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1. Introduction

Some forty years ago, soon after commencing my meteorological

education, I reached the conclusion that dynamic meteorology was a

subject with many equations and few solutions. In the classroom we

devoted much time to the formulation of equations governing the be-

havior of the atmosphere. We also studied some special solutions of

simplified forms of these equations, such as the familiar "Ekman

spiral" solution for the vertical variation of the wind near the earth's

surface, but we never considered the nature of the general time de-I
pendent solution. It appeared that the principal aim of dynamic

meteorology was to produce rational explanations for typical weather

phenomena rather than to predict the future evolution of particular

weather situations, and we were never taught whether the equations

might be used for routine weather forecasting.

It is easy to understand why this situation should have pre-

vailed. The equations possess a form of nonlinearity which makes

it unfeasible to determine the general analytic solution. The parti-

cular solutions which may be found after suitable simplifications .have

been introduced are often steady-state solutions, and in any event

are rather specialized.

The most prominent nonlinear terms in the equations, and the

only ones appearing in some of the popular simplifications, represent

the advection of some variable quantity, such as temperature or vor-

ticity, by the wind, which is also a variable quantity. The terms

are therefore quadratic, containing products of the advected quantities

with the advccting wind. They cannot be renved by any transforma-
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tions of the independent or dependent variables.

In the 1940's and earlier, the standard prodecure for obtaining

approximate time-dependent solutions of the equations was lineariza-

tion. This involves first finding a particular exact solution; very

often this represents a steady state. Small departures from this

solution are then governed approximately by a system of homogeneous

linear equations. If the original solution is simple enough, the

coefficients in the linear system reduce to constants, and the

solutions are exponential or trigonometric functions of time. It

should be noted that linearization does not remove the effects of

advection; it simply replaces the product of two unknown quantities

by the product of an unknown and a known.

The most justifiable use of linearization is the investigation

of the stability of the original solution with respect to small per-

turbations. However, since linearization formerly afforded the only

method for finding approximate time-dependent solutions, these were

often considered acceptable even when their departures from the

original solution could not logically be called "small".

The appearance of computers a few years later changed the situa-

tion completely. It soon became obvious that computers could obtain

approximate solutions to the meteorological equations by stepwise

numerical integration. The most spectacular advance was "numerical

I waeather prediction" - tme production of short-range forecasts by

obtaining time-dependent solutions; originating from observed initial

*conditions. This development was soon followed by numerical simulation
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of the general circulation, which is like numerical prediction except

that the initial conditions need not be drawn from real veathdr situa-

tions, and the integrations are extended for weeks or longer rather

than days. The purpose of numerical simulation, however, is the

explanation of observed features rather than the production of fore-

casts, and in this respect it is more in keeping with the original

aims of dynamic meteorology.

The advent of computers not only changed our procedures for

solving the equations; it also changed our way of thinking about them.

The analytic function of time had been the only mathematically "true"

solution; it incidentally allowed one to express a final state directly

in terms of an initial one. The numerical solution, where one ad-

vanced through a sequence of "irrelevant" intermediate states to

obtain a final one, had been a curious and wasteful approximation:

suddenly it became the natural solution, and, in some minds, the

"true" one.

When.computers were new in meteorology, they were expensive,

and unavailable to the majority of dynamic meteorologists. For those

who did have access, solution of an equation by computer had to be

preceded by many days of preparation. It presently occurred to me

that if the equations were sufficiently simplified, perhaps to the

point where they could not produce good weather forecasts, but where

. they still might qualitatively reproduce some features of the general

circulatiou, they might in the snme number of days, or perhaps con-

siderably fewer, be solved by slide-rule or hand computation, usingA
*6
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the newly acceptable numerical procedures. This proved to be the

case; the highly simplified systems have since become known as low-

order models .(LOM's) - a term apparently introduced by Platzman (1960)..

It might seem that LOM's would have proven to be a temporary

measure, to be abandoned once computers became more powerful and

more readily available. This was not the case. Whenever computers

have become big enough to do, with detailed systems of equations,

what they could previously do only with simple systems, there have

always been still bigger jobs to be done. Moreover L014'saeven if

originally conceived as a means of bypassing the need for computers,

are ideally suited for computer solution. Thus, when computers were

finally able to make a 24-hour forecast in a few minutes with a

detailed model, they could simulate many years of weather in the

same time with a LOM. When they could economically simulate many

years of data with a detailed model, they could produce a large en-

semble of many-year-long solutions with a LOM.

In this review I shall present a selection of low-order models,

chosen to illustrate the wide variety of ways in which they may be

formulated, and the wealth of uses to which they may be put. To a

considerable extent I shall be giving an account of my own experience

with LOM's, from one conceived a quarter century ago, and solved by

hand computation, to one till being developed, and requiring a

moderatley powerfu] contputer. lowever, I shall include a fair number

of models developed by other investigators, in order that this review

may better serve its intended purpose. Had T written this article
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some fifteen years ago, I might have attempted an exhaustive survey,

but today it is altogether impractical to describe all LOM's which

have appeared in the meteorological literature, or even all of the

important ones; there are too many.

2. Construction of a low-order model

In theoretical studies of the atmosphere the governing equations,

if they enter explicitly, are invariably simplified in various ways

before any attempt is made to solve them. The most nearly exact

equations which we can formulate are far too complicated. The choice

of simplifications is dictated by the particular problem to which

the equations are to be applied.

For example, when we are interested only in the larger scales

of motion, we ordinarily omit the description of the superposed

smaller scales, and introduce the combined effect of the smaller

scales upon the larger scales into the equations in terms of exchange

coefficients. In addition we usually replace the vertical equation

of motion by the hydrostatic equation. If instead we are interested

only In the smaller scales, we generally specify in advance the

larger-scale field on which they are superposed.

b In definitive studies of tropical circulations we must recognize

water vapor and liquid water as atmospheric constituents, and svapora-

tion from the ocean and land as a fundamental process, but, when we

are interested only in the higher latitudes, we often omit water

altogether, and treat the atmosphere as an ideal gas. In addition,

I
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after expressing the horizontal velocity in terms of its vorticity

and divergence, we often replace the divergence equation by a quasi-

geostrophic. approximation.

Without a good description of the water vapor: and clouds

we cannot accurately specify the incoming and outgoing solar and

terrestrial radiation, and we sometimes replace this by Newtonian

cooling. In other instances we omit thermal forcing and thermal

and mechanical damping altogether. Additional simplifications in

common use are the omission of mountains and smaller orographic

*features, the replacement of the ocean and land areas by a homo-

geneous underlying surface, and the replacement of this spherical

underlying surface by an infinite or bounded plane.

If we are now to solve the equations by computer, we must make

further modifications. We must somehow represent the field of each

of the N dependent variables (wind components, temperature, etc.)

I by a finite set of numbers. Usually we first introduce a set of L

horizontal levels or layers, and replace each three-dimensional

field by I. two-dimensional horizontal fields, one for each level.

Vertical derivatives or integrals are replaced by finite differences

4 'or sums. There are variants where different levels or different

values of L are used for different dependent variables.

Next, we introduce a set of M grid points in each horizontal

laycr, and replace each horizontal field by M'numbers, one for each

grid point. Horizontal derivatives are replaced by finite differences.

U There are variants where different grid points are used for different

horizontal fields.
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An alternative procedure which is being used more and more

frequently is to introduce a set of A spatially orthogonal functions,

and approximate each horizontal field by a linear combination of

these functions. The coefficients in the linear combinations become

the new dependent variables. Horizontal derivatives are expressed

as linear combinations of horizontal derivatives of the orthogonal

functions, which in turn are approximated by linear combinations

of the orthogonal functions. There are variants where different

sets of orthogonal functions are used for different horizontal fields.

Finally, we use some scheme to replace the time derivatives

by time differences. We can then solve the resulting system of

124N difference equations by stepwise numerical integration.

The construction of a low-order model is the same as that of

a more general model, except that L and M, and often N, are chosen

to be very small. The minimum allowable values depend upon the

phenomena being investigated. For large-scale motion, L - 1 may

reveal the barotropic processes, while L = 2 may capture the prin-

cipal baroclinic processes. Grid points tend to be unsuitable for

LOM's, since finite differences are unlikely to afford good approxi-

mations to horizontal derivatives when M is too small. Most LOM's

have therefore been based on orthogonal functions. Some of the

nonlinear interactions which render the original equations intractable

may be captured when M - 3.

tIn detail, a LOM may be developed as follows. Let the dependent

variables In the horizontally continuous equations, after the desired

. . .
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physical simplifications have been introduced, and after the vertical

continuum has been replaced by L levels, be Xl,..,XK, where K = LN,

and let the equatioos be

where t is time, Aij k is a quadratic operator which is linear in

X. and also in Xk, B.j is a linear operator, and C.i is independent

of X1 0... Eq. (2.1) is not completely general, since in the real

atmosphere there are important nonlinear processes, such as radiation

and condensation, which are not quadratic, but it includes many

familiar non-operational atmospheric models.

Corresponding to each variable X.,- choose a set of Mi orthogonal

functions im, for m =0,..,M.-l, satisfying any boundary conditions

satisfied by X i, and satisfying the relations

(Pi".~~l (2.2)

where the bar denotes an average over the horizontal region in which

X. is defined. We may then approximate Xi by
1.-

- (2.3)

$where

(2.4)
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It is often conven ient to choose i  I. In many cases the same

set of functions *im is chosen for each variable Xi . Frequently
Im i*

the chosen functions Oim are eigenvalues of some equation; for

example, we may require that

2 L > -i v ( 2 .5 )

where V2 is the horizontal Laplacian operator. Trigonometric

functions satisfy (2.5).

Upon substituting (2.3) with suitable indices into the right

side of (2.1), multiplying by 01.9 and averaging, we obtain the

system

OL%- r * j x"t +r Xjr 3M (26)

where

(2.8

......V. c;., - ,,C ,9

n- Clnl s(nr (2.9)

If K and DI are sufficiently smnil, Eq. (2.6) defines a low-order model.
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The derivation of equations like (2.6) from equations like (2.1)

is straightforward. What is not so straightforward is the original

choice of physical simplifications, and the subsequent selection

of the set of orthogonal functions, or grid points. Id&ally these

should be guided by the particular phenomena in which the modeler

is interested, and the specific questions which he hopes to answer.

For example, if we are simply interested in some of the pro-

perties of geostrophic motion, a quasi-geostrophic model, in which

the stream-function and isobaric-height fields are identified with

each other, may be appropriate. If, on the other hand, we wish to

explain why the motion tends to be geostrophic outside of the

tropical regions, we need a model whose physical formulation allows

the atmosphere to choose between geostrophic and ageostrophic

motion. A primitive-equation model is then called for.

Guidelines of this sort have not always been followed. In fact,

many LOM's have been constructed by modelers who were not seeking

answers to any preformulated questions at all. Such models may

nevertheless serve a useful purpose; for example, they may illustrate

some atmospheric phenomenon in a more comprehensible manner than

would be possible with a less simplified model. Moreover, it some-

times happens that a LOM provides answers to questions formulated

after the fact. Finally, a LOM constructed by one investigator is

Aoften found by anoLher investigator to possess new potential uses.



3. Some models of conservative systems

Although the circulation of the atmosphere owes its existence

to thermal forcing, and is tempered by thermal and mechanical dissi-

pation, much work in dynamic meteorology has been based on systems

of equations which have been simplified by omitting forcing and

damping altogether. Such systems of equations are often called

conservative, since they effectively assume that the total energy
of the atmosphere does not change. Among conservative systems

were the first models used for numerical weather prediction. The

rationale was that regardless of how important past forcing and

damping may have been in bringing about the weather situation at

forecast time, the effect of the additional forcing and damping

during the next 24 hours or so should be minor. Like the earliest

numerical-weather-prediction models, the first LOM's were conservative.

Probably most meteorologists would agree that the simplest

system of nonlinear partial differential equations derivable from

the atmospheric equations by physical simplifications consists of

a single equation, the barotropic vorticity equation

~V '/t' J Y T ' (3.1)

where * is a stream function for the horizontal velocity, f is the
t .Coriolis parameter, and J is a Jacobian with respect to

horizontal. variablis. In the simplest variant of (3.1), f is

treated as a constant and its gradient vanishes.
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To derive (3.1) from the atmospheric equations we treat the

atmosphere as.a homogeneous fluid, neglect all irregularities of

the earth's surface, omit all forcing and damping, and suppress all

vertical variations of the horizontal velocity field. We may take

the earth's surface to be spherical, but it is simpler to treat it

as an infinite or bounded plane. Eq. (3.1) is a statement of the

conservation, at a point moving with the flow, of absolute vorticity,

or, with f constant, simple vorticity, And as such it arises in

a wide variety of fluid dynamical problems. It is distinguished

by possessing two quadratic invariants - the kinetic energy and

the enstrophy. It has formed the basis for many meteorological

studies where simplicity has been deemed important, and it is a

natural starting point for the development of a LOM.

Eq. (3.1) is a special case of (2.1). Since K = 1, the sub-

scripts i, j, and k are superfluous, and we shall omit them, but,

for convenience, we shall replace the subscripts m, p, and q by

double subscripts. If we define * over an infinite plane, and re-

quire that vary periodically in both the eastward and northward

directions, suitable orthogonal functions satisfying (2.5) as well

as (2.2) are the trigonometric functions

e (3.2)

where m and n are integers, a and b are real constants, x and y are

eastward and northward distances, and i is now the imaginary unit

rather than an index. Eq. (2.3) becomes
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_ v,,A,, *,,,, ,(3.3)

where *mn may be complex, and Vmn and -m,-n must be conjugates to

make * real.

In constructing what to our knowledge was the first nonlinear

meteorological LOM (see Lorenz 1960), we restricted the.values of

* m and n to -1, 0, and 1, making M = 9. We noted further that s00 is

superfluous, while if 01' 10,' 011, and *I,-I are initially real,

they remain real, and if V1 = - ,- initially, *il -

always, so that effectively M redu:es to 3. We may then let

A e-s o~, + B- Cvs S%;- 0X. S (3.4)

and write the equations of the LOM as

dA/4t - 1B (3.5)

4 J fit a (3.6)

v mYA S (3.7)

r where the values of the constants a, 0, and y depend upon a and b,

and satisfy the relations

Ll Ewa
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es.~ -- ~ 9 +-jjo4i) ' (3.8)

+16

O- i. + kb to +6Oa+k ) 0 (3.9

Physically B represents the strength of westerly and easterly currents

at alternatin- latitudes, and A and C together define the amplitude

and phase of superposed waves.

Eqs. (3.5)-(3.7) possess several interesting properties. First,

the total kinetic energy E and the enstrophy V, where

4E-@A 4 B+ _( k) EA, (3.10)

4 V A +8
1A (3.10

are quadratic invariants. More generally, it may be shown that an

invariant of any system of partial differential equations will be-

come an invariant of a spectrally derived LOM, provided that the

equations and also the invariant are quadratic. This result greatly

increases the potential usefulness of LOM's in general.

$ IAn immediate consequence of the invariance of E and V is that

(3.5)-(3.7) are easily solved analytically. The solutions are elliptic

ftunctions of time, and hence periodic, the particular elliptic func-

tions corresponding to A, B, and C depending upon the ratio b/a and

the initial conditions. If b - a, C becomes constant, and the

elliptic functions degenerate to circular functions.

II
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The LOM defined by (3.5)-(3.7) was derived not to solve a parti-

cular problem, but to demonstrate that LOM's could be constructed in

a rational manner, and to illustrate various atmospheric phenomena

which are intrinsically nonlinear. We describe two of these.

First, when the large-scale waves, represented by A and C,: are

superposed on a stable zonal current, represented by B, they alter

their shape periodically, so as to produce alternate convergences and

divergences of momentum flux into and out of the latitudes of the

strongest westerlies, and the westerlies respond by alternately in-

creasing and decreasing in strength. This decidedly nonlinear

phenomenon is also a property of Eq. (3.1), but it cannot be illustrated

by solutions of (3.1) which can be determined analytically. Second,

if small-amplitude waves are superposed on an unstable zonal current,

they will amplify, in agreement with linear theory, but in drawing

their energy from the zonal current they will alter it to the point

where it no longer supports further growth. This process is well

represented by the elliptic-function solutions.

The model is somewhat restrictive in that (3.4) holds the cyclonic

£ and anticyclonic centers at specific latitudes and longitudes, while,

at intermediate latitudes, (3.5)-(3.7) do not permit the longitudes

of the troughs and ridges to vary independently of their amplitudes.

Platzman (1960) noted that if, either on the plane or the sphere,

this restriction is removed by using four real orthogonal functions

instead of two to represent the waves, the solutions will still con-

sist of elliptic functions. Subsequently Platzman (1962) made a

t
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systematic study of all LOM's derivable from Eq. (3.1) whose exact

solutions could be determined analytically; He found that the LOM's

could contain as many as three interacting complex orthogonal functions,

and hence up to six real variables. In all cases the solutions were

elliptic functions, except when they degenerated to circular func-

tions or constants.

Conservative LOM's proved to have many uses besides those which

were originally visualized. We mention first a work of Epstein (1969)

in which he introduced the idea of stochastic dynamic prediction.

This involved deriving equations governing the evolution of

ensemble means and covariances rather than individual

states. The rationale was that since the initial state was in any

case uncertain, an ensemble-mean state might have the greatest chance

of being a good forecast, while the variance would provide a measure

of the confidence to be placed in the forecast.

As a system of equations to which first to apply his method,

Epstein chose the 3-variable LOM given by (3.5)-(3.7). He extended

the Integration for 10 days, and found, among other things, that the

variations of the ensemble mean did not follow those of any particular

member of the ensemble.

Motivated by the same considerations, but using a different

approach, Paegle and Robl (1977) followed the evolution of an ensemble

mean of solutions of (3.5)-(3.7) by computing individual time-

dependent solutions and then averaging them. Even though each indlvi-

dual solution was periodic, the periods of different solutions were
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different, and the ensemble mean decayed toward the long-term mean

as the range of the integrations increased.

A considerably different use for (3.5)-(3.7) was found by

Lilly (1965), who modified the system by adding a fourth orthogonal

function proportional to cos ax cos by. le then used the model,

whose exact elliptic-function solution was known, to test a number

of frequently used time-differencing schemes.

Conservative LOM's need r.'t be restricted to barotropic flow.

Sasaki (1967) formul*e i .-ate] of thermal convection, which is

almost unique amon;,% .'t that it uses grid points instead of

orthogonal functions A.,;vaki considered a system which was invari-

art in one horizontal direction, and, in a vertical cross section, he

chose a grid of eight points, defining the temperature at four of

these, and the horizontal and vertical velocity components each at

two. His resulting model possessed several invariants, including

total energy. He obtained analytic solutions, which, not surprisingly,

were elliptic functions. Like the earlier conservative LOM's, his

model was designed more for illustration than explanation. His

solutions demonstrated the growth of convective motions superposed

on an unstably stratified state, in agreement with linear theory,

but they also illustrated the deceleration and eventual cessation

* of the growth.

4. Some models of forced dissipative systems

An advantage of LOX's which was particularly important when
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computers were slower is the relatively little labor needed to

generate extended solutions, from which long-term means and other

climatological statistics may be evaluated. Conservative models,

which are quite appropriate for some short-term problems, often pro-

duce ludicrous weather patterns when integrated for too long, and in

any case the statistics which they generate are highly dependent

upon the chosen initial state. Thus there are occasions when LO's

of forced dissipative systems are particularly appropriate.

Unlike the first conservative LOM's, the first forced dissipative

LOM's were conceived in order to answer a rather specific question.

This concerned the potential value of certain empirical weather-fore-

casting procedures. By the middle 1950's numerical weather prediction

was becoming an established discipline, and was gaining an in-

creasing number of devotees. At the same time. a smaller but equally

devoted group was favoring statistical weather prediction, based on

empirically derived formulas. The most easily established empirical

formulas are linear, and among some of the latter group, the idea

became established that the performance of any noti-linear formula

6! could be duplicated by a linear formula, if the latter contained as

predictors both present and past values of the quantities appearing

in the former. As one who had devoted some effort to both numerical

and statistical forecasting, I doubted that this idea was right, and

'$ I proposed to test it by taking a system of nonlinear differential

eqiiations and solving it numerically. The time-dependent solution

would then be treated as data, and would be used to establish a linear
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empirical prediction formula by standard procedures. Perfect non-

linear prediction of the data could be realized simply by solving the

equations again, and I doubted that the linear formulas would even

be nearly perfect.

It appeared that while any system of nonlinear equations might

suffice for the test, some useful by-products might result from

choosing a system resembling the atmospheric equations. Since the

equations used in numerical weather prediction were far too compli-

cated to allow sufficiently extended integrations to be performed

by the computers of that day, I proposed using a LOM.

A model of thermally forced and thermally and mechanically

damped baroclinic flow was subsequently constructed and made to run

by Bryan (1959). The model used spherical geometry, and its 14

dependent variables were the coefficients of six spherical-harmonic

functions in each of two layers, plus a variable mean temperature

and static stability. The model demonstrated that models could be

made to run forever; it was the first meteorological model to simu-

late a full year of data. It also afforded a fair qualitative repre-

sentation of some of the principal features of the general circulation.

The model lacked one'feature needed for the proposed test; its

solution was too regular, and prediction of its future behavior was

a trivial matter. I subsequently sought a model which would be no

more complicated than Bryan's, but whose solution, even after the

transient effects had died out, would vary aperiodically. I eventually

r found one which differed from Bryan's principally in that the thermal
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forcing varied with longitude as well as latitude (Lorenz 1962a).

Upon establishing linear prediction formulas from the numerical output,

I found that indeed they did not yield perfect forecasts.

In the model the stream functions in the upper and lower layers

were denoted J + T and V - T, and the potential temperatures were

denoted by 6 + a and 8 - a, after which T was identified with 0 through

the geostrophic relation. In the final formulation #, T, 6, and a

were defined over an infinite strip bounded on the south and north

by the lines y = 0 and y = w/, instead of over a sphere. The chosen

orthogonal functions, satisfying the appropriate boundary conditions

for , and T, were

b) = (4.1)

(4.2)

. 36,, 2 ,.. .!. s °, . (4.3)

1~ 4L COU. (4.4)

* I

'~k5~ ~ S~ ~C *(4.6)

co :xh:J (4. 7)

*1
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j was expressed in terms of *l,..,69 0 in terms of *0,...,6,

and a in terms of 0 alone. If a had been allowed to vary horizontally,

the equations would have been rather awkward to solve.

The LOM which had taken so long to develop proved to have many

useful by-products. We mention first its application to the labora-

tory experiments of Fultz (1953), F'ide (1953), and others. In brief,

a rotating cylinder or annulus containing water is heated at the

outer radius and cooled at the center or inner radius. With slow

rotation, or with more rapid rotation and either very weak or very

strong heating, the resulting flow is symmetric, i.e., independent

of "longitude", but with more rapid rotation and moderate heating a

set of waves develops. These may progress without changing their

form, they may vacillate, i.e., vary their form-periodically, or

they may vary with an irregularity reminiscent of the atmosphere.

We had previously hypothesized (Lorenz 1953) that the wave regime

would ensue when the symmetric flow became baroclinically unstable,

and furthermore that the stability of the flow under strong heating,

despite the large horizontal'temperature gradient and accompanying

vertical "wind" shear, resulted from the high static stability pro-

duced by the rapid large-scale overturning. The LOM appeared to be

as good a model of the laboratory experiments as of the atmosphere,

and, in view of its time-variable static stability, it offered a means Df

testing the hypothesis.

In addition, if all the variables and constants in the LOM

with subscripts 4, 51,or 6 initially vanish, they continue to vanish,

and may be discarded, so that the remaining system of eight equations
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is also a complete LOM. It has by now been truncated to the point

where the waves can no longer effect a net cross-latitude transport

of momentum, but they can still transport sensible heat, so that the

model is still potentially useful for studying baroclinic instability.

The reduced model was easily modified to apply to a cylindrical region

instead of a channel; the only changes were in the numerical values

of some of the constants. It proved to be easy to solve analytically

for the steady state, and to determine its stability; the criterion

for baroclinic instability showed excellent qualitative agreement

with Fultz's experimentally determined transition curve. Further-

more, when four more variables -were added to the model, so that waves

of two consecutive wave numbers were represented, analytic solu-

tions for the wave-number transitions closely duplicated the experi-

mental results (Lorenz 1962b).

To study the phenomenon of vacillation we returned to the

14-variable model (Lorenz 1963a). We were also forced to return to

numerical methods of solution. We found thatjust beyond the limits

of baroclinic instability of the symmetric flow, steady waves would

develop (i.e., steady in a moving coordinate system), but, when these

limits were sufficiently far exceeded, vacillation would set in.

Moreover, the mechanism for vacillation was indicated as being the

barotropic instability of the flow which consisted of the symmetric

flow plus the superposed steady waves. Without the waves the symmetric

flow would have been barotropically stable; the role of baroclinic

instability in vacillation thus appeared to be the production of the waves.
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In a final variation of the model (Lorenz 1965) we increased

the number of variables to 28, by allowing the simultaneous presence

of interacting waves of three different wave lengths, but suppressing

the variations of horizontally averaged temperature and static stability.

We then made a study of predictability, by first obtaining numerically

a "control solution" extending for 64 days, and then superposing

numerous small perturbations at various times during the 64 days. In

each case we determined how rapidly the perturbed solution would de-

part from the control run. This was the first of many systematic

studies indicating that small differences between solutions would

double in a matter of a few days (in this case, four days on the

average), and hence to imply that, while there might be considerable

room for improvement in one-week weather forecasts, accurate fore-

casting a month or more in advance was not possible.

Like conservative models, forced dissipative baroctinic models

soon found uses other than those originally planned for then e

mention one applicaticn.

In investigating stochastic dynamic prediction and its relation

to predictability, Fleming (1971) introduced the concepts of certain

and uncertain energy. Sometimes all that we may know about a state

of a system is that it is a member of a particular ensemble. The

ensemble-mean energy, if it is quadratic, may be resolved into certain

and uncertain energy - the energy of the ensemble-mean state, and the

nean energy of the departures of individual state. from the mean.

The latter affords a measure of uncertainty as to the precise state.

* ---
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Both certain and uncertain energy may bc resolved into kinetic and

available potential energy. Fleming derived expressions for the

generation and dissipation of these forms of energy, and the trans-

formations among them.

As a case to which to apply these concepts, Fleming chose the

28-variable model mentioned above. He found that the major source

of uncertain energy was certain available potential energy.

Thermally forced atmospheric circulations are not restricted

to those where the heating contrast is horizontal. Small-scale convec-

tive systems forced by heating from below or cooling from above have

also been popular subjects for modelers. The forcing is ordinarily

expressed in terms of a Rayleigh number.

One of the first convective LOM's was constructed by Saltzman

(1962). Assuming uniformity in one horizontal direction, he expanded

vertical cross sections of the stream-function and temperature-fields

in truncated double Fourier series, obtaining a seven-variable LOM,

with three variables representing motion and four representing tem-

perature. He obtained a number of numerical solutions where the

initial state was a small departure from a state of steady convection.

For larger Rayleigh numbers the system generally continued to

oscillate. In one instance all but three of the variables decayed

to zero, while those three continued to oscillate irregularly.

* Having noted this aperiodic solution, we further truncated

Saltzman's model by retaining only the three variables which did not

decay, and confirmed the aperiodicity (Lorenz 1963b). Although too
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highly truncated to provide a good representation of convection, the

new three-variable model has attracted much attention from mathe-

maticians as a simple system which varies aperiodically, despite its

deterministic formulation. Certainly no deterministic model with

fewer than three variables can undergo continual aperiodic oscillations.

Recently Sutera (1980) added small-amplitude random forcing to

the three-variable convective model. He obtained qualitatively

similar aperiodic behavior at Rayleigh numbers which would otherwise

have been subcritical.

Seeking a system which would undergo a still greater variety

of regime transitions, Shirer and Dutton (1979) constructed a model

of moist convection, in which they assumed that all upward motion was

saturated and all downward motion was unsaturated. They found that

Jr six variables were sufficient to produce a wealth of regimes. Shirer

(1980) subsequently extended the study to an 11-variable model, in

order to include the effects of a prespecifled wind shear in the

environment. For suitable forcing the model produced parallel cloud

bands, whose orientation was determined by the wind shear.

Even though the atmosphere is thermally forced, it is possible

to include forcing and damping in a barotropic model; the forcing

would have to be mechanical instead of thermal. One of the first

LOM's of this sort was formulated by Veronis (1963). The basic

equation was still the barotropic vorticity equation, but the model

represented flow in a square ocean basin, and the forcing was identi-

fied with wind stres;. Veronis chose orthogonal functions of the form
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sin mx sin ny, and truncated the series for i to four terms by letting

m and n equal 1 or 2.

For weak forcing Veronis found a single stable steady solution,

and in some instances two unstable steady solutions, but for stronger

forcing there was sometimes, in addition to the stable steady solution,

a stable but surprisingly complicated periodic solution. This was

one of the first of many models found to possess two or more distinctly

different "climates."

More recently, Charney and Devore (1979) developed a three-variable

forced dissipative barotropic LOM, using the orthogonal functions

O' 02) 03 defined by (4.2)-(4.4). Their model differed from earlier

ones in that they included mountains and valleys, with the form of

01" For suitable forcing they obtained two stable steady solutions8

Mand were able to identify one of these solutions with the occurrence

of blocking in the atmosphere. The study thus supported the hypo-

thesis that geographical features play an essential role in the block-

ing phenomenon. Further support is afforded by a study by Charney

and Straus (1980), who obtained similar results with 12-variable

baroclinic LOM with mountains.

As a final example, we mention a 9-variable barotropic primitive-

bequation model with forcing, damping, and east-west mountain ridges

(Lorenz 1980). The model illustrates the approach of an initially

unbalanced state to quasi-geostrophic equilibrium. From this model

a three-variable quasi-geostrophic LOM may be derived. A striking

( feature of the latter model is that although it represents barotropic
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flow, it is identical to the three-variable convective model (Lorenz

1963b) described earlier. It therefore possesses aperiodic solutions

for suitable values of forcing, damping, and mountain height. It

thus reveals another property of LOM's which increases their potential

usefulness; a LOM, having been constructed to represent one physical

phenomenon, may prove applicable to a distinctly different one.

5. A model of a moist general circulation

We shall conclude our account with a description of a LOM which

is still being developed, and has not yet been applied to specific

problems. It is a model of the large-scale circulation of a moist

atmosphere, and it includes thermodynamic and radiative effects of

water vapor and liquid water. We present the model to illustrate the

step-by-step construction of a LOM, but also to indicate how certain

difficulties which have not arisen with previous LOM's may be handled,

and to suggest possible future trends in low-order modeling.

For several reasons the incorporation of large-scale moist pro-

cesses into a LOM is not straightforward. First, the nonlinear pro-

cesses associated with water are not quadratic, and the computations

are not easily performed with orthogonal functions. We shall handle

this problem by using orthogonal-function coefficients as basic vari-

ables, and evaluating the spatial derivatives and advective terms as

in dry models, but transforming at each time step to grid points,

t evaluating the remaining nonlinear terms at each grid point, and then

transforming back to orthogonal functions. Obviously we must sacri-
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flice some computational speed to do this.

Next, if orthogonal-function representations of temperature and

water-vapor content are transformed to grid points, supersaturation

may appear somewhere. We shall remove this possibility by using some

measure of the total water content (vapor plus liquid) as a basic

variable, and introducing an auxiliary formula to evaluate the water-

vapor content at each grid point.

Finally, between the tropics and the polar regions the total-

water mixing ratio may vary by one or two orders of magnitude. A

highly truncated orthogonal-function representation might therefore

transform to negative mixing ratios at high-latitude grid points.

Accordingly, we shall use total dew point (the value which the ordinary

dew point would assume if all the liquid water were vaporized) instead

of total-water mixing ratio as the basic moisture variable; extreme

values of total dew point should not differ by more than a factor of two.

In formulating the continuous equations from which the model

will be derived, we shall choose pressure p as the vertical coordinate,

and let the atmosphere be. contained between the surfaces p - 0 and

p " PO M 1000 mb; the height of the 1000-mb surface will be variable.

The underlying surface will consist entirely of ocean. The system

will be quasi-geostrophic.

Our basic dependent variables will be horizontal velocity expressed

in terms of a stream function * and a velocity potential X, individual

pressure change w, height z, temperature T, total dew point W, and

sea-surface temperature S. Auxiliary variables will be the saturation

MO
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mixing ratios u, w, and s at pressure p and temperatures T, W, and S,

and the water-vapor mixing ratiov ; thus w will be the total-water

mixing ratio.

The standard assumption for v is that it is the minimum of u and

w. Since in a LOM a single grid point represents a large area, we

prefer a formulation where a portion of the area may be subsaturated

while another may contain clouds. A convenient formula which makes

. -! the liquid-water mixing ratio w-v small when the degree of subsatura-

tion u-v is large, and vice versa, is

~ Y ~~-~* 3(5.1)

where y is a constant. Choosing y - 1/4 makes the relative humidity r =

v/u 0.8 when &w= u; the remaining water is in the form of clouds.

We also note that choosing y - 0 would reduce (5.1) to the standard

assumption; thus, in a set of models with successively higher horizon-

tal resolution, successively smaller values of y might be appropriate.

We shall relate u and T by the formula

At = "r (5.2)

where c' is a constant and U - LIR T*. Here L is the latent heat
V

o * of condensation, assumed constant, R is the gas constant for water

vapor, and T* - 273 K is a typical atmospheric temperature. Analogous

formulas will relate w and W, and s and S. Eq. (5.2) is a derivable
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from an approximation to the Clausius-Clapeyron equation in which the

factor T*T replaces the factor T2. An appropriate value for p is

about 20.0, and we shall choose p = 20 exactly, since much computa-

tion can be saved by evaluating integral instead of fractional powers.

In fact, sihce in the radiation formulas we mutst compute T in any

4)5
case, we need only compute (T

Our basic diagnostic equations will be the thermal wind equation

(.

obtained by eliminating z from the hydrostatic and geostrophic

equations, where R is the gas constant for air and fo is the constant

average value of the variable Coriolis parameter f, and the equation

of continuity

/ -a(54)

Our prognostic equations will be

t(C. I L R~)J (5.6)

A / t - (5.7)

t, , .- 5-, )
II

'1 ,- ,--t = E 6
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where c is the specific heat of air at constant pressure, F denotes

the effects of friction, H denotes the atmospheric "heating", including

the gain of latent heat through evaporation from the ocean, but not

the effects of evaporation and condensation within the atmosphere,

G denotes the effects of evaporation and precipitation, and E denotes

oceanic heating. The simplified form (5.5) of the vorticity equation

is consistent with the geostrophic approximation. By writing the

thermodynamic equation (5.6) in terms of specific enthalpy c T + Lv,
p

we include the thermodynamic effects of water. We note that dv/dt

may be expressed in terms of du/dt and dw/dt through (5.1), and sub-

sequently in terms of dT/dt, dW/dt and w through (5.2).

We next reduce the vertically continuous equations to a form

of the two-layer model in which we define 0 at two levels but T at

only one. It is consistent with this formulation to define W at

only one level. We shall obtain the new equations by integrating

(5.6) and (5.7) vertically through the depth of the atmosphere,

and (5.5) through the upper and also the lower 500 mb, or equivalently,

through the upper 500 mb and the entire 1000 mb, instead of simply

applying (5.6) and (5.7) at one level and (5.5) at two. The advan-

tage of this procedure is that the vertical integrals F, , and i

of F, G, and H contain only the tluxes across the ocean-atmosphere

surface and the top of the atmosphere; the integral F of F through

the upper 500 mb also contains the momentum flux across 500 mb.

To perform the vertical integrations we must specify the vertical

structure of the variables. We shall assume that in each vertical
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column

T (5.9)

where X is a constant, whence, from (5.3) and (5.2) ,

Noting that - = 0 would imply an isothermal lapse rate, while

A = R/c = 2/7 would imply a dry-adiabatic lapse rate, we arbitrarily
p

choose an intermediate value 0.175. We shall also let the relative

humidity v/u be constant in each column, whence, from (5.1), w/u is

constant, so that

Whr (5.13)

Finally, we let

i; ",. : /, - ' ,.,
* 5.4

.!
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whence, from (5.4)

When (5.9) - (5.15) are substituted into (5.5) - (5.7) and the

vertical integrations are performed, we obtain the equations of the

model, in which the basic dependent variables are the surface values

%0, T0 , X0 1 WO, and S, and the forcing functions are F, , H, and

E. We can eliminate 3T01/t from the thermodynamic and thermal-vorticity

equations, obtaining an w-equation expressed in terms of x0 , which although

awkward, is tractable.

We shall make F and F proportional to 0 and To, evaporation and

precipitation proportional to s - v and w- v, and sensible heat flux

proportional to S - T. Radiation is not so simple. A highly sophisti-

cated treatment would be pointless in a model which has been so sim-

plified in other respects, so we shall represent some properties of

radiation crudely and others not at all.

We shall assume a fractional cloud cover dependent on relative
I4
humidity; in our first experiments it equals r . Solar radiation which

strikes the clouds will be totally reflected; that which misses the

clouds will penetrate the atmosphere and heat the ocean. We shall

express solar radiation in terms of a "planetary temperature" T .

We shall let the water-vapor spectrum possess a window through

tI which a fixed fraction a' of the radiation emitted by the ocean,

4
proportional to S A and not striking the clouds, passes to outer space.
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The remaining fracl:ion 1 - a' is absorbed by the atmosphere, as is

all long-wave radiation striking the clouds. The atmosphere radiates

upward and downward respectively at rates proportional to T and T
a bh.

where T and Tb are the temperatures of the uppermost and lowest 0.3 mmab

of precipitable water; the radiation from the cloud-free portion is

diminished by the factor 1 - a'.

To obtain a LOM, we shall express the fields of 09 Tot W0  S,

and TQ in terms of the orthogonal functions *0,...,$ 6 bdefined by

(4.1) - (4.7), and used in the vacillation study. We may consequently

anticipate vacillating and irregular as well as steady behavior.

Since the constant term in 0 is meaningless, there are 27 prognostic

equations. As noted, at each time step we must transform back and

forth from orthogonal functions to grid points.

Ideally the heat capacity of the ocean, or its mixed layer, should

be large, but equilibrium states are approached more rapidly if it

is set to zero. Eq. (5.15) then becomes the diagnostic equation E - 0,

and the number of prognostic equations reduces to 20, making the

output easier to diagnose.

Our preliminary experiments have yielded some interesting results.

First, if TQ is horizontally uniform, the system approaches a horizon-

tally uniform state of rest, but, for some values of TQ near 275 K,

there are two equilibria-a very cold one and a very hot one. This

situation evidently results from a cloud-albedo feedback process.

(There is little evidence that it is realistic; however, we do not really

know how the atmosphere would behave if solst Rating were uniform
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over the globe.

Next, when we allowed T to vary with latitude only, so as to

produce a Hadley circulation, we first produced tropical temperatures

above the boiling point of water and polar temperatures near absolute

zero. We suspected an instability associated with the assumption of

a fixed lapse rate, which would exceed the moist-adiabatic at high

enough temperatures, but we finally found that the difficulty resulted

from the choice of grid points, and that it disappeared.when the

number of grid points in the y-direction equalled the number of zonal

orthogonal functions (0*3, and 6) . We thus learned something about

constructing LOM's with orthogonal-function to grid-point transforma-

tions.

Finally, when we perturbed an established Hadley circulation

with a sufficiently strong cross-latitude temperature contrast, we

obtained waves of reasonable amplitude progressing at a reasonable

speed, and the associated moisture and vertical motion patterns were

reasonable. We therefore believe that a low-order model of a moist

general circulation is feasible.

6. Concluding remarks

Low-order models of the atmosphere, originally conceived as a

means of illustrating some of the effects of nonlinearity, have proven

useful in investigating specific problems, some of which could not

readily be studied by other means. We have described a considerable

variety of uses to which they may be put. Ve have seen that as com-

11 .... . _ __ __
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puters have become more powerful, and as tasks which might have been

considered appropriate for LOM's have become suitable for larger models,

still larger tasks have become suitable for LON's.

Despite the speed with which extended numerical solutions of LOM'S

can be generated, we feel that there remain some tasks which will not

be easily performed with LOM's until still faster computers are avail-

able. Among these, some may require extended runs with a more slowly

operating LOM, such as the moist model which we have'described. Others,

which may not involve the higher-degree nonlinearity of the moist

model, include the extension of a single run for a long enough time

to permit climatic changes with the periods of ice ages, generation

of very large ensembles of solutions to obtain fairly precise esti-

mates of .ensemble statistics, and such specific tasks as the determina-

tion of the normal modes- of a system about a basic state which is not

steady, but which is undergoing a complicated periodic cycle.

I
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