appear to be confined within one-besm distance
from the hull. Generally, this trend is con-
firmed at other frequencies. HNHowever, when all
the waves are superposed with thelr proper
phases, the amplitude behavior becomes much
more redical as shown by the chained curve in
Figure 10. The sharpness of the curve is in-
dicative of 8 possibility of bresking waves
sompwhere between y = 1.5b and 4.0b.
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The amplitudes of the absolute (IEVH and
the relative ({T,|) motion divided by the inci-
dent wave amplitude are shown in Figure 11 for
y = 1.05b and in Figure 12 for y = =1.05b. The
relative motion computed on the basis of no
deformation of the incident wave is designated
as ""01d Rel.' and the present calculation based
on the deformation of the incident waves is
designated as 'New Rel.". A large difference
between the old and new relative motion can be
observed in Figure 11 at higher frequencles.
The difference is almost a factor of two. This
phenomenon is due to the fact that at higher
frequencles the absolute vertical motion of
the body diminishes while the reflection
effect almost doubles the amplitude of the
free surface motion on the side of the body.
The old relative motion, however, assumes that
there is no deformation of the Incident wave;
hence, the relative-motion amplitude becomes
identical to the incident-wave ampllitude. On
the other hand, the new relative motion at the
lee side diminishes at higher frequencies
since both the absolute motion and transmitted
wave amplitudes diminish, while the old rela-
tive motion amplitude becomes the same as the
incident wave amplitude.
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Figure 11 - Relstive Motion and Absolute Moation
sty = 1.06b for Beam Waves
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Figure 12 — Relative Motion and Absclute Motion
sty = -1.06b for Beam Waves

V. Conclusion

from the present investigation it is found
that neglecting the Incident-wave deforma-
tion due to the body motion and diffraction
could lead to a significant error in the pre-
diction of the relative motion of ships. The
computation should be extended to an actual
ship at speed for various wave headings,
and the results should be correlated with
available model experimental results of rela-
tive motion,
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Appendix 1

Determination of the Velocity Potentials
op(y,z) and ¢ (y.z)

The boundary condltlov.\ to be uti,ﬂed by
the harmonic functions ¢ply.z) and ey (y,2z) are
as follows:

) +

4, -0¢ =0 onz=0 (1-1)

where a = w?/g for 06 and a = wi/g for o

"I'lc. - f (1-2)

where C, is the contour below the calm water
surface of a cross section of a ship and f,
a complex function, is assumed to be known;

Vim (¢’ % ja¢') =0 (1-3)
y+tow Yy

and
Q; a0 as z+->». (I*’l)

The Green's function G(y,z;n,z) which is in
the form

Geinr+ Hly,z:n,Q)
where

r=[{y-n)?+ (z-c)’li

22 3?2
(L L)n-o

in 2 <0, is given in Wehausen and Laitone

and

5

as

! e of Vo)
G-—nr-Q.nr-lo %G dk

2%

a(z+g)

+ j2ve cm(v-n)] (1-5)

where r' = [{y-r)? ¢ (2¢g)*1}. uUsing this
Green's function, we cen express ¢' by

¢'(y,2) » /Q(I)G(l:y,z)dl (1-6)
Co
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where Q s the unknown to be determined.
Since G represents a pulsating source st »
point below the calm water surfece, Q cen be
regarded as an unknown source strength of
complex value.

Following the procedure adopted by l‘rmﬁ,'o
we can show that

]
¢y, 2) = 2' Q,/ 6(;y,2)d1 (-0
i= 3
)

whare C, Is divided Into N even nusber of
1insar segments C;, and Q; |s the constent
source strength on the Ith 1ins segment C;.

Let us asi> mat the prescribed func‘lr

f can be &%, s 20 r even function, fi8&)

and ar: ode. Fou am f '). of y. The cross

sectiep = wro e dtlon hare |s assumed to be

sywwfCrin ifper che zoaxis. Thus, we can also

assum: 0 1 es7 phat ¢' cen be "Y'f" into
) [}

an ever a8 - %) sod an odd part ¢V, Then,
we can (M- that:
o4 ~ 5 df Dayaa e
j»
iy
o ~'}'_’:| o{* l «“a (1-9)

where M = N/2 is the number of |inser segments
on the right-half of C,, and

cle)

+ jawet(z¥) cosa(y?n)] (1-10)

where the upper and lower l,m correspond
respectively to G{¢) and G{*}, and

r, = [yen)? ¢ (=001},

rle Lyt + (o002,
(.’w'..‘l:(u’ take the normal derivative of
[ 8

* at yupol ts of C; and
designete them w‘:?i and 0"' ., then dus to
the p rty of the Surface $iseribution of

mruﬂa: we have

q(‘) " (
et -5 o Wmaa
L (3

Kk

(0) . () °f') ;: (0)
UMELIEE el \f Gy (Livgzp)al
k=1
0 S (1-1)

These two equations can be expressed in alge-
braic form as

alelgle) | gl®
alodgle) _ 40

where k(.) ond A(') are M by M catrices, the
elemants of which are given by
Af:) -/ G“) (l;yl.zl)‘l for (d) = (e) or (9)
4
k

Q(.) and o(') are the colum vec or. the
elements of which are given by Q¢! ane Qf*)
respectively (however, if k=i, l‘ snlf 4
the velues should be taken), and 81e) and 8(*)
are the column vgctors, the elements of which
are given by f}' and f" , respectively.

(oJren. we con obtain the unknowns Q'®) end
'* by

‘9. [A(d)l".(d) for (d) = (e) or (#)
and substitution of Vnu into Equations (1-8)
and (1-9) yields ¢{e) and ¢(9).
For the diffraction potential ‘(;. we have
. I8 kz-jry si
prlo) o g0 o 2 (1 ainy s n;)\c

.
hence,

!(') - ju(Aou(ll.slnu sin(ky sinu)
« Nycos(Ky sinu))
f(') - -u;‘.nll,slnu cos(ky simy)

+ N sin(ky sinu)]

whare (y,z) Is & point on C, end N, end N, are
respectively the y- snd z-component of the unit
vactor on Cy pointing into the body. For @
symmetric body N, Is an odd function of y and
N, is an even function.




For the motlon potentisl 0.". we have
the following boundary condition on C,:

K ¢l® g0
2 0 ju.ﬂ‘
3 ju.ll' 0
L} 0 jﬂ.ﬂb
where N, = yN, = N,
Appendix II

Irregular Frequencies

gs well known that the Green's function
method for the velocity potential function
associated with an oscillating body in a free
surface suffers from the existence of In-
definite solutions at certaln discrete fre-
quencies. These frequencies are often re-
ferred to as "irregular frequencles." John?
showed that they are equivalent to the elgen~
values of the boundary-value problem for the
velocity potential defined in the Internal
fluid domain bounded by the body surface and
the interior line 2 = 0. That is, if the
velocity potential 0 defined inside the body
has nontrivial solutions for the boundary
condition

02-1‘5-0 on Ci(z=0, -b<y<b)

3-0 on ¢, (11-1)

for discrete values of A, then w; =
the Ith lrregular frequency for ' -], 1. .

If the velocity potential ¢ defined In the
fluid region R outside the Dody is expressed
by

¢(p) -/Q(l)c(!;p)dl. (11-2)
C.
then
flo,) = ay(e)] = n(p,)
’-0
0[ angize, ) (11-3)
[ ]

where f(p,) Is prescribed. The Fredhoim theo-
rem stom thet Q has & unique solution If the
sssociated equation, l.e., f= 0
in Equation (II-3), has & trivel solution

only. From John's uniqueness proof? we know
that if ¢ = 0, ¢ Idontically vanishes in
Randon C . Since ¢ given by Equation

(11-2) 1s &ntlmnus everywhere In 2 < 0,
con be extended to_the Interior domain %
1 we lot $(p') -4 AUNS(1;F ),

s mh TP O P
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should have trivial solutions for the boundary
condition (X1-1) if ¢ Is unique. But, the
fact that for some A;, ¢ has nontrivial solu-
tions implies that § # 0; hence,

Q(1) = Sy(1) 0 on Cp i1¥2 = Aj. The lden-
tity Q(1) = éy(1) can be easily proved. F
Green's theorem we can shou for any point p

in the interior domain R' bounded by €, and
C¢ that

$(e") :/ (§,6(p') - %W )0,

0 -/ (6,6(p") - o6 101,  (11-4)
C.

L]
hence, subtracting the two equations above, we
get

(LY -f (@, - 0,)60") - (¥ - 0)G,Jd}
c

.'/;03"6(9')“

since ¢ = 0 = ¢éy=0on C ., and from Equations
(1I-4) and (1I-5) we find"that () = Q).
Since Q(!) cannot be identically zero on C
the assoclated homogeneous equation of (11-3)
can have nontrivial solutions at A = X'.

(11-5)

Frank!0 has shown that the added mass and
damping coefficients of cylindrical bodies have
discontinuities at certain discrete frequencies.
Sev.ral lnvesalgators have shown elther in pub-
1ished!! or unpublished forms various
methods for alleviating the irregutar fre-
quencies. The removal of the irregular fre-
qm»clcs is achieved in this work by imposing
0, w0 or ¢ =0 on the interior waterline Cs.
This | od boundary condition on C¢ then
makes 20 In R' since

f/lvﬂ* ds = / #3910 (11-6)
'!

4 OCf

fos

With this .pgmch we can begin with a new
definition of ¢

=0 ml -0 md. therefore,
ha' upn.( thet § ¥ 0.

o' - / Q1e(1:p)d0
€%,
ond solve for @ from the Fredhola equation

1(py) = 0y(p,) = %Qlp,) 0/ QN8 (1:p,) a1
CotCe

o TR MG 4 g———-—; Py R T YR
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